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Summary. If {Sn; n=0} is an integer-valued random walk such that Sn=an

converges in distribution to a stable law of index � ∈ (0; 1) as n→∞, then
Gnedenko’s local limit theorem provides a useful estimate for P{Sn = r} for
values of r such that r=an is bounded. The main point of this paper is to show
that, under certain circumstances, there is another estimate which is valid when
r=an → +∞, in other words to establish a large deviation local limit theorem.
We also give an asymptotic bound for P{Sn = r} which is valid under weaker
assumptions. This last result is then used in establishing some local versions
of generalized renewal theorems.

Mathematics Subject Classi�cation (1991) : 60F10, 60J15

1 Introduction

This paper contains results about the asymptotic behaviour of a random walk
S = {Sn; n= 0} which has E{|S1|} =∞ in two distinct, but related areas.

The large deviation result, in its simplest form, applies when S is in the
domain of attraction of a stable law which has index 0¡ � ¡ 1 and positivity
parameter 0¡ �5 1 (so is not concentrated on the negative half-line). In
this case a result of Tkachuk [10], which is quoted in Nagaev [8], states that
uniformly for n such that x=an → +∞, where an is a norming sequence for S,

P{Sn ¿ x} ∼ nP{X ¿ x} as x → +∞ : (1.1)

(A proof of this result and some extensions of it can be found in Doney [4].)
Our concern is with a local version of (1.1), and although our methods can

be adapted to the non-lattice case, we assume henceforth that S takes values on
the integers. We write X for a typical step in S and denote its distribution and
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mass functions by F and p, respectively. Put F(x) = P{X ¿ x} = 1− F(x),
and introduce the tail ratio � de�ned by

�(r) = F(−r)=(F(r)} = ∑−r
−∞ pk

/{∑∞
r+1 pk

}
: (1.2)

Then the mass function p is regularly varying at +∞ and the above hypotheses
hold if and only if for some slowly varying L

pr ∼ �r−(�+1)L(r) as r → +∞ ; (1.3)

and
lim

r→+∞ �(r) = �−1 − 1; 0¡ �5 1 : (1.4)

Under these assumptions, the following local version of (1.1) holds.

Theorem A. If (1.3) and (1.4) hold then, uniformly in n such that r=an→+∞;

P{Sn = r} ∼ nP{X = r} as r → +∞ : (1.5)

The simplest form of the renewal theorem relates to the situation where X
takes non-negative integer values only, so that S is a discrete renewal process.
The subject of study is the asymptotic behaviour as r → +∞ of the renewal
mass function,

ur =
∞∑
n=0

P{Sn = r} : (1.6)

Here it is known (see e.g. Theorem 8.7.3 of Bingham et al. [2]) that for
0¡ � ¡ 1

F(n) =
∞∑
n+1

pk ∼ n−�L(n) as n→∞ ; (1.7)

is equivalent to
n∑
0
uk ∼ n��(1− �)={L(n)�(1 + �)} as n→∞ : (1.8)

Again it is a local result which we establish.

Theorem B. If X takes non-negative integer values only, (1.7) holds and in
addition

sup
n=0

{npn=F(n)}¡∞ ; (1.9)

then
lim
n→∞ n1−�L(n)un = �(1− �)=�(�) : (1.10)

Theorems A and B are actually special cases of results which we state and
prove in the following sections.
In the section on large deviations, Theorem 1 shows that (1.5) holds under

weaker conditions on the left-hand tail than (1.4) (such as the boundedness of
the tail ratio �), and also that when � is unbounded, (1.5) can still hold for a
smaller range of values of n. Theorem 2 shows that if (1.3) is replaced by the
weaker assumption (1.7), then provided � is bounded above and (1.9) holds,
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there exists a uniform asymptotic upper bound for the ratio

(rP{Sn = r})=(nF(r)):
This upper bound may have other applications, but here we show how it

can be used in the renewal theory context. Our approach is to use Gnedenko’s
local limit theorem to estimate the terms in the expression (1.6) for ur where
an=r is bounded away from zero. (For other applications of this technique see
Doney [3] and the proof of Theorem 8.6.6 in Bingham et al. [2].) The above
estimate is then used to deal with the remaining terms.
It should be remarked that Theorem B has several famous antecedents,

including Garsia and Lamperti [6], Williamson [11], and Erickson [5]. These
authors have shown that (1.10) actually follows from (1.7) alone when 1

2 ¡
� ¡ 1, but not when 0¡ �5 1

2 . Also (1.10) with lim replaced by lim inf
or by lim∗ (i.e. convergence o� a set of relative measure zero) does follow
for 0¡ � ¡ 1, as does (1.10) for 14 ¡ � ¡ 1 under (1.9) and for 0¡ � ¡ 1
under the stronger assumption that pn is ultimately monotone. As well as
establishing these last two results, Williamson [11] extended the analysis to
the case that X takes negative as well as non-negative values. In this context
ur is also known as the Green’s function of S, and we need to supplement
(1.7) by the assumption (1.4). Williamson showed that all the above results
remain valid, except that the constant appearing on the RHS of (1.10) depends
on � as well as on �. Theorem 3 of Sect. 3 gives an analogous extension of
Theorem B, but also applies to generalized Green’s functions, which are of the
form

gr =
∞∑
n=0

bnP{Sn = r}; (1.11)

where {bn; n= 0} is some sequence of non-negative constants. This result
extends Theorem 2 of Anderson and Athreya [1] although, there only the case
of non-negative, non-lattice X is considered.
Finally, Theorem 4 contains the simple observation that, in the special

case that S is the renewal process of ladder epochs in some random walk,
then again (1.7) and (1.10) are equivalent; this is because, in this case, u is
monotone.

2 Local limit theorems

Notice that our basic assumption (1.3) implies the tail estimate

F(x) ∼ x−�L(x) x → +∞ ; (2.1)

and, whenever (2.1) holds we can, and will, assume, with no loss of gener-
ality, that A(x) := x�=L(x) is a continuous monotone increasing function with
inverse a. If we now de�ne a sequence an = a(n), then under (1.3) and (1.4)
it holds that Sn=an has a limiting stable distribution of index �. In particular,
it follows that P{|Sn|¿ x} → 0 as n→∞ whenever x=an → +∞. It is there-
fore clear that Theorem A is a special case of the following result, which also
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implies that the conclusion of Theorem A is still valid if (1.4) is replaced by
the weaker assumption that � is bounded.

Theorem 1. Let S be any random walk which takes values on the integers
and for which (1.3) holds. Suppose also there exists bn such that

lim inf
n→∞ (bn=an)¿ 0 and P{|Sn|¿ x} → 0 whenever x=bn → +∞ ; (2.2)

then (1.5) holds uniformly in n such that

r=bn → +∞ : (2.3)

A corollary of this result shows how the uniformity in (1.5) has to be
weakened if we know less about the left-hand tail of F :

Corollary 1. Let S be any random walk which takes values on the integers
and for which (1.3) holds. Suppose also that

F(−x) = O(R(x)) as x → +∞ ; (2.4)

where R is a monotone decreasing function which is regularly varying of index
−�∗ at ∞; where 0¡ �∗ ¡ �. Let a∗n satisfy R(a∗n) ∼ 1=n as n→∞; then
(1.5) holds uniformly in n such that r=a∗n → +∞.
Our �nal result of this section is the only one where we drop the assumption

(1.3), and of course our conclusion is also weaker. However this is the result
which we use in the next section.

Theorem 2. Let S be any random walk which takes values on the integers
and for which (2.1) holds. Suppose also that

F(−x) = O(F(x)) as x →∞ ; (2.5)

and there are constants m0 and B such that

mp(m)5 BF(m) for all m= m0 : (2.6)

Then, uniformly for n such that r=an → +∞
lim sup
r→∞

{rP{Sn = r}=nF(r)}¡ B=� : (2.7)

We start the proofs with a simple result, in which c denotes a positive
constant whose exact value is immaterial and which can be di�erent on each
appearance. (This convention will be used throughout.)

Lemma 1. Assume (2.1); then for any � ¿ 0; all y = 1 and all su�ciently
large n

cy�−� 5 n−1A(any)5 cy�+� : (2.8)

Proof. This is a consequence of the fact that A is regularly varying of index
� and the Potter bounds; see e.g. Theorem 1.5.6 of Bingham et al. [2].
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However, the key fact on which Theorem 1 depends is

Lemma 2. Assume that F(0) = 0 and (2.1) holds. Then for all n= 1; z large
enough and x = z

P{Sn = x; Mn 5 z}5 {cz=x}x=z ; (2.9)

where Mn = max{X1; X2; : : : ; Xn} and Sn =
∑n

1 Xi.

Proof. This is an immediate consequence of Corollary 1.5 in Nagaev [7].

Proof of Theorem 1. It is convenient to rewrite our basic assumption (1.3),
with p(m) = P{X = m}; as

p(m) ∼ �=(mA(m)) as m→ +∞ : (2.10)

We show �rst that, uniformly in n such that (2.3) holds,

lim inf [P{Sn = r}=np(r)]= 1 : (2.11)

With � ∈ (0; 12 ) we note that
P{Sn = r}

= P

{
n⋃

i=1

⋃
|m|5�r

{Xi = r − m; Sn − Xi = m; Xj 5 �r; j-i; j 5 n

}
= n

∑
|m|5�r

P{X1 = r − m}P{Mn−1 5 �r; Sn−1 = m}

= n inf
|m|5�r

p(r − m) · P{Mn−1 5 �r; |Sn−1|5 �r} :

Since �x=an → +∞ and P{Mn−1 5 �x}= 1− nF(�x) ∼ 1− n=A(�x); it
follows from Lemma 1 that P{Mn−1 5 �x} → 1. By assumption (2.2)

P{|Sn−1|5 �x} → 1;

so we deduce that the LHS of (2.11) is at least (1 + �)−�; since � is arbitrary,
(2.11) follows.
To establish that, uniformly as r=bn → +∞;

lim sup[P{Sn = r}=np(r)]5 1 ; (2.12)

we want to be able to assume that X = 0 and bn ≡ an. So suppose for the
moment that we have established (2.12) in this case, and consider the general
case with p+= P(X = 0) ∈ (0; 1).

Then Sn = S(1)n − S(2)n , where S(1)n =
∑n

1X
+
m and S(2)n =

∑n
1X

−
m . Note that

we can write S(1)n
d=
∑N+

n
1 Yj, where N+

n = #{m5 n : Xm = 0} has a B(n; p+)
distribution and the Y ’s are independent of N+

n with P{Yj = m} = p(m)=p+,
m = 0; 1; : : : : Then

P{Sn = r}=np(r) = E

{
P{∑N+

n
1 Yj = r + S(2)n }

N+
n P{Y1 = r + S(2)n }

· p(r + S(2)n )
p(r)

· N+
n

np+

}
:
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Using the feature that p(m) := supj=m p(j)∼p(m) as m→ +∞, it fol-
lows, from dominated convergence and our assumption that (2.12) holds with
Sn replaced by

∑n
1Yj; that (2.12) holds in the general case, uniformly for n such

that r=an (and hence r=bn)→ +∞. So, from now on we assume that p(m) = 0;
m ¡ 0 and bn ≡ an. We will write, for 0¡  ¡ 1 to be �xed later,

w = r=an; z = ra1−
n ; (2.13)

so that w → +∞ and

z = any where y = w : (2.14)

We use the following decomposition;

P{Sn = r} =
3∑

i=0
P{(Sn = r) ∩ Ai} :=

3∑
i=0

qi ;

where, with 0¡ � ¡ 1 and Nn = #{m5 n : Xm ¿ z} we have Ai =
{Mn5 �r; Nn= i} for i=0; 1; A2 = {Mn5 �r; Nn= 2} and A3 = {Mn ¿�r}:
Thus q3 =P{Sn= r and Mn ¿�r}5 n

∑
‘¿�rp(‘)P{Sn−1 = r − ‘}5 np(�r);

so that
lim
�↑1
lim sup
r→∞

{q3=np(r)}5 1 :

Similarly

q2 5
1
2
n2P{Sn = r; Xn−1 ¿ z; Xn ¿ z}

=
1
2
n2
∑
m

P{X1 ¿ z; X2 ¿ z; X1 + X2 = m}P{Sn−2 = r − m}

5
1
2
n2 sup

m
P{X1 ¿ z; X2 ¿ z; X1 + X2 = m}

5
1
2
n2F(z)p(z) ∼ cn2=z(A(z))2 = c

n
rA(r)

· r
z

· A(r)A(an)
(A(z))2

:

Using Lemma 1, with  ¿ (1 + �)=(1 + 2�); it follows that q2 = o(np(r)).
Also

q1 = n
∑

z¡‘¡�r
p(‘)P{Mn−1 5 z; Sn−1 = r − ‘}

5 np(z)P{Mn−1 5 z; Sn−1 ¿ (1− �)r} ;

and it follows from Lemma 2 that q1=o(np(r)). Thus the theorem will hold
if we can show that q0 = o(np(r)); or equivalently in view of the fact that
P{Mn 5 z} → 1,

P{Ŝn = r} = o(np(r)) as r →∞ ; (2.15)

uniformly in n such that r=an →∞; where Ŝn =
∑n

1X̂i, and

P{X̂i = m} = p(m)
/

z∑
0
p(m) := p̂(m); 05 m5 z : (2.16)
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First we note that without loss of generality we can assume that as r → +∞
n→∞; r=nan → 0 : (2.17)

The �rst holds because Ŝn 5 nz; so that the LHS of (2.15) is zero unless
n= r=z; and we know r=z →∞. Secondly, if r = cnan it is easy to see that
np(r)= c(r=z)−c and it follows from Lemma 2 that P{Ŝn = r} = o(np(r)).
Next, for �= 0 we introduce the probability measure P(�) such that

P(�)(X̂1 = m) = em�p̂(m)=M (�) (2.18)

where M (�) = E(e�X̂1 ) =
∑

em�p̂(m). For each �xed r and n; �(�) :=
E(�)(X̂1) = M ′(�)=M (�) is a strictly increasing function on [0;∞) with �(∞) =
z and �(0) =

∑
mp̂(m): As r →∞; �(0) ∼∑z

0mp(m) ∼ �z=(1− �)A(z); so
that if � = r=n�(0) we have � ∼ crA(z)=zA(an) = cwA(any)=yA(an). Using the
bounds in (2.8) and writing � = 1 + (�− 1) we see that for any � ¿ 0 and
all su�ciently large r

cw�−� 5 �5 cw�+� : (2.19)

Thus � →∞, and since r=n ¡ z there exists a unique � ∈ (0;∞) with
�(�) = r=n ; (2.20)

and we will prove (2.15) by working with P(�). To do so, we need information
about the behaviour of � as r →∞, and we claim that, for any � ¿ 0 and
su�ciently large r,

cw�−� 5 e�z 5 cw�+� : (2.21)

The lower bound follows from the observation that

e�z�(0) = e�z
z∑
0
mp̂(m)=

z∑
0
mp̂(m)em�

= M ′(�) =
r
n
M (�)=

r
n

;

so that �5 e�z, and (2.19). For the upper bound, write �∗ = z−1k logw, where
k ¿ 0 will be �xed later. Note that an�∗ = y−1k logw → 0, so that

M (�∗)5
an−1∑
0

em�∗p̂(m) +
z∑
an

em�∗p̂(m) := �1 + �2 ;

where �1 → 1 as r →∞. Suppose �rst that �2 = �1; then for all su�ciently
large r,

�(�∗)=
z∑
an

mem�∗p̂(m)=2�2 =
1
2
an =

r
n
= �(�) ; (2.22)

where we have used (2.17).
But if �2¡�1 then, for su�ciently large r; M (�∗)5 c and for any � ∈

(0; 1)

�(�∗)= c
z∑
�z

mem�∗p̂(m)= ce�z�
∗ z∑

�z
mp̂(m) ∼ cwk��(0) : (2.23)
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Using (2.17) and the previous estimate for �(0), it follows that provided
k ¿ � and � is chosen suitably, we have �(�∗)= r=n = �(�) and hence in
all cases �∗ = � for all su�ciently large r. Since P = � is equivalent to
e�z 5 wk , this establishes the upper bound in (2.21).
Now for any � ¿ 0; P(�)(Ŝn = r) = {M (�)}−ner�P{Ŝn = r}, so that

P{Ŝn = r} = e−nf(�)P(�)(Ŝn = r) ; (2.24)

where f(�) = n−1r�− logM (�): The next step is to �nd a good lower bound
for f(�) = ��(�)− ∫ �

0 �(�)d� =
∫ �
0 (�(�)− �(�))d�; and for this we will use

the inequality

f(�)=
1
2
�2�2 inf

�̃5�5�
�′(�) ; (2.25)

where 0¡ � ¡ 1 and �̃ = (1− �)�. Note that on [�̃; �] we have

�′(�) = E(�)(X̂ 2
1 )− (�(�))2 = E(�)(X̂ 2

1 )− (�(�))2 : (2.26)

Furthermore, on this range we have

M (�)E(�)(X̂ 2
1 ) =

z∑
0
m2em�p̂(m)= e−�z�

z∑
(1=3) z

m2em�p̂(m)

=
1
3
ze−�z�(M ′(�)− ∑

m¡(1=3) z
mem�p̂(m)) :

However ∑
m¡(1=3) z

mem�p̂(m) 5 e(1=3) z�
∑

m¡(1=3) z
mp̂(m) ∼ ce(1=3) z�

×
z∑

(2=3) z
mp̂(m)5 ce−(1=3) z�M ′(�) ;

so we conclude that for all large enough r we have

E(�)(X̂ 2
1 )= cze−��z�(�) = cn−1rze−�z� ; (2.27)

for all � ∈ [�̃; �]. Since n(�(�))2=rz = r=nz = (r=nan) · (an=z) = o(w−) we see
from (2.21) that provided �� ¡  we have (�(�))2 = o(E(�)(X̂ 2

1 )). Hence, us-
ing (2.21), (2.26) and (2.27) in (2.25) we see that for all su�ciently large r

nf(�)= c�2rze−��z = c(logw)2rz−1w−(�+�)�

= c(logw)2w1−−�(�+�) = cw(1=2)(1−) ;

by suitable choice of �. Thus, putting � = � in (2.24) and noting that np(r) =
A(an)={anwA(anw)}= (anw1+�+�)−1 for any � ¿ 0 and all su�ciently large r;
it is clear that (2.15) will follow if we can show that

anP(�)(Ŝn = r) = 0(wc) as r →∞ : (2.28)
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To achieve this, we need the following:

Lemma 3. Let W1; W2; : : : ; Wn be independent and identically distributed ran-
dom variables taking values on the integer lattice L and having span 1;
and write Zn =

∑n
1Wi. Suppose that � = E(W1); �2 = Var(W1) and � =

E(|W1 − �|3) are �nite; and write L = �=(n�4). Then ∃ an absolute constant
A such that

sup
v: v+n�∈L

|P{Zn = n� + v} − (2�n�2)−1=2 exp−{v2=2n�2}|5 AL+ d ;

(2.29)
where; with �(t) = E(eitW1 ) and ‘ = (4Ln�2)−1 = �2=4�;

d = 2
�∫
‘
e−n(1−|�(t)|) dt : (2.30)

Proof of Lemma 3. With 	(t) = E(eit(Zn−n�)=
√

n�) = {�(t=�√n)}ne−it�
√

n=�; it
follows from the inversion theorem that the LHS of (2.29) is bounded above
by I1 + I2 + I3, where

�
√
nI1 =

∫
|t|¡√n�‘

|	(t)− e−(1=2) t
2 | dt;

�
√
nI2 =

∫
|t|=√n�‘

e−(1=2) t
2
dt and I3 = 2

�∫
‘
|�(t)|n dt :

It is clear that I2=L = 4�
√
nI2 · (√n�‘) is bounded by an absolute constant

and it follows from Lemma 1, p. 109 of Petrov [9] that the same is true of
I1=L. Finally the bound for I3 follows from the simple estimate |�(t)|5
e−(1−|�(t)|):

Returning to the proof of the theorem, we will now apply the lemma, with
W1 having the P(�) distribution of X̂1, so that � = r=n; to establish (2.28). We
use (2.29) with v = 0, and note that, from the argument leading to (2.27) and
an obvious upper bound, it follows that n�2=rz is bounded away from 0 and
∞ for all large enough r. A similar calculation yields the same conclusion for
the quantity n�=rz2, and it then follows that an(�

√
n)−1 is 0(w−(1=2)(1+)) and

anL is 0(w−1), so (2.28) will follow if we can show that

and = 0(wc) : (2.31)

Now �(t) = E(�)(eitX̂1 ) = E(e(�+it)X̂1 )=M (�), so that for t ¿ 0

M (�)(1− |�(t)|) = M (�) Re(1− �(t))= E{e�X̂1 (1− cos tX̂1)}
= ct2E{X̂ 2

1; 05 X̂1 5 t−1}= ct2F(1=t∗)=(t∗)2

where t∗ = max(t; 1=z): Also the previous estimates show that ‘z = c for all
large enough r, and hence for t ∈ [‘; �]

nM (�)(1− |�(t)|)= cn=A(1=t) = cA(an)=A(an · (tan)−1)= c(tan)�0 ;
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where 0¡ �0 ¡ � and we have again used (2.8). Hence we have the asymp-
totic bound

and 5 an

�∫
cz−1

exp(−c(tan)�0 =M (�)) dt

5 {M (�)}1=�0
∞∫
0
exp(−cu�0 ) du5 c exp{�z=�0} :

Now (2.31) follows from (2.21), and the proof is �nished.

Proof of Theorem 2. This follows by repeating the argument that establishes
(2.12), with minor modi�cations, to get (2.7). Firstly, the argument that shows
we can take F(0) = 0 remains valid when we replace p(m) for m= m0 by
m−1BF(m) = p̃(m) say. Next we see that

lim
�↑1
lim sup
r→∞

{q3=np̃(r)}5 B=� ;

and that q2 = o(np̃(r)), just as in Theorem 1. Since the assumptions of
Lemma 2 are still valid, the argument that gives q1 = o(np̃(r)) also goes
through, so it remains only to show that P{Ŝn = r} = o(np̃(r)): However one
can check that all the estimates that are used in the proof depend only on
(2.1), so (2.7) is established.

3 Renewal theorems

Our main result, from which Theorem B follows by taking bn ≡ 1; is;.
Theorem 3. Suppose that b is regularly varying at ∞ with exponent � ¿ −2.
Assume; in the renewal case; that (1.7) and (1.9) hold; and in the ran-
dom walk case; that (1.7), (1.4), (1.9) hold and that �(� + 1)¡ 1. Then;
if ( · )= b(A( · ));

lim
n→∞ n1−�L(n)gn=(n) = k(�; �; �) : (3.1)

Here 0¡k(�; �; �) = �
∫∞
0 x−�(�+1)g�;�(x)dx¡∞; where g�;� is the density

of the limiting stable law.

Our �nal result applies to the special case that Sn is the time at which
the nth increasing ladder epoch occurs in a random walk {Zn; n= 0}: Thus
Z0 ≡ 0; Zn =

∑n
j=1 Yj for n= 1; where Y1; Y2; : : : are independent identically

distributed random variables, and

Xm = min{k = 1: ZSm−1+k ¿ZSm−1}; m= 1 : (3.2)

Referring to this as the ladder case, recall that in this case (1.2) is equiv-
alent to

1
n

n∑
1
P{Zi ¿ 0} → � ; (3.3)
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which is Spitzer’s condition. It is now known that (3.3) is equivalent to

P{Zn ¿ 0} → � ; (3.4)

(see [3]), and our observation gives the following result.

Theorem 4. In the ladder case for each 0¡�¡ 1 the conditions (1:7); (1:8);
(1:10); (3:3) and (3:4) are all equivalent.

Proof of Theorem 3. Suppose �rst that �(� + 1)¡ 1 and hence that bn=an is
regularly varying of index −� where � = �−1 − �¿ 1: With �¿ 0 we write

rgr
A(r)(r)

=
(1)∑
r
+

(2)∑
r

;

where

(2)∑
r
=

r
A(r)(r)

· ∑
n: an¿�r

bnP{Sn = r} :

Since an¿�r is equivalent to n¿A(�r) and∑
n¿A(�r)

bn=an ∼ A(�r)(�r)={(� − 1)�r} ∼ ��(�+1)−1A(r)(r)={(� − 1)r} ;

it follows from (1.8) that

(2)∑
r
=

r
A(r)(r)

∞∑
A(�r)

bng�; �(r=an)=an + o(1) as r →∞ : (3.5)

In this sum we write r = anx
(r)
n ; so that

(x(r)n − x(r)n+1)
nan

r
= n(1− an=an+1)→ �−1 ;

uniformly for n¿A(�r); as r →∞: We may therefore replace r=an in (3.5) by
�n(x(r)n − x(r)n+1) to see (since n = A(r=x(r)n )) that the RHS of (3.5) is a Riemann
sum approximating

�
1=�∫
0

A(r=x)(r=x)
A(r)(r)

g�;�(x)dx :

Clearly the coe�cient of g�;�(x) converges pointwise to x−�(�+1); and the Potter
bounds show that it is dominated by cx−�(�+1)−� where �¿ 0 can be chosen
so that �(� + 1) + �¡ 1: So dominated convergence applies to give

lim
r→∞

(2)∑
r
= �

1=�∫
0

x−�(�+1)g�;�(x) dx ;

and hence that

lim
�↓0

lim
r→∞

(2)∑
r
= k(�; �; �) :
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On the other hand it is immediate from Theorem 2 that for su�ciently
small � and large r;

(1)∑
r
5 c

{
(
∑∞

r pk) (
∑

n5A(�r) nbn)

A(r)(r)

}
: (3.6)

Since nbn is regularly varying with index ¿− 1; it is easily seen that the RHS
of (3.6) converges to c�(2+�)� as r →∞; so that

lim
�↓0

lim sup
r→∞

(1)∑
r
= 0 ;

and the result follows.
In the remaining case X = 0 and �= �−1 − 1; here bn=an is regularly

varying of index =− 1; and the estimate of the error term in
∑(2)

r breaks
down. Note however we still have

lim
�↓0

lim sup
r→∞

(1)∑
r
= 0 ;

as this depends only on �¿− 2: It is also easy to see that, for each �xed
0¡�¡�¡∞

lim
r→∞

r
A(r)(r)

A(�r)∑
A(�r)

bnP{Sn = r} = �
�−1∫
�−1

x−�(�+1)g�;�(x)dx ; (3.7)

so it remains only to show that

lim
�↑∞

lim sup
r→∞

(3)∑
r
= 0 ;

where
(3)∑
r
=

r
A(r)(r)

∑
n¿A(�r)

bnP{Sn = r} :

We now write �(�) = E(e−�X1 ); and for �= 0 de�ne probability measures
P(�) by

P(�)(X = m) = e−m�pm=�(�); m= 0 :

Note that �(�) := E(�)(X ) = −�′(�)=�(�) is a non-negative, continuous, strictly
decreasing function with �(0+) =∞; �(∞) = 0 so ∃ a unique � = �−1(r=n):
Furthermore we can write

P{Sn = r} = e−nh(�)P(�){Sn = r} (3.8)

where
h(�) = − log�(�)− n−1r� = − log�(�)− ��(�) : (3.9)

It is easily seen that h is a positive, monotone increasing function of � on
(0;∞): We then have
Lemma 4. Suppose that X = 0 and (1:7) holds. Then (i) for all r and n such
that r 5 nC1 we have

P{Sn = r}5 e−nC2 where C2 = h(�−1(C1)) : (3.10)
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(ii) uniformly as r=n→∞ and r=an → 0; we have P{Sn = r} ∼ q(n; r) and
h(�) ∼ r�(1− �); where

q(n; r) =
{

�
2�r(1− �)

}1=2
e−nh(�) : (3.11)

Proof of Lemma 4. (i) This follows from (3.8) and the monotonicity of h:
(ii) By a tauberian argument, (see e.g. Theorem 1.7.6 in [2]) (1.7) implies
that as � ↓ 0

1− �(�) ∼ �(1− �)=A(�−1) ; (3.12)
and

�3�(�)=(1− �)(2− �) ∼ �2�2(�)=(1− �) ∼ ��(�) ∼ �(1− �(�)) ; (3.13)

where �2(�) = Var(�)(X1); �(�) = E(�)(|X1 − �(�)|3): Thus, in particular, �(�)
is regularly varying of index �− 1 at zero, so that �−1 is monotone decreasing
and regularly varying of index −(1− �)−1 at ∞; and � = �−1(r=n)→ 0 as
r=n→∞: We now apply Lemma 3 to see that n1=2�(�)P(�)(Sn = r)− 1=√2�
is bounded in absolute value by A� + �; where

�= �(�)=n1=2�3(�); l= �2(�)=4�(�); �=2n1=2�(�)
�∫
l

e−n(1−| (t)|) dt ;

and  (t) = E(�)(eitX1 ): From (3.13) it is immediate that � ∼
(2− �)((1− �)r�)−1=2; and it is easy to deduce from an=r →∞ that r�→∞:

Thus we need only show that �→ 0: To this end let Y d=X1 − X2 (where X1
and X2 are independent copies of X ) be a symmetrized version of X; and note
that E(�)(eitY ) = | (t)|2: Writing p̃m = P(�)(Y = m) it follows that

2(1− | (t)|) = 1− | (t)|2 = 2
∞∑
1
p̃m(1− cos mt)

= 4
∞∑
1
p̃m sin

2
(
1
2
mt
)
= t2V (t−1)

where V (x) =
∑[x]

1 m2p̃m: Now, choosing a �xed k and pk ¿ 0 we see that
for all x = 4=� and all su�ciently small �

V (x)= (�(�))−2
[x]∑
1
m2e−m�

∞∑
0
e−2�jpjpm+j = c

[x]∑
1
m2pm+k = cx2=A(x) :

Since (3.13) gives l ∼ 4(2− �)−1�= 4� we see that for t ∈ (l; �] and all
su�ciently small � we have

n(1− | (t)|)= cn=A(t−1)= c(tan)�0 ;

where 0¡�0¡� and we have used Lemma 1. It follows that

�5 2
√
n�(�)

�∫
l

e−c(tan)�0 dt 5
2
√
n�(�)
an

∞∫
0
e−ct�0 dt:
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Since

√
n�(�)=an ∼

(
(1− �)r

an

)1=2
· (an�)−1=2 → 0 ;

this is clearly o(1); and we have shown that P{Sn = r} ∼ q(n; r): That h(�) ∼
�r(1− �) follows by noting that − log�(�) ∼ 1− �(�) and using (3.12) and
(3.13) in (3.9).

Thus in all cases we have, for r = nc and r and an=r large enough

P{Sn = r}5 c(�=r)1=2e−cr� : (3.14)

Using (3.10) it is easy to see that
r

A(r)(r)
∑

n¿r=c
bnP{Sn = r} → 0 : (3.15)

Finally, using (3.14) we have

r
A(r)(r)

r=c∑
A(�r)

bnP{Sn = r}5 c
A(r)(r)

∞∑
A(�r)

b(n)e−cr�(r�)1=2 : (3.16)

Now
√
xe−x 5 ce−(1=2)x and �r = �−1(r=n)=�−1(�(1=r)) so that the Potter

bounds give �r = c{n�(1=r)=r}!; for any 0¡!¡ (1− �)−1; on n= A(�r)
for � and r su�ciently large. Since r=�(1=r) ∼ A(r)�(�); we see that the RHS
of (3.16) is asymptotically bounded by

c
A(r)(r)

∞∑
A(�r)

b(n) exp− {c(n=A(r))!} :

Writing n = A(r) x(r)n ; this in turn is asymptotic to

c
(r)

∞∫
��

(r x)e−cx! dx

and since (r x)=(r) is bounded by xc; this converges to c
∫∞
�� x−��e−cx! dx:

From this and (3.15) we deduce that

lim
�→∞

lim sup
r→∞

(3)∑
r
= 0 ;

as required.

Proof of Theorem 4. We need only show that un is monotone, since then
the equivalence of (1.8) and (1.10) is a consequence of the monotone den-
sity argument, the equivalence of (1.7) and (3.3) is well-known (see e.g.
Theorem 8.9.12 of [2]), and the equivalence of (3.3) and (3.4) is in [3].
But, by duality,

un = P{Sn ¿ 0; Sn ¿ S1; : : : ; Sn ¿ Sn−1}
= P{S1 ¿ 0; S2¿ 0; : : : ; Sn ¿ 0} ;

which is clearly decreasing in n:



One-sided local large deviation and renewal theorems 465

References

1. Anderson, K.K., Athreya, K.B.: A strong renewal theorem for generalized renewal func-
tions in the in�nite mean case. Probab. Theory Related Fields 77, 471–479 (1988)

2. Bingham, N.H., Goldie, C.H., Teugels, J.L.: Regular variation. Cambridge: Cambridge
bridge University Press 1989

3. Doney, R.A.: Spitzer’s condition and ladder variables in random walks. Probab. Theory
Relat. Fields 101, 577–580 (1995)

4. Doney, R.A.: One-sided large deviation theorems in the case of in�nite mean, Research
report, Manchester Centre for Statistical Science 1995

5. Erickson, K.B.: Strong renewal theorems with in�nite mean. Trans. Amer. Math. Soc.
151, 263–291 (1970)

6. Garsia, A., Lamperti, J.: A discrete renewal theorem with in�nite mean. Comm. Math.
Helv. 37, 221–234 (1963)

7. Nagaev, S.V.: Large deviations of sums of independent random variables. Ann. Probab.
7, 745–789 (1979)

8. Nagaev, S.V.: On the asymptotic behaviour of one-sided large deviation probabilities.
Theory Probab. Appl. 26, 362–366 (1982)

9. Petrov, V.V.: Sums of Independent Random Variables. Berlin Heidelberg New York:
Springer 1975

10. Tkachuk, S.G.: Limit theorems for sums of independent random variables belonging
to the domain of attraction of a stable law. Candidate’s dissertation, Tashent 1977
(in Russian)

11. Williamson, J.A.: Random walks and Riesz kernels. Paci�c J. Math. 25, 393–415 (1968)


