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Summary. An extended notion of a local empirical process indexed by func-
tions is introduced, which includes kernel density and regression function
estimators and the conditional empirical process as special cases. Under suitable
regularity conditions a central limit theorem and a strong approximation by a
sequence of Gaussian processes are established for such processes. A compact
law of the iterated logarithm (LIL) is then inferred from the corresponding LIL
for the approximating sequence of Gaussian processes. A number of statistical
applications of our results are indicated.

Mathematics Subject Classi�cation (1991): 60F15, 62G05

1 Introduction and statements of main results

Deheuvels and Mason (1994) introduced a notion of a local uniform empirical
process indexed by a class of sets and proved a functional law of the iterated
logarithm. Such local processes are very useful in the study of statistics which
are functions of the observations in a suitable neighborhood of a point. For
instance, Deheuvels and Mason (1994) show how the pointwise Bahadur–Kiefer
representation for the sample quantile and the law of the iterated logarithm for
kernel density estimators follow readily from their results.
In this paper we extend the notion of the local empirical process to allow us

to include kernel regression function estimators and the conditional empirical
process within our setup. We then establish a weak convergence result and a
strong invariance principle for such local processes. From our strong invariance
principle we derive a general compact law of the iterated logarithm, which

∗ Research partially supported by the SFB 343, Universit�at Bielefeld, and an NSF Grant
∗∗ Research partially supported by the Alexander von Humboldt Foundation, the SFB 343,
Universit�at Bielefeld and an NSF Grant



284 U. Einmahl, D.M. Mason

yields, among other results, the Deheuvels and Mason (1994) functional law
of iterated logarithm as a special case.
Local empirical processes occur implicitly in the work of Kim and Pollard

(1990) on cube root asymptotics and of Nolan and Marron (1989) on auto-
matic bandwidth selection. This is indicated in the continuation of Example 2
below. Local empirical-type processes related to ours arise naturally in certain
interval censoring and deconvolution problems. Refer, especially, to Part II of
Groeneboom and Wellner (1992). Also for another approach to the study of
the local behavior of the empirical process indexed by functions, along with
further remarks on applications see Pollard (1995).
Let us begin by �xing some notation. Let X; X1; X2; : : : ; be a sequence of

i.i.d. Rd valued random vectors with distribution P on the Borel subsets B
of Rd. Given any x ∈ Rd and any measurable set J ⊆ Rd, we set for any
invertible bimeasurable transformation h : Rd → Rd;

(1:1) A(h) = x + hJ :

Let {hn} denote a sequence of invertible bimeasurable transformations from
Rd to Rd and assume with An = A(hn) and an = P(An); n= 1;

an ¿ 0 for all n= 1 ;(A:i)
nan →∞ as n→∞ ;(A:ii)

and for some 05 a5 1;

(A:iii) an → a as n→∞ :

For each integer n= 1; let k(n) = [nan]; where [x] denotes the integer part
of x; and let Pn be the probability measure on (Rd;B) de�ned by

(1:2) Pn(B) = P(x + hn(J ∩ B)) = an; B ∈ B :
Let F denote a class of square P-integrable functions on Rd with supports

contained in J . To avoid measurability problems we shall assume that there
exists a countable subclass Fc of F and a measurable set D with Pn(D) = 0
for all n= 0 such that for any x1; : : : ; xm ∈ Rd − D and f ∈F there exists a
sequence {fj} ⊂Fc satisfying

lim
j→∞

fj(xk) = f(xk); k = 1; : : : ; m ;(S:i)

lim
j→∞

Pn(fj) = Pn(f) for each n= 1(S:ii)

and

(S:iii) lim
j→∞

Pn(f2j ) = Pn(f
2) for each n= 1 :

Given each integer n=1 and invertible bimeasurable transformation h : Rd

→ Rd; we introduce the local empirical process at x ∈ Rd indexed by F

(1:3) Ln(f; h) =
n∑
i=1

f(h−1(Xi − x))− Ef(h−1(Xi − x))√
nP(A(h))
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and de�ne the local empirical distribution function at x indexed by F by

(1:4) �n(f; h) =
n∑
i=1
f(h−1(Xi − x)) = (nP(A(h))) :

We could readily extend our setup formally by replacing (Rd;B) by a
general measure space. However, to keep the exposition as simple as possible
we will restrict ourselves to (Rd;B), where all of our examples live. Our
setup allows us to consider the following interesting examples, among others,
as special cases.

Example 1. Let U1; U2; : : : ; be independent uniform [0; 1]d; d= 1; random
variables. Choose an x ∈ [0; 1]d and a subclass C of the Borel subsets of J :=
[r; s]d; where r ¡ s with s− r = 1: Setting F = {1C : C ∈ C}; where each 1C
is the indicator function of C and de�ning h : Rd → Rd by h(x1; : : : ; xd) =
(a1=dx1; : : : ; a1=dxd) with 0¡ a5 1, we get whenever x + hJ ⊂ [0; 1]d

(1:5) Ln(1C; h) =
n∑
i=1

1(Ui ∈ x + hC)− a|C|√
na

;

where |C| denotes the Lebesgue measure of C. This is a version of the local
uniform [0; 1]d empirical process �rst studied by Deheuvels and Mason (1994).

Example 2. Let X1; X2; : : : be i.i.d. real valued random variables with a density
g continuous and positive in a neighborhood of a �xed x. Set J = [− 1

2 ;
1
2 ] and

de�ne h : R→ R by h(u) = u with 0¡ 5 1: Further set F = {K}; where
K is a kernel function satisfying

(K:1)
∞∫

−∞
K(u) du = 1 ;

(K:2) K is of bounded variation ;

(K:3) K(u) = 0 if |u|¿ 1
2 :

Then

ĝn(x) :=
n∑
i=1
K((Xi − x)=) = (n)(1:6)

= �n(K; h)P(A(h)) = 

is the usual kernel density estimator of g(x) with window size :

Example 3. Let (X1; Y1); (X2; Y2); : : : ; be i.i.d. G with joint density gXY and
marginal densities gX and gY . Choose J = [− 1

2 ;
1
2 ]×R; h(u; v) = (u; v) with

0¡51; and A(h) = (x; 0) + hJ: Further, set R(u; v) = vK(u) for (u; v) ∈ R2,
where K is a kernel function as in Example 2 and F = {R}. Now
(1:7) �n(R; h) = r̂n(x)ĝn(x) =P(A(h)) ;
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where ĝn(x) is the kernel density estimator of the marginal density gX (x) and
r̂n(x) is the kernel regression estimator

(1:8) r̂n(x) =
n∑
i=1
YiK((Xi − x)=) = (nĝn(x)) ;

of r(x) = E(Y |X = x):
Example 4. Keeping the notation of Example 3, now choose the class of
functions F = {fy: y ∈ R}; where

(1:9) fy(u; v) = 1(v5 y)K(u); (u; v) ∈ R2 :

Then

(1:10) �n(fy; h) = Fn(y | x)ĝn(x) =P(A(h)); y ∈ R ;
where

(1:11) Fn(y | x) = 1
n

n∑
i=1
1(Yi 5 y)K((Xi − x)=) = ĝn(x) ;

is the conditional empirical distribution �rst intensively studied by Stute
(1986a, b).
In order to state our main weak convergence result we must introduce some

further notation and assumptions. Here we shall borrow heavily from Sheehy
and Wellner (1992), especially from their Sect. 3.
For integers m= 1 and n= 1 de�ne the empirical process indexed by F

(1:12) �(n)m (f) =
(

m∑
i=1
f(Y (n)i )− mPn(f)

)/√
m; f ∈F ;

where Y (n)1 ; : : : ; Y (n)m are assumed to be i.i.d. Pn. Let F′={f−g: f; g ∈F};
F2={f2: f∈F}; (F′)2={(f−g)2: f; g∈F} and G=F∪F2∪F′∪(F′)2:

For any functional T de�ned on a subset H of the real valued functions
on J we denote

(1:13) ‖T‖H = sup {|T (f)|: f ∈H} :
We shall require the following additional assumptions on the class of func-

tions F and the sequence of probability measures {Pn}.
(F.i) F has a uniformly square integrable envelope function F , namely,

(1:14) lim
�→∞

lim sup
n→∞

PnF21(F¿�) = 0 :

(F.ii) There exists a probability measure P0 such that

(1:15) ‖Pn − P0‖G → 0 as n→∞ :

For any f; g ∈ L2(Rd;B), and n= 0; set

(1:16) �2n(f; g) = Var Pn(f − g) ;
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and

(1:17) e2n(f; g) = EPn(f − g)2 :
Set for each n= 0 and �¿0

(1:18) F′
n(�) = {(f; g) ∈F×F: �n(f; g)5 �} ;

and for any real valued functional T on F set

(1:19) ‖T‖F′
n (�)

= sup{|T (f)− T (g)|: �n(f; g)5 �} :
Then our next assumption on F is,
(F.iii) (F; �0) is totally bounded and for all �¿0

(1:20) lim
�↓0
lim sup
n→∞

P(‖�(n)k(n)‖F′
n (�)

¿ �) = 0 :

We shall denote by

(1:21) (B0(f))f∈F

a P0-Brownian bridge indexed by F, that is, B0 is a Gaussian process indexed
by F with mean zero and covariance function

(1:22) Cov (B0(f); B0(g)) = P0(fg)− P0fP0g; f; g ∈F :

We will assume that B0 has uniformly �0 continuous sample paths, when-
ever such a version of B0 exists. Note, in particular, that this is the case under
the above assumptions since they imply that F is P0-pregaussian.
Let Z be a standard normal random variable independent of B0 and for

each 05 a5 1 introduce the Gaussian process indexed by F

(1:23) W (f; a) := B0(f) +
√
1− aZP0(f); f ∈F :

For use later on we note that we can assume that B0 has been extended
to be a Gaussian process indexed by the larger class of all measurable real
valued functions on Rd such that P0f2¡∞ with covariance function given
by (1.22). This can be justi�ed using the Kolmogorov consistency theorem.
Refer to page 5 of Ibragimov and Rozanov (1978) for details. Thus we can
assume that the Gaussian process W (f; a) is also well-de�ned on this class.
We are now prepared to state our main weak convergence result. As in

Sheehy and Wellner (1992), we use the notion of weak convergence in the
sense of Ho�man–J�rgensen and it will be denoted by the symbol ‘⇒’.
Theorem 1.1 Under assumptions (A); (S) and (F) the sequence of local em-
pirical processes satis�es

(1:24) (Ln(f; hn))f∈F ⇒ (W (f; a))f∈F :

Remark. 1.1 Corollary 3.1 of Sheehy and Wellner (1992) implies that when-
ever (S); (F.i) and (F.ii) hold and F is sparse in the sense of Pollard (1982),
then (F.iii) is also satis�ed. In particular, each of the classes F in Examples
2–4 are sparse and satisfy (S), (F.i) and (F.ii).
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Let Lx = log(x ∨ e) and LLx = L(Lx) for all x. We shall now state our
strong approximation result.

Theorem 1.2 Assume (S) and (A); where in (A:iii); a = 0. Also assume that

(A:iv) an ∼ dn where dn ↘ 0; ndn ↗∞ and ndn=LLn →∞ as n→∞ :

Further assume (F.ii) and replace (F.i) by

(F:iv) |f|5 K for all f ∈F and some K = 1 :

In addition; assume

(F:v) for each n= 1 and m= n; f ◦ h−1n and f ◦ h−1m ◦ hn ∈F ;

(F.vi) there exists a sequence of positive constants (bn)n=1 such that for all
f; g ∈F and n= 1

(1:25)
∫
Rd
f(hnx)g(hnx)dP0(x) = b−1n

∫
Rd
f(x)g(x)dP0(x) ;

where

(1:26) an=bn → 1; as n→∞ :

Further assume

(F:vii) ‖�(n)k(n)‖F=
√
LLn P−→ 0; as n→∞ ;

(F:viii) F is P0-pregaussian :

Then one can construct X1; X2; : : : ; i:i:d:P and a sequence W1; W2; : : : of inde-
pendent P0-Brownian motions indexed by F; such that with probability one
as n→∞:

(1:27) sup
f∈F

∣∣∣∣Ln(f; hn)− 1√
nbn

n∑
i=1
Wi(f ◦ h−1n )

∣∣∣∣/√LLn→ 0 :

Notice that due to assumption (F.vi) for each n= 1

(1:28) W̃n :=
(

n∑
i=1
(Wi(f ◦ h−1n ))=

√
nbn

)
f∈F

D= (W1(f))f∈F :

Thus (W̃n)n=1 is a sequence of P0-Brownian motions taking values in the
separable Banach space B = Cu(F; e0); the space of uniformly e0 continuous
functions of F.
Let K be the unit ball of the reproducing kernel Hilbert space pertaining

to W1. Further, let B(F) denote the class of all bounded functionals on F
equipped with the supremum norm

(1:29) d(�; ’) = sup
f∈F

|�(f)− ’(f)|; �; ’ ∈ B(F) :
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Our next result gives as a corollary to Theorem 1.2 the compact law of the
iterated logarithm for the local empirical process. Its proof is a consequence
of the strong approximation (1.27) and the fact that the same result holds for
the sequence (W̃n=

√
2LLn)n=1, which will be shown in Sect. 3.

Corollary 1.1 In addition to the assumptions of Theorem 1:2 assume
(F.ix) for all f; g such that P0(f − g)2 ¡∞; n= 1; and 2n= m= n; we
have

(1:30)∫
Rd(f(h

−1
m (hn(x)))− g(h−1m (hn(x))))2 dP0(x)5 M

∫
Rd
(f(x)− g(x))2 dP0(x) ;

where M¿0;
(F.x) for every compact set A ⊂ Rd and � ¿ 0 there exists a q0¿1 such
that for all 1¡ q ¡ q0 with nk = [qk ]

(1:31) max
nk5m5nk+1

sup
x∈A

|x − h−1m (hnk (x))|5 �

for all large enough k depending on A and �¿0: Then with probability one
the sequence of processes

(1:32) (Ln(f; hn) =
√
2LLn)f∈F

is relatively compact in B(F) with set of limit points equal to K.

Remark. 1.2 Whenever [nan] = LLn is bounded in n; the almost sure limiting
behavior of the local empirical process is much di�erent. In this case it is
more appropriate to replace the independent Wiener processes by independent
Poisson processes to obtain a useful strong approximation. See Deheuvels and
Mason (1990) and (1995).

Example 1 (Contd.) For each integer n=1 set hn(x1; : : : ; xd)=(a
1=d
n x1; : : : ; a

1=d
n xd);

where an ↘ 0; nan ↗∞ and nan=
√
LLn→∞: Also assume that x + �[r; s]d ⊂

[0; 1]d for all small enough �¿0. Then for all n su�ciently large Pn = P0 =
uniform [r; s]d: Now let F be a uniformly bounded class of real valued mea-
surable functions on Rd satisfying

(C:1) f(�·) ∈F for all �= 1 ;

(C:2) F satis�es (S) ;

(C:3) ‖�(0)k(n)‖F
/√
LLn

P0−→ 0; as n→∞ ;

(C:4) F is P0-pregaussian :

In particular (C.1)–(C.4) are satis�ed whenever F = {1C : C ∈ C} where
C is a P0-Donsker class of sets satisfying (S) and C ∈ C whenever C ∈ C
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and 0¡5 1: It is trivial to verify that all of the conditions of Theorem 1.2
and Corollary 1.1 hold. Hence Theorem 1.1 of Deheuvels and Mason (1994)
is a special case of our Corollary 1.1. We mention here that Arcones (1994)
has formulated a compact law of the iterated logarithm for the local uniform
[0; 1]d empirical process indexed by a uniformly bounded class of functions.
Also we note that when d = 1; x = 0 and F = {1[0; t]: 05 t51}; Example 1
specializes to the uniform [0; 1] tail empirical process. Therefore Theorem 1.2
yields the Mason (1988) strong approximation to this process.
We are now going to show that our strong approximation and compact law

of the iterated logarithm apply to Examples 2 and 4. We need some facts about
VC subgraph classes. For the basic de�nition refer to Gin�e and Zinn (1984)
or Pollard (1984).

Fact 1.1 (Dudley 1978; Alexander 1987). Let � be a monotone function on
R and G be a �nite dimensional class of real valued functions de�ned on a
set S then the class {�(g): g ∈ G} is a VC subgraph class.
Fact 1.2 (Pollard (1984)). Let C be a VC class of sets. Then {1C : C ∈ C}
is a VC subgraph class.

Let F be a class of measurable real valued functions on Rd with envelope
function F; and let Q be a probability measure on Rd such that Q(F2)¡∞:
For any u¿0 let N (u(Q(F2))1=2; F; eQ)=minimum m=1 for which there exist
functions f1; : : : ; fm; not necessarily in F; such that for all f∈F; min15i5m
eQ(f;fi)¡u(Q(F2))1=2; where eQ(f;fi) = (Q(f − fi)2)1=2.
Fact 1.3 (Alexander 1987). If F is VC subgraph class of measurable real
valued functions on Rd with bounded envelope function F; then there exist
constants C¿0 and �¿0 such that

(1:33) N (u(Q(F2))1=2;F; eQ)5 Cu−�

for all 0¡u¡1 and probability measures Q on Rd.

Fact 1.4 Suppose F1 and F2 are two classes of uniformly bounded mea-
surable real valued functions on Rd such that for constants C1¿0; C2¿
0; �1¿0 and �2¿0

(1:34) N (uMi;Fi ; eQ)5 Ciu−�i ; i = 1; 2 ;

for all 0¡u¡1 and probability measures Q on Rd. Then there exist constants
C3¿0 and C4¿0 such that

(1:35) N (u(M1 +M2);F1 +F2; eQ)5 C3u−(�1+�2)

and

(1:36) N (uM1M2;F1F2; eQ)5 C4u−(�1+�2)

for all 0¡u¡1 and probability measures Q on Rd; where F1 +F2 = {f + g:
f ∈F1; g ∈F2} and F1F2 = {fg: f ∈F1; g ∈F2}.
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Proof. Trivial.

Fact 1.5 Let K be a real valued function of bounded variation on [a; b];−∞¡
a¡b¡∞; and equal to zero on R− [a; b]; and let C be a VC class of subsets
of R. Then for the class of real valued functions

(1:37) FK;C = {K(xt)1C(y): −∞¡t¡∞; C ∈ C}
there exist constants C¿0 and �¿0 such that (1.33) holds for all probability
measures Q on R2.

Proof. Write K = K1 − K2, where K1 and K2 are two bounded nondecreasing
functions on R and then apply Facts 1.1–1.4.

Our next fact is a special case of Theorem 3.1 of Alexander (1987).

Fact 1.6 Let {Pn}n=0 be a sequence of probability measures on Rd and F
be a class of measurable real valued functions on Rd bounded by M such
that (S) and (F:ii) hold. Assume there exist constants C¿0 and �¿0 such
that for all probability measures Q and 0¡u¡1

(1:38) N (uM 1=2;F; eQ)5 Cu−� ;

then for any sequence of integers m(n)→∞

(1:39) (�(n)m(n)(f))f∈F ⇒ (B0(f))f∈F as n→∞ :

Example 2 (Cont.) Set hn(u) = �nu for n= 1, where �n ↘ 0; n�n ↗ and
n�n=LLn→∞ as n→∞. In this case P0 is uniform [− 1

2 ;
1
2 ]. We now choose

(1:40) F = {Kt(u) := K(ut): t¿0} :
Since X1 is assumed to have a density continuous and positive in a neighbor-
hood of x, it is readily established using Sche��e’s theorem that Pn converges to
P0 in total variation. Therefore (F.ii) holds. Also one sees that (S) is satis�ed.
Thus by Fact 1.5 with C = {(−∞;∞)} and by Fact 1.6, (1.39) holds, which
implies (F.vii) and (F.viii). The rest of the assumptions of Theorem 1.2 and
Corollary 1.1 are easily checked. After a little manipulation one infers from
Corollary 1.1 that with probability one

(1:41) lim sup
n→∞

±√n�n (ĝn(x)− Eĝn(x))√
2LLn

=

(
g(x)

∞∫
−∞

K2(u) du

)1=2
:

This result was �rst proved in Deheuvels and Mason (1994).

We mention that the following process de�ned for t¿0,{
n∑
i=1
K(t(Xi − x)=�n)− nanPn(Kt)

}/√
2nan

has potential use in the study of the rate of consistency of automatic bandwidth
estimators. For motivation refer to the paper of Nolan and Marron (1989) and
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the references therein. In the special case when K is the indicator function of
the interval [− 1

2 ;
1
2 ], this process arises naturally in the study of cube asymp-

totics. See, especially, the derivations of the limiting distribution of the shorth
in Shorack and Wellner (1986) and Kim and Pollard (1990). Applications such
as these will be addressed elsewhere.

Example 4 (Cont.) Set hn(u; v) = (�nu; v), n= 1, where �n ↘ 0; n�n ↗∞
and n�n=LLn→∞ as n→∞. Assume that gXY is continuous on (x − �; x +
�)×R for some �¿0 and gX (x)¿0. In this case P0 = P0;1 × P0;2, where P0;1
is uniform [− 1

2 ;
1
2 ] and P0;2(B) = P(Y1 ∈ B |X1 = x) for B ∈ B. Choose

(1:42) F = {fy(ut; v) = K(ut)1(v ∈ (−∞; y]): t = 1; y ∈ R} :

By Facts 1.5 and 1.6, (F.vii) and (F.viii) hold. Since Pn converges to P0 in
total variation, (F.ii) is also satis�ed. It is straightforward to show that the
other assumptions of Theorem 1.2 and Corollary 1.1 hold.
Here

Ln(fy; hn)√
2LLn

=
n∑
i=1

1(Yi 5 y)K((Xi − x)=�n)− nanPn(fy)√
2nanLLn

;

and we get that

lim sup
n→∞

sup
y∈R

± Ln(fy; hn)√
2LLn

=

(
∞∫

−∞
K2(u) du

)1=2
a:s:

This is the LIL version of the Stute (1986b) Glivenko–Cantelli theorem for
the conditional empirical process.

The remainder of our paper is organized as follows. We begin in Sect. 2 by
proving a coupling inequality for the empirical process. Our method of proof is
somewhat similar to the one employed by Dudley and Philipp (1983). We �rst
establish a coupling inequality for multidimensional random vectors, where we
use a result of Zaitsev (1987) on the rate of convergence in the multidimen-
sional central limit theorem in combination with the Strassen–Dudley theorem.
We then employ a recent inequality of Talagrand (1994) to approximate the
empirical process by a suitable �nite dimensional process. In Sect. 3, we prove
the main results. The basic idea is that the local empirical process behaves
to some extent like a randomly stopped empirical process (see Proposition 3.1
below), which allows us to reduce the approximation problem to one involving
the usual empirical process, which in turn can be solved using our coupling
inequality.

2 A useful coupling inequality

In this section we establish a useful coupling inequality for the empirical pro-
cess, which will be essential for the proof of our strong invariance principle.
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For probability measures P and Q on the Borel subsets of Rd and �¿0, let

(2:1) �(P;Q; �) := sup{max P(A)− Q(A�); Q(A)− P(A�)):A ⊂ Rd; closed} ;
where A� denotes the closed �-neighborhood of A,

(2:2) A� :=
{
x ∈ Rd: inf

y∈A
|x − y|5 �

}
with | · | being the Euclidean norm on Rd.
Further, let X1; : : : ; Xm m= 1, be independent mean zero random vectors

satisfying for some M¿0

(2:3) |Xi|5 M; 15 i 5 m :

Denote the distribution of X1 + · · ·+ Xm by Pm and let Qm be the d-dimensional
normal distribution with mean zero and covariance matrix

(2:4) cov (X1) + · · ·+ cov(Xm) :
The following inequality follows from the work of Zaitsev (1987).

Fact 2.1 For all integers m= 1;

(2:5) �(Pm;Qm; �)5 c1 exp(−c2�=M) ;
where c1 and c2 are positive constants depending only on d.

Using the Strassen–Dudley theorem (see Dudley 1968), Fact 2.1 and stan-
dard arguments from measure theory such as Lemmas 1.2.2 and 1.2.3 in Dudley
(1984), we readily infer the next fact.

Fact 2.2 Let X1; : : : ; Xm be independent mean zero d-dimensional random
vectors satisfying (2.3). If the underlying probability space (
;F; P) is rich
enough; one can de�ne independent normally distributed mean zero random
vectors V1; : : : ; Vm with cov(Vi) = cov(Xi); 15 i 5 m; such that

(2:6) P
(∣∣∣∣ m∑

i=1
(Xi − Vi)

∣∣∣∣= �
)
5 c1 exp(−c2�=M) :

The following maximal version of the Bernstein inequality follows from Doob’s
maximal inequality and the proof of the usual Bernstein inequality on page 14
of Dudley (1984).

Fact 2.3 Let �1; : : : ; �m be independent mean zero random variables satisfying

(2:7) |�i|5 M; 15 i 5 m :

Then for all t = 0

(2:8) P
(
max
15j5m

∣∣∣∣ j∑
i=1
�i

∣∣∣∣= t
)
5 2 exp

(
−t2

/ (
2Bm +

2M
3
t
))

;

where Bm :=
∑m

i=1 E�
2
i .
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Let | · |+ be the maximal norm on Rd. Using Facts 2.2 and 2.3 we shall
establish the following simple coupling inequality for sums of independent
d-dimensional random vectors.

Proposition 2.1 Let Xj = (X
(1)
j ; : : : ; X (d)j ); 15 j 5 n; be independent mean

zero random vectors satisfying (2.3) and let �2¿0 be such that

(2:9) E(X (i)j )
2 5 �2; 15 i 5 d; 15 j 5 n :

Let 15 L5 n be an integer and x¿0 be �xed. If the underlying probability
space is rich enough; one can construct independent normally distributed mean
zero random vectors V1; : : : ; Vn with cov (Vi) = cov (Xi); 15 i 5 n; such that

P

(
max
15j5n

∣∣∣∣ j∑
i=1
(Xi − Vi)

∣∣∣∣
+

= x

)
5 c3(L+ 1) (exp(−c4x=ML)(2:10)

+ exp(−Lx2=64n�2)) ;
where c3 and c4 are positive constants depending only on d.

Proof. Set m = [n=L],

(2:11) Uj :=
jm∑

i=( j−1)m+1
Xi; 15 j 5 L

and

(2:12) Wj :=
jm∑

i=( j−1)m+1
Vi; 15 j 5 L ;

where V1; : : : ; Vn are constructed using Fact 2.2 to be mean zero independent
normally distributed random vectors with cov (Vi) = cov (Xi); 15 i 5 n, such
that

(2:13) P(|Uj −Wj|= x=2L)5 c1 exp(−c2x=2ML)
for 15 j 5 L. Since |x|+ 5 |x|; x ∈ Rd, (2.13) clearly implies that for
15 j 5 L,

(2:14) P(|Uj −Wj|+ = x=2L)5 c1 exp(−c2x=2ML) :
It follows that

(2:15)

P

(
max
15k5n

∣∣∣∣ k∑
i=1
(Xi − Vi)

∣∣∣∣
+

= x

)
5 c1L exp(−c2x=2ML) + �L;1 + �L;2 ;

where

�L;1 := P

(
max
05j5L

max
15k5m

∣∣∣∣∣ jm+k∑
i=jm+1

Xi

∣∣∣∣∣
+

= x=4

)
;
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and

�L;2 := P

(
max
05j5L

max
15k5m

∣∣∣∣∣ jm+k∑
i=jm+1

Vi

∣∣∣∣∣
+

= x=4

)
:

To bound �L;1 we note that

�L;1 5 d max
15�5d

L∑
j=0
P

(
max
15k5m

∣∣∣∣∣ jm+k∑i=jm+1X (�)i
∣∣∣∣∣= x=4

)
;

which, in turn, by Fact 2.3 is

5 2d(L+ 1) exp(−x2=(32m�2 + 8Mx=3))
5 2d(L+ 1)(exp(−x2=64m�2) + exp(−3x=16ML)) :

Using the fact that the Vi’s have a symmetric distribution, along with a stan-
dard exponential inequality for the tail probabilities of the normal distribution
we get similarly

�L;2 5 2d(L+ 1) exp(−x2=32m�2) :
Setting c3 = c1 ∨ (4d) and c4 = (c2=2) ∧ (3=16) completes the proof of
(2.10).

Recall de�nition (1.3), (1.12), (1.16) and (1.18). The following inequality
is readily inferred from Theorem 3.5, Talagrand (1994).

Fact 2.4 Assume that F satis�es (S) and for some K¿0

(2:16) |f|5 K; f ∈F :

Then there exists an absolute constant A¿0 such that for all t¿0; �¿0;
m= 1 and n= 1;

P(‖√m�(n)m (f)‖F′
n (�)

= t + AE‖√m�(n)m (f)‖F′
n (�)
)(2:17)

5 exp(−t2=mA2�2) + exp(−t=KA) :

Proof. To see (2.17) for K = 1, we note that an inspection of Talagrand’s
proof shows that his Theorem 3.5 is also valid if we replace his H by

(2:18) �H := E
∥∥∥∥ m∑
i=1
�i(f(Y

(n)
i )− Pn(f))

∥∥∥∥
G

;

where G = {(f + 2)=4: f ∈F′
n(�)}. Noticing that

(2:19) �H 5 2E‖√m�(n)m (f)‖F′
n (�)

;

we obtain (2.17) after some straightforward manipulation.

Using a well known inequality for Gaussian random variables (see e.g.
Ledoux and Talagrand, 1991, Lemma 3.1), we readily obtain the following
inequality.
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Fact 2.5 Assume that for a probability measure P0 the class F is P0-
pregaussian and let for f; g ∈F
(2:20) �20(f; g) = VarP0(f − g) :
Let �B; �B1; �B2; : : : ; be independent P0-Brownian bridges indexed by F. For all
t¿0; �¿0 and m= 1:

(2:21) P

∥∥∥∥∥ m∑
j=1

�Bj

∥∥∥∥∥
F′(�)

= 2
√
mE‖ �B‖F′(�) + t

5 exp(−t2=2m�2) ;

where

(2:22) F′(�) = {f − g: �0(f; g)5 �} :
We can now state and prove the main result of this section.

Proposition 2.2 Let F be a class of real valued functions satisfying (S) and
(2.16) and let {Pn}n=1 be a sequence of probability measures on (Rd;B) for
which (F:ii) holds for a probability measure P0. Assume further that F is
P0-pregaussian. Then given any 0¡�¡1 and sequence of positive integers
{kn}n=1 there exists an n(�) such that for every n= n(�) and u¿0 one
can construct empirical processes (�(n)m (f))f∈F; 15 m5 kn and independent
P0-Brownian Bridges ( �Bm(f))f∈F; 15 m5 kn such that

P
(
max

15m5kn

∥∥∥∥√m�(n)m −
m∑
i=1

�Bi

∥∥∥∥
F

= u+ �n; kn(�)
)

(2:23)

5 K1{exp(−K2u=K) + exp(−u2=KnA20�2K2)} ;
where

(2:24) �n; kn(�) := A1
√
kn(E‖ �B‖F + E‖�(n)kn ‖F′

n (�)
) ;

K1 = K1(�); K2 = K2(�) are constants depending on � only; and A0 and A1
are absolute constants.

Proof. First note that since F is P0-pregaussian, it is totally bounded with
respect to �0. Recalling (1.15), we can �nd for any 0¡�¡1 a subclass
{f1; : : : ; fr} of F where r depends on � such that for all n= n1(�), for some
n1(�),

(2:25) min
15i5r

�n(f;fi)5 � :

So if the sequence (�(n)m (f))f∈F; 15 m5 kn; n= n1(�), is given, we set
for 15 j 5 kn,

X (i)j = fi(Y
(n)
j )− Pn(fi); i = 1; : : : ; r ;

and we clearly have for 15 m5 kn

(2:26) (
√
m�(n)m (f1); : : : ;

√
m�(n)m (fr)) =

(
m∑
i=1
X (1)i ; : : : ;

m∑
i=1
X (r)i

)
:
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Using Proposition 2.1 �rst we de�ne normally distributed random vectors
Vi; 15 i 5 kn, such that

�1 := P

(
max

15m5kn

∣∣∣∣ m∑
i=1
(Xi − Vi)

∣∣∣∣
+

¿
u
4

)
(2:27)

5 c3(r)(1 + �−2)(exp(−c4(r)�2u=4K
√
r)

+ exp(−u2=1025kn�2K2)) ;
where we apply (2.3) with � = K; L = [�−2] and M =

√
rK .

Next, let
� = cov (B(f1); : : : ; B(fr))

and
�n = cov (X

(1)
1 ; : : : ; X (r)1 ) :

We can assume that for 15 i 5 kn,

(V (1)i ; : : : ; V (r)i ) = �
1=2
n
�Zi ;

where �Z1; : : : ; �Zkn are independent standard normal r-vectors.
Set

(2:28) Wi = �1=2 �Zi; i = 1; : : : ; kn :

Clearly (W (1)
i ; : : : ; W (r)

i )
d=( �Bi(f1); : : : ; �Bi(fr)); i = 1; : : : ; kn, where �B1; : : : ; �Bkn

are independent P0-Brownian bridges. Therefore, without loss of generality,
we can assume that

(2:29) (W (1)
i ; : : : ; W (r)

i ) = ( �Bi(f1); : : : ; �Bi(fr)); 15 i 5 kn ;

Also since �n → � as n→∞, we have by using symmetry of the �Zi’s and a
standard bound on the tail of a normal distribution that for all large n

(2:30) �2 := P

(
max

15m5kn

∣∣∣∣ m∑
i=1
(Vi −Wi)

∣∣∣∣
+

= u=4

)
5 exp(−u2=�2kn)

for all u¿0 and n= n2(�).
It is easy to see now that for all n= n(�) = n1(�) ∨ n2(�) large enough

so that F′
n (�) ⊂F′(2�) (by (1.15)),

P
(
max

15m5kn

∥∥∥∥√m�(n)m −
m∑
i=1

�Bi

∥∥∥∥
F

= u+ �n; kn(�)
)

(2:31)

5 �1 +�2

+ P
(
max

15m5kn
‖√m�(n)m ‖F′

n (�)
=
u
4
+ A1

√
knE‖�(n)kn ‖F′

n (�)

)

+ P

(
max

15m5kn

∥∥∥∥ m∑
i=1

�Bi

∥∥∥∥
F′(2�)

=
u
4
+ A1

√
knE‖ �B‖F

)
=: �1 + �2 +�3 +�4 :
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To bound �3, we note by the Ottaviani inequality, (see, for instance Dudley
1984, Lemma 3.2.7),

(2:32) �3 5 2P
(
‖
√
kn�

(n)
kn ‖F′

n (�)
=
u
4
+ (A1 − 2)

√
knE‖�(n)kn ‖F′

n (�)

)
;

where we use the fact that by Jensen’s inequality
√
mE‖�(n)m ‖F′

n (�)
5
√
knE‖�(n)kn ‖F′

n (�)
; 15 m5 kn :

Now applying (2.17), we get

(2:33) �3 5 2 exp(−u2=16knA2�2) + 2 exp(−u=4KA) ;
provided we have chosen A1 = A+ 2.
Finally using Fact 2.5 along with L�evy’s inequality, Lemma 3.2.11 of

Dudley (1984), we �nd that

(2:34) �4 5 2 exp(−u2=128kn�2) ;
provided of course we have chosen A= 2. Combining (2.31), (2.27), (2.30),
(2.33) and (2.34) we obtain (2.23).

Remark. 2.1 Though we will use Proposition 2.2 only for empirical measures
on the Euclidean space, it might be worthwhile to point out that the above
proof works for empirical measures on general probability spaces. Thus the
conclusion of Proposition 2.2 holds as well in this more abstract setting.

3 Proofs of main results

In our proofs we shall make repeated use of the following proposition.
Given any integer n= 1 and invertible transformation hn : Rd → Rd, let
Y (n)1 ; Y (n)2 ; : : : ; be i.i.d. Pn. Set for f ∈F; n= 1 and j = 1

(3:1) S(n)j (f) =
j∑
i=1
f(h−1n (Xi − x))− janPn(f) ;

and

(3:2) T (n)j (f) =
√
j�(n)j (f) :

Further, independently of Y (n)1 ; Y (n)2 ; : : : ; let �1; �2; : : : ; be i.i.d. Bernoulli (an)
random variables and set �(j) = �1 + · · ·+ �j; j = 1:

Proposition 3.1 With the above notation and assumptions for all n= 1

(3:3) (S(n)j (f))j=1
d=(T (n)�( j)(f) + (�(j)− janPn(f)))j=1

as vectors indexed by F.

Proof. Let �1; �2; : : : ; be i.i.d. Qn, independent of the Y
(n)
i ’s and the �i’s, where

(3:4) Qn(B) = P(B ∩ ACn ) =P(ACn )
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for all B ∈ B. Then it is readily checked that the random variables Xj de�ned
for any j = 1 to be,

(3:5) Xj = (hnY
(n)
�( j) + x)�j + �j−�( j)(1− �j)

are i.i.d. P. Recalling that all the functions f ∈F are zero outside J , we see
that

(S(n)j (f))j=1
d=

(
�( j)∑
i=1
f(Y (n)i )− janPn(f)

)
j=1

:

Before we proceed with the proof of Theorem 1.1, we remark that it is
based on methods and ideas of proving weak convergence theorems for ran-
dom sample size empirical processes that originate with Pyke (1968), and
which have been recently generalized in Klaassen and Wellner (1992). See,
in particular, the proof of their Theorem 4.

Proof of Theorem 1.1. First, by Proposition 3.1, for each integer n= 1,

{Ln(f; hn) : f ∈F}(3:6)

d=

{√
�(n)
nan

�(n)�(n)(f) +
(�(n)− nan)Pn(f)√

nan
: f ∈F

}
:

Using assumption (A) it is easily shown that, with a as in (A.iii),

(3:7) (�(n)− nan) =√nan d→√
1− aZ as n→∞ :

Furthermore, (S) and (F) imply

(3:8) �(n)k(n) ⇒ B0 ;

where B0 is a P0-Brownian bridge. (see Sheehy and Wellner (1992, Theo-
rem 3.1).
Also, obviously by (3.7)

(3:9) �(n) = nan
P→ 1 as n→∞ :

Therefore, since the two sequences in (3.7) and (3.8) are independent of
each other, we see by (3.6), (3.7) and (3.9) to �nish the proof of Theorem 1.1,
it su�ces to prove that for every c ¿ 0, as n→∞,
(3:10) max

|k(n)−m|5c
√
k(n)

‖
√
k(n)�(n)k(n) −

√
m�(n)m ‖F =

√
nan

P→ 0 :

To establish (3.10), in turn, it is enough to verify that for all c ¿ 0, as n→∞,
(3:11) max

15m5c
√
k(n)

‖√m�(n)m ‖ =
√
k(n) P→ 0 :

This will be accomplished by a number of lemmas.

Lemma 3.1 Under assumptions (A); (S) and (F) there exists a constant M
such that for all n= 1

(3:12) E‖�(n)k(n)‖2F 5 M :
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Proof. Let Ỹ
(n)
1 ; : : : ; Ỹ

(n)
k(n) be independent copies of Y

(n)
1 ; : : : ; Y (n)k(n) with cor-

responding empirical process �̃(n)k(n). Since E�
(n)
k(n)(f) = 0 for all f ∈F, by

Jensen’s inequality it is enough to show that there exists a constant �M ¿ 0
such that for all n= 1

(3:13) E‖�(n)k(n) − �̃(n)k(n)‖2F =: En(F)¡ �M :

Set
tn := inf{t ¿ 0 : P(‖�(n)k(n) − �̃(n)k(n)‖F ¿ t)5 1=72} :

Applying the Ho�mann–J�rgensen inequality, cf. Ledoux and Talagrand (1991),
page 156, we get

En(F)5 18
(
E max
15i5k(n)

‖f(Y (n)i )− f(Ỹ (n)i )‖2F = k(n) + t2n
)
;

which, in turn, is

5 18
(
E
(
max

15i5k(n)
Z2i; n = k(n)

)
+ t2n

)
;

where Zi; n := F(Y
(n)
i ) + F(Ỹ

(n)
i ); i = 1; : : : ; k(n).

By assumption (F.i), we have EZ2i; n ¡ M̃ ; 15 i 5 k(n); for some M̃ ¡∞
and it follows that

(3:14) E max
15i5k(n)

Z2i; n = k(n)5
k(n)∑
i=1
EZ2i; n = k(n)¡ M̃ :

Finally, noting that by (1.15) and (1.20), tn is bounded, we obtain (3.12).

Lemma 3.2 Let �n(�); 0¡ � ¡ 1; n= 1; be a set of non-negative random
variables such that for all � ¿ 0

(3:15) lim
�↓0
lim sup
n→∞

P(�n(�)¿ �) = 0

and for some constant R

(3:16) E�2n(�)¡ R for all n= 1 and 0¡ � ¡ 1 :

Then

(3:17) lim
�↓0
lim sup
n→∞

E�n(�) = 0 :

Proof. The proof is trivial. Note that for any � ¿ 0

E�n(�)5 �+ R1 = 2(P(�n(�)¿ �))1=2 :

Lemma 3.3 Let m(n) be any sequence of positive integers such that

(3:18) m(n) = k(n)→ 0 as n→∞ :

Then

(3:19) lim sup
n→∞

max
15m5m(n)

E‖√m�(n)m ‖F =
√
k(n) = 0 :
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Proof. By (F.ii) and (F.iii) for each 0¡ � ¡ 1 there exist f1; : : : ; fr(�) ∈F
such that for all 15 m5 m(n)

(3:20) E‖√m�(n)m ‖F =
√
k(n)5

r(�)∑
i=1
E
|√m�(n)m (fi)|√

k(n)
+ E�n;m(�) ;

where
�n;m(�) = ‖

√
m�(n)m ‖F′

n (�)
=
√
k(n) :

Now for all n large enough so that m(n)5 k(n); we have by Jensen’s inequal-
ity for all 15 m5 m(n)

(3:21) E�m;n(�)5 E�n(�) ;

where
�n(�) = ‖�(n)k(n)‖F′

n (�)
:

Further, by Cauchy–Schwarz and (F.i) for all 15 m5 m(n)

(3:22) E
|√m�(n)m (fi)|√

k(n)
5

√
m(n)√
k(n)

√
Pn(F2) for i = 1; : : : ; r(�) :

Noting that

(3:23) E�2n(�)5 4E‖�(n)k(n)‖2F ;
we see that (3.19) follows from (3.21)–(3.23), (1.20) and Lemmas 3.1 and
3.2.

The proof of (3.11) is now an easy consequence of Lemma 3.3 and
Ottaviani’s inequality.

Proof of Theorem 1.2. For notational convenience we assume K = 1 in (F.iv).
First we record an inequality for the empirical process which is obtained by
combining Lemmas 3.2.1 and 3.2.7 of Dudley (1984) with his Remark 3.2.5.

Fact 3.1 We have for all x = 0 and n= 1

P
(
max
15k5n

‖T (n)k ‖F = x + 3E‖T (n)n ‖F
)

(3:24)

5 2(exp(−x2=12n) + exp(−x=4)) :

Lemma 3.4 For any x = 0 and nan = 1

P
(
max
15k5n

‖T (n)�(k) − T (n)[kan]‖F = x + n

)
(3:25)

5 4nan

{
exp

( −x2
192

√
nanLLn

)
+ exp(−x=8)

}
+ 2(Ln)−1:5 + 2 exp(−2

√
nanLLn) ;
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where n := 12E‖T (n)ln ‖F; ln := [4
√
nanLLn] and �(k); 15 k 5 n; is as in Pro-

position 3.1.

Proof. Obviously,

P
(
max
15k5n

‖T (n)�(k) − T (n)[kan]‖F = x + n

)
(3:26)

5 P
(
max
15k5n

|�(k)− kan|= 3
√
nanLLn

)

+ P
(

max
15k5[nan]

max
|l−k|5ln

‖T (n)l − T (n)k ‖F = x + n

)
=: �n;1 + �n;2 :

Using Fact 2.3 we see that

(3:27) �n;1 5 2(Ln)−1:5 + 2 exp(−2
√
nanLLn) :

Next observe that

(3:28) �n;2 5 2nanP
(
max

15k52ln
‖T (n)k ‖F =

x
2
+
n
2

)
:

Since we have

(3:29) E‖T (n)2ln ‖F 5 2E‖T (n)ln ‖F ;
we get via Fact 3.1

(3:30) �n;2 5 4nan

{
exp

(
− x2

48ln

)
+ exp

(
− x
8

)}
:

Combining this with our bound for �n;1, we get (3.25).

From Lemma 3.4 and Proposition 2.2 we shall derive the following crucial
lemma.

Lemma 3.5 Given 0¡ � ¡ 1; there exists an m(�) such that for each
n= m(�) one can construct independent P0-Brownian bridges �Bj; 15 j 5
[nan] satisfying

(3:31)

P

(
max
15k5n

‖T (n)�(k) −
[kan]∑
j=1

�Bj‖F = 2A0�
√
nanLLn+ n + �n; [nan](�)

)

5 K3{nan exp(−K4
√
nanLLn) + (Ln)−1:5};

where K3 and K4 are constants depending only on � and �n; [nan](�) is de�ned
as in (2.24).
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Proof. Just use the inequality

P

(
max
15k5n

‖T (n)�(k) −
[kan]∑
i=1

�Bi‖F = 2A0�
√
nanLLn+ n + �n; [nan](�)

)

5 P
(
max
15k5n

‖T (n)�(k) − T (n)[kan]‖F =
A0
2
�
√
nanLLn+ n

)

+ P

(
max
15k5n

‖T (n)[kan] −
[kan]∑
i=1

�Bi‖F =
3
2
A0�
√
nanLLn+ �n; [nan](�)

)
;

and recall that we assume K = 1:

Remark. 3.1 From the proof it is clear that we can choose the Brownian
bridges �Bj; 15 j 5 [nan], independent of �(k); 15 k 5 [nan], which we will
also assume from now on.
Next, let { �K(t; f); t = 0; f ∈F} be a Kiefer process indexed by F such

that

(3:32) �K(l; f) =
l∑
i=1

�Bi(f); f ∈F; 15 l5 [nan] :

In view of Remark 3.1, we can assume that �K is independent of �(k); 15
k 5 n:

Lemma 3.6 For each n= 1 and x ¿ 0

P
(
max
15k5n

‖ �K(kan; f)− �K([kan]; f)‖F = x + 2E‖B‖F
)

(3:33)

5 (2nan + 2) exp(−x2=2) :

Proof. It is easy to see that

max
15k5n

‖ �K(kan; f)− �K([kan]; f)‖F

5 max
05k5[nan]

max
05y51

‖ �K(k + y; f)− �K(k; f)‖F :

Since the Kiefer process �K has stationary independent increments, we clearly
have that the above probability is

5 ([nan] + 1)P
(
max
05y51

‖ �K(y; f)‖F = x + 2E‖B‖F
)
;

which by L�evy’s inequality is

5 2(nan + 1)P(‖ �B1‖F = x + 2E‖ �B1‖F)
from which the assertion follows, using Lemma 3.1 of Ledoux and Talagrand
(1991).
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Setting for any n= 1

Bj(f) =
1√
an
( �K(jan; f)− �K((j − 1)an; f)); 15 j 5 n ;

we obtain independent P0-Brownian bridges which are also independent of
�(k); 15 k 5 n:

Combining Lemmas 3.5 and 3.6 we get the following essential result.

Proposition 3.2 Given 0¡ � ¡ 1; there exists an m(�) such that for each
n= m(�); one can construct independent P0-Brownian bridges Bj; 15 j 5 n
which are independent of �(k); 15 k 5 n; such that

P
(
max
15k5n

‖T (n)�(k) −
√
an

k∑
i=1
Bj‖F

= 3A0�
√
nanLLn+ �n; [nan](�) + n + 2E‖B‖F

)
5 K5{nan exp(−K6

√
nanLLn) + (Ln)−1:5} ;

where K5 and K6 are positive constants depending on � only.

We now approximate �(k); 15 k 5 n; where we use once more Propo-
sition 2.1. Employing more sophisticated strong approximation techniques it
would be possible to get much better inequalities. However, the subsequent
Lemma 3.7 will be su�cient for our purposes.

Lemma 3.7 Given 0¡ � ¡ 1 there exists an m(�) such that for each
n= m(�); one can construct independent standard normal random variables
Zi; 15 i 5 n such that

P
(
max
15k5n

|�(k)−
k∑
i=1
Zi
√
an(1− an)|= 10�

√
nanLLn

)
5 K7{exp(−K8

√
nanLLn) + (Ln)−1:5} ;

where K7; K8 are positive constants.

Proof. Apply Proposition 2.1 with �2 = an;M = 1 and L = [�−2]:
Remark. 3.2 It is clear that we can choose the Zi’s independent of the
Brownian bridges Bi; 15 i 5 n; de�ned in Proposition 3.2.

Lemma 3.8 We have for all n= 1 and x ¿ 0

P
(
max
15k5n

∣∣∣∣(√an(1− an)−√an) k∑
i=1
Zi

∣∣∣∣= x
)

5 4 exp(−x2=2na3n) :
Proof. By L�evy’s inequality the above probability is bounded above by

2P
(∣∣∣∣(√an(1− an)−√an) n∑

i=1
Zj

∣∣∣∣= x
)
;
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which by a standard exponential inequality is

5 4 exp(−x2=2nan(1−
√
1− an)2) :

Using the trivial fact that |1−√1− an|5 an, we can �nish the proof.

Now set

(3:34) �Wi(f) := Bi(f) + ZiP0(f); f ∈F; 15 i 5 n :

Due to the independence of Zi and Bi, we obtain in this way independent
P0-Brownian motions indexed by F. Recall (1.29) and the de�nition of bn in
(F.vi).

Lemma 3.9 Given 0¡ � ¡ 1 there exists an m(�) such that for each n=
m(�) and all t ¿ 0

P
(
max
15k5n

∥∥∥∥(√an −√bn) k∑
i=1

�Wi

∥∥∥∥
F

= 2
√
nanE‖ �W1‖F + t

)
5 2 exp(−t2=2�2nan) :

Proof. The proof follows from (1.26), L�evy’s inequality and the following fact:
for all x ¿ 0

(3:35) P
(∥∥∥∥ n∑

i=1

�Wi

∥∥∥∥
F

¿ 2
√
nE‖ �W1‖F + x

)
5 exp

(
−x2=2n sup

f∈F
P0(f2)

)
;

which can be readily derived from Lemma 3.1 of Ledoux and Talagrand (1981).
Noting that supf∈FP0(f

2)5 1; we are done.

We can now infer from Propositions 3.1 and 3.2 and Lemmas 3.7–3.9:

Proposition 3.3 Given 0¡ � ¡ 1; there exists an m(�) such that for each
n= m(�); one can construct independent P0-Brownian motions �Wi; 15 i
5 n; indexed by F so that

(3:36)

P
(
max
15k5n

∥∥∥∥S(n)k −
√
bn

k∑
i=1

�Wi

∥∥∥∥
F

= Ã
(
�
√
nanLLn+ n + �̃n; [nan]

))
5 K9

(
nan exp

(
−K10

√
nanLLn

)
+ (Ln)−1:5 + (Ln)−(� = an)

2
)
;

where Ã= 1 is an absolute constant; K9 and K10 are constants depending on
� only and

(3:37) �̃n; [nan] = E‖T (n)[nan]‖F +
√
nanE‖B‖F +

√
nanE‖ �W1‖F :

Next set for 15 i 5 n

(3:38) Wi(f) =
√
bn �Wi(f ◦ hn); f ∈F ;
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and observe that by (1.25), Wi; 15 i 5 n; are again independent P0-Brownian
motions indexed by F. It is easy now to see that inequality (3.36) is still
valid if we replace

√
bn �Wi(f) by Wi(f; hn) := Wi(f ◦ h−1n ); 15 i 5 n: (Recall

(F.v).)
We now have all of the necessary tools to �nish the proof of Theorem 1.2.

It is enough to show that for any given 0¡ � ¡ 1
2 there is a construction

possible such that with probability one

(3:39) lim sup
n→∞

∥∥∥∥S(n)n (f)− n∑
i=1
Wi(f; hn)

∥∥∥∥
F

/√
nanLLn5 D

√
� ;

where D is a positive constant not depending on �. Statement (1.27) then
follows from (3.39) by a known argument of Major (1976).
Set mk := 2k−1; nk := mk+1 − 1; k = 1; 2; : : : Using Proposition 3.3 in com-

bination with (3.38), we can construct independent P0-Brownian motions
Wi; mk 5 i 5 nk such that for large k

(3:40) P(�k = 1:5Ã�cmk )5 2K9(Lmk)−1:5 ;

where cn =
√
nanLLn, and

�k := max
mk5n5nk

∥∥∥∥∥ S(mk )n (f)− S(mk )nk−1(f)−
n∑

i=mk

Wi(f; hmk )

∥∥∥∥∥
F

:

Notice that we are using the following fact from assumption (F.vii) that
(E‖T (n)[nan]‖F + n)=cn → 0 as n→∞, by arguing as in Lemma 3.1.

Due to condition (F.v) we have for each mk 5 n5 nk and 15 l5 k,∥∥∥∥ S(n)n (f)− n∑
i=1
Wi(f; hn)

∥∥∥∥
F

5
‘∑
i=1
�k+1−i + Zk(1) + Zk(2) ;

where
Zk(1) := max

15m5nk−‘

∥∥ S(mk )m (f)
∥∥
F
;

Zk(2) := max
15m5nk−l

∥∥∥∥ m∑
i=1
Wi(f; hmk )

∥∥∥∥
F

:

It is easy now to see that

lim sup
n→∞

∥∥∥∥ S(n)n (f)− n∑
i=1
Wi(f; hn)

∥∥∥∥
F

/
cn(3:41)

5 lim sup
k→∞

‘∑
i=1
�k+1−i=cmk

+ lim sup
k→∞

Zk(1)=cmk + lim sup
k→∞

Zk(2)=cmk :

Using (3.40) in conjunction with the Borel–Cantelli lemma, we readily obtain
for each 15 i 5 ‘ with probability one

(3:42) lim sup
k→∞

�k+1−i=cmk 5
3
2 Ã � ;
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In view of Proposition 3.3, we can assume that for any large k, there are
independent P0-Brownian motions �Wi, 15 i 5 mk such that
(3:43)

P
(∣∣∣∣Zk(1)−√bmk max

15m5nk−l

∥∥∥∥ m∑
i=1

�Wi

∥∥∥∥
F

∣∣∣∣= 3
2 Ã �cmk

)
5 2K9(Lmk)−1:5 :

Moreover, by L�evy’s inequality and (3.35), we have for all large k

(3:44) P
(

max
15m5nk−l

∥∥∥∥ m∑
i=1

�Wi

∥∥∥∥
F

=
Ã
2
�cmk =b

1=2
mk

)
5 2(Lmk)−Ã

2�22l=17 :

Setting l := [7�−1=2] and recalling that Ã = 1, we can infer from (3.43) and
(3.44) by a Borel–Cantelli argument that with probability one

(3:45) lim sup
k→∞

Zk(1)=cmk 5 2Ã � :

Finally note that (3.44) also implies that with probability one

(3:46) lim sup
k→∞

Zk(2)=cmk 5
Ã �
2
:

Combining (3.41), (3.42), (3.45) and (3.46), we obtain statement (3.39)
with D = 13Ã, which �nishes the proof of Theorem 1.2.

Proof of Corollary 1.1. Recall the notation from the introduction, namely
(1.18), e0, �0, W̃n and K.

Step 1. Let nk := [qk ], where q ¿ 1. We claim that with probability one

(3:47) d(W̃nk =
√
2Lk;K)→ 0; as k →∞; and

(3:48) the set of limit points of {W̃nk =
√
2Lk}k=1 is equal to K:

In view of Theorem 4.1 of Carmona and Kôno (1976) it su�ces to show
that for any linear functional H ∈ B∗ and k = 1

(3:49) lim
m→∞ E(H (W̃nk )H (W̃nk+m)) = 0 :

To see (3.49), note that by independence

E(H (W̃nk ) · H (W̃nk+m))

=
nk∑
i=1
E(H (Wi; k)H (Wi; k+m))

/ √
nknk+mbnk bnk+m ;

where Wi; k+m = (Wi(f; hnk+m))f∈F; m= 0.
Moreover, we have

E(H (Wi; k)H (Wi; k+m))5 (E(H 2(Wi; k)))1=2(E(H 2(Wi; k+m)))1=2

5 ‖H‖2(E‖Wi; k‖2FE‖Wi; k+m‖2F)1=2 :
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Recalling (3.38), we readily obtain that

E(H (W̃i; k)H (W̃i; k+m))5 ‖H‖2E‖W1‖2F(bnk bnk+mnk=nk+m)1=2 ;
and consequently (3.49).

Step 2. Let nk = nk(q) = [qk ] and set

�k(q) := max
nk5n5nk+1

‖W̃n − W̃nk‖F :

To complete the proof it is obviously enough to show that

(3:50) lim sup
n→∞

�k(q)
/ √

2Lk 5 c(q) a:s: ;

where limq↓1c(q) = 0. Towards this end we note that

�k(q)5 �k;1(q) + �k;2(q) + �k;3(q) ;

where

�k;1(q) := max
nk5n5nk+1

∣∣∣∣∣ 1√nk −
√
bnk√
nbn

∣∣∣∣∣ 1√
bnk

∥∥∥∥ nk∑
i=1
Wi(f; hnk )

∥∥∥∥
F

;

�k;2(q) := max
nk5n5nk+1

∥∥∥∥ n∑
i=1
(Wi(f; hn)−Wi(f; hnk ))

∥∥∥∥
F

/√
nkbnk ;

�k;3(q) := max
nk5n5nk+1

∥∥∥∥∥ n∑
i=nk+1

Wi(f; hnk )

∥∥∥∥∥
F

/√
nkbnk :

Since (3.47) holds we have using (A.iv) and (1.26)

(3:51) lim sup
k→∞

�k;1(q) =
√
2Lk 5 1− q−1=2 a:s:

Notice that

�k;2(q) = max
nk5n5nk+1

∥∥∥∥ n∑
i=1
(Wi(fn; k ; hnk )−Wi(f; hnk ))

∥∥∥∥
F

/√
nkbnk ;

where fn; k = f ◦ h−1n ◦ hnk :
Next we record the fact which follows from Lemma 3.10 below that

(3:52) lim sup
n→∞

sup
f∈F

max
nk5n5nk+1

e0(fn; k ; f)5 �(q) ;

where �(q)→ 0 as q ↓ 1.
Now for any �¿0 set

(3:53) F̃(�) = {(f; g) ∈F×F: e0(f; g)5 �}
and for any real valued function T on F set

(3:54) ‖T‖F̃(�) = sup {|T (f)− T (g)|: e0(f; g)5 �} :
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Recalling (F.v), we now see that

�k;2(q)5 max
nk5n5nk+1

∥∥∥∥ n∑
i=1
Wi(f; hnk )

∥∥∥∥
F̃(�(q))

/√
nkbnk(3:55)

d= max
nk5n5nk+1

∥∥∥∥ n∑
i=1
Wi

∥∥∥∥
F̃(�(q))

/ √
nk :

Using L�evy’s inequality and the exponential inequality for P0-Brownian
motions given in (3.35), we �nd that with probability one

(3:56) lim sup
k→∞

�k;2(q)=
√
2Lk 5

√
q�(q) :

Finally noting that

�k;3(q)
d= max
15n5nk+1−nk

∥∥∥∥ n∑
i=1
Wi

∥∥∥∥
F

/ √
nk ;

we obtain by a similar argument that with probability one

(3:57) lim sup
k→∞

�k;3(q)=
√
2Lk 5

√
q− 1 :

Combining (3.51), (3.56) and (3.57) we obtain (3.50) as soon as we have
proved the following lemma.

Lemma 3.10 Let F be a class of functions satisfying
(i) support (f) ⊂ J; f ∈F
(ii) |f|5 K; f ∈F for some K¿0
(iii) F is totally bounded for �0.
If; in addition; (F.ix) and (F.x) hold for a given sequence of bimeasurable
invertible transformations hn : Rd → Rd; then

(3:58) lim sup
k→∞

sup
f∈F

max
nk5n5nk+1

e0(fn; k ; f)5 �(q) ;

with fn; k = f ◦ h−1n ◦ hnk ; where �(q)→ 0 as q ↓ 1.
Proof. First note that (ii) and (iii) imply that F is also totally bounded for
e0. Thus for any given � ¿ 0 we can �nd F(�) = {f1; : : : ; fm} ∈F such that
for all f ∈F
(3:59) min

15i5m
e0(f;fi)¡ � :

Moreover by Lusin’s theorem each function fi ∈F(�) can be approximated
by a continuous gi bounded by K such that

(3:60) e0(fi; gi)¡ �; 15 i 5 m :

Denote this class of functions by G(�) = {g1; : : : ; gm}.
Next we choose a compact set A ⊂ Rd such that P0(AC)5 �=K2. By uni-

form continuity of each of the functions gi on A we can select a � ¿ 0 such
that |gi(x)− gi(y)|¡ � whenever x ∈ A and |x − y|5 �.
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Now choose q0 as in (F.x) such that for all 1¡ q¡q0, (1.31) holds. Hence
for all large k and nk 5 n5 nk+1 for 15 i 5 m

e20(gi ◦ h−1n ◦ hnk ; gi)
5 �2 +

∫
Rd
g2i (x)1AC (x)dP0(x) +

∫
Rd
g2i (h

−1
n (hnk (x))1AC (x)dP0(x)

5 �2 + 2� :

Therefore for all large k and nk 5 n5 nk+1, whenever 1¡q¡q0, we have
uniformly in f ∈F, using (F.ix) in combination with (3.59), that

e0(f;fk; n)5 e0(f; gi) + e0(fk;n;gi ◦ h−1n ◦ hnk )

+ e0(gi; gi ◦ h−1n ◦ hnk )5 2�+M�+
√
�2 + 2� ;

where gi is selected so that e0(f; gi)¡ 2�. Since � ¿ 0 can be chosen arbi-
trarily close to zero, this completes the proof.
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