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Summary. The notion of bridge is introduced for systems of coupled forward–
backward stochastic di�erential equations (FBSDEs, for short). This notion
helps us to unify the method of continuation in �nding adapted solutions
to such FBSDEs over any �nite time durations. It is proved that if two
FBSDEs are linked by a bridge, then they have the same unique solvability.
Consequently, by constructing appropriate bridges, we obtain several classes
of uniquely solvable FBSDEs.
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1. Introduction

In this paper, we consider the following system of coupled forward–backward
stochastic di�erential equations (FBSDEs for short):

dX (t) = b(t; X (t); Y (t); Z(t)) dt + �(t; X (t); Y (t); Z(t)) dW (t) ;

dY (t) = h(t; X (t); Y (t); Z(t)) dt + Z(t) dW (t) ; (1.1)

X (0) = x; Y (T ) = g(X (T )) :
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Here, W (t) is a d-dimensional Brownian motion de�ned on some complete
probability space (
;F; {Ft}t=0; P), satisfying the usual conditions (see Sect. 2
or 8 for details). Processes X (t); Y (t) and Z(t) are taking values in Rn, Rm

and Rm×d, respectively. These are processes that we are looking for and they
are required to be {Ft}t=0-adapted. Functions b; �; h and g are given and they
are all allowed to depend on !∈
; for the notational simplicity, we have sup-
pressed ! and we will do so below. The vector x∈Rn is given as the initial
value of X (·).
It is seen that (1.1) is actually a system of stochastic di�erential equations

for the processes X (t) and Y (t). The process Z(t) seems extra. However,
we point out that it is the presence of this process that makes it possi-
ble for us to �nd adapted processes X (t) and Y (t) to satisfy (1.1). This
is an essential feature that the FBSDEs have. See, e.g., 13, 10, 9 for more
details.
There are several methods in studying the solvability of above FBSDEs

(1.1). Here, by solvability, we mean to �nd adapted processes (X (·); Y (·);
Z(·)) satisfying (1.1) (see De�nition 2.2 for details). In 1, 15, a Picard type
iteration was used. In that approach, since the contraction mapping theo-
rem was applied, the time duration T was assumed to be su�ciently small
in order to enforce certain map to be contractive. It was pointed out in 1
that for some cases, if T is large, the system might have no adapted solu-
tions. For the problem in any �nite time duration, Ma and Yong 10 �rstly
used the stochastic optimal control theory reducing the solvability of FBS-
DEs to the existence of nonempty nodal set for the viscosity solutions to cer-
tain Hamilton–Jacobi–Bellman equations; and in some cases, such nodal sets
were proved to be nonempty. This gives a positive answer to the solvability
for some classes of FBSDEs in any �nite time duration. In 9, inspired
by 10, Ma, Protter and Yong introduced a method called the Four-Step-
Scheme to attack the problem. In this approach, the solvability problem has
been reduced to the solvability of some system of parabolic partial di�er-
ential equations. As a matter of fact, this is the reverse procedure of the
classical Feynman–Kac Formula (which transforms the solvability of PDEs
to that of SDEs). It is interesting that by the Four-Step-Scheme, some rela-
tions among the processes X (·); Y (·) and Z(·) can be established. In 4, some
special case of FBSDEs with T =∞ was discussed by using the similar ap-
proach of 9. See 3 for some other related aspects. However, In 10, 9, 4, 3,
the co-e�cients have to be deterministic and the di�usion coe�cient � in the
forward equation (see (1.1)) has to be nondegenerate (in 3, a very special
degenerate case was treated) and independent of Z(t). Recently, some fur-
ther work is undergoing along this direction, in which, the coe�cients are
now allowed to be random and � can be degenerate. However, the equations
have to be linear and some other conditions are imposed for certain technical
reasons 11, 12. On the other hand, Hu and Peng 7 and Peng and Wu 16 dis-
cussed the problem by another approach. They introduced certain monotonicity
conditions under which, the solvability was established in any time duration.
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Unfortunately, the monotonicity conditions that imposed in 7, 16 are not satis-
�ed by many readily solvable decoupled FBSDEs (see an example in Sect. 5).
By observing the approaches of 7, 16, we �nd that the main idea is to

use the method of continuation. This method has been widely used in prov-
ing the existence of solutions to elliptic partial di�erential equations (see
5, for example). In this paper, we are going to make this approach for
FBSDEs more systematic. The key fact is that by using the method of con-
tinuation, you may start with a known solvable FBSDE to “reach” another
class of FBSDEs, which are not known if it is solvable and now one can
prove that it is solvable. The way of “reach” is to apply Itô’s formula to-
gether with some sort of “monotonicity” or “coercivity” conditions to get cer-
tain a priori estimates. More precisely, we will apply Itô’s formula to the
function 〈

�(t)
(
X̂ (t)
Ŷ (t)

)
;
(
X̂ (t)
Ŷ (t)

)〉
; (1.2)

with some suitable C1 symmetric matrix valued function �(·), and X̂ (·) and
Ŷ (·) are the di�erences of the �rst two components of the two possible adapted
solutions to (1.1). Here, instead of just considering the cross term between
X̂ (t) and Ŷ (t) (like in 7, 16), we consider (X̂ (t); Ŷ (t)) as a whole. Further,
the t-dependence of the function �(·) will give us some additional advan-
tage. In this paper, we call such a �(·) (with certain properties) a bridge.
This notion plays a central role in our approach. It turns out that if two
FBSDEs are linked by a bridge, then, they have the same unique solv-
ability. By constructing suitable bridges, we will obtain several interesting
classes of uniquely solvable FBSDEs. Relevant results of 13, 1, 15, 7, 16 are
recovered.
We would like to mention that the study of backward SDEs can be traced

back to Bismut 2. A systematic treatment concerning this matter was carried
out in 13. The readers are referred to the survey paper 6 for more details
and references concerning BSDEs. For a di�erent approach for (linear) FBS-
DEs, see 17.
The rest of this paper is organized as follows. In Section 2, we make some

preliminaries and state the main result. A class of nonsolvable FBSDEs are
presented. Section 3 is devoted to the proof of the main result. The method
of continuation is carried out there. Some properties of the bridge are dis-
cussed in Sect. 4. In Sects. 5 and 6, we construct some bridges for certain
classes of FBSDEs, which gives the unique solvability for these equations by
our main result.
After this paper has been completed, we have received the preprint 14 of

Pardoux and Tang, in which, under some structural conditions, they proved the
existence and uniqueness of adapted solutions to FBSDEs, among some other
things. Essentially, their results say that if the coupling of the forward and
backward parts are not very “strong” (one way or another), then the FBSDEs
are solvable. We do not have such restrictions. Our approach is di�erent from
theirs.
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2. Preliminaries and the main result

We let Rn be the n-dimensional Euclidean space with the usual Euclidean
norm |·| and the usual Euclidean inner product 〈·; ·〉. Also, let Rm×d be the
Hilbert space consists of all (m× d)-matrices with the inner product

〈A; B〉 �= tr{ABT}; ∀A; B∈Rm×d: (2.1)

Thus, the norm |A| of A induced by inner product (2.1) is given by |A| =√
tr{AAT}. We see that if ‖A‖ denotes the usual norm of the matrix A

(regarding it as a linear operator), then |·| and ‖·‖ are equivalent since Rm×d

is a �nite dimensional space. More precisely, we have the estimates:

‖A‖ �=
√
max �(AAT )5

√
tr{AAT} = |A|5

√
m ∧ d‖A‖; ∀A ∈ Rm×d ;

(2.2)

where �(AAT ) is the set of all eigenvalues of AAT and m ∧ d = min{m; d}.
We will see that in our discussion, the norm |·| in Rm×d induced by (2.1) is
more convenient. Next, let S n be the set of all (n× n) symmetric matrices. In
what follows, whenever A is a square matrix, (with � being a scalar), by A+ �,
we mean A+ �I . For any A∈S n; by A= �, we mean that A− � is positive
semide�nite. The meaning of A5 −� is similar. For simplicity of notation,
we will denote M = Rn ×Rm ×Rm×d; a generic point in M is denoted by
� = (x; y; z) with x∈Rn, y ∈ Rm and z∈Rm×d. The norm in M is de�ned by
(note (2.2) for the norm |z|)

|�| �= {|x|2 + |y|2 + |z|2}1=2; ∀� ≡ (x; y; z)∈M : (2.3)

Similarly, we will use � = (X; Y; Z), and so on.
Now, we let T ¿0 be �xed and (
;F; P) be a �xed complete proba-

bility space on which is de�ned a d-dimensional standard Brownian motion
W = {W (t): t ∈ [0; T ]}. We further assume that the �ltration {Ft}t=0 is gen-
erated by W, augmented by all the P-null sets in F so that t 7→Ft is contin-
uous. For any sub-�-�eld G of F, we denote L2G(
;R

m) to be the set of all
G-measurable Rm-valued square-integrable random variables. Let L2F(0; T ;R

n)
be the set of all {Ft}t=0-progressively measurable processes X (·) valued in
Rn such that

T∫
0
E|X (t)|2 dt¡∞ :

Also, we let L2F(
;C([0; T ];R
n)) be the set of all {Ft}t=0-progressively mea-

surable continuous processes X (·) valued in Rn, such that

E sup
t∈[0;T ]

|X (t)|2¡∞ :

Further, we de�ne

M[0; T ] �= L2F(
;C([0; T ];R
n))× L2F(
;C([0; T ];Rm))× L2F(0; T ;Rm×d) :

(2.4)
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The norm of this space is de�ned by

‖(X (·); Y (·); Z(·))‖=
{
E sup
t∈[0;T ]

|X (t)|2 + E sup
t∈[0;T ]

|Y (t)|2 + E
T∫
0
|Z(t)|2 dt

}1=2
;

∀(X (·); Y (·); Z(·))∈M[0; T ] : (2.5)

According to the notation of the space M , we will also use �(t) ≡ (X (t); Y (t);
Z(t)), and so on. It is easy to see that M[0; T ] is a Banach space under the
norm (2.5).
Next, we let L2F(0; T ;W

1;∞(M ;Rn ×Rn×d ×Rm)) be the set of all func-
tions f: [0; T ]×M × 
→ Rn ×Rn×d ×Rm, such that for any �xed �∈M;
(t; !) 7→ f(t; �;!) is {Ft}t=0-progressively measurable, f(·; 0; ·)∈L2F
(0; T ;Rn ×Rn×d ×Rm) and there exists a constant L¿0, such that

|f(t; �;!)− f(t; ��;!)|5 L|�− ��|; ∀�; ��∈M; t∈ [0; T ]; a:s:
We may similarly de�ne L2FT (
;W

1;∞(Rn;Rm)). Denote

H [0; T ] = L2F(0; T ;W
1;∞(M ;Rn ×Rn×d ×Rm))× L2FT (
;W 1;∞(Rn;Rm)):

(2.6)
Any generic element in H [0; T ] is denoted by � ≡ (b; �; h; g). Thus,

� ≡ (b; �; h; g)∈H [0; T ]⇔


b∈L2F(0; T ;W 1;∞(M ;Rn)) ;

�∈L2F(0; T ;W 1;∞(M ;Rn×d)) ;

h∈L2F(0; T ;W 1;∞(M ;Rm)) ;

g∈L2FT (
;W 1;∞(Rn;Rm)) ;

(2.7)

where the space L2F(0; T ;W
1;∞(M ;Rn)), etc. are de�ned in an obvious way.

Finally, we denote

H[0; T ] = L2F(0; T ;R
n)× L2F(0; T ;Rn×d)× L2F(0; T ;Rm)× L2FT (
;Rm) :

(2.8)
An element inH[0; T ] is denoted by  ≡(b0; �0; h0; g0) with b0∈L2F(0; T ;Rn);
�0∈L2F(0; T ;Rn×d); h0∈L2F(0; T ;Rm) and g0∈L2FT (
;Rm). We note that the
range of the elements in H [0; T ] and H[0; T ] are all in Rn ×Rn×d ×Rm ×
Rm. Hence, for any � ≡ (b; �; h; g)∈H [0; T ] and  = (b0; �0; h0; g0)∈H[0; T ],
we can de�ne

� +  = (b+ b0; � + �0; h+ h0; g+ g0)∈H [0; T ] : (2.9)

Now, for any � ≡ (b; �; h; g)∈H [0; T ];  ≡ (b0; �0; h0; g0)∈H[0; T ] and
x∈Rn, we associate them with the following FBSDEs on [0; T ] :

dX (t) = {b(t;�(t)) + b0(t)} dt + {�(t;�(t)) + �0(t)} dW (t) ;

dY (t) = {h(t;�(t)) + h0(t)} dt + Z(t) dW (t) ; (2.10)�; ; x

X (0) = x; Y (T ) = g(X (T )) + g0 ;
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with �(t) ≡ (X (t); Y (t); Z(t)). In what follows, sometimes, we will simply
identify the FBSDEs (2:10)�; ; x with (�; ; x) or even with � (since  and x
are not essential). Let us now introduce the following de�nition.

De�nition 2.1. A process �(·) ≡ (X (·); Y (·); Z(·))∈M[0; T ] is called an
adapted solution of (2:10)�; ; x; if the following holds for any t∈ [0; T ];
almost surely.

X (t) = x +
t∫
0
{b(t;�(s)) + b0(s)} ds +

t∫
0
{�(t;�(s)) + �0(s)} dW (s) ;

Y (t) = g(X (T )) + g0 −
T∫
t
{h(t;�(s)) + h0(s)} ds −

T∫
t
Z(s) dW (s) :

(2.11)�; ; x

When (2:10)�; ; x admits a unique adapted solution; we say that (2:10)�; ; x is
uniquely solvable.

We see that (2.11)�; ; x is the integral form of (2.10)�; ; x. In what follows,
we will not distinguish (2.10)�; ; x and (2.11)�; ; x.

De�nition 2.2. Let T ¿0. A �∈H [0; T ] is said to be solvable if for any
x∈Rn and ∈H[0; T ]; Eq. (2:10)�; ; x admits a unique adapted solution �(·)∈
M[0; T ]. The set of all �∈H [0; T ] that is solvable is denoted by S[0; T ]. Any
�∈H [0; T ] \S[0; T ] is said to be nonsolvable.
We recall that there are several examples of nonsolvable FBSDEs presented

in 1 and 16. Also, in 10, it was proved that if in (1.1), the term Z(t) dW (t)
in the backward part is replaced by �̂(X (t); Y (t); Z(t)) dW (t); and �̂ has a
“small” range, then, (1.1) could be nonsolvable. Here, we are going to present
another type of result, which gives a big class of nonsolvable FBSDEs with
an extremely simple proof.

Proposition 2.3. Let the following two-point boundary value problem for a
system of linear ordinary di�erential equations admit no solutions:(

Ẋ (t)
Ẏ (t)

)
=A

(
X (t)
Y (t)

)
;

X (0) = x; Y (T ) = GX (T ) ;
(2.12)

where A and G are certain matrices. Then; for any �∈L2F(0; T ;W 1;∞

(M ;Rn×d)); the following FBSDEs:

d
(
X (t)
Y (t)

)
=A

(
X (t)
Y (t)

)
dt +

(
�(t;�(t))
Z(t)

)
dW (t) ;

X (0) = x; Y (T ) = GX (T ) ;
(2.13)

admits no adapted solutions.

Proof. Suppose (2.13) admits an adapted solution �(·) ≡ (X (·); Y (·); Z(·)).
Then, (EX (·); EY (·)) is a solution of (2.12), a contradiction. This proves the
assertion.
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There are many examples of systems like (2.12) which does not admit a
solution. Here is a very simple one: (n = m = 1)

Ẋ = Y ;

Ẏ = −X ;
X (0) = x; Y (T ) = −X (T ) :

(2.14)

We can easily show that for T = k�+ 3
4� (k, nonnegative integer), the

above two-point boundary value problem does not admit a solution for any
x ∈ R\{0} and it admits in�nitely many solutions for x = 0. A consequence
of Proposition 2.3 and the above example (2.14) is the following conclusion.

Corollary 2.4. For any T ¿0; H [0; T ]-S[0; T ]; that is; nonsolvable FBSDEs
exist over any time durations.

Proof. From (2.14) and time scaling, we can construct a nonsolvable two-point
boundary value problem for a system of linear ordinary di�erential equations
of (2.12) type with the unknowns X and Y taking values in Rn and Rm,
respectively. Then, Proposition 2.3 applies.

Some more interesting comments related to the above example will be
given later. Also, in Sect. 6, we will say something more about (2.12) and
(2.13).
Now, let us introduce the following notions, which will play the central

role in this paper.

De�nition 2.5. Let T ¿0 and � ≡ (b; �; h; g) ∈ H [0; T ]. A C1 function

� ≡
(
A BT

B C

)
: [0; T ]→ Sn+m ;

with A : [0; T ]→ Sn; B : [0; T ]→ Rm×n and C : [0; T ]→ Sm; is called a bridge
extending from � (de�ned on [0; T ]) if there exist some constants K; �¿0;
such that

C(T )5 0; A(t)= 0; ∀t ∈ [0; T ] ;

�(0)5 K

(
I 0

0 0

)
;

(2.15)

and either (2.16) and (2.17) or (2.16)′ and (2.17)′ hold:〈
�(T )

(
x − �x

g(x)− g( �x)

)
;

(
x − �x

g(x)− g( �x)

)〉
= �|x − �x|2; ∀x; �x ∈ Rn :

(2.16)〈
�̇(t)

(
x − �x

y − �y

)
;
(
x − �x
y − �y

)〉
+ 2

〈
�(t)

(
x − �x

y − �y

)
;

(
b(t; �)− b(t; ��)
h(t; �)− h(t; ��)

)〉

+

〈
�(t)

(
�(t; �)− �(t; ��)

z − �z

)
;
(
�(t; �)− �(t; ��)

z − �z

)〉
5 −�|x − �x|2; ∀�; �� ∈ M; a:e: t ∈ [0; T ]; a:s: (2.17)
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�(T )

(
x − �x

g(x)− g( �x)

)
;

(
x − �x

g(x)− g( �x)

)〉
= 0; ∀x; �x ∈ Rn :

(2.16)′〈
�̇(t)

(
x − �x

y − �y

)
;

(
x − �x

y − �y

)〉
+ 2

〈
�(t)

(
x − �x

y − �y

)
;

(
b(t; �)− b(t; ��)
h(t; �)− h(t; ��)

)〉

+

〈
�(t)

(
�(t; �)−�(t; ��)

z − �z

)
;

(
�(t; �)−�(t; ��)

z − �z

)〉
5−�{|y − �y|2+|z − �z|2} ;

∀�; �� ∈ M; a:e: t ∈ [0; T ]; a:s: (2.17)′

If (2.15)–(2.17) (resp. (2.15), (2.16)′ and (2.17)′) hold; we call � a type
(I) (resp. type (II)) bridge extending from � (de�ned on [0; T ]). The set of
all type (I) and type (II) bridges extending from � (de�ned on [0; T ]) are
denoted by BI (�; [0; T ]) and BII (�; [0; T ]); respectively. Finally; we let

B(�; [0; T ]) = BI (�; [0; T ]) ∪BII (�; [0; T ]) ;
B s(�; [0; T ]) = BI (�; [0; T ]) ∩BII (�; [0; T ]) :

(2.18)

Any element � ∈ B s(�; [0; T ]) is called a strong bridge extending from
� (de�ned on [0; T ]).

De�nition 2.6. Let T ¿0 and �; ��∈H [0; T ]. We say that they are linked by
a direct bridge if

{BI (�; [0; T ]) ∩BI ( ��; [0; T ])} ∪ {BII (�; [0; T ]) ∩BII ( ��; [0; T ])}-∅ ; (2.19)
and we say that they are linked by a bridge, if there are �1; : : : ; �k ∈ H [0; T ],
such that with �0 = � and �k+1 = ��; it holds

{BI (�i; [0; T ]) ∩BI (�i+1; [0; T ])}
∪{BII (�i; [0; T ]) ∩BII (�i+1; [0; T ])}-∅; 05 i 5 k : (2.20)

We may similarly de�ne the notion that � and �� are linked by a (direct)
strong bridge. Our main result can be stated as follows:

Theorem 2.7. Let T ¿0 and �1; �2 ∈ H [0; T ] be linked by a bridge. Then;
�1 ∈S[0; T ] if and only if �2 ∈S[0; T ].
The above theorem tells us that if the FBSDEs associated with �1 is solv-

able, so is the one associated with �2, provided �1 and �2 are linked by
a bridge. In applications, one of the FBSDEs is known to be solvable and
the other is to be solved. Then, the problem is reduced to construct appropri-
ate bridges. We will see this later.
To conclude this section, let us give the following result, which enables us

to enlarge the class of solvable FBSDEs in a simple way. This result will be
useful in Sect. 6.
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Proposition 2.8. Let T ¿0 and (1.1) be solvable on [0; T ]. Then; for any
� ∈ R; the following FBSDE is also solvable on [0; T ] :
dX (t) = {�X (t) + e�tb(t; e−�t�(t))} dt + e�t�(t; e−�t�(t)) dW (t) ;

dY (t) = {�Y (t) + e�th(t; e−�t�(t))} dt + Z(t) dW (t) ;

X (0) = x; Y (T ) = e�T g(e−�TX (T )) :

(2.21)

Proof. Let �(t) ≡ (X (t); Y (t); Z(t)) ∈M[0; T ] be a solution of (1.1). Then,
we can check that �̃(t) �= e�t�(t) is a solution of (2.21).

3. Method of continuation

In this section, we are going to prove Theorem 2.7.
Let �i ≡ (bi; �i; hi; gi) ∈ H [0; T ](i = 1; 2). Clearly, by induction, it su�ces

to prove our theorem for the case that �1 and �2 are linked by a direct bridge.
We now assume this. For any  ≡ (b0(·); �0(·); h0(·); g0) ∈H[0; T ]; x ∈ Rn and
� ∈ [0; 1], we consider the following system of FBSDEs:

dX (t) = {(1− �)b1(t;�(t)) + �b2(t;�(t)) + b0(t)} dt
+ {(1− �)�1(t;�(t)) + ��2(t;�(t)) + �0(t)} dW (t) ;

dY (t) = {(1− �)h1(t;�(t)) + �h2(t;�(t)) + h0(t)} dt
+Z(t) dW (t) ;

X (0) = x; Y (T ) = (1− �)g1(X (T )) + �g2(X (T )) + g0 :

(3.1)�; x

We may give the de�nition of the (adapted) solutions to above system (3.1)�; x
similar to De�nition 2.1. It is clear that (3.1)0; x and (3.1)

1
; x coincide with

(2.10)�1 ; ; x and (2.10)�2 ; ; x, respectively. Let us assume that (3.1)
0
; x is uniquely

solvable for any  ∈H[0; T ] and x ∈ Rn. We want to prove the unique solv-
ability of (3.1)1; x for all  ∈H[0; T ] and x ∈ Rn.
Now, let us explain our main idea. We start to solve (3.1)0; x, i.e.,

(2.10)�1 ; ; x, which is possible by our assumption. We show that there exists a
�xed step-length �0¿0, such that if for some � ∈ [0; 1), (3.1)�; x is uniquely
solvable for any  ∈H[0; T ] and x ∈ Rn, then the same conclusion holds for
� being replaced by �+ �5 1 with � ∈ [0; �0]. Once this has been proved, we
can increase the parameter � step by step and �nally reach � = 1; which gives
the unique solvability of system (2.10)�2 ; ; x. This idea is adopted from [7, 16].
For solving partial di�erential equations, such a method, called the method of
continuation, is standard and has been frequently used (see [5], for example).
We now establish some a priori estimates for the solutions of (3.1)�; x,

which will be crucial below.

Lemma 3.1. Let � ∈ [0; 1]. Let �(·) �= (X (·); Y (·); Z(·)) and ��(·) �= ( �X (·);
�Y (·); �Z(·)) be adapted solutions of (3.1)�; x and (3.1)��; �x; respectively; with
 = (b0; �0; h0; g0); � = ( �b0; ��0; �h0; �g0) ∈H[0; T ] and x; �x ∈ Rn. Then; the
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following estimate holds:

‖�(·)− ��(·)‖2M[0; T ]
≡ E sup

t∈[0; T ]
|X (t)− �X (t)|2 + E sup

t∈[0; T ]
|Y (t)− �Y (t)|2 + E

T∫
0
|Z(t)− �Z(t)|2 dt

5 C
{
|x − �x|2 + E|g0 − �g0|2

+E
T∫
0
{|b0(t)− �b0(t)|2 + |�0(t)− ��0(t)|2 + |h0(t)− �h0(t)|2} dt

}
:

(3.2)Proof. We denote
X̂ (t) = X (t)− �X (t); Ŷ (t) = Y (t)− �Y (t) ;
Ẑ(t) = Z(t)− �Z(t); �̂(t) = �(t)− ��(t) ;
b̂i(t) = bi(t;�(t))− bi(t; ��(t));
�̂i(t) = �i(t;�(t))−�i(t; ��(t)) ;
ĥi(t) = hi(t;�(t))− hi(t; ��(t));
ĝi(T ) = gi(X (T ))−gi( �X (T )) ;

i=1; 2 ;

b̂0(t) = b0(t)− �b0(t); �̂0(t) = �0(t)− ��0(t) ;
ĥ0(t) = h0(t)− �h0(t); ĝ0 = g0 − �g0; x̂ = x − �x :

(3.3)

Note that �i ∈ H [0; T ] implies that all the functions bi; �i; hi; gi are uniformly
Lipschitz continuous. Suppose the common Lipschitz constant is L¿0. Now,
applying Itô’s formula to |X̂ (t)|2, we obtain that

|X̂ (t)|2 = |x̂|2 + 2
t∫
0
〈X̂ (s); (1− �) b̂1(s) + � b̂2(s) + b̂0(s)〉 ds

+
t∫
0
|(1− �)�̂1(s) + ��̂2(s) + �̂0(s)|2 ds

+2
t∫
0
〈X̂ (s); [(1− �)�̂1(s) + ��̂2(s) + �̂0(s)] dW (s)〉

5 |x̂|2 + C
t∫
0
|X̂ (s)|{|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|+ | b̂0(s)|} ds

+C
t∫
0
{|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|+ |�̂0(s)|}2 ds

+2
t∫
0
〈X̂ (s); [(1− �)�̂1(s) + ��̂2(s) + �̂0(s)] dW (s)〉 ; (3.4)

with some constant C¿0. Hereafter, C will be some generic constant, which
can be di�erent from line to line. By taking the expectation and using
Gronwall’s inequality, we obtain

E|X̂ (t)|2 5 CE
{
|x̂|2 +

T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2 + | b̂0(t)|2 + |�̂0(t)|2} dt

}
;

(3.5)
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with some constant C = C(L; T ). Next, applying Burkholder–Davis–Gundy’s
inequality [8] to (3.4) (note (3.5)), one has that

E sup
t∈[0; T ]

|X̂ (t)|2 5 C
{
|x̂|2+E

T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2 + | b̂0(t)|2 + |�̂0(t)|2} dt

}
:

(3.6)

On the other hand, by applying Itô’s formula to |Ŷ (t)|2, we have

|Ŷ (t)|2 +
T∫
t
|Ẑ(s)|2 ds

= |Ŷ (T )|2 − 2
T∫
t
〈Ŷ (s); (1− �) ĥ1(s) + � ĥ2(s) + ĥ0(s)〉 ds

−2
T∫
t
〈Ŷ (s); Ẑ(s) dW (s)〉

5 C
{
|X̂ (T )|2 + |ĝ0|2 +

T∫
t
{|X̂ (s)|2 + |Ŷ (s)|2 + | ĥ0(s)|2}2 ds

}
−1
2

T∫
t
|Ẑ(s)|2 ds − 2

T∫
t
〈Ŷ (s); Ẑ(s) dW (s)〉 : (3.7)

Similar to the procedure of getting (3.6), we obtain

E sup
t∈[0; T ]

|Ŷ (t)|2 + E
T∫
0
|Ẑ(t)|2 dt

5 CE
{
|X̂ (T )|2 + |ĝ0|2 +

T∫
0
{|X̂ (t)|2 + | ĥ0(t)|2} dt

}
: (3.8)

We emphasize that the constants C appeared in (3.6) and (3.8) only depend on
L and T . Also, in deriving these two estimates, only the condition �i ∈ H [0; T ]
has been used. Now, we apply Itô’s formula to〈

�(t)
(
X̂ (t)
Ŷ (t)

)
;
(
X̂ (t)
Ŷ (t)

)〉
:

It follows that

E

〈
�(T )

(
X̂ (T )
Ŷ (T )

)
;

(
X̂ (T )

Ŷ (T )

)〉
− E

〈
�(0)

(
x̂

Ŷ (0)

)
;
(

x̂
Ŷ (0)

)〉
= E

T∫
0

{〈
�̇(t)

(
X̂ (t)
Ŷ (t)

)
;
(
X̂ (t)
Ŷ (t)

)〉
+2
〈
�(t)

(
X̂ (t)
Ŷ (t)

)
;
(
(1− �) b̂1(t) + � b̂2(t) + b̂0(t)
(1− �) ĥ1(t) + � ĥ2(t) + ĥ0(t)

)〉
+
〈
�(t)

(
(1− �)�̂1(t) + ��̂2(t) + �̂0(t)

Ẑ(t)

)
;(

(1− �)�̂1(t) + ��̂2(t) + �̂0(t)
Ẑ(t)

)〉}
dt : (3.9)
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Let us separate two cases.
Case 1. Suppse � ∈ BI (�i; [0; T ]) (i = 1; 2). In this case, we have

F(�) �=

〈
�(T )

(
X̂ (T )

(1− �)ĝ1(T ) + �ĝ2(T )

)
;

(
X̂ (T )

(1− �)ĝ1(T ) + �ĝ2(T )

)〉
= 〈A(T )X̂ (T ); X̂ (T )〉+ 2〈B(T )X̂ (T ); (1− �)ĝ1(T ) + �ĝ2(T )〉
+〈C(T ){(1− �)ĝ1(T ) + �ĝ2(T )}; (1− �)ĝ1(T ) + �ĝ2(T )〉

= �2〈C(T ){ĝ2(T )− ĝ1(T )}; {ĝ2(T )− ĝ1(T )}〉
+�{· · ·}+ {· · ·}= �|X̂ (T )|2; ∀� ∈ [0; 1] ; (3.10)

where {· · ·} are terms that do not depend on �. The above holds because
C(T )5 0 implies that F(�) is concave in �, whereas (2.16) tells us that
(recall � ∈ BI (�i; [0; T ]); i = 1; 2)

F(0); F(1)= �|X̂ (T )|2 : (3.11)

Then, (3.10) follows easily. Similarly, we have

f(�) �=

〈
�̇(t)

(
X̂ (t)

Ŷ (t)

)
;

(
X̂ (t)

Ŷ (t)

)〉

+2

〈
�(t)

(
X̂ (t)

Ŷ (t)

)
;

(
(1− �) b̂1(t) + � b̂2(t)
(1− �) ĥ1(t) + � ĥ2(t)

)〉

+

〈
�(t)

(
(1− �)�̂1(t) + ��̂2(t)

Ẑ(t)

)
;

(
(1− �)�̂1(t) + ��̂2(t)

Ẑ(t)

)〉
= �2〈A(t){�̂2(t)− �̂1(t)}; �̂2(t)− �̂1(t)〉
+�{· · ·}+ {· · ·}5 −�|X̂ (t)|2; ∀� ∈ [0; 1] ; (3.12)

since now A(t)= 0 which implies f(�) is convex in �. Then, we have

Left-hand side of (3.9)

= E
{〈A(T )X̂ (T ); X̂ (T )〉

+2〈B(T )X̂ (T ); (1− �)ĝ1(T ) + �ĝ2(T ) + ĝ0〉
+ 〈C(T ){(1− �)ĝ1(T ) + �ĝ2(T ) + ĝ0}; (1− �)ĝ1(T ) + �ĝ2(T ) + ĝ0〉}

−E
〈
�(0)

(
x̂

Ŷ (0)

)
;

(
x̂

Ŷ (0)

)〉
= �E|X̂ (T )|2 − 2|B(T )|E(|X̂ (T )||ĝ0|)− 2L|C(T )|E(|X̂ (T )||ĝ0|)
−|C(T )|E|ĝ0|2 − K |x̂|2

= 1
2�E|X̂ (T )|2 − C{|x̂|2 + E|ĝ0|2} : (3.13)
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Here, the constant C¿0 only depends on K; L; �; |B(T )| and |C(T )|. Similarly,
we have the following estimate for the right-hand side of (3.9).

Right-hand side of (3.9)

5 E
T∫
0

{
−�|X̂ (t)|2 dt + 2

〈
�(t)

(
X̂ (t)

Ŷ (t)

)
;

(
b̂0(t)

ĥ0(t)

)〉

+2

〈
�(t)

(
(1− �)�̂1(t) + ��̂2(t)

Ẑ(t)

)
;

(
�̂0(t)

0

)〉

+

〈
�(t)

(
�̂0(t)

0

)
;

(
�̂0(t)

0

)〉}
dt

5 −�
2
E
T∫
0
|X̂ (t)|2 dt + C�E

T∫
0
{| b̂0(t)|2 + |�̂0(t)|2 + | ĥ0(t)|2} dt

+�E
T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2} dt ; (3.14)

with the constant C�¿0 only depending on the bounds of |�(t)|, as well as
�; L and the undetermined small positive number �¿0. Combining (3.13) and
(3.14) and noting (3.8), we have

E|X̂ (T )|2 + E
T∫
0
|X̂ (t)|2 dt

5 C�

{
|x̂|2 + E|ĝ0|2 + E

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}

+
2�
�
E
T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2}dt

5 C�

{
|x̂|2 + E|ĝ0|2 + E

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}

+ � �CE
{
|X̂ (T )|2 + |ĝ0|2 +

T∫
0
{|X̂ (t)|2 + |ĥ0(t)|2}dt

}
; (3.15)

with the constant �C independent of �¿0, and C� might be di�erent from that
appeared in (3.14). Thus, we may choose suitable �¿0, such that

E|X̂ (T )|2 + E
T∫
0
|X̂ (t)|2 dt

5 CE
{
|x̂|2 + |ĝ0|2 +

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}
: (3.16)



550 J. Yong

Then, return to (3.8), we obtain

E sup
t∈[0; T ]

|Ŷ (t)|2 + E
T∫
0
|Ẑ(t)|2 dt

5 CE
{
|x̂|2 + |ĝ0|2 +

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}
: (3.17)

Finally, by (3.6), we have

E sup
t∈[0; T ]

|X̂ (t)|2 5 CE
{
|x̂|2 + |ĝ0|2 +

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}
:

(3.18)
Hence, (3.2) follows from (3.17) and (3.18).
Case 2. Let � ∈ BII (�i; [0; T ]) (i = 1; 2) now. In this case, we still have

(3.6), (3.8) and (3.9). Further, we have inequalities similar to (3.10) and (3.12)
with |X̂ (T )|2 and |X̂ (t)|2 replaced by 0 and |Ŷ (t)|2 + |Ẑ(t)|2, respectively.
Thus, it follows that

Left-hand side of (3.9)= −�E|X̂ (T )|2 − C�{|x̂|2 + E|ĝ0|2} ; (3.19)

with the constant C�¿0 depending on K; L; �; |B(T )|; |C(T )|, and the undeter-
mined constant �¿0. Whereas,

Right-hand side of (3.9)

5 −�
2
E
T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2}dt

+ �E
T∫
0
|X̂ (t)|2 dt + C�E

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt : (3.20)

Now, combining (3.19) and (3.20) and using (3.6), we obtain (for suitable
choice of �¿0)

E
T∫
0
{|Ŷ (t)|2 + |Ẑ(t)|2}dt

5 CE
{
|x̂|2 + |ĝ0|2 +

T∫
0
{|b̂0(t)|2 + |�̂0(t)|2 + |ĥ0(t)|2}dt

}
: (3.21)

Finally, by (3.6) and (3.8) again, we obtain the estimate (3.2).

An easy and interesting consequence of Lemma 3.1 is the following.

Corollary 3.2. Let � ∈ H [0; T ] with B(�; [0; T ])-�. Then; for any  ∈
H[0; T ] and x ∈ Rn; (2:10)�; ; x admits at most one adapted solution.

Proof. We take �1 = �2 = � in Lemma 3.1. Then, (3.2) gives the unique-
ness.
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From Corollary 3.2, we see that for the � associated with (2.14), B(�;
[0; T ]) = � for T = k�+ 3

4�; k = 0.
Now, we prove the following continuation lemma.

Lemma 3.3. Let �1;�2 ∈ H [0; T ] be linked by a direct bridge. Then; there
exists an absolute constant �0¿0; such that if for some � ∈ [0; 1]; (3:1)�; x is
uniquely solvable for any  ∈H[0; T ] and x ∈ Rn; then the same is true for
(3:1)�+�; x with � ∈ [0; �0]; �+ �5 1.

Proof. Let �0¿0 be undetermined. Let � ∈ [0; �0]. For k = 0, we success-

ively solve the following systems for �k(t) �= (X k(t); Y k(t); Zk(t)): (compare
(3.1)�+�; x )

�0(t) �= (X 0(t); Y 0(t); Z0(t)) ≡ 0 ;
dX k+1(t) = {(1− �)b1(t;�k+1(t)) + �b2(t;�k+1(t))

− �b1(t;�k(t)) + �b2(t;�k(t)) + b0(t)}dt
+{(1− �)�1(t;�k+1(t)) + ��2(t;�k+1(t))
− ��1(t;�k(t)) + ��2(t;�k(t)) + �0(t)}dW (t) ;

dY k+1(t) = {(1− �)h1(t;�k+1(t)) + �h2(t;�k+1(t))
− �h1(t;�k(t)) + �h2(t;�k(t)) + h0(t)}dt + Zk+1(t)dW (t) ;

X k+1(0) = x;

Y k+1(T ) = (1− �)g1(X k+1(T )) + �g2(X k+1(T ))
− �g1(X k(T )) + �g2(X k(T )) + g0 :

(3.22)�+�; x

By our assumption, the above systems are uniquely solvable. We now apply
Lemma 3.1 to �k+1(·) and �k(·). It follows that

E sup
t∈[0; T ]

|X k+1(t)− X k(t)|2 + E sup
t∈[0; T ]

|Y k+1(t)− Y k(t)|2

+E
T∫
0
|Zk+1(t)− Zk(t)|2 dt

5 C
{
�2E|X k(T )− X k−1(T )|2 + �2E

T∫
0
|�k(t)−�k−1(t)|2 dt

}
5 �2C0

{
E sup
t∈[0; T ]

|X k(t)− X k−1(t)|2 + E sup
t∈[0; T ]

|Y k(t)− Y k−1(t)|2

+E
T∫
0
|Zk(t)− Zk−1(t)|2 dt

}
: (3.23)

We note that the constant C0¿0 appearing in (3.23) is independent of � and �.
Hence, if we choose �0¿0 so that �20C0 ¡

1
4 , then for any � ∈ [0; �0], we have



552 J. Yong

the following estimate:

‖�k+1(·)−�k(·)‖M[0; T ] 5 1
2‖�k(·)−�k−1(·)‖M[0;T ]; ∀k = 1 : (3.24)

This implies that the sequence {�k(·)} is Cauchy in the Banach spaceM[0; T ].
Hence, it admits a limit. Clearly, this limit is an adapted solution to (3.1)�+�; x .
Uniqueness follows from Corollary 3.2 immediately.

Now, we are ready to give a proof of our main result.

Proof of Theorem 2.7. We know that it su�ces to consider the case that �1
and �2 are linked by a direct bridge. Let us assume that (2.10)�1 ; ; x is uniquely
solvable for any  ∈H[0; T ] and x ∈ Rn. This means that (3.1)0; x is uniquely
solvable. By Lemma 3.3, we can then solve (3.1)�; x uniquely for any � ∈ [0; 1].
In particular, (3.1)1; x, which is (2.10)�2 ; ; x, is uniquely solvable. This proves
Theorem 2.7.

Actually, we have proved something more than Theorem 2.7. From
Lemma 3.1, we see that if � ∈S[0; T ] and B(�; [0; T ])-�, then the corres-
ponding stability estimate (3.2) holds for the FBSDEs associated with �.

4. Properties of the bridges

In this section, we are going to explore some interesting properties of the
bridges.

Proposition 4.1. Let T ¿0.
(i) For any � ∈ H [0; T ]; the set BI (�; [0; T ]) is convex whenever it is

nonempty. Moreover;

BI (�; [0; T ]) = BI (� + ; [0; T ]); ∀ ∈H[0; T ] : (4.1)

(ii) For any �1;�2 ∈ H [0; T ]; it holds

BI (�1; [0; T ]) ∩BI (�2; [0; T ]) ⊆
⋂

�∈[0;1]
BI (��1 + (1− �)�2; [0; T ]) : (4.2)

Proof. (i) The convexity of BI (�; [0; T ]) is clear from (2.15)–(2.17). Con-
clusion (4.1) also follows easily from the de�nition of the bridge.
(ii) The proof follows from (3.10), (3.12) and the fact that BI (�; [0; T ])

is convex.

It is clear that the same conclusions as Proposition 4.1 hold for BII (�; [0; T ])
and Bs(�; [0; T ]).

As a consequence of (4.2), we see that if �1;�2 ∈ H [0; T ], then

BI (��1 + ��2; [0; T ]) = �; for some �; �¿0;

⇒ BI (�1; [0; T ]) ∩BI (�2; [0; T ]) = � : (4.3)
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This means that for such a case, �1 and �2 are not linked by a direct bridge (of
type (I)). Let us look at a concrete example. Let �i = (bi; �i; hi; gi) ∈ H [0; T ],
i = 1; 2; 3, with(
b1
h1

)
=
(−� 0
−1 −�

)(
x
y

)
;

(
b2
h2

)
=
(
� 1
0 �

)(
x
y

)
;(

b3
h3

)
=
(

0 1
−1 0

)(
x
y

)
; �1 = �2 = �3 = 0; g1 = g2 = g3 = −x ;

(4.4)
with �; � ∈ R. Clearly, it holds

�3 = �1 + �2 : (4.5)

By the remark right after Corollary 3.2, we know that B(�3; [0; T ]) = �. Thus,
it follows from (4.5) and (4.3) that �1 and �2 are not linked by a direct bridge.
However, we see that the FBSDEs associated with �1 is decoupled and thus
it is uniquely solvable (see Sect. 5, or [13]). In Sect. 6, we will show that
for suitable choice of � and �, �2 ∈S[0; T ]. Hence, we �nd two elements in
S[0; T ] that are not linked by a direct bridge. This means �1 and �2 are not
very “close”.
Next, for any b1; b2 ∈ L2F(0; T ;W 1;∞(M;Rn)), we de�ne

‖b1 − b2‖0(t)

= esssup
!∈


sup
�; ��∈M

|b1(t; �;!)− b1(t; ��;!)− b2(t; �;!) + b2(t; ��;!)|
|�− ��| :

(4.6)

We de�ne ‖h1 − h2‖0(t) and ‖�1 − �2‖0(t) similarly. For g1; g2 ∈ L2FT (
;W 1;∞

(Rn;Rm)), we de�ne

‖g1 − g2‖0 = esssup
!∈


sup
x; �x∈Rn

|g1(x;!)− g1(�x;!)− g2(x;!) + g2(�x;!)|
|x − �x| : (4.7)

Then, for any �i = (bi; �i; hi; gi) ∈ H [0; T ] (i = 1; 2), set
‖�1 − �2‖0(t) = ‖b1 − b2‖0(t) + ‖�1 − �2‖0(t) + ‖h1 − h2‖0(t) + ‖g1 − g2‖0 :

(4.8)

Note that ‖·‖0(t) is just a family of semi-norms (parameterized by t ∈ [0; T ]).
As a matter of fact, ‖�1 − �2‖0(t) = 0 for all t ∈ [0; T ] if and only if

�2 = �1 +  ; (4.9)

for some  ∈H[0; T ].
Theorem 4.2. Let T ¿0 and � ∈ H [0; T ]. Let � ∈ Bs(�; [0; T ]). Then; there
exists an �¿0; such that for any �′ ∈ H [0; T ] with

‖�− �′‖0(t)¡ �; ∀t ∈ [0; T ] ; (4.10)

we have � ∈ Bs(�′; [0; T ]).
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Proof. Let � = (b; �; h; g) and �′ = (b′; �′; h′; g′). Suppose � ∈ Bs(�; [0; T ]).
Then, for some K; �¿0, (2.15)–(2.17) and (2.16)′–(2.17)′ hold. Now, we
denote (for any �; �� ∈ M)

x̂ = x − �x; �̂ = �− �� :

b̂ = b(t; �)− b(t; ��); �̂ = �(t; �)− �(t; ��) ;
ĥ = h(t; �)− h(t; ��); ĝ = g(x)− g(�x) ;
b̂′ = b′(t; �)− b′(t; ��); �̂′ = �′(t; �)− �′(t; ��) ;
ĥ′ = h′(t; �)− h′(t; ��); ĝ′ = g′(x)− g′(�x) :

(4.11)

Then, one has

|ĝ′ − ĝ| = |g′(x)− g′(�x)− g(x) + g(�x)|5 ‖g′ − g‖0|x̂| : (4.12)

Similarly, we have
|b̂′ − b̂|5 ‖b′ − b‖0(t)|�̂| ;
|�̂′ − �̂|5 ‖�′ − �‖0(t)|�̂| ;
|ĥ′ − ĥ|5 ‖h′ − h‖0(t)|�̂| :

(4.13)

Hence, it follows that〈
�(T )

(
x̂
ĝ′

)
;
(
x̂
ĝ′

)〉

=
〈
�(T )

(
x̂
ĝ

)
;
(
x̂
ĝ

)〉

+2
〈
�(T )

(
x̂
ĝ

)
;
(

0
ĝ′ − ĝ

)〉
+
〈
�(T )

(
0

ĝ′ − ĝ
)
;
(

0
ĝ′ − ĝ

)〉
= �|x̂|2 + 2〈B(T )x̂; ĝ′ − ĝ〉+ 〈C(T )(ĝ′ + ĝ); ĝ′ − ĝ〉
= {�− 2|B(T )| ‖g′ − g‖0 − |C(T )| ‖g′ + g‖0‖g′ − g‖0}|x̂|2 = 1

2�|x̂|2 ;
(4.14)

provided ‖g′ − g‖0 is small enough. Similarly, we have the following:〈
�̇(t)

(
x̂
ŷ

)
;
(
x̂
ŷ

)〉
+ 2

〈
�(t)

(
x̂
ŷ

)
;
( b̂′
ĥ′

)〉
+
〈
�(t)

( �̂′
ẑ

)
;
( �̂′
ẑ

)〉

5 −�|�̂|2 + 2
〈
�(t)

(
x̂
ŷ

)
;
(
b̂′ − b̂
ĥ′ − ĥ

)〉
+ 2

〈
�(t)

( �̂
ẑ

)
;
(
�̂′ − �̂
0

)〉

+
〈
�(t)

(
�̂′ − �̂
0

)
;
(
�̂′ − �̂
0

)〉
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5 −�|�̂|2 + 2〈A(t)x̂ + B(t)T ŷ; b̂′ − b̂〉+ 2〈B(t)x̂ + C(t)ŷ; ĥ′ − ĥ〉

+2〈B(t)T ẑ; �̂′ − �̂〉+ 〈A(t)(�̂′ + �̂); �̂′ − �̂〉

5 {−�+ 2(|A(t)|+ |B(t)|)‖b′ − b‖0(t) + 2(|B(t)|+ |C(t)|)‖h′ − h‖0(t)

+ 2|B(t)|‖�′ − �‖0(t) + |A(t)|‖�′ + �‖0(t)‖�′ − �‖0(t)}|�̂|2: (4.15)

Then, our assertion follows.

The above result tells us that if the equation associated with � is solvable
and � admits a strong bridge, then all the equations “nearby” are solvable.
This is a kind of stability result.

Remark 4.3. We see from (4.14) and (4.15) that the condition (4.10) can be
replaced by

2(|B(T )|+ |C(T )|‖g′ + g‖0)‖g′ − g‖0 ¡ �;

sup
t∈[0; T ]

{2(|A(t)|+ |B(t)|)‖b′ − b‖0(t) + 2(|B(t)|+ |C(t)|)‖h′ − h‖0(t)
+ [2|B(t)|+ |A(t)|‖�′ + �‖0(t)]‖�′ − �‖0(t)}¡ � ;

(4.16)

where �¿0 is the one appeared in the de�nition of the bridge (see
De�nition 2.5). Actually, (4.16) can further be replaced by the following even
weaker conditions:

2〈B(T )x̂; ĝ′ − ĝ〉+ 〈C(T )(ĝ′ + ĝ); ĝ′ − ĝ〉¿ −�|x̂|2; ∀x; �x ∈ Rn ;

sup
t∈[0; T ]

{2〈A(t)x̂ + B(t)T ŷ; b̂′ − b̂〉+ 2〈B(t)x̂ + C(t)ŷ; ĥ′ − ĥ〉
+2〈B(t)T ẑ; �̂′ − �̂〉+ 〈A(t)(�̂′ + �̂); �̂′ − �̂〉}

¡�|�̂|2; ∀�; �� ∈ M :

(4.17)

The above means that if the perturbation is made not necessarily small but in
the right direction, the solvability will be kept. This observation will be useful
later.

To conclude this section, we present the following simple proposition.

Proposition 4.4. Let T ¿0; � ≡ (b; �; h; g) ∈ H [0; T ] and � ∈ BI (�; [0; T ]).
Let � ∈ R and

�̃(t) = e2�t�(t); t ∈ [0; T ] ;
�̃ = (b− �x; �; h− �y; g) ∈ H [0; T ] :

(4.18)

Then; �̃ ∈ BI (�̃; [0; T ]).
The proof is immediate. Clearly, the similar conclusion holds if we replace

BI (�; [0; T ]) by BII (�; [0; T ]);B(�; [0; T ]) or Bs(�; [0; T ]).
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5. Solvability of FBSDEs

In this section, we are going to prove the unique solvability of some
FBSDEs by constructing appropriate bridges. In what follows, we denote
�0 = (0; 0; 0; 0) ∈ H [0; T ]. Clearly, the FBSDEs associated with �0 is trivially
solvable. Thus, hereafter, we will refer to the FBSDEs associated with �0 as
the trivial FBSDEs. Now, let us present the following result.

Proposition 5.1. Let T ¿0 and �0 = (0; 0; 0; 0) ∈ H [0; T ]. Then;

� �=
(
A BT

B C

)
∈ Bs(�0; [0; T ])

if and only if
C(0)¡ 0; A(T )¿0 ;
�̇(t)¡ 0; ∀t ∈ [0; T ] : (5.1)

Proof. By De�nition 2.5, we know that � ∈ Bs(�0; [0; T ]) if and only if
(2.15)–(2.17) and (2.16)′ and (2.17)′ hold. These are equivalent to the fol-
lowing: {

C(0)5 −�; A(T )= � ;
�̇(t)5 −�; ∀t ∈ [0; T ] ; (5.2)

for some �¿0. We note that under condition C(0)¡ 0, the second inequal-
ity in (2.15) is always true for su�ciently large K¿0. Then, we see easily
that � ∈ Bs(�0; [0; T ]) is characterized by (5.1) since �¿0 can be arbitrarily
small.

From the above, we also have the following characterization:

Bs(�0; [0; T ]) =

{
Q − ∫

0
	(s)ds

∣∣∣∣
0¡ 	(·) =

(
	1(·) 	2(·)T
	2(·) 	3(·)

)
∈ C([0; T ]; Sn+m);

Q =
(
Q1 QT2
Q2 Q3

)
∈ Sn+m; Q3¡0; Q1 −

T∫
0
	1(s)ds¿0

}
:

(5.3)
A useful consequence of Proposition 5.1 is the following.

Corollary 5.2. Let � = (b; �; h; g) ∈ H [0; T ] admits a bridge � ∈ B(�; [0; T ])
satisfying (5.1). Then; �∈S[0; T ].
Proof. In this case, we see that � ∈ B(�0; [0; T ]) ∩B(�; [0; T ]). Since �0 ∈
S[0; T ], Theorem 2.7 applies.

Next, we would like to discuss several concrete cases.

1. Decoupled case. Let � ≡ (b; �; h; g) ∈ H [0; T ] such that b(t; x; y; z) ≡ b(t; x); ∀(t; x; y; z) ∈ [0; T ]×M :
�(t; x; y; z) ≡ �(t; x);

(5.4)
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We see that the associated FBSDE is decoupled, which is known to be solvable
by [13]. The following result recovers this conclusion.

Proposition 5.3. Let T ¿0; �0 ≡ (0; 0; 0; 0) ∈ H [0; T ] and � ≡ (b; �; h; g) ∈
H [0; T ] satisfying (5.4). Then;

Bs(�0; [0; T ]) ∩Bs(�; [0; T ])-� : (5.5)

Consequently; � ∈S[0; T ].
Proof. We take

�(t) =
(
a(t)I 0
0 c(t)I

)
;

a(t) = A0eA0(T−t); c(t) = −C0eC0t ; t ∈ [0; T ] ;
(5.6)

where A0; C0¿0 are undetermined constants. We �rst check that this � ∈
Bs(�0; [0; T ]). In fact,

c(0) = −C0 ¡ 0; a(T ) = A0¿0 ;

ȧ(t) = −A20eA0(T−t) ¡ 0; t ∈ [0; T ] ;
ċ(t) = −C20eC0t ¡ 0; t ∈ [0; T ] :

(5.7)

Thus, by Proposition 5.1, we see that � ∈ Bs(�0; [0; T ]). Next, we show that
� ∈ Bs(�; [0; T ]) for suitable choice of A0 and C0. To this end, we let L be
the common Lipschitz constant for b; �; h and g. We note that (5.7) implies
(2.15). Thus, it is enough to have

a(T ) + L2c(T )= � ; (5.8)

and

ȧ(t)|x − �x|2 + ċ(t)|y − �y|2 + c(t)|z − �z|2 + 2a(t)〈x − �x; b(t; x)− b(t; �x)〉

+ a(t)|�(t; x)− �(t; �x)|2 + 2c(t)〈y − �y; h(t; x; y; z)− h(t; �x; �y; �z)〉

5 −�{|x − �x|2 + |y − �y|2 + |z − �z|2} ;

∀t ∈ [0; T ]; x; �x ∈ Rn; y; �y ∈ Rm; z; �z ∈ Rm×d; a:s: (5.9)

Let us �rst look at (5.9). We note that

Left-hand side of (5.9)

5 ȧ(t)|x − �x|2 + ċ(t)|y − �y|2 + c(t)|z − �z|2

+ 2a(t)L|x − �x|2 + a(t)L2|x − �x|2

+ 2|c(t)|L|y − �y|{|x − �x|+ |y − �y|+ |z − �z|}

5 {ȧ(t) + 2a(t)L+ a(t)L2 + |c(t)|L}|x − �x|2

+ {ċ(t) + 3|c(t)|L+ 2L2|c(t)|}|y − �y|2 + 1
2c(t)|z − �z|2 : (5.10)
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Hence, to have (5.9), it su�ces to have the following:

ȧ(t) + (2L+ L2)a(t) + L|c(t)|5 −� ;
ċ(t) + (3L+ 2L2)|c(t)|5 −�; ∀t ∈ [0; T ] :
c(t)5 −2� ;

(5.11)

Now, we take a(t) and c(t) as in (5.6) and we require

ċ(t) + (3L+ 2L2)|c(t)| = −C0(C0 − 3L− 2L2)eC0t ;
5 −C0(C0 − 3L− 2L2)5 −�; ∀t ∈ [0; T ] ;

(5.12)

and
c(t) = −C0eC0t 5 −C0 5 −2�; ∀t ∈ [0; T ] : (5.13)

These two are possible if C0¿0 is large enough. Next, for this �xed C0¿0,
we choose A0¿0 as follows. We want

a(T ) + c(T )L2 = A0eA0(T−t) − C0L2eC0t = A0 − C0L2eC0T = � ; (5.14)

and

ȧ(t) + (2L+ L2)a(t) + L|c(t)| = −A0(A0 − 2L− L2)eA0(T−t) + LC0eC0t

5 −A0(A0 − 2L− L2)+LC0eC0T 5 −� :
(5.15)

These are also possible by choosing A0¿0 large enough. Hence, (5.8) and
(5.11) hold and � ∈ Bs(�; [0; T ]).

From the above, we obtain that any decoupled FBSDEs are solvable. In
particular, any BSDEs are solvable. This recovers the result of [13]. From
Lemma 3.1, we see that the adapted solutions to such equations have the
continuous dependence on the data.

2. Monotone case. Let � = (b; �; h; g) ∈ H [0; T ] satisfying one of the following
monotonicity conditions.
(M) Let m= n. There exists a matrix B ∈ Rm×n such that for some �¿0,

it holds that

〈B(x − �x); g(x)− g(�x)〉= �|x − �x|2; ∀x; �x ∈ Rn; a:s : (5.16)

〈BT [h(t; �)− h(t; ��)]; x − �x 〉+ 〈B[b(t; �)− b(t; ��)]; y − �y〉
+ 〈B[�(t; �)− �(t; ��)]; z − �z 〉5 −�|x − �x|2 ;
∀t ∈ [0; T ]; �; �� ∈ M; a:s : (5.17)
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(M)′ Let m5 n. There exists a matrix B ∈ Rm×n such that for some �¿0,
it holds that

〈B(x − �x); g(x)− g(�x)〉= 0; ∀x; �x ∈ Rn; a:s : (5.16)′

〈BT [h(t; �)− h(t; ��)]; x − �x〉+ 〈B[b(t; �)− b(t; ��)]; y − �y〉
+ 〈B[�(t; �)− �(t; ��)]; z − �z〉5 −�(|y − �y|2 + |z − �z|2) ;
∀t ∈ [0; T ]; �; �� ∈ M; a:s : (5.17)′

We know that (5.16) means that the function BTg(x) is uniformly monotone
on Rn, and (5.17) implies that the function −(BTh(t; �); Bb(t; �); B�(t; �)) is
monotone on the space M . We may similarly explain the meaning of (5.16)′

and (5.17)′. Here, we should point out that (5.16) (or (5.17)) implies m= n
and (5.17)′ implies m5 n. Hence, these two are di�erent situations.
We now prove the following.

Proposition 5.4. Let T ¿0 and � ≡ (b; �; h; g) ∈ H [0; T ] satisfy (M) (resp.
(M)′). Then; (5:5) holds. Consequently; � ∈S[0; T ].
Proof. First, we assume (M) holds. Take

�(t) =
(
A(t) B(t)T

B(t) C(t)

)
A(t) = a(t)I ≡ �eT−t I ;

t ∈ [0; T ] ;
B(t) ≡ B ;
C(t) = c(t)I ≡ −2�C0eC0t I ;

(5.18)

with �; C0¿0 being undetermined. Since

C(0) = −2�C0I ¡ 0 ;

A(T ) = �I ¿0 ; (5.19)

�̇(t) =
(−�eT−t I 0

0 −2�C20eC0t
)
¡ 0 ;

by Proposition 5.1, we see that � ∈ Bs(�0; [0; T ]). Next, we prove � ∈
Bs(�; [0; T ]) for suitable choice of � and C0. Again, we let L be the common
Lipschitz constant for b; �; h and g. We will choose � and C0 so that

a(T ) + 2� + c(T )L2 = � ; (5.20)

and

ȧ(t)|x|2 + ċ(t)|y|2 + c(t)|z|2 + 2La(t)|x|(|x|+ |y|+ |z|)
+ 2L|c(t)||y|(|x|+ |y|+ |z|) + L2a(t)(|x|+ |y|+ |z|)2

5 (2� − �)|x|2 − �(|y|2 + |z|2); ∀(t; �) ∈ [0; T ]×M : (5.21)

It is not hard to see that under (5.16) and (5.17), (5.20) implies (2.16), and
(5.21) implies (2.15) and (2.17)′ (Note (2.16) implies (2.16)′). We see that
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the left-hand side of (5.21) can be controlled by the following:

{ȧ(t) + Ka(t) + K |c(t)|} |x|2 + {ċ(t) + K |c(t)|+ Ka(t)}|y|2

+
{
1
2c(t) + Ka(t)

} |z|2 ; (5.22)

for some constant K¿0. Then, for this �xed K¿0, we now choose � and C0.
First of all, we require

1
2c(t) + Ka(t) = −�C0eC0t + K�eT−t 5 −�C0 + K�eT 5 −� ; (5.23)

and

ċ(t) + K |c(t)|+ Ka(t) = −2�C20eC0t + 2KC0�eC0t + K�eT−t

5 −2�C0(C0 − K) + K�eT ¡ −� : (5.24)

These two can be achieved by choosing C0¿0 large enough (independent of
�¿0). Next, we require

ȧ(t) + Ka(t) + K |c(t)| = −�eT−t + K�eT−t + 2�KC0eC0t

5 −�+ K�eT + 2�KC0eC0T 5 2� − � ; (5.25)

and
a(T ) + 2� + c(T )L2 = �+ 2� − 2�C0eC0TL2 = � : (5.26)

Since �¿0, (5.25) and (5.26) can be achieved by letting �¿0 be small
enough (note again that the choice of C0 is independent of �¿0). Hence, we
have (5.20) and (5.21), which proves � ∈ Bs(�; [0; T ]).

Now, we assume (M)′ holds. Take (compare (5.18))

�(t) =
(
A(t) B(t)T

B(t) C(t)

)
;

A(t) = a(t)I ≡ �A0eA0(T−t)I ;
∀t ∈ [0; T ] ;

B(t) ≡ B ;
C(t) = c(t)I ≡ −�etI ;

(5.27)

with �; A0¿0 being undetermined. Note that

C(0) = −�I ¡ 0 ;

A(T ) = A0I ¿0 ; (5.28)

�̇(t) =
(−�A20eA0(T−t)I 0

0 −�etI
)
¡ 0 :

Thus, by Proposition 5.1, we have � ∈ Bs(�0; [0; T ]). We now choose the
constants � and A0. In the present case, we will still require (5.20) and the
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following instead of (5.21):

ȧ(t)|x|2 + ċ(t)|y|2 + c(t)|z|2 + 2La(t)|x|(|x|+ |y|+ |z|)
+ 2L|c(t)||y|(|x|+ |y|+ |z|) + L2a(t)(|x|+ |y|+ |z|)2

5 −�|x|2 + (2� − �){|y|2 + |z|2}; ∀(t; �) ∈ [0; T ]×M :

(5.29)

These two will imply the conclusion � ∈ Bs(�; [0; T ]). Again the left-hand
side of (5.29) can be controlled by (5.22) for some constant K¿0. Now, we
require

ȧ(t) + Ka(t) + K |c(t)| = −�A20eA0(T−t) + �KA0eA0(T−t) + K�et

5 −�A0(A0 − K) + �KeT 5 −�; (5.30)

and

a(T ) + c(T )L2 = �A0eA0(T−t) − �L2et

= �(A0 − L2eT )¿� : (5.31)

We can choose A0¿0 large enough (independent of �¿0) to achieve the
above two. Next, we require

1
2c(t) + Ka(t)5 Ka(t)5 �KA0eA0T 5 2� − � ; (5.32)

and

ċ(t) + K |c(t)|+ Ka(t) = −�et + K�et + KA0�eA0(T−t)

5 �(KeT + KA0eA0T )5 2� − � : (5.33)

These two can be achieved by choosing �¿0 small enough. Hence, we obtain
(5.20) and (5.29), which gives � ∈ Bs(�; [0; T ]).

We note that Proposition 5.4 recovers the results of 7, 16. It should be
pointed out that the above monotone cases do not cover the decoupled case.
Here is a simple example.
Let n = m = 1. We consider the following decoupled FBSDEs:

dX (t) = X (t) dt + dW (t) ;

dY (t) = X (t) dt + Z(t) dW (t) ; (5.34)

X (0) = x; Y (T ) = X (T ) :

We can easily check that neither (M) nor (M)′ holds. But, (5.34) is uniquely
solvable over any �nite time duration [0; T ].

Remark 5.5. From the above, we see that decoupled and monotone FBSDEs
are two di�erent classes of solvable FBSDEs. None of them includes the other.
Under our framework, however, these two classes are proved to be linked by
direct bridges to the trivial FBSDEs (the one associated with �0 = (0; 0; 0; 0)).
Thus, in some sense, these classes of FBSDEs are still very “near” to the
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trivial FBSDEs. At the present stage, we don’t know any classes of solvable
FBSDEs that are “far away” from the trivial one.

6. Solvability of FBSDEs (continued)

6.1. A general consideration

In the previous section, we have recovered the unique solvability of two
(known) classes of FBSDEs by constructing proper bridges. In this section,
we are going to present some results for new classes of FBSDEs.
Let us start with the following linear ordinary di�erential equation: (com-

pare (2.12)) (
Ẋ (t)
Ẏ (t)

)
=A

(
X (t)
Y (t)

)
+
(
b0(t)
h0(t)

)
; t ∈ [0; T ] ;

X (0) = x; Y (T ) = GX (T ) + g0 :
(6.1)

Here,A ∈ R(n+m)×(n+m); G ∈ Rm×n;
(
b0(t)
h0(t)

)
∈ L2(0; T ;Rn+m); x ∈ Rn; g0 ∈

Rm. We have the following result.

Lemma 6.1. Let T0¿0. Then, the two-point boundary value problem (6.1)
is uniquely solvable for all T ∈ (0; T0] and all (b0; h0; g0; x) if and only if

det 	(t)¿0; ∀t ∈ [0; T0] ; (6.2)

where

	(T ) �= (−G; I)eAT
(
0
I

)
: (6.3)

This result should not be new. Since we are not able to �nd a proper
reference, for reader’s convenience, we present a proof here.

Proof. We know that (6.1) is equivalent to the following:(
X (t)
Y (t)

)
= eAt

(
x

Y (0)

)
+

t∫
0
eA(t−s)

(
b0(s)
h0(s)

)
ds; t ∈ [0; T ] ; (6.4)

together with the following condition (which will be used to determine the
unknown Y (0))

g0 = (−G; I)
(
X (T )
Y (T )

)
= (−G; I)eAT

(
0
I

)
Y (0)

+(−G; I)
{
eAT

(
x
0

)
+

T∫
0
eA(T−s)

(
b0(s)
h0(s)

)
ds
}
: (6.5)
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Thus, by (6.3), we see that

	(T )Y (0) = g0 −
{
(−G; I)

[
eAT

(
x
0

)
+

T∫
0
eA(T−s)

(
b0(s)
h0(s)

)
ds
]}
:

(6.6)
This implies that for a given T ¿0, (6.1) is solvable for all (b0; h0; g0; x) if
and only if det 	(T )-0. Hence, noting det 	(0) = 1, we obtain that (6.2) is
a necessary and su�cient condition for (6.1) to be uniquely solvable for all
T ∈ (0; T0] and all (b0; h0; g0; x).

Now, we consider the following FBSDEs:

d
(
X (t)
Y (t)

)
=
{
A

(
X (t)
Y (t)

)
+
(
b0(t)
h0(t)

)}
dt

+
(
�0(t)
Z(t)

)
dW (t); t ∈ [0; T ] ; (6.7)

x(0) = x; Y (T ) = GX (T ) + g0 :

where,A; G and x are the same as those in (6.1) and now  ≡ (b0; �0; h0; g0) ∈
H[0; T ] (see (2.8)). This is a class of linear FBSDEs. Clearly, it is not neces-
sarily decoupled nor monotone. Thus, it is a new class of FBSDEs (although
it is not very complicated).
We now study the unique solvability of this class of FBSDEs. First of all,

similar to Proposition 2.3, we see that if (6.1) does not admit a solution, then,
(6.7) does not admit an adapted solution. We now give some further results.

Theorem 6.2. Let T0¿0. Then, FBSDEs (6.7) is uniquely solvable for all
T ∈ (0; T0] and all x ∈ Rn and  ≡ (b0; �0; h0; g0) ∈H[0; T ] if and only if
(6.2) holds.

Proof. By Lemma 6.1, we have the necessity. Let us now prove the suf-
�ciency. To this end, let us �rst make the following observation. For any
 = (b0; �0; h0; g0) ∈H[0; T ] and x ∈ Rn, suppose (X; Y; Z) ∈M[0; T ] is an
adapted solution of (6.7). Then, we have(

X (t)
Y (t)

)
= eAt

(
x

Y (0)

)
+

t∫
0
eA(t−s)

(
b0(s)
h0(s)

)
ds

+
t∫
0
eA(t−s)

(
�0(s)
Z(s)

)
dW (s); t ∈ [0; T ] : (6.8)

Here, Y (0) is undetermined. We want the following to be satis�ed:

g0 = (−G; I)
(
X (T )
Y (T )

)
= 	(T )Y (0) + (−G; I)

(
x
0

)
+(−G; I)

{ T∫
0
eA(T−s)

(
b0(s)
�0(s)

)
ds +

T∫
0
eA(T−s)

(
�0(s)
Z(s)

)
dW (s)

}
:

(6.9)
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Taking expectation in both sides of the above, we have

Eg0 = 	(T )Y (0) + (−G; I)
{
eAT

(
x
0

)
+

T∫
0
eA(T−s)

(
Eb0(s)
Eh0(s)

)
ds
}
: (6.10)

By (6.2), we must have

Y (0) = 	(T )−1
{
Eg0 − (−G; I)

[
eAT

(
x
0

)
+

T∫
0
eA(T−s)

(
Eb0(s)
Eh0(s)

)
ds
]}
:

(6.11)

Based on the above observation, we can now prove the solvability of (6.7)
(under condition (6.2)). We de�ne

� �= g0 − Eg0 − (−G; I)
{ T∫
0
eA(T−s)

(
b0(s)− Eb0(s)
h0(s)− Eh0(s)

)
ds

+
T∫
0
eA(T−s)

(
�0(s)
0

)
dW (s)

}
: (6.12)

It is clear that � is FT -measurable, square-integrable and E� = 0. Thus, by
the Martingale Representation Theorem, there exists a Z̃(·) ∈ L2F(0; T ;Rm×d),
such that

� =
T∫
0
Z̃(s) dW (s) : (6.13)

By (6.2), we may set

Z(t) = 	(T − t)−1Z̃(t); t ∈ [0; T ] : (6.14)

Obviously, Z(·) ∈ L2F(0; T ;Rm×d). At the same time, we de�ne Y (0) by
(6.11). Then, we see that (6.10) holds and combining (6.10), (6.12) and (6.13),
we see that (6.9) holds. Thus, by de�ning (X (·); Y (·)) through (6.8), we ob-
tain that (X; Y; Z) ∈M[0; T ] is an adapted solution of (6.7). The uniqueness
follows easily from condition (6.2).

The above theorem tells us that the solvability of (6.1) and (6.7) are equiv-
alent in a proper sense. The condition to check is (6.2).
From Theorem 2.7, we know that if �1 and �2 are linked by a bridge, then

�1 and �2 have the same solvability. On the other hand, for a given � at hand,
Corollary 3.2 tells us that if � admits a bridge, then, the FBSDEs associated
with � admits at most one adapted solution. The existence, however, is not
known. The following result tells us something concerning the existence. This
result will be useful below.

Proposition 6.3. Let T0¿0 and � = (b; 0; h; g) with(
b(t; �)
h(t; �)

)
=A

(
x
y

)
; g(x) = Gx; ∀(t; �) ∈ [0; T0]×M : (6.15)

Then, � ∈S[0; T ] for all T ∈ (0; T0] if B(�; [0; T ])-�; for all T ∈ (0; T0].
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Proof. Since B(�; [0; T ])-�, for all T ∈ (0; T0], by Corollary 3.2, (6.7) ad-
mits at most one solution. By taking  ≡ (b0; �0; h0; g0) = 0 and x = 0, we see
that the resulting homogeneous equation only admits the zero solution. This
is equivalent to that (6.1) with the nonhomogeneous terms being zero only
admits the zero solution. Hence, it is necessary that (6.2) holds. Then, by
Theorem 6.2, we have � ∈S[0; T ], for all T ∈ (0; T0].

Let us now look at some new class of nonlinear FBSDEs. Recall the semi-
norms ‖ · ‖0(t) de�ned by (4.5).
Theorem 6.4. Let T0¿0 and A ∈ R(n+m)×(n+m) be given such that (6.2)
holds. Let T ∈ (0; T0]. Let � ≡ (b; 0; h; g) be de�ned by (6.15). Further, sup-
pose that B s(�; [0; T ])-�. Then, there exists an �¿0; such that for all
� ∈ R and �� ≡ ( �b; ��; �h; �g) ∈ H [0; T ] with

‖ ��‖0(t)¡�; t ∈ [0; T ] ; (6.16)

the following FBSDEs:

d
(
X (t)
Y (t)

)
=
{
(A+ �I)

(
X (t)
Y (t)

)
+
( �b(t;�(t))
�h(t;�(t))

)}
dt

+
(
��(t;�(t))
Z(t)

)
dW (t); t ∈ [0; T ] ; (6.17)

X (0) = x; Y (T ) = GX (T ) + �g(X (T )) ;

admits a unique adapted solution � ≡ (X; Y; Z) ∈M[0; T ].
Proof. We note that if

b̃(t; �) = e�t �b(t; e−�t�); ∀(t; �) ∈ [0; T ]×M ; (6.18)

then,
‖ b̃‖0(t) = ‖ �b‖0(t); ∀t ∈ [0; T ] : (6.19)

Thus, by applying Proposition 2.8 and Theorems 4.2, 2.7 and 6.2, we obtain
our conclusion immediately.

We note that FBSDEs (6.17) is nonlinear and the Lipschitz constants of
the coe�cients could be large. Also, (6.17) is not necessarily decoupled nor
monotone. Thus, Theorem 6.4 gives a new class of nonlinear FBSDEs which
are uniquely solvable. On the other hand, by Remark 4.3, we see that condition
(6.16) can be replaced by something like (4.16), or even (4.17). This further
enlarges the class of FBSDEs covered by (6.17). However, the major problem
left is whether we can construct the (strong) bridge for � de�ned by (6.15).
In the rest of this section, we will concentrate on this issue.
We now consider the construction of the bridges for (6.7). Let � =

(b; 0; h; g) be given by (6.15). Then, � ∈ Bs(�; [0; T ]) if it is the solution
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of the following di�erential equation for some K; �K; �; �¿0,

�̇(t) +AT�(t) + �(t)A = −�I; t ∈ [0; T ] ;

�(0) =
(
K 0
0 − �K

)
;

(6.20)

and the following additional conditions are satis�ed:

(I; 0)�(t)
(
I
0

)
= 0; (0; I)�(t)

(
0
I

)
5 −�I; ∀t ∈ [0; T ] ;

(I; GT )�(T )
(
I
G

)
= �I :

(6.21)

This can be proved directly.
We can check that the solution to (6.20) is given by

�(t) = e−A
T t
(
K 0
0 − �K

)
e−At − �

t∫
0
e−A

T se−Asds; t ∈ [0; T ] : (6.22)

Thus, in principle, if we can �nd constants K; �K; �; �¿0, such that (6.21) holds,
then, we obtain a strong bridge �(·) and Theorem 6.4 applies.

6.2. A case of n = m = d = 1

We now, present a concrete case to illustrate the procedure of �nding a strong
bridge �(·) and the corresponding class of solvable FBSDEs.
We consider the case m = n = d = 1 and � = (b; 0; h; g) is given by(

b(t; x; y; z)
h(t; x; y; z)

)
=A

(
x
y

)
≡
(−� �
0 0

)(
x
y

)
; (6.23)

for all (t; x; y; z) ∈ [0;∞)×R3, with �; �; g ∈ R being constants satisfying the
following:

�; �; g¿0;
1
2
+
3g�
2�

− g2 = 0 : (6.24)

We point out that conditions (6.24) for the constants �; �; g are not neces-
sarily the best. We prefer not to get into the most generality to avoid some
complicated computation. Let us now carry out some calculations. First of all

eAt =
(
e−�t �

� (1− e−�t)
0 1

)
: (6.25)

Thus, we easily see that (6.2) holds for all T0¿0. Hence, Theorem 6.4 applies.
We now compute

e−A
T t
(
K 0
0 − �K

)
e−At

=
(

e�t 0
�
� (1− e−�t) 1

)(
K 0
0 − �K

)(
e�t �

� (1− e−�t)
0 1

)

=
(

Ke2�t K�
� (e

�t − e2�t)
K�
� (e

�t − e2�t) − �K + K�2

�2 (1− e�t)2
)
; (6.26)
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and
t∫
0
e−A

T se−Asds =
t∫
0

(
e2�s �

� (e
�s − e2�s)

�
� (e

�s − e2�s) 1 + �2

�2 (1− e�s)2
)
ds

=
( 1

2� (e
2�t − 1) − �

2�2 (e
�t − 1)2

− �
2�2 (e

�t − 1)2 �2

2�3 (e
�t − 2)2 + �2+�2

�2 t − �2

2�3

)
:

(6.27)

We let �K¿0 be undetermined and choose

K =
3
4�
; � = 1 : (6.28)

Then, we de�ne (note (6.22))

�(t) =
(
A(t) B(t)
B(t) C(t)

)
with

A(t) = Ke2�t − �
2�
(e2�t − 1) =

(
K − �

2�

)
e2�t +

�
2�

=
1
4�
(e2�t + 2) ;

B(t) =
K�
�
(e�t − e2�t) + ��

2�2
(e�t − 1)2

= −�
�

(
K − �

2�

)
e�t +

�
�

(
K − �

�

)
e�t +

��
2�2

= − �
4�2

(e2�t + e�t − 2) : (6.29)

C(t) = − �K + K�
2

�2
(e�t − 1)2 − ��2

2�3
(e�t − 2)2 − �(�2 + �2)

�2
t +

��2

2�3

=
�2

�2

(
K − �

2�

)
e2�t − 2�2

�2

(
K − �

�

)
e�t − �2

�2

(
K − 3�

2�

)
− �K − �(�2 + �2)

�2
t

=
�2

4�3
(e2�t + 2e�t + 3)− �K − �2 + �2

�2
t :

From (6.21), we need the following: (�¿0 is undetermined)

A(t)= 0; C(t)5 −�; ∀t ∈ [0; T ] ;
A(T )− 2gB(T ) + g2C(T )= � :

(6.30)

Let us now look at these requirements separately.
First of all, it is clearly true that A(t)=0 for all t ∈ [0; T ]. Next, C(t)5−�

for all t ∈ [0; T ], if and only if

�K=�+
�2

4�3
(e2� t + 2e� t + 3)− �2 + �2

�2
t �= f(t); t ∈ [0; T ] : (6.31)
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Since f′′(t)=0 for all t ∈ [0;∞), the function f(t) is convex. Thus, (6.31)
holds if and only if

�K=f(0) ∨ f(T ) : (6.32)

Finally, we need

� 5 A(T )− 2gB(T ) + g2C(T )

=
1
4�
(e2�T + 2) +

g�
2�2

(e2�T + e�T − 2) + g
2�2

4�3
(e2�T + 2e�T + 3)

−g2 �K − g2(�2 + �2)
�2

T

=
1
4�

(
1 +

g�
�

)2
e2�T +

g�
2�2

(
1 +

g�
�

)
e�T − g2(�2 + �2)

�2
T

+
1
2�

− g�
�2
+
3g2�2

4�3
− g2 �K : (6.33)

Thus, we need (note (6.32))

F(T ) �=
1
4�

(
1 +

g�
�

)2
e2�T +

g�
2�2

(
1 +

g�
�

)
e�T − g2(�2 + �2)

�2
T

+
1
2�

− g�
�2
+
3g2�2

4�3
− �

= g2 �K=g2(f(0) ∨ f(T )) : (6.34)

We now separate two cases (with f(T ) and f(0); respectively). First of all,
for f(T ); we want

05 F(T )− g2f(T )

=
1
4�

(
1 +

2g�
�

)
e2�T +

g�
2�2

e�T +
1
2�

− g�
�2

− �(1 + g2) �= F̂(T ) :
(6.35)

We see that T 7→ F̂(T ) is monotone increasing. Thus, to have the above, it
su�ces to have

05 F̂(0) =
3
4�

− �(1 + g2) : (6.36)

Hence, in what follows, we take

� =
3

4�(1 + g2)
: (6.37)

Then, (6.35) holds. Next, we claim that under (6.24) and (6.37), the following
holds.

F(T )− g2f(0)=0 : (6.38)

In fact, by the choice of � and by (6.36),

F(0)− g2f(0) = F̂(0) = 0 : (6.39)
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On the other hand,

F ′(T ) =
1
2

(
1 +

g�
�

)2
e2�T +

g�
2�

(
1 +

g�
�

)
e�T − g2(�2 + �2)

�2
: (6.40)

Thus, by (6.24), it follows that

F ′(0) =
(
1
2
+
3g�
2�

− g2
)
=0 : (6.41)

Then, by F ′′(T )=0; together with (6.39) and (6.41), we must have (6.38).
Hence, we obtain (6.34). This shows that a strong bridge �(t) has been con-
structed with K; � and � being given by (6.28) and (6.37), respectively, and
we may take

�K = f(0) ∨ f(T ) : (6.42)

It is interesting that the �(·) constructed in the above is not in B(�0; [0; T ])
for any T ¿0 since Ȧ(t)¿0. On the other hand, we note that both A(t) and
B(t) are independent of T . However, due to the fact that �K depending on T;
C(t) depends on T . But, we claim that there exists a constant c0¿0; only
depending on �; �; g (independent of T ), such that

−c0 − f(T )5C(t)5− 3
4�(1 + g2)

; t ∈ [0; T ] ;
−c05C(T )5− 3

4�(1 + g2)
;

(6.43)

where f(t) is de�ned by (6.31). In fact, by (6.29), (6.31), (6.37) and (6.42),
we have

C(t) = f(t)− f(0) ∨ f(T )− 3
4�(1 + g2)

: (6.44)

Clearly, C(t) is convex. Thus,

C(t)5C(0) ∨ C(T ) = − 3
4�(1 + g2)

; ∀t ∈ [0; T ] : (6.45)

On the other hand, by the fact that f(t) is strictly convex and limt→∞ f(t) =
∞; we see that there exists a unique T0¿0; only depending on � and �; such
that

C(t)=f(T0)− f(0) ∨ f(T )− 3
4�(1 + g2)

; t ∈ [0; T ] : (6.46)

This proves the �rst relation in (6.43). Next, we see easily that there exists a
unique T1¿T0, such that f(T1) = f(0); and

f(t)5f(0); ∀t ∈ [0; T1] ;
f(t)¿f(0); ∀t ∈ (T1;∞) :

(6.47)

Hence, we obtain

C(T )=f(T0)− f(0)− 3
4�(1 + g2)

: (6.48)

This proves the second relation in (6.43).
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Now, from Remark 4.3 and Theorem 6.4, we know that the following
FBSDEs is solvable on [0; T ].

dX (t) = {(� − �)X (t) + �Y (t) + �b(t; X (t); Y (t); Z(t))} dt
+ ��(t; X (t); Y (t); Z(t)) dW (t) ;

dY (t) = {�Y (t) + �h(t; X (t); Y (t); Z(t))} dt + Z(t) dW (t) ;

X (0) = x; Y (T ) = −gX (T ) + �g(X (T )) ;

(6.49)

where �; �; g¿0 satisfying (6.24), � ∈ R; and �� ≡ (�b; ��; �h; �g) ∈ H [0; T ] satis-
fying

2|B(T )|‖ �g‖0 + |C(T )|‖ �g‖20¡� ∧ 1 ;
sup
t∈[0;T ]

{2(|A(t)|+ |B(t)|)‖�b‖0(t) + 2(|B(t)|+ |C(t)|)‖�h‖0(t) (6.50)

+ 2|B(t)|‖ ��‖0(t) + |A(t)|‖ ��‖0(t)2}¡� ∧ 1 ;
with A(·); B(·) and C(·) being given by (6.29) and �¿0 being given by (6.37).
If we use (4.17), then, (6.50) can be relaxed to the following:

2B(T )x̂ �̂g+ C(T )( �̂g− 2gx̂) �̂g¿−(� ∧ 1)|x̂|2; ∀x; �x ∈ R ;

sup
t∈[0;T ]

{2(A(t)x̂ + B(t)T ŷ)�̂b+ 2(B(t)x̂ + C(t)ŷ) �̂h (6.51)

+ 2B(t)ẑ �̂� + A(t) �̂�2}¡(� ∧ 1)|�̂|2; ∀�; �� ∈ M :

If �b; ��; �h and �g are di�erentiable, then, we see that (6.51) is equivalent to the
following:

2B(T ) �gx(x) + C(T )( �gx(x)− 2g) �gx(x)¿−(� ∧ 1); ∀x ∈ R ;{(A(t) B(t) 0
B(t) C(t) 0
0 0 B(t)

)
(∇�b(t; �);∇�h(t; �);∇ ��(t; �))

+

{(A(t) B(t) 0
B(t) C(t) 0
0 0 B(t)

)
(∇�b(t; �);∇�h(t; �);∇ ��(t; �))

}T

+ A(t)∇ ��(t; �){∇ ��(t; �)}T
}
¡� ∧ 1; ∀(t; �) ∈ [0; T ]×M ;

(6.52)

where ∇�b(t; �) = (�bx(t; �); �by(t; �); �bz(t; �))T , and so on. Some direct computa-
tion shows that the �rst relation in (6.52) is equivalent to the following:

− r(T ) �= −
√
� ∧ 1
|C(T )| +

(
B(T )
C(T )

− g
)2

− B(T )
C(T )

+ g5 �gx(x)

¡

√
� ∧ 1
|C(T )| +

(
B(T )
C(T )

− g
)2

− B(T )
C(T )

+ g; ∀x ∈ R :

(6.53)
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By (6.43), we know that C(T ) is bounded uniformly in T; while, B(T )→ −∞
as T →∞ (see (6.29)). Thus, by some calculation, we see that

−
√
� ∧ 1
|C(T )|=−r(T ) ↓ −∞; as T →∞ ; (6.54)

and �g need only to satisfy the following:

− r(T )5 �gx(x)50; ∀T ∈ R : (6.55)

Clearly, the larger the T; the weaker the restriction of (6.55). The second
condition in (6.52) is also checkable (although it is a little more complicated
than the �rst one). It is not hard to see that the choice of functions �b and ��
are independent of T as A(t) and B(t) do not depend on T . However, since
C(t) depends on T; by some direct calculation, we see that in order FBSDEs
(6.49) is solvable for all T ¿0; we have to restrict ourselves to the case that
�h(t; �) = �h(t; y). Clearly, even with such a restriction, (6.49) is still a very big
class of FBSDEs, which are not necessarily decoupled, nor monotone. Also,
�� is allowed to be degenerate. We omit the exact statement of the explicit
conditions on �b; �� and �h under which (6.49) is solvable to avoid some lengthy
computation. Instead, to conclude our discussion, let us �nally look at the
following FBSDEs:

dX (t) = {(� − �)X (t) + �Y (t) + �b(t; X (t); Y (t); Z(t))} dt
+ ��(t; X (t); Y (t); Z(t)) dW (t) ;

dY (t) = {�Y (t) + h0(t)} dt + Z(t) dW (t) ;

X (0) = x; Y (T ) = −gX (T ) + g0 ;

(6.56)

with �; �; g¿0 satisfying (6.24) and

sup
t∈[0;∞)

{2(|A(t)|+ |B(t)|)‖�b‖0(t) + 2|B(t)|‖ ��‖0(t) + |A(t)|‖ ��‖0(t)2}¡� ∧ 1 :
(6.57)

This is a special case of (6.49) in which �h ≡ h0 and �g ≡ g0. Then, by the
above analysis, we know that (6.56) is uniquely solvable over any �nite time
duration [0; T ]. Condition (6.57) can be carried out explicitly as follows:

{2(e2�t + 2) + 2�
2

�
(e2� t + e� t − 2)}‖�b‖0(t) + 2�

2

�
(22� t + e� t − 2)‖ ��‖0(t)

+ (e2� t + 2)‖ ��‖0(t)2¡min
{
4�;

3
1 + g2

}
; t ∈ [0;∞) : (6.58)

It is clear that although (6.56) is a special case of (6.49), it is still very
general and in particular, it is not necessarily decoupled nor monotone. Also, if
we regard (6.56) as a nonlinear perturbation of (6.1) (with m = n = d = 1 and
(6.23) holds), then the perturbation is not necessarily small (for t not large).
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