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Summary. It is well-known that Brownian motion has no points of increase.
We show that an analogous statement for the Brownian sheet is false. More
precisely, for the standard Brownian sheet in the positive quadrant, we prove
that there exist monotone curves along which the sheet has a point of increase.
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1 Introduction

A famous result of Dvoretsky, Erd�os and Kakutani [3] asserts that with prob-
ability one, sample paths of a Brownian motion have no points of increase.
More precisely, if (B(u); u∈R+) is a Brownian motion, then there does not
exist a continuous, monotone and injective function f : [−1; 1]→ R+ such that
B(f(u))¡B(f(0)) if u¡0 and B(f(u))¿B(f(0)) if u¿0. This paper shows
that an analogous statement for the Brownian sheet is false.
The �rst result in this direction was obtained by Mountford [7]. Notice

that the result of [3] can be restated as follows: almost surely, for each
q∈R, no component of {u∈R+: B(u)¿q} has an endpoint in common
with a component of {u∈R+: B(u)¡q}. In [7], Mountford proved that this
statement is false for the Brownian sheet, namely, with positive probabil-
ity, there exists a component of {t ∈ [1; 2]2: W (t)¿1} and a component of
{t ∈ [1; 2]2: W (t)¡1} with a common boundary point (if [1; 2]2 is replaced
by the positive quadrant, then this occurs with probability one).
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Since in the plane, a point t in the boundary of a component is not neces-
sarily accessible along a curve with one endpoint at t but otherwise contained
in that component, Mountford’s result left open the question of whether or not
there exist curves along which the Brownian sheet has points of increase. In this
paper, we use a variation on Mountford’s technique to prove this stronger state-
ment, and the main result of this paper is the following theorem.

Theorem 1. Let (W (t); t ∈R2
+) be a standard Brownian sheet de�ned on

a probability space (
;F; P). For each q∈R; there exists a continuous non-
decreasing random function 
 : [−1; 1]× 
→ [1; 2]2 such that with positive
probability; W (
(u))¡q if u¡0 and W (
(u))¿q if u¿0.

In particular, the theorem asserts that the point 
(0) is a point of increase
of the sheet along the curve (
(u); −15 u5 1). One can ask whether there
exists a continuous monotone curve 
 along which u 7→ W (
(u)) is increasing.
The answer is no, since 
 and W ◦ 
 would be simultaneously di�erentiable
at in�nitely many points, and the result of [1] shows that simultaneous di�er-
entiability cannot occur even at a single point. The question of whether there
exist straight lines along which W has a point of increase remains open.
With little e�ort, Theorem 1 can be re�ned as follows: with positive

probability, there exists a continuous non-decreasing function 
 : [−1; 1]→
[1; 2]2 such that 
(−1) = (1; 1), 
(1) = (2; 2), W (
(−1))¡q, W (
(1))¿q,
and W (
(u)) = q for exactly one element u∈ [−1; 1] (see Remark 14).

A recommended �rst pass through the paper is as follows. First read Sect. 2.
Then browse through Sect. 3 to get some feel for the statements but without
checking the proofs. Go on to read the �rst part of the proof of Lemma 2
in Sect. 4, through the end of Sect. 4.2, referring back to the statements in
Sect. 3 as needed. Finally, go through the arguments in Sect. 3 and complete
the veri�cation of the proof of Lemma 2 in Sect. 4.3.

2 The basic estimates

The set R2
+ is endowed with the (partial) order 5 de�ned by

s = (s1; s2)5 t = (t1; t2) ⇔ s1 5 t1 and s2 5 t2 :

A convenient norm on R2 is |t| = |t1|+ |t2|. An increasing curve is a to-
tally ordered and connected subset of R2

+. A (canonically parameterized)
increasing path (resp. decreasing path) � is a continuous function de�ned
on some interval of R with values in R2

+ with the property that �(u)5
�(v) (resp. �(u)= �(v)) when u5 v and |�(u)− �(v)| = |u− v|. Recall
[8, Theorem 2.7] that a set is an increasing curve if and only if it is the
image of an increasing path. Moreover, increasing paths are Lipschitz func-
tions, therefore, when equipped with the topology of uniform convergence, the
set of increasing paths de�ned on a compact interval with values in a compact
set is compact.
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Recall that a standard Brownian sheet is a mean-zero continuous Gaussian
process W = (W (t); t ∈R2

+), de�ned on some probability space (
;F; P),
with the covariance

E(W (s)W (t)) = min(s1; t1)min(s2; t2) ;

for all s = (s1; s2) and t = (t1; t2) in R2
+. It is well known [9] that the restriction

of W to horizontal or vertical lines yields a Brownian motion. More precisely,
W (t1; ·) (resp. W (·; t2)) is a Brownian motion with speed t1 (resp. t2). In this
paper, we use the term Brownian motion to refer to any Brownian motion with
speed between 1

2 and 3. Recall also that white noise is the vector-measure W
de�ned on the bounded Borel sets of R2

+ with values in L2(
;F; P) such that
W ([0; t1]× [0; t2]) = W (t1; t2), for all (t1; t2)∈R2

+. A basic property of white
noise is that E(W (A)W (B)) = m(A ∩ B), where m denotes Lebesgue measure.
Throughout this paper, q∈R is �xed and c¿0, u0¿0 will be constants

whose values shall be determined later (see the beginning of Sect. 4). For
u= 0, de�ne

g(u) = c u3=4 : (1)

For each t = (t1; t2)∈ [1; 2]2 and n∈N, we shall de�ne in Sect. 3 a ran-
dom increasing path (u; !) 7→ �n

t (u; !) and a random decreasing path (u; !) 7→
�̂n
t (u; !) on [0; u0]× 
, both with canonical parameterization and various other
properties and, in particular, such that

�n
t (0; ·) = �̂n

t (0; ·) = t; �n
t (2

−2n) = (t1 + 2−2n; t2) ;

�̂n
t (2

−2n) = (t1 − 2−2n; t2) :
We will use these paths to de�ne sets F0(t; n), F1(t; n), F̂1(t; n), and F(t; n) so
that

F0(t; n) = {W (�n
t (2

−2n))∈]q+ 2−n; q+ 2−n+1[;

W (�̂n
t (2

−2n))∈]q− 2−n+1; q− 2−n[} ; (2)

F1(t; n) ⊂ {W (�n
t (u))−W (�n

t (2
−2n))= g(u)− 2−n; for 2−n 5 u5 u0} ;

(3)

F̂1(t; n) ⊂ {W (�̂n
t (u))−W (�̂n

t (2
−2n))5 −g(u) + 2−n; for 2−n 5 u5 u0} ;

(4)

F(t; n) = F0(t; n) ∩ F1(t; n) ∩ F̂1(t; n)

(the de�nition of the sets F1(t; n) and F̂1(t; n) will be given in Sect. 4).
Let D2n be the set of points in [1; 2]2 for which both coordinates are

dyadic rationals of order 2n. For i; j ∈ {0; : : : ; n} with i 5 j, let Ei; j be the set
of couples (s; t) of elements of D2n such that

2−2( j+1) 5 inf (|s1 − t1|; |s2 − t2|)5 2−2j and

2−2(i+1) 5 sup(|s1 − t1|; |s2 − t2|)5 2−2i :
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In the case where i or j equals n, we replace 2−2(n+1) by 0.
It will be shown that the de�nitions of �n

t (u; ·) and �̂n
t (u; ·) are such that

the following lemma, analogous to Lemma 2.4 of [7], holds.

Lemma 2. Given q and the constants c and u0 as de�ned in (34), there exist
constants K¿0 and �∈ ]0; 1[ (depending on q; c; and u0) such that for all
large n∈N;

(a) P(F1(t; n))= K2−� n and P(F̂1(t; n))= K2−� n; for all t ∈ [1; 2]2;
(b) P(F(t; n))= K2−(1+2�)n; for all t ∈ [1; 2]2;
(c) P(F(s; n) ∩ F(t; n))5 K2−(1+2�)n2−(n−i)−2�(n−j); for all (s; t)∈Ei; j;

05 i 5 j 5 n.

This lemma, along with the construction of the paths �n
t and �̂n

t , are the
heart of the paper, for they easily lead to a proof of Theorem 1.

Proof of Theorem 1. Let D′2n = D2n ∩ [5=4; 7=4]2, and let Xn(!) be the number
of elements t ∈D′2n such that !∈F(t; n). We shall show that

E(Xn)= K2(3−2�)n and E(X 2
n )5 2K22(3−2�)n : (5)

Indeed, applying Lemma 2(b), we see that

E(Xn) =
∑

t∈D′2n

P(F(t; n))= (22n−1)2K2−(1+2�)n = K2(3−2�)n :

Moreover, noticing that the cardinality of Ei; j is bounded by (22n)222(n−i)22(n−j),
we can apply Lemma 2(c) to get

E(X 2
n ) =

∑
s; t∈D′2n

P(F(s; n) ∩ F(t; n))

5
n∑

i=0

n∑
j=i

∑
(s; t)∈Ei; j

K2−(1+2�)n 2−(n−i)−2�(n−j)

= K2−(2+4�)n
n∑

i=0

n∑
j=i
2i 22�j(22n)2 22(n−i) 22(n−j)

= K2(6−4�)n
n∑

i=0
2−i

n∑
j=i
22(�−1)j

5 2K2(6−4�)n :

In the last inequality, we have used the fact that �¡1. This proves the in-
equalities in (5).
From the lower bound on E(Xn) in (5), we conclude in particular that

E(X 2
n )¿0 for each n. In addition, (5) implies that for some �nite constant

C¿0,
E(X 2

n )5 CE(Xn)2 = CE(Xn I{Xn¿0})
2 : (6)

We can now use a standard argument which can be found for instance in
[4]: applying the Cauchy–Schwarz inequality to the right-hand side of (6), we



Points of increase of the Brownian sheet 5

conclude that E(X 2
n )5 CE(X 2

n )P{Xn¿0}, and therefore P{Xn¿0}= 1=C,
for all n∈N. By Fatou’s Lemma,

P
(
lim sup
n→∞

{Xn¿0}
)
= lim sup

n→∞
P{Xn¿0}= 1=C¿0 :

Let G = lim supn→∞{Xn¿0} and �x !∈G. There is a sequence nk ↑ ∞
such that !∈ {Xnk ¿0} for all k, that is, there exists a sequence tk ∈ [5=4; 7=4]2
such that !∈F(tk ; nk) for all k. Consider the sequence of paths (�

nk
tk (!); k ∈

N) and (�̂nk
tk (!); k ∈N). By taking a subsequence, we can assume that

(tk) converges to t ∈ [5=4; 7=4]2, and (�nk
tk (!)) and (�̂

nk
tk (!)) converge uni-

formly to paths �(!) and �̂(!), respectively. For 05 u5 u0, let 
(−u; !) =
�̂(u; !) and 
(u; !) = �(u; !) if !∈G, and let 
(·; !) be an arbitrary increas-
ing path if !∈
\G. Then |
(±u; !)− 
(0; !)| = u for 05 u5 u0. From
(2)–(4) (with t replaced by tk and n by nk), we conclude that for !∈G,
W (
(−u; !); !)5 q− g(u) and W (
(u; !); !)= q+ g(u) for 0¡u5 u0. If
the range of 
 is not contained in [1; 2]2, this can be achieved by truncating
its image and reparameterizing. This proves the theorem.

3 The construction of the paths �nt and �̂
n
t

Our task is now reduced to constructing the paths �n
t and �̂n

t and proving
Lemma 2. The construction relies on several preliminaries.
For t ∈R2

+, set Ft = �{W (s); s5 t}. A random variable T with values
in R2

+ is a stopping point provided {T 5 t} ∈Ft , for all t ∈R2
+. Given a

stopping point T , FT denotes the sigma-�eld {F ∈F :F ∩ {T 5 t} ∈Ft ; for
all t ∈R2

+}.
An observation that appears in Kendall [5] and Dalang and Walsh [2] is

that in the neighborhood of an element t ∈R2
+, the Brownian sheet behaves

like the sum of two independent di�usions. More precisely, for all u; v= 0,

W (t1 + u; t2 + v) = W (t) + B1(u) + B2(v) + �(u; v) ; (7)

where (B1(u)) and (B2(v)) are Brownian motions (with variance t2u and t1v,
respectively), and (�(u; v)) is a Brownian sheet, and all three processes are
independent. When u and v are small, the term �(u; v) is of order (uv)1=2,
which is much smaller than the typical value of B1(u) + B2(v), which is of
order u1=2 + v1=2.

We use the following notation for simple curves that connect two points. If
s5 t, we let 〈s; t〉h denote the segment [s1; t1]× {t2} if s2 = t2, and the union
of the two segments {s1} × [s2; t2] and [s1; t1]× {t2} if s2¡t2. Similarly, 〈s; t〉v
denotes the segment {s1} × [s2; t2] if s1 = t1 and the union of the two segments
[s1; t1]× {s2} and {t1} × [s2; t2] if s1¡t1. 〈s; t〉 stands for either of these two
paths.
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3.1 The probability of doubling the distance to q

If B = (B(u); u∈R+) is a standard Brownian motion and if B(v0) = q+ r for
some v0 ∈R+ and r¿0, then the probability that B reaches level q+ 2r before
level q (after time v0) is 2−1. Moreover, if r = 2−n, then the probability of
reaching level q+ 1 before level q is 2−n.

Now suppose T is a stopping point and W (T ) = q+ r. What is the proba-
bility that there exists an increasing path � starting at T along which W reaches
level q+ 2r before level q? We will show that this probability is = 2−� for
some �∈]0; 1[, by constructing a particular path which achieves this bound.
The main idea is that either level q+ 2r is reached as we move horizontally
to the right away from T , which occurs with probability 2−1, or this occurs
as we move vertically up from T , giving an additional opportunity of reaching
level q+ 2r.
By repeating the construction from level q+ 2r, we see that if r = 2−n,

then the probability that there exists an increasing path starting at T along
which W reaches level q+ 1 before level q is = � 2−� n, for some �¿0,
which is orders of magnitude larger than 2−n. This is the crucial observation
that led to the results of [7], and which is the intuitive reason behind the
di�erence in behavior of Brownian motions and Brownian sheets with regard
to points of increase: the Brownian sheet has a much higher chance of escaping
to a high level (along some increasing path) than does a Brownian motion.
Of course, some care must be taken to ensure that we reach level q+

2r at a stopping point, and we also want to ensure that when this level is
reached, W has grown at a guaranteed rate. Therefore the actual construction is
somewhat more involved. To estimate the probability of reaching level q+ 2r
before level q, we introduce the following notation. Given a stopping point
T = (T1; T2) with values in [1=2; 3]2, let

WT
1 (u) = W (T1 + u; T2)−W (T ) and WT

2 (v) = W (T1; T2 + v)−W (T ) :

Recall [9] that these processes are conditionally independent, and conditionally
independent of FT , given T . More precisely, given T , WT

1 (resp. WT
2 ) is a

Brownian motion with speed T2 (resp. T1). Since the stopping points we will
consider in this paper satisfy 1

2 5 T1 5 3 a.s. and 1
2 5 T2 5 3 a.s., these

speeds are between 1
2 and 3.

If S = T is also a stopping point, then we set

�]T; S]W = W (S)−W (S1; T2)−W (S2; T1) +W (T ) :

For r ∈]0; 1[, let
ST
1 = inf{u= 0 :WT

1 (u)∈ {−r + r3=2; r}} ;

ST
2 =

{
0 if WT

1 (S
T
1 ) = r ;

inf{v= 0 :WT
2 (v)∈ {−r + r3=2; 2r − r3=2}} if WT

1 (S
T
1 ) = −r + r3=2 :

Clearly, ST
1 and ST

2 depend on r, even though the notation does not indicate
this explicitly. Notice that since WT

1 and WT
2 are (time-changed) Brownian
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motions, the probability that they hit one level before another is the same as
for standard Brownian motion, and so for small r,

P{WT
1 (S

T
1 ) = r} = (r − r3=2)=(2r − r3=2) ' 1

2 ;

P{WT
2 (S

T
2 ) = 2r − r3=2 |WT

1 (S
T
1 ) = −r + r3=2} = (r − r3=2)=(3r − 2r3=2) ' 1

3 :

Also, given W (T ) = q+ r, if WT
1 (S

T
1 ) = r, which occurs with probability ' 1

2 ,
then

W (T1 + ST
1 ; T2) = W (T ) + r = q+ 2r ;

while if WT
1 (S

T
1 ) = −r + r3=2 and WT

2 (S
T
2 ) = 2r − r3=2, then

W (T1 + ST
1 ; T2 + ST

2 ) ' W (T )− r + r3=2 + 2r − r3=2 = q+ 2r :

Therefore, for small r¿0, with probability approximately equal to
1
2 + (1− 1

2 )
1
3 =

2
3 ;

W reaches approximately level q+ 2r before q+ r3=2 along the path 〈T; (T1 +
ST
1 ; T2 + ST

2 )〉h.
Since W (T1 + ST

1 ; T2 + ST
2 ) is not exactly equal to q+ 2r when ST

2 ¿0,
one additional step is needed. Set

’1(T ) = inf{u= ST
1 :W (T1 + u; T2 + ST

2 )−W (T ) = r}
and

 h(T; r) = (T1 + ’1(T ); T2 + ST
2 ) :

Observe that ’1(T ) = ST
1 when ST

2 = 0. Moreover, notice that  h(T; r) is
a stopping point and that given W (T ) = q+ r, with probability approximately
2=3, W ( h(T; r)) = q+ 2r and along the path 〈T;  h(T; r)〉h, W reaches level
q+ 2r before q+ r3=2.

The construction of  h(T; r) privileges the horizontal direction. By exchang-
ing the roles of the coordinates and privileging the vertical direction, we de�ne
analogously a stopping point  v(T; r) with similar properties.
In order to make the statement “with probability approximately 2=3” pre-

cise, we introduce the following notation. Let B be a standard Brownian mo-
tion, and let Ua;b = inf{u= 0: B(u)∈ {a; b}}. Recall [6, Theorem 4.1.1] that
P{U−1;1 ∈ [u; u+ �]}5 � for all u¿0 and �¿0. For M ¿0 and a¿0, de�ne

p1(M; a) = P{U−1+a;1 ∈ [1=M;M ]; B(U−1+a;1) = 1} ;

p2(M; a) = P{U−1+a;2−a ∈ [1=M;M ]; B(U−1+a;2−a) = 2− a} ;

p(M; a) =p1(M; a) + (1− p1(M; a))p2(M; a) :

Notice that limM→∞; a↓0 p(M; a) = 2
3 .

Throughout this paper, we �x M ¿0 and a0¿0 so that

p(M; a)¿1=2 for 05 a5 a0

and we set
p0 = p(M; 0) : (8)

Constants whose existence is a�rmed generally depend on M and a0.
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Lemma 3. Let T be a stopping point with values in [ 12 ; 3]
2. For r¿0; set

G(T; r) =
{

r2

MT2
5 ST

1 5
Mr2

T2

}
∩
(
{ST
2 = 0} ∪

{
r2

MT1
5 ST

2 5
Mr2

T1
;

r2

MT2
5 ’1(T )5

2Mr2

T2

})
∩{W (·)−W (T )¿−r + r3=2 on 〈T;  h(T; r)〉h} :

Then G(T; r) is conditionally independent of FT given T and there exists
C¿0 and r0¿0 such that for all r ∈]0; r0[;

|P(G(T; r) |FT )− p0|5 Cr1=4 :

Remark 4. The event G(T; r) describes the following situation. The process
WT
1 �rst hits −r + r3=2 or r during the time interval [r2=(MT2); Mr2=T2]. If
it hits r �rst, then ST

2 = 0 and the third event in the de�nition of G(T; r)
necessarily occurs. However, if WT

1 hits −r + r3=2 �rst, then WT
2 must hit

2r − r3=2 or −r + r3=2 during the time interval [r2=(MT1); Mr2=T1] and there
are similar constraints on ’1(T ). In order that the third event in the de�nition
of G(T; r) occur, it must be the case that WT

2 �rst hits 2r − r3=2, along the
segment 〈(T1; T2 + ST

2 ); (T1 + ST
1 ; T2 + ST

2 )〉h, W (·)−W (T )¿−r + r3=2, and
along 〈(T1 + ST

1 ; T2 + ST
2 );  

h(T; r)〉h, W (·)−W (T ) hits r before −r + r3=2. In
particular, on G(T; r), W ( h(T; r)) = W (T ) + r.

Proof of Lemma 3. Let

H (T; r) =
{

r2

MT2
5 ST

1 5
Mr2

T2

}
∩
(
{ST
2 = 0} ∪

{
r2

MT1
5 ST

2 5
Mr2

T1

})
∩{WT

1 (S
T
1 ) +WT

2 (S
T
2 ) = r} :

Further, de�ne

S̃T
1 = inf{u= 0 : WT

1 (u) ∈ {−r; r}} ;

S̃T
2 =

{
0 if WT

1 (S̃
T
1 ) = r ;

inf{v= 0 : WT
2 (v) ∈ {−r; 2r}} if WT

1 (S̃
T
1 ) = −r ;

and let H̃ (T; r) be de�ned in the same way as H (T; r) but with ST
1 and ST

2
replaced by S̃T

1 and S̃T
2 , respectively.

By Brownian scaling, observe that P(H̃ (T; r) | T ) ≡ p0. Also note that the
stopping times S̃T

i are greater than or equal to ST
i and that if WT

1 (S
T
1 ) takes

value r, then so must WT
1 (S̃

T
1 ). In addition, if WT

2 (S
T
2 ) = 2r − r3=2, then it is

highly probable that WT
2 (S̃

T
2 ) = 2r.
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To prove the lemma, we shall show that there is a constant C such that

|P(H (T; r) | T )− P(H̃ (T; r) | T )|5 Cr1=4 (9)

and
|P(G(T; r) | T )− P(H (T; r) | T )|5 Cr1=2 : (10)

For this, we �rst check that H̃ (T; r)\H (T; r) is contained in{
ST
1 ¡

r2

MT2
5 S̃T

1 ; W T
1 (S

T
1 ) = −r + r3=2; W T

1 (S̃
T
1 ) = −r

}
(11)

∪{WT
1 (S

T
1 ) = −r + r3=2; W T

1 (S̃
T
1 ) = r} (12)

∪
{
ST
2 ¡

r2

MT1
5 S̃T

2 ; W T
2 (S

T
2 ) = 2r − r3=2; W T

2 (S̃
T
2 ) = 2r

}
(13)

∪{WT
2 (S

T
2 ) = −r + r3=2; W T

2 (S̃
T
2 ) = 2r} : (14)

Indeed, with obvious notations, we can write

H (T; r) = A1 ∩ A2 ∩ A3; H̃ (T; r) = Ã1 ∩ Ã2 ∩ Ã3 ;

and so H̃ (T; r)\H (T; r) is the union of the three events
(Ã1\A1) ∩ Ã2 ∩ Ã3; Ã1 ∩ (Ã2\A2) ∩ Ã3; Ã1 ∩ Ã2 ∩ (Ã3\A3) : (15)

On the �rst event in (15), ST
1 ¡r2=(MT2)5 S̃T

1 , so WT
1 (S

T
1 ) = −r + r3=2,

and therefore (11) or (12) occurs. On the second event in (15), ST
2 ¿0,

so WT
1 (S

T
1 ) = −r + r3=2. Moreover, either S̃T

2 = 0, in which case WT
1 (S̃

T
1 ) =

r and (12) occurs, or ST
2 ¡r2=(MT1)5 S̃T

2 , in which case WT
1 (S̃

T
1 ) = −r.

Because Ã3 occurs, WT
2 (S̃

T
2 ) must equal 2r, and so (13) or (14) occurs. On

the last event in (15), WT
1 (S̃

T
1 ) = r or WT

1 (S̃
T
1 ) = −r and WT

2 (S̃
T
2 ) = 2r, and

both WT
1 (S

T
1 ) = −r + r3=2 and WT

2 (S
T
2 ) = −r + r3=2. So either (12) or (14)

occurs.
We now use similar arguments to show that H (T; r)\H̃ (T; r) is contained in{

ST
1 5

Mr2

T2
¡S̃T

1 ; W T
1 (S

T
1 ) = −r + r3=2; W T

1 (S̃
T
1 ) = −r

}
(16)

∪{WT
1 (S

T
1 ) = −r + r3=2; W T

1 (S̃
T
1 ) = r} (17)

∪
{
ST
2 5

Mr2

T1
¡S̃T

2 ; W T
2 (S

T
2 ) = 2r − r3=2; W T

2 (S̃
T
2 ) = 2r

}
(18)

∪{WT
2 (S

T
2 ) = 2r − r3=2; W T

2 (S̃
T
2 ) = −r} : (19)

Indeed, with the notations above, H (T; r)\H̃ (T; r) is the union of the three
events

(A1\Ã1) ∩ A2 ∩ A3; A1 ∩ (A2\Ã2) ∩ A3; A1 ∩ A2 ∩ (A3\Ã3) : (20)
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On the �rst of these events, ST
1 5 Mr2=T2¡S̃T

1 , so WT
1 (S

T
1 ) = −r + r3=2, and

therefore either (16) or (17) occurs. On the second event in (20), S̃T
2 ¿0,

so WT
1 (S̃

T
1 ) = −r and thus WT

1 (S
T
1 ) = −r + r3=2. Because A3 occurs, WT

2 (S
T
2 )

must equal 2r − r3=2. Since S̃T
2 does not belong to [r2=(MT1); Mr2=T1] on

this event, ST
2 5 Mr2=T1¡S̃T

2 and therefore either (18) or (19) occurs. On
the last event in (20), both WT

1 (S̃
T
1 ) = −r and WT

2 (S̃
T
2 ) = −r. Therefore

WT
1 (S

T
1 ) = −r + r3=2 and so WT

2 (S
T
2 ) = 2r − r3=2. Therefore the last event is

contained in (19).
To prove (9), note that the events in (12) and (14) are independent of T ,

and by Brownian scaling and the strong Markov property, their probabilities
are equal to the probability that a standard Brownian motion B hits 2r − r3=2

(resp. 3r − r3=2) before −r3=2, and therefore are bounded by Cr
1
2 . Likewise for

(17) and (19).
We bound the conditional probability given T of the set in (11) as follows.

It is less than

P
{

r2

MT2
5 S̃T

1 5
r2

MT2
+

r5=2

T2

}
+ P

{
S̃T
1 − ST

1 =
r5=2

T2

}
:

The �rst term is bounded by Cr1=2 while the second term is bounded by

P
{

inf
05u5r5=2

B(u)= −r3=2
}
5 Cr1=4 : (21)

The probabilities of the events in (13), (16), and (18) can be bounded in a
similar way. This proves (9).
We now turn to (10). Let �T (u; v) = �]T;T+(u;v)]W and T ′ = (T1 + ST

1 ;
T2 + ST

2 ). Observe from the de�nitions that G(T; r) ⊂ H (T; r), and that H (T; r)\
G(T; r) can only occur because of an unfortunate behavior of W along
the horizontal half-line with left endpoint at (T1; T2 + ST

2 ). In particular,
H (T; r)\G(T; r) is contained in the union of two events:

(a) inf 05u5Mr2=T2 �T (u; S
T
2 )5 −2r + r3=2 and ST

2 5 Mr2=T1;
(b) ST

1 5 Mr2=T2, ST
2 5 Mr2=T1 and starting from level W (T ′)−W (T ) =

r + �T (ST
1 ; S

T
2 ), W (T ′1 + ·; T ′2 )−W (T ) hits level −r + r3=2 before level r, or

takes at least time Mr2=T2 to hit {−r + r3=2; r}.
Since 1

2 5 Ti 5 3 for i = 1; 2, given ST
2 5 Mr2=T1, �T (·; ST

2 ) is a Brownian
motion with speed at most Mr2=T1 5 2Mr2, so the probability in (a) is bounded
by

P
{
2Mr2 inf

05u51
B(u)5 −2r + r3=2

}
5 exp

(
− 1
2M 2r2

)
5 Cr1=2

for small r. As for the probability in (b), it is bounded by the probability
that a Brownian motion B started at level r + 2Mr2Z , where Z is a standard
Normal independent of B, hits level −r + r3=2 before level r, or hits level r
�rst but ’1(T )= 2Mr2. This probability is bounded by the sum of two terms.
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For small r, the �rst term is less than

∞∫
0

2Mr2z
2r − r3=2

P{Z ∈ dz}5 Cr :

The second term is bounded by standard Brownian motion inequalities similar
to (21). This proves (10) and completes the proof of Lemma 3.

3.2 De�ning the path �n
t

For t ∈ [1; 2]2 and r ∈ ]0; 1[, set T 0t = t + (2−2n; 0), and for i = 1, let

T i
t =

{
 h(T i−1

t ; 2i−1r) if i is odd ;

 v(T i−1
t ; 2i−1r) if i is even :

The alternation between even and odd is merely a simple way of ensuring that
both coordinates of T i

t grow at the same rate.
Let �(t; r) be the union of the paths 〈T i−1

t ; T i
t 〉h if i is odd, 〈T i−1

t ; T i
t 〉v if

i is even, i = 1. We de�ne �n
t as follows.

De�nition. �n
t is the (canonically parameterized) increasing path whose image

is the union of 〈t; t + (2−2n; 0)〉h and �(t; 2−n).

In order to establish properties of this path, for t ∈ [1; 2]2 and k ∈ N,
consider the set

J (t; r; k) =
k⋂

i=0
G(T i

t ; 2
ir) : (22)

Lemma 5. There exists an integer k0 such that for all t ∈ [1; 2]2; r¿0; and
j ∈ {1; 2}; if k = 1; then

(Tk
t − t)j 5 22(k+k0)r2 on J (t; r; k − 1) ;

and if k = 2; then

(Tk
t − t)j = 22(k−k0)r2 on J (t; r; k − 1); provided 22(k+k0)r2 5 1 : (23)

Proof. Because of the constraints of the form ’1(T )5 2Mr2=T1 and similar
constraints on ST

2 , the maximum value on J (t; r; k − 1) of (Tk
t − t)j is

k∑
i=0
2M (2ir)2 =

2
3
Mr2(4k+1 − 1) ;

and this quantity is 5 22(k+k0)r2 provided (essentially) k0 is such that 4k0 =
8M=3.
Suppose that 22(k+k0)r2 5 1. When k = 2, given that either step k or

step k − 1 privileges direction j, j = 1; 2, (Tk
t − t)j is at least equal to

(2k−1r)2=(M (Tk
t )j). As we have just seen that (T

k
t )j 5 tj + 22(k+k0)r2, and

the right-hand side is 5 3 by hypothesis, we conclude that (Tk
t − t)j =

(2k−1r)2=(3M), and this quantity is = 22(k−k0)r2 provided 4k0 = 12M .
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Remark 6. Let k0 be as in Lemma 5, �x k2 = k0 and suppose J (t; 2−n; n−
k2) occurs. Then on 〈T 0t ; T 1t 〉h, W (·)−W (T 0t )¿−2−n + 2−3n=2 and W (T 1t )−
W (T 0t ) = 2

−n. Similarly, on 〈T i
t ; T

i+1
t 〉, W (·)−W (T i

t )¿−2−n+i + 23(−n+i)=2

and W (T i+1
t )−W (T i

t ) = 2
−n+i. Therefore,

W (T i
t )−W (T 0t ) = 2

−n+i−1 + · · ·+ 2−n = 2−n+i − 2−n ;

and on 〈T i
t ; T

i+1
t 〉,
W (·)−W (T 0t ) = W (·)−W (T i

t ) +W (T i
t )−W (T 0t )

=−2−n+i + 23(−n+i)=2 + 2−n+i − 2−n

= 23(−n+i)=2 − 2−n :

This implies that on J (t; 2−n; n− k2), the process (W (�n
t (u))−W (�n

t (2
−2n));

2−2n 5 u5 |Tn−k2
t |) has “risen” from level 0 to level 2−k2 − 2−n without

going below level −2−n, and in fact, has grown at a guaranteed rate. Indeed,
for small u¿0 (but large enough relative to 2−2n, for instance u¿2−n), Tk

t 5
�n
t (u) occurs if 2

2(k+k0)(2−n)2 5 u, that is, if k 5 n− k0 + log2 u
1=2. Therefore,

if k is the integer part of n− k0 + log2 u
1=2, then

W (�n
t (u))−W (�n

t (2
−2n)) = W (�n

t (u))−W (Tk
t ) +W (Tk

t )−W (�n
t (2

−2n))

=−2−n+k + 23(−n+k)=2 + 2−n+k − 2−n

= 2−3(k0+1)=2 u3=4 − 2−n :

The condition in (23) is satis�ed when k = n− k2 and r = 2−n, so for large n,
|Tn−k2

t − t|= 22(n−2k2)2−2n = 2−4k2 by Lemma 5. In particular, the portion of
the path �n

t with extremities t and Tn−k2
t is guaranteed to have length at least

2−4k2 , and J (t; 2−n; n− k2) is contained in the event on the right-hand side of
(3) provided u0 5 2−4k2 and the constant c that appears in (1) is 5 2−3(k0+1)=2.

Proposition 7. Let p0 be as in (8) and let � ∈ ]0; 1[ be de�ned by the relation
2−� = p0. There exist positive contants � and � and an integer k1 such that
for all t ∈ [1; 2]2; for all large n and all k ∈ {0; : : : ; n− k1};

� 2−�k 5 P(J (t; 2−n; k))5 �2−�k :

Proof. Let r0 be as in Lemma 3 and k0 be as in Lemma 5. By Lemma 5, if
22(k+k0−n) 5 1, which is the case if k1 = k0 and k 5 n− k1, then Tk

t ∈ [1; 3]2.
Using Lemma 3 and repeated conditioning on FT i

t
, i = k; : : : ; 0, as well as the

fact that J (t; 2−n; 0) is independent of FT 0t
, we see that if 2k−n¡r0, which is

the case if k1¿− log2 r0 and k ∈ {0; : : : ; n− k1}, then
k∏

i=0
(p0 − C2(i−n)=4)5 P(J (t; 2−n; k))5

k∏
i=0
(p0 + C2(i−n)=4) :
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The right-hand side is equal to

pk+1
0

k∏
i=0

(
1 +

C
p0
2(i−n)=4

)
5pk+1

0 exp
(

C
p0

k∑
i=0
2(i−n)=4

)
;

and the sum in the exponential is 5 30 for k 5 n. The left-hand side is equal
to

pk+1
0

k∏
i=0

(
1− C

p0
2(i−n)=4

)
=pk+1

0 exp
(

C
2p0

k∑
i=0
2(i−n)=4

)
:

We have used the elementary inequality 1− x = e−x=2 for small positive x,
say 05 x 5 x0. The last inequality is therefore justi�ed provided (C=p0):
2(i−n)=2 5 x0, or provided i 5 n− k1, where k1 is any integer greater than
−2 log2 (x0p0=C).

3.3 Constructing the path �̂n
t

The construction of �̂n
t is similar to that of �

n
t . However, since �̂

n
t is decreasing,

there is less independence to be used than in the construction of �n
t , and

therefore this construction requires some additional e�ort.
In order to construct the path �̂n

t , given a random point T and r¿0, set

Ŵ T
1 (u) = W (T )−W (T1 − u; T2); Ŵ T

2 (v) = W (T )−W (T1; T2 − v) ;

and let

ŜT
1 = inf{u= 0 : Ŵ T

1 (u) ∈ {−r + r3=2; r}} ;

ŜT
2 =

{
0 if Ŵ T

1 (S
T
1 ) = r ;

inf{v= 0 : Ŵ T
2 (v) ∈ {−r + r3=2; 2r − r3=2}} if Ŵ T

1 (S
T
1 ) = −r+ r3=2 ;

and

’̂1(T ) = inf{u= ŜT
1 : W (T )−W (T1 − u; T2 − ŜT

2 ) = r}
and

 ̂ h(T; r) = (T1 − ’̂1(T ); T2 − ŜT
2 ) :

Observe that ’̂1(T ) = ŜT
1 when ŜT

2 = 0.
As in the de�nition of  h, the construction of  ̂ h(T; r) privileges the hori-

zontal direction. By exchanging the roles of the coordinates and privileging the
vertical direction, we de�ne analogously a random point  ̂ v(T; r) with similar
properties.
For t ∈ [1; 2]2, set T̂ 0t = t − (2−2n; 0), and for i = 1, let

T̂ i
t =

{
 ̂ h(T̂ i−1

t ; 2i−1r) if i is odd ;

 ̂ v(T̂ i−1
t ; 2i−1r) if i is even :
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Let �̂(t; r) be the union of the paths 〈T̂ i
t ; T̂

i−1
t 〉v if i is odd, 〈T̂ i

t ; T̂
i−1
t 〉h if

i is even, i = 1. We de�ne the path �̂n
t as follows.

De�nition. �̂n
t is the (canonically parameterized) decreasing path whose image

is �̂(t; 2−n).

In order to establish estimates concerning �̂n
t , a decomposition of W (t1 −

u; t2 − v) analogous to (7) is needed. We could use the decomposition given in
[2, Sect. 2], but for our purposes it is more convenient to proceed as follows.
Observe that

W (t1 − u; t2 − v) = W (t)− Ŵ t
1(u)− Ŵ t

2(v) + �̂t(u; v) ;

where �̂t(u; v) = �R(u;v)W and R(u; v) = ]t1 − u; t1]× ]t2 − v; t2]. However, the
two processes Ŵ t

1 and Ŵ t
2 are not independent, which was one key feature of

the decomposition (7). Fix r¿0. A decomposition which does yield indepen-
dent terms is

W (t1 − u; t2 − v) = W (t)− W̃ t
1(u)− X t

1(u)− W̃ t
2(v)− X t

2(v) + �̂t(u; v) ;

where

W̃ t
1(u) =W (t1; t2 − 4Mr2)−W (t1 − u; t2 − 4Mr2) ;

W̃ t
2(v) =W (t1 − 4Mr2; t2)−W (t1 − 4Mr2; t2 − v) ;

and

X t
1(u) = �]t1−u; t1]× ]t2−4Mr2 ; t2]W; X t

2(v) = �]t1−4Mr2 ; t1]× ]t2−v; t2]W :

The processes (W̃ t
1(u); 05 u5 4Mr2) and (W̃ t

2(v); 05 v5 4Mr2) are inde-
pendent, and the other processes are all comparatively small. More precisely,
by the scaling properties of Brownian motion and the Brownian sheet,

P

{
sup

05u;v54Mr2
(|X t

1(u)|; |X t
2(v)|; |�̂t(u; v)|)= r5=3

}
5 K exp

(
− r−2=3

32M 2

)
:

Of course, we need this type of decomposition at random times as well as
at �xed times. For (0; 0)5 s5 t, de�ne the sigma-�eld

Gt
s = �{�RW; R ⊂ ([s1; t1]× [0; t2]) ∪ ([0; t1]× [s2; t2])} : (24)

Assume now that T is a random point such that T 5 t a.s. and {T = s} ∈ Gt
s

for all 05 s5 t. Notice that in this case,  ̂ h(T; r) is a random point with the
property { ̂ h(T; r)= s} ∈ Gt

s , and that given W (T ) = q− r, with probability
approximately 2=3, W ( ̂ h(T; r)) = q− 2r and along 〈 h(T; r); T 〉v, W reaches
level q− 2r before q− r3=2. To make this statement precise, we introduce the
following notation.
Consider the sigma-�eld

Ĝ t
T = {F ∈F : F ∩ {T = s} ∈ Gt

s} :
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Given r¿0, we set

W̃ T
1 (u) =W (T1; T2 − 4Mr2)−W (T1 − u; T2 − 4Mr2) ;

W̃ T
2 (v) =W (T1 − 4Mr2; T2)−W (T1 − 4Mr2; T2 − v) :

Then the processes (W̃ T
1 (u); 05 u5 4Mr2) and (W̃ T

2 (v); 05 v5 4Mr2)
are conditionally independent, and conditionally independent of Ĝ t

T , given T .
More precisely, given T , W̃ T

1 (resp. W̃ T
2 ) is a Brownian motion with speed

T2 − 4Mr2 (resp. T1 − 4Mr2). In addition,

W (T1 − u; T2 − v) = W (T ) + W̃ T
1 (u) + X T

1 (u) + W̃ T
2 (v) + X T

2 (v) + �̂T (u; v) ;

where X T
1 , X

T
2 and �̂T are such that

P

{
sup

05u;v54Mr2
(|X T

1 (u)|; |X T
2 (v)|; |�̂T (u; v)|)= r5=3 | Ĝ t

T

}
5 K exp

(
− r−2=3

32M 2

)
:

(25)

Note that the random points T̂ i
t all have the property that {T̂ i

t = s} ∈ Gt
s

for s5 t.

Lemma 8. Let p0 be as in (8) and let T be a stopping point with values in
[1=2; 3]2. For r¿0; set

A(T; r) =

{
sup

05u;v54Mr2
(|X T

1 (u)|; |X T
2 (v)|; |�̂T (u; v)|)5 r5=3

}
;

�T
j = Tj − 4Mr2; j = 1; 2 ;

and

Ĝ(T; r) =
{

r2

M�T
2
5 ŜT

1 5
Mr2

�T
2

}
∩
(
{ŜT

2 = 0} ∪
{

r2

M�T
1
5 ŜT

2 5
Mr2

�T
1

;
r2

M�T
1
5 ’̂1(T )5

2Mr2

�T
1

})
∩{W (T )−W (·)¿ −r + r3=2 on 〈 ̂ h(T; r); T 〉v} :

Then Ĝ(T; r) is conditionally independent of Ĝ t
T given T and there exists

C¿0 and r0¿0 such that for all r ∈]0; r0[;

|P(Ĝ(T; r) | Ĝ t
T ∨ A(T; r))− p0|5 Cr1=4 on A(T; r) : (26)

The proof of this lemma uses the following property of Brownian motion,
which provides a bound on the di�erence of hitting probabilities for a Brownian
motion B and a small perturbation of B.
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Lemma 9. Let B be a Brownian motion of speed at least 1=4. For r¿0;
set Z(u) = B(u) + Y (u); where |Y (u)|5 r5=3. For X equal to Z or B and r′

equal to r or 2r − r3=2; set

TX = inf{u= 0 : X (u) ∈ {−r + r3=2; r′}} ;

and for x ∈ {−r + r3=2; r′}; let
�(X; x) = {X (TX ) = x; TX ¿ M}; �′(X; x) = {X (TX ) = x; TX ¡ M} :

Then there exists a constant K such that for small r and x ∈ {−r + r3=2; r′};
P((�(B; x)4 �(Z; x)) ∪ (�′(B; x)4 �′(Z; x)))5 Kr2=3 : (27)

Proof. Each symmetric di�erence is the union of two terms, and therefore the
probability on the left-hand side of (27) is bounded by the sum of four terms.
We only bound one of them, namely, we show that

P((�′(B; x)\�′(Z; x))5 Kr2=3 ;

since the three other terms can be handled in a similar way. We also only
consider the case where x = r.
Observe that the event �′(B; r)\�′(Z; r) is contained in the union of the

three events

�1 = {TB ∈ [M − r2=3; M ]}
�2 = {TB¡ M − r2=3; B(TB) = r; Z(TZ) = −r + r3=2} ;

�3 = {TB¡ M − r2=3; B(TB) = r; Z(TZ) = r; T Z ¿ M} :

Now P(�1)5 Cr2=3 by [6, Theorem 4.1.1]. Also, writing Z in terms of B and
using the bound |Y (u)|5 r5=3, we see that P(�2) is bounded by the probability
that a Brownian motion started at level r hits level −r(1− r

1
2 − r2=3) before

level r(1 + r2=3), which is 5 Cr2=3. Finally, P(�3) is bounded by

P
{
max

05u5r2=3
B(u)5 r5=3

}
= P

{
max
05u51

B(u)5 r4=3
}
5 Cr2=3 :

Proof of Lemma 8. The constant r0 will be chosen so that 16Mr20 5 1. For
0¡r¡r0, let

Ĥ (T; r) =
{

r2

�T
2M

5 ŜT
1 5

Mr2

�T
2

}

∩
(
{ŜT
2 = 0} ∪

{
r2

�T
1M

5 ŜT
2 5

Mr2

�T
1

})
∩{Ŵ T

1 (Ŝ
T
1 ) + Ŵ T

2 (Ŝ
T
2 ) = r} :
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Further, de�ne S̃T
1 and S̃T

2 in the same way as Ŝ
T
1 and ŜT

2 , but with Ŵ replaced
by W̃ , and let H̃ (T; r) be de�ned in the same way as Ĥ (T; r), but with Ŝ
replaced by S̃ and Ŵ by W̃ . The speeds �T

j of the Brownian motions W̃j

are at least 1=4 by the choice of r0. Moreover, on A(T; r), the di�erence Yj

between Ŵ T
j and W̃ T

j satis�es the bound on Y in Lemma 9. From this lemma,
we conclude that for small r,

|P(Ĥ (T; r) | Gt
T ∨ A(T; r))− P(H̃ (T; r) | Gt

T ∨ A(T; r))|5 Cr2=3 on A(T; r) :
(28)

Let

�ST
1 = inf{u= 0 : W̃ T

1 (u) ∈ {−r; r}} ;

�ST
2 =

{
0 if W̃ T

1 ( �S
T
1 ) = r ;

inf{v= 0 : W̃ T
2 (v) ∈ {−r; 2r}} if W̃ T

1 ( �S
T
1 ) = −r :

Let �H (T; r) be de�ned in the same way as Ĥ (T; r), but with Ŝ replaced by �S
and Ŵ by W̃ . As in (9) and (10), for small r, we have

|P(H̃ (T; r) | Ĝ t
T ∨ A(T; r))− P( �H (T; r) | Ĝ t

T ∨ A(T; r))|5Cr1=4 ; (29)

|P(Ĝ(T; r) | Ĝ t
T ∨ A(T; r))− P(Ĥ (T; r) | Ĝ t

T ∨ A(T; r))|5Cr1=2 : (30)

To help the reader with the notation, we point out that (30) accounts for
the di�erence between the requested behavior of the sheet along the path
〈 ̂ h(T; r); T 〉v and its behavior on the horizontal and vertical lines through T ,
(28) replaces the actual increments along these lines by increments of inde-
pendent processes, and (29) replaces the hitting value −r + r3=2 by the value
−r, which makes it possible to use Brownian scaling.
Indeed, by Brownian scaling, P( �H (T; r) | Ĝ t

T ) ≡ p0 and �H (T; r) is indepen-
dent of A(T; r), so the conclusion follows by applying the triangle inequality
to (26) and using (28)–(30).

For t ∈ [1; 2]2, r¿0 and k ∈ N, let

Ĵ (t; r; k) =
k⋂

i=0
Ĝ(T̂ i

t ; 2
ir) : (31)

Statements analogous to those of Lemma 5 and Remark 6 are again valid, as
we now show.

Lemma 10. There exists an integer k0 such that for all t ∈ [1; 2]2; all large
n and all j ∈ {1; 2}; if k ∈ {0; : : : ; n− k0}; then

(t − T̂ k
t )j 5 22(k+k0−n) ;

and if k ∈ {2; : : : ; n− k0}; then
(t − T̂ k

t )j = 22(k−k0−n) on Ĵ (t; 2−n; k − 1) :
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Proof. Pick k0 large enough so that 22k0 = 25M . Let �k
j = (T̂

k
t )j − 4M (2k−n)2.

Note that for n¿k0, �0j = 1− 4M2−2n = 1
2 by the choice of k0. Therefore,

from the bounds on ŜT
j and ’̂j(T ) in Lemma 8, (t − T̂ 1j )5 2M2−2n=(1=2),

and this quantity is 5 22(k0−n) because 22k0 = 4M .
Therefore, for n¿k0, when k = 1, the inequalities

(t − T̂ k
t )j 5 22(k+k0−n−1) and �k−1

j = 1
2 (32)

are satis�ed on Ĵ (t; 2−n; k − 1). We proceed by induction on k to show that
(32) is valid on Ĵ (t; 2−n; k − 1) for all k 5 n− k0.
Suppose that (32) holds for k and show that it holds for k + 1 (assuming

k + 15 n− k0). Using (32), we see that on Ĵ (t; 2−n; k − 1),
�k
j = (T̂

k
t )j − 4M22(k−n) = tj − 22(k+k0−n−1) − 4M2−2k0

= 1− 2−2 − 2−3 = 1
2 :

From (32) and the bounds in Lemma 8, we now conclude that on Ĵ (t; 2−n; k),

(t − T̂ k+1
t )j = tj − (T̂ k

t )j + (T̂
k
t )j − (T̂ k+1

t )j

5 22(k+k0−n−1) + 2M (2k+1−n)2=(1=2)

5 22(k+k0−n−1) + 22k0−3 22(k+1−n)

5 22(k+1+k0−n−1) :

This proves (32), which gives the �rst conclusion of the lemma.
To prove the second conclusion, observe that when k = 2, because either

step k or step k − 1 privileges direction j, j ∈ {1; 2}, (t − T̂ k
t )j is at least equal

on Ĵ (t; 2−n; k − 1) to (2k−12−n)2=(M�), where �5 2, so

(t − T̂ k
t )j = 22(k−n−1)=(2M)= 22(k−k0−n)

because 22k0 = 8M .

The analogue of Proposition 7 also remains valid, as we now show.

Proposition 11. Let p0 be as in (8) and let � ∈ ]0; 1[ be such that 2−� = p0.
There exist positive constants � and � and an integer k1 such that for all
t ∈ [1; 2]2; for all large n and all k ∈ {0; : : : ; n− k1};

� 2−�k 5 P(Ĵ (t; 2−n; k))5 �2−�k :

Proof. The proof is analogous to that of Proposition 7, with an added com-
plication due to the fact that the inequality in (26) is only valid on A(T; r).
Let r0 be as in Lemma 8. If 2−k1 ¡r0, then for i 5 n− k1, the conclusion of
Lemma 8 applies to r = 2i−n. In this case, for k 5 n− k1,

P(Ĵ (t; 2−n; k))= P
(

k⋂
i=1
(Ĝ(T̂ i

t ; 2
i−n) ∩ A(T̂ i

t ; 2
i−n))

)
:
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By repeated conditioning and use of independence, Lemma 8 and (25) imply
that the right-hand side is

=
k∏

i=0
(p0 − C2(i−n)=4)

(
1− exp

(
−2

−2(i−n)=3

32M 2

))
= � 2−�k

(the last inequality uses the bounds 1− x = e−x=2 and exp(−r−2=3=(32M 2))
5 r for small positive x and r).
In order to prove the upper bound, set �(!) = inf{i = 0: ! ∈ 
\A(T̂ i

t ;
2i−n)}, and observe that since {� ¿ k} = ⋂k

i=1 A(T̂
i
t ; 2

i−n), Lemma 8 implies
that

P(Ĵ (t; 2−n; k) ∩ {� ¿ k})5 �2−�k ;

while for i = 0; : : : ; k,

P(Ĵ (t; 2−n; k) ∩ {� = i})5 P(Ĵ (t; 2−n; i) ∩ {� = i})

5K exp
(
−2

−2(i−n)=3

32M 2

)
i∏

l=0
(p0 + C2(l−n)=4)

5K ′ exp
(
−2

2(n−i)=3

32M 2

)
2−�i :

Fix �¿�. For su�ciently large x ∈ R, say x = x0, exp(−22x=3=(32M 2))¡
2−�x. Assume that 2−k1 ¡r0 and that 22k1=3 = x0. Then for i ∈ {0; : : : ; k} and
k 5 n− k1,

exp(−22(n−i)=3=(32M 2)) 2−�i 5 2−�n+(�−�)i :

Summing over i = 0; : : : ; k, we see that if k 5 n− k1, then

P(Ĵ (t; 2−n; k) ∩ {�5 k})5 K ′ 2−�n 2(�−�)k 5 K ′ 2−�k 2−�k1 5 �2−�k :

Lemma 12. Let k0 be the largest of the integers so denoted in Lemmas 5
and 10. For all t ∈ [1; 2]2; all large n and all k ∈ {1; : : : ; n− k0};

J (t; 2−n; k − 1) ∈ Gt+22(k+k0−n)(1;1)
t+(2−2n;0) ; (33)

and
Ĵ (t; 2−n; k − 1) ∈ Gt−(2−2n;0)

t−22(k+k0−n)(1;1)
:

Proof. The event J (t; 2−n; k − 1) is determined by increments of W in [t1 +
2−2n; T k

1 ]× [0; T k
2 ] ∪ [0; T k

1 ]× [t2; T k
2 ], therefore, by Lemma 5, (33) holds. The

proof of the statement concerning Ĵ (t; 2−n; k − 1) uses Lemma 10 and is
analogous.
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4 Proof of Lemma 2

This section is devoted to the proof of Lemma 2. The �rst two statements in
this lemma are simpler than the third.
Let M be as indicated just before Lemma 3 and de�ne � as in Propositions

7 and 11. Let k2 be such that k2 − 2 is the maximum of the integers denoted k0
in Lemmas 5 and 10 and k1 in Propositions 7 and 11. Let

c = 2−3(k2+1)=2 and u0 = 2−4k2 : (34)

Recall that the constant c appears in the de�nition of the function g in (1) and
u0 appears in the sets on the right-hand sides of (3) and (4). Let � (resp. �)
be positive constants smaller (resp. larger) than those denoted by the same
symbols in Propositions 7 and 11. De�ne J (t; r; k) and Ĵ (t; r; k) as in (22) and
(31). Finally, as promised in the introduction, we de�ne the two events F1(t; n)
and F̂1(t; n) by

F1(t; n) = J (t; 2−n; n− k2) and F̂1(t; n) = Ĵ (t; 2−n; n− k2) :

The constants k2, � and � have been chosen so that the conclusions of Proposi-
tions 7, 11 and Lemmas 5, 10 and 12 hold for all large n and with k = n− k2.
Because n− k2 + k0 − n5 −2, Lemmas 5 and 10, imply that for t ∈ [1; 2]2
and k 5 n− k2,

Tk
t ∈ [1; 3]2 on F1(t; n) and T̂ k

t ∈
[
3
4
; 2
]2
on F̂1(t; n) :

Secondly, by the last paragraph of Remark 6, on F1(t; n) (resp. F̂1(t; n)), the
portion of the path �n

t (resp. �̂
n
t ) de�ned in Sect. 3.2 (resp. 3.3.) with extrem-

ities t and Tn−k2
t (resp. T̂ n−k2

t ) has length at least u0, and the inclusions in (3)
and (4) are satis�ed.

4.1 Proof of (a) and (b) of Lemma 2

By Proposition 7, for all t ∈ [1; 2]2 and for all large n,

P(F1(t; n)) = P(J (t; 2−n; n− k2))= � 2−�(n−k2) = � 2� k22−�n :

A similar inequality is valid for P(F̂1(t; n)) by Proposition 11. This proves (a).
By (24) and Lemma 12, F1(t; n) is independent of F0(t; n) and F̂1(t; n), so

by Proposition 7,

P(F(t; n))= P(F̂1(t; n) ∩ F0(t; n)) � 2−�(n−k2) :

Let t0 = (12 ;
1
2 ), t

′
n = (t1 − 2−2n; t2), Zn = W (t′n)−W (t0) and Z ′n=W (�n

t (2
−2n))

−W (t′n). Then Zn is measurable with respect to Gt′n
t0 , F̂1(t; n) ∈ Gt′n

t0 (by
Lemma 12) and W (t0) and Z ′n are independent of this sigma-�eld. The probabil-
ity that W (t0) is in a particular interval of length 2−n contained in [q− 2; q+ 2]
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is = �2−n, where �¿0, and by Brownian scaling, the probability that Z ′n is
in such an interval is = �′¿0. Therefore P(F̂1(t; n) ∩ F0(t; n)) is

= P(F̂1(t; n) ∩ {|Zn|5 1} ∩ {Zn +W (t0) ∈ ]q− 2−n+1; q− 2−n[}
∩ {Zn +W (t0) + Z ′n ∈ ]q+ 2−n; q+ 2−n+1[}

= ��′ 2−n P(F̂1(t; n) ∩ {|Zn|5 1}) :
Now on F̂1(t; n), {|Zn|5 1} = {|2−k2 +W (T̂ n−k2

t )−W (t0)|5 1}, and this
last event is independent of F̂1(t; n) and has probability bounded below by
a positive constant (because the interval [−2−k2 − 1;−2−k2 + 1] contains 0
and the variance of W (T̂ n−k2

t )−W (t0) is = (1=4)2). It follows that

P(F(t; n))= K ′ 2−n (2−�(n−k2))2 = K2−(1+2�)n :

This proves (b).

4.2 Proof of (c) of Lemma 2 when s5 t

Fix s5 t. Then the event F(s; n) ∩ F(t; n) is contained in the intersection of
six events, to which we will apply the estimates of Sect. 3. More precisely,
for n¿k2 + 2, assuming that 05 i 5 j 5 n− k2 − 2 (the case where n−
k2 − 2¡ j 5 n will be treated below), (s; t) ∈ Ei; j and t2 − s2 5 t1 − s1, it is
contained in

Ĵ (s; 2−n; n− k2) ∩ F0(s; n) ∩ J (s; 2−n; n− j − k2 − 2)
∩ Ĵ (t; 2−n; n− j − k2 − 2) ∩ F0(t; n) ∩ J (t; 2−n; n− k2) : (35)

By Lemma 12, the last event is independent of the others and has probability
5 �2−�(n−k2) by Proposition 7. Notice that n− j − k2 − 1 + k0 − n5 −j − 2,
so by Lemma 12,

J (s; 2−n; n− j − k2 − 2) ∈ Gs+2−2j−4(1;1)
s+(2−2n;0)

and
Ĵ (t; 2−n; n− j − k2 − 2) ∈ Gt−(2−2n;0)

t−2−2j−4(1;1) :

Let t′n = (t1 − 2−2n; t2). From Fig. 4.2, it is easy to see that the variable W (t′n)
is equal to the sum of a random variable that is correlated with the �rst four
events in (35) and an independent Gaussian random variable (namely W ([s1 +
2−2j−4; t1 − 2−2j−4]× [0; 1])) with mean 0 and variance at least 2−2(i+1) −
2−2j−3 = 2−2i−3, and therefore the conditional probability of F0(t; n) given
the remaining four events is 5 2−n=2−i−2. Also, s2 + 2−2j−4 ¡ t2 − 2−2j−4
because (s; t) ∈ Ei; j, so by Lemma 12, Ĵ (t; 2−n; n− j − k2 − 2) is independent
of the �rst three events in (35) and has probability 5 �2−�(n−j−k2−2) by
Proposition 11.



22 R.C. Dalang, T. Mountford

Fig. 1. Disposition of s and t in Sect. 4.2

By writing W (s1 − 2−2n; s2) = W ( 12 ;
1
2 ) + Z and observing that W ( 12 ;

1
2 ) is

independent of Ĵ (s; 2−n; n− k2), we bound the probability of the remaining
intersection of three events in a similar way, and we conclude that

P(F(s; n) ∩ F(t; n))5K ′2−(n−i)(2−�(n−k2)2−�(n−j−k2−2))22−n

= K2−(1+2�)n2−(n−i)−2�(n−j) : (36)

This proves (c) for s5 t and 05 i 5 j 5 n− k2 − 2.
If n− k2 − 2¡ j 5 n and i 5 n− 2, we omit the third and fourth events

in (35). The independent random variable used in the decomposition of W (t′n)
is now W ([s1 + 2−2n; t1 − 2−2n]× [0; 1]), which has mean 0 and variance =
2−2(i+1) − 2 2−2n = 2−2i−3 by the assumption on i. Inequality (36) becomes

P(F(s; n) ∩ F(t; n))5 K2−(1+2�)n2−(n−i) : (37)

However, n− j ¡ k2 + 2, so 2−2�(n−j)22�(k2+2) = 1, and therefore we can in-
crease the constant K in (37) by a factor of 22�(k2+2) to get the desired
inequality.
If n− 15 i 5 j 5 n, we omit the third, fourth and �fth events in (35).

Inequality (36) becomes

P(F(s; n) ∩ F(t; n))5 K2−(1+2�)n :

However, arguing as in the previous case, we can increase the constant K by
a factor of 22�(k2+2) · 2 to get the desired inequality.
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Fig. 2. Disposition of s and t in Sect. 4.3 (note that s2 − t2¿2−2( j+1))

4.3 End of the proof of part (c) of Lemma 2
It remains to consider the case where neither s5 t nor t 5 s. Consider
n¿k2 + 2. We assume without loss of generality that s1¡t1, s2¿t2 and
that 2−2( j+1)¡s2 − t2 5 2−2j and 2−2(i+1) ¡ t1 − s1 5 2−2i, where 05 i 5
j 5 n− k2 − 2 (the case where n− k2 − 2¡j 5 n is easily handled as in
Sect. 4.2). By de�nition,

P(F(s; n) ∩ F(t; n))5 P(Ĵ (s; 2−n; n− k2) ∩ J (s; 2−n; n− j − k2 − 2)
∩ Ĵ (t; 2−n; n− j − k2 − 2) ∩ J (t; 2−n; n− k2)

∩F0(s; n) ∩ F0(t; n)) : (38)

As in Sect. 4.2, from Fig. 2, we see that the variable W (t) is equal to the sum
of a random variable that is correlated with the �rst �ve events in (38) and
an independent Gaussian random variable with mean 0 and variance at least
2−2i−3, and we conclude that the conditional probability of F0(t; n) given the
remaining �ve events is 5 2−n=2−i−2. Similarly, the conditional probability
of F0(s; n) given the remaining four events is 5 2−n. Therefore, P(F(s; n) ∩
F(t; n)) is

5 4 2−n2−(n−i)P(Ĵ (s; 2−n; n− k2) ∩ J (s; 2−n; n− j − k2 − 2)
∩ Ĵ (t; 2−n; n− j − k2 − 2) ∩ J (t; 2−n; n− k2)) : (39)
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In order to reduce the dependence between the remaining events in the
intersection above, we remove some of the events which de�ne the J ’s and Ĵ ’s.
By Lemma 5, on J (t; 2−n; n− k2), (T

n−j+k0+1
t )2 = t2 + 2−2j+2 = s2 + 2−2j+1,

and similarly, on Ĵ (s; 2−n; n− k2), (T̂
n−j+k0+1
s )2 5 t2 − 2−2j+1. Therefore the

last probability above is

5 P(Ĵ (s; 2−n; n− j − k2 − 2) ∩ J (s; 2−n; n− j − k2 − 2)
∩ Ĵ (t; 2−n; n− j − k2 − 2) ∩ J (t; 2−n; n− j − k2 − 2)
∩{(T̂ n−j+k0+1

s )2 5 t2 − 2−2j+1} ∩ {(Tn−j+k0+1
t )2 = s2 + 2−2j+1}

∩ Ĵ (T̂ n−j+k0+1
s ; 2−( j−k0−1); j − k0 − k2 − 1)

∩ J (Tn−j+k0+1
s ; 2−( j−k0−1); j − k0 − k2 − 1)) :

Given the two events on the third line of the right-hand side, the last two
events are conditionally independent of the previous ones, and therefore, by
a slight extension of Propositions 7 and 11 to appropriate random times, the
right-hand side above is

5�2 2−2�( j−k0−k2−1)P(Ĵ (s; 2−n; n− j − k2 − 2) ∩ J (s; 2−n; n− j − k2 − 2)
∩ Ĵ (t; 2−n; n− j − k2 − 2) ∩ J (t; 2−n; n− j − k2 − 2)) : (40)

The four remaining events are still not quite independent. For instance, for
k 5 n− j − k2 − 2, the event G(Tk

s ; 2
k−n) enters into the de�nition of J (s; 2−n,

n− j − k2 − 2), and G(Tk
t ; 2

k−n) enters into the de�nition of J (t; 2−n; n− j −
k2 − 2). These events involve increments of W over non-disjoint regions (see
Fig. 3), the area of their intersection being bounded by C 24(k−n)+2. The key
observation is that the contributions of the increments of W over this inter-
section is small, typically of order 22(k−n), while W (Tk

t ) and W (Tk
s ) are much

larger, of order 2k−n.
To make this observation precise, we must introduce several sigma-�elds.

If T is a random point with the property that {T 5 u} ∈ Gu
t for all u= t,

then we set
GT

t = {F ∈F : F ∩ {T 5 u} ∈ Gu
t } :

Other sigma-�elds of interest are

Gk =G
Tk
s

s ∨ Ĝs
T̂ k

s
∨ GTk

t
t ∨ Ĝt

T̂ k
t
;

Hk =G
Tk+1
s

s ∨ Ĝs
T̂ k+1

s
∨ GTk

t
t ∨ Ĝt

T̂ k
t
:

De�ne the rectangles

Rk(u) = [(Tk
s )1; (T

k
s )1 + u]× [(T̂ k

t )2; (T
k
t )2] ;

R̂k(u) = [(T̂ k
s )1 − u; (T̂ k

s )1]× [(T̂ k
t )2; (T

k
t )2] ;

Qk(v) = [(T̂ k+1
s )1; (Tk+1

s )1]× [(Tk
t )2; (T

k
t )2 + v] ;

Q̂k(v) = [(T̂ k+1
s )1; (Tk+1

s )1]× [(T̂ k
t )2 − v; (T̂ k

t )2] ;
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Fig. 3. The overlapping increments

and the processes

Y1(u) =�Rk (u)W; Ŷ1(u) = �R̂k (u)W;

Y2(v) =�Qk (v)W; Ŷ2(v) = �Q̂k (v)W:

Consider the events

A1(k) = {∃u; u′ ∈ [0; 4M22(k−n)] : sup(Y 1(u′)− Y 1(u) ;

Ŷ 1(u′)− Ŷ 1(u))= (2k−n)5=3} ;

A2(k) = {∃v; v′ ∈ [0; 4M22(k−n)] : sup(Y 2(v′)− Y 2(v) ;

Ŷ 2(v′)− Ŷ 2(v))= (2k−n)5=3} :
Since the maximal variance of an increment appearing in the de�nition of
A1(k) and A2(k) is (4M22(k−n))2, and the typical increment is of order 22(k−n),
a standard calculation (increments are bounded by max Y i −min Y i) shows
that

P(A2(k) |Gk) 5 exp(−C(2n−k)2=3) on A2(k − 1)c ;

P(A1(k) |Hk−1)5 exp(−C(2n−k)2=3) on A1(k − 1)c :
(41)

Lemma 13. There exists a constant C such that

|P(G(Tk
s ; 2

k−n) |Gk)− p0|5 C(2k−n)1=4 on A1(k)c

and
|P(G(Tk

t ; 2
k−n) |Hk)− p0|5 C(2k−n)1=4 on A2(k)c :

The same inequalities hold if G is replaced by Ĝ, Tk
s by T̂ k

s , and Tk
t by T̂ k

t .
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Proof. We only prove the �rst inequality since the others are similar. Also,
we assume that k is even, so that Tk+1

s =  h(Tk
s ; 2

k−n); indeed, the other

case is analogous. Set B̃(u) = WTk
s

1 − Y 1(u) and observe that B̃(·) is inde-
pendent of Gk and its distribution is that of a Brownian motion. Moreover,
|Y 1(u)|5 (2k−n)5=3 on A1(k), so we can apply Lemma 9 to see that condi-

tional hitting probabilities for WTk
s

1 (·) given Gk di�er from the same hitting
probabilities for B̃ by no more than C(2k−n)2=3. The same occurs with the
remaining hitting probabilities. Together with Lemma 3, we get the desired
estimate.

We now continue the calculation started in (38) and (40). According to
these and the de�nition of the events J (·; ·; ·), the probability on the right-hand
side of (40) is bounded by

P(Ĝ(T̂ 0s ; 2
−n) ∩ Ĝ(T̂ 1s ; 2

−n+1) ∩ · · · ∩ Ĝ(T̂ n−j−k2−2
s ; 2−j−k2−2)

∩G(T 0s ; 2
−n) ∩ G(T 1s ; 2

−n+1) ∩ · · · ∩ G(Tn−j−k2−2
s ; 2−j−k2−2)

∩ Ĝ(T̂ 0t ; 2
−n) ∩ Ĝ(T̂ 1t ; 2

−n+1) ∩ · · · ∩ Ĝ(T̂ n−j−k2−2
t ; 2−j−k2−2)

∩G(T 0t ; 2
−n) ∩ G(T 1t ; 2

−n+1) ∩ · · · ∩ G(Tn−j−k2−2
t ; 2−j−k2−2)) : (42)

We have to distinguish whether or not one of the events Ai(k) occurs. Set
�(!) = inf{k = 0 : ! ∈ A1(k) ∪ A2(k)}. The set {� ¿ n− j − k2 − 2} is pre-
cisely the set

⋃n−j−k0−2
k=0 (A1(k) ∪ A2(k))c, and on this set, the probability of the

intersection in (42) can be bounded by iterated conditioning using Lemma 13,
yielding the bound K2−4�(n−j). Following the estimate used in the proof of
Proposition 11, consider �¿�. For l = 0; : : : ; n− j − k2 − 2, on {� = l}, we
remove in (42) all events after column l and we use Lemma 13 and (41) to
get the bound

2−4�l exp(−C22(n−l)=3)5 2−4�n+4(�−�)l :

Summing over 05 l5 n− j − k2 − 2 yields the bound K ′2−4�(n−j). This
bound, together with (39) and (40), yields that

P(F(s; n) ∩ F(t; n))5K ′′2−n2−(n−i)2−2�( j−k0−k2−1)2−4�(n−j)

= K2−(1+2�)n2−(n−i)2−2�(n−j) ;

which completes the proof of Lemma 2.

Remark 14. A variation on Theorem 1 would be the following statement: with
positive probability, there exists a continuous non-decreasing random function

 : [−1; 1]× 
→ [1; 2]2 such that 
(−1) = (1; 1), 
(1) = (2; 2), W (
(−1))¡
q, W (
(1))¿ q, and W (
(u)) = q for exactly one element u ∈ [−1; 1]. To see
why this statement is true, extend the path �n

t from �n
t (u0) to (2; 2) = �

n
t (v0)

by one vertical segment followed by one horizontal segment, and similarly,
extend �̂n

t from �̂n
t (u0) to (1; 1) = �̂

n
t (v̂0) (note that v0 = |(2; 2)− t| and v̂0 =
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|t − (1; 1)|). There are subsets G1(t; n) and Ĝ1(t; n) of F1(t; n) and F̂1(t; n),
respectively, such that

G1(t; n)⊂ {W (�n
t (u))−W (�n

t (2
−2n))= g(u)− 2−n; for 2−n 5 u5 v0} ;

Ĝ1(t; n)⊂ {W (�̂n
t (u))−W (�n

t (2
−2n))5 −g(u) + 2−n; for 2−n 5 u5 v̂0}

(the right-hand sides of the inclusions are similar to (3) and (4), except that u is
in the interval [2−n; v0] instead of [2−n; u0]). Let G(t; n) = F0(t; n) ∩ G1(t; n) ∩
Ĝ1(t; n). Since on F1(t; n), W (�n

t (u0))= g(u0)¿0, given that F1(t; n) occurs,
the probability that G1(t; n) occurs is just the probability that the sheet restricted
to �n

t does not hit zero during [u0; v0], which is greater than the probability
that a Brownian motion started at g(u0) does not hit 0 before time v0 − u0, and
is therefore bounded below by a positive constant that does not depend on t
or n. In particular, Lemma 2(a) and (b) remain valid with F1(t; n) replaced by
G1(t; n) and F(t; n) by G(t; n). Lemma 2(c) also clearly remains valid, since
G(s; n) ∩ G(t; n) ⊂ F(s; n) ∩ F(t; n). Therefore the proof of Theorem 1 carries
over to prove the claimed statement.

Acknowledgement. The authors thank an anonymous referee for a detailed reading of the
�rst version of this paper that uncovered numerous small errors and led to signi�cant im-
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