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Summary. We study the almost sure limiting behavior of the smallest maxi-
mal increment of partial sums of independent identically distributed random
variables for a variety of increment sizkg wherek, is a sequence of integers
satisfying 1< k, < n, and going to infinity at various rates. Our aim is to
obtain universal results on such behavior under little or no assumptions on the
underlying distribution function.
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1. Introduction

Let X, X1, Xz, ... be a sequence of independent and identically distributed (i.i.d.)
random variables with common nondegenerate distribution funétiofor each
integerj > 1, let§ = Xy +...+ X and set§ = 0. We are interested in the
limiting behavior of theminimumof the maximal increments of partial sums,
where we consider different increment sizes. To be more specific, we shall study
the asymptotic behavior of

(11) Mh(kn) = _min = max [Sy—S§—jcn| /an,

for suitable sequences of positive integers<ik, < n, wherea, andc, are
sequences of norming and centering constants depending on the underlying dis-
tribution functionF and the sequendg. Our point of departure is the following
result of M. C#rgb and Fevesz (1981). (For some clarification see Shao (1992)
or page 112 of the monograph of Lin and Lu (1992.)
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Let k, be a sequence of constants satisfying

KD 1<kp<nn>1

(K.2) kn /00, asn — oo,
(K.3) n/kn is nondecreasing,
(K.4) logn/kn, — 0, asn — oo,

(K.5) b, := L(nLn /nn> /kn IS noNincreasing,

where we setx =log(x vVe), x > 0.
As usual, denote by [x] the integer part ebo < X < oo.

Theorem A (Csrgd and Revesz (1981))Let X be a random variable with
EX = 0and Var(X) = 1, and let k = [xn], wherek, satisfies (K.1)-(K.5). Set
a, = (8by)/? /mand ¢, = 0in (1.1).

Then:

(1.2) Iinm inf m(ky)=1 a.s
Moreover, if L(n/k,)/LLn — oo, then
(1.3) nIlﬂrrgO my(ka) =1 a.s

One of the purposes of our paper is to obtain a version of Therore A without
any condition at all on the underlying distribution. Among other results we shall

obtain the following theorem, which is a consequence of more detailed results
stated in the next section.

Theorem B Let X be a nondegenerate random variable in the Feller class and
let k, = [xn], wherek, satisfies (K.1)-(K.5). There exist sequences of norming
and centering constants,and G, (depending on F and.i such that

(1.4) liminf my(kp) =Ky a.s
n—oo

where K < oo is a positive constant.

Moreover, if L(n/k,)/LLNn — oo, then

(1.5) limsup my(ky) =K, a.s

n—oo

where K < oo is another positive constant.

The exact form of the norming and centering constants will be given in
Sect. 2. Recall that a random variable X is in theller classif one can find
centering constants, and norming constantg, so that

(Sh — 8n)/7n is tight with non-degenerate subsequential limits.

The liminf behavior ofm,(k,) if k, is of orderO(logn) is different from
the preceding situation. Here it has been shown that one can chgeséd and
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Ccn = ¢ = EX, provided that X has a normal distribution.(Refer tod@¥ and
Révesz (1981)). Our next result shows, maybe somewhat surprisingly, that such
a result holds for random variables with arbitrary distributions (which possibly
have no expected value).

Theorem C Let X be any random variable and assume thatkO (logn) as
n — oo. Then there exists a constant ¢ depending on F anslikkch that

1.6 limsu min max i —§ —jc |<ooas.
(1.6) MSUP (N, M 1S —S i

In Sect. 2 we will provide a detailed description of what can happen in this case.
It will turn out that in some cases the limsup in (1.6) can be positive, whereas
it can also be equal to zero in other cases. We will also look into the limiting

behavior ofm,(k,) for increment size&, of ordero (logn).

2. Statement of main results

We first introduce some additional notation. Let the quantile funcfohe de-
fined as

(2.2) Q) =inf {x:F(xX)>t}, O<t<l

Forany O<s<1-t <1 set

1-t

(2.2) F(s,1-t) = Q(u) du/(L—s—1)
1-t

(2.3) 72 (s,1—t) = Q%(u) du/(1 —s —t) — p?(s,1—t),

and

24y 17D =sPOFQRA-n+ [ QRuydy
‘ ~{s Q)+t Q-1+ [ Q) du}?

The following alternate expression fef(s, 1 — t) will also come in handy,

1-t 1-t
(2.5) o2 (s,1—1)= / / (U A v —uv) dQ(u) dQ(v).

For any sequence of positive constants satisfying (K.1)-(K.5hangh > 0 such
that (y1 +2) by < 1, set

(2.6) pn(y1,72) = p(y1 by 1 — 72 by)

and

(2.7) 02(11,72) = 0%(71 bn, 1 — 72 by).



70 U. Einmahl, D.M. Mason

Using (2.5) and recalling (K.5), it is easy to see thay1, 7») is a non-decreasing
sequence.

Our first result provides the upper bounds for Theorem B. Note that we do not
assume thaX is in the Feller class. This assumption is only required for showing
that the liminf in (2.8) and consequently the limsup in (2.9) are positive.(See
Theorem 3 below.) There are cases where these quantities are equal to zero and
it would be interesting to know whether and when one can find suitable centering
and norming constants leading to positive values for random variables outside
the Feller class.

Theorem 1. LetX be anondegenerate random variable and let Kxn], where
kn satisfies (K.1)-(K.5). For alyy, v2 > 0 with v3 ++» < 1 there exists a constant
0 < K3 < oo depending only ons, v2 such that

(2.8)

. . . 1/2 S _ . —_—

lim inf o, by omax | S+ =S =] un(y1,72) | /on(11,72) < Ks as.
Moreover, if n/ky)/LLn oo then there exists a constaft < K4 < oo
depending only ony, vz such that

(2.9)

. . 1/2 L _ . —_

"gnjogp ocin by omax | S+ =S =] #n(11,72) | /on(11:72) < Ka a@s.
Setting k, = n in Theorem 1 yields, with a slightly different centering, the
upper bound portion of the universal Chung-type law of the iterated logarithm
of Einmahl and Mason (1994). Our next result gives Theorem C.

Theorem 2. Let X be any random variable and assume thatlO(logn). For

all ay, ap > 0 sufficiently small, so that for all large,n—c, log(1— «) < 1 with
a=a;+azand G = k,/logn, we have

(2.10) Il:rlijp OSirglnn_kn ngﬁq | S+ —S -] mloa, 1 —ap) |< o0 ass.

Our next theorem shows, as already indicated, that the liminf in (2.8) and con-
sequently the limsup in (2.9) are positive wh¥nis in the Feller class. The
case wherk, = O(logn), however is not so clear cut. (Refer to Sect. 4 for a
discussion of the behavior of the limiting constants in this case.)

Theorem 3. Let X be a nondegenerate random variable in the Feller class and
let ky = [kn], Wherek, satisfies (K.1)-(K.5). Giveny,v2 > 0, with v + v < 1,
there exists a positive constan§ Hepending on F such that

(2.11)

.y ; 1/2 e i >
liminf  _min omax by | S4 =S —J n(h1,72) | /on(71,72) > Ks as.
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Using the Hewitt-Savage 0-1 law, we readily obtain Theorem B from Theorems
1 and 3.

It is also possible to prove versions of the above results with different center-
ing constants such ag, j > 1 wherep might be the expectation of provided
of course it exists. For more information regarding such questions refer to Sect. 4.

Our final result in this section discloses a somewhat unexpected behavior of
the increments of partial sums wh&n= 0 (logn). This result has been proved
for the normal case and the centerijigX,1 < j < n by C9rgd and Revesz
(1981). Note that in the subsequent theorem we have various choices for the
centering.

Theorem 4. Let k, be any sequence of integers satisfylhg< k, < n and
k. = o (logn). For any0 < t < 1, there exists a sequence of constants\, 0
such that

(2.13) nILrgo ogirglnn% 02}2);” | S4 —S —j(Q(t) —en) |=0 as.

The proofs of Theorem 1-4 will be given in Sect. 3, whereas, as already indicated,
Sect. 4 will provide information about possible centerings in (2.12), and the case

ko =0 (logn).

We finally mention that results dealing with tmeaximumof the maximal
increments can be found in Qg6 and Revesz (1981), Lin and Lu (1992),
Einmahl and Mason (1996) among other references.

3. Proofs

Without loss of generality we assume throughout #at Q(U;),j > 1, where
{U; } is a sequence of i.i.d. uniform (0,1) random variables.

Proof of Theorem 1. Our proof will closely parallel the proof of Theorem 1
of Einmahl and Mason (1994). We shall require the following basic facts.

Lemma 1. Forany nondegenerate distribution function F with quantile function

Q,

(@)s Q¥(s)+t Q3(1 —t) < o%(s,1—t) for all s,t > 0 sufficiently small;
(b) Whenever E X=o00,1 (s,1—t)/o(s,1—t) - 0as st | 0.

(See the proof of Lemma 2.1, S. &g6, Haeusler and Mason (1988a).)
Set for 0<i <n—ky,n>1,

(3.1) Mn(i) := omax | S+ =S — i (72,72 |,
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andM, := M,(0). Further let
(3.2) ¢n :=n (logn) /kn,n > 1, and

(33) ¥n 1= by 2 on (31, 72).
The next lemma is essential for the proof of Theorem 1.

Lemma 2. Given~yy,y2 > 0with v +42 < 1, and0 < n < 1 there exists a
constant C> 0 depending ony, v, andn only such that for all large n,

(34) P(My < Cthn) = (¢n) 7727

Proof. This proof is a straightforward modification of parts (ii) and (iii) of the
proof of Lemma 2 of Einmahl and Mason (1994), and therefore will be omitted.

We are now ready to finish the proof of Theorem 1. First assumekiiiat—
1. In this case

ocTin, BT max | Sy — S —] in(1.72) [ /on(r172)

< [nax b2 1§ = in(1.72) | /on(11,72) -

Noting that Theorem 1 of Einmahl and Mason (1994) is also valid with the
centeringun(v1, 72), we infer that

liminf max by'® | § —J in(11,72) | /onlr1,72) < oo as,

which implies (2.8).

Now assumek,/n — p < 1. SetT; = 1 and define fon > 2
Thsr=min{m: m—ky > Tp}.

Applying Lemma 2 withn = (1 — 1 — 72)/2,we see that for alim large
enough

Z P(b%n/*rzl MTH+1 (Tn)/UTnﬂ(’Yl»’YZ) S C)

n=m
e —(1+71+72)/2
Z Z <¢)Tn+1) )

n=m
which sincep < 1 is equal to infinity. (This can be seen by using the fact that
Th+1 — Tn ~ ky and a standard integral test.) Thus since Mhe,,(Tn),n > 1,
are independent, we have (2.8) by the Borel-Cantelli lemma. This completes the
proof of the first part of Theorem 1.
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Now assume that
(3.5) L(n/kn)/LLN — cc.

To finish the proof of Theorem 1 we require two additional lemmas.

Let k(x),x > 1, be the piecewise linear function satisfyikén) = x,,n > 1,
obtained by linear interpolation from the sequergen > 1. Recalling assump-
tions (K.1)-(K.5) it is easy to see that
(3.6) k(x) andx/k(x),x > 1, are nondecreasing.

Select for anyr > 1, the uniquex, satisfying

(3.7) % log (%)/k(%)=r/(Lr)?

and setn, :=[x]+1,r > 1.

Lemma 3. We have

(3.8) (n —ne_1)/n_1 =0((Lr)"?) as r — oo

Proof. First observe that by (3.6) and (3.7), log )/r is nonincreasing, and,
consequently,

(3.9) % < (%—1)/T D r>2
Also note that

(3.10) X <exp (/(Lr)%),r > 1,
and for larger,

(3.11) X >1/(Lr)?,

where we use the facts thiafx) < x andk(x)/log x — oo, which follow from
(K.1) and (K.4), respectively.

Noting that forr > 2

(M —neg)/me 3 < (% +1—%_1)/% 1,

which by (3.9) is
<x0Y —1+1x

we readily obtain (3.8) from (3.10) and (3.11).
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For anyr > 1 set

312)  A(r) = max by oy (31, 72)kaliin(71,72) — fin, (72, 72)]

ne<n<npyg

Lemma 4. With n defined as above
(3.13) rIim A(r) =0.

Proof. Using properties (K.1)-(K.5) of the sequencgit is easy to see that for
all larger andn, < n < ny4

ko b2 03 21, 72) | fin(78,72) = fim, (72,72) |
— bny 1- b"
< 2k, B2 0700 92) { [ 1 QM) du+ 777 | Q(u) | duj

. -2 bnr
+ 2k BYE(Dn — b)) | 0™ Q) du | ot (91,72)
= (Sn,l (r) + 5n,2 (I’)

Employing Lemma 1(a), it is readily shown that, uniformly fip < n <
Nr+1,  On.a(r) is of order

0 (ke B2 (52— 522))

which after some calculation turns out to be of order
(0] (Iog Oy (f{nH1 — ﬁnr)/linr).

Recalling that<,/n is nonincreasing, we find that
(Frves — Fn)/Fn, < (Nesr — Ne) /10

which in view of Lemma 3 is of orde® ((Lr)*z). Finally, noting that by the
definition of our subsequence for large

log ¢n, < log r,

we can conclude that

max 6na(r) — 0.
N <N<Npsg

By a similar, though somewhat easier argument, we get,

max 6n2(r) — 0.
N SN<Nreg

Lemma 4 has been proved.
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We are ready to finish the proof of the second part of Theorem 1. Now by
Lemma 4 in combination with the fact that (3.5) implies/n — 0, we get for
anyC > 0, > 0 and all larger,

P (ma)hr<n§nr+1 Mino<i<n—k, Mn(i)/¥n > C+6)
< P (minoci<n ., M®bsj<k,,, | S — S~ fin 01,72) | > C vn,)

r+1
nr

— My 4 -1
<P (m%gjgkn,ﬂlﬁ —j b, (1,72) | >C wnr)k” :

Noting that for any O< 7 < 1 and for all larger, kj
that this last bound is less than or equal to

< kn, *[7En ], We see

r+1

P (maosj<i, IS~ i (1,72)] > Ca i OF
I (1”?;""%
MaXo<j <[rrn] [Gtky — Sy —1 fin, (71,72)| > (C2+ C3) wnr)

whereCy, C,, C3 > 0 are constants satisfying; + C, + C3 = C, which will be
specified later.

Choose O< 7 < 1 such that (1 +)(y1 +v2) < 1 and set
bn(7) := L(NLn/(7#n))/(Tkn),

pin(7) = (771bn (7), 1 = 7y2bn(7)).

Noticing thatrby, (7) > by, it is routine using Lemma 1(a) to verify that even-
tually for someCs > O,

Kne |tn, (T) = pin, (71, 72)| < Cathp, .

Further observe that
T 2n0(r) = 77 Y20V () o (Ty1bn (1), 1 — Ty2bn(7)) < .

Therefore for all large r the last probability is less than or equal to

P (mf:%gigkn, 1§ —J tn (v1,72)] > C1 ¢y, OF
M) <(rie 1 Sy — S 1 i ()] > Cor 2 4 (1)) 7

which is equal to
(L= prpr(r))@mme =1 Pr(7),

where

pri=P (ogj‘%iﬁ, IS —J fn (1,72) [ =G 1/)nr)a

and
pr() =P (,_max |§ —j jm ()] < Cor V().

0<j <[k,
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Choosing any O< < 1 and applying Lemma 2, we see that for so@e> 0
andC, >0
pr 2 ¢n—’)’1—’72—71

and
pr(r) = (7 ) 7O,

Hence for all large r

nr
(1+7) iy

Pr(r) < (1= 7770 logry /ey, )~ (0w -2) G

which is less than or equal to

1/(1+7)
< exp ( _ 7—7]+T('Yl+72) (nr |Og ny /K«m )l_(7+1)(’)’1+72)_27] (log nr)_l) > .

Choosingn small enough we see by (3.7) that the last bound is less than or equal
to expEr) for somep > 0 and all larger. This implies with this choice of,

Z P; (7) < oo. Thus by the Borel-Cantelli lemma we conclude (2.9).
r=1

Proof of Theorem 2 Let Jl, Jz,... be i.i.d. uniform (1,1 — ap) random
variables and set for eagh> 1,

(3.14) §=QUY+...+ QU) = Xy +...+X.

Note that

(315) E Xy =ji{on,1— ap) = frand Var &) = 72(a1, 1 — ap) =: 72

Using the Skorokhod embedding, without loss of generality we can assume that
there exists a standard Brownian motidhand a sequence of independent stop-

ping times{y; : i > 1} such that for any > 1
(3.16) S - = Wn+...+y),
(3.17) Ey = 72

and for any integer > 2

— 2r
(3.18) Ev < 2(87) 'rl E(xj - ﬁ) .

Refer to Theorem A.1 in Hall and Heyde (1980). $kt=H (a1, ap) := Q(1 —
a) — Q(aq). Notice that by thec, -inequality forr > 2,

(3.19) E|lwn—72| < 227YE / +77),
1

which by (3.17) and (3.18) is
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< 2'_1(2(7?2)“1 r'2H¥=2 4+ 72 H2f—2)
< I’2! |__|r—2 0_27
whereo? = (83 +1)72H2 > Var (i) andH = 2H2

Thus by the Bernstein inequality as given in Exercise 14, page 111, Chow and
Teicher (1988),

(320) P (u+...+y—j 72 > x) < exp (f x2/(2] 02+2I-Tx))
Applying (3.20) withx =j 72, we get

(3.21) PQri+...+y —j 7 >j7°) < exp(dj7?/H?,
where 0< d < 1 is a constant independent ef, o, and Q.

To complete the proof of Theorem 2, we require the following lemma.

Lemma5 There exists a constaft< d < 1 independent ofi;, ap and Q such
that for all k sufficiently large an® < x < 1,

322 P {max)Sjgk IS —j | <2H /\/dx} > 1 exp (~dx k)

Proof. We shall assume that > 0, otherwise (3.22) is trivial. Applying (3.21),
we see that the probability in (3.22) is greater than or equal to
(3.23)

P {m%gsgzk?z |W(s) | <2H /\/dx}
~P{SR -7 2k 2} = P - R

Using relation (2.1) of Jain and Pruitt (1975), we get forlalarge enough,
(3.24) Pk (1) > ::T exp (—xx? kd 72/16 H?)

and using (3.21) we have

(3.25) Pk(2) < exp (~dk 72/H?)

Settingd = 72d /16 and noting that?/H?2 < 1 completes the proof.

To finish the proof of Theorem 2, set

(3.26) m, = min - max 1S+ =S —] nul,

and assume without loss of generality that— oo.

Observe that forany & x <1
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Py := P(my > 2H /Vdx)

#20 < (Pmancici, 1§~ | > 2H V)"

Now since conditioned olJy, ..., Uy, € (a1, 1— a2), {X }% =4 {Xj},

max<j<k, 1§ —j #| §2H/\/dx) >

3.28 P<
(3.28) P(maX]_SjSkn |§|—j i | §2H/\/dx> exp k., log (1— «)),

wherea = a3 + ap. This last lower bound is by Lemma 5 for alllarge enough
greater than or equal to

1 —
(3.29) , P ( — kn(xd — log (1— a))),
Therefore for alln sufficiently large
1 — i
(3.30) Po< (1- explka(xd —log 1 —a)))"

Now by our choice ofx = a; + a and selectingg > 0 sufficiently small, using
ko = O(logn), we get from (3.26) for somé > 0,

(3.31) Pn < exp (-n%).

Hencez Pn < oo, which by the Borel-Cantelli lemma implies (2.10).
n=1

We have all the tools now to prove Theorem 4.

Proof of Theorem 4 Choose any € (0,1) and for O< n <t set
fi(n) = it = n,1),72(n) = 74t —n,1) andH (n) = Q(t) — Q(t — ).

Further, set

(3:32) Mh(n) = _min -~ max |Ssy —S§ —] un)l

and assume without loss of generality that— oco.

Let

(3.33) Pa(1) = P(Ma(n) > 2H (1)/v/d).

We get from (3.30) above witk = 1 and 1— « =7 for all largen
1 — o1

(3:34) Paln) < (1— , explka(d — logm))) " .

This last bound in conjunction with, = o (logn) gives
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(3.35) > Paln) < oo

n=1

Further, it is routine using (3.35) to select a sequengce> 0 decreasing to O
such that

(3.36) i Pn(mn) < oo.
n=1

Therefore by the Borel-Cantelli lemma

(3.37) P(mn(vyn) > 2H (13n)/V/d i.o.) =0,
Now by left continuity ofQ, H(n,) — O, thus
(3.38) nIim my(n) =0 a.s.

Settingen = Q(t) — u(nn) > 0 completes the proof of (2.13).

Proof of Theorem 3 We first collect a number of auxiliary results.

Lemma 6 We have for any nondegenerate random variable X,

limsup 72(s,1 —t)/o%(s,1—1) < 1.
s,t—0

WhenEX? < oo, Lemma 6 is trivial, and whe&X? = oo it follows from (2.3)
and (2.4) via Lemma 1(b).

Lemma 7 Let X be a nondegenerate random variable in the Feller class, and
let 0 < A1, A2 < 1 be constants. Then we have for some positive constanat K
KB()‘l; )‘2)1

limsup o2(A\1 8,1 — Az t)/0%(s,1 —t) < K.

s,t—0

See relation (1.42) of @sgd, Haeusler and Mason (1988b).

Lemma 8 Let X be a nondegenerate random variable in the Feller class. There
exists a positive constant;{depending on the distribution of X) such that for
large m,
sup P{|Sn — 8] < Kzvm o(1/m)} <e™°
B

wheres?(s) := 0%(s,1—5),0<s < 1/2.

Lemma 8 is an immediate consequence of Lemma 5, Einmahl and Mason (1994).
Arguing as in the proof of (3.8) of the same paper, we can infer from Lemma 8,

Lemma 9 Let X be a nondegenerate random variable in the Feller class, and
let
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{Bnk 11 <k <ky,n > 1} be an array of real numbers. Then we have for large
n!

P{ max |S — fu| < K7 Vka/10g ¢n on} < ¢y %2,

1<k<kn
whereo? := 0?(bn, 1 — by),n > 2, and ¢, is defined as in (3.2).

The next lemma is due to Shao (1992). It can also be found on page 113 of the
monograph of Lin and Lu (1992).

Lemma 10 Let Z4,7Z,,... be independent random variables satisfying for some
O<a<lande >0,

(3.39) { max | Z Z >sx}

1<i<L
Then we have:

P{ Ming<i<t MaX<j<m | Yhohag Ze | < X}

<@a- Oc)fl P{ maxi<j<m | Zk:l Z | < x(1 +€)}.
We are now ready to prove Theorem 3. et : r > 1} be the same subsequence
as in the proof of the second part of Theorem 2.1 (see relation (3.7)), et

Vka/10g ¢n on, N > 1. In view of Lemma 7 it suffices to prove that with
probability 1,

(3.40) liminf _min omax IS4 =S — i sn(v1,72) | / ¥ > 0.

Noting that forn, < n < 4y,

MiNo<i<n—k, M@0<j<k, [S+ =S =] in(11,72) [/ ¥y
> MiNo<i<n.,—k, M0<j<k, 1S4 =S —] pn(v1,72) | / ¥n,.,
— maxy <ncn {Kalin(i1,72) = jin 1,72 / 0}
= M () — 4,
it is obviously enough to show,
(3.41) A'(r) — 0 asr — oo,
and for a suitable positive constag,

(3.42) liminf M(r) > Kg a.s.

r—oo
Statement (3.41) follows by combining Lemma 4 and Lemma 7.
Further note that by Lemma 7 in conjunction with Lemma 3 we have,

(3.43) limsup ¢, / ¥, < oo,

r—oo
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and we can reduce the proof of (3.42) to showing for some positive cor&ant

(3.44) Iiminf M(r) > Kg a.s.
whereM (1) = M(r) ¢, / ¥n - 1 > 1

We need an additional lemma. To simplify our notation, we set farO< 1,
m(e) :=[e? k, / log ¢n].
Lemma 11 We have fo0 < ¢ < 1/2 and large r

1

p{ max |§ —j pn (v1,72) | > Kmsdh} < 5

1<j<me(e)

where Ko > 0 is a constant independent of

Proof. Recall thatX; = Q(U;), where U; is uniform (Q1), j > 1. Let
Vi(r), Vo(r), ... be independent uniformvy{ b, , 1 — 2 b, ) random variables.
Using a simple conditioning argument, it is easy to see that the above probability
is less than or equal to

M @bn + P { maxgjcm | oy {QM) —iin (12.72)} |
> Kio € ¢y, }7
which by definition ofb, and Kolmogorov’'s maximal inequality is
< e2+Kjy? Var Q(Va(r)) / o4 < ;
provided we have chosdfyg large enough so that for large

Var Q(Va(r))) / o < Kfy/4.

The existence of such a constant follows from Lemmas 6 and 7.

Setting4(e, r) := [nr+1/m (€)] + 1, we readily obtain that for & ¢ < 1/2,

P{M(r) < (K7/2—Kype)}
< ylen P{min(e—l)m(g)gigem(s) maX<j<k, 1S+ —S —J in (1. 72)|
< (K9/2—Kuo ) ¥y }

which in turn by Lemma 10 and 11 is
< 2060 P{ max |Sy —S — i (n,70)] < Krvn /2],

Recalling Lemma 9, we can further conclude that this is

<2672 (Nraa/ka) 10g 6o 672,
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which in turn by Lemma 3 is for large,

<3c7? log ¢n ¢%2
From the definition of the subsequenfig : r > 1} it follows that
(3.45) én, ~ r/(Lr)* asr — oo,

and we can infer that for & ¢ < 1/2,
(3.46) }:P{Mo)gKﬁZ—dq@<:m.
r

Sincee can be made arbitrarily small, this implies, via the Borel-Cantelli lemma,
statement (3.44) witlig = K7/2, and Theorem 3 has been proved.

Remark Given the general formulation of Lemma 9, one might ask whether
it is not possible to prove Theorem 3 for more general centering sequences. An
inspection of the proof shows that one can replace the centefjngs(v1,v2) :

1<j <k} by

{i Bn : 1<j <k,} whenever the following two conditions are satisfied,

(3.47) |60 — in(y1,72)| = 0 (\/bn on) @sn — oo,
and
(3.48) L max {/ky 10g n | G~ fn|/on} — O ast — o,

where {n; } is the subsequence defined in (3.7). The latter condition might be
somewhat difficult to verify in general, but it is trivial in one case of particular
interest, namely if3, = 3 is constant.

4. Discussion and further results

Our Theorem 2 is related to the following conjecture ofofg¥ and Fevesz
(1981). For some other results in this direction see alsgkiCand foldes(1984).

Conjecture Let X, X3, Xy, ..., be i.i.d. random variables witBX = 0 and Var
(X) =1. Then
(4.1) lim min max |S+ —S|=r(c), a.s,

n—oo 0<i<n—ky 0<j<k
wherek, = [c logn] andr (c) is a function which uniquely defines the distribution
function F of X.

Our Theorem 2 says that whenevgr = [c logn], for somec > 0, with
probability 1,
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(4.2) Ilgnj)gp ocfmin - max 1S+ =S —j mla,1—a)| < oo

as long asvy, ay > 0 are chosen so thatc log (1—a) < 1 wherea = aj+as. In

light of the C$rgd and Revész conjecture it would be interesting to know whether
lim sup can be replaced by limit in (4.2), and, further, assuming it exists, whether
as a function ot it determined-.

Whenk,/logn — oo andF is in the Feller class our Theorem 3 states that
the liminf in (2.11) is strictly positive. We shall show that this need not be the
case in (2.10) whek, = [c logn] for somec > 0. In fact, we shall provide an
example where the limsup in (4.2) is 0. Moreover, we shall also give an example
for which
(43)  liminf min = max [S. —S —] plas,1-az)l >0,
wherek, = [c logn] and —c log (1 — «) < 1 with a = a3 + a. In order to
construct our first example we shall require the following auxiliary result.

Let U1, Uy, ..., be a sequence of uniform (D) random variables andl be
any measurable subset of, (), where 1— « denotes the Lebesque measure of
J. Choose any > 0 and letk, be a sequence of integers satisfyingt k, <n
andk, =[c logn] for large n. Let

(4.4) Aj7n:{Uj+l7~--,Uj+kn eJ},j=O,...,n—kn,
and

n—kq
(4.5) An = U A n.

Proposition For any ¢> 0
(4.6) P (A, eventually) =1 or 0

according as—c log(1—«) < lor —c log(l—«) > 1

Proof. First assume thatc log(1— «) < 1. In this case, note that
@7) P &) < (PUs))" .

which for all large enougin is less than or equal to

(4.8) 2(1-a- a)kn)n/k”.

This last expression is in turn less than or equal to

(49) 2(1-@-af '09“)"”“ = 2(1- exp(-G log (1~ a) log n))"m
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for anyc > c¢ and all largen. Now since we can choose> ¢ so thatc log (1—
a) > —1, (4.9) is less than or equal to expr{®) for some$ > 0. From this we
get that

o0

(4.10) > PA) <o,

n=1

which by an application of the Borel-Cantelli lemma implie¢A, eventually)
=1.

Now assume-c log(l— «) > 1. Setforr =0,1,2,..., andi =0,1,2,...
(4.11) Bir = {Ui+17---7 Ui+ EJ}
and
2r+1
(4.12) B = J B

Notice thatA, C B;,2" <n<2*! and
(4.13) P(B/) < 2*2 exp (kzr log(1 — a)) <4.270r

for someé > 0. Since this last bound is summable, we infer from the Borel-
Cantelli lemma thaP(B; i.0.) = 0, which impliesP (A, eventually)= 0.

Example 1 Choose anyQ that is constantly equal to 1 oa{,1 — «y], where

a1, ap > 0 satisfy—c log(1— a) < 1. Observe that this makes(a;, ay) = 1.
Applying our Proposition we conclude that with probability 1 for each sufficiently
largen there exists an & i < n—k, suchthatS,; —§ =j forall 1 <j <k, =

[c logn]. This, of course, implies that the limsup in (4.2) is equal to 0 almost
surely for allF having aQ with this property and withvy, o > 0 chosen in
this way.

Our next example shows that the liminf in (4.3) can be positive.

Example 2 For any choice of 0< a < 1 such that-c log (1— «) < 1, define

_[1lforj<u<1
(4.14) Q) = {Ofor O<u<1/2

Notice thatu(a /2,1 — «/2) = 1/2. Hence for any sequence of integégssatis-
fyingl</,<nandall 0<i <n-—/,

(415)  [Sw—S - j(0/21-0a/2)|= [Su—-S -1/2| =1/2

This implies that
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(4.16) o rg;nzn omax 1S+ =S =] wla/2,1-a/2) | > 1/2;

which, in particular, says that the liminf in (4.3) is greater than or equaj/f 1

We finally would like to make some comments on the problem of what are
alternative choices for the centering constajtgin(y1,v2) : 1 <j <k} used
in Theorem 1. Since this problem has been extensively studied in connection with
the Chung-type LIL proved in Einmahl and Mason (1994), it will be enough to
only state the results without giving detailed proofs.

We first note that using the method employed in the proof of Theorem 3 of the
aforementioned paper along with the remark at the end of the proof of Theorem
3 of the present paper, one can obtain the following refinement of Theorem 1
for random variables in the Feller class.

Theorem 5 Let X be a nondegenerate random variable in the Feller class, and
let {k,} be as in Theorem 1. Assume that we have for suitable constants> 0
with 1ty < 1,

(4.17) |Bn = fn(y1,72)| = 0 (v/by o) asn — oo,
and
(4.18) n,gTQ%fﬂ {\/kn log ¢n |6 — ﬂn,l/on} —0asr— oo,

where{n, } is the subsequence defined by (3.7).

Then we have, with probability 1,
(4.19) liminf = min max 1S4 =S —] Gl / Vka/10g ¢ on = Kag,

—oo  0<i<n—k, 0<j<

where K > 0is a finite constant.

Moreover, if
(4.20) log (1/xn)/LLN — 0o as n— oo,
we also have with probability 1,

(421) limsup _min ~ max [Su —§ —] fnl / Vka/10g ¢n on = Kz,

n— oo <i<n—k, 0<j<

where K is a finite constant.

As in Sect. 5, Einmahl and Mason (1994), we can infer from Theorem 5
among other results that X is a random variable in the domain attraction of
a stable law of indexx € (0,2],« # 1, which is not completely asymmetric,
both (4.19) and (4.21) hold true with, = p, Wwherep, =0if0 < a < 1 and

«=EXifl<a<?2
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