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Summary. The study of the Burgers equation with a random force leads via
a Hopf-Cole type transformation to a stochastic heat equation having a white
noise with spatial parameters type potential. The latter can be studied by means
of a general model of directed polymers in random environments with two
point random potentials. These models exhibit a Gaussian behavior at large
times and have certain stationary distributions which yield the corresponding
results for the above stochastic heat and Burgers equations.
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1 Introduction

The vector Burgers equation

@u
@t
+ �(u;∇)u= ��u+� ;(1.1)

u= u(x; t)= (u1(x; t); : : : ; ud(x; t)); x∈Rd, with a random force term �=
�(x; t)= (�1(x; t); : : : ;�d(x; t)) was considered recently in a number of both
physical (see [KS] and references there) and mathematical (see [Si1, BCJL,
HL�UZ1, 2, DDT, DG]) literature. The Burgers and the related scalar Kardar,
Parisi, Zhang (KPZ) equation

@v
@t
− �
2
|∇v|2 = ��v+

@
@t
	 ;(1.2)

where u= −∇v and �= −∇@=@t	, are among simplest physically interesting
nonlinear partial di�erential equations since by the Hopf-Cole transformation
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w= exp(�=2�v) they can be reduced to the linear heat equation

@w
@t
= ��w +

�
2�

(
@
@t
	
)

w :(1.3)

The interpretation of Eqs. (1.1)–(1.3) depends on a type of the noise term
considered. If � is the space time white noise then (1.1) should be understood
in some generalized sense and [HL�UZ1, 2] interprets the product (u;∇)u as a
Wick product and the solution is given as a distribution valued process. Physi-
cists usually assume the space–time independency of the noise in the KPZ
equation which describes growing surfaces, i.e. that @=@t	 is the space–time
white noise and, correspondingly, that � is its gradient in spatial variables.
A mathematical interpretation of (1.1) is not clear then and even its physical
consequences lead to certain di�culties (see [KS, p. 517]). In this paper I
replace the spatial independence of 	 by su�ciently weak dependence which
enables me to consider a spatially smooth noise and obtain semimartingale
solutions of (1.1)–(1.3). Namely, I assume that 	(t)=	(x; t); x∈Rd is a
temporally and spatially homogeneous C3-valued Brownian motion with suf-
�ciently fast decreasing spatial covariance function A(x; y)=A(y − x) which
means that it is a continuous process with independent increments and values
in the space of C3 functions on Rd whose distributions are invariant with
respect to translations of Rd (see [Ku2, Ch. 3]). When su�cient smoothness
in spatial parameters is assumed the solutions of (1.1) and (1.2) can be rep-
resented via the solution of (1.3) by means of the Hopf-Cole transformation
as above which can be justi�ed easily using the Ito formula. Furthermore, the
solution of (1.3) can be written by means of the Feynman–Kac formula (see
[Ku2, p. 308]),

w(x; t) = e−
�2A(0)t
8�2
∫
f(y)p(t; x − y)Ey(1.4)

×
(
exp

t∫
0

�
2�
	(Wt−u; du)

∣∣∣Wt = x
)
dy ;

where Wu is the Wiener process in Rd with time scaled by 2� (i.e. Wu=2� is the
standard Wiener process) which is independent of 	; p(u; z) is the transition
density of Wu; Ey is the expectation for Wu given W0 =y, and the exponent
contains an Ito stochastic integral of the form considered in [Ku2]. The condi-
tional expectation in (1.4) means that I integrate with respect to the distribution
of the Brownian bridge from y to x on the interval [0; 2�t].
Using the Markov property of Wt on Rd one can investigate the right hand

side of (1.4) by means of a discrete time model which generalizes the set
up for a directed polymer in a random environment considered in a number
of papers (see [IS, Bo, Si2]). Namely, let {Fk(x; y)}; k = : : : ;−1; 0; 1; : : : be
a sequence of i.i.d. continuous random �elds on Rd ×Rd; d=3 with distribu-
tions depending only on y − x and invariant under the exchange of x and y.
Next, consider a random walk {Wk; k ∈Z} (in particular, Wk may be the above
process Wu taken at integer times) with a transition density p(v; w)=p(w − v)
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and put it into a random environment determined by the potentials Fk , namely,
consider another random walk {Zl} for which probability density of each path
zm= x; zm+1; : : : ; zn has the (random) weight

n−1∏
l=m

p(zl+1 − zl) expFl(zl; zl+1) :(1.5)

Assuming that the variance of expFk(x; y) is su�ciently small and that the
covariances of expFk(x; y) and expFk(z; v) decrease su�ciently fast as the dis-
tance between (x; y) and (z; v) grows I shall show that the random walk {Zl} is
asymptotically Gaussian and it has a stationary distribution. This shows that in
dimensions bigger than 2 the di�usive behavior in models of directed polymers
in random environments is robust in the sense that it occurs for a relatively
wide class of models and not only for speci�c i.i.d. lattice models consid-
ered before. In view of (1.4) these results transfer to solutions of (1.3) which
yields also certain information about solutions of (1.1) and (1.2), in particular,
the existence of a stationary distribution. Actually, I obtain results for gen-
eral “random positive semigroups” which emerge naturally in representations
of solutions of linear second order stochastic partial di�erential equations even
more general than (1.3) (see [KK]). Some other limit theorems related to so-
lutions of (1.3) were derived in [DS]. I note also that there is a somewhat
di�erent continuous time and space model considered in [CO] which can be
reduced to a discrete time model with quite special two point random poten-
tials whose distributions are invariant only under the action of the diagonal of
Zd × Zd and not of Rd ×Rd, as above.

The main part of this paper is concerned with the general model of directed
polymers in random environments and in the last section I apply the results to
exponential functionals appearing in (1.4). For this I need 	 to be only space–
time continuous Brownian motion. In order to justify the Feynman–Kac formula
and the Hopf-Cole transformation one needs some additional smoothness in
spatial variables if the equations (1.1)–(1.3) are supposed to be understood
in a classical sense. I do not study here speci�c details of these questions
though I believe that the smoothness assumptions considered in [Ku2] can be
relaxed in our circumstances. I am grateful to Ya. Sinai who suggested to me
that some of the methods from his work [Si2] may be developed to become
applicable to the Burgers equation. Actually, this paper is an extension of the
approaches from [Bo] and [Si2] which is adequate to deal with the exponential
functionals from (1.4) emerging in the Burgers equation related study in view
of the Hopf-Cole transformation and the Feynman–Kac formula.

2 Preliminaries and main results

Let {Fk(x; y); x; y∈Rd}; k ∈Z; d=3 be a sequence of independent iden-
tically distributed R-valued random �elds on Rd ×Rd with continuous in
x; y realizations such that the distribution Qx;y of Fk(x; y) depends only on
y − x and Qx;y =Qy;x. I can consider Fk(x; y) as random variables on the
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space 
 of all continuous realizations ! of {Fk(x; y)} so that each ! is a
function on Z×Rd ×Rd and Fk(!; x; y)=!(k; x; y). The distributions of the
random �elds {Fk(x; y)} generate probability measures Q and Q(k) on 
 where
Q=

∏
k∈ZQ(k) and Q(k) gives probabilities of events for Fk . I de�ne also the

space and time shifts (translations) �z; z ∈Rd and �l; l∈Z on 
 acting by
�z!(k; x; y)=!(k; x + z; y + z) and �l!(k; x; y)=!(k + l; x; y); respectively.
I assume that the probability measure Q is both �z and �l invariant.

Let W0; W1; W2; : : : be a Markov chain on Rd independent of the above
random �elds and such that

P{Wn+1 ∈� |Wn= x}=P(x;�)=
∫
�
p(y − x) dy(2.1)

where the density p=0;
∫
p(z) dz=1 satis�es

p(z)=p(−z) and p(z)5C0e−0|z| :(2.2)

Let P(l; x;�)=P{Wl ∈� |W0 = x} be the l-step transition probability and

p(l; y − x) =
∫ · · · ∫p(z1 − x)p(z2 − z1) · · ·p(zl−1 − zl−2)(2.3)

×p(y − zl−1) dz1 · · · dzl−1
be the corresponding density. Observe that in view of (2.1) and (2.3) the
increments W1 −W0; W2 −W1; : : : are independent. Next, I shall consider the
partition functions

Z(x; m;y; n) = p(n− m; y − x)Ex exp
(

n−1∑
l=m

Fl(Wl;Wl+1)
∣∣∣Wn=y

)
(2.4)

= Exp(y −Wn−1)exp
(

n−2∑
l=m

Fl(Wl;Wl+1)
)
expFn−1(Wn−1; y) ;

where Ex is the expectation for {Wl} provided W0 = x;

Z(x; m; n)=
∫
Z(m; x; n; y) dy and Ẑ(m;y; n)=

∫
Z(m; x;y; n) dx :(2.5)

Denote fk(z; v)= expFk(z; v); �(z)=EQf0(0; z); �=
∫
p(z)�(z) dz, and

hk(z; v)=�−1(fk(z; v)− �(v− z)) where EQ is the expectation on the proba-
bility space (
; Q). Clearly,

EQhk(z; v)= 0 :(2.6)

Assume that for all v∈Rd,

q0(v)
def= �−1p(v)�(v)5C1e−1|v|(2.7)

and for all z; v; w∈Rd,

p(z)p(w − v)|EQh0(0; z)h0(v; w)|(2.8)

5 C1��(|v| − 2(|z|+ |w − v|)) exp(−21(|z|+ |w − v|))
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for some 15C1¡∞; 1¿ 0, and a su�ciently small �¿ 0, where �(u)
=u−(d+�0); �0¿ 0 for u=1 and �(u)= 1 for u¡ 1. The last assumption
incorporates two conditions. The �rst one holds true if the correlation
coe�cient

(EQh2l (0; z))
−1=2(EQh2l (v; w))

−1=2|EQhl(0; z)hl(v; w)|(2.9)

decreases su�ciently fast as |v| → ∞ which follows if one assumes a corre-
sponding �-mixing condition (see [Do]). The second condition says that the
variance of fl is su�ciently small.

For all v∈Rd set,

q1(v)= ce−1|v| with c=(
∫
e−1|v| dv)−1 = d1((d− 1)!sd−1)−1 ;(2.10)

where sd−1 is the volume of a (d− 1)-dimensional unit sphere. Let X1; X2; : : :
and Y1; Y2; : : : be two independent sequences of i.i.d. random vectors from Rd

constructed on the same probability space with distributions

P{Xi ∈�}=
∫
�
q0(v) dv and P{Yi ∈�}=

∫
�
q1(v) dv; � ⊂ Rd :(2.11)

For r=0; 1; : : : ; l put S r
l =

∑l−r
i=1 Xi +

∑r
j=1 Yj, then

P{S r
l ∈�}=

∫
�
qr(l; v) dv; � ⊂ Rd(2.12)

where

qr(l; w)=
∫ · · · ∫ l−1∏

j=0
qij (vj+1 − vj) dv1 · · · dvl−1 ;(2.13)

ij =0 or 1;
∑l−1

j=0 ij = r; v0 = 0, and vl=w. Since the sum S r
l and so its distri-

bution do not depend on the order of summands the right hand side of (2.13)
does not depend also on a particular order of i′js and it depends only on the
number of i′js equal to 1.

Put

’(x; m) = 1 +
∑
r=1

∑
m5k1¡k2¡···¡kr

∫ ∫
q0(k1 − m; z − x)(2.14)

×U (k(r); z; v) dz dv

and

 (y; n) = 1 +
∑
r=1

∑
k1¡k2¡···¡kr¡n

∫ ∫
U (k(r); z; v)(2.15)

×q0(n− kr − 1; y − v) dz dv
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where for k(r) = (k1; : : : ; kr) with k1 ¡ · · · ¡ kr ,

U (k(r); z; v) =
∫ · · · ∫ p(z̃1 − z)hk1 (z; z̃1)q0(k2 − k1 − 1; z2 − z̃1)(2.16)

×p(z̃2 − z2)hk2 (z2; z̃2)

× · · · × q0(kr − kr−1 − 1; zr − z̃r−1)

×p(v− zr)hkr (zr; v)

×dz̃1 dz2 dz̃2 · · · dzr−1 dz̃r−1 dzr :

In the next section I shall prove the following result.

Theorem 2.1. Suppose that (2.7) and (2.8) hold true and � in (2.8) is small
enough; namely that � = C3�1¡1 with �1 from (3.27) and C3 from (3.29).
Then the series (2.14) and (2.15) converge in L2(
; Q). Furthermore; for all
x; y∈Rd; Q-almost surely (a.s.);

lim
n→∞ �−(n−m)Z(x; m; n) = L:i:m:

n→∞
�−(n−m)Z(x; m; n)(2.17)

=’(x; m)¿0 ;

lim
m→−∞ �−(n−m)Ẑ(m;y; n) = L:i:m:

m→−∞
�−(n−m)Ẑ(m;y; n)(2.18)

=  (y; n)¿0 ;

where L.i.m. denotes the limit in L2(
; Q);

’(x; m) = �−(n−m)∫ Z(x; m;y; n)’(y; n) dy ;(2.19)

and

 (y; n) = �−(n−m)∫  (x; m)Z(x; m;y; n)dx(2.20)

for all x; y∈Rd and n; m∈Z with m¡n. Finally; there exists C¿0 such
that for all x; y ∈ Rd;

EQ(Z(x; m;y; n))2(2.21)

5 C�2(n−m)(n− m)−d=2
n−m∑
r=0

�rqr(n− m; y − x)

with � de�ned above.

Observe that ’(x; s) and  (x; s) have the same distributions (which does
not depend on x and s by the stationarity) since they are obtained from each
other by the time reversal. In view of (2.19) and (2.20) one can view ’(x; s)
and  (x; s) as (random) densities of backward and forward (random) station-
ary distributions of the random walk in a random environment. In physical
literature (see [KS]) the inuence of the random environment (or disorder) is
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measured by

EQ(Z(x; m; n))2(EQZ(x; m; n))−2 = �−2(n−m)EQ(Z(x; m; n))2(2.22)

which by (2.17) converges to EQ(’(x; m))2; and so, according to physical
terminology, this is a weak coupling case.
Let X1; X2; : : : be again i.i.d. random vectors with the distribution given by

the �rst part of (2.11). Since Qx;y = Qy;x then �(v) = �(−v), and so

EXi = �−1
∫
�
p(v)�(v)v dv = 0 :(2.23)

Introduce the covariance matrix

A = EXiX ∗
i = �

−1∫p(v)�(v)vv∗ dv ;(2.24)

where vv∗ is the d×d-matrix (v(k)v(l); k; l = 1; : : : ; d) if v = (v(1); : : : ; v(d)),
and assume that the matrix A is positive de�nite. This will always be the case
if p(Uv)=p(v) and �(Uv)=�(v) for any orthogonal matrix U (in particular,
if the distribution of W1 −W0 is invariant under rotations and Qx;y depend only
on |x − y|) since then A will be a scalar multiple of the unit matrix. Set

r(l; v) = (2�l)−d=2(det A)−1 exp
(
− 1

2
√
l
〈A−1v; v〉

)
(2.25)

where 〈 · ; · 〉 denotes the inner product. Generalizing the arguments from [Bo]
I shall derive in Sect. 4 the following limit theorem.

Theorem 2.2. Suppose again that � in (2.8) is small enough. Then for all
x; y∈Rd; m; n∈Z; and for any continuous function f on Rd with at most
polynomial growth; i.e.

lim
|v|→∞

|v|−Nf(v) = 0(2.26)

for some N ∈Z+; one has Q-a.s.;

lim
n→∞(Z(x; m; n))

−1∫ Z(x; m;y; n)f
(

y − x√
n− m

)
dy(2.27)

= lim
m→−∞(Ẑ(m;y; n))

−1∫f( y − x√
n− m

)
Z(x; m;y; n)dx

=
∫
f(z)r(1; z)dz :

Furthermore; there exists �0¿0 such that for any continuous function f
satisfying ∫ |f(v)|e−�0|v| dv¡∞(2.28)

one has

L:i:m:
n→∞

�−(n−m)∫ Z(x; m;y; n)f
(

y − x√
n− m

)
dy(2.29)

= ’(x; m)
∫
f(z)r(1; z)dz
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and

L:i:m:
m→−∞

�−(n−m)∫f( y − x√
n− m

)
Z(x; m;y; n)dx(2.30)

=  (y; n)
∫
f(z)r(1; z)dz :

It follows by (2.17) and (2.18) that for any continuous function f satisfying
(2.28) the limit (2.27) remains true in the sense of convergence in probability
in place of Q-a.s. convergence. If f is continuous and satis�es (2.26) then the
limits (2.29) and (2.30) remain true in the sense of Q-a.s. convergence.

Employing the same proof with integrals replaced by sums one obtains the
lattice versions of Theorems 2.1 and 2.2. Namely, let {Fk(x; y); x; y∈Zd}; k∈
Z; d= 3 be a sequence of i.i.d. random �elds on Zd×Zd with distributions
Qx;y = Qy;x depending only on y − x and let W0; W1; : : : be a Markov chain
on Zd independent of these random �elds with transition probabilities P{Wn+1

= y|Wn = x} = p(y − x) satisfying (2.2).

Theorem 2.3. Suppose that (2.7) and (2.8) hold true with � small enough.
Then Theorems 2.1 and 2.2 hold true with the corresponding modi�cations
where integrals are replaced by sums.

Next, I shall consider a general continuous time stochastic process in a ran-
dom environment, formulate corresponding versions of Theorems 2.1 and 2.2
for it, and, �nally, apply these results to solutions of the Eqs. (1.1)–(1.3). Let
(
; Q) be a probability space generated by a family of R+ = (0;∞)-valued
random �elds {Z(x; s;y; t); x; y ∈ Rd}; s; t∈R; s¡t; d= 3 on Rd×Rd

with L2(
; Q)-continuous in x; y; s; t realizations. I assume that the distribution
of Z(x; s;y; t) depends only on y − x and t − s, the distributions of Z(x; s;y; t)
and Z(y; s; x; t) are the same, and that the random �elds Z( · ; s; · ; t) and
Z( · ; s̃; · ; t̃) are independent if the open intervals (s; t) and (s̃; t̃ ) are disjoint.
Assume also that for any s¡u¡t,∫

Z(x; s; z; u)Z(z; u;y; t)dz = Z(x; s;y; t) :(2.31)

Let p(u; z) = p(u;−z) be the transition density of a continuous process Wt

with independent increments in Rd, i.e.∫
p(u− s; z − x)p(t − u; y − z)dz = p(t − s; y − x)(2.32)

for any s¡u¡t. Then it is known (see [GS, Ch. 4]) that Wt has Gaussian
increments, and so p(u; z) is a Gaussian density. Set �(u; w) = (p(u; w))−1

EQZ(0; 0;w; u) and �(u) =
∫
p(u; w)�(u; w)dw then∫

�(u− s; z − x)p(u− s; z − x)�(t − u; y − z)p(t − u; y − z)dz(2.33)

= �(t − s; y − x)p(t − s; y − x)

and
�(u− s)�(t − u) = �(t − s) :
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From the assumptions on the above random �elds it follows that �(u) is con-
tinuous in u, and so

�(u) = �u; u= 0(2.34)

for some constant �¿0: Set Z(x; s; t) =
∫
Z(x; s;y; t) dy; Ẑ(s;y; t) =

∫
Z(x; s;

y; t)dx; q0(u; w) = �−up(u; w)�(u; w), and

f(z; s; v; u) = Z(z; s; v; u)(p(u− s; v− z))−1 ;(2.35)

h(z; s; v; u) = �−(u−s)(f(z; s; v; u)− �(u− s; v− z)) :

In place of (2.7) and (2.8) I assume now that for all z ∈ Rd; and 15 u¡2,

�−up(u; z)�(u; z)5 C1e−1|z|(2.36)

and

p(u; z)p(u; w − v)|EQh(0; 0; z; u)h(v; 0;w; u)|(2.37)

5 C1��(|v| − 2(|z|+ |w − v|)) exp(−21(|z |+ |w − v|)) ;

where C1; 1; �; and � are the same as in (2.8). De�ne also ’(x; s) and
 (y; s) by (2.14)–(2.16) with m = 0; n = 0, and p(v) = p(1; v) but taking
hs
ki(zi; z̃i) = h(zi; s+ ki; z̃i ; s+ ki + 1) in place of hki(zi; z̃i) in (2.16). The fol-
lowing counterparts of Theorems 2.1 and 2.2 will be proved in Sect. 5.

Theorem 2.4. Suppose that (2.36) and (2.37) hold true for � small enough.
Then the series for ’(x; s) and  (y; t) converge in L2(
; Q) and they are
L2(
; Q)-continuous in x; s; y; t. Furthermore Q-a.s.;

L:i:m:
t→∞

�−(t−s)Z(x; s; t) = ’(x; s)¿0 ;(2.38)

L:i:m:
s→−∞

�−(t−s)Ẑ(s;y; t) =  (y; t)¿0 ;(2.39)

’(x; s) = �−(t−s)∫ Z(x; s;y; t)’(y; t) dy ;(2.40)

and

 (y; t) = �−(t−s)∫  (x; s)Z(x; s;y; t)dx(2.41)

for all x; y∈Rd and s¡t: Finally; there exists C¿0 such that for all x; y∈
Rd and s; t∈R satisfying t − s= 1;

EQ(Z(x; s;y; t))2 5 C�2(t−s)(t − s)−d=2q̃(t − s; y − x) ;(2.42)

where

q̃(u; z) =
max(1; [u])∑

r=0
�rqr+1(max(1; [u]); z)(2.43)

and [ · ] denotes the integral part.
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Theorem 2.5. Assume that conditions of Theorem 2.4 hold true. Then for
all x; y∈Rd; s¡t; and for any continuous function f on Rd with at most
polynomial growth Q-a.s.;

lim
t→∞(Z(x; s; t))

−1∫ Z(x; s;y; t)f
(

y − x√
t − s

)
dy(2.44)

= lim
s→−∞(Ẑ(s;y; t))

−1∫f( y − x√
t − s

)
Z(x; s;y; t)dx

=
∫
f(z)r(1; z)dz

where r(1; z) is given by (2.25). Furthermore; there exists �0¿0 such that
for any continuous function f satisfying (2.28) one has

L:i:m:
t→∞

�−(t−s)∫ Z(x; t;y; s)f
(

y − x√
t − s

)
dy(2.45)

= ’(x; s)
∫
f(z)r(1; z)dz

and

L:i:m:
s→−∞

�−(t−s)∫f( y − x√
t − s

)
Z(x; s;y; t)dx(2.46)

=  (y; t)
∫
f(z)r(1; z)dz :

It follows that for any continuous function f satisfying (2.28) the limit (2.44)
remains true in the sense of convergence in probability in place of Q-a.s.
convergence. If f is continuous and satis�es (2.26) then the limits (2.45) and
(2.46) remain true in the sense of Q-a.s. convergence.

Next, I shall discuss the application of Theorems 2.4 and 2.5 to the Eqs.
(1.1)–(1.3). Let 	(t) = 	(x; t); x ∈ Rd be a temporally and spatially homo-
geneous C3-valued Brownian motion (see [Ku2]) with the mean EQ	(t) = 0
and let (
; Q) be the corresponding probability space. This means that Q is
invariant under the space and time shifts �x; x∈Rd and �t; t∈R; respectively,
	(x; t) is continuous in t and C3-function in x; and for any 05 t0 ¡ · · · ¡
tl¡T;	(t0); 	(ti+1)−	(ti); i = 0; : : : ; l− 1 are independent random variables
with values in the space of C3 functions on Rd. Note that for any such
Brownian motion 	(t) its every �nite dimensional restriction (	(x1; t); : : : ;
	(xn; t)) is a nd-dimensional Gaussian process with independent increments
and zero mean (see, for instance, [GS, Ch. 4]). The existence of such Brownian
motion 	(x; t) for any smooth spatial covariance function A(x; y) = A(y − x)
follows from arguments of Chapters 3 and 4 in [Ku2] (see Theorems 3.2.1,
4.2.5, and 4.2.8 there). Actually, one always has a representation (see [Ku1,
Proposition 2.2.8]),

	(x; t) =
∞∑
i=1

f(i)(x)b(i)t ;

where b(i)t is a sequence of independent one dimensional Brownian mo-
tions, f(i)(x) is a sequence of smooth functions, and for each x∈Rd and
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t = 0 this series converges in L2(
; Q). Then it follows also that A(y − x) =∑
if
(i)(x)f(i)(y). Usually, one considers a Brownian motion 	(x; t) for non-

negative t only, but taking 	s(x; t) = 	(x; t − s) I can employ Brownian
motions starting at any time s∈R.
The process 	(t) is a martingale with spatial parameters and stochastic

integrals with respect to such martingales are studied in [Ku2]. The stochastic
heat equation (1.3) should be considered in the integral form

w(x; t) = w(x; s) + �
t∫
s
�w(x; u)du+

�
2�

t∫
s
w(x; u)	(x; du)(2.47)

where the last term is an Ito stochastic integral (see Remark 2.8). The solution
of (2.47) with the condition w(x; s) = f(x) can be written via a Feynman–Kac
type formula in the form (see [Ku2, p. 308]),

w(x; t) = wf(x; s; t) =
∫
f(y)Z(y; s; x; t) dy(2.48)

with the “stochastic heat kernel” given by

Z(y; s; x; t) = e−
�2A(0)(t−s)

8�2 p(t − s; x − y)(2.49)

×Ey

(
exp

t∫
s

�
2�
	(Wt−u; du)

∣∣∣∣Wt−s = x
)

;

where, Wu is the 2�-time scaled Wiener process independent of 	, Ey is the
expectation for Wu given W0 =y, and

p(u; z)= (4��u)−d=2 exp
(
−|z|

2

4�u

)
:(2.50)

Observe that stochastic integrals depend only on increments of 	( ·; u); and
so the distribution of any Z(x; s;y; t) de�ned by 	r(x; u)=	(x; u− r) will be
the same for all r 5 s. Letting r → −∞ I obtain a probability measure on the
space of functions of x; s; y; t with s¡t which determines the distributions of
Z(x; s;y; t) for all real s¡t, and so I may speak about these random �elds
for all real s¡t as required for the application of Theorems 2.4 and 2.5. Of
course, this means also that I consider the solutions of (2.47) in the weak
sense, i.e. only their distributions and not their speci�c representation make
any sense. It is clear that (2.31)–(2.34) hold true and by the de�nition of the
Ito stochastic integral, Z(x; s; z; t) and Z(v; s̃;w; t̃) are independent if the open
intervals (s; t) and (s̃; t̃) are disjoint. Employing the generalized Ito formula
from [Ku2] I shall show in Sect. 5 that the condition (2.36) is automatically
satis�ed in our circumstances. On the other hand, in order to satisfy (2.37)
one has to assume that the random �eld 	 has su�ciently small and fast
decreasing spatial covariances. Namely, suppose that for some constants C¿0
and a su�ciently small �¿0,

sup
x : |x|=r

A(x)5 C��(r) for all r = 0(2.51)
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where � is the same as in (2.37). Observe, that since 	 is a Gaussian random
�eld then (2.51) implies the ergodicity of the spatial shift �x; x∈Rd (see
Sects. 1 and 2 of Ch. 2 in [Te]).

Theorem 2.6. If (2:51) holds true with � small enough then the conditions
of Theorems 2:4 and 2:5 are satis�ed with Z(x; s;y; t) de�ned by (2:49); and
so these theorems remain true for the stochastic heat kernel describing the
evolution of solutions of the Eq. (2:47).

If w is the solution of (2.47) then a direct computation shows (cf.
Theorem 4.1 in [HL�UZ2]) that v= 2�

� logw and u= −∇v are solutions of
the Eqs. (1.2) and (1.1), respectively, considered in the integral form similar
to (2.47). This computation made in the Stratonovich form (and passing back
to the Ito di�erentials afterwards) is essentially the same as in the deterministic
case and its justi�cation follows from Sects. 6.1 and 6.2 in [Ku2]. I shall show
in Sect. 5 that the function f(y)=  (y; s) can be taken as an initial condition
in (2.47) and that �=1 in our circumstances. Then by (2.48) and (2.41),
w(x; s; t)=  (x; t), and so w(x; s; t) has the same distribution on (
; Q) for all
t= s. Since the corresponding solution of (1.2) has the form

v(x; s; t)=
2�
�
logw(x; s; t)=

2�
�
log  (x; t)(2.52)

then the distribution of v(x; s; t) on (
; Q) is the same for all t¿s. Finally,
the solution of (1.1),

u(x; s; t)=−∇v(x; s; t)=− 2��−1∇ log  (x; t)(2.53)

has the same distribution on (
; Q) for all t¿s. Thus (2.40) and (2.41) yield
backward and forward stationary distributions for solutions of (1.1)–(1.3).
Moreover, these distributions are attracting for natural classes of solutions.
Namely, the following result (which will be proved in Sects. 5 and 6) holds
true.

Theorem 2.7. The distributions of  (x; t); of 2�
� log  (x; t); and of −2��−1∇

log  (x; t) are stationary in time distributions (invariant measures) for the
Eqs. (1:3); (1:2); and (1:1); respectively. Furthermore; suppose that the initial
(at time s) condition f=f(y); y∈Rd in (2:47) is a L2(
; Q) stationary
under the action of Rd random �eld independent of the Brownian motion
with spatial parameters 	(x; t) for all t= s. Then the solution of (1:3) (i.e.
of (2:47)) given by (2:48) satis�es

lim
t→∞ Q{|wf(x; s; t)−  (x; t)EQf(0)|¿�}=0; ∀�¿0 :(2.54)

The corresponding results hold true for solutions of (1:2) and (1:1).

Remark 2.8. Let w(x; t)=wf(x; s; t)=�−(t−s)
∫
f(y)Z(y; s; x; t)dy and v(x; s)

=vg(x; s; t)=�−(t−s)
∫
Z(x; s;y; t)g(y)dy where Z(·; ·; ·; ·) is as in Theorem 2.1
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or as in Theorem 2.4 and f and g are L2(
; Q) stationary under the Rd-
action random �elds independent of the �-algebras F∞

s and Ft
−∞, respectively

(where Ft
s is the �-algebra generated by all Z(y; �; z; �) with s5 �5 �5 t).

Assume ergodicity of the Rd-action on (
; Q) (which holds automatically
in the framework of Theorems 2.6 and 2.7) then in the same way as in
Theorem 2.7 it follows using Theorem 6.1 that for any �¿0,

lim
t→∞Q{|w(x; t)−  (x; t)EQf(0)|¿�}(2.55)

+ lim
s→−∞Q{|v(x; s)− ’(x; s)EQg(0)|¿�}=0 :

Remark 2.9. Observe that if (2.47) (and so, (1.1)–(1.3)) is considered in
the Stratonovich form then the solution still can be represented by (2.49)
but the �rst factor in the right hand side of (2.49) should be omitted. Then
Theorems 2.4 and 2.5 can be applied again with �= exp(�2A(0)=8�2) and all
arguments remain valid. In particular, the stationary distribution of the Burgers
equation is given by (2.53) but the solution of (2.47) at time t with the initial
condition f(y)=  (y; s) at time s will be given now by  (x; t)�t−s.

Remark 2.10. In the proofs I do not use in a substantial way temporal homo-
geneity of the corresponding random �elds. Some versions of the main results
can be obtained without this condition, as well, using the corresponding ver-
sions of local limit theorems for sums of non identically distributed independent
random vectors and assuming uniform in time bounds in (2.7) and (2.8) (in
(2.36) and (2.37) in the continuous time case). I can do without temporal ho-
mogeneity of the Markov chain Wk (of the process Wt , in the continuous time
case), as well.

Remark 2.11. Making easy modi�cations in the proof I can derive certain ver-
sions of Theorems 2.2, 2.3, and 2.5 without assuming that p(u; z) = p(u;−z)
and that the distributions of Z(x; s;y; t) and of Z(y; s; x; t) are the same. In this
case b = u−1

∫
vq0(u; v)dv may be 6= 0 and in Theorems 2.2 and 2.5 one should

replace y − x by y − x − b(n− m) and by y − x − b(t − s), respectively.

3 L2(
;Q)-estimates

In this section I shall prove Theorem 2.1. Writing fk(Wi;Wi+1)=�(hk(Wi;
Wi+1) + �−1�(Wi+1 −Wi)) I obtain from (2.4) and (2.16) that

Z(x; m;y; n)=�n−m(q0(n− m; y − x) + Z̃(x; m;y; n)) ;(3.1)

where

Z̃(x; m;y; n)=
∑
r=1

∑
m5k1¡k2¡ ···¡kr ¡n

V (k(r); x; m;y; n)(3.2)

and for k(r) = (k1; : : : ; kr); k1¡k2¡ · · · ¡kr;

V (k(r); x; m;y; n) =
∫ ∫

q0(k1 − m; z − x)(3.3)

×U (k(r); z; v)q0(n− kr − 1; y − v)dz dv :
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Observe that from the local limit theorems (see [Pe, Sect. 7.2]) together
with (2.7) it follows that for some C2¿0,

|q0(l; v)− r(l; v)|5 C2
l

d
2 +1

for all v∈Rd and l= 1 :(3.4)

In particular, if C2 is chosen large enough then

q0(l; v)5 C2l−
d
2 for all v∈Rd and l= 1(3.5)

and

q0(l; v)= r(l; v)(1 + l−1=2cR(l; v)) ;(3.6)

provided |v|5 Rl1=2 where

sup
l; v

cR(l; v)
def= cR¡∞ :(3.7)

Writing each product of integrals U (k(r); v; ṽ)U (1(s);w; w̃) as one multiple
integral and applying the conditional expectations EQ( ·|Fj) with respect to
the �-algebras Fj

−∞ generated by all random variables Fi(x; y) with i¡j
I derive from (2.16) and the independence of the �elds Fi; i∈Z that the
sums in (2.14) and (2.15) consist of uncorrelated random variables. Thus the
series in (2.14) converge in L2(
; Q) if∑

r=1

∑
m5k1¡ ···¡kr

W (k(k); x; m)¡∞(3.8)

where

W (k(k); x; m)=EQ(
∫∫

q0(k1 − m; z − x)U (k(r); z; v)dz dv)2(3.9)

and similarly for the series in (2.15). It is easy to see that

W (k(r); x; m)(3.10)

=
∫ · · · ∫ W(k(r); x; m; z(r); z̃(r); v(r); ṽ(r))dz(r) dz̃(r)dv(r) dṽ(r)

where for z(r) = (z1; : : : ; zr); z̃(r) = (z̃1; : : : ; z̃r); v(r) = (v1; : : : ; vr); ṽ(r) = (ṽ1; : : : ; ṽr);

W(k(r); x; m; z(r); z̃(r); v(r); ṽ(r))(3.11)

= q0(k1 − m; z1 − x)q0(k1 − m; v1 − x)(EQhk1 (z1; z̃1)hk1 (v1; ṽ1))

×p(z̃1−z1)p(ṽ1−v1) · · · q0(kr−kr−1−1; zr−z̃r−1)

×q0(kr − kr−1 − 1; vr − ṽr−1)

×(EQhkr (zr; z̃r)hkr (vr; ṽr))p(z̃r − zr)p(ṽr − vr) :
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It follows from (2.8) that

�l(z; u; v; w)
def= p(u− z)p(w − v)|EQhl(z; u)hl(v; w)|(3.12)

5C1K� exp(−1(|u− z|+ |w − v|))min(1; |v− z|−(d+�0)) ;

where

K = sup
z; u; v;w

(e−1(|u−z|+|w−v|)(|v− z|d+�0 + 1)�(|v− z| − 2|u− z| − 2|w − v|))

5 sup
z; u; v;w

(e−1(|u−z|+|w−v|)(2|u− z|+ 2|w − v|+ 1)d+�0

+(|v− z|d+�0 + 1)min(1; ( 12 |v− z|)−(d+�0)))5∞ :

Therefore, integrating �rst the exponent in (3.12) in u and w, then estimating
q0(j; z − z̃) by (3.5), and, �nally, integrating the remaining part in the right
hand side of (3.12) in z I derive for any j = 1 that∫∫∫∫

q0(j; z − z̃)q0(j; v− ṽ)�l(z; u; v; w)dz dv du dw(3.13)

5 C1C2K�j−d=2(
∫
e−1|x| dx)2

∫
min(1; |y|−(d+�0))dy

5 C1C2K�j−d=2c−2(bd + sd−1�−10 )

where bd is the volume of the d-dimensional unit ball, sd−1 is the volume of
the (d− 1)-dimensional unit sphere, and c is the same as in (2.10). Finally,
I obtain by (3.9)–(3.13) that∑

m5k1¡ ···¡kr
W (k(r); x; m)5 �r

0(3.14)

where �0 =C1C2K�c−2d(d− 2)−1(bd + sd−1�−10 ). Thus if � in (2.8) is chosen
so small that �0¡1 then (3.8) holds true.

It remains to establish (2.17)–(2.21). Since the series in (2.14) converges
in L2(
; Q) it is clear from (3.2) that

L:i:m:
n→∞

∫
Z̃(x; m;y; n)dy=’(x; m)− 1(3.15)

which together with (3.1) gives the L2(
; Q)-limit in (2.17), whilst the corre-
sponding limit in (2.18) follows similarly. In order to derive the Q-a.s. limits
in (2.17) and (2.18) I observe that �−(n−m)Z(x; m; n) is a martingale in n and
�−(n−m)Ẑ(m;y; n) is a backward martingale in m. Indeed, EQZ(x; k; n)=�n−k

for any k¡n, and so

�−(n−m)EQ(Z(x; m; n)|Fk
−∞)

= �−(n−m)EQ(
∫
Z(x; m;y; k)Z(y; k; n)dy|Fk

−∞)

= �−(n−m)
∫
Z(x; m;y; k)EQZ(y; k; n)dy = �−(k−m)Z(x; m; k) :
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Thus by the martingale convergence theorem the Q-a.s. limit (2.17), and sim-
ilarly for (2.18), follows.
Next, I derive the Q-a.s. positivity of ’ and  . It su�ces to deal only with

’(x; m) since the proof for  (y; n) is the same using the limit in (2.18) in
place of (2.17). Actually,  (y; n) can be obtained by the time reversal from
’(y; n), and so they have the same distribution. Since

EQ’(x; m)= 1(3.16)

then

EQ(’(x; m))2 = 1 + EQ(’(x; m)− 1)2¿0 :(3.17)

By (2.4) and (2.5),

Z(x; m; n)=
∫
p(z − x)eFm(z; z)Z(z; m+ 1; n)dz :(3.18)

Dividing this by �(n−m) and applying (2.17) I obtain that for any z ∈Rd and
l∈Z, Q-a.s.,

’(z; l)=�−1
∫
p(v− z)eFl(z; v)’(v; l+ 1)dv :(3.19)

Also by (2.17) for any v∈Rd and l∈Z; Q-a.s.,

’(v; l)= 0 :(3.20)

For l=1; 2; : : : set

Lx; l= {z :p(l; z − x)¿0} and �l=

{
!∈
 : ∫

Lx; l

’(!; z; m+ l)dz=0

}
:

Let � be the subset of ! ∈ 
 such that ’(x; m) = ’(!; x; m) = 0. From (3.19)
and (3.20) it follows that � = �l for any l = 1; 2; : : : . Since ’(z; m+ l) de-
pends only on the random �elds {Fm+l; Fm+l+1; : : :} then � is the tail event
of the sequence of independent random �elds Fk; k ∈ Z, and so by the
Kolmogorov 0–1 law Q(�) = 0 or =1. This together with (3.17) yields that
Q(�) = 0 completing the proof of (2.17).
Next, for k¿n set �(y; n; k) = �−(k−n)Z(y; n; k)− ’(y; n) then

Ik
def= L:i:m:

k→∞
∫
�−(n−m)Z(x; m;y; n)�(y; n; k) dy = 0 :(3.21)

Indeed, by the Cauchy–Schwartz inequality, by the independence of Z(x; m; n)
Z(x; m;y; n) and �(y; n; k), and by the invariance of Q with respect to space
and time shifts I obtain from (2.17) that

EQ(Ik)2 5 EQ
∫ Z(x; m;y; n)

Z(x; m; n)
(�−(n−m)Z(x; m; n)�(y; n; k))2 dy(3.22)

=
∫
�−2(n−m)EQ (Z(x; m; n)Z(x; m;y; n))EQ�2(y; n; k) dy

= EQ�2(0; 0; k − n)EQ(�−(n−m)Z(x; m; n))2 → 0

in L2(
; Q) as k →∞ :
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Now by (2.17) and (3.21),∫
�−(n−m)Z(x; m;y; n)’(y; n) dy(3.23)

=
∫
�−(n−m)Z(x; m;y; n) L:i:m:

k→∞
Z(y; n; k)
�(k−n) dy

= L:i:m:
k→∞

�−(k−m)∫ Z(x; m;y; n)Z(y; n; k) dy
= L:i:m:

k→∞
�−(k−m)Z(x; m; k) = ’(x; m) ;

and (2.20) follows similarly.
Next, in the same way as above

EQ(Z̃(x; m;y; n))2 =
n−m∑
r=1

∑
m5k1¡···¡kr¡n

W (k(r); x; m;y; n)(3.24)

where

W (k(r); x; m;y; n) = EQ(V (k(r); x; m;y; n))2(3.25)

=
∫ · · · ∫W(k(r); x; m; z(r); z̃(r); v(r); ṽ(r))
×q(n− kr; y − z̃r)q0(n− kr; y − ṽr)

×dz(r) dz̃(r) dv(r) dṽ(r)

with V and W given by (3.3) and (3.11), respectively. From (2.10), (2.13),
(3.5), and (3.12) I derive similarly to (3.13) that for any a = 0; 1; 2; : : : and
i; j = 1,∫ ∫ ∫ ∫

q0(i; u− z)q0(i; v− z′)�l(u; ũ; v; ṽ)qa(j; w − ũ)(3.26)

×qa(j; w′ − ṽ) du dvdũ dṽ

5 C1C22K�(max(1; i))−d=2(max(1; j))−d=2∫ ∫ ∫ ∫ q0(i; u− z)

×e−1|ũ−u|e−1|ṽ−v|min(1; |v− z|−(d+�0))qa(j; w − ũ) du dvdũ dṽ

5 C1C22Kc−2�(bd + sd−1�−10 )(max(1; i))
−d=2

×(max(1; j))−d=2qa+1(i + j + 1; w − z) ;

where c is the same as in (2.10). From (3.25) and (3.26) it follows that
n−m∑
r=1

∑
m5k1¡···¡kr¡n

W (k(r); x; m;y; n)(3.27)

5
n−m∑
r=1

�r
1qr(n− m; y − x)�r(m; n) ;

where �r(m; n) =
∑

m5k1¡···¡kr¡n �(k
(r); m; n); �1 = C2�0; and

�(k(r); m; n) = (max(1; k1 − m))−d=2(3.28)

×
r∏

i=1
(max(1; ki+1 − ki − 1))−d=2
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with kr+1 = n. I claim that

�r(m; n)5 Cr
3(n− m)−d=2(3.29)

for some constant C3¿0 independent of k(r); m, and n. Indeed, for r = 1 and
n− m¿1,∑

m5k¡n
(max(1; k − m))−d=2(max(1; n− k − 1))−d=2(3.30)

= (n− m− 1)−d=2

(
2 +

∑
15l5n−m−2

(l−1 + (n− m− 1− l)−1)d=2
)

5 (n− m− 1)−d=2

(
2 + 2d

∑
l=1

l−d=2

)
5 2d=2(n− m)−d=2(2 + 2dd(d− 2)−1) :

If (3.29) holds true for some r = 1 then for r 5 1
2 (m− n),

�r+1(m; n)5 Cr
3

∑
m5k5n−r

(max(1; k − m))−d=2(max(1; n− k − 1))−d=2(3.31)

5 Cr
3(n− m)−d=2(1− r(n− m)−1)−d=2(2 + 2dd(d− 2)−1)

and (3.29) follows for such r by induction. For r ¿ 1
2 (m− n) I estimate

�r(m; n) just by (2 +
∑

l=1 l
−d=2)r+1 5 ((2 + d(d− 2))r+1 and so (3.29) fol-

lows for C3 large enough. Assuming that � in (2.8) is su�ciently small so that
� = C3�1 ¡ 1; I obtain (2.21) from (3.1), (3.24), and (3.27)–(3.29).

4 The limit theorem

In this section I shall prove Theorem 2.2 employing a generalization of mar-
tingale arguments from [Bo] together with estimates of the previous section.
First, I shall prove (2.27) for any f having the form f(v) =

∏d
j=1 v

kj
j where

v = (v1; : : : ; vd) ∈ Rd and k = (k1; : : : ; kd) ∈ Zd; kj = 0 ∀j = 1; : : : ; d. For any
such v; k and each t=0 set

Wk(t; x) =
@‖k‖

@�k1
1 · · · @�kd

d

exp((�; x)− t log �(�))|�=0(4.1)

=
∑

Ak(i1; : : : ; id; j) x
i1
1 · · · xidd t j

where ‖k‖ = k1 + · · ·+ kd = 1,

�(�) =
∫
q0(x) exp(�; x)dx(4.2)

and (�; x) =
∑d

j=1 �jxj for �; x ∈ Rd. In view of (2.7), �(�) is �nite and in-
�nitely di�erentiable in � provided |�| ¡ 1, and so the polynomials Wk are
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well de�ned by (4.1). It is easy to see that the coe�cients Ak satisfy the
following properties (see [Bo]):
(i) If i1 + · · ·+ id + 2j ¿ ‖k‖, then Ak(i1; : : : ; id; j) = 0;
(ii) The coe�cients Ak with ‖k‖ = i1 + · · ·+ id + 2j are determined uniquely
by the second derivatives of log � at 0;
(iii) If i1 + · · ·+ id = ‖k‖, then Ak(i1; : : : ; id; 0) = �i1k1�i2k2 · · · �idkd where �ij is
the Kronecker symbol.
Observe that∫

q0(y − z)Wk(n− m; y − x) dy = Wk(n− m− 1; z − x) :(4.3)

Indeed, by (4.2),∫
q0(y − z) exp((�; y − x)− (n− m) log �(�)) dy(4.4)

= exp((�; z − x)− (n− m− 1) log �(�)) :

Di�erentiating both sides of (4.4) in � one arrives to (4.3). Set

Yk(m; n) = �−(n−m)∫ Z(x; n;y;m)Wk(n− m; y − x) dy ;

where I omit in this notation the dependence on x, then by (4.3),

EQ(Yk(m; n)|Fn−1
−∞)(4.5)

= �−(n−m)∫ ∫ Z(x; m; v; n− 1)p(y − v)EQ(eFn−1(v;y))

×Wk(n− m; y − x) dv dy

= �(−n−m−1)∫ Z(x; m; v; n− 1)∫ q0(y − v)Wk(n− m; y − x) dy dv

= Yk(m; n− 1) ;

and so Yk(m; n) is a martingale in n and, similarly, it is a backward martingale
in m.
Next, I shall prove that Q-a.s.,

lim
n→∞ n−‖k‖=2Yk(m; n) = 0 ;(4.6)

provided ‖k‖= 1. By Kronecker’s lemma, (4.6) would follow if the series

∞∑
n=m+1

(n− m)−‖k‖=2(Yk(m; n)− Yk(m; n− 1))

converges Q-a.s. Since by (4.5) this series contains uncorrelated terms then it
converges Q-a.s. if

∞∑
n=m+1

(n− m)−‖k‖EQ(Yk(m; n)− Yk(m; n− 1))2¡∞ :(4.7)
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In order to obtain (4.7) I write eFn−1(v;y) = �hn−1(v; y) + �(y − v) and proceed

EQ (Yk(m; n))2 = �−2(n−m)EQ
∫ ∫

Z(x; m;y; n)Wk(n− m; y − x)(4.8)

×Z(x; m;y′; n)Wk(n− m; y′ − x) dy dy′

= �−2(n−m−1)EQ
∫ ∫ ∫ ∫

Z(x; m; v; n− 1)q0(y − v)

×Wk(n− m; y − x)Z(x; m; v′; n− 1)q0(y′ − v′)

×Wk(n− m; y′ − x) dy dy′ dv dv′ + �−2(n−m−1)

×EQ
∫ ∫ ∫ ∫

Z(x; m; v; n− 1)p(y − v)hn−1(v; y)

×Wk(n− m; y − x)Z(x; m; v′; n− 1)p(y′ − v′)hn−1(v′; y′)

×Wk(n− m; y′ − x) dy dy′ dv dv′

= EQ(Yk(m; n− 1))2 + �−2(n−m−1)EQ
∫ ∫ ∫ ∫

Z(x; m; v; n− 1)
×Wk(n− m; y − x)Z(x; m; v′; n− 1)Wk(n− m; y′ − x)

×p(y − v)p(y′ − z′)EQhn−1(v; y)hn−1(v′; y′) dv dv
′ dy dy′ :

It is clear that

Wk(n− m; y − x) =
∑

k̃+ ˜̃k=k

C
k̃; ˜̃k

Wk̃(n− m− 1; v− x)W˜̃k
(1; y − v) :(4.9)

By (2.21) and (3.12) if k̃ + ˜̃k = k and k̃ ′ + ˜̃k ′ = k then

�−2(n−m−1)EQ
∫ ∫ ∫ ∫

Z(x; m; v; n− 1)Z(x; m; v′; n− 1)(4.10)

×|Wk̃(n− m− 1; v− x)||Wk̃′(n− m− 1; v′ − x)|
×|W˜̃k

(1; y − v)||W˜̃k′
(1; y′ − v′)|p(y − v)p(y′ − z′)

×|EQhn−1(v; y)hn−1(v′; y′)|dv dv′ dy dy′

5 C4�−2(n−m−1)∫ ((Wk̃(n− m− 1; v− x))2EQ(Z(x; m; v; n− 1))2

+(Wk̃′(n− m− 1; v′ − x))2EQ(Z(x; m; v′; n− 1))2)
×min(1; |v− v′|−(d+�0)) dv dv′

5 C5(n− m)−d=2∫ (Wk̃(n− m− 1; v− x))2

+ ((Wk̃′(n− m− 1; v− x))2)
n−m−1∑

r=0
�rqr(n− m− 1; v− x) dv

for some constants C4 and C5 depending on k but independent of n− m. In
view of (2.7) and (2.10) it follows from Theorems 15 and 16 in Sect. 3.4 of
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[Pe] that there exists a 2¿0 such that∫
{|v|=R

√
l}

qr(l; v)dv5 e−2R for all R¿0 and l= 1(4.11)

and 2 can be estimated explicitly in terms of C1;�; and 1 from (2.7) and
(2.8). This together with the property (i) of coe�cients Ak yield that the right
hand side of (4.10) can be estimated by C6(n− m)‖k‖−d=2, and so by (4.5)
and (4.8),

(n− m)−‖k‖EQ(Yk(m; n)− Yk(m; n− 1))2(4.12)

= (n− m)−‖k‖(EQ(Yk(m; n))2 − EQ(Yk(m; n− 1))2)

5 C7(n− m)−d=2

for some constants C6 and C7 depending on k but independent of n− m. Since
d=3 this implies (4.7), and so (4.6) follows.
Next, I proceed similarly to [Bo]. From the properties (i) and (iii) of the

coe�cients Ak I derive by induction in the degree of polynomials in spatial
variables xi that for any k = (k1; : : : ; kd),

d∏
i=1

xkii = Wk(t; x)−
∑

j=1;‖l‖+2j5‖k‖
Bl; jWl(t; x)t j(4.13)

for some constants Bl; j. It follows from (4.6) and (4.13) that Q-a.s. the limit

lim
n→∞�

−(n−m)∫ d∏
j=1

(
yj − xj√
n− m

)kj

Z(x; m;y; n) dy def= Lk(x; m)(4.14)

exist and is �nite. Furthermore, if Uk(t; x) is obtained from Wk(t; x) by deleting
all summands Ak(i1; : : : ; id; j)x

i1
1 · · · xidd t j with i1 + · · ·+ id + 2j¡‖k‖ then

Wk(t; x)− Uk(t; x) =
∑

‖l‖+2j¡‖k‖
Bl; jWl(t; x)t j ;

and so by (4.6),

lim
n→∞�

−(n−m)(n− m)−‖k‖=2
∫
Uk(n− m; y − x)Z(x; m;y; n) dy = 0 Q-a.s.

This together with (2.17) yields that

lim
n→∞(Z(x; m; n))

−1∫ ∑
j1 ; :::; jd

Ak

(
j1; : : : ; jd;

‖k‖ − j1 − · · · − jd
2

)
(4.15)

×
(

y1 − x1√
n− m

)j1

· · ·
(

yd − xd√
n− m

)jd

Z(x; m;y; n) dy = 0 ;
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where the sum is taken over all j1; : : : ; jd such that ‖k‖ − j1 − · · · − jd is
nonnegative and even. Now let V = (V1; : : : ; Vd) be a Gaussian random vector
with zero mean and the covariance matrix A given by (2.24). Set

�̃(�) = Ee(�;V ) = e
1
2 (A�; �) :

Since E exp((�; V )− log �̃(�))= 1 then

0 =
@‖k‖

@�k1
1 · · · �kd

d

E exp((�; V )− log �̃(�)) :(4.16)

It is easy to see that the matrices of second derivatives at 0 of both �(�) and
�̃(�) coincide with A which together with (4.16) and the property (ii) of the
coe�cients Ak yield

E
∑

j1 ;:::; jd
Ak

(
j1; : : : ; jd;

‖k‖ − j1 − · · · − id
2

)
V j1
1 · · ·V jd

d = 0(4.17)

where the sum is taken over the same indices as in (4.15) and E denotes
the corresponding expectation. Using the representation (4.13) I conclude from
(2.17), (4.15) and (4.17) by induction in the degree of polynomials in spatial
variables that the limit in (4.14) is given by

Lk(x; m) = ’(x; m)
∫
zk11 · · · zkdd r(1; z)dz; z = (z1; : : : ; zd) ;

proving (2.27) for f being a polynomial.
Since a Gaussian distribution is determined uniquely by its mixed mo-

ments then (see, for instance, [Bi, Theorem 30.2]) (2.27) being true for any
polynomial f yields (2.27) for any bounded continuous function. Now let
f be a continuous function satisfying (2.26). Then (2.27) holds true for
any fC = max(−C;min(f;C)); C¿0. Set RC = sup{r : f(z) = fC(z) ∀z with
|z|5 r}. Then for C large enough,

(Z(x; m; n))−1
∫
Z(x; m;y; n)

∣∣∣∣f( y − x√
n− m

)
− fC

(
y − x√
n− m

)∣∣∣∣dy(4.18)

5 2(Z(x; m; n))−1
∫

Rd\BRC

Z(x; m;y; n)
∣∣∣∣ y − x√

n− m

∣∣∣∣N dy
5 2(RC)−N (Z(x; m; n))−1

∫
Z(x; m;y; n)

∣∣∣∣ y − x√
n− m

∣∣∣∣2N dy ;

where BR = {y : |y − x|5 R
√
n− m}. Since RC →∞ as C→∞ then apply-

ing (2.27) to the polynomial |z|2N I conclude that the right hand side of (4.18)
tends to 0 uniformly in n as C →∞. In addition, clearly,

lim
C→∞

∫ |f(z)− fC(z)|r(1; z) dz 5 lim
C→∞

2
∫

|z|¿RC

|f(z)|r(1; z) dz = 0(4.19)
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which together with the above yield (2.27) for any continuous function satis-
fying (2.26).
In order to derive (2.29) and (2.30) observe that (4.7) implies also that the

limit (4.6) holds true in the L2(
; Q)-sense, as well. Then arguments similar to
above yield (2.29) and (2.30) for any f being a polynomial. If f is bounded,
say, |f|5 C then

I(x; m; n) def= �−(n−m)∫ Z(x; m;y; n)
∣∣∣∣f( y − x√

n− m

)∣∣∣∣ dy(4.20)

5C�−(n−m)Z(x; m; n) :

It follows from the above that I(x; m; n) converges Q-a.s. to the right hand
side of (2.29) and since by (2.17) the right hand side of (4.20) converges in
L2(
; Q) to ’(x; m) it follows that I(x; m; n) converges in the L2(
; Q)-sense,
as well, yielding (2.29) for any bounded and continuous function f. Next,
let f be a continuous function satisfying (2.28) and introduce fC and RC , as
above. Then (2.29) holds true for fC and I estimate by the Cauchy–Schwartz
inequality,

�−2(n−m)EQ

(∫
Z(x; m;y; n)

∣∣∣∣f( y − x√
n− m

)
− fC

(
y − x√
n− m

)∣∣∣∣ dy)2(4.21)

5 4
∫

Rd\BRC

e
− �0|y−x|√

n−m

∣∣∣∣f( y − x√
n− m

)∣∣∣∣ dy
× ∫
Rd\BRC

∣∣∣∣f( y − x√
n− m

)∣∣∣∣ e �0|y−x|√
n−m �−2(n−m)EQ(Z(x; m;y; n))2 dy :

From (2.21) and (4.11) it follows that for �0¡ 1
22 the right hand side of (4.21)

tends to zero uniformly in n as C→∞ (and so, RC →∞). This together with
(4.19), which holds true in view of (2.25) provided �0 is su�ciently small,
yield (2.29), while (2.30) follows by similar arguments.

5 Continuous time case

In this section I shall derive Theorems 2.4–2.6 and a part of Theorem 2.7.
For each �¿0 set

’�(x; s) = 1 +
∑
r=1

∑
05k1¡k2¡···¡kr

∫
q0(k1�; z − x)Us

�(k
(r); z; v) dz dv ;(5.1)

and

 �(y; t) = 1 +
∑
r=1

∑
k1¡k2¡···¡kr¡0

∫ ∫
Ut

�(k
(r); z; v)(5.2)

×q0(−(kr + 1)�; y − v) dz dv
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where for k(r) = (k1; : : : ; kr) with k1¡ · · ·¡kr ,

Us
�(k

(r); z; v) =
∫ · · · ∫p(�; z̃1 − z)h(z; s+ k1�; z̃1; s+ (k1 + 1)�)(5.3)

× q0((k2 − k1 − 1)�; z2 − z̃1)p(�; z̃2 − z2)

× h(z2; s+ k2�; z̃2; s+ (k2 + 1)�)

× · · · × q0((kr − kr−1 − 1)�; zr − z̃r−1)p(�; v− zr)

× h(zr; s+ kr�; v; s+ (kr + 1)�)

×dz̃1 dz2 dz̃2 · · ·dzr−1 dz̃r−1 dzr :

By (2.31) and (2.33) for any n∈Z+,
p(�; v− z)h(z; s+ k�; v; s+ (k + 1)�)(5.4)

=
n∑

r=1

∑
05l1¡l2¡···¡lr¡n

∫ · · · ∫ q0(l1�=n; v1 − z)p(�=n; ṽ1 − v1)

× h(v1; s+ (kn+ l1)�=n; ṽ1; s+ (kn+ l1 + 1)�=n)

× q0((l2 − l1 − 1)�=n; v2 − ṽ1)p(�=n; ṽ2 − v2)

× h(v2; (kn+ l2)�=n; ṽ2; (kn+ l2 + 1)�=n) · · ·p(�=n; ṽr − vr)

× h(vr; (kn+ lr)�=n; ṽr ; (kn+ lr + 1)�=n)q0((n− lr)�=n; v− ṽr)

× dv1 dṽ1 · · · dvr dṽr :
It follows that for any rational �,

’�(x; s) = ’1(x; s)
def= ’(x; s) and  �(y; t) =  1(y; t)

def=  (y; t) :(5.5)

In the same way as in (2.17) and (2.18), just from the L2(
; Q)-convergence
of the series for ’�(x; s) and  �(x; s) it follows from (5.5) that for any t and
a rational �,

L:i:m:
n→∞

�−n�Z(x; t; t + n�) = ’(x; t) ;(5.6)

and similarly for  (y; t). Observe also that for any 15 u¡ 2 the inequalities
(2.36) and (2.37) yield

EQ(Z(x; s;y; s+ u))2 5 C1�2u(�+ C1)e−21|y−x|(5.7)

and

EQ(Z(x; s; s+ u))2 5 C1�2u(�+ C1)c−2 ;(5.8)

where c is the same as in (2.10). Now (5.7) together with (5.6) give in the
same way as in (3.18) that for any t and a rational r¿0,

’(x; t − r) = �−r∫ Z(x; t − r;y; t)’(y; t) dy :(5.9)
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Since Z(x; s;y; t) is L2(
; Q)-continuous in x; s; y; t and p(u; w) is continuous
in u; w then it follows easily from the de�nitions (5.1)–(5.3) that both ’(x; s)
and  (y; t) are L2(
; Q)-continuous in x; s; y; t. Thus I can pass to the limit in
(5.9) as r → t − s and obtain (2.40). The proof of (2.41) is the same.
Observe that by stationarity EQ(�−nZ(x; t − n; t)− ’(x; t − n))2 depends

only on n but not on t. Thus setting ns; t = −1+ integral part of (t − s) and
using (2.17), (2.40), (5.7), and (5.8) I obtain similarly to (3.21) that

L:i:m:
t−∞

�−(t−s)Z(x; s; t) = L:i:m:
t→∞

∫
�−(t−s−ns; t)Z(x; s; v; t − ns; t)(5.10)

×�−ns; t Z(v; t − ns; t ; t)dv

=L:i:m:
t→∞

∫
�−(t−s−ns; t)’(v; t − ns; t) dv = ’(x; s) :

The convergence in (5.10) is also Q-a.s. since �−(t−s)Z(x; s; t) is a martingale
in t. The proof of (2.39) is the same.
In order to obtain (2.42) one can do direct estimates as in Sect. 3 for

rational t − s and pass to an appropriate limit. I shall proceed in a simpler
way. For t − s ¡ 2, (2.42) follows from (5.7). For t − s= 2 I can write by
(2.21) and the Cauchy–Schwartz inequality that

EQ(Z(x; s;y; t))2(5.11)

= EQ

(∫ Z(x; s; v; t − ns; t)
Z(x; s; t − ns; t)

(Z(x; s; t − ns; t)Z(v; t − ns; t ;y; t)) dv
)2

5 EQ(Z(x; s; t − ns; t)
∫
Z(x; s; v; t − ns; t)(Z(v; t − ns; t ;y; t))2 dv)

=
∫
EQ(Z(x; s; t − ns; t)Z(x; s; v; t − ns; t))EQ(Z(v; t − ns; t ;y; t))2 dv

5 C�2ns; t n−d=2
s; t

ns; t∑
r=0

�r(EQ(Z(x; s; t − ns; t))2)1=2 dv

×∫ qr(ns; t ; y − v)(EQ(Z(x; s; v; t − ns; t))2)1=2 dv :

Now (5.7), (5.8), and (5.11) yield (2.42) and (2.43).

Next, I shall derive Theorem 2.5 employing the arguments of Sect. 4 for
the continuous time. Let Wk and � be de�ned by (4.1) and (4.2) where q0(x) =
q0(1; x) with q0 de�ned before (2.35). Observe that if �t(�) =

∫
exp(�; z)

q0(t; z)dz then �t+s(�) = �t(�)�s(�), and so by continuity, �t(�) = (�(�))t .
Hence, for s¡u¡t one has,∫

q0(t − u; y − v) exp((�; y − x)− (t − s) log �(�)) dy

= exp((�; v− x)− (u− s) log �(�)) :

Di�erentiating both parts of this equality in � I obtain∫
q0(t − u; y − v)Wk(t − s; y − x) dy = Wk(u− s; v− x) :
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Set
Yk(s; t) = �−(t−s)∫ Z(x; s;y; t)Wk(t − s; y − x) dy ;

where, again, I omit in this notation the dependence on x. Then for s¡u¡t
similarly to (4.5),

EQ(Yk(s; t)|Fu
−∞) = �

−(t−s)∫ ∫ Z(x; s; v; u)EQZ(v; u;y; t)Wk(t − s; y − x) dv dy

=�−(u−s)∫∫ Z(x; s; v; u)q0(t − u; y − v)Wk(t− s; y − x) dy dv

= Yk(s; u) ;

where Ft
s is the �-algebra generated by all Z(x; u;y; ũ) with s5 u¡ ũ5 t,

and so Yk(s; t) is a martingale in t and a backward martingale in s.
I shall show next that Q-a.s.,

lim
t→∞(t − s)−‖k‖=2Yk(s; t) = 0 ;(5.12)

provided ‖k‖= 1. First, similarly to the discrete time case Q-a.s.,

lim
t→∞(t − s)−‖k‖=2Yk(s; s+ ns; t) = 0 :(5.13)

Now put Mk; s; n(u) = Yk(s; s+ n+ u)− Yk(s; s+ n) which is, clearly, a martin-
gale in u. Thus if Mk; s; n = sup05u¡1 |Mk; s; n(u)| then by the L2 Doob inequality
(see, for instance, [RY, p. 52]),

EQ(Mk; s; n)2 5 4EQ(Mk; s; n(1))2 5 8EQ(Yk(0; 1))2 + 8EQ(Yk(0; 0))2 :(5.14)

By the Cauchy–Schwartz inequality

EQ(Yk(s; t))25�−2(t−s)EQZ(x; s; t)
∫
Z(x; s;y; t)|Wk(t − s; y − x)|2 dy

5�−2(t−s)(EQ(Z(x; s; t))2)1=2
∫
(EQ(Z(x; s;y; t))2)1=2

×|Wk(t − s; y − x)|2 dy :

Since Wk is a polynomial then this together with (5.7) and (5.8) yield that the
right hand side of (5.14) is �nite. Thus for any �¿0,

∞∑
n=1

Q{(Mk; s; n)2 = �n} =
∞∑
n=1

Q{(Mk;0;0)2 = �n}5 1 +
1
�
EQ(Mk;0;0)2¡∞ :

By the Borel–Cantelli lemma this yields that Q-a.s.,

lim
n→∞

1√
n
|Mk; s; n| = 0

which together with (5.13) gives (5.12). Since both the last limit and (5.13)
hold true also in the L2(
; Q)-sense I conclude that the limit in (5.12) remains
true in the L2(
; Q)-sense, as well. The rest of the proof of Theorem 2.5 is
the same as in Sect. 4 for the discrete time case.
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In order to establish Theorem 2.6 I merely have to check the conditions
of Theorems 2.4 and 2.5 when Z(x; s;y; t) is de�ned by (2.49). Since the
distribution of the time scaled Wiener process Wu is invariant under the space
the time shifts and W is independent of 	 which is spatially and temporarily
homogeneous then the distribution of Z(x; s;y; t) depends only on y − x and
t − s. In addition, the invertibility of Wu implies that Z(x; s;y; t) and Z(y; s; x; t)
have the same distributions. The independence of time increments of 	(x; t)
together with the de�nition of stochastic integrals with spatial parameters in
[Ku2] yield that the random �elds Z( · ; s; · ; t) and Z( · ; s̃; · ; t̃) are independent
if (s; t) and (s̃; t̃) are disjoint intervals. By the Markov property of Wu the
“random Chapman–Kolmogorov” formula (2.31) holds true, as well.
Let � = �(u) be a continuous curve in Rd and for each constant C¿0 set

X s
C; �(t) = exp

t∫
s
C	(�(u); du) :

By the generalized Ito formula (see [Ku2, Sect. 3.3]),

dX s
C; �(t) = CX s

C; �(t)	(�(t); dt) +
1
2C

2X s
C; �(t)A(0) dt ;(5.15)

where A(x; y) = A(y − x) is the spatial covariance function of 	(x; t). Thus

EQX s
C; �(t) =

1
2
C2A(0)

t∫
s
EQX s

C; �(u) du + 1 :(5.16)

Hence,

EQX s
C; �(t) = exp(

1
2C

2A(0)(t − s)) ;(5.17)

and so by (2.49),

�(u; w) = (p(u; w))−1EQZ(0; 0;w; u) = �(u) = 1 ;(5.18)

which gives (2.36). Similarly, if �= �(u) is another continuous curve in Rd

then using (5.15) and rules for stochastic integrals with spatial parameters from
Sects. 3.2 and 3.3 of [Ku2] I derive

EQX s
C; �(t)X

s
C; �(t) =C2

t∫
s
EQX s

C; �(u)X
s
C; �(u)A(�u − �u) du(5.19)

+C2A(0)
t∫
s
EQX s

C; �(u)X
s
C; �(u) du + 1 ;

and so by (5.17),

CovQ(X s
C; �(t); X

s
C; �(t))(5.20)

= EQ(X s
C; �(t)− EQX s

C; �(t))(X
s
C; �(t)− EQX s

C; �(t))

= exp(C2A(0)(t − s))
(
exp

(
C2

t∫
s
A(�u − �u) du

)
− 1
)

where CovQ denotes the covariance of random variables on (
; Q).
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Set L= exp((�2=8�2)A(0)). I represent next the Brownian bridge �x→y

from x to y on [0; t − s] in the form

�x→y
u = x +

u
t − s

(y − x) +
(
Wu − u

t − s
Wt−s

)
(5.21)

and for any R¿0 and x; y∈Rd; s; t ∈ R; s ¡ t I put

fR(x; s;y; t) = L−(t−s)E0

(
I|Wu|5R;∀u∈[0; t−s] exp

t∫
s

�
2�
	(�x→y

t−u ; du)
)

and
hR(x; s;y; t) = (fR(x; s;y; t)− EQfR(x; s;y; t))

where IA=1 if the event A occurs and = 0, otherwise. Then h∞(x; s;y; t) =
h(x; s;y; t). Choosing two independent copies W̃ and Ŵ of the process W and
the corresponding independent Brownian bridges �̃ x→y and �̂ v→w on [0; t − s],
I derive from (5.20) that

EQhR1 (x; s;y; t)hR2 (v; s;w; t)(5.22)

= L−2(t−s)E0;0

(
I|W̃u|5R1 ;∀u∈[0; t−s] I|Ŵu|5R2 ;∀u∈[0; t−s]

× CovQ
(
exp

( t∫
s

�
2�
	(�̃ x→y

t−u ; du)
)
exp

( t∫
s

�
2�
	(�̂ v→w

t−u ; du)
)))

= E0;0

(
I|W̃u|5R1 ;∀u∈[0; t−s]I|Ŵu|5R2 ;∀u∈[0; t−s]

×
(
exp

(
�2

4�2
t∫
s
A(�̃ x→y

t−u − �̂ v→w
t−u ) du

)
− 1
))

where E0;0 is the expectation for the two-component process (W̃u; Ŵu) starting
at (0; 0). Observe that if sup05u5t−s |W̃u|5 1

8 |v| and sup05u5t−s |Ŵu|5 1
8 |v|

then for the corresponding Brownian bridges I have

inf
05u5t−s

|�̃0→z
u − �̂v→w

u |= 1
2
|v| − (|z|+ |w − v|) :(5.23)

If a(r) = sup|x|=r A(x) then (5.23) together with (5.22) yield that for any u ∈
[1; 2), (5.24)

EQh 1
8 |v|(0; s; z; s+ u)h 1

8 |v|(v; s;w; s+ u)(5.24)

5
(
exp

(
�2

2�2
a
(
1
2
|v| − |z| − |w − v|

))
− 1
)

:

It is clear that there exists C¿0 and ¿0 such that for any v ∈ Rd and
05 u5 2,

P0

{
sup
05r5u

|Wr|¿ 1
8
|v|
}
5 Ce−|v| :(5.25)
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Let B be any event de�ned in terms of the process Wr; 05 r 5 u. Set � =
exp

∫ t
s

�
2�	(�

x→y
t−u ; du). Then by (5.17) and the Cauchy–Schwartz inequality

EQ(E0IB�)2 = (P0(B))2EQ

(
1

P0(B)
ExIB�

)2
(5.26)

5 (P0(B))2EQ
1

P0(B)
E0IB�2

= (P0(B))2 exp
(

�2

2�2
A(0)u

)
:

Again by (5.17),

(EQE0IB�)2=(P0(B))2 exp
(

�2

4�2
A(0)u

)
:(5.27)

Setting either x=0, y=z or x=v, y=w I obtain from (5.25)–(5.27) that

EQ(h(x; s;y; s+ u)− h 1
8 |v|(x; s;y; s+ u))2(5.28)

5 C2e−2|v|
(
exp

(
�2

2�2
A(0)u

)
− exp

(
�2

4�2
A(0)u

))
:

This together with (5.24) yield (2.37) provided (2.51) holds true with su�-
ciently small �, which completes the proof of Theorem 2.6.

In order to derive Theorem 2.7 I �rst observe that the representation (2.48)
of solutions w of (2.47) (which is a correct way of writing (1.3)), as well as the
formulas (2.52) and (2.53) for solutions of (1.2) and (1.1), respectively, follow
from Sect. 6.2 in [Ku2]. I just have to check that  (y; t) is slowly increasing
as |y|→∞ in the sense of [Ku2, p. 300], and so in view of Theorem 6.2.5
in [Ku2] it can be used as an initial condition for the stochastic heat equation
(2.47). Namely, I shall show that Q-a.s.,

lim
|y|→∞

 (y; t)
1 + |y|d = lim

|x|→∞
’(x; s)
1 + |x|d = 0 :(5.29)

I shall deal only with  since the proof for ’ is similar. Set K=
{y = (y1; : : : ; yd) ∈ Rd : 05 yi¡1}, Km = m+ K for m ∈ Zd, and  m(t) =
supx∈Km

 (x; t). It su�ces to show that

EQ 2m(t) = EQ 20 (0)¡∞ :(5.30)

Indeed, set ‖m‖ = maxi |mi| then by stationarity and the Chebyshev inequality
it follows from (5.30) that∑

m∈Zd

PQ{| m(t)|¿�‖m‖d} =
∞∑
k=1
(2k)dP{| 0(0)|2¿�2k2d}(5.31)

5 2d�−2EQ| 0(0)|2
∞∑
k=1

k−d ¡ ∞ :
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Applying the Borel–Cantelli lemma I conclude that with probability one
‖m‖−d| m(s)|5 � if ‖m‖ is large enough and since � is arbitrary this yields
(5.29).
By (2.41) and the Cauchy–Schwartz inequality,

EQ 2m(0) = EQ 2m(1)(5.32)

5 EQ sup
y∈Km

∫
( (x; 0))2Ẑ(0;y; 1)Z(x; 0;y; 1)dx

5 EQ( (0; 0))2EQ

(∫
sup
y∈Km

Z(x; 0;y; 1)dx

)2
since  (x; 0) and Z(x; 0;y; 1) are independent. In order to estimate the right
hand side of (5.32) I use the Brownian bridge representation of Z(x; s;y; t),

Z(x; s;y; t) = L−(t−s)p(t − s; y − x)E0Y
x;y
s;W (t)(5.33)

where for any continuous curve � = �u, 05 u5 t − s satisfying �0 = 0,

Y x;y
s; � (t) = exp

t∫
s

�
2�
	(�x;y

s; �(u); du)(5.34)

with

�x;y
s; �(u) = x

(
1− t − u

t − s

)
+ y

t − u
t − s

+ �t−u − t − u
t − s

�t−s :

Set

Ỹ x;y; z
s; � (t) = Y x;y

s; � (t)− Y x; z
s; � (t) :(5.35)

Employing the generalized Ito formula from Sect. 3.3 of [Ku2] (see also Ch. 4
in [DZ]) in the same way as in (5.15) together with formulas for second
moments of stochastic integrals I obtain

EQ(Ỹ
x;y; z
s; � (t))2 5 I1 + I2 + I3 ;(5.36)

where

I15
�4A2(0)
32�4

EQ

( t∫
s
Ỹ x;y; z
s; � (u)du

)2
(5.37)

5
�4A2(0)
32�4

(t − s)
t∫
s
EQ(Ỹ

x;y; z
s; � (u))2 du ;

I25
�2

�2
EQ

( t∫
s
Ỹ x;y; z
s; � (u)	(�x;y

s; �(u); du)
)2

(5.38)

=
�2A(0)

�2
t∫
s
EQ(Ỹ

x;y; z
s; � (u))2 du ;
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and by (5.17),

I35
�2

�2
EQ

( t∫
s
Y x; z
s; �: (u)(	(�

x;y
s; �:(u); du)−	(�x; z

s; �:(u); du))
)2

(5.39)

= EQ

t∫
s
(Y x; z

s; �: (u))
2A
(
(y − z)

t − u
t − s

)
du

5 sup
|v|52

|A′(v)| |y − z| exp
(

�2

2�2
A(0)(t − s)

)
;

provided |y − z|5 2. Now (5.36)–(5.39) together with the Gronwall inequal-
ity yield that there exists a constant C¿0 such that

EQ(Ỹ
x;y; z
s; �: (t))

2 5 C|y − z|eC(t−s) ;(5.40)

provided, say, |y − z|5 2. By Theorem 1.4.1 in [Ku2] I conclude from (5.35)
and (5.40) that there exists a constant C̃¿0 such that for any m ∈ Zd, x ∈ Rd,
and a continuous curve � as above,

EQ

(
sup
y∈Km

Y x;y
0; � (1)

)2
5 C̃(5.41)

which together with (5.32) and (5.33) yield (5.30). The assertion (2.54) of
Theorem 2.7 will be derived in the next section.

6 A factorization theorem and applications

I shall exhibit here a generalization of Sinai’s approach from [Si2] which
will enable me to complete the proof of Theorem 2.7 though applied to limit
theorems it yields weaker results than the method of Sect. 4. The following
factorization theorem is the main result here.

Theorem 6.1. Both in the discrete and in the continuous time cases; if (2:7)
and (2:8) or (2:36) and (2:37); correspondingly; are satis�ed with � small
enough then

Z(x; s;y; t) = �t−sq0(t − s; y − x)(’(x; s) (y; t) + �(x; s;y; t))(6.1)

where for each �xed R¿0; �(x; s;y; t)→ 0 in L1(
; Q) as t − s →∞ uni-
formly in x; y ∈ Rd satisfying |y − x|5 R

√
t − s. In the discrete time case

one can write �(x; s;y; t) = ’(x; s)�1(x; s;y; t) +  (y; t)�2(x; s;y; t) + �1(x; s;
y; t)�2(x; s;y; t) + �3(x; s;y; t) where for each �xed R¿0; �i(x; m;y; n)→ 0;
i = 1; 2; 3 in L2(
; Q) as t − s →∞ uniformly in x; y satisfying the above
conditions; �1(x; s;y; t) is Ft

−∞-measurable; �2(x; s;y; t) is F∞
s -measurable;

and �3(x; s;y; t) is Ft
s -measurable (recall; that F

t
s ; −∞5 s5 t 5∞ is the

�-algebra generated by all Z(x; u;y; v) with s5 u5 v5 t).
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Proof. I start with the discrete time case: s = m, t = n. By (3.1) I can write

�−(n−m)Z(x; m;y; n) = q0(n− m; y − x) + Z1(x; m;y; n)(6.2)

+Z2(x; m;y; n)

where Z1(x; m;y; n) is the partial sum of (3.2) when r runs from 1 to K log n,
Z2(x; m;y; n) = Z̃(x; m;y; n)− Z1(x; m;y; n), and I choose K = (log(1− �)
− 2d)= log �. It is clear that EQ(Z2(x; m;y; n))2 5 (n− m)−2d, provided n− m
= 3, and so

L:i:m:
n−m→∞

Z2(x; m;y; n)
q0(n− m; y − x)

= 0 :(6.3)

Fix � ∈ ( 12 ; 1) and set

T(l)
m;n = {k(r) = (k1; : : : ; kr) : m = k0 5 k1 ¡ · · · ¡ kr ¡ kr+1 = n; there exist

05 j1 ¡ j2 ¡ · · · ¡ jl 5 r with |kji+1 − kji |¿(n− m)� and

|k�+1 − k�|5 (n− m)� if �-j1; : : : ; jl} :

Clearly,

Z1(x; m;y; n) =
∑

15r5K log(n−m)

∑
l=1

∑
k(r)∈T(l)

m; n

V (k(r); x; m;y; n)(6.4)

with V (k(r); x; m;y; n) given by (3.3). Set

Z (1)(x; m;y; n) =
∑

15r5K log(n−m)

∑
k(r)∈T(1)

m; n

V (k(r); x; m;y; n)(6.5)

and Z (2)(x; m;y; n) = Z1(x; m;y; n)− Z (1)(x; m;y; n). The same arguments as at
the end of Sect. 3 which lead to (3.27)–(3.29) yield

EQ(Z (2)(x; m;y; n))2 =
n−m∑
r=1

∑
l=2

∑
k(r)∈T(l)

m; n

W (k(r); x; m;y; n)(6.6)

5
n−m∑
r=1

�r
1qr(n− m; y − x)S(r)m;n

5 (n− m)−d=2
n−m∑
r=1

�r
1S
(r)
m;n ;

where

S(r)m;n =
∑
l=2

∑
k(r)∈T(l)

m; n

�(k(r);m; n)(6.7)

and k0 = m; kr+1 = n. If k(r) ∈T(l)
m;n with l= 2 then there exists j such that
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kj − m¿n� and n− kj¿n�. By (3.29) and (6.7),

S(r)m;n 5
∑

(n−m) �¡l¡(n−m)−(n−m) �

( ∑
m5k1¡···¡kj−1¡l

�(k( j−1);m; l)

)
(6.8)

× ∑
l¡k1¡···¡kr−j−1

�(k(r−j−1); l+ 1; n)

5Cr−2
3

∑
(n−m) �¡l¡(n−m)−(n−m) �

(l− m)−d=2(n− l− 1)−d=2

= Cr−2
3 (n− m)−d=2(1− (n− m)−1)−d=2

× ∑
(n−m) �¡l¡(n−m)−(n−m) �

(l−1 + (n− l− 1)−1)d=2

5Cr−2
3 (n− m)−d=223d=2

∑
l=(n−m) �

l−d=2

5Cr−2
3 (n− m)−d=223d=2((n− m)−d=2 + 2(d− 2)−1(n− m)−�(d=2−1)) :

If � in (2.8) is so small that � = C3�1¡1 then (2.27), (3.4), (6.7), and
(6.8) imply that for each R¿0 uniformly in x; y ∈ Rd satisfying |y − x|5
R
√
n− m,

lim
n−m→∞(q0(n− m; y − x))−2EQ(Z (2)(x; m;y; n))2 = 0 :(6.9)

Thus, it remains to deal with Z (1)(x; m;y; n) given by (6.5). Let k(r) ∈T(1)
m;n

and r 5 K log(n− m) then

|kj+1 − kj|= (n− m)− (n− m)�K log(n− m)(6.10)

and |kj − m|+ |n− kj+1|
5 (n− m)�K log(n− m)

for some j=0; 1; : : : ; r where, again k0 =m and kr+1 = n. Let 1
2¿�¿�=2.

Set

V1(k(r); x; m;y; n)(6.11)

=
∫

Bx((n−m)�)

dz q0(k1 − m; z − x)

× ∫
Rd

∫
Rd

U (k( j); z; u)q0(kj+1 − kj − 1; v− u)U (k(r−j); v; w) du dv

× ∫
By((n−m)�)

q0(n− kr − 1; y − w) dw
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and V2(k(r); x; m;y; n)=V (k(r); x; m;y; n)− V1(k(r); x; m;y; n) where in the case
j=0 or j= r I denote by U (k(0); v; w) the �-function at v (i.e. the unit mass
sitting at v) and Bx(r) is, again, the r-ball centered at x. By (3.6) for any
z∈Bx((n− m)�) and u∈Bx((n− m)�),

q0(kj+1 − kj − 1; u− z)(6.12)

= q0(n− m; y − x)(1 + �(kj; z; kj+1; u;m; x; n; y))

with

�(kj; z; kj+1; u;m; x; n; y)5 LR(n− m)−
1
2 min(�−�=2;1=2−�) ;(6.13)

provided |y − x|5 R
√
n− m, where LR¿0 depends only on R.

Employing estimates similar to the end of Sect. 3 I derive from (6.13) and
(4.11) that for some C¿0,

EQ(V2(k(r); x; m;y; n))2(6.14)

5 C�r�(k(r);m; n)

( ∫
Rd\Bx((n−m)�)

q0(kj − m; x; v) dv

+
∫

Rd\By((n−m)�)

q0(n− kj+1; w; y) dw

)

5 C�r�(k(r); m; n) exp(−2(n− m)�−�=2)

and

(q0(n− m; y − x))2EQ

( ∫
By((n−m)�)

∫
Bx((n−m)�)

q0(k1 − m; z − x)(6.15)

×U (k( j); z; u)�(kj; u; kj+1; v; m; x; n; y)U (k(r−j); v; w)

×q0(n− kr − 1; y − w) dz du dv dw

)2
5 CLRq0(n− m; y − x)�r(n− m)−min(�−�=2;1=2−�)�(k(r); m; n)

with �(k(r); m; n) given by (3.28). Observe that

L:i:m:
n−m→∞

∣∣∣∣∣’(x; m)− ∑
r=1

∑
m5k1¡···¡kr;max05i5r−1 |ki+1−ki|5K log(n−m)

(6.16)

∫ ∫
q0(k1 − m; z − x)U (k(r); z; v) dz dv

∣∣∣∣∣ = 0
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and

L:i:m:
n−m→∞

∣∣∣∣∣ (y; n)− ∑
r=1

∑
m5k1¡···¡kr;max05i5r−1 |ki+1−ki|5K log(n−m)

(6.17)

∫∫
U (k(r); z; v)q0(n− kr − 1; y − v) dz dv

∣∣∣∣∣ = 0 :

Now Theorem 6.1 follows for the discrete time case from (3.3)–(3.3) and
(6.11)–(6.17).
In order to derive (6.1) for the continuous time case observe that if t − s

is an integer then (6.1) follows from the above. Thus by (2.31) and (6.1),

�−(t−s)Z(x; s;y; t)(6.18)

=  (y; t)�−(t−s−ns; t)
∫
Z(x; s; v; t − ns; t)’(v; t − ns; t)q0(ns; t ; y − v) dv

+�−(t−s−ns; t)
∫
Z(x; s; v; t − ns; t)q0(ns; t ; y − v)�(v; t − ns; t ;y; t) dv :

Substituting here

�(v; t − ns; t ;y; t) = ’(v; t − ns; t)�1(v; t − ns; t ;y; t) +  (y; t)�2(v; t − ns; t ;y; t)

+�1(v; t − ns; t ;y; t)�2(v; t − ns; t ;y; t) + �3(v; t − ns; t ;y; t)

and taking into account that the random �eld Z(x; s; v; t − ns; t) is independent of
each of the random �elds ’(v; t − ns; t); �2(v; t − ns; t ;y; t), and �3(v; t − ns; t ;y; t)
I derive via the Cauchy–Schwartz inequality that the second integral in the
right hand side of (6.18) tends to zero in L1(
; Q)-sense as t − s→∞. The
term Z(x; s; v; t − ns; t) is small in the L2(
; Q)-sense if |v− x| is large and
since by the local limit theorem q0(ns; t ; y − v) is close for large t − s (see
(3.4)) to r(ns; t ; y − v) which does not vary much when v varies much less
than

√
ns; t then taking into account that Z(x; s; v; t − ns; t) and ’(v; t − ns; t) are

independent I conclude that for large t − s the �rst integral in (6.18) is close
in the L2(
; Q)-sense to

q0(t − s; y − x)
∫
Z(x; s; v; t − ns; t)’(v; t − ns; t) dv = q0(t − s; y − x)’(x; s) ;

which together with the above yield (A.1) and complete the proof of
Theorem 6.1.

Assuming ergodicity of the spatial shift �v; v∈Rd one can derive from
Theorem 6.1 a weaker version of Theorems 2.2 and 2.5. Indeed, by (6.1) for
any continuous function f satisfying (2.28) I can write up to a small in the
appropriate sense error (which can be estimated using (2.21) and (2.42)),

�−(t−s)∫ Z(x; s;y; t)f
(

y − x√
t − s

)
dy(6.19)

= ’(x; s)
∫
q0(t − s; y − x) (y; t)f

(
y − x√
t − s

)
dy

+
∫
q0(t − s; y − x)�(x; s;y; t)f

(
y − x√
t − s

)
dy :
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It is easy to see that as t − s→∞ the second integral in (6.19) tends to zero in
L1(
; Q)-sense. On the other hand, using the ergodic theorem (see, for instance,
[Te]) and taking into account that both q0(t − s; y − x) and f((y − x)=

√
t − s)

vary little when y varies much less than
√
t − s, and so  (y; t) will average to

almost 1 on each large but small relative to
√
t − s cube, I conclude employing

the local limit theorem that as t − s→∞ the �rst integral in (6.19) tends in
the L2(
; Q)-sense to

∫
r(1; z)f(z) dz. This gives (2.29) and (2.45) but with

only L1(
; Q)-convergence. In order to derive (2.27) and (2.44) one has to
divide (6.19) by a Q-a.s. converging term, which yield only the convergence
in probability in (2.27) and (2.44).
Finally, I shall derive (2.54) and (2.55). I shall deal only with wf since vg

in Remark 2.8 can be treated in the same way. By (6.18) (recall, that in the
case of Theorem 2.7 �=1),

wf(y; s; t) = �−(t−s)∫ f(x)Z(x; s;y; t) dx =  (y; t)I s; t1 + I s; t2 + I s; t3 + I s; t4 + I s; t5 ;

where

I s; t1 = �−(t−s−ns; t)
∫∫

f(x)Z(x; s; v; t − ns; t)’(v; t − ns; t)q0(ns; t ; y − v) dx dv ;

and I s; t2 ; I s; t3 ; I s; t4 ; I s; t5 are obtained by integrating the second integral in (6.18) to-
gether with f(x) in x and representing �(v; t − ns; t ;y; t) as the sum of 4 terms
given in Theorem 6.1. It is not di�cult to see by the ergodic theorem that I s; t1
converges in L1(
; Q) as t→∞ to EQf(0). Indeed, q0(ns; t ; y − v) changes
very little when v is in a n1=4s; t -neighborhood of x and in view of (2.42) the
contribution of the integral outside of this neighborhood is very small. This
together with (2.40) yield that I s; t1 has the same L1(
; Q) limit when t→∞ as
the integral J s; t =

∫
f(x)’(x; s)q0(t − s; y − x) dx. Since f(x)’(x; s)∈L1(
; Q)

and q0(t− s; y− x) changes very little when x varies in a cube of size
(t − s)1=4, and so f(x)’(x; s) averages in such cubes, it follows by the
ergodic theorem that J s; t converges in L1(
; Q) as t→∞ to EQf(x)’(x; s)=
EQf(x)EQ’(x; s)=EQf(0) (where I use the independence of f(x) and ’(x; s)).
Next, taking into account that each triple {f(x); Z(x; s; v; t − ns; t); ’(v; t −
ns; t)}; {f(x); Z(x; s; v; t − ns; t); �2(v; t − ns; t ;y; t)}, and {f(x); Z(x; s; v; t − ns; t);
�3(v; t − ns; t ;y; t)} consists of independent random �elds I derive via the
Cauchy–Schwartz inequality that I s; t2 ; I s; t3 ; I s; t4 ; I s; t5 converge to zero in L1(
; Q)
as t→∞. Thus wf(y; s; t)−  (y; t)EQf(0)→ 0 in probability as t→∞ (since
 (y; t) has the same distribution for all t), completing the proof of (2.54)
and (2.55).
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