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Summary. Consider (independent) �rst-passage percolation on the edges of Z2.
Denote the passage time of the edge e in Z2 by t(e), and assume that
P{t(e) = 0} = 1=2, P{0¡t(e)¡C0} = 0 for some constant C0¿0 and that
E[t�(e)]¡∞ for some �¿4. Denote by b0; n the passage time from 0 to the
halfplane {(x; y) : x = n}, and by T (0; nu) the passage time from 0 to the near-
est lattice point to nu, for u a unit vector. We prove that there exist constants
0¡C1, C2¡∞ and n such that C1(log n)1=2 5 n 5 C2(log n)1=2 and such
that −1n [b0; n − Eb0; n] and (

√
2n)−1[T (0; nu)− ET (0; nu)] converge in distri-

bution to a standard normal variable (as n→∞, u �xed).
A similar result holds for the site version of �rst-passage percolation on Z2,

when the common distribution of the passage times {t(v)} of the vertices
satis�es P{t(v) = 0} = 1− P{t(v)= C0} = pc(Z2; site) := critical probability
of site percolation on Z2, and E[t�(u)]¡∞ for some �¿4.

Mathematics Subject Classi�cation (1991): 60K35, 60F05, 82B43

1. Introduction

Let E be the set of edges between nearest neighbors on Z2, and let {t(e) : e∈E}
be an i.i.d. family of positive random variables with common distribution func-
tion F . For any path � on Z2, which successively traverses the edges e1; : : : ; ep
we de�ne the passage time of � as

T (�) =
p∑
i=1
t(ei) : (1:1)

∗ Research supported by the NSF through a grant to Cornell University
∗∗ Research supported by NSF grant 9400467



138 H. Kesten, Y. Zhang

The passage time between two vertex sets A; B ⊂ Z2 is de�ned as
T (A; B) = inf{T (�) : � a path connecting some vertex of A

with some vertex of B} : (1:2)

Standard �rst-passage percolation (see Hammersley and Welsh 1965; Smythe
and Wierman 1978; Kesten 1986, 1987) studies among other quantities the
asymptotic behavior of

a0; n := T (0; n�1) and b0; n := T (0; Hn) ;

where �1 is the �rst coordinate vector and Hn is the halfplane

Hn = {(x; y) : x = n} : (1:3)

a0; n is called a point to point passage time and b0; n a point to line passage
time. As a generalization of a0; n one also considers the point to point passage
time T (0; nu) which (with some abuse of notation) is the passage time from {0}
to the nearest point on Z2 to nu, for any unit vector u. If several points of Z2
minimize the distance to nu, then we take T (0; nu) = T (0; A) with A equal to
the set of vertices of Z2 with minimal distance to nu.
In this paper we shall restrict ourselves to what we call critical �rst-passage

percolation, that is, we assume that

F(0) = P{t(e) = 0} = pc(Z2; bond) = 1
2 : (1:4)

Here pc(Z2;bond) stands for the critical probability for bond percolation,
which is known to equal 1=2 (see Kesten (1982, Chap. 3) or Grimmett (1989,
Chap. 9)). It is appropriate to call this “critical” �rst-passage percolation
because there is a transition in the behavior of the passage times at F(0) = pc.
For F(0)¡pc (and mild additional conditions on F), a0; n=n and b0; n=n con-
verge almost surely to a strictly positive constant, while for F(0)¿pc, the
families {a0; n} and {b0; n} are tight (see Kesten (1986, Theorem 6.1) and
Zhang and Zhang (1984)). For F(0) = pc; {a0; n} and {b0; n} have an inter-
mediate behavior (see Remark (i) below). In addition to (1.4) we shall assume
that

E[t�(e)]¡∞ for some �¿4 (1:5)

and that there exists a C0¿0 such that

P{0¡t(e)¡C0} = 0 ; (1:6)

so that the possible strictly positive values of t(e) are bounded away from 0.
Our principal result is the following central limit theorem for b0; n, a0; n, and
more generally, T (0; nu).

Theorem. If (1:4)–(1:6) hold; then there exist constants 0¡C1; C2¡∞
and n such that

C1(log n)1=2 5 n 5 C2(log n)1=2; n= 2 ; (1:7)
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and such that
b0; n − Eb0; n

n
→ N (0; 1) in distribution ; (1:8)

and for each unit vector u

T (0; nu)− ET (0; nu)√
2n

→ N (0; 1) in distribution ; (1:9)

where N (0; 1) is a standard normal variable (with mean 0 and variance 1).

Remarks. (i) Chayes et al. (1986) proved that in the special case when

P{t(e) = 0} = P{t(e) = 1} = 1
2 ;

there exists constants 0¡C3; C4¡∞ for which

C3 log n5 Eb0; n 5 C4 log n;

and for each unit vector u

C3 log n5 ET (0; nu)5 C4 log n:

It is expected that even (under (1.4)–(1.6) only)

Eb0; n
log n

and
ET (0; nu)
log n

(1:10)

converge to �nite, strictly positive limits (as n→∞). One also expects that

2n
log n

;
Var(b0; n)
log n

and
Var(T (0; nu))

log n
(1:11)

converge to �nite, strictly positive limits. Possibly the semi-explicit expressions
for n (see (2.63) below) will eventually help to prove that the expressions in
(1.11) have limits.
(ii) In the course of proving the theorem we also prove a central limit theorem
for a related quantity. Let

S(n) = [−n; n]2 (1:12)

be the square of size 2n centered at 0 and @S(n) its boundary. Further de�ne
cn = T (0; @S(n)). Then we prove that

cn − Ecn
n

→ N (0; 1) in distribution : (1:13)

The estimates which we develop can also be used to prove a strong law of
large numbers for b0; n: If (1.4) and (1.6) hold, and

E[t�(e)]¡∞ for some �¿2 ; (1:14)
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then
b0; n
Eb0; n

→ 1 w.p. 1 : (1:15)

We shall not give this proof here, though.
(iii) It is likely that conditions (1.5) and (1.6) can be weakened somewhat.
However, (1.4) and (1.5) by themselves are not su�cient to guarantee the
central limit theorems (1.8) and (1.9), even when the t(e) are bounded above;
one needs some condition which prevents the occurrence of many very small
(but strictly positive) t(e). In fact, Zhang (1995) shows that the common dis-
tribution F of the t(e) can be chosen such that (1.4) holds and such that F
has compact support, but such that there exists with probability 1 an in�nite
path whose total passage time is �nite. It is not hard to see that for such F ,

b0; n is bounded with probability 1 ; (1:16)

and
{T (0; nu)}n=1 is a tight family : (1:17)

Thus (1.8) and (1.9) fail for such an F .
(iv) A similar central limit theorem holds in the site model for �rst-passage
percolation on Z2. One now assigns i.i.d. passage times to the vertices of Z2. If
t(v) denotes the passage time of the vertex v, and � is a path on Z2 containing
the vertices v0; : : : ; vp, then one replaces T (�) in (1.1) by

T (�) =
p∑
i=1
t(vi) :

The other de�nitions need no change. If now

F(0) = P{t(v) = 0} = pc(Z2; site)
(the critical probability for site percolation on Z2),

E[t�(v)]¡∞ for some �¿4

and
P{0¡t(v)¡C0} = 0 ;

then (1.7)–(1.9) again hold. We shall restrict ourselves here to the bond prob-
lem, but no signi�cant changes in the proof are necessary to treat the site
problem.

Idea of the Proof. We give here an outline of our proof for b0; n.
Following percolation terminology we call an edge e open if t(e) = 0, and
closed if t(e)= C0. A circuit surrounding 0 is a simple closed curve C con-
sisting of edges of Z2, and separating 0 from ∞ (that is, such that each
continuous path from 0 to ∞ must intersect C). It has been known since
Harris (1960), that (1.4) implies that with probability 1 there exist in�nitely
many open circuits surrounding 0. Denote by Cp the “innermost” open circuit
surrounding 0 which lies outside S(2p). (See the next section for a detailed
de�nition of “innermost” and of the actual Cp used in the proof; the above def-
inition will be slightly modi�ed.) Then any two vertices v′ and v′′ on Cp are
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connected by a path which is part of Cp and has zero passage time (because Cp
is open). Therefore T (0; v) has the same value for every v on Cp. For similar
reasons

T (0;Cq) =
q∑
p=0

T (Cp−1;Cp) (1:18)

(where we took C−1 = {0}). If

2q−1¡n5 2q ; (1:19)

then b0; n will be shown to be well approximated by T (0;Cq) (see (2.69)). Now
it is also well known that for a given circuit C surrounding 0 and lying outside
S(2p), the event {Cp = C} depends only on the t(e) with e ∈ C \ S(2p), where

C = C ∪ interior of C : (1:20)

In fact, once Cp−1 is given, one does not need to know the t(e) for any e in
the interior of Cp−1 to determine Cp. From this it is not hard to obtain that the
random variables {(T (Cp−1;Cp);Cp)}p=0 form a Markov chain. Moreover, as
we shall essentially prove, the family {T (Cp−1;Cp)}p=0 is tight (see the lines
following (2.54)). This Markov property is the intuitive reason why b0; n − Eb0; n
has a normal limit distribution. Unfortunately, the above Markov chain is not
recurrent (since Cp lies outside S(2p)), so the central limit theorems for Markov
chains which we know do not apply. We therefore base our proof on another
representation for b0; n − Eb0; n as a sum of martingale di�erences. To this end
we de�ne

Fp = �-�eld generated by Cp and {t(e) : e ∈ Cp} : (1:21)

(but as stated, the Cp will be rede�ned slightly). Fp contains unions of sets of
the form {Cp = C; (t(e1); : : : ; t(ek)) ∈ B} for C a circuit surrounding 0 outside
S(2p), and e1; : : : ; ek ∈ C, B a k-dimensional Borel set. Then

b0; n − Eb0; n =
q∑
p=0

[E{b0; n |Fp} − E{b0; n |Fp−1}] : (1:22)

The variables
�p := E{b0; n |Fp} − E{b0; n |Fp−1}

are clearly martingale di�erences, and will be seen to be closely related to the
T (Cp−1;Cp) (see Lemma 2), and we will prove (in Lemma 1) that truncated
versions of �p1 and �p2 are independent for |p1 − p2| large. This will allow us
to apply an existing central limit theorem for martingales (see McLeish 1974)
to obtain (1.8).

2. Proof of Theorem

For the time being we shall assume that n is a power of 2, say

n = 2q : (2:1)
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Later we show how to deal with general n. It also simpli�es some estimates
to restrict the Cp to certain annuli. This is done as follows. With S(n) as in
(1.12) de�ne

A(p) = S(2p+1) \ S(2p); p= 0 ; (2:2)

the annulus between S(2p+1) and S(2p). Next de�ne for p= 0

m(p) = inf{t ∈ {p;p+ 1; : : :} : A(t) contains an open circuit surrounding 0} :
(2:3)

Note that m(p)= p, but that we can have m(p) = m(p′)= p′ for some
p′¿p. This happens precisely when

there is no open circuit surrounding 0 in any of the annuli
A(p); A(p+ 1); : : : ; A(p′ − 1) : (2:4)

Now, when C is a simple closed curve in R2, int(C), the interior of C, is
the bounded component of R2 \C. The exterior of C, ext(C), will be the
unbounded component of R2 \C. In particular for C a circuit on Z2 which
surrounds 0, int(C) is de�ned. If {C}∈� is some collection of circuits on Z2
which surround 0, then the innermost circuit of this family is that circuit C0
in the family for which int(C) is minimal, that is for which

int(C0) ⊂ int(C) for all  ∈ � : (2:5)

Of course not every family {C} has an innermost circuit. However, if for
some �xed m, {C}∈� is the collection of all open circuits in A(m) which
surround 0, and if this collection is nonempty, then it has an innermost circuit.
This can be seen by the arguments in Harris (1960) or the Appendix of Kesten
(1980) or Proposition 2.3 in Kesten (1982). Thus we can de�ne

Cp = innermost open circuit surrounding 0 in A(m(p)); p= 0 ; (2:6)

and C−1 = {0}. This is the de�nition we shall use, rather than the temporary
one at the end of the Introduction. The Cp of (2.6) are fairly well constrained.
They all have to belong to one of the annuli A(m), or in particular (by virtue
of (2.1)) each Cp either lies entirely in S(n) = S(2q) or entirely outside S(n).
Moreover, by de�nition p1 5 p2 implies m(p1)5 m(p2) and therefore either
m(p1) = m(p2) and Cp1 = Cp2 , or

m(p1)¡m(p2) and Cp1 ⊂ A(m(p1)) ⊂ S(m(p2)) ⊂ int(Cp2) : (2:7)

For the Cp of (2.6) we de�ne

Cp = Cp ∪ int(Cp)
and then the �-�elds Fp as in (1.21). Note that F−1 is the trivial �-�eld,
because C−1 = {0} and int(C−1) = ∅. Furthermore, we shall use � for m(q),
with q as in (2.1). Thus � will depend on n, and so will C� and �p below.
Rather than prove the central limit theorem for b0; n directly, we �rst prove
that T (0;C�)− ET (0;C�) (suitably normalized) has a normal limit law. To this
end we observe that C� and T (0;C�) are Fq-measurable. Moreover, by (2.7),
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Cp−1 ⊂ Cp, and therefore Fp−1 ⊂Fp. Thus

T (0;C�)− ET (0;C�) =
q∑
p=0

[E{T (0;C�) |Fp} − E{T (0;C�) |Fp−1}]

=
q∑
p=0

�p ; (2:8)

with
�p = �p; q = E{T (0;C�) |Fp} − E{T (0;C�) |Fp−1} : (2:9)

Clearly, E{�p |Fp−1} = 0, so that the right hand side of (2.8) is a sum of
martingale di�erences, and we are going to apply a central limit theorem for
martingales to this. We shall use the version of McLeish (1974).
To apply the theorem of McLeish we are going to show that �p depends

only on Cp−1, Cp and the t(e) with e ⊂ Cp \ int(Cp−1); this will give us a certain
amount of independence between the �p. In addition we have to estimate the
tail of the distribution of �p. To do this, we have to become a bit more speci�c
about our probability space. Without loss of generality we take this to be


 =
∏
e∈E
[0;∞)

with the �-�eld B generated by the cylinder sets. A typical point of 
 is
denoted by ! = {!e}e∈E and t(e) = t(e; !) is the e-th coordinate function,
that is t(e; !) = !e. The probability measure P on 
 is∏

e∈E
�F; e ;

where each �F; e is the measure on [0;∞) with distribution function F. E deno-
tes the expectation operator with respect to P. It will also be necessary to
introduce a copy (
′;B′; P′) of (
;B; P). The generic element of 
′ is denoted
by !′ and expectation with respect to P′ is denoted by E′. When necessary,
we give an argument ! or !′ to our random variables, to make clear that we
regard them as a function on 
 or 
′. For instance, Cp(!) is the circuit Cp in
the con�guration {t(e; !)}e∈E. Unfortunately this leads to some cumbersome
expressions, but this seems unavoidable. For instance to determine

T (Cp−1(!);C�(!′)(!′))(!′) (2:10)

in (2.11) below one �rst determines Cp−1(!) in the con�guration !, and then
�(!′) and C�(!′)(!′) in the con�guration !′. With the two circuits Cp−1(!)
and C�(!′)(!′) �xed, (2.10) is the passage time between them in the con�gu-
ration !′.

Lemma 1

�p(!) = T (Cp−1(!);Cp(!))(!) + E′T (Cp(!);C�(!′)(!′))(!′)

− E′T (Cp−1(!);C�(!′)(!′))(!′) : (2:11)
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Fig. 1. Illustration of Cp−1, Cp, C� and a path � from Cp−1 to C�. � is the path indicated
as −−− or + + +. The pieces indicated by + ++ are �1 and �2. The boldly drawn arc
of Cp connects �1 to �2 at no cost in passage time.

Moreover; �p(!) depends only on Cp−1(!); Cp(!) and {t(e; !) : e ∈ Cp(!) \
int(Cp−1(!))}. Finally; if g(·) is a deterministic function such that g(p)= p;
then the random variables

�pi I [m(pi)5 g(pi)]; 15 i 5 ‘ ; (2:12)

on 
 are independent; provided

05 p1¡p2¡ · · ·¡p‘ 5 q and pi+1 = g(pi) + 2 : (2:13)

Proof. Fix a con�guration !. Any path � from Cp−1 to C� must inter-
sect Cp, by virtue of (2.7). (We include here the case Cp−1 = Cp, in which
T (Cp−1;Cp) = 0.) If � is such a path on Z2, let �1 be the piece of � from its
last intersection with Cp−1 to its �rst intersection with Cp (see Fig. 1). Also, let
�2 be the piece of � from its last intersection with Cp to its �rst intersection
with C�. Then

T (�)= T (�1) + T (�2)= T (Cp−1;Cp) + T (Cp;C�) :

Taking the inf over �, we obtain

T (Cp−1;C�)= T (Cp−1;Cp) + T (Cp;C�) : (2:14)
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Conversely, if �1 is a path from Cp−1 to Cp with

T (�1) = T (Cp−1;Cp)

and �2 is a path from Cp to C� with

T (�2) = T (Cp;C�) ;

then let � be the path from Cp−1 to C� which is the concatenation of �1, an arc
of Cp connecting �1 to �2, and �2. Then

T (�) = T (�1) + T (�2) = T (Cp−1;Cp) + T (Cp;C�) ;

because the open arc connecting �1 to �2 has zero passage time. Thus

T (Cp−1;C�)5 T (Cp−1;Cp) + T (Cp;C�) :

Together with (2.14) this gives

T (Cp−1;C�) = T (Cp−1;Cp) + T (Cp;C�) : (2:15)

We also see that any path � from Cp−1 to Cp has passage time T (�) at
least as large as the piece of � from its last intersection with Cp−1 to its �rst
intersection with Cp. Therefore

T (Cp−1;Cp) = inf{T (�1) : �1 a path from Cp−1 to Cp in Cp \ (Cp−1)} :
(2:16)

Thus T (Cp−1;Cp)(!) depends only on Cp−1(!), Cp(!) and the t(e; !) with
e ⊂ Cp \ int(Cp−1), but not on the t(e; !) with e ⊂ int(Cp−1) or e which lie
(except possibly for an endpoint) in

ext(Cp) := complement of Cp

(once Cp−1 and Cp are �xed). In particular T (Cp−1;Cp) is Fp-measurable. By
similar arguments we obtain

T (0;C�) = T (0;Cp−1) + T (Cp−1;Cp) + T (Cp;C�) (2:17)

and the fact that T (0;Cp−1) is Fp−1-measurable. Finally, once Cp is �xed,
T (Cp;C�) depends only on t(e; !) for edges e which lie (with the possible
exception of an endpoint) in ext(Cp). Given Cp and {t(e; !) : e ⊂ Cp}, the
latter edges in ext(Cp) (except for endpoints) are conditionally independent of
{t(e; !) : e ∈ Cp}. Therefore

E{T (Cp;C�) |Fp}(!)
is simply the integral of T (Cp;C�) with respect to the distribution of the t(e)
with e ⊂ ext(Cp(!)) (except for endpoints). In other words

E{T (Cp;C�) |Fp}(!) = E′T (Cp(!);C�(!′)(!′))(!′) : (2:18)

Combined with (2.17) and the preceding remarks this gives

E{T (0;C�) |Fp}(!) = T (0;Cp−1(!))(!) + T (Cp−1(!);Cp(!))(!)
+ E′T (Cp(!);C�(!′)(!′))(!′) : (2:19)
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Essentially the same proof shows that

E{T (0;C�(!)) |Fp−1} = T (0;Cp−1(!))(!) + E′T (Cp−1(!);C�(!′)(!′))(!′) :
(2:20)

(2.11) now follows by subtracting (2.20) from (2.19).
Our preceding observations also show that the right hand side of (2.11)

is determined once we know Cp−1(!), Cp(!) and {t(e; !) : e ⊂ Cp(!) \ int
(Cp−1(!))}.

Finally, by the de�nition of m(p), I [m(p)5 g(p)] depends only on
t(e; !) with

e ⊂ S(2g(p)+1) \ S(2p) :
Moreover, if I [m(p)5 g(p)] = 1, then

Cp ⊂ A(m(p)) ⊂ S(2g(p)+1) \ S(2p) :
Also, if p= 1, by de�nition, m(p− 1)= p− 1, and Cp−1 ⊂ complement
of S(2p−1). Therefore Cp−1 and Cp both lie in

S(2g(p)+1) \ S(2p−1) : (2:21)

Consequently, if p= 1, �pI [m(p)5 g(p)] is determined by {t(e; !) : e in
the set (2.21)}. For p = 0, (2.21) should be interpreted as S(2g(0)+1). If (2.13)
holds, then the regions

S(2g(pi)+1) \ S(2pi−1); 15 i 5 ‘ ;

are disjoint, and the independence of the random variables in (2.12) follows
from this.

To estimate the distribution of �p, we must re�ne the representation (2.11).
It is tempting to write

T (Cp−1(!);C�(!′)(!′))(!′) = T (Cp−1(!);Cp(!))(!′)

+ T (Cp(!);C�(!′)(!
′))(!′) : (2:22)

This, however, is not true, because Cp(!) is not necessarily an open circuit in
the con�guration !′. The following provides a replacement for (2.22).

Lemma 2 De�ne
‘(p;!;!′) = m(m(p;!) + 1; !′) : (2:23)

Then

�p(!) = T (Cp−1(!);Cp(!))(!) + E′T (Cp(!);C‘(p;!;!′)(!′))(!′)

− E′T (Cp−1(!);C‘(p;!;!′)(!′))(!′) : (2:24)

Proof. The main di�culty here is to understand the notation. ‘(p;!;!′) is
found as follows. First one determines m(p;!). Then one �nds the smallest
t = m(p;!) + 1 for which there is an open circuit surrounding 0 in A(t) in
the con�guration !′. This value of t is ‘(p;!;!′) and the innermost open
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circuit surrounding 0 in the annulus A(‘(p;!;!′)) in !′ is C‘(p;!;!′)(!′). In
particular, this circuit is open in !′. Moreover ‘(p;!;!′)= m(p;!) + 1, so
that

Cp(!) = Cm(p;!)(!) ⊂ A(m(p;!)) ⊂ int(C‘(p;!;!′)(!′)) : (2:25)

We now obtain essentially by the same proof as for (2.15), that

T (Cp(!);C�(!′)(!
′))(!′) = T (Cp(!);C‘(p;!;!′)(!′))(!′)

+ T (C‘(p;!;!′)(!
′);C�(!′)(!′))(!′) :

(2:26)

For the same reasons

T (Cp−1(!);C�(!′)(!′))(!′) = T (Cp−1(!);C‘(p;!;!′)(!′))(!′)

+ T (C‘(p;!;!′)(!
′);C�(!′)(!′))(!′) :

(2:27)

Substitution of (2.26) and (2.27) into the right hand side of (2.11) yields
(2.24).

Lemma 3 There exist constants Ci ∈ (0;∞) such that for q= 1 (with � as
in (1:5))

P{m(p)− p= t}5 e−C5t ; t; p= 0 ; (2:28)

P{|�p|= x}5 C6 x−�=2; x = 0; 05 p5 q ; (2:29)

P
{
max
05p5q

|�p|= �q1=2
}
5 2C6�−�=2q1−�=4 ; (2:30)

E
{
max
05p5q

�2p

}
5 C7q ; (2:31)

C8q5
q∑
p=0

E�2p 5 C9q : (2:32)

Proof. The event m(p)− p= t occurs if and only if (2.4) occurs with
p′ = p+ t. But it is well known (see Smythe and Wierman (1978, Sect. 3.4)
or Kesten (1982, Corollary 6.1) or Grimmett (1989, Theorem 9.70)) that there
exists a constant C5¿0 for which

P{there is no open circuit surrounding 0 in A(j)}5 e−C5 ; j = 0 :
(2:33)

Since the annuli A(j) are disjoint, the events in the left hand side of (2.33)
for distinct j are independent. Thus (2.28) holds.
As a consequence of (2.28) we also have for each �xed !

P′{‘(p;!;!′)= m(p;!) + 1 + t}5 e−C5t : (2:34)
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To obtain (2.29) we �rst observe that

Cp−1(!) ⊂ Cp(!) ;
and consequently (compare (2.14))

T (Cp(!);C‘(p;!;!′)(!
′))(!′)5 T (Cp−1(!);C‘(p;!;!′)(!′))(!′) :

Thus, by (2.24)

|�p(!)|5 T (Cp−1(!);Cp(!))(!) + E′T (Cp−1(!);C‘(p;!;!′)(!′))(!′) :
(2:35)

We shall now estimate

P′{T (Cp−1(!);C‘(p;!;!′)(!′))(!′)= y} (2:36)

for �xed !. To avoid special treatment of the case p = 0 we shall inter-
pret S(2−1) as {0} and A(−1) as S(1) in this proof. For a square S, @S
will be its topological boundary and int(S) the interior of S (@S(2−1) = {0},
int(S(2−1)) = ∅).

When ! is �xed, then so is m = m(p;!) and Cp(!) ⊂ A(m). Also for any
r = ‘(p;!;!′) + 1,

C‘(p;!;!′) ⊂ A(‘(p;!;!′)) ⊂ S(2r) :
Furthermore

S(2p−1) ⊂ intCp−1(!) ⊂ C‘(p;!;!′) :
This shows that any path on Z2 from @S(2p−1) to @S(2r) must intersect
Cp−1(!) and C‘(p;!;!′). Therefore, we have just as in (2.14) that

T (Cp−1(!);C‘(p;!;!′)(!′))(!′)5 T (@S(2p−1); @S(2r))(!′) : (2:37)

It follows that for t = 0; 1; 2; : : :

P′{T (Cp−1(!);C‘(p;!;!′)(!′))(!′)= y}
5 P′{‘(p;!;!′)= m(p;!) + 1 + t}
+ P′{T (@S(2p−1); @S(2m(p;!)+1+t))(!′)= y}

5 e−C5t + P′{T (@S(2p−1); @S(2m(p;!)+1+t)(!′)= y} : (2:38)

In order to estimate the last probability, we shall choose the t(e; !′) with
e ∈ S(2m+1+t) \ int(S(2p−1)) in two stages. First we decide for each edge e
whether it is open or closed in the con�guration !′ (i.e., whether t(e; !′) = 0
or t(e; !′)¿0). Then we will pick the values of t(e; !′) for the closed edges
e with the conditional distribution of t(e; !′), given t(e; !′)¿0. Clearly the
contributions to the passage time T (@S(2p−1); @S(2m+1−t)) come only from the
closed edges. We are therefore �rst going to look for some general k¿j = −1
for a path from @S(2 j) to @S(2k) which contains few closed edges. To this
end we introduce the dual graph of Z2. This dual graph can be identi�ed with
Z2 + (12 ;

1
2 ), with edges between nearest neighbors again. Each edge ẽ of this
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dual graph bisects a unique edge e of Z2. For any con�guration !, we call ẽ
open or closed, when the corresponding edge e is open or closed, respectively.
By a theorem of Whitney (see Smythe and Wierman (1978, Sect. 2.1) or
Kesten (1982, Proposition 2.1, Corollary 2.2)) the minimal edge sets of Z2
which separate @S(2 j) from @S(2k) are precisely the edge sets on Z2 whose
bisecting edges on Z2 + (12 ;

1
2 ) form a closed dual circuit in S(2

k) \ S(2 j) which
surrounds S(2 j). Now de�ne

�(j; k; !′) = minimal number of closed edges in any path from
@S(2 j) to @S(2k) (in con�guration !′)

�(j; k; !′) = maximal number of edge-disjoint closed dual circuits
which surround S(2 j) in S(2k) \ S(2 j) (in con�guration !′)

(recall our convention that S(2−1) = {0}). It seems to be well known that
�(j; k; !′) = �(j; k; !′) : (2:39)

Since we could not �nd a reference with proof for this fact, we indicate a
proof in the appendix.
Next we must estimate the tail of the distribution of �. Chayes et al. (1986)

in their proof of Theorem 3.3 show that for some constant C10¡∞
E′{�(j; k; !′)}5 C10(k − j) : (2:40)

Markov’s inequality therefore shows that

P′{�(j; k; !′)= 2C10(k − j)}5 1
2 : (2:41)

To improve this estimate we introduce the following events in 
′:

G(y) = G(y; j; k) = {�(j; k; !′)= byc}
= {there exists at least byc disjoint closed dual circuits

surrounding S(2 j) in S(2k) \ S(2 j)} : (2:42)

Now for any events G1; : : : ; Gr ⊂ 
′, which depend only on �nitely many of
the variables

J (e) := I [t(e; !′) is open] ; (2:43)

it holds that

P′{G1 G2 · · · Gr}5
r∏
i=1
P′{Gi} ; (2:44)

where G1 G2 · · · Gr is the event that G1; : : : ; Gr occur disjointly, as de�ned
in van den Berg and Kesten (1985); see also Grimmett (1989, p. 31). The
general inequality (2.44) was only proved recently in Reimer (1994), but we
shall apply this with

Gi = G(2C10(k − j) + 1)
which is a decreasing event (i.e., its characteristic function is a decreasing
function of the J (e)). For this special situation (2.44) already follows from
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van den Berg and Kesten (1985); see also Grimmett (1989, Eq. (2.14)). It is
easily seen that from the de�nition (2.42) that

G(r[2C10(k − j) + 1]) ⊂ G(2C10(k − j) + 1) · · · G(2C10(k − j) + 1)
(2:45)

(with r events G on the right hand side). We shall take

r = bC11y[2C10(k − j) + 1]−1c= C12
y

k − j − 1 (2:46)

with

C11 =

[
4
∫

(0;∞)
x dF(x)

]−1
: (2:47)

We then obtain

P′{in the con�guration !′ there does not exist a path from @S(2j)

to @S(2k) with fewer than r[2C10(k − j) + 1] closed edges}
5 P′{�= r[2C10(k − j) + 1]} (by (2.39))
5 P′{G(r[2C10(k − j) + 1])}
5 [P′{G(2C10(k − j) + 1)}]r (by (2.45) and (2.44))

5 2−r (by (2.41))5 2 · 2−C12y = (k−j) : (2:48)

Finally, if the event in the left hand side of (2.48) fails, then there exists
in !′ a path � from @S(2j) to @S(2k) with no more than

s := br[2C10(k − j) + 1]c
closed edges. We now choose t(e; !′) for the closed edges. Then, given �, the
conditional probability that T (�)= y is at most P{Ss ¿ y}, where

Ss =
s∑
1
Xi ;

and the Xi are i.i.d. random variables with the conditional distribution of
t(e; !′), given that t(e; !′)¿ 0. Thus

EXi = [1− F(0)]−1
∫

(0;∞)
x dF(x) = 2

∫
(0;∞)

x dF(x) ;

and, by virtue of (2.47),

ESs = 2s
∫

(0;∞)
x dF(x)5

1
2
y :

Markov’s inequality and moment estimates for martingales (cf. Gut 1988,
Theorem I.5.1) now show that for some constants C13, C14

P{Ss = y}5 P
{
Ss − ESs = 1

2y
}
5 2�y−�E|Ss − ESs|�

5 C13
s�=2

y�
5 C14

1
y�=2

: (2:49)
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Combining those estimates we obtain for y = 0

P′{T (@S(2j); @S(2k)= y}
5 left hand side of (2.48) + P{Ss = y}

5 2 · 2−C12y = (k−j) + C14y−�=2; −15 j ¡ k : (2:50)

By taking j = p− 1, k = m(p;!) + 1 + t we are �nally led to the desired
estimate for (2.36). Indeed, by virtue of (2.38), we have for t = 0; 1; : : :

P′{T (Cp−1(!);C‘(p;!;!′)(!′))(!′)= y}

5 e−C5t + 2 · 2−C12y = (m−p+t+2) + C14y−�=2 : (2:51)

The choice t = b√yc now gives that for suitable constants C15; C16 ∈ (0;∞)
and all ! ∈ 
, y = 0,

P′{T (Cp−1(!);C‘(p;!;!′)(!′))(!′)= y}

5 C15 exp
(
−C16 y

m− p+√
y

)
+ C14y−�=2 : (2:52)

Integration of (2.52) over y from 0 to ∞ now shows that the second term in
the right hand side of (2.35) is at most

C17[m(p;!)− p+ 1] : (2:53)

In view of (2.35) we therefore have for t = 0; 1; : : : ; bx=2C17c
P{|�p(!)|= x}5 P{m(p;!)− p= t}

+ P{T (Cp−1(!);Cp(!))(!)= x=2; m(p;!)− p ¡ t} :
(2:54)

Analogously to (2.37) and (2.38) we see that the second term in the right hand
side here is at most

P{T (@S(2p−1); @S(2p+t))(!)= x=2}5 2 · 2−C12x=2(t+1) + C142�=2x−�=2
(see (2:50)) :

Therefore, (2.54) and (2.28) give for t 5 x=2C17

P{|�p(!)|= x}5 e−C5t + 2 · 2−C12x = 2(t+1) + C142�=2x−�=2 : (2:55)

(2.29) follows by taking t = b√xc.
With (2.29) proven, (2.30) and (2.31) are immediate. Also the second

inequality in (2.32) is now obvious. Lastly we prove the �rst inequality in
(2.32). By (2.24) and the estimate (2.53) for the last term in the right hand
side, we have

�p(!)= T (Cp−1(!);Cp(!))(!)− C17[m(p;!)− p+ 1] :
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Now we observe that a path which crosses k closed dual circuits has a passsage
time of at least C0k (by (1.6)). Therefore, for p+ 25 q

E�2p = P{�p = 1}= P{m(p;!) = p+ 1 and
T (Cp−1(!);Cp(!))(!)= 2C17 + 1}

= P{Cp−1(!) ⊂ A(p− 1); there is no open circuit in A(p); but there
exist at least C−10 (2C17 + 1) edge-disjoint closed dual circuits

surrounding S(2p−1) in A(p); and there is an open circuit in
A(p+ 1)} : (2:56)

By the independence of the edges in A(p− 1), A(p), A(p+ 1) and the
Harris–FKG inequality (see Kesten (1982, Proposition 4.1) or Grimmett (1989,
Theorem 2.4))

E�2p = P{there exist open circuits surrounding 0 in A(p− 1) and A(p+ 1)}
× P{there does not exist an open circuit surrounding 0 in A(p)}
× P{there exist at least C−10 (2C17 + 1) edge-disjoint closed dual

circuits surrounding S(2p−1) in A(p)} : (2:57)

The Russo–Seymour–Welsh Theorem implies that the right hand side of (2.57)
is bounded away from zero (see Smythe and Wierman (1978, Lemma 3.5),
Kesten (1982, Theorem 6.1) or Grimmett (1989, Sect. 9.7)). Thus (2.32)
follows.

It is now easy to prove a preliminary central limit theorem for T (0;Cm(q))
as q→∞.
Lemma 4 As q→∞;

T (0;Cm(q))− ET (0;Cm(q))[∑q
p=0 E�

2
p; q

]1=2 → N (0; 1) in distribution : (2:58)

Proof. Recall that we have written � for m(q) in the preceding lemmas. There-
fore, if we set

Xp;q =
�p; q[∑q

p=0 E�
2
p; q

]1=2 ;
then the left hand side of (2.58) is

T (0;C�)− ET (0;C�)[∑q
p=0 E�

2
p; q

]1=2 =
q∑
p=0

Xp;q :

We now apply Theorem 2.3 in McLeish (1974). Since

|Xp;q|5 |�p; q|=[C8q]1=2 ;
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by virtue of (2.32), the conditions (2.3a) and (2.3b) of McLeish are implied
by (2.30) and (2.31) (recall that � ¿ 4). It remains to verify his condition
(2.3c), that is

q∑
p=0

X 2p; q → 1 in probability : (2:59)

By (2.32) this is equivalent to

1
q

q∑
p=0

[�2p; q − E�2p; q]→ 0 in probability : (2:60)

This is a kind of weak law of large numbers which we prove by standard
arguments. First we replace �p; q by

�̃p; q := �p; qI
[
m(p)5 p+

3
C5
log q and |�p; q|5 q2=� log q

]
:

Then

P{�p; q-�̃p; q for some p5 q}
5

q∑
p=0

P
{
m(p)− p= 3

C5
log q

}
+

q∑
p=0

P{|�p; q|¿ q2=� log q}

5 (q+ 1)e−3 log q + 2C6(log q)−�=2 (by (2.28) and (2.29))
→ 0 :

Moreover, E|�p; q|1+�=4 is bounded, by virtue of (2.29) and � ¿ 4, so that

q∑
p=0

[E�2p; q − E�̃2p; q] =
q∑
p=0

E
{
�2p; q I

[
m(p)− p ¿ 3

C5
log q or

|�p; q|¿ q2=� log q
]}

5
q∑
p=0

[E|�p; q|1+�=4]8=(4+�)
[
P
{
m(p)¿p+

3
C5
log q

}
+ P{|�p; q|¿ q2=� log q}

](�−4)=(4+�)
5 C18(q+ 1)[q−3 + C6q−1(log q)−�=2](�−4)=(4+�)

= o(q) :

It therefore su�ces for (2.60) to show that

1
q

q∑
p=0

[
�̃2p; q − E�̃2p; q

]
→ 0 in probability : (2:61)

(2.61) follows easily from Chebyshev’s inequality. Indeed,

�̃p; q = �p; qI
[
m(p)5 p+

3
C5
log q

]
× I

[∣∣∣∣�p; qI [m(p)5 p+
3
C5
log q

]∣∣∣∣5 q2=� log q
]
;
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so that, by Lemma 1, �̃p; q and �̃r; q are independent, whenever |p− r|=
(3=C5) log q+ 2. Moreover, uniformly in 05 p5 q

Var(�̃2p; q)5 E{�̃4p; q}5 4
∫

05x5q 2=� log q

x 3P{|�p; q|= x}dx

5 4
∫

05x5q 2=� log q

x 3(C6 x−�=2 ∧ 1)dx (by (2.29))

5 C19[1 + q8=�−1(log q)5−�=2] :

Therefore

Var

(
q∑
p=0

[�̃2p; q − E�̃2p; q]
)

5 2
q∑
p=0

∑
p5r5p+(3=C5) log q+2

[
Var

(
�̃2p; q

)
Var

(
�̃2r; q

)]1=2
5 C20(q+ 1) log q q8=�−1(log q)5−�=2

5 2C20q8=�(log q)6−�=2 = o(q2) :

Thus (2.61) holds and the lemma follows from Theorem 2.3 in McLeish
(1974).

We are now ready to prove our main results. To do this we drop the
requirement that n is a power of 2. For

2q−1 ¡ n5 2q (2:62)

we de�ne

n =

{
q∑
p=0

E�2p; q

}1=2
: (2:63)

Proof of (1.7) and (1.8). It is clear from (2.32) that the n of (2.63)
satis�es (1.7).
For (1.8) we note �rst that Cm(q) surrounds 0, but lies outside S(2q), and

hence outside S(n) when (2.62) holds. Thus Cm(q) must contain points in the
half plane Hn = {(x; y) : x = n} and therefore

05 b0; n 5 T (0;Cm(q)) (2:64)

(recall that the passage time from 0 to v is the same for all v ∈ Cm(q)). In the
opposite direction, if for some k

Cm(q−k) ⊂ S(2q−1) ⊂ S(n) ; (2:65)

then any path from 0 to Hn must intersect Cm(q−k) and a fortiori

b0; n = T (0;Cm(q−k)) = T (0;Cm(q))− T (Cm(q−k);Cm(q)) (2:66)

(compare (2.15)). Moreover, when m(q)5 q+ t, as in (2.37),

T (Cm(q−k);Cm(q))5 T (@S(2q−k); @S(2q+t+1)) : (2:67)
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(2.64)–(2.67) and (2.50) show that when (2.62) holds, then for all x = 0,
k 5 q, t = 0

P{|b0; n − T (0;Cm(q))|= x}
5 P{m(q− k)= q− 1}+ P{m(q)= q+ t}
+ P{T (@S(2q−k); @S(2q+t+1)= x}

5 e−C5(k−1) + e−C5t + 2 · 2−C12x = (k+t+1) + C14x−�=2 : (2:68)

We can take k = t = b√xc, provided this is 5 q. Thus, for some constant
C21 ¡∞ and x 5 q2 we have

P{|b0; n − T (0;Cm(q))|= x}5 C21x−�=2 : (2:69)

Actually this estimate remains valid even for x = q2. In this case we see from
(2.64) that

P{|b0; n − T (0;Cm(q))|= x}5 P{T (0;Cm(q))= x}
5 P{m(q)= q+ t}+ P{T (0; @S(2q+t)= x}
5 e−C5t + 2 · 2−C12x=(q+t+1) + C14 x−�=2

(by (2.28) and (2.50)). When t = b√xc= q− 1, this again gives (2.69).
It follows from (2.69) that, as n→∞ and q chosen to satisfy (2.62),

b0; n − T (0;Cm(q))
n

→ 0 in probability : (2:70)

Since

n = 2q =

{
q∑
p=0

E�2p; q

}1=2
under (2.62), we conclude from Lemma 4 that

b0; n − ET (0;Cm(q))
n

→ N (0; 1) in distribution :

In order to obtain (1.8) we merely have to observe that also

Eb0; n − ET (0;Cm(q)) is bounded ;
by virtue of (2.69).

Remark. (v) De�ne
cn = T (0; @S(n)) : (2:71)

Because any path from 0 to Hn must intersect @S(n), we have

cn 5 b0; n : (2:72)

But also
T (0; @S(2q−k))5 cn (2:73)
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whenever (2.65) occurs. Thus, as in the last proof

P{|cn − T (0;Cm(q))|= x}5 C21x−�=2 (2:74)

and also
cn − Ecn
n

→ N (0; 1) in distribution : (2:75)

Moreover, we see from (2.74) and (2.69) that

Eb0; n − Ecn = O(1) : (2:76)

Similarly, one can use (2.83) below to show that

ET (0; nu)− 2Ecn = O(1) for every �xed unit vector u : (2:77)

Proof of (1.9). Let u = (u1; u2) be a �xed unit vector. Without loss of genera-
lity let 05 u2 5 u1 5 1 (and hence u1 = 2−1=2). De�ne r by

2r−1 ¡ 1
2nu1 5 2r : (2:78)

Then
q− 35 r 5 q ; (2:79)

because of (2.62) and u1 = 2−1=2. Now consider the two squares

S ′ = S(2r−1) and S ′′ = nu+ S(2r−1) :

These two squares are disjoint and 0 ∈ S ′; nu ∈ S ′′. Therefore any path from 0
to nu contains the piece from 0 to its �rst intersection with @S ′ and the piece
from its last intersection with @S ′′ to nu. Thus

T (0; nu)= T (0; @S ′) + T (nu; @S ′′) : (2:80)

To obtain an estimate in the other direction, consider the annuli A(p); A
(p+ 1); : : : with p= q+ 2. Since n5 2q; |u| = 1,

S ′ ∪ S ′′ ⊂ S(2p) (2:81)

for each such p. Recall that

m(q+ 2) = inf{p=q+ 2: there exists an open circuit
surrounding 0 in A(p)} ;

and let C = Cm(q+2). Then by (2.81), C surrounds both S ′ and S ′′, hence 0 and
nu. We can now connect 0 to nu by connecting 0 and nu to C, and by adding
an arc of C (see Fig. 2). In addition,

@S(2m(q+2)+1) ⊂ int(nu+ S(2m(q+1)+2)) :
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Fig. 2. The two squares S′ and S′′ and the circuit C (not drawn to scale). The two paths
indicated by + ++ have passage times T (0;C) and T (nu;C), respectively. Together with
the boldly drawn arc of C they connect 0 to nu.

This shows that

T (0; nu)5 T (0;C) + T (nu;C)
5 T (0; @S(2m(q+2)+1)) + T (nu; nu+ @S(2m(q+2)+2)) :

Together with (2.80) this gives in the by now familiar way

P{|T (0; nu)− T (0; @S ′)− T (nu; @S ′′)| ≥ 2x}
≤ P{|T (0; @S ′)− T (0; @S(2m(q+2)+1))| ≥ x}
+ P{|T (nu; @S ′′)− T (nu; nu+ @S(2m(q+2)+2))| ≥ x}

= P{|T (0; @S(2r−1))− T (0; @S(2m(q+2)+1))| ≥ x}
+ P{T (0; @S(2r−1))− T (0; @S(2m(q+2)+2))| ≥ x}

≤ 2P{m(q+ 2) ≥ q+ 2 + t}+ 2P{m(q− k) ≥ q− 4}
+ P{T (@S(2q−k); @S(2q+3+t)) ≥ x}+ P{T (@S(2q−k); @S(2q+4+t)) ≥ x}

≤ 2e−C5t + 2e−C5(k−4) + 4 · 2−C12x = (k+t+4) + 2C14 x−�=2 (2:82)

(by (2.28), (2.50) and (2.79) and translation invariance). Again taking
t = k = b√xc we �nd for some constant C22 ¡∞

P{|T (0; nu)− T (0; @S ′)− T (nu; @S ′′)|= 2x}5 C22x−�=2 : (2:83)

Because T (0; @S ′) and T (nu; @S ′′) are independent (recall that S ′ and S ′′ are
disjoint), and both have the distribution of c2r−1 = T (0; @S

′) it follows that

1√
q
[T (0; nu)− T (0; @S ′)− T (nu; @S ′′)]→ 0 in probability (2:84)

and (see (2.75))

T (0; nu)− 2Ec2r−1√
22r−1

→ N (0; 1) in distribution : (2:85)



158 H. Kesten, Y. Zhang

It remains to show that
2r−1
n

→ 1 (2:86)

and
ET (0; nu)− 2Ec2r−1 = O(1) : (2:87)

(2.86) follows from the fact that if, for some �xed k,

2q−k ¡ ñ5 n5 2q ;

then
c2q−k 5 cñ 5 cn 5 c2q ;

and
1√
q
[c2q − c2q−k ]→ 0 in probability as q→∞

for the same reasons as (2.68) and (2.69). Together with (2.75) for n = 2q

and for n = 2q−k this forces

1√
q
[Ecn − Ecñ]→ 0 and

n
ñ
→ 1 :

(2.86) is a special case of this because of (2.79). (2.87) follows immediately
form (2.83).

3. Appendix

Some graph theory.

We indicate here how to prove (2.39). Fix a con�guration !′. Let D be a dual
circuit (i.e., a circuit on ( 12 ;

1
2 ) + Z

2) which surrounds S(2j) in S(2k) \ S(2j).
Let B = B(D) be the collection of all vertices of Z2 which are in the exte-
rior of D and which are incident to an edge of Z2 which intersects D. Let
K(B) be the open cluster of B outside D, that is the collection of all vertices
of Z2 which are connected to B by an open path of Z2 in the exterior of
D. If K contains vertices in @S(2k) or outside S(2k), then we do not need
the next step. In the other case, when K ⊂ interior of S(2k), let D be the
“outer boundary” of K , that is the collection of edges {u; v} of Z2 with one
endpoint u in K and the other endpoint u outside K and such that v is con-
nected to ∞ by a path on Z2 which does not intersect K . Then one can see
that D separates D from @S(2k), and by Whitney’s theorem (see Smythe and
Wierman (1978, Sect. 2.1) or Kesten (1982, Proposition 2.1, Corollary 2.2))
the edges dual to the edges in D form a circuit D′ in D ∪ ext(D) which
surrounds D and S(2j). Moreover, by construction, all edges of D and D′
are closed. In other words D′ is a closed dual circuit surrounding S(2j); see
Fig. 3.
We now start with B0 = @S(2j) and form K(B0) and its outer boundary,

D1 say. Given Di ⊂ S(2k) \ S(2j) we form B(Di), K(B(Di)) and the outer
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Fig. 3. The inner circuit is D, with an edge e of B indicated. The outer circuit is D′. K(B)
is the hatched region; it may have “holes”, as indicated.

boundary of the latter, which we call Di+1. We stop this process at the �rst i
for which K(Bi) contains points on S(2k) or outside S(2k). Say this happens for
i = �. Thus D1; : : : ;D� are edge-disjoint closed dual circuits in S(2k) \ S(2j)
and we shall now argue that �= �(j; k). This will prove that

�(j; k)= �= �(j; k) ; (3:1)

which is the di�cult half of (2.39).
To prove our claim, let � be a path on Z2 from @S(2j) t2o @S(2k) which

contains the minimal number of closed edges, �(j; k). Without loss of gener-
ality � lies in S(2k) \ S(2j) except for one of its endpoints on @S(2j). Let the
closed edges of � be e1; : : : ; e� in the order in which they occur as one traverses
� from @S(2j) to @S(2k). If � = 0 there is nothing to prove. If �= 1, then
K(B0) cannot intersect @S(2k) since all points of K(B0) have a zero passage
time to B0 = @S(2j). Thus D1 will exist and be in S(2k) \ S(2j). D1 sepa-
rates S(2j) from S(2k) and must therefore intersect an edge of � which is
necessarily closed (since D1 is closed). Let D1 intersect � in the edge {u; v},
which by the preceding is one of e1; : : : ; e�. We claim that it must be e1. In-
deed, if {u; v} = ep with p= 2, and u ∈ K(B0), then by de�nition of K(B0),
u can be connected to @S(2j) by an open path �′. Then �′, followed by the
piece of � consisting of ep and the edges after it, forms a path from @S(2j) to
@S(2k) which only contains the closed edges ep; ep+1; : : : ; en. This contradicts
the minimality of �. Thus indeed e1 must lie in the circuit D1. Furthermore,
the same argument shows that the minimality of � guarantees that � only
has the edge e1 in common with D1. Thus, from v on, � lies in the exterior
of D1.
One can now repeat this argument and prove successively that ep must lie

in Dp for 15 p5 �. Thus there must exist � circuits and �= �. This yields
(3.1).
The converse inequality, �(j; k)= �(j; k), is trivial. Indeed, if there are �

edge-disjoint closed dual circuits surrounding S(2j) in S(2k) \ S(2j), then any
path on Z2 from @S(2j) to @S(2k) must intersect those � circuits, and hence
must contain at least � closed edges.
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