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Summary. We study the almost sure limiting behavior of the smallest maxi-
mal increment of partial sums ofn independent identically distributed random
variables for a variety of increment sizeskn, wherekn is a sequence of integers
satisfying 1≤ kn ≤ n, and going to infinity at various rates. Our aim is to
obtain universal results on such behavior under little or no assumptions on the
underlying distribution function.
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1. Introduction

Let X,X1,X2, . . . be a sequence of independent and identically distributed (i.i.d.)
random variables with common nondegenerate distribution functionF . For each
integer j ≥ 1, let Sj = X1 + . . . + Xj and setS0 = 0. We are interested in the
limiting behavior of theminimumof the maximal increments of partial sums,
where we consider different increment sizes. To be more specific, we shall study
the asymptotic behavior of

(1.1) mn(kn) = min
0≤i≤n−kn

max
0≤j≤kn

| Si +j − Si − j cn |
/

an,

for suitable sequences of positive integers 1≤ kn ≤ n, where an and cn are
sequences of norming and centering constants depending on the underlying dis-
tribution functionF and the sequencekn. Our point of departure is the following
result of M. Cs̈orgő and Ŕevész (1981). (For some clarification see Shao (1992)
or page 112 of the monograph of Lin and Lu (1992.)
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Let κn be a sequence of constants satisfying

(K.1) 1≤ κn ≤ n, n ≥ 1,
(K.2) κn ↗∞, asn →∞,
(K.3) n/κn is nondecreasing,
(K.4) logn/κn → 0, asn →∞,

(K.5) bn := L
(

nLn /κn

)
/κn is nonincreasing,

where we setLx = log(x ∨ e), x ≥ 0.

As usual, denote by [x] the integer part of−∞ < x <∞.

Theorem A (Cs̈orgő and Ŕevész (1981))Let X be a random variable with
EX = 0 and Var (X) = 1, and let kn = [κn], whereκn satisfies (K.1)-(K.5). Set
an = (8 bn)1/2 /π and cn = 0 in (1.1).
Then:

(1.2) lim inf
n→∞ mn(kn) = 1 a.s

Moreover, if L(n/kn)/LLn →∞, then

(1.3) lim
n→∞ mn(kn) = 1 a.s

One of the purposes of our paper is to obtain a version of Therore A without
any condition at all on the underlying distribution. Among other results we shall
obtain the following theorem, which is a consequence of more detailed results
stated in the next section.

Theorem B Let X be a nondegenerate random variable in the Feller class and
let kn = [κn], whereκn satisfies (K.1)-(K.5). There exist sequences of norming
and centering constants an and cn (depending on F and kn) such that

(1.4) lim inf
n→∞ mn(kn) = K1 a.s

where K1 <∞ is a positive constant.

Moreover, if L(n/kn)/LLn →∞, then

(1.5) lim sup
n→∞

mn(kn) = K2 a.s

where K2 <∞ is another positive constant.

The exact form of the norming and centering constants will be given in
Sect. 2. Recall that a random variable X is in theFeller class if one can find
centering constantsδn and norming constantsγn so that

(Sn − δn)/γn is tight with non-degenerate subsequential limits.

The lim inf behavior ofmn(kn) if kn is of order O(logn) is different from
the preceding situation. Here it has been shown that one can choosean ≡ 1 and
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cn ≡ c = EX, provided that X has a normal distribution.(Refer to Csörgő and
Révész (1981)). Our next result shows, maybe somewhat surprisingly, that such
a result holds for random variables with arbitrary distributions (which possibly
have no expected value).

Theorem C Let X be any random variable and assume that kn = O (logn) as
n →∞. Then there exists a constant c depending on F and kn such that

(1.6) lim sup
n→∞

min
0≤i≤n−kn

max
0≤j≤kn

| Si +j − Si − j c |<∞ a.s.

In Sect. 2 we will provide a detailed description of what can happen in this case.
It will turn out that in some cases the lim sup in (1.6) can be positive, whereas
it can also be equal to zero in other cases. We will also look into the limiting
behavior ofmn(kn) for increment sizeskn of ordero (logn).

2. Statement of main results

We first introduce some additional notation. Let the quantile functionQ be de-
fined as

(2.1) Q(t) = inf {x : F (x) ≥ t}, 0 < t < 1.

For any 0< s ≤ 1− t < 1 set

(2.2) µ̄ (s, 1− t) =
∫ 1−t

s
Q(u) du/(1− s− t)

(2.3) τ̄2 (s, 1− t) =
∫ 1−t

s
Q2(u) du/(1− s− t)− µ̄2(s, 1− t),

and

(2.4)
σ2 (s, 1− t) = s Q2(s) + t Q2(1− t) +

∫ 1−t
s Q2(u)du

−{s Q(s) + t Q(1− t) +
∫ 1−t

s Q(u) du}2

The following alternate expression forσ2(s, 1− t) will also come in handy,

(2.5) σ2 (s, 1− t) =
∫ 1−t

s

∫ 1−t

s
(u ∧ v − uv) dQ(u) dQ(v).

For any sequence of positive constants satisfying (K.1)-(K.5) andγ1, γ2 > 0 such
that (γ1 + γ2) bn < 1, set

(2.6) µ̄n(γ1, γ2) = µ̄(γ1 bn, 1− γ2 bn)

and

(2.7) σ2
n(γ1, γ2) = σ2(γ1 bn, 1− γ2 bn).
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Using (2.5) and recalling (K.5), it is easy to see thatσ2
n(γ1, γ2) is a non-decreasing

sequence.

Our first result provides the upper bounds for Theorem B. Note that we do not
assume thatX is in the Feller class. This assumption is only required for showing
that the lim inf in (2.8) and consequently the lim sup in (2.9) are positive.(See
Theorem 3 below.) There are cases where these quantities are equal to zero and
it would be interesting to know whether and when one can find suitable centering
and norming constants leading to positive values for random variables outside
the Feller class.

Theorem 1. Let X be a nondegenerate random variable and let kn = [κn], where
κn satisfies (K.1)-(K.5). For allγ1, γ2 > 0 with γ1 +γ2 < 1 there exists a constant
0 < K3 <∞ depending only onγ1, γ2 such that

(2.8)
lim inf
n→∞ min

0≤i≤n−kn

b1/2
n max

0≤j≤kn

| Si +j − Si − j µ̄n(γ1, γ2) | /σn(γ1, γ2) ≤ K3 a.s.

Moreover, if L(n/κn)/LLn ↗ ∞ then there exists a constant0 < K4 < ∞
depending only onγ1, γ2 such that

(2.9)
lim sup

n→∞
min

0≤i≤n−kn

b1/2
n max

0≤j≤kn

| Si +j − Si − j µ̄n(γ1, γ2) | /σn(γ1, γ2) ≤ K4 a.s.

Setting κn = n in Theorem 1 yields, with a slightly different centering, the
upper bound portion of the universal Chung-type law of the iterated logarithm
of Einmahl and Mason (1994). Our next result gives Theorem C.

Theorem 2. Let X be any random variable and assume that kn = O(logn). For
all α1, α2 > 0 sufficiently small, so that for all large n, −cn log(1−α) < 1 with
α = α1 + α2 and cn = kn/ logn, we have

(2.10) lim sup
n→∞

min
0≤i≤n−kn

max
0≤j≤kn

| Si +j − Si − j µ̄(α1, 1− α2) |<∞ a.s.

Our next theorem shows, as already indicated, that the lim inf in (2.8) and con-
sequently the lim sup in (2.9) are positive whenX is in the Feller class. The
case whenkn = O(logn), however is not so clear cut. (Refer to Sect. 4 for a
discussion of the behavior of the limiting constants in this case.)

Theorem 3. Let X be a nondegenerate random variable in the Feller class and
let kn = [κn], whereκn satisfies (K.1)-(K.5). Givenγ1, γ2 > 0, with γ1 + γ2 < 1,
there exists a positive constant K5 depending on F such that

(2.11)
lim inf
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

b1/2
n | Si +j − Si − j µ̄n(γ1, γ2) | /σn(γ1, γ2) ≥ K5 a.s.
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Using the Hewitt-Savage 0-1 law, we readily obtain Theorem B from Theorems
1 and 3.

It is also possible to prove versions of the above results with different center-
ing constants such asj µ, j ≥ 1 whereµ might be the expectation ofX provided
of course it exists. For more information regarding such questions refer to Sect. 4.

Our final result in this section discloses a somewhat unexpected behavior of
the increments of partial sums whenkn = o (logn). This result has been proved
for the normal case and the centeringjEX, 1 ≤ j ≤ n by Cs̈orgő and Ŕevész
(1981). Note that in the subsequent theorem we have various choices for the
centering.

Theorem 4. Let kn be any sequence of integers satisfying1 ≤ kn ≤ n and
kn = o (logn). For any 0 < t < 1, there exists a sequence of constantsεn ↘ 0
such that

(2.13) lim
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

| Si +j − Si − j (Q(t)− εn) |= 0 a.s.

The proofs of Theorem 1-4 will be given in Sect. 3, whereas, as already indicated,
Sect. 4 will provide information about possible centerings in (2.12), and the case
kn = o (logn).

We finally mention that results dealing with themaximumof the maximal
increments can be found in Csörgő and Ŕevész (1981), Lin and Lu (1992),
Einmahl and Mason (1996) among other references.

3. Proofs

Without loss of generality we assume throughout thatXj = Q(Uj ), j ≥ 1, where
{Uj } is a sequence of i.i.d. uniform (0,1) random variables.

Proof of Theorem 1. Our proof will closely parallel the proof of Theorem 1
of Einmahl and Mason (1994). We shall require the following basic facts.

Lemma 1. For any nondegenerate distribution function F with quantile function
Q,

(a) s Q2(s) + t Q2(1− t) ≤ σ2(s, 1− t) for all s, t > 0 sufficiently small;
(b) Whenever E X2 = ∞, µ̄ (s, 1− t)/σ(s, 1− t) → 0 as s, t ↓ 0.

(See the proof of Lemma 2.1, S. Csörgő, Haeusler and Mason (1988a).)

Set for 0≤ i ≤ n − kn, n ≥ 1,

(3.1) Mn(i ) := max
0≤j≤kn

| Si +j − Si − j µ̄n(γ1, γ2) |,
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andMn := Mn(0). Further let

(3.2) φn := n (logn) /κn, n ≥ 1, and

(3.3) ψn := b−1/2
n σn(γ1, γ2).

The next lemma is essential for the proof of Theorem 1.

Lemma 2. Givenγ1, γ2 > 0 with γ1 + γ2 < 1, and 0 < η < 1 there exists a
constant C> 0 depending onγ1, γ2 andη only such that for all large n,

(3.4) P(Mn ≤ Cψn) ≥ (φn)−γ1−γ2−η.

Proof. This proof is a straightforward modification of parts (ii) and (iii) of the
proof of Lemma 2 of Einmahl and Mason (1994), and therefore will be omitted.

We are now ready to finish the proof of Theorem 1. First assume thatkn/n →
1. In this case

min
0≤i≤n−kn

b1/2
n max

0≤j≤kn

| Si +j − Si − j µ̄n(γ1, γ2) | /σn(γ1, γ2)

≤ max
0≤j≤n

b1/2
n | Sj − j µ̄n(γ1, γ2) | /σn(γ1, γ2) .

Noting that Theorem 1 of Einmahl and Mason (1994) is also valid with the
centering ¯µn(γ1, γ2), we infer that

lim inf
n→∞ max

0≤j≤n
b1/2

n | Sj − j µ̄n(γ1, γ2) | /σn(γ1, γ2) <∞ a.s.,

which implies (2.8).

Now assumekn/n → ρ < 1. SetT1 = 1 and define forn ≥ 2

Tn+1 = min{m : m− km > Tn}.
Applying Lemma 2 withη = (1− γ1 − γ2)/2,we see that for allm large

enough
∞∑

n=m

P(b1/2
Tn+1

MTn+1 (Tn)/σTn+1(γ1, γ2) ≤ C)

≥
∞∑

n=m

(
φTn+1

)−(1+γ1+γ2)/2
,

which sinceρ < 1 is equal to infinity. (This can be seen by using the fact that
Tn+1 − Tn ∼ kn and a standard integral test.) Thus since theMTn+1(Tn), n ≥ 1,
are independent, we have (2.8) by the Borel-Cantelli lemma. This completes the
proof of the first part of Theorem 1.
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Now assume that

(3.5) L(n/κn)/LLn →∞.

To finish the proof of Theorem 1 we require two additional lemmas.

Let k(x), x ≥ 1, be the piecewise linear function satisfyingk(n) = κn, n ≥ 1,
obtained by linear interpolation from the sequenceκn, n ≥ 1. Recalling assump-
tions (K.1)-(K.5) it is easy to see that

(3.6) k(x) andx/k(x), x ≥ 1, are nondecreasing.

Select for anyr ≥ 1, the uniquexr satisfying

(3.7) xr log (xr )/k(xr ) = r /(Lr )2,

and setnr := [xr ] + 1, r ≥ 1.

Lemma 3. We have

(3.8) (nr − nr−1)/nr−1 = O((Lr )−2) as r →∞

Proof. First observe that by (3.6) and (3.7), log (xr )/r is nonincreasing, and,
consequently,

(3.9) xr ≤ (xr−1)r/(r−1), r ≥ 2.

Also note that

(3.10) xr ≤ exp (r /(Lr )2), r ≥ 1,

and for larger ,

(3.11) xr ≥ r /(Lr )2,

where we use the facts thatk(x) ≤ x andk(x)/ log x →∞, which follow from
(K.1) and (K.4), respectively.

Noting that forr ≥ 2

(nr − nr−1)/nr−1 ≤ (xr + 1− xr−1)/xr−1,

which by (3.9) is

≤ x1/(r−1)
r−1 − 1 + 1/xr−1,

we readily obtain (3.8) from (3.10) and (3.11).
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For anyr ≥ 1 set

(3.12) ∆(r ) = max
nr<n≤nr +1

b1/2
n σ−1

n (γ1, γ2)kn|µ̄n(γ1, γ2)− µ̄nr (γ1, γ2)|

Lemma 4. With nr defined as above

(3.13) lim
r→∞ ∆(r ) = 0.

Proof. Using properties (K.1)-(K.5) of the sequenceκn it is easy to see that for
all large r andnr ≤ n ≤ nr +1

kn b1/2
n σ−1

n (γ1, γ2) | µ̄n(γ1, γ2)− µ̄nr (γ1, γ2) |
≤ 2 knr +1 b1/2

nr +1 σ
−1
n (γ1, γ2)

{∫ γ1 bnr

γ1 bn
| Q(u) | du +

∫ 1−γ2 bn

1−γ2 bnr
| Q(u) | du

}
+ 2 knr +1 b1/2

nr +1(bnr − bnr +1) |
∫ 1−γ2 bn

γ1 bn
Q(u) du | σ−1

n (γ1, γ2)
= : δn,1 (r ) + δn,2 (r ).

Employing Lemma 1(a), it is readily shown that, uniformly innr ≤ n ≤
nr +1, δn,1(r ) is of order

O
(

knr +1 b1/2
nr +1

(
b1/2

nr
− b1/2

nr +1

))
which after some calculation turns out to be of order

O
(

log φnr +1

(
κnr +1 − κnr

)
/κnr

)
.

Recalling thatκn/n is nonincreasing, we find that

(κnr +1 − κnr )/κnr ≤ (nr +1− nr )/nr

which in view of Lemma 3 is of orderO
(

(Lr )−2
)

. Finally, noting that by the

definition of our subsequence for larger ,

log φnr ≤ log r ,

we can conclude that

max
nr≤n≤nr +1

δn,1(r ) → 0.

By a similar, though somewhat easier argument, we get,

max
nr≤n≤nr +1

δn,2(r ) → 0.

Lemma 4 has been proved.
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We are ready to finish the proof of the second part of Theorem 1. Now by
Lemma 4 in combination with the fact that (3.5) implieskn/n → 0, we get for
any C > 0, ε > 0 and all larger ,

P
(

maxnr<n≤nr +1 min0≤i≤n−kn Mn(i )/ψn > C + ε
)

≤ P
(

min0≤i≤nr−knr +1
max0≤j≤knr +1

| Si +j − Si − j µ̄nr (γ1, γ2) | > C ψnr

)
≤ P

(
max0≤j≤knr +1

|Sj − j µ̄nr (γ1, γ2) | > C ψnr

) nr
knr +1

−1
.

Noting that for any 0< τ < 1 and for all larger , knr +1 < knr + [τκnr ], we see
that this last bound is less than or equal to

P
(

max0≤j≤knr
|Sj − j µ̄nr (γ1, γ2)| > C1 ψnr or

max0≤j≤[τκnr ] |Sj +knr
− Sknr

− j µ̄nr (γ1, γ2)| > (C2 + C3) ψnr

) nr
(1+τ )κnr

whereC1,C2,C3 > 0 are constants satisfyingC1 + C2 + C3 = C , which will be
specified later.

Choose 0< τ < 1 such that (1 +τ )(γ1 + γ2) < 1 and set

bn(τ ) := L(nLn/(τκn))/(τκn),

µ̄n(τ ) := µ̄(τγ1bn(τ ), 1− τγ2bn(τ )).

Noticing thatτbnr (τ ) > bnr , it is routine using Lemma 1(a) to verify that even-
tually for someC3 > 0,

knr |µ̄nr (τ )− µ̄nr (γ1, γ2)| < C3ψnr .

Further observe that

τ−1/2ψn(τ ) := τ−1/2b−1/2
n (τ )σ(τγ1bn(τ ), 1− τγ2bn(τ )) ≤ ψn.

Therefore for all large r the last probability is less than or equal to

P
(

max0≤j≤knr
|Sj − j µ̄nr (γ1, γ2)| > C1 ψnr or

max0≤j≤[τκnr ] |Sj +knr
− Sknr

− j µ̄nr (τ )| > C2τ
−1/2 ψnr (τ )

) nr
(1+τ )κnr ,

which is equal to

(1− pr pr (τ ))
nr

(1+τ )κnr =: Pr (τ ),

where
pr := P

(
max

0≤j≤knr

|Sj − j µ̄nr (γ1, γ2) | ≤ C1 ψnr

)
,

and
pr (τ ) := P

(
max

0≤j≤[τκnr ]
|Sj − j µ̄nr (τ ) | ≤ C2τ

−1/2ψnr (τ )
)
.
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Choosing any 0< η < 1 and applying Lemma 2, we see that for someC1 > 0
andC2 > 0

pr ≥ φ−γ1−γ2−η
nr

and
pr (τ ) ≥ (τ−1φnr )

−τ (γ1+γ2)−η.

Hence for all large r

Pr (τ ) ≤
(

1− τη+τ (γ1+γ2)(nr lognr /κnr )
−(τ+1)(γ1+γ2)−2η

) nr
(1+τ )κnr ,

which is less than or equal to(
exp

(
− τη+τ (γ1+γ2)(nr lognr /κnr )

1−(τ+1)(γ1+γ2)−2η(lognr )−1
))1/(1+τ )

.

Choosingη small enough we see by (3.7) that the last bound is less than or equal
to exp(−r ρ) for someρ > 0 and all larger . This implies with this choice ofτ ,
∞∑
r =1

Pr (τ ) <∞. Thus by the Borel-Cantelli lemma we conclude (2.9).

Proof of Theorem 2 Let Ū1, Ū2, . . . be i.i.d. uniform (α1, 1 − α2) random
variables and set for eachj ≥ 1,

(3.14) S̄j = Q(Ū1) + . . . + Q(Ūj ) =: X̄1 + . . . + X̄j .

Note that

(3.15) E X̄1 = µ̄(α1, 1− α2) =: µ̄ and Var (̄X1) = τ̄2(α1, 1− α2) =: τ̄2.

Using the Skorokhod embedding, without loss of generality we can assume that
there exists a standard Brownian motionW and a sequence of independent stop-
ping times{νi : i ≥ 1} such that for anyj ≥ 1

(3.16) S̄j − j µ̄ = W(ν1 + . . . + νj ),

(3.17) E νj = τ̄2,

and for any integerr ≥ 2

(3.18) E νr
j ≤ 2 (8/π2)r−1 r ! E

(
X̄j − µ̄

)2r
.

Refer to Theorem A.1 in Hall and Heyde (1980). SetH := H (α1, α2) := Q(1−
α2)−Q(α1). Notice that by thecr -inequality for r ≥ 2,

(3.19) E | ν1 − τ̄2 |r ≤ 2r−1(E νr
1 + τ̄2r ),

which by (3.17) and (3.18) is
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≤ 2r−1
(

2
(

8
π2

)r−1
r ! τ̄2 H 2r−2 + τ̄2 H 2r−2

)
≤ r !

2 H̄ r−2 σ2,

whereσ2 := ( 64
π2 + 1) τ̄2 H 2 ≥ Var (ν1) and H̄ := 128

π2 H 2.

Thus by the Bernstein inequality as given in Exercise 14, page 111, Chow and
Teicher (1988),

(3.20) P (ν1 + . . . + νj − j τ̄2 ≥ x) ≤ exp
(
− x2/(2j σ2 + 2H̄ x)

)
Applying (3.20) withx = j τ̄2, we get

(3.21) P (ν1 + . . . + νj − j τ̄2 ≥ j τ̄2) ≤ exp (− d j τ̄2/H 2),

where 0< d < 1 is a constant independent ofα1, α2 andQ.

To complete the proof of Theorem 2, we require the following lemma.

Lemma 5 There exists a constant0 < d̄ < 1 independent ofα1, α2 and Q such
that for all k sufficiently large and0 < x ≤ 1,

(3.22) P
{

max0≤j≤k | S̄j − j µ̄ | ≤ 2H /
√

dx
}
≥ 1

2 exp (−d̄x k)

Proof. We shall assume thatH > 0, otherwise (3.22) is trivial. Applying (3.21),
we see that the probability in (3.22) is greater than or equal to
(3.23)

P
{

max0≤s≤2kτ̄2 | W(s) | ≤ 2H /
√

dx
}

− P
{∑k

j =1 (νj − τ̄2) ≥ k τ̄2
}

=: Pk(1)− Pk(2)

Using relation (2.1) of Jain and Pruitt (1975), we get for allk large enough,

(3.24) Pk(1)≥ 8
3π

exp (−xπ2 kd τ̄2/16 H 2)

and using (3.21) we have

(3.25) Pk(2)≤ exp (−dk τ̄2/H 2)

Settingd̄ = π2d/16 and noting that ¯τ2/H 2 ≤ 1 completes the proof.

To finish the proof of Theorem 2, set

(3.26) mn = min
0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j µ̄|,

and assume without loss of generality thatkn →∞.

Observe that for any 0< x ≤ 1



78 U. Einmahl, D.M. Mason

(3.27)
Pn := P(mn > 2H /

√
dx)

≤
(

P(max1≤j≤kn |Sj − j µ̄ | > 2H /
√

dx)
) n

kn
−1

Now since conditioned onU1, . . . ,Ukn ∈ (α1, 1− α2), {Xj }kn
j =1 =d {X̄j }kn

j =1,

(3.28)
P
(

max1≤j≤kn |Sj − j µ̄ | ≤ 2H /
√

dx
)
≥

P
(

max1≤j≤kn |S̄j − j µ̄ | ≤ 2H /
√

dx
)

exp (kn log (1− α)),

whereα = α1 +α2. This last lower bound is by Lemma 5 for alln large enough
greater than or equal to

(3.29)
1
2

exp
(
− kn(xd̄ − log (1− α))

)
,

Therefore for alln sufficiently large

(3.30) Pn ≤
(

1− 1
2

exp(−kn(xd̄ − log (1− α)))
) n

kn
−1
,

Now by our choice ofα = α1 + α2 and selectingx > 0 sufficiently small, using
kn = O(logn), we get from (3.26) for someδ > 0,

(3.31) Pn ≤ exp (−nδ).

Hence
∞∑

n=1

Pn <∞, which by the Borel-Cantelli lemma implies (2.10).

We have all the tools now to prove Theorem 4.

Proof of Theorem 4 Choose anyt ∈ (0, 1) and for 0< η < t set
µ̄(η) = µ̄(t − η, t), τ̄2(η) = τ̄2(t − η, t) andH (η) = Q(t)−Q(t − η).

Further, set

(3.32) mn(η) = min
0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j µ̄(η)|,

and assume without loss of generality thatkn →∞.

Let

(3.33) Pn(η) = P(mn(η) > 2H (η)/
√

d).

We get from (3.30) above withx = 1 and 1− α = η for all largen

(3.34) Pn(η) ≤
(

1− 1
2

exp(−kn(d̄ − log(η)))
) n

kn
−1
.

This last bound in conjunction withkn = o (logn) gives
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(3.35)
∞∑

n=1

Pn(η) <∞.

Further, it is routine using (3.35) to select a sequenceηn ≥ 0 decreasing to 0
such that

(3.36)
∞∑

n=1

Pn(ηn) <∞.

Therefore by the Borel-Cantelli lemma

(3.37) P
(

mn(ηn) > 2H (ηn)/
√

d i .o.
)

= 0.

Now by left continuity ofQ, H (ηn) → 0, thus

(3.38) lim
n→∞ mn(ηn) = 0 a.s.

Settingεn = Q(t)− µ̄(ηn) ≥ 0 completes the proof of (2.13).

Proof of Theorem 3 We first collect a number of auxiliary results.

Lemma 6 We have for any nondegenerate random variable X ,

lim sup
s,t→0

τ̄2(s, 1− t)/σ2(s, 1− t) ≤ 1.

WhenEX2 < ∞, Lemma 6 is trivial, and whenEX2 = ∞ it follows from (2.3)
and (2.4) via Lemma 1(b).

Lemma 7 Let X be a nondegenerate random variable in the Feller class, and
let 0 < λ1, λ2 < 1 be constants. Then we have for some positive constant K6 =
K6(λ1, λ2),

lim sup
s,t→0

σ2(λ1 s, 1− λ2 t)/σ2(s, 1− t) ≤ K6.

See relation (1.42) of Csörgő, Haeusler and Mason (1988b).

Lemma 8 Let X be a nondegenerate random variable in the Feller class. There
exists a positive constant K7 (depending on the distribution of X ) such that for
large m,

sup
β

P{|Sm − β| ≤ K7
√

m σ(1/m)} ≤ e−5

whereσ2(s) := σ2(s, 1− s), 0 < s < 1/2.

Lemma 8 is an immediate consequence of Lemma 5, Einmahl and Mason (1994).
Arguing as in the proof of (3.8) of the same paper, we can infer from Lemma 8,

Lemma 9 Let X be a nondegenerate random variable in the Feller class, and
let
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{βn,k : 1≤ k ≤ kn, n ≥ 1} be an array of real numbers. Then we have for large
n,

P{ max
1≤k≤kn

|Sk − βn,k | ≤ 1
2

K7

√
kn/ log φn σn} ≤ φ−5/2

n ,

whereσ2
n := σ2(bn, 1− bn), n ≥ 2, andφn is defined as in (3.2).

The next lemma is due to Shao (1992). It can also be found on page 113 of the
monograph of Lin and Lu (1992).

Lemma 10 Let Z1,Z2, . . . be independent random variables satisfying for some
0 < α < 1 andε > 0,

(3.39) P
{

max
1≤i≤L

|
i∑

k=1

Zk | ≥ ε x
}
≤ α.

Then we have:

P
{

min0≤i≤L max1≤j≤M | ∑i +j
k=i +1 Zk | ≤ x

}
≤ (1− α)−1 P

{
max1≤j≤M | ∑j

k=1 Zk | ≤ x(1 + ε)
}
.

We are now ready to prove Theorem 3. Let{nr : r ≥ 1} be the same subsequence
as in the proof of the second part of Theorem 2.1 (see relation (3.7)). Letψn :=√

kn/ log φn σn, n ≥ 1. In view of Lemma 7 it suffices to prove that with
probability 1,

(3.40) lim inf
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j µ̄n(γ1, γ2) | / ψn > 0.

Noting that fornr ≤ n ≤ nr +1,

min0≤i≤n−kn max0≤j≤kn |Si +j − Si − j µ̄n(γ1, γ2) | / ψn

≥ min0≤i≤nr +1−knr
max0≤j≤knr

|Si +j − Si − j µ̄nr (γ1, γ2) | / ψnr +1

− maxnr<n≤nr +1

{
kn|µ̄n(γ1, γ2)− µ̄nr (γ1, γ2)| / ψn

}
=: M̃ (r ) − ∆′(r ),

it is obviously enough to show,

(3.41) ∆′(r ) → 0 asr →∞,

and for a suitable positive constantK8,

(3.42) lim inf
r→∞ M̃ (r ) ≥ K8 a.s.

Statement (3.41) follows by combining Lemma 4 and Lemma 7.

Further note that by Lemma 7 in conjunction with Lemma 3 we have,

(3.43) lim sup
r→∞

ψnr +1
/ ψnr

<∞,
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and we can reduce the proof of (3.42) to showing for some positive constantK9,

(3.44) lim inf
r→∞ M (r ) ≥ K9 a.s.

whereM (r ) := M̃ (r ) ψnr +1
/ ψnr

, r ≥ 1.

We need an additional lemma. To simplify our notation, we set for 0< ε < 1,
mr (ε) := [ε2 knr / log φnr ].

Lemma 11 We have for0 < ε < 1/2 and large r

P
{

max
1≤j≤mr (ε)

|Sj − j µ̄nr (γ1, γ2) | ≥ K10 ε ψnr

}
≤ 1

2
,

where K10 > 0 is a constant independent ofε.

Proof. Recall that Xj = Q(Uj ), where Uj is uniform (0, 1), j ≥ 1. Let
V1(r ),V2(r ), . . . be independent uniform (γ1 bnr , 1− γ2 bnr ) random variables.
Using a simple conditioning argument, it is easy to see that the above probability
is less than or equal to

mr (ε)bnr + P
{

max1≤j≤mr (ε) |
∑j

i =1 {Q(Vi (r )) −µ̄nr (γ1, γ2)} |
≥ K10 ε ψnr

}
,

which by definition ofbn and Kolmogorov’s maximal inequality is

≤ ε2 + K−2
10 Var (Q(V1(r ))) / σ2

nr
≤ 1

2

provided we have chosenK10 large enough so that for larger ,

Var (Q(V1(r ))) / σ2
nr
≤ K 2

10/4.

The existence of such a constant follows from Lemmas 6 and 7.

Setting`(ε, r ) := [nr +1/mr (ε)] + 1, we readily obtain that for 0< ε < 1/2,

P
{

M (r ) ≤ (
K7/2− K10 ε

)}
≤∑`(ε,r )

`=1 P
{

min(`−1)mr (ε)≤i≤`mr (ε) max0≤j≤knr
|Si +j − Si − j µ̄nr (γ1, γ2)|

≤ (
K7/2− K10 ε

)
ψnr

}
which in turn by Lemma 10 and 11 is

≤ 2 `(ε, r ) P
{

max
0≤j≤knr

|Si +j − Si − j µ̄nr (γ1, γ2)| ≤ K7ψnr
/2
}
.

Recalling Lemma 9, we can further conclude that this is

≤ 2 ε−2 (nr +1/knr ) log φnr φ
−5/2
nr

,
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which in turn by Lemma 3 is for larger ,

≤ 3 ε−2 log φnr φ
−3/2
nr

,

From the definition of the subsequence{nr : r ≥ 1} it follows that

(3.45) φnr ∼ r /(Lr )2 as r →∞,

and we can infer that for 0< ε < 1/2,

(3.46)
∑

r

P
{

M (r ) ≤ K7/2− εK10

}
<∞.

Sinceε can be made arbitrarily small, this implies, via the Borel-Cantelli lemma,
statement (3.44) withK9 = K7/2, and Theorem 3 has been proved.

Remark Given the general formulation of Lemma 9, one might ask whether
it is not possible to prove Theorem 3 for more general centering sequences. An
inspection of the proof shows that one can replace the centerings{j µ̄n(γ1, γ2) :
1≤ j ≤ kn} by
{j βn : 1≤ j ≤ kn} whenever the following two conditions are satisfied,

(3.47) |βn − µ̄n(γ1, γ2)| = o (
√

bn σn) asn →∞,

and

(3.48) max
nr≤n≤nr +1

{√
kn log φn | βn − βnr |/σn

}
→ 0 asr →∞,

where{nr } is the subsequence defined in (3.7). The latter condition might be
somewhat difficult to verify in general, but it is trivial in one case of particular
interest, namely ifβn ≡ β is constant.

4. Discussion and further results

Our Theorem 2 is related to the following conjecture of Csörgő and Ŕevész
(1981). For some other results in this direction see also Csáki and F̈oldes(1984).

Conjecture Let X,X1,X2, . . . , be i.i.d. random variables withEX = 0 and Var
(X) = 1. Then

(4.1) lim
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si | = r (c), a.s.,

wherekn = [c logn] andr (c) is a function which uniquely defines the distribution
function F of X.

Our Theorem 2 says that wheneverkn = [c logn], for somec > 0, with
probability 1,
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(4.2) lim sup
n→∞

min
0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j µ̄(α1, 1− α2)| <∞

as long asα1, α2 > 0 are chosen so that−c log (1−α) < 1 whereα = α1+α2. In
light of the Cs̈orgő and Ŕevész conjecture it would be interesting to know whether
lim sup can be replaced by limit in (4.2), and, further, assuming it exists, whether
as a function ofc it determinesF .

Whenkn/ logn →∞ andF is in the Feller class our Theorem 3 states that
the lim inf in (2.11) is strictly positive. We shall show that this need not be the
case in (2.10) whenkn = [c logn] for somec > 0. In fact, we shall provide an
example where the lim sup in (4.2) is 0. Moreover, we shall also give an example
for which

(4.3) lim inf
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j µ̄(α1, 1− α2)| > 0,

wherekn = [c logn] and−c log (1− α) < 1 with α = α1 + α2. In order to
construct our first example we shall require the following auxiliary result.

Let U1,U2, . . . , be a sequence of uniform (0, 1) random variables andJ be
any measurable subset of (0, 1), where 1− α denotes the Lebesque measure of
J . Choose anyc > 0 and letkn be a sequence of integers satisfying 1≤ kn ≤ n
andkn = [c logn] for large n. Let

(4.4) Aj ,n = {Uj +1, . . . ,Uj +kn ∈ J}, j = 0, . . . , n − kn,

and

(4.5) An =
n−kn⋃
j =0

Aj ,n.

Proposition For any c> 0

(4.6) P (An eventually) = 1 or 0

according as−c log(1− α) < 1 or −c log(1− α) > 1.

Proof. First assume that−c log(1− α) < 1. In this case, note that

(4.7) P (Ac
n) ≤

(
P(Ac

0,n)
) n

kn
−1
,

which for all large enoughn is less than or equal to

(4.8) 2
(

1− (1− α)kn

)n/kn

.

This last expression is in turn less than or equal to

(4.9) 2
(

1− (1− α)c̄ log n
)n/kn

= 2
(

1− exp(−c̄ log (1− α) log n)
)n/kn
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for any c̄ > c and all largen. Now since we can choose ¯c > c so thatc̄ log (1−
α) > −1, (4.9) is less than or equal to exp (−nδ) for someδ > 0. From this we
get that

(4.10)
∞∑

n=1

P(Ac
n) <∞,

which by an application of the Borel-Cantelli lemma impliesP(An eventually)
= 1.

Now assume−c log(1− α) > 1. Set for r = 0, 1, 2, . . . , and i = 0, 1, 2, . . .

(4.11) Bi ,r =
{

Ui +1, . . . , Ui +k2r ∈ J
}

and

(4.12) Br =
2r +1⋃
i =0

Bi ,r

Notice thatAn ⊂ Br , 2r < n ≤ 2r +1 and

(4.13) P(Br ) ≤ 2r +2 exp
(

k2r log(1− α)
)
≤ 4 · 2−δr ,

for someδ > 0. Since this last bound is summable, we infer from the Borel-
Cantelli lemma thatP(Br i .o.) = 0, which impliesP(An eventually)= 0.

Example 1 Choose anyQ that is constantly equal to 1 on [α1, 1− α2], where
α1, α2 > 0 satisfy−c log(1− α) < 1. Observe that this makes ¯µ(α1, α2) = 1.
Applying our Proposition we conclude that with probability 1 for each sufficiently
largen there exists an 0≤ i ≤ n−kn such thatSi +j −Si = j for all 1≤ j ≤ kn =
[c logn]. This, of course, implies that the lim sup in (4.2) is equal to 0 almost
surely for all F having aQ with this property and withα1, α2 > 0 chosen in
this way.

Our next example shows that the lim inf in (4.3) can be positive.

Example 2 For any choice of 0< α < 1 such that−c log (1−α) < 1, define

(4.14) Q(u) =

{
1 for 1

2 < u < 1
0 for 0< u ≤ 1/2.

Notice thatµ̄(α/2, 1− α/2) = 1/2. Hence for any sequence of integers`n satis-
fying 1≤ `n ≤ n and all 0≤ i ≤ n − `n

(4.15) |Si +1− Si − µ̄(α/2, 1− α/2)| = |Si +1− Si − 1/2 | = 1/2.

This implies that
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(4.16) min
0≤i≤n−`n

max
0≤j≤`n

|Si +j − Si − j µ̄(α/2, 1− α/2) | ≥ 1/2;

which, in particular, says that the lim inf in (4.3) is greater than or equal to 1/2.

We finally would like to make some comments on the problem of what are
alternative choices for the centering constants{j µ̄n(γ1, γ2) : 1≤ j ≤ kn} used
in Theorem 1. Since this problem has been extensively studied in connection with
the Chung-type LIL proved in Einmahl and Mason (1994), it will be enough to
only state the results without giving detailed proofs.

We first note that using the method employed in the proof of Theorem 3 of the
aforementioned paper along with the remark at the end of the proof of Theorem
3 of the present paper, one can obtain the following refinement of Theorem 1
for random variables in the Feller class.

Theorem 5 Let X be a nondegenerate random variable in the Feller class, and
let {kn} be as in Theorem 1. Assume that we have for suitable constantsγ1, γ2 > 0
with γ1 + γ2 < 1,

(4.17) |βn − µ̄n(γ1, γ2)| = o (
√

bn σn) asn →∞,

and

(4.18) max
nr≤n≤nr +1

{√
kn log φn |βn − βnr |/σn

}
→ 0 as r →∞,

where{nr } is the subsequence defined by (3.7).

Then we have, with probability 1,

(4.19) lim inf
n→∞ min

0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j βn| /
√

kn/ log φn σn = K11,

where K11 > 0 is a finite constant.

Moreover, if

(4.20) log (n/κn)/LLn →∞ as n→∞,

we also have with probability 1,

(4.21) lim sup
n→∞

min
0≤i≤n−kn

max
0≤j≤kn

|Si +j − Si − j βn| /
√

kn/ log φn σn = K12,

where K12 is a finite constant.

As in Sect. 5, Einmahl and Mason (1994), we can infer from Theorem 5
among other results that ifX is a random variable in the domain attraction of
a stable law of indexα ∈ (0, 2], α 6= 1, which is not completely asymmetric,
both (4.19) and (4.21) hold true withβn ≡ µα, whereµα = 0 if 0 < α < 1 and
µα = EX if 1 < α < 2.
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