
Probab. Theory Relat. Fields 107, 219–241 (1997)

c© Springer-Verlag 1997

High powers of random elements
of compact Lie groups

E. M. Rains?

Harvard University, Cambridge, MA 02138, USA (e-mail: rains@ccr-p.ida.org)

Received: 15 October 1995 / In revised form: 7 March 1996

Summary. If a random unitary matrixU is raised to a sufficiently high power,
its eigenvalues are exactly distributed as independent, uniform phases. We prove
this result, and apply it to give exact asymptotics of the variance of the number of
eigenvalues ofU falling in a given arc, as the dimension ofU tends to infinity.
The independence result, it turns out, extends to arbitrary representations of
arbitrary compact Lie groups. We state and prove this more general theorem,
paying special attention to the compact classical groups and to wreath products.
This paper is excerpted from the author’s doctoral thesis, [9].
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Introduction

Suppose one were given a random unitary matrixU (Haar-distributed), and
wished to know how one should expectU n to behave, forn large. In particular,
how are its eigenvalues distributed? Ifn were much larger than the dimension
of U , one might reasonably expect that the eigenvalues ofU n should be very
nearly independent and uniformly distributed. It turns out, in fact, that much
more can be said: forn sufficiently large (greater than or equal to the dimen-
sion), the eigenvalues areexactly independent and uniformly distributed. This
result (Theorem 1.1 below) generalizes, with suitable modifications, to arbitrary
representations of arbitrary compact Lie groups.

Theorem 1.1 was discovered as a result of the author’s attempt to understand
the following fact: the eigenvalues of a random unitary matrix are unusually
regularly spaced in the unit circle. This is a quite visible effect; for example,
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Fig. 1. a Eigenvalues of a randomU∈U (100). b 100 independent uniform points inS1

Fig. 1a plots the eigenvalues of a random 100×100 unitary matrix, while Fig. 1b
is a plot of 100 points chosen at random on the unit circle, independently and
uniformly; Fig. 1a and b is noticeably more uniform.

In attempting to understand this fact, it seemed natural to investigateU n

for U a randomn × n unitary matrix, in the hopes that there might be some
enlightening structure to be found. This turned out to be anything but the case;
in a sense, Theorem 1.1 asserts that there is as little structure as possible. The
regularity of the eigenvalues is thus entirely a consequence of the structure at
lower powers (together with a lack of “bad” structure at high powers). How-
ever, this lack of structure allows a number of calculations with high powers
of U to be made very easily. Section 1 uses these calculations, together with
some corresponding results on low powers ofU from [5] to produce asymptotic
quantitative results on the regularity of the eigenvalues; in a sense which will be
made clear in Sect. 1, the irregularity of the eigenvalues ofU is O(

√
logn), while

n uniform, independent, points have anO(
√

n) irregularity. The corresponding
calculations could in principle be carried out for the other classical groups, using
the appropriate versions of Theorem 1.1.

Considering the usefulness of the result on high powers ofU , it was natural
to look for a generalization to other compact Lie groups. Again, one has that high
powers have “as little structure as possible”; the main difficulty was in figuring
out how to state that formally. To give an idea as to the possible complications,
consider the orthogonal groupO(2n + 1). The eigenvalues of a typical member
of this group come inn conjugate pairs, plus one eigenvalue left over, either
1 or −1. Clearly, this structure will remain unchanged forOm, no matter how
largem is taken to be. However, other than this structure, nothing else remains,
for sufficiently largem; the conjugate pairs are uniformly distributed and inde-
pendent, both from each other and from the±1 eigenvalue. Section 2 states and
proves the appropriate generalization, which applies to any compact Lie group.
Section 3 explores some of the consequences of Theorem 2.1; in particular, it
applies the theorem to the other classical groups and to wreath products.
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Section 0 is provided as a review of the relevant background material; in
particular, Haar measure is defined, and algorithms for generating from Haar
measure on the classical groups are given.

This paper is Sects. 1 through 3 of the author’s doctoral thesis [9], plus
appropriate excerpts of Sect. 0.

0 Background overview

Lie groups

We recall some facts about Lie groups.

Definition 0.1 A Lie group is a smooth manifold G with a group structure such
that the multiplication map m: G×G → G and the inverse map i: G → G are
smooth.

Examples includeRn, Cn. Less trivial examples includeGL(n,R), the general
linear group (invertiblen × n real matrices) andGL(n,C). Furthermore, any
closed subgroup of a Lie group is also a Lie group.

One of the first constructions of Lie theory is that of theLie algebraL (G)
associated with a Lie groupG. Topologically,L (G) is just the tangent space to
G at the identity. However, there is also an induced algebraic structure, which
determines much of the properties ofG. First, there is an action ofG on L (G).
For any elementg of G, there is a functionCg : h 7→ ghg−1. Taking the
derivative w.r.toh at the identity, we get a linear transformation fromL (G)
to itself, denoted by Ad(g). Further, it is clear that Ad(g) Ad(h) = Ad(gh) for
arbitraryg andh ∈ G; thus Ad gives a representation ofG, known as theadjoint
representation. Now, take the derivative of Ad at the identity. This gives a linear
transformation fromL (G) to L (GL(L (G))). The Lie algebra ofGL(V ) is fairly
easily seen to be the space of linear transformations onV ; thus, Ad associates
to any elementx of L (G) a linear transformation Ad(x) on L (G), defined by

Ad(x)y =
d
dt

(
Ad(fx(t))y

)
t=0
,

where the derivative offx(t) at 0 isx. This map satisfies

Ad(Ad(g)x) = Ad(g) Ad(x) Ad(g)−1

and
Ad(x)y = −Ad(y)x.

This motivates the definition of the operation [x, y] on L (G) (known as theLie
bracket), by

[x, y] = Ad(x)y = −[y, x].

This satisfies the identity
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x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0,

known as the Jacobi identity. It is fairly easy to see that any smooth homomor-
phism between Lie groupsG and H preserves this algebraic structure on their
respective Lie algebras. It is a theorem that a homomorphism between connected
Lie groups is determined by the induced homomorphism on their Lie algebras;
see, for example, Theorem 1 in Sect. III.4 of [4].

Example If G is GL(n,R), then the Lie algebra ofG is the space of linear
transformations onRn. The Lie bracket operation is given by [A,B] = AB −
BA; similarly for GL(n,C). It follows that if G is any Lie group, andR is a
representation ofG, thenR([A,B]) = R(A)R(B)− R(B)R(A).

In the matrix framework, there is a function exp from the Lie algebra to the
group, given by

exp(A) =
∑

k

Ak

k!
;

equivalently, it is the solution to the differential equation

d
dt

exp(tA) = Aexp(tA),

with boundary condition exp(0) = 1. This extends to the general case, giving a
unique diffeomorphism exp fromL (G) to G such that the derivative of exp at 0
is the identity transformation onL (G), and such that exp(x +y) = exp(x) exp(y)
whenever [x, y] = 0 (see Theorems 2.6 and 2.9 in [1]); this map is known as the
exponential map.

Classical groups

The best known examples of Lie groups are given by the classical groups. These
are compact matrix groups, defined as follows. First, we have the unitary group,
U (n). This is the subgroup of unitary matrices inGL(n,C); that is, the group of
n × n complex matrices such thatU †U = 1, whereA† is At .

Theorem 0.2 U (n) is a closed subgroup of GL(n,C), so is a Lie group. The
Lie algebra of U(n) is given by the matrices such that A† = −A (anti-Hermitian
matrices).

Proof The mapA 7→ A†A is polynomial, thus continuous, soU (n) must be closed.
That it is a subgroup follows from the facts that 1†1 = 1, that

(A†A)−1 = (A−1)†A−1,

and that, forU ∈ U (n),

(UA)†(UA) = A†U †UA = A†A.
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Finally, supposef (t) is a functionR→ U (n), f (0) = 1. Then

f (t)†f (t) = 1.

Differentiating both sides, we get

f ′(0)† + f ′(0) = 0.

Thus if A ∈ L (U (n)), A† = −A. The converse follows by takingf (t) = exp(tA),
whereA† = −A. QED

Remark The conditionU †U = 1 states that the columns ofU form an orthonor-
mal basis ofCn; conversely, any such (ordered) basis gives a unique element of
U (n).

Next, we have the orthogonal group,O(n). This is defined as the group of
real unitaryn × n matrices.

Theorem 0.3 O(n) is a closed subgroup of U(n), so is a Lie group. The Lie
algebra of O(n) is given by the real antisymmetric matrices.

Proof Analogous.

Remark Similarly, O(n) is bijective with the set of ordered orthonormal bases
of Rn.

Finally, we have the symplectic group. LetJ be a real antisymmetric matrix
satisfyingJ 2 = −1; which one is chosen is a matter of convention. Note that the
eigenvalues ofJ must be±i , with equal multiplicity; thus such aJ only exists
in even dimensions. Also, by orthogonal change of basis, we can take any one
suchJ into any other. Then the symplectic groupSp(2n) is the group of unitary
2n × 2n matrices such thatU t JU = J . Note that

(OUOt )t OJOt (OUOt ) = O(U t JU )Ot = OJOt ,

so a change in our convention forJ gives an isomorphic group.

Theorem 0.4 Sp(2n) is a closed subgroup of U(2n), so is a Lie group. The Lie
algebra of Sp(2n) is given by the anti-Hermitian matrices such that At J + JA = 0.

Proof Analogous.

Remark Sp(2n) is isomorphic to the subgroup ofGL(n,H) (whereH is the
quaternions) satisfyingS†S = 1. The definition above corresponds to an imbed-
ding of GL(n,H) in GL(2n,C) as the matrices such thatA = −JAJ.
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Haar measure

Let G be a locally compact topological group. A left-invariant measure onG
is a measure such thatµ(gA) = µ(A) for any measurable setA (we take as our
σ-field the Borelσ-fnield).

Theorem 0.5 Let G be a locally compact topological group. There exists a left-
invariant measureµ on G such that0 < µ(A) <∞ for some open subset A of G.
Furthermore, ifµ′ is any other such measure,µ′ ∝ µ.

Proof See chapter 4 of [6].

This measure is known as Haar measure, or, to be precise,left Haar measure;
there is clearly an analogous right Haar measure. IfG is compact, we can say
more:

Corollary 0.6 Let G be a compact topological group. There exists a unique
left-invariant probability measure on G.

Proof Let µ be a left-invariant measure onG, and letA be an open subset ofG
such that 0< µ(A) < ∞. G is covered by the translates ofA; by compactness,
there exists a finite subcover. But, then, ifn is the size of the finite subcover,
we have

µ(A) ≤ µ(G) ≤ nµ(A),

by subadditivity. Thenµ/µ(G) gives a probability measure onG. Clearly, if
µ′ ∝ µ, it gives the same probability measure onG; thus it is unique. QED

In the sequel, Haar measure will always refer to this probability measure.

Remark If G is compact Lie, the left Haar measure is equal to the right Haar
measure.

For the classical groups, we can give explicit constructions of Haar measure.
First, the unitary group:

Theorem 0.7 Let XC be a n×n matrix filled with i.i.d. complex standard normals.
Then the matrix obtained by applying Gram-Schmidt to the columns of XC is
distributed according to Haar measure on U(n).

Proof First, note that applying Gram-Schmidt to the columns ofM gives MΓ ,
for some matrixΓ . Further,Γ depends only on the inner products of the columns
of M . Thus Gram-Schmidt will produce the sameΓ for UM , whereU is any
unitary matrix. Now, the distribution ofXC is easily seen to be invariant under
XC → UXC for any unitaryU ; by the above comments, the same applies to
the output of Gram-Schmidt onXC. But then the resulting distribution is a left-
invariant measure onU (n), so must equal Haar measure. QED

Similarly, for the orthogonal group, we have:
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Theorem 0.8 Let XR be a n× n matrix filled with i.i.d. real standard normals.
Then the matrix obtained by applying Gram-Schmidt to the columns of XR is
distributed according to Haar measure on O(n).

Proof Analogous.

For the symplectic group, the main difficulty is extending Gram-Schmidt. It
is easiest, in this case, to think ofSp(2n) as n × n quaternionic matrices such
that S†S = 1; whereS† is the conjugate of the transpose ofS. If v andw are
quaternionic vectors, define〈v, w〉 by v†w, analogous to the definition of the
standard Hermitian inner product. Note, in particular, that the columns ofS are
orthonormal with respect to this inner product. Thus, given a suitable extension
of Gram-Schmidt, Theorems 0.7 and 8 will extend.

To extend Gram-Schmidt, one must simply be careful about order of multi-
plication. First, the norm of a vector is real:

v†v =
∑

i

vi vi =
∑

i

vi vi = v†v,

where the middle equality follows from the fact that conjugation is an anti-
automorphism of the quaternions. Thus, we can safely divide a vector by its
norm. Next, consider the vector

v1 − v0〈v0, v1〉,

where|v0| = 1. Then

〈v0, v1 − v0〈v0, v1〉〉 = 〈v0, v1〉 − 〈v0, v0〉〈v0, v1〉 = 0.

And similarly for the later stages of Gram-Schmidt. The proof of Theorem 0.7
carries over directly, and we have

Theorem 0.9 Let XH be a n× n matrix filled with i.i.d. quaternionic standard
normals. Then the matrix obtained by applying Gram-Schmidt to the columns of
XH is distributed according to Haar measure on Sp(2n).

1 Asymptotic regularity of the eigenvalue distribution on U (n)

Given ann × n unitary matrixU , there is an associated probability distribution
on the unit circle, produced by putting a mass of1

n at the point on the unit
circle corresponding to each eigenvalue (alternatively, the distribution is that of
a randomly chosen eigenvalue, if each eigenvalue is equally likely). IfU is
chosen with Haar measure fromU (n), then this associated distribution tends to
be surprisingly “evenly spaced”.

There are many different ways in which one can quantify such a regularity
condition. One can, for instance, study the size of the shortest interval between
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eigenvalues, and show that it tends to be close to1
n (see, for example, [10]), or

other results of this flavor. Such expressions, however, have the disadvantage of
being fairly difficult to compute; some sort ofL 2 style result is easier. Thus, I
will consider the following quantity:

Rα(U ) =
1

2π

∫ 2π

0

(∣∣{i | θi ∈ [θ − α, θ + α]}∣∣− nα
π

)2
dθ, (1.1)

whereθi is the angular coordinate of thei th eigenvalue, andα ∈ [0, π]. nα
π is

the average number of eigenvalues falling in a randomly chosen arc of length
2α; thus,Rα(U ) is the variance of the number of eigenvalues falling in such an
arc. Note thatRα(U ) attains its minimum value when the eigenvalues are exactly
regularly spaced (this minimum value is 0 ifα is an integer multiple ofπn ); its
maximum value is

n2α

π

(
1− α

π

)
,

attained whenU is a multiple of the identity. This clearly is a measure of
“clumping” of eigenvalues; moreover, it is a quadratic formula, thus much easier
to compute with than, say, the length of the shortest spacing. Furthermore, since
Rα(U ) is a positive random variable,E(Rα(U )) alone can give us fairly good
bounds on tails of the distribution ofRα(U ).

As an example, suppose the eigenvalues ofU were i.i.d. uniform. In this
case, the random variable

∣∣{i | θi ∈ [θ−α, θ+α]}∣∣ is the sum ofn i.i.d. random
variables (1 ifθi ∈ [θ − α, θ + α] and 0 otherwise). As the variance of those
variables is

α

π
−
(α
π

)2
,

E(Rα), the variance of their sum, is:

E(Rα) = n
α

π
(1− α

π
). (1.2)

Now, let us considerE(Rα(U )) in the case of Haar measure onU (n). Taking
expectations allows us to throw away the integral (by phase-invariance of Haar
measure); we are left with the variance of the number of eigenvalues ofU falling
in [−α, α]. This is an interesting quantity in its own right; although it is equal
for the unitary group toRα, this equality fails for the other classical groups (for
which the average number of eigenvalues in [−α, α] is not nα

π ). Furthermore,
we are also interested inα of the form π

n β, as n goes to infinity, with fixed
β (physicists, for instance, are interested in the limiting eigenvalue distribution
scaled up byn in the limit); we can expect different asymptotic behavior in this
limit.

With this in mind, let us first work outRα(U ) for the general case (not
using translation invariance). We first note that the quantity being squared in the
integrand is a sum of indicator functions of the form

[
θ ∈ [θi − α, θi + α]

]
; we

can expand this into a double sum, and take the summation out of the integral,
giving us:
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Rα(U ) =
∑

1≤i ,j≤n

1
2π

∫ 2π

0

[
θ ∈ [θi −α, θi +α]

][
θ ∈ [θj −α, θj +α]

]
dθ−

(nα
π

)2

We can then replace the indicator functions by their Fourier expansions, and use
Parseval’s theorem; after working through the algebra, we are left with

Rα(U ) =
∑

1≤i ,j≤n

( 1
π2

∑
1≤k

1
k2

sin2(kα)
(
λk

i λ
k
j + λk

i λ
k
j

))
=

1
π2

∑
1≤k

(1− cos(2kα))
|pk |2
k2

,

wherepk is the sum of thekth powers of the eigenvalues (a.k.a. Tr(U k)).
To computeE(Rα(U )), we thus need information about the second moments

of the pk . A result by Diaconis and Shahshahani ([5]) tells us (among other
things) that forU (n), E(|pk |2) = k, for k ≤ n. It thus remains to determine the
moments fork > n. To determine this, we need only note that the density for
Haar measure onU (n) is given ([11]) by

∆ =
1
n!

∏
1≤i<j≤n

|λi − λj |2.

This is a Laurent polynomial in theλi , of degree at most (n − 1) in any given
λi . Now, consider the density of the joint eigenvalue distribution ofU k . If p is
any polynomial in thekth powers of theλi , the expectation ofp depends only
on those terms in which the degree of eachλi is a multiple ofk. But then, by the
method of moments (see, for example, Sect. 30 in [2]), it follows that the density
of the joint eigenvalue distribution ofU k is given by taking∆, removing all
monomials in which one of theλi has degree not a multiple ofk, then dividing
the degree of eachλi by k in every remaining monomial. But, ifk ≥ n, the only
monomial remaining is the constant term, 1. It follows that every moment of the
λi is the same as if theλi were i.i.d. uniform; the method of moments implies
that the distributiom must then actually be i.i.d. uniform, proving:

Theorem 1.1 If U is Haar-distributed from U(n), and k is any integer≥ n, then
the eigenvalues of Uk are independent and uniformly distributed in S1.

(Theorem 1.1 is a special case of Theorem 2.1, which generalizes this to any
compact Lie group.)

In particular, if k ≥ n, then E(|pk |2) is the second moment of a sum ofn
i.i.d. random variables of mean 0 and variance 1; it follows thatE(|pk |2) = n.
This gives us the remaining information we need to complete our expression for
E(Rα(U )); we get

Theorem 1.2 Let U be Haar-distributed on U(n), and let Rα be defined by (1.1).
Then

E(Rα(U )) =
1
π2

∑
1≤k

(1− cos(2kα))
min(k, n)

k2
.
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It remains now to determine the asymptotics of this formula. Before we
do so, it is worth noting thatE(Rα(U )) for U (n) must be≤ E(Rα(U )) for n
i.i.d. uniform points inS1 (It is easy to see that in that case, we get the same
formula, with min(k, n) replaced byn).

To figure out an asymptotic expansion of this sum, we first split the sum into
two sums:

1
π2

∑
1≤k

(1− cos(2kα))
min(k, n)

k2
=

1
π2

∑
1≤k≤n

(1− cos(2kα))
k − n

k2

+
1
π2

∑
1≤k

(1− cos(2kα))
n
k2
.

We can then rewrite the finite sum as a telescoping infinite sum, then combine
the sums:

1
π2

∑
1≤k

(
(1− cos(2kα))

1
k
− (1− cos(2(k + n)α))

1
k + n

+ (1− cos(2(k + n)α))
n

(k + n)2

)
.

Using trig identities and rearranging, we get

1
π2

∑
1≤k

{
− cos(2kα)− cos(2(k + n)α)

k

+

[(
1
k
− 1

k + n

)
+

n
(k + n)2

]
− cos(2nα)

[(
cos(2kα)

(
1
k
− 1

k + n

))
+

n cos(2kα)
(k + n)2

]
+ sin(2nα)

[(
sin(2kα)

(
1
k
− 1

k + n

))
+

n sin(2kα)
(k + n)2

]}
.

Note that each expression in brackets is of the formf (n) + nf ′(n); once we
have an asymptotic expansion for the sum of the first term in the bracket, the
asymptotic expansion for the sum of the second term follows easily. Thus, we
need to determine the asymptotic behavior of the following formulae:

A1 =
∑
1≤k

(
1
k
− 1

k + n

)
A2 =

∑
1≤k

cos(2kα)− cos(2(k + n)α)
k

A3 =
∑
1≤k

e2ikα

(
1
k
− 1

k + n

)
.

A1 is simplyHn−1, the (n−1)st harmonic number, thus has asymptotic expansion
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log(n) + γ +
B1

n
−

∑
2≤k<N

Bk

knk
+ O(n−N ),

whereγ is Euler’s constant (0.57721. . .), and Bk is the kth Bernoulli number
([7], Eq. (16) in Sect. 1.2.11.2).A2 can be simplified as follows:

A2 =
∑
1≤k

cos(2kα)− cos(2(k + n)α)
k

=
∑
1≤k

e2ikα + e−2ikα − e2i (k+n)α − e−2i (k+n)α

2k

=
1
2

∑
1≤k

e2ikα − e2i (k+n)α

k
+

1
2

∑
1≤k

e−2ikα − e−2i (k+n)α

k

These two sums are complex conjugates, so this

= <
(

(1− e2inα)
∑
1≤k

e2ikα

k

)
.

Now, this sum does not converge absolutely, but by replacinge2ikα with zk , we
get a limit of absolutely converging sums:

A2 = lim
z→e2iα

<
(

(1− e2inα)
∑
1≤k

zk

k

)
.

= −<((1− e2inα) log(1− e2iα)
)

= − log
∣∣2 sin(α)

∣∣ +<(e2inα log(1− e2iα)
)
.

Finally, we haveA3. Again, one can replacee2ikα with zk , then take the limit as
z → e2iα (allowable by dominated convergence). It is easy to verify that under
that substitution,A3 simplifies to

− log(1− z)−
∫ ∞

0

e−nt

1− ze−t
dt

(Compare the Taylor series around z=0). Since the second integral is a Laplace
transform, Watson’s lemma (stated without proof in [3], p. 253) gives an asymp-
totic series for the limit asz → e2iα, in terms of the Taylor series of 1

1−ze−t

aroundt = 0:

− log(1− e2iα)− 1
2n

−
∑

1≤k<N

i k cot(k−1)(α)(2n)−k + O(n−N );

cot(k−1)(n) is the (k − 1)st derivative of cot(n).
Now, we have

E(Rα(U )) =
1
π2

(
−A2 + (A1 + n

d
dn

A1)−<
(

e2inα(A3 + n
d
dn

A3)

))
.
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Simplifying

A1 + n
d
dn

A1 = log(n) + γ +
B1

n
−

∑
2≤k<N

Bk

knk

+ 1− B1

n
+
∑

2≤k<N

Bk

nk
+ O(n−N )

= log(n) + γ + 1 +
∑

2≤k<N

(k − 1)Bk

knk
+ O(n−N ),

and

A3 + n
d
dn

A3 = − log(1− e2iα)− 1
2n

−
∑

1≤k<N

i k cot(k−1)(α)(2n)−k

+
1

2n
+
∑

1≤k<N

i kk cot(k−1)(α)(2n)−k + O(n−N )

= − log(1− e2iα) +
∑

2≤k<N

i k(k − 1) cot(k−1)(α)(2n)−k

+ O(n−N ),

then plugging in and combining terms, we get the following result:

Theorem 1.3 Let U be uniformly distributed from the unitary group U(n), and
let Rα be defined by (1.1). Then, for any fixed N , as n→∞,

E(Rα(U )) =
1
π2

(
log(n)

+
(
γ + 1 + log

∣∣2 sin(α)
∣∣)

+
∑

2≤k<N

( (k − 1)Bk

knk

+<(i ke2inα)(1− k) cot(k−1)(α)(2n)−k
)

+ O(n−N )
)
.

In particular, forN = 5, we have:

E(Rα(U )) =
1
π2

(
log(n)

+ (γ + 1 + log
∣∣2 sin(α)

∣∣)
+ (

B2

2
− 1

4
csc2(α) cos(2nα))n−2

− (
1
2

cot(α) csc2(α) sin(2nα))n−3

+ (
3B4

4
− (

3
4

csc2(α)− 9
8

csc4(α)) cos(2nα))n−4

+ O(n−5)
)
.
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In contrast,Rα for the uniform independent distribution is of ordern (as is
immediately apparent from Eq. (1.2)). Thus, the eigenvalues of a Haar-distributed
random matrix are significantly more regularly distributed than a similar number
of independent, uniform random eigenvalues.

The asymptotics ofE(Rα(U )) for α = βπ
n , β constant are relatively easy to

compute; the Euler-Maclaurin summation formula applies in this case, to give

E(Rβπ
n

(U )) = π2|β| + 1− cos(2πβ)− 2πβ
∫ 2πβ

0

sin(t)
t

dt +
∫ 2πβ

0

1− cos(t)
t

dt

− 1− cos(2πβ)− 2π2β2

12n2
+ O(n−4).

The O(1) terms of this are given in [8], A.38; however, the method used there
does not appear to extend to give the later terms in the asymptotic expansion.
For i.i.d. uniform, we get

E(Rβπ
n

) = n
β

n
(1− β

n
) = β − β2n−1.

2 Uniformity of the eigenvalue distribution of U n on general compact
groups

A key to the results in Sect. 1 was the observation that, because the formula
for the density of Haar measure forU (N ) is a Laurent polynomial of degree
N − 1 in the eigenvalues, forn ≥ N , the eigenvalues ofU n are i.i.d. uniform.
While it is certainly to be expected that the eigenvalues ofU n should tend to
become independent and uniform asn → ∞, it is surprising that they attain
exact independence at some point. This phenomenon is in fact not unique to the
unitary group, but is true (with some important caveats) for an arbitrary compact
Lie group.

For example, consider the special orthogonal groupSO(2N + 1). The eigen-
values of the generic matrix from this group split into a number of conjugate
pairs, with the remaining eigenvalue forced to be 1. Clearly, no matter how high
m is, the eigenvalues ofOm (O Haar-distributed fromSO(2N + 1) can never
be i.i.d. uniform. However, if one chooses a representative from each conjugate
pair (gettingµ1 . . . µn), one can write the density for Haar measure as a Laurent
polynomial of degree 2N−1 in theµi . As a consequence, if one raises a random
special orthogonal matrixU to the nth power, wheren > 2N − 1, theµi are
i.i.d. uniform. Said another way, the law of the eigenvalues ofU n is the same
as the law of a particular set of 2N + 1 Laurent monomials inN i.i.d. uniform
random phases. ({1, µi , µ

−1
i }, to be precise)

The other caveat involves non-connected Lie groups. In such a group, the
restrictions on the eigenvalues will in general vary from component to compo-
nent; the number of degrees of freedom can even vary. For instance, consider
the orthogonal groupO(2N ). In the determinant 1 component, the eigenvalues
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form N conjugate pairs, while in the determinant−1 component, the eigenvalues
form only N − 1 conjugate pairs, with the remaining two eigenvalues 1 and−1.
(This can be seen as follows: Since orthogonal matrices are real and unitary,
the set of eigenvalues must consist of some number of conjugate pairs (norm
1), some number of 1s, and some number of−1s. Now, since the number of
eigenvalues is even (2N ), either there are an even number of both 1s and−1s
(determinant 1), or an odd number of both (determinant−1). Since a pair of
1s is a conjugate pair, and similarly for a pair of−1s, the statement clearly
holds.) Thus, the determinant−1 component has one fewer continuous degree
of freedom in its eigenvalues. Clearly, then, each component must be considered
somewhat separately.

With these caveats in mind, we can now state the following theorem:

Theorem 2.1 Let L be a compact Lie group,ϕ a continuous (unitary) represen-
tation of L. Then for every connected component C of L, there is a set of Laurent
monomials on a finite set of random variablesµi (where theµi are i.i.d. uniform
on S1), and an integer d such that for any integer n> d, and any Haar-distributed
random variable U on L, the conditional distribution of the set of eigenvalues of
ϕ(U n) given that U∈ C is the same as the distribution of the set of monomials.
Furthermore, d may be chosen independently of C and of the representationϕ.

It should be noted that this is the largest class of Lie groups on which this
could be expected to hold; the compactness condition is necessary for Haar mea-
sure to be a probability. If one leaves the probability setting, using the invariant
measure, despite the fact that it is infinite on the whole group, then the result
appears to be valid to a very limited extent. However, the result hinges on the
fact that on a compact group, raising a matrix to some power throws away infor-
mation about the eigenvalues; if the eigenvalues of the matrix can be determined
from the eigenvalues of a power of the matrix, a non-uniform measure can never
become uniform. It is unclear to what extent Theorem 2.1 can be extended to
general compact groups. (It does hold, in general, in the case of general finite
topological groups, if vacuously so: any continuous representation of a finite
topological group has discrete image, so must be constant on each component.)

Theorem 2.1 is proved by finding a set of phase variablesµi that generate the
eigenvalues through a set of monomials, then showing that the density of Haar
measure can be written as a Laurent polynomial in theµi . Then the method of
moments easily gives the result.

It should be noted that the proofs of Lemmas 2.3, 2.4, and 2.5 below are
generalized from the proofs of Theorems 4.21 and 6.1 in [1].

Suppose we are given a compact Lie groupL, and a componentC thereof.
Further, letT be a maximal torus ofL (a torus ofL is an abelian subgroup
homeomorphic to a torus of some dimension; a maximal torus is a torus not
properly contained in any torus). We have the following lemma:

Lemma 2.2 There is an element a∈ C of finite order, such that aTa−1 = T .
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Proof Let x be an arbitrary element ofC , and consider the image ofT under
conjugation byx, S = xTx−1. It is a well known Theorem ([1], Corollary 4.23),
that for any two maximal toriS and T of L, there is an elementg of the
identity componentLe of L such thatgSg−1 = T. Let a = gx. By continuity of
multiplication, a ∈ C ; furthermore,aTa−1 = T. Now, supposea is not of finite
order, and consider the cyclic subgroup〈a〉 generated bya. In particular, first
consider its image under the quotient mapL → L/Le. By compactness ofL, this
image must be finite; therefore,〈a〉 intersectsLe in an infinite cyclic subgroup.
Consider the subgroup generated by (〈a〉 ∩ Le) ∪ T; this is clearly abelian, and
containsT. But then by proposition 4.26 of [1], it must equalT. It follows then
that for somen, an ∈ T. Now, it is easy to see that there existst ∈ T such that
tn = an. Then (t−1a)n = t−nan = e, so t−1a is of finite order. QED

Example Consider, for example, the complement ofSO(2N ) in O(2N ). In
this case,T can be chosen to be the subgroup of block-diagonal matrices with
2× 2 rotations down the diagonal. In this case, reflection through a coordinate
hyperplane gives a suitablea, although this is hardly exhaustive; it could, for
example, be composed with an arbitrary orthogonal transformation of finite order
in T that fixes the hyperplane.

Now, since the components ofL are also the cosets ofLe (for any coset of
Le, there is a homeomorphism ofL carrying it toLe; it follows that it must be a
component ofL; the converse follows from the fact that the cosets ofLe exhaust
L), we can write every element ofC in the formxa, wherex ∈ Le. Conjugation
by g gives

gxag−1 = gxg−aa,

wherea as an exponent stands for the automorphism ofLe induced by conjugation
by a. (In the sequel, if an element ofL is used in place of an automorphism, the
corresponding inner automorphism will be understood). Since the eigenvalues of
ϕ(x) are preserved by conjugation, we need to understand the action ofx 7→
gxg−a on Le, for a as in Lemma 2.2.

Definition 2.3 Let a be an automorphism of Le. A maximal a-torus of Le is a
torus in Le maximal among all tori fixed by a.

Example Again, considerO(2N ) − SO(2N ), with a reflection through a coor-
dinate hyperplane. Then a maximala-torus is given by block-diagonal matrices
consisting of (N − 1) 2× 2 rotations down the diagonal, followed by two 1s.
Note that in the caseN = 1, the maximala-torus is 0-dimensional (that is, a
point).

Lemma 2.4 Let a be an automorphism of L of finite order, and let Ta be any
maximal a-torus of Le. Then for any x∈ Le, there is someg ∈ Le such that
gxg−a ∈ Ta.
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Proof The proof follows the proof of Theorem 4.21 in [1]. Givenx ∈ Le, consider
the functionfx : Le/Ta → Le/Ta that takesgTa to xgaTa. Sincea fixes Ta, this
map is clearly well-defined. Now, ifg−1Ta is a fixed point offx , thengxg−a ∈ Ta,
and we are done. We now show that any function in the homotopy class offx
must have a fixed point, using the Lefschetz fixed point theorem.

Let x0 be an element ofTa such thatxn
0 (wheren is the order ofa) generates

a dense subgroup ofTa. This can be done by choosingx0 with irrational, incom-
mensurable coordinates. Now, the mapfx0 is clearly homotopic tofx , sinceLe is
path-connected.fx0 clearly has a fixed point (namelyTa); we now wish to show
that it has only a finite number of fixed points. IfgTa is a fixed point offx0, then

f n
x0

(gTa) = xn
0 gTa = gTa;

sincex0 generates a dense subgroup ofTa, we can conclude thatTag = gTa, so
g normalizesTa. From this, we can conclude thatTag = gaTa.

Now, considerNa(Ta), the group of allg ∈ Le such thatTag = gaTa. Con-
jugating both sides bya, we deduce thatNa(Ta) is preserved by conjugation by
a. We can also deduce thatNa(Ta) ⊂ N (Ta), the normalizer ofTa. Now, for
g ∈ Na(Ta), consideru = gg−a. This is clearly inTa, so is fixed bya. Then

un = (gg−a)n

= (gg−a)(gg−a)a(gg−a)a2
. . . (gg−a)an−1

= gg−agag−a2
ga2

. . . g−1

= 1

Now, elements of ordern are discrete in a torus (in fact, the set of elements
of ordern is finite; there are preciselyϕ(n)d such elements, whereϕ is Euler’s
totient function, andd is the dimension of the torus). Therefore, ifg is in the
identity component ofNa(Ta), gg−a = 1, so g = ga. Furthermore, such ag
must induce the trivial automorphism onTa. If g 6∈ Ta, this would contradict
the maximality ofTa. Therefore, the identity component ofNa(Ta) is Ta, and
furthermore, the number of cosets ofTa in Na(Ta) must be finite. Since every
fixed point offx0 is a coset ofTa in Na(Ta), fx0 has only a finite number of fixed
points.

For any hTa a fixed point of f0, the maprh, which takesgTa to gTah,
commutes withf0:

rhfx0r−1
h (gTa) = rhf0(gTah−1)

= rh(x0g
aTah−a)

= x0g
aTahh−a

= fx0(gTa).

Now, rh takesTa to hTa; therefore, the multiplicity offx0 at hTa is the same as
that atTa. It thus suffices to show that the multiplicity atTa is nonzero; this is
easily verified. Thus, the Lefschetz number offx0 is nonzero, so the Lefschetz
number offx is nonzero, andfx has a fixed point. QED
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Example ConsiderO(2N )−SO(2N ), with a andTa as in the previous examples.
Lemma 2.4 is equivalent to the fact that any 2N -dimensional orthogonal matrix
can be conjugated into block-diagonal form, with the diagonal consisting ofN−1
2× 2 rotations, followed by a 1 and a−1; this easily follows from the fact that
the eigenvalues fall intoN − 1 conjugate pairs, plus a 1 and a−1.

Note that it easily follows from this that for anyx ∈ C , there exists ag ∈ Le

such thatgxg−1 ∈ Taa; thus, we can restrict our attention to the eigenvalues of
elements ofTaa, by conjugating the randomx into Taa. This, plus the fact that
[Na(Ta) : Ta] is finite, allows us to make the following definition:

Definition 2.5 Let a∈ C be of finite order, and let Ta be a maximal a-torus. The
induced distribution on Ta is the distribution of the following random variable:
Pick x at random (uniformly) from C , choose an element of Taa conjugate to x,
then conjugate that element by a (uniform) random element of Na(Ta).

The significance of this definition is that the eigenvalues ofta, with t chosen
from the induced distribution onTa, clearly have the same distribution as the
eigenvalues of a Haar-distributed element ofC .

Now, consider the subalgebra of the Lie algebra ofL corresponding toTa.
There is a lattice in this subalgebra given by the inverse image of the identity
under the exponential map. (Whena is the identity, this lattice is called the
“integer lattice” ofLe.) Now, if we choose a setHi of generators of this lattice, we
can express any point in the subalgebra as a linear combination of the generators;
this induces a coordinatization ofTa, assigning to each point inTa an m-tuple
of anglesθi . By exponentiating these angles, we get the desiredµi . It remains
to show that the induced density onTa is a Laurent polynomial in theµi , and
that the eigenvalues of a group element in any representation are monomials in
theµi . Note that theµi are not unique; any isomorphism of the lattice will give
valid µi ; this gives a freedom ofSL(r ,Z), wherer is the dimension ofTa.

Example Again we considerO(2N )− SO(2N ). The above lattice is generated
by matricesHi (0 ≤ i < N − 1), whereHi (e2j ) = 2πδij e2j +1, and Hi (e2j +1) =
−2πδij e2j on the standard basisej (0 ≤ j < 2N ). This givesµj = ei θj , where
the j th rotation matrix rotates byθj .

It is convenient first to show

Lemma 2.6 Letϕ be a continuous unitary representation of L, let a be an element
of C of finite order, and let Ta be a maximal a-torus; let theµi be as above. Then
there is some set S of Laurent monomials in theµi such that for any x∈ C , the
set of eigenvalues of x is the same as S evaluated at any representative of x in
Taa.

Proof By Lemma 2.4, and the invariance of eigenvalues under conjugation, we
need only show this forx ∈ Taa. By definition of Ta, xa−1 and a commute,
so their representations can be simultaneously diagonalized. Thus, we need only
show that the eigenvalues ofxa−1 can be written as monomials in theµi , since
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multiplication by a will simply change the coefficient of the monomials. Now,
the µi give an isomorphism betweenTa and a product of dim(Ta) copies of
S1. Factoring the representation thatϕ induces onTa through theµi , we get a
representation of (S1)dim(Ta). This representation, then, is a sum of 1-dimensional
representations, each of which clearly corresponds to a Laurent monomial in the
µi ; the lemma follows immediately. QED

Now we can show (by a proof analogous to that of Theorem 6.1 in [1]):

Lemma 2.7 The induced distribution on Ta has density given by a Laurent poly-
nomial in theµi .

Proof Consider the functionf : Le/Ta × Ta → Le, given by

(g, t) 7→ gtg−a.

By Lemma 2.4, this map is surjective. Furthermore, with probability 1, a random
element ofLe has exactly [Na(Ta) : Ta] inverse images: It suffices to show that
the subset of elements ofLe not satisfying this condition is a countable union of
lower-dimensional submanifolds. Since the dimension ofLe/Ta × Ta is equal to
that ofLe, it suffices to show that the corresponding inverse image is a countable
union of lower-dimensional submanifolds. Clearly, the size off −1(f (g, t)) is
independent ofg. Now, it is fairly easy to see that if the closure of the cyclic
subgroup generated byt is Ta, thenf −1(f (e, t)) = Na(Ta)/Ta. But the closure of
〈t〉 /= Ta only if t is in a lower-dimensional subtorus ofTa, and there are only
countably many such subtori.

Now, if we lift Haar distribution onL throughf to L/Ta×Ta (pick an element
of the inverse image at random), then integrate overL/Ta, we clearly get the
induced distribution onTa. With this in mind, we wish to compute the Jacobian
of f . The derivative off can be computed as follows:

f (g + gdg, t + tdt )− f (g, t) = gdgtg−a + gtdtg
−a − gtadga−1g−a

= f (g, t)
[
gadtg

−a + gat−1dgtg−a − gaadga−1g−a
]

= f (g, t)ga
[
dt + Ad(t)(dg)− Ad(a)(dg)

]
,

where Ad is the adjoint representation ofL (L acting by conjugation on its Lie
algebra). Thus

| det(f ′)| =
∣∣∣ det
L (Le/Ta)

(Ad(t)− Ad(a))
∣∣∣;

L (Le/Ta) is the subalgebra of the Lie algebra ofL corresponding toLe/Ta. By
Lemma 2.6, this determinant (without the absolute value) is a product of Laurent
polynomials in theµi . Thus, we need only show that the determinant is, in fact,
nonnegative real, not identically zero, and the result follows.

As noted in the proof of Lemma 2.6, we can simultaneously diagonalize the
images ofa andTa in the adjoint representation; since the adjoint representation
is an orthogonal representation, it splits ona andTa into a direct sum of 1- and
2-dimensional irreducible real representations. Clearly, the determinant we need
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to compute is the product of the corresponding determinants restricted to each
representation.
Case 1:v ∈ L (Le/Ta) is a basis vector for a 1-dimensional representation.
Then av = ±v and tv = ±v, for all t ∈ Ta. By continuity, then,tv = v,
for all t ∈ Ta. Now, if av = v, then we could add the one-parameter subgroup
corresponding tov to Ta, thus contradicting the maximality ofTa. Thus,av = −v,
and detv(Ad(t)− Ad(a)) = 2.
Case 2: v, w ∈ L (Le/Ta) are basis vectors for a 2-dimensional irreducible
representation. Then detvw(Ad(t)−Ad(a)) is the product of two numbers complex
conjugate to each other, thus is nonnegative. We thus need only show that it is
non-zero on every element ofTa whosenth powers (again,n is the order ofa)
generate a dense subgroup ofTa Supposex is such an element. If detvw(Ad(x)−
Ad(a)) = 0, then Ad(x) = Ad(a) on v, w, so Ad(xn) = Ad(an) = 1 on v, w. This
implies that Ad(t) = 1 on the subspace, for allt ∈ Ta, and further that Ad(a) = 1
on the subspace. This contradicts the irreducibility of the representation. QED

This completes the proof of Theorem 2.1. In the next section, we will give
refinements of the lemmas which will allow us to give more precise results
for determining the independence thresholdd, and also give examples in some
special cases. Note that it follows from the proof of Lemma 2.7 that

∆ = | det(f ′)|/[Na(Ta) : Ta] =
1

[Na(Ta) : Ta]

∣∣∣ det
L (Le/Ta)

(Ad(t)− Ad(a))
∣∣∣, (2.1)

where∆ gives the density of the joint distribution of theµi ; this equation will
be simplified in the next section.

Example Again, consider the complement ofSO(2N ) in O(2N ). We have

∆ ∝
∣∣∣∣ ∏
1≤i≤(n−1)

(λi − λ−1
i )

∏
1≤i<j≤(n−1)

(λi − λj )(λi − λ−1
j )

∣∣∣∣2;

see [11], or Sect. 3. This is degree (2n−2) in eachλi ; thus, the threshold degree
is d = (2n − 2).

3 Refinements and examples

The formula (2.1) is not especially convenient for most purposes; it can be
simplified to a significant extent, however. As before, we haveL a compact Lie
group, andC a component thereof; choosea ∈ C of finite order, and choose
a maximala-torus Ta. First, we can extendTa to a maximal torusT such that
aTa−1 = T: if T ′ is a torus such thataT′a−1 = T ′, then the setS of x ∈ L
such that [L (T ′), x] = 0 is preserved by the automorphisma:

[L (T ′), xa] = [L (T ′a), xa] = [L (T ′), x]a = 0.



238 E. M. Rains

If L (T ′) = S , then L (T ′) is a maximal torus; otherwise, letv ∈ S be an
eigenvector of Ad(a) (not in L (T ′)). If v is real, thenv can be added toL (T ′);
else, the compactness ofL implies that [v, v] = 0; v andv can thus both be added
to T ′. Once we have extendedTa to a maximal torusT ′ preserved bya, we can
then conjugateT ′ to a chosen maximal torus; as a result, for any maximal torus
T, we can choose a finite-ordera ∈ C and a maximala-torusTa so thatTa ∈ T.

SinceL is compact, we can choose a basis ofL of the form{Hi } ∪ {Eα},
where theHi are in T, and theEα are simultaneous eigenvectors ofT (in the
adjoint representation,x 7→ gxg−1), and where [Eα,Eβ ] = NαβEα+β , with Nαβ

real;α ranges over elements of the “root system” ofL . Now, Ea
α must also be

a simultaneous eigenvector ofT; therefore,Ea
α = s(α)Eαa , where |s(α)|2 = 1.

The reality condition onNαβ means that ifα + β is in the root system, then
s(α + β) = ±s(α)s(β). Thus, modulo sign, we can replacea by t1t2at−1

2 , where
t1 ∈ Ta, t2 ∈ T, and tn

1 = 1, and make everys(α) = ±1. Now, we can write the
density formula (2.1) as a product over orbits of theEα under the action ofa;
for t ∈ Ta and an orbitO, detO(Ad(t) − Ad(a)) is lO(t)n −∏

α∈O s(α), where
Ad(t)Eα = lO(t)Eα for everyα ∈ O (lO is independent ofα, sincea fixes Ta).
Thus, we have proved:

Theorem 3.1 Let T be a maximal torus of a compact Lie group L. Let C be
a connected component of L. Then one can choose a∈ C of finite order and a
maximal a-torus Ta such that the induced density on Ta can be written

∆ =
1

[Na(Ta) : Ta]

(
det

L (T/Ta)
(1− a)

)∏
O

(
lO(t)n −

∏
α∈O

s(α)
)
. (3.1)

Note that this is a density relative to the uniform measure onTa; to transform
it into an integral on [0, 2π]r , a factor of (1

2π )r must be added, as well as a rational
factor (the reciprocal of the number of points in [0, 2π]r that correspond to the
identity); since the integral must be 1, the constant term will be (1

2π )r .
As an example, considerO(2n)−SO(2n); T can be taken to be the subgroup

of block-diagonal matrices with each block a 2× 2 rotation matrix;a can be
taken to be reflection through a coordinate hyperplane, andTa can be taken to
be the subtorus ofT fixed by a. TheEα that appear haveα of the formei − ej ,
ei + ej , or −ei − ej , (1 ≤ i /= j ≤ n), whereei correspond to an integral basis
of T (each corresponds to aµi ); a takesen to −en, and fixes the remainingei ;
the s(α) are all 1. The resulting root orbits are:{ei − ej }, {ei + ej }, {−ei − ej },
{ei − en, ei + en}, and{en − ei ,−en − ei }, for 1≤ i /= j ≤ (n− 1). This gives a
density formula of:

∆ = K
∏

1≤i<j≤(n−1)

(λiλj − 1)(λiλ
−1
j − 1)(λ−1

i λj − 1)(λ−1
i λ−1

j − 1)∏
1≤i≤(n−1)

(λ2
i − 1)(λ−2

i − 1),

whereK is a constant scale factor (irrelevant for our purposes); this formula can
be simplified to
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∆ = K

∣∣∣∣ ∏
1≤i≤(n−1)

(λi − λ−1
i )

∏
1≤i<j≤(n−1)

(λi − λj )(λi − λ−1
j )

∣∣∣∣2.
This agrees with the formula given in [11]. For our purposes, it suffices to notice
that this is of degree (2n − 2) in eachλi ; therefore, the threshold degree for
independence here isd = (2n − 2). It is fairly straightforward to verify similar
formulae forSO(2n), SO(2n + 1), andO(2n + 1)−SO(2n + 1); we can conclude
that the independence threshold forO(n) is d = (n − 2).

Despite the fact that Theorem 2.1 refers to a threshold degree, there can
in general be degrees below the threshold that give independence. The easiest
examples of this phenomenon are wreath products of a finite permutation group
H (acting on a finite set S) and a (connected) compact Lie group G. In the case
of a wreath product, we can take the torusT to be the same for each component:
let T0 be a maximal torus ofG; thenT = TS

0 . Now, pick a component ofG oS H .
The components are parametrized by elements ofH ; we can thus takea to be
the element ofH corresponding to the chosen component.a clearly preservesT.
Now, S breaks up into orbits of〈a〉; Ta is the subtorus ofT constant on orbits of
〈a〉. Let λi be eigenvalue generators ofG; then in our component, the eigenvalue
generators are given by a copy ofλi for each orbit of〈a〉. Noting finally that
s(α) = 1 for each rootα (a simply permutes the factors), (3.1) becomes:

K
∏

O

(
∆G(λ|O|O1 , λ

|O|
O2 , . . .)

)
, (3.2)

where O ranges over orbits of〈a〉 in S, λOi is the i th eigenvalue generator
corresponding toO, and∆G is the density formula forG. Now, suppose∆G has
degree at mostd in eachλi . Then, for every term in (3.2), the degree ofλOi in
that term can be written|O|δ, where 1≤ δ ≤ d. Thus, for every component of
G oS H , every eigenvalue generator appears with degree of the formσδ, where
1 ≤ σ ≤ |S| and 1≤ δ ≤ d. It thus follows that for anym that cannot be
expressed in this form, the eigenvalues ofM m are independent (in the sense of
Theorem 2.1), forM Haar distributed fromG oS H . If we consider the special
caseH = S = Zn, two things become quite apparent. Firstly, the threshold isnd,
by inspection, whereas there are clearlym < nd that cannot be written asσδ.
Secondly, the set ofm which give independence is relatively complicated, even
in such a simple case (to be precise, it is the set ofm that cannot be written in the
form νδ, whereν|n and 1≤ δd); if H is a more complicated group, the situation
becomes quite a bit more complicated. However, it is easy to give a threshold for
generalH andS: d′ = |S|d. Thus, although stating things in terms of a threshold
can lose information, the added ease of calculation more than makes up for it.

The thresholds of greatest interest in the sequel are the following: forU (n),
d = n−1, for O(n), SO(n), andO(n)−SO(n), d = n−2, and forSp(2n), d = 2n.
With care, this, combined with the theorems in [5] (given here as Theorems 6.1
and 6.2 forO(n) and Sp(2n)), can give us some formulae for the means and
covariances of the Tr(M i ).



240 E. M. Rains

For U (n), a simple rotational symmetry argument givesE(Tr(U i )) = 0
and E(Tr(U i )Tr(U j )) = 0, unlessi = j . In that case, the formula in [5]
gives E(|Tr(U i )|2) = i for i ≤ n. For i > n, Theorem 2.1 kicks in, giving
E(|Tr(U i )|2) = n for i > n, as shown in Sect. 1.

For O(n), Theorem 6.1 and Theorem 2.1 (plus a slight refinement thereof, to
the effect that

E
(∑

i/=j

(λk
i λ

l
j )
)

= 0

if either k or l is greater thann − 2) give the following formulae (where the
notation is used that [i even] is 1 if i is even, and 0 otherwise, and similarly for
other predicates):

E(Tr(Oi )) = [i even], (3.3)

Cov(Tr(Oi ),Tr(Oj )) = min(i , n − 1)δij

+ [i − n even,i ≥ n][ j − n even,j ≥ n]. (3.4)

For SO(n), we have

E(Tr(Oi )) = [i even] + (−1)n[i − n even,i ≥ n],

while for O(n)− SO(n) we have

E(Tr(Oi )) = [i even]− (−1)n[i − n even,i ≥ n].

To compute the covariances for those cases, as well as forSp(2n) would require
stronger results than those given in Sect. 6.

Finally, for Sp(2n), we get

E(Tr(Si )) = −[i even,i ≤ 2n].
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