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Summary. If a random unitary matriX is raised to a sufficiently high power,

its eigenvalues are exactly distributed as independent, uniform phases. We prove
this result, and apply it to give exact asymptotics of the variance of the number of

eigenvalues ofJ falling in a given arc, as the dimension 0f tends to infinity.

The independence result, it turns out, extends to arbitrary representations of
arbitrary compact Lie groups. We state and prove this more general theorem,
paying special attention to the compact classical groups and to wreath products.
This paper is excerpted from the author’'s doctoral thesis, [9].

Mathematics Subject Classifications (19960B15, 22E99

Introduction

Suppose one were given a random unitary matfix(Haar-distributed), and
wished to know how one should expddt to behave, fon large. In particular,
how are its eigenvalues distributed?nlifwere much larger than the dimension
of U, one might reasonably expect that the eigenvalued bfshould be very
nearly independent and uniformly distributed. It turns out, in fact, that much
more can be said: fon sufficiently large (greater than or equal to the dimen-
sion), the eigenvalues amxactlyindependent and uniformly distributed. This
result (Theorem 1.1 below) generalizes, with suitable modifications, to arbitrary
representations of arbitrary compact Lie groups.

Theorem 1.1 was discovered as a result of the author’s attempt to understand
the following fact: the eigenvalues of a random unitary matrix are unusually
regularly spaced in the unit circle. This is a quite visible effect; for example,
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Fig. 1. aEigenvalues of a randomd cU (100). b 100 independent uniform points st

Fig. 1a plots the eigenvalues of a random QD0 unitary matrix, while Fig. 1b
is a plot of 100 points chosen at random on the unit circle, independently and
uniformly; Fig. 1a and b is noticeably more uniform.

In attempting to understand this fact, it seemed natural to investigate
for U a randomn x n unitary matrix, in the hopes that there might be some
enlightening structure to be found. This turned out to be anything but the case;
in a sense, Theorem 1.1 asserts that there is as little structure as possible. The
regularity of the eigenvalues is thus entirely a consequence of the structure at
lower powers (together with a lack of “bad” structure at high powers). How-
ever, this lack of structure allows a number of calculations with high powers
of U to be made very easily. Section 1 uses these calculations, together with
some corresponding results on low powerdJofrom [5] to produce asymptotic
guantitative results on the regularity of the eigenvalues; in a sense which will be
made clear in Sect. 1, the irregularity of the eigenvalugs @& O(y/logn), while
n uniform, independent, points have @f{,/n) irregularity. The corresponding
calculations could in principle be carried out for the other classical groups, using
the appropriate versions of Theorem 1.1.

Considering the usefulness of the result on high powetd oit was natural
to look for a generalization to other compact Lie groups. Again, one has that high
powers have “as little structure as possible”; the main difficulty was in figuring
out how to state that formally. To give an idea as to the possible complications,
consider the orthogonal group(2n + 1). The eigenvalues of a typical member
of this group come im conjugate pairs, plus one eigenvalue left over, either
1 or —1. Clearly, this structure will remain unchanged foF", no matter how
largem is taken to be. However, other than this structure, nothing else remains,
for sufficiently largem; the conjugate pairs are uniformly distributed and inde-
pendent, both from each other and from th# eigenvalue. Section 2 states and
proves the appropriate generalization, which applies to any compact Lie group.
Section 3 explores some of the consequences of Theorem 2.1; in particular, it
applies the theorem to the other classical groups and to wreath products.
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Section 0 is provided as a review of the relevant background material; in
particular, Haar measure is defined, and algorithms for generating from Haar
measure on the classical groups are given.

This paper is Sects.1 through 3 of the author's doctoral thesis [9], plus
appropriate excerpts of Sect. 0.

0 Background overview
Lie groups

We recall some facts about Lie groups.

Definition 0.1 A Lie group is a smooth manifold G with a group structure such
that the multiplication map mG x G — G and the inverse map:iG — G are
smooth.

Examples includ&", C". Less trivial examples includ8L(n, R), the general
linear group (invertiblen x n real matrices) andsL(n,C). Furthermore, any
closed subgroup of a Lie group is also a Lie group.

One of the first constructions of Lie theory is that of the algebra % (G)
associated with a Lie group. Topologically, %4 (G) is just the tangent space to
G at the identity. However, there is also an induced algebraic structure, which
determines much of the properties®f First, there is an action @& on £'(G).

For any elemeny of G, there is a functionC, : h — ghg~!. Taking the
derivative w.r.toh at the identity, we get a linear transformation fro#i(G)

to itself, denoted by Ady). Further, it is clear that Ad{ Ad(h) = Ad(gh) for
arbitraryg andh € G; thus Ad gives a representation @f known as thedjoint
representationNow, take the derivative of Ad at the identity. This gives a linear
transformation fromZ (G) to % (GL(%(G))). The Lie algebra o6GL(V) is fairly
easily seen to be the space of linear transformation¥ pthus, Ad associates
to any elemenk of %4(G) a linear transformation Aa{ on £ (G), defined by

d
Ad(x)y =, (Ad((1)Y)
where the derivative ofi(t) at 0 isx. This map satisfies
Ad(Ad(9)x) = Ad(g) Ad(x) Ad(g)

and
Ad(x)y = — Ad(y)x.
This motivates the definition of the operation ] on £ (G) (known as thd.ie
bracke}, by
[x,y] = Ad(x)y = —[y,x].

This satisfies the identity
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X1y, 2]} + [y, [z.X]] + [z.[x,y]] = O,

known as the Jacobi identity. It is fairly easy to see that any smooth homomor-
phism between Lie group& andH preserves this algebraic structure on their
respective Lie algebras. It is a theorem that a homomorphism between connected
Lie groups is determined by the induced homomorphism on their Lie algebras;
see, for example, Theorem 1 in Sect. lll.4 of [4].

Example If G is GL(n,R), then the Lie algebra o6 is the space of linear
transformations oR". The Lie bracket operation is given bA[B] = AB —
BA; similarly for GL(n, C). It follows that if G is any Lie group, andR is a
representation o6, thenR([A, B]) = R(A)R(B) — R(B)R(A).

In the matrix framework, there is a function exp from the Lie algebra to the
group, given by

Ak
exp@) = Zk: "
equivalently, it is the solution to the differential equation

d —_
4t P = AexpA),

with boundary condition exp(0) = 1. This extends to the general case, giving a
unigue diffeomorphism exp fron¥s'(G) to G such that the derivative of exp at 0

is the identity transformation of¢'(G), and such that exgp(ty) = expk) expfy)
whenever X,y] = 0 (see Theorems 2.6 and 2.9 in [1]); this map is known as the
exponential map.

Classical groups

The best known examples of Lie groups are given by the classical groups. These
are compact matrix groups, defined as follows. First, we have the unitary group,
U (n). This is the subgroup of unitary matrices@i(n, C); that is, the group of

n x n complex matrices such thattU =1, whereAf is At

Theorem 0.2 U(n) is a closed subgroup of Gh, C), so is a Lie group. The
Lie algebra of Un) is given by the matrices such that A —A (anti-Hermitian
matrices).

Proof The mapA — AfAis polynomial, thus continuous, (n) must be closed.
That it is a subgroup follows from the facts thdtll= 1, that

(ATA) = (ATHTAT
and that, forU € U (n),
(UAT(UA) = ATUTUA = ATA.



High powers of random elements of compact Lie groups 223
Finally, supposé (t) is a function®R — U (n), f(0) = 1. Then
fO)f) =1
Differentiating both sides, we get
f/(0) +£'(0) = 0.

Thus if A€ £ (U (n)), AT = —A. The converse follows by takinfy(t) = exptA),
whereAf = —A. QED

Remark The conditionU fU = 1 states that the columns bf form an orthonor-
mal basis ofC"; conversely, any such (ordered) basis gives a unique element of
U (n).

Next, we have the orthogonal group(n). This is defined as the group of
real unitaryn x n matrices.

Theorem 0.3 O(n) is a closed subgroup of (), so is a Lie group. The Lie
algebra of n) is given by the real antisymmetric matrices.

Proof Analogous.

Remark Similarly, O(n) is bijective with the set of ordered orthonormal bases
of R".

Finally, we have the symplectic group. L&tbe a real antisymmetric matrix
satisfyingJ? = —1; which one is chosen is a matter of convention. Note that the
eigenvalues ol must be+i, with equal multiplicity; thus such & only exists
in even dimensions. Also, by orthogonal change of basis, we can take any one
suchJ into any other. Then the symplectic gro8p(2n) is the group of unitary
2n x 2n matrices such thdt 'JU = J. Note that

(OUO")'0JO'(OUOY) = O(U'JU)O! = 00,

so a change in our convention fdrgives an isomorphic group.
Theorem 0.4 Sp(2n) is a closed subgroup of [2n), so is a Lie group. The Lie
algebra of S2n) is given by the anti-Hermitian matrices such thafg A JA = 0.

Proof Analogous.

Remark Sf2n) is isomorphic to the subgroup @&L(n,H) (whereH is the
quaternions) satisfyin§'S = 1. The definition above corresponds to an imbed-
ding of GL(n,H) in GL(2n, C) as the matrices such that= —JAJ.
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Haar measure

Let G be a locally compact topological group. A left-invariant measureGon
is a measure such tha(gA) = u(A) for any measurable sét (we take as our
o-field the Borelo-fnield).

Theorem 0.5 Let G be a locally compact topological group. There exists a left-
invariant measurg: on G such thad < u(A) < oo for some open subset A of G.
Furthermore, ify is any other such measurg) « p.

Proof See chapter 4 of [6].

This measure is known as Haar measure, or, to be prdefsélaar measure;
there is clearly an analogous right Haar measur& s compact, we can say
more:

Corollary 0.6 Let G be a compact topological group. There exists a unique
left-invariant probability measure on G.

Proof Let 1 be a left-invariant measure @B, and letA be an open subset &
such that 0< u(A) < co. G is covered by the translates Af by compactness,
there exists a finite subcover. But, thenpifis the size of the finite subcover,
we have

n(A) < p(G) < nu(A),

by subadditivity. Thenu/u(G) gives a probability measure oB. Clearly, if
1’ o< p, it gives the same probability measure @nthus it is unique. QED

In the sequel, Haar measure will always refer to this probability measure.

Remark If G is compact Lie, the left Haar measure is equal to the right Haar
measure.

For the classical groups, we can give explicit constructions of Haar measure.
First, the unitary group:

Theorem 0.7 Let Xz be a nxn matrix filled with i.i.d. complex standard normals.
Then the matrix obtained by applying Gram-Schmidt to the columnspaf X
distributed according to Haar measure on(k).

Proof First, note that applying Gram-Schmidt to the columndvbfgivesM I,

for some matrix/". Further,I” depends only on the inner products of the columns
of M. Thus Gram-Schmidt will produce the samefor UM, whereU is any
unitary matrix. Now, the distribution oX; is easily seen to be invariant under
Xe — UXe for any unitaryU; by the above comments, the same applies to
the output of Gram-Schmidt oK. But then the resulting distribution is a left-
invariant measure obJ (n), so must equal Haar measure. QED

Similarly, for the orthogonal group, we have:
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Theorem 0.8 Let Xz be a nx n matrix filled with i.i.d. real standard normals.
Then the matrix obtained by applying Gram-Schmidt to the columnsgaf X
distributed according to Haar measure on(19).

Proof Analogous.

For the symplectic group, the main difficulty is extending Gram-Schmidt. It
is easiest, in this case, to think 8p(2n) asn x n quaternionic matrices such
that S'S = 1; whereS' is the conjugate of the transpose ®f If v andw are
quaternionic vectors, defin@, w) by vTw, analogous to the definition of the
standard Hermitian inner product. Note, in particular, that the columi® are
orthonormal with respect to this inner product. Thus, given a suitable extension
of Gram-Schmidt, Theorems 0.7 and 8 will extend.

To extend Gram-Schmidt, one must simply be careful about order of multi-
plication. First, the norm of a vector is real:

vt :Zvivi :Zvivi =ofo,
i i

where the middle equality follows from the fact that conjugation is an anti-
automorphism of the quaternions. Thus, we can safely divide a vector by its
norm. Next, consider the vector

v — ’Uo<’Uo, ’U1>,
where|vo| = 1. Then
(vo, v1 — vo(vo, v1)) = (vo,v1) — (vo, vo)(vo, v1) = 0.

And similarly for the later stages of Gram-Schmidt. The proof of Theorem 0.7
carries over directly, and we have

Theorem 0.9 Let Xz be a nx n matrix filled with i.i.d. quaternionic standard
normals. Then the matrix obtained by applying Gram-Schmidt to the columns of
Xy is distributed according to Haar measure on(3p).

1 Asymptotic regularity of the eigenvalue distribution on U (n)

Given ann x n unitary matrixU, there is an associated probability distribution
on the unit circle, produced by putting a mass rlpfat the point on the unit
circle corresponding to each eigenvalue (alternatively, the distribution is that of
a randomly chosen eigenvalue, if each eigenvalue is equally likell i
chosen with Haar measure frobh(n), then this associated distribution tends to
be surprisingly “evenly spaced”.

There are many different ways in which one can quantify such a regularity
condition. One can, for instance, study the size of the shortest interval between
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eigenvalues, and show that it tends to be closé {see, for example, [10]), or
other results of this flavor. Such expressions, however, have the disadvantage of
being fairly difficult to compute; some sort 6£2 style result is easier. Thus, |

will consider the following quantity:

2w
R.(U) = ;/0 (|{i |6 €[0—a,0+al}| - nﬂ-a>2 dé, (1.1)

whered; is the angular coordinate of thi¢h eigenvalue, and: < [0, 7]. "¢ is
the average number of eigenvalues falling in a randomly chosen arc of length
2¢; thus, R, (U) is the variance of the number of eigenvalues falling in such an
arc. Note thaR,, (U) attains its minimum value when the eigenvalues are exactly
regularly spaced (this minimum value is Odfis an integer multiple of?); its
maximum value is

PXe o}

e
m 7T

attained whenU is a multiple of the identity. This clearly is a measure of
“clumping” of eigenvalues; moreover, it is a quadratic formula, thus much easier
to compute with than, say, the length of the shortest spacing. Furthermore, since
R.(U) is a positive random variablé; (R, (U)) alone can give us fairly good
bounds on tails of the distribution &,(U).

As an example, suppose the eigenvaluedJofvere i.i.d. uniform. In this
case, the random variab)éi | 6 € [0 — o, 6 +a]}| is the sum ofh i.i.d. random
variables (1 ifg; € [0 — «,0 + o] and O otherwise). As the variance of those

variables is )
« «
T (’]T) ’
E(R.), the variance of their sum, is:
o o
ER)=n_(1- ) (12

Now, let us consideE (R, (U)) in the case of Haar measure Or(n). Taking
expectations allows us to throw away the integral (by phase-invariance of Haar
measure); we are left with the variance of the number of eigenvaludsfalling
in [—a, a]. This is an interesting quantity in its own right; although it is equal
for the unitary group tdR,, this equality fails for the other classical groups (for
which the average number of eigenvalues #ufa] is not "¢). Furthermore,
we are also interested in of the form 73, asn goes to infinity, with fixed
0 (physicists, for instance, are interested in the limiting eigenvalue distribution
scaled up byn in the limit); we can expect different asymptotic behavior in this
limit.

With this in mind, let us first work ouR,(U) for the general case (not
using translation invariance). We first note that the quantity being squared in the
integrand is a sum of indicator functions of the fon[me [6 — a6 + a]]; we
can expand this into a double sum, and take the summation out of the integral,
giving us:
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27 @
R(U)= Y 21/0 [GE[Gi704,9i+oz]”9€[9j704,9]-+oz]]d97(n7r )2

1<ij<n

We can then replace the indicator functions by their Fourier expansions, and use
Parseval’s theorem; after working through the algebra, we are left with

NOERY (:2 3 k12 sirf(ka) (A + AN )
1<k

1<ij<n

2
= le 31— cos(ka)) “i’;' ,
1<k

wherepy is the sum of thekth powers of the eigenvalues (a.k.a.dTH)).

To computeE (R, (U)), we thus need information about the second moments
of the px. A result by Diaconis and Shahshahani ([5]) tells us (among other
things) that forU (n), E(|p«|?) =k, for k < n. It thus remains to determine the
moments fork > n. To determine this, we need only note that the density for
Haar measure obl (n) is given ([11]) by

A:nl! IT -2
1<i<j<n

This is a Laurent polynomial in the;, of degree at mosin(— 1) in any given

Ai. Now, consider the density of the joint eigenvalue distributiotdt If p is

any polynomial in thekth powers of the);, the expectation op depends only

on those terms in which the degree of eaglis a multiple ofk. But then, by the

method of moments (see, for example, Sect. 30 in [2]), it follows that the density

of the joint eigenvalue distribution dfi ¥ is given by takingA, removing all

monomials in which one of tha; has degree not a multiple &f then dividing

the degree of each; by k in every remaining monomial. But, K > n, the only

monomial remaining is the constant term, 1. It follows that every moment of the

Aj is the same as if the; were i.i.d. uniform; the method of moments implies

that the distributiom must then actually be i.i.d. uniform, proving:

Theorem 1.1 If U is Haar-distributed from Un), and k is any integep n, then
the eigenvalues of Uare independent and uniformly distributed iR.S

(Theorem 1.1 is a special case of Theorem 2.1, which generalizes this to any
compact Lie group.)

In particular, ifk > n, then E(|pk|2) is the second moment of a sum of
i.i.d. random variables of mean 0 and variance 1; it follows ®épx|?) = n.
This gives us the remaining information we need to complete our expression for
E(R.(U)); we get

Theorem 1.2 Let U be Haar-distributed on ((h), and let R, be defined by (1.1).

Then 1 infk
ERU) = 53— cos(Eap ™y

1<k
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It remains now to determine the asymptotics of this formula. Before we
do so, it is worth noting thaE (R, (U)) for U (n) must be< E(R,(U)) for n
i.i.d. uniform points inS! (It is easy to see that in that case, we get the same
formula, with mink, n) replaced byn).

To figure out an asymptotic expansion of this sum, we first split the sum into
two sums:

Ly a- cos(:ka))mi”é';’ " _ LY a- cos(ka)) o
1<k 1<k<n
+ 130 cos(xa)) .

1<k

We can then rewrite the finite sum as a telescoping infinite sum, then combine
the sums:

le 1Z<|:< (@- cos(la))i ~ (1 cos(2k +Ma)) " ]

*+ (1~ cos(2k + o)) :n)2>'

Using trig identities and rearranging, we get

1 cos(Xa) — cos(2k + n)a)
72 Z{ o

k
1<k

+ — +
Kk k+n> (k+n)2}
— cos(da) Kcos(z(a) (i 1 )) + n cos(2<a)]

k+n (k + n)2

+ sin(ha) Ksin(Zka) (i = i n)) + ”(i"l(i';?)} }

Note that each expression in brackets is of the fdim) + nf’(n); once we
have an asymptotic expansion for the sum of the first term in the bracket, the
asymptotic expansion for the sum of the second term follows easily. Thus, we
need to determine the asymptotic behavior of the following formulae:

A1:Z(ikin)

1<k

A, = Z cos(Xa) — cos(2k + n)a)

1<k k
Wl 1
— 2ik v
A=) e (k_k+n)'
1<k

A; is simplyH,_1, the (h —1)st harmonic number, thus has asymptotic expansion
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Bl Bk —N
log(n) +7+ " F = > L +0(™Y),
2<k<N

where~ is Euler’'s constant (67721...), and By is the kth Bernoulli number
([71, Eq. (16) in Sect. 1.2.11.27, can be simplified as follows:
cos(ka) — cos(2k +n)«
pg = 3 C0SEEe) —cos(2k + o)

1<k K
e?ka 4 g—2ka _ g2iktn)a _ g—2i(k+n)a

2k

1<k
e?ka _ g2i(k+n)a ~2ka _ g—2i(k+n)a

1 1 e —
= +
22k 5 )
1<k 1<k
These two sums are complex conjugates, so this

=R((1-e) Y ez:a).

1<k

Now, this sum does not converge absolutely, but by replaeftg with z, we
get a limit of absolutely converging sums:

. Zk
e i -
= —R((1— ™) log(1— e2i°‘)>
= ~log|2sin@)| +%(e*"* log(1 - ).
Finally, we haveAs. Again, one can replace?®® with z, then take the limit as

z — €2« (allowable by dominated convergence). It is easy to verify that under
that substitutionAs simplifies to

oS} e—nt
—log(1-2) _/o 1 get dt

(Compare the Taylor series around z=0). Since the second integral is a Laplace
transform, Watson’s lemma (stated without proof in [3], p. 253) gives an asymp-
totic series for the limit ag — e, in terms of the Taylor series Oflee—t
aroundt = 0:

—log(1—e%*) — 21n - ) %o D)2 +o(nN);
1<k<N

cot=1(n) is the k — 1)st derivative of coftf).
Now, we have

ERUN= 7 (s (uen g m) = (e eng a9) ).
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Simplifying
d B1 Bk
A+ A= +y+ T —
tn g Arslog) o+ F -y L
2<k<N
Bl Bk —N
+1—n+ Z nk+O(n )
2<k<N
_ (k — 1)Bx -N
- |Og(n) +Py + 1 + Z knk + O(n )7
2<k<N
and

d , _ Jic 1 K (k—1) —K
Astn  As=—log(l—e?)— = — > ikcot* " D(a)(2n)
1<k<N

1 K k—1 Kk N
ot > ikkcot*D(a)@n) K +o(n M)
1<k<N

=—log(1—€e**)+ > ¥k —1)cof D(a)2n)

2<k<N
+0(n™M),
then plugging in and combining terms, we get the following result:

Theorem 1.3 Let U be uniformly distributed from the unitary group(t), and
let R, be defined by (1.1). Then, for any fixed N, as»roo,

ER(U) =, (logn)
+ (v + 1 +log|2sin()|)

k —1)B
n Z (( knk) k

2<k<N
+R(i k") (1 — K) col(k’l)(a)(2n)’k)
+0o(n~MY)).
In particular, forN =5, we have:
ER.(U) =, (log)
+(y + 1 +log|2 sin()|)
+ (E; — ‘llcs@(a) cos(ha))n—2
— (; cot(a) csé(a) sin(na))n 3
+ (354 - (i cs(a) — 2056‘(@)) cos(dha))n~*
+0(n™)).
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In contrast,R,, for the uniform independent distribution is of order(as is
immediately apparent from Eq. (1.2)). Thus, the eigenvalues of a Haar-distributed
random matrix are significantly more regularly distributed than a similar number
of independent, uniform random eigenvalues.

The asymptotics oE(R,(U)) for a = 5n”, [ constant are relatively easy to
compute; the Euler-Maclaurin summation formula applies in this case, to give

270 i 2n B 1—
E(Rsx (U)) = 72|8| + 1 — cos(2nf) — 2775/ S'rt‘(t)dt +/ ‘t’OSOdt
n 0 0
1 — cos(rp) — 27232 4
— 1on2 +0(n™%).
The O(1) terms of this are given in [8], A.38; however, the method used there
does not appear to extend to give the later terms in the asymptotic expansion.
For i.i.d. uniform, we get

- ﬁ ﬁ _ 2~—1
E(Rsr)=n/ (1— )=p- "

2 Uniformity of the eigenvalue distribution of U" on general compact
groups

A key to the results in Sect.1 was the observation that, because the formula
for the density of Haar measure for(N) is a Laurent polynomial of degree

N — 1 in the eigenvalues, fan > N, the eigenvalues df " are i.i.d. uniform.
While it is certainly to be expected that the eigenvaluedJ8fshould tend to
become independent and uniform ms— oo, it is surprising that they attain
exact independence at some point. This phenomenon is in fact not unique to the
unitary group, but is true (with some important caveats) for an arbitrary compact
Lie group.

For example, consider the special orthogonal gr6@2N + 1). The eigen-
values of the generic matrix from this group split into a number of conjugate
pairs, with the remaining eigenvalue forced to be 1. Clearly, no matter how high
m is, the eigenvalues o®™ (O Haar-distributed fromSO(2N + 1) can never
be i.i.d. uniform. However, if one chooses a representative from each conjugate
pair (gettingus - . . 1n), One can write the density for Haar measure as a Laurent
polynomial of degreel® —1 in the ;. As a consequence, if one raises a random
special orthogonal matrik) to the nth power, wheren > 2N — 1, the u; are
i.i.d. uniform. Said another way, the law of the eigenvaluedJ&fis the same
as the law of a particular set oN2+ 1 Laurent monomials ifN i.i.d. uniform
random phases{{, ui, 1 '}, to be precise)

The other caveat involves non-connected Lie groups. In such a group, the
restrictions on the eigenvalues will in general vary from component to compo-
nent; the number of degrees of freedom can even vary. For instance, consider
the orthogonal grou®(2N). In the determinant 1 component, the eigenvalues
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form N conjugate pairs, while in the determinant component, the eigenvalues
form only N — 1 conjugate pairs, with the remaining two eigenvalues 1 -afhd

(This can be seen as follows: Since orthogonal matrices are real and unitary,
the set of eigenvalues must consist of some number of conjugate pairs (norm
1), some number of 1s, and some number—dfs. Now, since the number of
eigenvalues is even D), either there are an even number of both 1s anid
(determinant 1), or an odd number of both (determinaf). Since a pair of

1s is a conjugate pair, and similarly for a pair efls, the statement clearly
holds.) Thus, the determinantl component has one fewer continuous degree
of freedom in its eigenvalues. Clearly, then, each component must be considered
somewhat separately.

With these caveats in mind, we can now state the following theorem:

Theorem 2.1 Let L be a compact Lie grougs a continuous (unitary) represen-
tation of L. Then for every connected component C of L, there is a set of Laurent
monomials on a finite set of random variabjgs(where theu; are i.i.d. uniform

on Sh), and an integer d such that for any integeend, and any Haar-distributed
random variable U on L, the conditional distribution of the set of eigenvalues of
»(UM given that Ue C is the same as the distribution of the set of monomials.
Furthermore, d may be chosen independently of C and of the representation

It should be noted that this is the largest class of Lie groups on which this
could be expected to hold; the compactness condition is necessary for Haar mea-
sure to be a probability. If one leaves the probability setting, using the invariant
measure, despite the fact that it is infinite on the whole group, then the result
appears to be valid to a very limited extent. However, the result hinges on the
fact that on a compact group, raising a matrix to some power throws away infor-
mation about the eigenvalues; if the eigenvalues of the matrix can be determined
from the eigenvalues of a power of the matrix, a non-uniform measure can never
become uniform. It is unclear to what extent Theorem 2.1 can be extended to
general compact groups. (It does hold, in general, in the case of general finite
topological groups, if vacuously so: any continuous representation of a finite
topological group has discrete image, so must be constant on each component.)

Theorem 2.1 is proved by finding a set of phase variabjdhat generate the
eigenvalues through a set of monomials, then showing that the density of Haar
measure can be written as a Laurent polynomial ingtheThen the method of
moments easily gives the result.

It should be noted that the proofs of Lemmas 2.3, 2.4, and 2.5 below are
generalized from the proofs of Theorems 4.21 and 6.1 in [1].

Suppose we are given a compact Lie graypmnd a componert thereof.
Further, letT be a maximal torus of (a torus ofL is an abelian subgroup
homeomorphic to a torus of some dimension; a maximal torus is a torus not
properly contained in any torus). We have the following lemma:

Lemma 2.2 There is an element a C of finite order, such that aTat = T.
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Proof Let x be an arbitrary element ¢, and consider the image df under
conjugation byx, S = xTx~ 1. It is a well known Theorem ([1], Corollary 4.23),
that for any two maximal toriS and T of L, there is an elemeng of the
identity component. of L such thatySg~! = T. Let a = gx. By continuity of
multiplication, a € C; furthermore,aTa—! = T. Now, supposea is not of finite
order, and consider the cyclic subgro(g) generated bya. In particular, first
consider its image under the quotient map- L/L.. By compactness df, this
image must be finite; thereforéq) intersects.e in an infinite cyclic subgroup.
Consider the subgroup generated bg)(N Le) U T; this is clearly abelian, and
containsT. But then by proposition 4.26 of [1], it must equBl It follows then
that for somen, a" € T. Now, it is easy to see that there exists T such that
t"=a". Then ¢(~'a)" =t—"a" = e, sot—'a is of finite order. QED

Example Consider, for example, the complement ®(2N) in O(2N). In

this case,T can be chosen to be the subgroup of block-diagonal matrices with
2 x 2 rotations down the diagonal. In this case, reflection through a coordinate
hyperplane gives a suitabkg although this is hardly exhaustive; it could, for
example, be composed with an arbitrary orthogonal transformation of finite order
in T that fixes the hyperplane.

Now, since the components bfare also the cosets &f (for any coset of
Le, there is @ homeomorphism bfcarrying it toLe; it follows that it must be a
component oL; the converse follows from the fact that the cosets oéxhaust
L), we can write every element & in the formxa, wherex € L. Conjugation
by ¢ gives

gxag~t = gxg~ta,

wherea as an exponent stands for the automorphisin.éfiduced by conjugation

by a. (In the sequel, if an element afis used in place of an automorphism, the
corresponding inner automorphism will be understood). Since the eigenvalues of
p(x) are preserved by conjugation, we need to understand the actign-of

gxg~2 onLe, for a as in Lemma 2.2.

Definition 2.3 Let a be an automorphism of LA maximal a-torus of Lis a
torus in L maximal among all tori fixed by a.

Example Again, considetO(2N) — SO(2N), with a reflection through a coor-
dinate hyperplane. Then a maximaorus is given by block-diagonal matrices
consisting of N — 1) 2 x 2 rotations down the diagonal, followed by two 1s.
Note that in the casél = 1, the maximala-torus is O-dimensional (that is, a
point).

Lemma 2.4 Let a be an automorphism of L of finite order, and Igtte any
maximal a-torus of L. Then for any xe L, there is somg € L. such that
gxg~2 € T,.
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Proof The proof follows the proof of Theorem 4.21 in [1]. Givere L, consider
the functionfy : Le/Ta — Le/T, that takesyT, to xg?T,. Sincea fixes T, this
map is clearly well-defined. Now, if ~'T, is a fixed point off, thengxg—2 € T,,
and we are done. We now show that any function in the homotopy claks of
must have a fixed point, using the Lefschetz fixed point theorem.

Let xo be an element of, such thaix] (wheren is the order of) generates
a dense subgroup @%,. This can be done by choosimxg with irrational, incom-
mensurable coordinates. Now, the nfgpis clearly homotopic tdy, sincel. is
path-connected,, clearly has a fixed point (namells); we now wish to show
that it has only a finite number of fixed points.dT, is a fixed point off,,, then

fxg(gTa) =%99Ta = gTa;

sincexy generates a dense subgroupTgf we can conclude tha,g = gT,, SO
g normalizesT,. From this, we can conclude th@tg = ¢°Ta.

Now, considem,(Ty), the group of ally € Le such thatT,g = ¢2T,. Con-
jugating both sides bg, we deduce thal,(T,) is preserved by conjugation by
a. We can also deduce that,(T,) € N(T,), the normalizer ofT,. Now, for
g € Na(Ta), consideru = gg—2. This is clearly inT,, so is fixed bya. Then

u" = (997"
_ _ _ 2 _ n—1
= (99 )99 (g9~ )? ... (997 ?)?
_ _a2 g2 _
=99 %"g ¥ g™ ...g7"
=1

Now, elements of orden are discrete in a torus (in fact, the set of elements
of ordern is finite; there are precisely(n)? such elements, where is Euler's
totient function, andd is the dimension of the torus). Therefore,gifis in the
identity component ofN,(T,), gg~2 = 1, sog = ¢2. Furthermore, such a
must induce the trivial automorphism dn. If g ¢ T,, this would contradict
the maximality of T,. Therefore, the identity component b (T,) is T,, and
furthermore, the number of cosets Bf in N,(T;) must be finite. Since every
fixed point offy, is a coset ofT, in Na(Ta), fy, has only a finite number of fixed
points.
For any hT, a fixed point offy, the mapr,, which takesgT, to gT;h,
commutes withfg:
Mhforn “(9Ta) = ffo(gTah ™)
= rh(Xog°Tah™?)
= Xpg?Tahh™?
= xo(gTa)~

Now, r takesT, to hTy; therefore, the multiplicity ofy, at hT, is the same as
that atT,. It thus suffices to show that the multiplicity &} is nonzero; this is

easily verified. Thus, the Lefschetz numberfgfis nonzero, so the Lefschetz
number offy is nonzero, andy has a fixed point. QED
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Example ConsiderO(2N)—SO(2N), with a andT, as in the previous examples.
Lemma 2.4 is equivalent to the fact that any-2Blimensional orthogonal matrix
can be conjugated into block-diagonal form, with the diagonal consistihg-ot

2 x 2 rotations, followed p a 1 and a—1; this easily follows from the fact that
the eigenvalues fall inttd — 1 conjugate pairs, ptua 1 and a-1.

Note that it easily follows from this that for any < C, there exists g € Le
such thatgxg~! € T,a; thus, we can restrict our attention to the eigenvalues of
elements ofT,a, by conjugating the random into Tya. This, plus the fact that
[Na(Ta) : Ta] is finite, allows us to make the following definition:

Definition 2.5 Let a € C be of finite order, and letJbe a maximal a-torus. The
induced distribution on Jis the distribution of the following random variable:
Pick x at random (uniformly) from C, choose an element @ Tonjugate to X,
then conjugate that element by a (uniform) random element, 6F )

The significance of this definition is that the eigenvaluetagfvith t chosen
from the induced distribution off,, clearly have the same distribution as the
eigenvalues of a Haar-distributed elemenitCaof

Now, consider the subalgebra of the Lie algebrd_aforresponding tdl,.
There is a lattice in this subalgebra given by the inverse image of the identity
under the exponential map. (Whenis the identity, this lattice is called the
“integer lattice” ofLe.) Now, if we choose a séi; of generators of this lattice, we
can express any point in the subalgebra as a linear combination of the generators;
this induces a coordinatization @f, assigning to each point ifi; an m-tuple
of anglesf;. By exponentiating these angles, we get the desifedt remains
to show that the induced density dn is a Laurent polynomial in the;, and
that the eigenvalues of a group element in any representation are monomials in
the . Note that theu; are not unique; any isomorphism of the lattice will give
valid y;; this gives a freedom obL(r, Z), wherer is the dimension off,.

Example Again we conside©(2N) — SO(2N). The above lattice is generated
by matricesH; (0 <i < N — 1), whereHi(ey) = 276 €y+1, andHi(ey+1) =
—2nj ey on the standard basg (0 < j < 2N). This givesy; = €%, where
the jth rotation matrix rotates by, .

It is convenient first to show

Lemma 2.6 Letp be a continuous unitary representation of L, let a be an element
of C of finite order, and let Fbe a maximal a-torus; let thg; be as above. Then
there is some set S of Laurent monomials inghsuch that for any xc C, the

set of eigenvalues of x is the same as S evaluated at any representative of x in
Taa.

Proof By Lemma 2.4, and the invariance of eigenvalues under conjugation, we
need only show this fox € T,a. By definition of T, xa~! anda commute,

so their representations can be simultaneously diagonalized. Thus, we need only
show that the eigenvalues g&— can be written as monomials in the, since
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multiplication by a will simply change the coefficient of the monomials. Now,
the u;i give an isomorphism betweeh, and a product of dini(;) copies of

S!. Factoring the representation thatinduces onT, through they;, we get a
representation ofgh)4M(=), This representation, then, is a sum of 1-dimensional
representations, each of which clearly corresponds to a Laurent monomial in the
ui; the lemma follows immediately. QED

Now we can show (by a proof analogous to that of Theorem 6.1 in [1]):

Lemma 2.7 The induced distribution onsThas density given by a Laurent poly-
nomial in they;.

Proof Consider the functioffi : Le/Ty x Ta — Le, given by

(9:1) = gtg™*.

By Lemma 2.4, this map is surjective. Furthermore, with probability 1, a random
element ofLe has exactly IN,(Ta) : T4] inverse images: It suffices to show that
the subset of elements bf not satisfying this condition is a countable union of
lower-dimensional submanifolds. Since the dimensiohOfT, x T, is equal to
that of L, it suffices to show that the corresponding inverse image is a countable
union of lower-dimensional submanifolds. Clearly, the sizef of(f (g,t)) is
independent ofy. Now, it is fairly easy to see that if the closure of the cyclic
subgroup generated hyis T,, thenf ~1(f (e, 1)) = Na(Ta)/Ta. But the closure of
(t) # Ta only if t is in a lower-dimensional subtorus @f, and there are only
countably many such subtori.

Now, if we lift Haar distribution orL throughf to L/T, x T, (pick an element
of the inverse image at random), then integrate dvér,, we clearly get the
induced distribution om,. With this in mind, we wish to compute the Jacobian
of f. The derivative off can be computed as follows:

f(g+gdy, t +td) — f(g,1) = gdytg—® + gtckg 2 — gtad,a~ g2
=f(g,1) [g%hg ™ + g*t " dytg? — gPad,a g
=f(g,t)g%[dk + Ad(t)(d,) — Ad(a)(d,)],

where Ad is the adjoint representation lof(L acting by conjugation on its Lie
algebra). Thus

| detf)| = | , det (Ad(t) - Ad@)|;

£ (Le/Ta) is the subalgebra of the Lie algebralotorresponding tde/T,. By
Lemma 2.6, this determinant (without the absolute value) is a product of Laurent
polynomials in theu;. Thus, we need only show that the determinant is, in fact,
nonnegative real, not identically zero, and the result follows.

As noted in the proof of Lemma 2.6, we can simultaneously diagonalize the
images ofa andT, in the adjoint representation; since the adjoint representation
is an orthogonal representation, it splits @mnd T, into a direct sum of 1- and
2-dimensional irreducible real representations. Clearly, the determinant we need
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to compute is the product of the corresponding determinants restricted to each
representation.

Case l:v € £(Le/Ta) is a basis vector for a 1-dimensional representation.
Thenav = +v andtv = +wv, for all t € T,. By continuity, then,tv = v,

for all t € T,. Now, if av = v, then we could add the one-parameter subgroup
corresponding te to T,, thus contradicting the maximality @t,. Thus,av = —v,

and deg(Ad(t) — Ad(a)) = 2.

Case 2:v,w € %(Le/T,) are basis vectors for a 2-dimensional irreducible
representation. Then dgt(Ad(t)—Ad(a)) is the product of two numbers complex
conjugate to each other, thus is nonnegative. We thus need only show that it is
non-zero on every element @f whosenth powers (againp is the order ofa)
generate a dense subgroupTgfSupposex is such an element. If dgt(Ad(x) —
Ad(a)) = 0, then Adk) = Ad(a) on v, w, so Adk") = Ad(@") = 1 onwv, w. This
implies that Ad{) = 1 on the subspace, for dlle T,, and further that Ad{) = 1

on the subspace. This contradicts the irreducibility of the representation. QED

This completes the proof of Theorem 2.1. In the next section, we will give
refinements of the lemmas which will allow us to give more precise results
for determining the independence threshdldand also give examples in some
special cases. Note that it follows from the proof of Lemma 2.7 that

A =|detf)|/[Na(Ta) : Tal = det (Ad(t) — Ad(a))|, (2.1)

1
[Na(Ta) : Ta] | 2 (Le/Ta)

where A gives the density of the joint distribution of the; this equation will
be simplified in the next section.

Example Again, consider the complement 80O(2N) in O(2N). We have

2
A x

IIT =Y II &= =xa"

1<i<(n—1) 1<i<j<(n—1)

see [11], or Sect. 3. This is degree(2 2) in each);; thus, the threshold degree
isd=(2n—2).

3 Refinements and examples

The formula (2.1) is not especially convenient for most purposes; it can be
simplified to a significant extent, however. As before, we hiaveecompact Lie
group, andC a component thereof; choosec C of finite order, and choose

a maximala-torus T,. First, we can extend, to a maximal torusl such that
aTa ! =T:if T’ is a torus such thaT’a=! = T/, then the set¥” of x € &

such that [£(T'),x] = 0 is preserved by the automorphisan

[Z(T),x°]=[£(T),x*] = [£(T'),x]* = 0.
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If £(T) =.7, then £ (T’) is a maximal torus; otherwise, let € . be an
eigenvector of Adg) (not in £ (T')). If v is real, therw can be added t&% (T');
else, the compactnessloimplies that p, v] = 0; v andwv can thus both be added
to T’. Once we have extenddd to a maximal torusT’ preserved by, we can
then conjugatd’ to a chosen maximal torus; as a result, for any maximal torus
T, we can choose a finite-ordarc C and a maximah-torusT, so thatT, € T.

SincelL is compact, we can choose a basis%f of the form{H; } U {E,},
where theH; are inT, and theE, are simultaneous eigenvectors Df(in the
adjoint representations — gxg~—1), and where E,, Eg] = NosEa+s, With Nug
real; o ranges over elements of the “root system™%f. Now, E2 must also be
a simultaneous eigenvector ®f, therefore,E2 = s(a)E,a, where|s(a)|? = 1.
The reality condition orN,3 means that ifo + 3 is in the root system, then
S(a + B) = £s(a)s(6). Thus, modulo sign, we can replaaeby tltzatz‘l, where
t; € Ta, 2 € T, andt] = 1, and make everg(«) = £1. Now, we can write the
density formula (2.1) as a product over orbits of #e under the action o§;
for t € T, and an orbitO, deb(Ad(t) — Ad(a)) is lo(t)" — [[,co S(@), where
Ad(t)E, = lo(t)E, for everya € O (lp is independent o, sincea fixes T,).
Thus, we have proved:

Theorem 3.1 Let T be a maximal torus of a compact Lie group L. Let C be
a connected component of L. Then one can chooseG of finite order and a
maximal a-torus T such that the induced density og @an be written

— 1 ]
4s [Na(Ta) : Ta] (‘/,(qr?:[ra)(l B a)) H(IO(t) - og)s(a)) (3.1)

(0]

Note that this is a density relative to the uniform measur&gro transform
it into an integral on [02~]", a factor of QT)’ must be added, as well as a rational
factor (the reciprocal of the number of points in 2&]" that correspond to the
identity); since the integral must be 1, the constant term will ger(

As an example, consid€(2n) — SO(2n); T can be taken to be the subgroup
of block-diagonal matrices with each block ax22 rotation matrix;a can be
taken to be reflection through a coordinate hyperplane,Tandan be taken to
be the subtorus of fixed bya. TheE, that appear have of the forme — g,

e +g,0r—e —g, (1<i#j <n), whereg correspond to an integral basis
of T (each corresponds to;a); a takese, to —e,, and fixes the remaining;
the s(a) are all 1. The resulting root orbits arge — g}, {e +g}, {-a — g},
{6 —e,e +ey}, and{e, —e,—e,—e}, for 1 <i #j < (n—1). This gives a
density formula of:

A=Kk I O = DN = DOy - DO - D)
1<i<j<(n-1)

II o&-ne>-1,

1<i<(n—1)

whereK is a constant scale factor (irrelevant for our purposes); this formula can
be simplified to



High powers of random elements of compact Lie groups 239

2

IT a=xh II Gi=moi =N

1<i<(n—1) 1<i<j<(n—1)

A=K

This agrees with the formula given in [11]. For our purposes, it suffices to notice
that this is of degree (— 2) in each);; therefore, the threshold degree for
independence here &= (2n — 2). It is fairly straightforward to verify similar
formulae forSQ(2n), SO(2n + 1), andO(2n + 1) — SO(2n + 1); we can conclude
that the independence threshold @¢n) isd = (n — 2).

Despite the fact that Theorem 2.1 refers to a threshold degree, there can
in general be degrees below the threshold that give independence. The easiest
examples of this phenomenon are wreath products of a finite permutation group
H (acting on a finite set S) and a (connected) compact Lie group G. In the case
of a wreath product, we can take the tofiuso be the same for each component:
let To be a maximal torus o6; thenT = T5. Now, pick a component & isH .

The components are parametrized by elementd pfve can thus taka to be
the element oH corresponding to the chosen componentlearly preserves.
Now, S breaks up into orbits ofa); T, is the subtorus of constant on orbits of
(a). Let \; be eigenvalue generators@f then in our component, the eigenvalue
generators are given by a copy &f for each orbit of(a). Noting finally that
s(a) = 1 for each rootx (a simply permutes the factors), (3.1) becomes:

K J](Ac(\o1 A0z, - ), (3.2)
o

where O ranges over orbits ofa) in S, Ao is the ith eigenvalue generator
corresponding t®, and Ag is the density formula fo6. Now, supposels has
degree at modd in each);. Then, for every term in (2), the degree ofg; in
that term can be writtefD|6, where 1< § < d. Thus, for every component of
G s H, every eigenvalue generator appears with degree of the édrmvhere
1<o <|S|and 1< é < d. It thus follows that for anym that cannot be
expressed in this form, the eigenvaluesMf" are independent (in the sense of
Theorem 2.1), foM Haar distributed fronG s H. If we consider the special
caseH =S = Z,, two things become quite apparent. Firstly, the threshollis
by inspection, whereas there are cleary< nd that cannot be written aso.
Secondly, the set ah which give independence is relatively complicated, even
in such a simple case (to be precise, it is the seh ¢iiat cannot be written in the
form vé, wherev|n and 1< éd); if H is a more complicated group, the situation
becomes quite a bit more complicated. However, it is easy to give a threshold for
generaH andS: d’ = |S|d. Thus, although stating things in terms of a threshold
can lose information, the added ease of calculation more than makes up for it.
The thresholds of greatest interest in the sequel are the followingJ (o},
d =n-1, forO(n), SO(n), andO(n)—SO(n), d = n—2, and forSp(2n), d = 2n.
With care, this, combined with the theorems in [5] (given here as Theorems 6.1
and 6.2 forO(n) and Sp(2n)), can give us some formulae for the means and
covariances of the T{ ).
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For U(n), a simple rotational symmetry argument givE¢Tr(U')) = 0
and E(Tr(U")Tr(Ui)) = 0, unlessi = j. In that case, the formula in [5]
givesE(|Tr(U")|?) =i for i < n. Fori > n, Theorem 2.1 kicks in, giving
E(| Tr(U")|?) =n for i > n, as shown in Sect. 1.

For O(n), Theorem 6.1 and Theorem 2.1 (plus a slight refinement thereof, to

the effect that
E (Z()\}‘)\} )) =0
i#
if either k or | is greater tham — 2) give the following formulae (where the
notation is used thai [even] is 1 ifi is even, and 0 otherwise, and similarly for
other predicates):

E(Tr(0") =[i even] (3.3)
Cov(Tr(Q'), Tr(0)) = min(i, n — 1)6;
+[i —neven,i >n][j —neven,j >n]. (34)

For SQO(n), we have

E(Tr(0")) =[i even]+ (1)"[i —n even,i > n],
while for O(n) — SQ(n) we have

E(Tr(0")) = [i even]— (—~1)"[i —n even,i >n].

To compute the covariances for those cases, as well &p@n) would require
stronger results than those given in Sect. 6.
Finally, for Sp(2n), we get

E(Tr(S")) = —[i even,i < 2n].
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