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Summary. We study the stationary measures of an in�nite Hamiltonian system
of interacting particles in R3 subject to a stochastic local perturbation conserv-
ing energy and momentum. We prove that the translation invariant measures
that are stationary for the deterministic Hamiltonian dynamics, reversible for
the stochastic dynamics, and with �nite entropy density, are convex combi-
nation of “Gibbs” states. This result implies hydrodynamic behavior for the
systems under consideration.

Mathematics Subject Classi�cation (1991): 82B21, 82C21, 82B03, 60Y60,
60F10

Introduction

The ergodic problem in Hamiltonian dynamical systems is at the base of equi-
librium statistical mechanics. While, beginning with the celebrated Sinai’s paper
[Si], some results are known for �nite systems (see [LW] for a general ap-
proach to ergodicity in Hamiltonian systems), very little is known concerning
in�nite systems (some results are known for special systems with an arbitrary,
but �nite, number of particles [BLPS]). By ergodicity of an in�nite system we
mean that convex combinations of Gibbs measures are the only stationary and
translation invariant measures, within a reasonably “regular” class.
Furthermore, recent developments in non-equilibrium hydrodynamics (cf.

[OVY]) show that the ergodicity of an in�nite systems is a main ingredient in
the rigorous derivation of Euler equations as a macroscopic description of the
conservation laws for the density, the momentum and the energy (at least in
the smooth regime of these equations).
Since no results in this direction are present for deterministic systems, it

is natural to ask if a stochastic perturbation may help in proving ergodicity.
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The stochastic perturbation should conserve the energy, the momentum and the
number of particles of the system, while destroying locally the other possible
invariant of the motion.
A stochastic perturbation of this type is introduced in [OVY]: any two parti-

cles exchange randomly momentum in such a way as to preserve only the total
momentum and energy of the two particles. The rate of exchange is assumed to
decrease when the distance between the two particles increases, but the range
of this random interaction is in�nite. Accordingly, any particle is interacting
stochastically with any other and the corresponding di�usion on the momenta
space of any �nite number of particles is elliptic. This permits to characterize
the distribution of the momenta of any �nite number of particles conditioned
to the positions: it must be a uniform measure on the corresponding invariant
manifold in the momenta space. The equivalence of ensembles implies that the
distribution of the momenta conditioned on the position is a convex combi-
nation of “Maxwellians”. In addition, one can localize the invariance, under
the Hamiltonian dynamics, of the distribution, and prove that the distribution
of the positions satis�es the DLR equations with respect to the corresponding
interaction.
The purpose of the present paper is to extend the foregoing argument to

�nite range stochastic interactions. Two di�culties arise immediately: one of
local and the other of global type.
Locally, restricting oneself to a �nite “chain” (or cluster) of particles in-

teracting stochastically, the di�usion on the space of momenta is no longer
elliptic; it becomes then necessary to prove that it is, at least, hypoelliptic.
This is done quite easily with an inductive argument and in grand generality:
only the convexity of the kinetic energy is needed.
The global obstacle is of a more serious nature. The di�usion on the mo-

menta is hypoelliptic only when restricted to chains of interacting particles.
But, several clusters of particles, too far apart to interact stochastically, may
be present; hence, they could be at “di�erent temperatures”. We need the help
of the deterministic Hamiltonian dynamics to “connect” distant clusters.
Taking commutators between the vector �elds generating the stochastic dy-

namics and the Hamiltonian generator one obtains a Lie algebra of vector �elds
large enough to generate all the tangent space to the energy-momentum mani-
fold on the phase space (i.e., position and momentum) of the cluster of the
interacting particles. This means that our system is invariant for the dynamics
generated by these vector �elds (that turn out to be local) which enable, after
some work, to produce “cluster deformations” that connect any cluster with
the others. Proceeding in such a way we can obtain, in each su�ciently large
�nite box, a “unique cluster” and consequently prove that the momenta are
uniformly distributed.
A further di�culty arises if the kinetic energy is quadratic (i.e., the usual

“Gaussian case”). In fact, in this case all the above mentioned dynamics pre-
serve also the center of mass of any �nite cluster of particles. To complete the
argument in this case it would be necessary to perform cluster deformations
that conserve the center of mass, hence substantially complicating the above
argument. We believe that our program could be carried out for the Gaussian
case as well but we stop short of it also in view of the fact that its application
to hydrodynamics is unclear (see point (d) in the following discussion). As in
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[OVY] we consider only stationary measures having �nite entropy density with
respect to a grancanonical Gibbs measure. This condition seems to characterize
a nice class of regular measures1. To complete our argument, various extra
assumptions are necessary:
(a) The range of the stochastic interaction is �nite but must be strictly larger

than the one of the deterministic potential.
(b) The invariant measures considered must have su�ciently high particles den-

sity. More precisely, we need to be sure that, for almost any con�guration,
any su�ciently large box contains at least two particles interacting stochas-
tically. The bound on the density we ask here is very rough, and we believe
it can be substantially improved by using a more re�ned argument. Alterna-
tively one can assume that the average potential energy is positive, which
implies that in a box large enough at last two particle interact determin-
istically, therefore stochastically. Unfortunately potential energy is not a
conserved quantity, so usually one does not have any information about its
average value, that is why we prefer a condition on the density, which is
stricter but easier to use.

(c) We assume that the measures considered are separately invariant for the
deterministic and the stochastic dynamics. Furthermore, they must be re-
versible for the stochastic dynamics alone. The reversibility with respect
to the global stochastic dynamics is a general condition which implies (cf.
Proposition 2.2) the conditions previously used to derive the hydrodynamic
limit: the invariance for each local stochastic dynamics (cf. [OVY]).

(d) In order to apply our results to obtain hydrodynamic limits following [OVY]
we consider kinetic energies that are not quadratic, since [OVY] does not
apply to the quadratic case. Nonetheless, we must assume a mild restriction
on the kinetic energy function: the local dynamics cannot have undesired
invariant (like the center of mass in the Gaussian case, see Lemma 2.5). We
provide examples of kinetic energy functions that satisfy both our condition
and the ones assumed in [OVY] (cf. Appendix 1).

As a consequence of our result, the hydrodynamic limit obtained in [OVY]2 is
extended to the Hamiltonian dynamics with stochastic perturbation considered
in the present paper.
For lattice systems the problem of ergodicity is solved in [FFL] in a more

satisfactory way. In fact, there it is not needed condition (c), i.e., only the
invariance with respect to the total dynamics (deterministic + stochastic) is
required.
Concerning condition (c), notice that we could have asked the invariance

for the �nite stochastic dynamic in each �nite box. We prove indeed that this
is equivalent to the global reversibility (cf. Proposition 2.2). Proposition 2.2
has an interest in itself: it says that if a stochastic dynamics on a lattice in
�nite dimension is hypoelliptic then for the corresponding in�nite dynamics all
the reversible measures are given by Gibbs measures. This generalize a result
of M. Zhu (cf.[Z]) to the “hypoelliptic” situation.
The next section contains a more precise description of the results outlined

here, together with the plan of the paper.

1 It is intended that we are always considering translation invariant measures
2 See Theorem 2.1 of [OVY]
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1. Notations and results

Sample space

A point of R3 ×R3 will be denoted by (q; p) and the sample space 
 will
consist of points ! = {(q�; p�)}. Any bounded region B in R3 will contain
only a �nite number of particles, with positions q�, in addition one can think
of p� as tags, and consider the corresponding �nite con�guration in B×R3.

Interaction

We consider a radial repelling �nite range smooth pair potential V (q� − q�) 6≡ 0
such that:
i) V (x) = 0 |x| ¿ R0 (�nite range)
ii) V is superstable (i.e. it satis�es the superstability inequality: there exists

B ¿ 0 and A ¿ 0 such that for any �nite box � and any con�guration
we have: ∑

qa∈�

∑
q�∈�

V (q� − q�) =
A
|�| |!�|

2 − B|!�| (1:1)

((see [R])).
iii) 〈x; ∇V (x)〉 ≡∑3

i xi
@V
@xi
(x) ≤ 0 ∀x ∈ IR3 (repelling interaction)

The repelling condition (iii) is of a technical nature and it should be pos-
sible to remove it by a more accurate analysis. However, by removing or
weakening (iii), condition (ii) would become essential, while at present it is a
consequence of (i) and (iii). In fact, (i) and (iii) force V = 0 and V (x)¿ 0
for each x in a neighborhood of 0, which implies a stronger inequality than
(1.1).

Kinetic energy

It is given by a convex function � ∈ C∞(R3). One must distinguish between
two cases:
(G) �(p) is a quadratic function of p, which is the classical Gaussian case.
(NG) �(p) =

∑3
i=1 ’(p

i) with ’ a strictly convex smooth positive function
on R with
(i) ’′′(x) 6= 0 for each x ∈ R3.
(ii) 12

d2

dx2
(’′′(x))2 = ’′′′(x)2 + ’iv(x)’′′(x) 6= 0 apart from, at most,

�nitely many points.
In addition, we require the invariance for reections, i.e. ’(x) = ’(−x).

We will refer to this case as the non-Gaussian case.
Notice that, if d2

dx2
(’′′(x))2 = 0 for each x the condition ’(x) = ’(−x) implies

’′′(x) =constant, i.e., we have the Gaussian case. This shows that, morally,
our classi�cation covers all the possible cases; yet, it could be interesting to
carry out a more detailed investigation.
In this paper we will consider only the non-Gaussian case, yet some results

concerning the Gaussian case will be derived (Lemma 2.5, 2.6) in order to

3 This strengthened convexity will be needed only in the proof of Lemma 3.2 and could
be weakened, by adding some unpleasant estimates, to saying that ’′′ can be zero only at
isolated points and its zeroes must have �nite multiplicity
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enlighten the di�culties (due to a peculiar degeneration) arising in such a
case4.
As already mentioned, our main motivation to treat the case (NG) is to

apply the present results to the derivation of the hydrodynamic limit. To do
so, the kinetic energy function must satisfy the conditions:∣∣∣∣ @�@pj

∣∣∣∣5 C′;
∣∣∣∣ @2�
@pj@pi

∣∣∣∣5 C′′ ∀p ∈ R3; (1:2)

which are clearly not satis�ed by the classical case (G).

Hamiltonian dynamics

The Hamiltonian is de�ned by the formal expression:

H(!) =
∑
�

�(p�) +
1
2

∑
�

∑
� 6=�

V (q� − q�)

and the Liouville operator by

L =
∑
�

3∑
i=1

[
@pi

�
H @qi�

− @qi�
H @pi

�

]
:

In this paper, we are not concerned with the existence of the dynamics gener-
ated by L or its stochastic perturbations. Our aim is simply to characterize the
probability measures on 
 that are ‘formally’ invariant (see Theorem 1.1). For
a more detailed description of the above objects see [AGGLM; Sect:2].

Stochastic perturbation of the dynamics

We will use the notation vi� ≡ �i(p�) ≡ @pi
�
�. In the following, smooth

will mean always di�erentiable in�nitely many times.
For each smooth function ��� : R6 → R3, (i.e. ��� = ���(p�; p�)) we de-

�ne the vector �eld

X (���) = 〈���; D��〉 ≡
3∑

i=1

�i
��D

i
��

where D�� = @p� − @p� .
We are interested in vector �elds with null divergence, i.e.,

div(X (���)) = 〈D��; ���〉 =
3∑

i=1

Di
���

i
�� = 0: (1:3)

Furthermore, we ask that X (���) is tangent to the surfaces, in R3 ×R3,{
pi

� + pi
� = ci; i = 1; 2; 3;

�(p�) + �(p�) = c0:

4 Actually, all what we do up to Lemma 2.5 holds for both cases
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This is insured by the orthogonality relation

〈���; D��(�(p�) + �(p�))〉 = 0 (1:4)

(equivalently, 〈���; v�〉 = 〈���; v�〉), which will imply the conservation of en-
ergy and momenta with respect to the stochastic dynamics.
In addition, we require a further “Condition on the Noise” that boils down

to a genericity condition and will be spelled out in detail in Sect. 2, before
Lemma 2.75.

Let X (���)∗ be the adjoint of X (���) with respect to the measures

e�4(−�(p�)−�(p�))+�·(p�+p�) dp� dp�

for any �4 ¿ 0 and � = (�1; �2; �3), with the restriction that∫
exp(−�4�(p) + � · p)dp ¡ +∞:

We have, because the null divergence and the orthogonality property, that
X (���)∗ = −X (���).
We use the previous vector �elds to de�ne an operator of the second order

that will be the generator of the stochastic perturbation. Consider a �nite num-
ber K = 3 of vectors {��

��} with the properties above. We de�ne the operator

L̂�� = −1
2

K∑
�=1

X (��
��)

∗X (��
��) =

1
2

∑
�

X (��
��)

2:

Moreover, we require that, at each point, the linear combination of {��
��} spans

a two dimensional subspace of R3 (the maximum compatible with (1.4)),
eventually apart from a set �̃

s
�� consisting of the �nite union of codimension–

two manifolds. Therefore, L̂�� is selfadjoint, and elliptic outside �̃s
��. For later

purposes, we de�ne

�̃�� = �̃s
�� ∪ {(p�; p�) | v� = v�}; (1:5)

by convexity follows that �̃�� is the �nite union of smooth manifold with
codimension two as well.
Let �(q) be a radial smooth function on R3, such that �(q)¿ 0 for each

‖q‖ ¡ R1, and �(q) = 0 for each ‖q‖ ≥ R1 ¿ 4R0. Then we consider the
operator

L̂ =
∑
�;�

�(q� − q�)L̂��:

Note that we can assume, without loss of generality, ��� = ���.

5 In Appendix I we show explicit examples that satisfy such condition, but we believe that
it is “generically” satis�ed and hence very general
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In the following considerations it will be important that � is strictly positive
for a radius R1 strictly greater than 4R0, i.e. that the range of the stochastic
interaction is larger than the one of the ‘deterministic’ interaction6.

Gibbs measures

Let � ⊂ R3. Each con�guration ! ∈ 
 can be written as ! = {!�; !�c} where
!� = {(q�; p�) ∈ ! | q� ∈ �}.
Let P be a probability measure on 
. If the P-conditional distribution of

!�, given the con�guration outside !�c , is proportional to

1
n!
exp

[
�0n+

n∑
�=1

3∑
i=1

�ipi
� − �4H�; n(!�; !�c)

]
;

then P is called Gibbs Measure (or grandcanonical Gibbs measure). In the
above expression n is the number of particles in � (that we will denote by
|!�|) and the local Hamiltonian is de�ned by

H�; n(!�; !�c)

=
∑

q�∈!�

�(p�) +
1
2

∑
q�∈!�; � 6=�

V (q� − q�) +
∑

q�∈!�c

V (q� − q�)

 :

Statement of the result

Let Q and P be two probability measures on 
, and let Q� and P� be their
restrictions on a �nite box �. The relative entropy of Q� with respect to P�
is de�ned by7

H�(Q|P) = sup
F∈F�

{
EQ(F)− log EP(exp(F))

}
(1:6)

where F� are the smooth functions localized in �. For the properties of H�
see, for example, [OVY]. In the following Q will be the translation invariant
measure under consideration, while P will be any grancanonical Gibbs measure
for the interaction V .

Lemma 1.1 . If there exists a constant C such that for each box �,

H�(Q|P)5 C|�|

6 The factor 4 is due to technical reasons, plays a role only in Sect. 4 and is certainly not
optimal
7 By EQ we mean the expectation with respect to the measure Q
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then,

EQ (|�|−2|!�|2)5 C1 ¡ ∞;(i)

EQ

|�|−1 ∑
q�∈�

‖pa‖
5 C2 ¡ ∞;(ii)

EQ

|�|−1 ∑
q�∈�

�(p�) +
∑
q�∈!

V (q� − q�)

5 C3 ¡ ∞;(iii)

where C1; C2; C3 are constants independent on �.

Proof. The inequalities (ii) and (iii) are consequences of the following entropy
inequality:

EQ(F)5
1
�
logEP (exp(�F)) +

1
�
H (Q|P); (1:7)

which is valid for any local function F and any constant � ¿ 0. Inequality
(1.7) follows directly from the de�nition (1.6). Then for su�ciently small �,
we have

EQ

|�|−1 ∑
q�∈�

‖pa‖
5

1
�|�| log E

P

exp
�

∑
q�∈�

‖pa‖
+ 1

�
C 5

1
�
C′

In a similar way one can prove (iii).8 While (i) follows by the same argument
and the superstability inequality (1.1).

De�ne

�(!) = lim
|�|→∞

|�|−1|!�|;

�(!) = lim
|�|→∞

|�|−1
∑
q�∈�

pa ≡ lim
|�|→∞

|�|−1��;

e(!) = lim
|�|→∞

|�|−1
∑
q�∈�

�(p�) +
1
2

∑
q�∈�; � 6=�

V (q� − q�)

+
∑
q� 6∈�

V (q� − q�)


≡ lim

|�|→∞
|�|−1E�:

The above Lemma 1.1, and the translation invariance of Q, ensures that the
limits �(!), e(!), �(!) exist Q-almost everywhere9.

8 Although the integrand (iii) is not localized in �, due to the compact support of V , it is
localized in a slightly larger volume, which is as well for our present purposes
9 The case of e(!) is less obvious because of the presence of the boundary terms. Yet,
consider a small box � and Footnote 9 continued
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The aim of this paper is to prove the following:

Theorem 1.2 . Let Q be a translation invariant probability measure on 
, if

(i) There exists a constant C such that for each box �, H�(Q|P)5 C|�|;
(ii) ∃�0 ¿ �∗ such that Q ({! ∈ 
 | �(!)¿ �0}) = 1, where �∗ = 3=(4R31�);
(iii) Q is invariant w.r.t. the dynamics generated by L (the deterministic

part), in the sense that, for any smooth local function F�(!�),

EQ(LF�) = 0 ;

(iv) Q is reversible with respect to L̂ (the stochastic perturbation), i.e., for
any two smooth local functions ’ and  holds

EQ( L̂’) = EQ(’L̂ ) ;

then Q belongs to the closed convex hull of the (gran canonical) Gibbs
Measures.

Remark 1.3. Condition (ii) on the density is a su�cient condition in order to
always �nd at least two particles interacting stochastically. Since the range of
the deterministic interaction is smaller than the one of the stochastic interaction,
this condition may be replaced by ensuring that the average potential energy
is strictly positive, i. e. if we de�ne

u(!) = lim
|�|→∞

|�|−1U� ≡ lim
|�|→∞

|�|−1
∑

q�;q�∈�
V (q� − q�)

then the condition reads

Q({u(!)= ” ¿ 0}) = 1:

Unfortunately, this condition is not practical because u(!) does not correspond
to a conserved quantity. It would be of no use for the application to hydrody-
namics (cf.[OVY]), where we cannot have such information on Q.
The proof of Theorem 1.1 will be carried out in four parts. In the next

section we will construct a multitude of local dynamics that leave the �nite
dimensional restrictions of the measure Q invariant. Section 3 is dedicated to

Ẽ� =
∑

q�∈�

[
�(p�) + 1

2

∑
q� ; � 6=� V (q� − q�)

]
;

then � can be obtained by space translations �j of � (� = ∪j�j�), with �i� ∩ �j� ⊂
@(�i�) ∪ @(�j�) for i 6= j. If we introduce a box �′ concentrical to � but R0 larger than �,
we can obtain �′ as well from space translations of �. Then, thanks to the positivity of the
potential,

1
|�|
∑

j �jẼ� ≤ 1
|�|E� ≤ |�′|

|�|
1
|�′|
∑′

j�jẼ�;

where by
∑

j we mean a sum over the space translations necessary to cover �, while by∑′
j the sum over the space translations needed to cover �′. Notice that if � is a box of

size L, then |�| = L3 while |�′| = (L+ R0)3, so lim|�|→∞
|�′|
|�| = 1. Hence, e(!) can be

obtained by ergodic limit, with respect to space translations, as well.
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the characterization of typical con�gurations for the class of measures Q under
consideration. In Sect. 4 we show that the above mentioned dynamics give a
local characterization of Q weaker than the one implied by DLR equations,
but su�cient to claim that the global distribution of the momenta, conditioned
to the positions, is given by a convex combination of “Maxwellian” (corres-
ponding to the proper �). We conclude the argument in Sect. 5, along the line
of [OVY], by proving that in the in�nite limit the kinetic energy is “invari-
ant” for the deterministic dynamic generated by L. Thus, each component of
the convex combination is invariant for L. A classic argument (cf.[GV] and
[OV]) shows that invariant distributions for L that have distribution of the mo-
menta conditioned to the position given by a Maxwellian are canonical Gibbs
measures.

2. Clusters and local dynamics

Given a con�guration !, we call “connected” two particles that are su�ciently
close to interact stochastically (� and � are connected if �(q� − q�)¿ 0, i.e.
|q� − q�| ¡ R1). We call “cluster” a set of particles such that any two can be
joined by a chain of connected ones. We call “isolated cluster” a cluster such
that the particles outside it are not connected to any particle in the cluster.
Any con�guration ! can be grouped in many isolated clusters {�i (!q)}.

These clusters may be �nite or in�nite. Also, the restriction of any con�guration
to a �nite region !� is grouped into �nite clusters {��i (!q)}, where we have
overlooked the connections with the particles outside �.
To simplify notations, in this section we denote by Ẽ the expectation of Q

conditioned to a con�guration of positions !q.
Consider a cluster ��i , and let n be the number of particles in it. Then

L̂��i
=

∑
��∈��i

�(q� − q�)L̂�� is an operator on R3n and it conserves the quantities

∑
q�∈��i

p1�;
∑

q�∈��i

p2�;
∑

q�∈��i

p3�;
∑

q�∈��i

�(p�):

Let us consider the corresponding connected hypersurfaces of dimension
3n− 4:

�c ≡
{
(p1; : : : ; pn)

∣∣∣∣ ∑
�

p1� = c1;
∑
�

p2� = c2;
∑
�

p3� = c3;

T =
∑
�

�(p�) = c4
}
; (2:1)

and the sets

�̃c ≡
{
(p1; : : : ; pn) ∈ �c

∣∣ (p�; p�) ∈ �̃�� for some �; � ∈ {1; : : : ; n}
}

where �̃�� has been de�ned by (1.5). Note that �̃c is the �nite union of smooth
submanifolds in �c of codimension, at least, two; hence �c \ �̃c is connected.
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Lemma 2.1. L��i
is an hypoelliptic operator on �c\�̃c, i.e., the Lie algebra

generated by {
X �
�� | �; � ∈ �i

}
spans the tangent space of �c at each point in �c \ �̃c.

Proof. Let us �x our attention on an arbitrary point in �c\�̃c.
We can represent a cluster of n particles by a graph G̃n with n vertices.

Each vertex of the graph corresponds to a particle; two vertices are joined by a
bond (edge) if and only if they correspond to particles close enough to interact
stochastically. In a cluster of n particles there are at least n− 1 bonds:

]{(�; �) | �(q� − q�)¡ R1} ≥ n− 1:
We consider then a minimal acyclical (i.e., the edges do not form any loop)
connected sub-graph Gn of G̃n. This amounts to choose n− 1 bonds. We choose
a set of 2n− 2 linearly independent vector �elds X �i

��, i ∈ {1; 2}, (��) being a
bond in Gn.

Two bonds are said to be contiguous if they have one vertex in common.
There are at least n− 2 couples of contiguous bonds. If we compute the com-
mutator between two contiguous bonds {��} and {�} we obtain[

X �i
��; X

�j
�

]
=
〈
��i
��; A�jD�

〉
−
〈
�
�j
�; B�iD��

〉
where A�j is the matrix whose element kl is given by Dk

��(�
�j
�)l (that is, the

derivative, with respect to the k component of p� − p�, of the l component of

�
�j
�) and B�i is the matrix Dk

�(�
�i
��)l.

Let Gk ; k ¡ n be a sequence of connected sub-graphs of Gn containing k
vertices, Gk ⊂ Gk+1, and Ak the Lie algebra generated by the vector �elds
X �i
��; (�; �) ∈ Gk . We will show by induction that An contains 3n− 4 linearly
independent vector �elds.
The fact is clear for A2. Let us suppose that it is true for Ak and let us

show that Ak+1 contains three extra vector �elds linearly independent from all
the previous ones.
We start by noticing that Gk+1 is obtained by adding a particle (vertex),

say �, to Gk and that such particle is connected with the rest of the graph
by only one bond. Let us call � the particle to which � is connected and  a
particle, in Gk , connected to �. Ak+1 is larger (or equal) than the set of vector
�elds generated by all the vectors in Ak , X

�i
�� and [X

�i
��; X

�j
� ]. If our inductive

hypothesis is false, then there exist �i ∈ R, �ij ∈ R and Yij ∈Ak such that

0 = �1X
�1
�� + �2X

�2
�� + �ij

[
X �i
��; X

�j
�

]
+ Yij

for each i; j ∈ {1; 2}. To see that this is impossible we apply the above tangent
vector to p�

0 = �1�
�1
�� + �2�

�2
�� − �ij

(
B�i

)T
�
�j
�:



412 C. Liverani, S. Olla

By multiplying this relation by D��T , where T is the kinetic energy de�ned
inside (2.1), and by using the fact that, for points not in �̃c, D��T 6= 0, follows:

0 = �ij

〈
B�iD��T; �

�j
�

〉
:

To simplify the previous expression we recall that, by de�nition, 〈��j
��; D��T 〉 =

0 and applying the operator D� to such an equality yields

0 = B�iD��T + H��
�i
��;

where H� is the matrix @p�@p�T . It is essential to notice that the Hessian H�

is positive de�nite, given the convexity of �.
By collecting the previous relations follows:

0 = �ij

〈
H��

�i
��; �

�j
�

〉
:

To conclude the proof it is enough to show that at least one of the scalar
products 〈H��

�i
��; �

�j
�〉 is di�erent from zero. Notice that {��i

��} and {�
�j
�} span

two two-dimensional planes in R3. Such planes must intersect, at least, at a
line. Let � 6= 0 be a vector belonging to such a line. Clearly there exists �i
�′i such that

∑
l �l�

�l
�� = � and

∑
l �
′
l�

�l
�� = �. This yields to the contradiction

0 = 〈H��; �〉. That is, the vectors X �1
�� , X

�2
�� ,
∑

ij �i�
′
j[X

�i
��; X

�j
� ] are linearly inde-

pendent with respect to themselves and with respect to the ones in the algebra
Ak .

Proposition 2.2. The condition (iv) of reversibility of the measure Q implies
that, for any bond corresponding to connected particles b = {�; �} in the
con�guration !q and any smooth local function �, we have

EQ(X �
��� | !q) ≡ Ẽ

(
X �
���
)
= 0

provided that supp(�) ∩ �̃c = ∅.

Proof. Let ’ and  be arbitrary smooth local functions with support in a �nite
region �′, and � a region containing �′ and so large that particles inside �′
cannot interact with particles outside �. Since the size of the support of a test
function can be assumed arbitrarily small, without loss of generality, we will
carry out a local argument; namely we will assume that the support of  is
contained in a conveniently small neighborhood of an arbitrary con�guration
not belonging to �̃c (i.e., the support must be so small as not to intersect �̃c).
If the con�guration !q does not contain any cluster in �, then the proposition
is obviously true. Next, we will assume that only one isolated cluster10 �� is
present (the case in which several isolated clusters are present can be treated in
the same way, as we will remark at the end of the proof). The graph associated

10 Remember that an “isolated cluster” in � can still have interactions with particles
outside �



Ergodicity in in�nite Hamiltonian systems 413

to �� is �nite and it will contain M bonds. The reversibility condition (iv)
implies:

−Ẽ ( L̂’) = ∑
b∈��

∑
�

�bẼ
(
X �
b  X �

b ’
)

where b = (�; �) is a generic bond in ��, i.e., �b = �(q� − q�)¿ 0. Note that
the operators X�� with q� or q� not in � do not appear in the right hand side
of the above equation, although it is possible that �(q� − q�) 6= 0; this is due
to the fact that, since the test functions depend only on the particles in �′, if
q� 6∈ � and �(q� − q�) 6= 0, then q� 6∈ �′ which implies X�� = 0 = X��’.

A technical obstacle to our proof is that, in general, the vector �elds
{X �

b1
; : : : ; X �

bM
} are neither linearly independent nor their linear combinations

span all the Lie algebra that they generate. Typically, only L5 KM such vec-
tor �elds will be linearly independent11, while the Lie algebra will be N ≥ L
dimensional. To overcome such problem we choose, among {X �

b1
; : : : ; X �

bM
} and

their commutators, a subset of linearly independent vector �elds {X1; : : : ; XN}
that form a base of the Lie algebra12. In addition, we require

{X1; : : : ; XL} ⊂ {X �
b1
; : : : ; X �

bM }:

Thus, the original KM vector �elds can be expressed as linear combinations
of the independent vector �elds {X1; : : : ; XL}:

X �
bj =

L∑
i=1

��ji Xi; j = 1; : : : ; KM:

Since,[
X �
bj ; X

�′
bk

]
=
∑
l; p

[
��jlXl; ��

′
kpXp

]
=
∑
l; p

{
��jl(Xl��

′
kp)Xp − ��

′
kp(Xp��jl)Xl + ��jl�

�′
kp[Xl; Xp]

}
it is clear that {X1; : : : ; XL} generates the complete Lie algebra under consider-
ation.
Let A be the L× L matrix with elements de�ned by

ai; k =
M∑
j=1

∑
�

�bj �
�
ji�

�
jk

then ∑
b∈��

∑
�

�bẼ
(
X �
b  X �

b ’
)
=

L∑
i; k=1

Ẽ (aikXi Xk’) :

11 KM is the cardinality of {X �
b1
; : : : ; X �

bM
}; remember that � ∈ {1; :::; K}

12 This is possible provided the support of  is su�ciently small
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It is easy to check that the matrix A is positive de�ned, and therefore
invertible.
According to Lemma 2.1 {X1; : : : ; XN} span the tangent space of �c (the

surfaces associated to the cluster ��). Since such surfaces foliate the phase
space of the particles contained in ��, we can choose coordinates (c; y) such
that the vector �elds {Yi}N1 , associated to the coordinates {yi}N1 , generates the
tangent space of �c (i.e., for each c, {y} is a system of coordinates for �c).
This implies, ∀i; j,

[Yi; Yj] = 0 and Yiyj = �ij:

In addition, there exists an invertible N × N matrix �, such that

Xi =
N∑

j=1

�ijYj :

Let us choose as function ’ a coordinate function yj multiplied by a smooth
function with value one on the support of  , which, consequently, can be
ignored. Applying L̂ we have

L̂ yj =
∑
k;i

Xk aki Xi yj

=
∑
k;i

Xk aki �ij ;

where we have used

Xi yj =
∑
l

�il Yl yj = �ij :

The reversibility relation then gives us:

−
∑
k; i

Ẽ
(
 Xk

(
aki �ij

))
=
∑
k; i

Ẽ
(
aki �ij Xk  

)
;

which is equivalent to ∑
k; i

Ẽ
(
Xk
(
 aki �ij

))
= 0:

Let V = �−1RL ⊂ RN 13, then A� : V → RL is one to one and onto.
Which means that for each ek ∈ RL, ek = (0; : : : ; 1; : : : ; 0), there exists �k ∈
V ⊂ RN such that A��k = ek . Moreover, in some small neighborhood of any
con�guration, �k will vary smoothly.
We can make the following L2 di�erent choices of  

 jh = �h
j�;

13 By RL, here we mean {v ∈ RN | vi = 0 ∀i ¿ L}.
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where � is a function with su�ciently small support around the con�guration
we are considering.
Summing over j we obtain

0 =
∑
i; j; k

Ẽ
(
Xk(�h

j �ijaki �)
)
=
∑
k

Ẽ
(
Xkehk�

)
;

that is to say

Ẽ (Xh �) = 0 ∀ h ∈ {0; : : : ; L};
which implies our thesis.
The generalization to the situation where many clusters appear in the region

� is straightforward since, in the above argument, the coordinate functions yj
are localized on the particular cluster we are considering. Hence, the argument
simply factors over the di�erent clusters.

Up to now we have seen that the measure is invariant with respect to vector
�elds that generate the tangent space to the surfaces of the momenta of the
clusters ��i with constant kinetic energy and momentum. This was done only
by using the reversibility of the stochastic dynamics. If � contains a unique
cluster (like in the case with in�nite range stochastic interaction), then this
would imply that the measure on the momenta conditioned on the position is
Microcanonical, i.e. we would have directly Lemma 5.1 below14. Unfortunately,
in our case we cannot ignore the existence of isolated clusters. So what we can
conclude at this point is that, conditioned on the positions, the distribution of
the velocities in each cluster is Microcanonical. In order to attain the statement
of Lemma 5.1, we need to somehow exchange the particles between clusters.
The only way to do this is to generate, with the help of the Hamiltonian
dynamics, other dynamics for which the measure is invariant and that permit
such exchanges of particles among clusters. In the rest of the section we will
de�ne these dynamics and prove their local properties, and in Sect. 4 we will
use them to move particles among clusters.
We start by studying the Lie algebra generated by {X �

��; [X
�
��; L]}q�;q�∈�.

Lemma 2.3. For each region �, and for each local smooth function ’
localized in �, calling A� the Lie algebra generated by the operators
{X �

��; [X
�
��; L]} q�;q�∈�

‖q�−q�‖¡R1

, we have

EQ (X’ ∣∣ |!�| = n; !�c
)
= 0

for each X ∈A�.

Proof. The di�culties arise because L does not conserve the number of particles
in a �nite region. We need to use here the stationarity of Q with respect to L.

14 See the arguments after Proposition 4.1 for details
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Let �”(q) be a smooth function equal to one if q ∈ �, and equal to 0 if the
distance between q and � is larger than ”. We can then de�ne N” ≡

∑
� �”(q�)

to be an approximation of the number of particles in �. Clearly, when ” goes
to zero, N” tends to the number of particles contained in the closure of �,
which, since Q is locally absolutely continuous, equals almost everywhere the
number of particles contained in the interior.
Let h be a smooth function on R+ with compact support and ’ any smooth

local function with support contained in the interior of �; in addition, we con-
sider arbitrary smooth functions  �

�� : R
6 → R with support in �× � and we

use them to de�ne the local operators X ( ) ≡∑���  
�
��(q�; q�)�(q� − q�)X �

��.
By de�nition all these operators are part of the Lie algebra A�; in ad-
dition, X ( ); [X ( ); L] generate A�. Using the previous de�nitions, since
X ( )h(N”) = 0, we have,

0 = E([L; X ( )]’h(N”)) = E(h[L; X ( )]’)−E(’X ( )Lh):

Since Lh(N”) = h′(N”)
∑
∈�c

〈p; ∇�”(q)〉, we have that X ( )Lh = 0. So we

conclude that

0 = E(h(N”)[L; X ( )]’):

Letting ” → 0 proves that it is possible to condition with respect to the number
of particles in �; a similar computation shows that it is possible to condition
with respect to the con�guration outside � as well.

Lemma 2.3 shows that A� has interesting local properties, these are further
clari�ed by the following Lemma. Consider con�gurations with n particles in
� and de�ne ��, E� like in the equations above Theorem 1.2.

Lemma 2.4. The Lie Algebra A� is tangent to the surface �� = constant,
E� = constant, and acts only on observables depending on the coordinates of
the particles inside �.

Proof. Given two particles �; � ∈ � we have

X �
���� = 0;

X �
��E� = 0;[
X �
��; L

]
�� = X �

��

∑


@T
@q

= 0;

[
X �
��; L

]
E� = X �

��

[∑


〈
@H
@p

;
@E�
@q

〉
−
〈
@H
@q

;
@E�
@p

〉]
:
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Letting � =H− E� =
∑

6∈� �(p) + 1
2

∑
q 6∈�

∑
q� 6∈�; �6= V (q − q�), and

H =
(

@2�(p)

@pi
@p

j


)
, we can rewrite the last equation as

[
X �
��; L

]
E� = X �

��

[∑


〈
@�
@p

;
@E�
@q

〉
−
〈

@�
@q

;
@E�
@p

〉]

= −
〈

@�
@q�

; H���
��

〉
+
〈

@�
@q�

; H���
��

〉
= 0;

since � does not depend on q� or q�.
Similarly, a direct computation shows that, if q 6∈ �, then[

X �
��; L

]
q = 0;[

X �
��; L

]
p = 0:

At this point we have to distinguish between the Gaussian and the non-
Gaussian case. The di�erence is that in the Gaussian case the center of mass
is always conserved. De�ne

�� =
∑
q�∈�

q� :

Lemma 2.5. If � is quadratic, the Lie Algebra A� is tangent to the surface
�� = constant, E� = constant, and �� = constant.

Proof. All we need to compute is

X �
��Q� = 0;[
X �
��; L

]
Q� = X �

��

∑
∈�

@�
@p

= (H� − H�)��
�� = 0;

since, in the present case, H� = H� = constant.

This means that, in the Gaussian case, the vector �elds we are considering
preserve the center of mass, even if this is not conserved by L; accordingly,
the Lie Algebra generated by {X �

��; [X
�
��; L]}, for some �; � ∈ � (� being some

cluster in �), can be at most �ve dimensional15. It is interesting to notice that
the algebra has indeed the largest possible dimension.

Lemma 2.6. If � is quadratic, and �; � ∈ � are connected, then the Lie Al-
gebra generated by {X �

��; [X
�
��; L]} is �ve dimensional.

15 Here and in the following, for dimension of a Lie Algebra we mean its minimal dimension
when restricted to the tangent spaces at di�erent points
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Proof. Applying the vector �elds to q� we have[
X �
��; L

]
q� =H���

��;[
X �
��;
[
X �
��; L

]]
q� =H�D��

(
��
��

)
��
��:

This vectors span a three dimensional vector space and are linearly independent
with respect with the vectors X �

��. To see this, it is su�cient to consider a
generic linear combination, equal it to 0, and multiply it by H−1

� D��E, then

0 =
∑

i

�i

〈
D��E; �

�i
��

〉
+ �
〈
D��E; D��

(
��1
��

)
��1
��

〉
: (2:2)

Next, remember that 〈D��E; ��
��〉 = 0, di�erentiating such an expression by D��

one gets

(H� + H�)��
�� + D��

(
��
��

)T
D��E = 0

and, multiplying it by ��
��,〈

��
��; (H� + H�)��

��

〉
= −〈D��E; D��

(
��
��

)
��
��

〉
:

Substituting the above equality in (2.2) we obtain

�
〈
��1
��; (H� + H�)�

�1
��

〉
= 0

that is � = 0. From this follows �i = 0.

The existence of such an unexpected conserved quantity is the reason why
the Gaussian case is much harder to study than the non-Gaussian one. From
now on we will consider the non-Gaussian case only.
In the non-Gaussian case the center of mass is not conserved by the vector

�elds we are considering, and we have no other obvious conserved quantity. We
need a condition on the noise to ensure that there are no (“hidden”) conserved
quantities, beside those considered in Lemma 2.4; this amounts to require the
analogous of Lemma 2.6. More precisely we require the following.

Condition on the Noise. For each two particles �; �, interacting stochas-
tically, we require that the Lie algebra generated by the vectors X �

�� and
[X �

��; L] is eighth dimensional at each point of every surface with �xed total
energy and total momentum except, at most, for the �nite union of smooth
manifolds of codimension two �̃��.

In Appendix I we show that if � satis�es (NG) then there exists choices of
��� for which the above condition is ful�lled (in fact, probably the condition
is ful�lled for almost all possible choices).
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We introduce a family of surfaces in R6n,

�(n; �; E; !c) =

{
(q; p) ∈ R6n

∣∣∣∣ ∑
�

p� = �;

∑
�

�(p�) +
1
2

∑
�;�

V (q� − q�)

+
∑
�

∑
�∈!c

V (q� − q�) = E

}

and let �̃ be the union of the sets for which (p�; p�) ∈ �̃(�;�), for some � 6= �.
By hypotheses �̃ has at least codimension two in �, in additions it has zero
Lebesgue measure.

Lemma 2.7. For all n ∈ N, for almost all �; E, for each X ∈A�, and any
local function ’ with support contained in � and disjoint from �̃

E(X’ | !� ∈ �; !�c) = 0:

In addition, for con�gurations for which � contains a unique cluster the Lie
algebra A� spans all the tangent space of � at each point of �\�̃.

Proof. The �rst condition follows from Lemma 2.3 and Lemma 2.4. To address
the second part of the lemma we start an induction similar to the one used in
Lemma 2.1.16 We want to generate a 6n− 4 dimensional Lie algebra. Hence,
we need six new independent vector �elds at each step of the argument (i.e.,
for every new particle � that we add to the cluster).
From the proof of Lemma 2.1 we have already three independent vector

�elds generated by {X �i
��; X

�j
� }. All these are acting only in the direction of the

momenta, so all we need is to look at the action of the new vector �elds on
the position directions to establish their linear independence.
De�ne

L̃�k
�� =

[
X �k
�� ; L

]
;

L
�k�l
�� =

[
X �l
� ; L̃

�k
��

]
:

Applying these vector �elds to q� we have:

L̃�k
��q� = X �k

�� Lq� = H��
�k
��

L
�k�l
�� q� = X �l

�H��
�k
�� = H�

(
D���′

��

)T
��
�:

It is then enough to prove that the vectors X �i
��, [X

�i
��; X

�j
� ], L̃

�i
��,
∑

ij �ijL
�i�j
�� ,

for some choice of �ij, and Y (where Y belongs to the lie algebra generated

16 Again, we can restrict ourselves to a local argument. In particular, we can assume that
the support of ’ be so small that the cluster structure in it is constant
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by the vectors already considered during the induction procedure) are linearly
independent. Again we assume that it is not so, i.e.,

0 =
2∑

k=1

�kX
�k
�� + �ij

[
X �i
��; X

�j
�

]
+

2∑
k=1

�k L̃
�k
�� + �

∑
kl

�klL
�k�l
�� + Y;

for some �i ; �ij; �i; �; Y . We apply the previous expression to, q� and obtain

0 =
2∑

k=1

�kH��
�k
�� + �

∑
kl

�klH�

(
D��

�l
��

)T
��k
�:

If we multiply by H−1
� D��E, recalling the properties of �, we obtain

0 = �
∑
kl

�kl

〈
H��

�k
��; �

�l
�

〉
:

Which shows that, out of �̃, it is always possible to choose �kl such that the
sum is di�erent from zero. This implies � = 0 and allows us to conclude the
proof in complete analogy with Lemma 2.1.
As promised, we have found a bundle of local dynamics preserving the

measure Q (or, more precisely, its local conditional measures), i.e. the dynamics
generated by the vector �elds in the Lie algebra A�.

3. Conditioning to typical con�gurations

Using the entropy bound and large deviations estimates, we will show here that
certain con�gurations have probability 0 for any measure Q satisfying our hy-
potheses. We will need to exclude these con�gurations from the considerations
of the next section.
First of all, we want to disregard con�gurations with locally big barriers

of potential, so we are going to analyze those con�gurations displaying high
local density.

Lemma 3.1. Let � ⊂ R3 and � ⊂ � be a box of size R1, consider the fol-
lowing con�gurations


”
� = {! | ∃� ⊂ �: |!�|= ”−1|�| 12 }: (3:1)

If Q satis�es condition (i) of Theorem 1.2 (entropy bound), then there exists
C ¿ 0 such that:

Q(
”
�)5 C”2:

Proof. By the entropy inequality

Q(
”
�)5

log 2 + H�(Q|P)
log
(
1 + P(
”

�)
−1)
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(which is a consequence of (1.7)), and condition (i) of Theorem 1.2, we need
only to prove that for a given grancanonical measure P

P(
”
�)5 C2|�| exp(−C1|�|”−2)

for some constants C1; C2 ¿ 0 independent from ” and �.
Since the measure P is translation invariant

P(
”
�)5

C1
R1
|�|P({|!�| ¿ ”−1|�| 12 });

for some �xed box � ⊂ �. Accordingly, (setting � = ∫R3 e−�4�(p)+
∑3

i=1
�ipi

dp and
V� = 1

2

∑n
i; j=1 V (qi − qj) +

∑n
i=1

∑
q�∈!c

�
V (qi − q�))17

P(|!�| ¿ ”−1|�|1=2)

= Z−1�

∞∑
n=”−1|�|1=2

e�0n�n

n!

∫
�n

e−�4V�

5 Z−1�

∞∑
n=”−1|�|1=2

e�0n�n

n!
exp

[
−�4A

”−2|�|
|�| + �4B”−1|�|1=2

]
|�|n

5 C2e−C3”
−2|�|;

where we have used the explicit form of the grand canonical measures, the
positivity and the superstability of the potential.

Another information needed in the following arguments is a bound on the
total kinetic energy shared by a large number of particles with respect to some
partition. In fact, in Sect. 4 we will construct explicitly a special way of group-
ing particles in sets, larger than the clusters given by the interaction, and we
will need that many of such groups have “enough” kinetic energy. The exact
formulation of the estimate needed is a bit technical and need some preliminary
notation. Let PP n be the collection of all possible partitions of the set {1; :::; n}.
Suppose that there exists P : 
� → ∪n∈NPP n such that P(!�) ∈ PP |!�| and
depends only on the positions of the particles (one such function is obtained
by associating to each con�guration !� the partition in clusters; another one,
to which the following lemma will be applied, is constructed in Sect. 4). In
addition, suppose that it is de�ned18 P̂(!�) ⊂ {P ∈ P(!�) | #P = L=B} (re-
member that L is the linear size of the box �, while B ¿ 0 is a �xed constant
that will be chosen before De�nition 4.9), in other words we consider only the
elements that are su�ciently large. Set P̂(!�) =

⋃
P̂∈P̂(!�) P̂. Next, we want

17 The result presented here holds in much greater generality (cf. [R]) . Yet, using explicitly
the positivity of the potential, the proof boils down to the following three lines
18 Here and in the following, given a set A by #A we mean the cardinality of A
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to consider

P̂P!�
= {P ∈ PP |!�| | ∀P ∈ P if P ∩ P̂(!�) = ∅ then P ∈ P(!�);

if P ∩ P̂(!�) 6= ∅ then P ⊂ P̂(!�) and ∀P̂ ∈ P(!�)
either P ∩ P̂ = ∅ or P̂ ⊂ P}:

In essence, P̂P!�
is the collection of all the partitions that agree with P(!�)

on the “small” elements, while the “large” elements are obtained by joining
“large” elements of P(!�). The following lemma claims that for each such
a partitions the probability that each “large” element has very little energy is
very low.

Lemma 3.2. Let a ¿ 0, and ” ¿ 0 su�ciently small, � ⊂ R3 and consider
the following con�gurations


̃”
� =

!
∣∣∣∣ ∑

P∈P̂(!�)
#P =

a
8
|�|; ∀P ∈ P̂P!�

and ∀P ∈ P; P ∩ P̂(!�) 6= ∅;

∑
�∈P

�(p�)− �

 1
#P

∑
�∈P

p�

¡ ”#P

 :

(3:2)
If Q satis�es condition (i) of Theorem 2.1, then

lim
”→0

lim
|�|→∞

Q(
̃”
�) = 0:

Proof. We will use the same entropy inequality as in the previous lemma. In or-
der to simplify notations, we choose a grancanonical measure P corresponding
to the parameters �1 = �2 = �3 = 0 and �4 such that �� =

∫
e−�4�(p)dp = 1.

Let us de�ne

Ym =
1
m

m∑
i=1

�(pi)− �

(
1
m

m∑
i=1

pi

)

and observe that since � is convex Ym is non–negative. Then we have

P(
̃”
�)5 Z−1�

∑
n=a|�|

en�0

n!

∫
�n

e−�4V�
∑
P∈P̂Pq

∏
P∈P

P∩P̂(!�)6=∅

J#P;

where

Jm =
∫
Ym¡”

e−�4
∑m

i=1
�(pi) dmp:

Obviously the �rst step is to study Jm in the limit m →∞.
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De�ne �m = 1
m

∑m
i=1 pi then∫

Ym¡”
e−�4

∑m
i=1

�(pi) dmp

5
∫
Ym¡”;|�m|5h

e−�4
∑m

i=1
�(pi) dmp+

∫
|�m|=h

e−�4
∑m

i=1
�(pi) dmp:

By standard Large Deviations (cf. [V]) for independent variables we have

lim
h→∞

lim
m→∞

1
m
log
∫
|�m|=h

e−�4
∑m

i=1
�(pi) dmp = −∞;

while for the �rst term we use the exponential Chebiche� inequality. For any
� ¿ 0∫

Ym¡”;|�m|5h
e−�4

∑m
i=1

�(pi) dmp5 e�”m
∫
|�m|5h

e−m�Yme−�4
∑m

i=1
�(pi) dmp:

Hence, we need to estimate

lim
m→∞

1
m
log
∫
|�m|5h

e−m”Yme−�4
∑m

i=1
�(pi) dmp

5 sup
�;| ��|5h

{
�
[
�( ��)− �̂(�)

]
− I(�)

}
;

where �(p) are probability densities on R3 (with respect to e−�4�dp),

�� =
∫

p�(p)e−�4� dp; �̂(�) =
∫

�(p)�(p)e−�4� dp

and

I(�) =
∫

�(p) log (�(p)) e−�4�(p)dp :

Next,

sup
�;| ��|5h

{
�
[
�( ��)− �̂(�)

]
− I(�)

}
5 sup

�;| ��|5h
{�C�(h)Var(�)− I(�)} ;

where Var(�) =
∫
(p− ��)2�(p)e��(p), and C�(h) = inf |�|5h �′′(�)¿ 0 by hy-

pothesis.
The variational problem sup�; ��=� {�C�(h)Var(�)− I(�)} can be explicitly

solved and yields

�(p) =
e−�C�(h)(p−�)2+z(�)p∫

e−�C�(h)(p−�)2+z(�)p−�4�(p) dp
;

with z(0) = 0 (due to the symmetry of �) and

z′(�) =
1

Var(�)
+ 2�C�(h):
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Substituting we obtain

sup
��

{
−z( ��) �� + log

∫
e−�C�(h)(p− ��)2+z( ��)p−�4�(p) dp

}
5
∫

e−�C�(h)p
2−�4�(p) dp

5 log
∫

e−�C�(h)p
2
dp =

1
2
log
(

�
�C�(h)

)
:

Consequently,

inf
�=0

{
�”+

1
2
log
(

�
�C�(h)

)}
5 −C1 log

(
C�(h)

”

)
:

Finally, by choosing a sequence h” →∞ as ” → 0 su�ciently slow so that
C�(h”)=” → +∞, it follows

lim
”→0

lim
m→∞

1
m
log Jm = −∞:

Accordingly, since Jm is an increasing function of ”, for each M ¿ 0 there
exists �0 ⊂ R3 and ”0 ¿ 0 such that for each � ⊃ �0 and ” ¡ ”0

Jm 5 e−mM

for each m= B−1L (L is the linear size of �). Thanks to such an estimate we
can conclude the Lemma:

P(
̃”
�)5 Z−1�

∑
n=a|�|

en�0

n!

∫
�n

e−�4V�e−
a
8M |�|#P̂P q:

By construction #P̂P q is the number of di�erent partitions of ‘ ≡ #P̂P(q)5
nB=L elements. That is,

#P̂P q =
‘∑

k=1

∑
{ ji}ki=1; ji=1∑k

i=1
ji=‘

‘!

k!
∏k

i=1 ji!
5

‘∑
k=1

∑
{ ji}ki=1; ji=1∑k

i=1
ji=‘

‘!∏k
i=1 ji!

=
∑

{ ji}‘i=1; ji=0∑‘
i=1

ji=‘

‘!∏‘
i=1 ji!

= ‘‘ 5
(
nB
L

)nB=L

;

where, in the last equality, we have used the Taylor expansion of (
∑‘

i=1 xi)
‘.

By the superstability it follows that there exist constants ci such that

P(
̃”
�)5

∑
n≥a|�|

1
n!
exp

[
c1n− c2

n2

|�| −
a
8
M |�|

]
n

n
L |�|n 5 e−c3M |�|:
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Hence,

lim
”→0

lim
�→∞

1
|�| log P(
̃

”
�)
−1 = +∞:

This last result implies the lemma, thanks to the same entropy inequality used
in Lemma 3.1.

4. Clustering

Before getting into the technicalities of the clusters deformations, let us pause
here to explain our strategy.
As we already mentioned in Sect. 2, from Lemma 2.1 and 2.2 and the

arguments after Proposition 4.1 will follow that the measure Q on a box
�0 conditioned on the positions, on the total momentum and on total kinetic
energy:

Q�0

(
dp1; : : : ; dpn

∣∣∣q1; : : : ; qn;
n∑

�=1

p�;
n∑

�=1

�(p�)

)
(4:1)

is Microcanonical only for the p’s corresponding to the particles in the same
cluster. In particular, this measure is symmetric for exchange of momentum be-
tween particles of the same cluster (by “exchange of momentum” we mean any
transfer of momentum among two particles that conserves the total momentum
and the total kinetic energy). If we could show that a measure is symmetric
for exchange of momentum between clusters, it would follow that such a mea-
sure is Microcanonical, i.e. Lemma 5.1 below. One way to achieve this could
be to �nd a transformation on the phase space, for which the measure Q is
invariant, that brings a particle � from a cluster �1 in “contact” to another
cluster �2, then exchanges the momenta with a particle � of �2, then brings
back � to the initial position in the cluster �1. We cannot do exactly this, but
we will exchange momenta between the clusters performing more complicated
transformations for which our measure Q is still invariant.
Given a box �0 and a con�guration ! ∈ 
, for each couple of label �; �

and � ∈ R3, ‖�‖ = 1, let T�
�;�! the con�guration obtained by exchanging mo-

menta between the particle � and particle � in the “direction” � respecting
the conservation laws (here � and � are two particles with position in �0)19.
Observe that only momenta is exchanged while positions are unchanged. Fur-
thermore, such operation does not change the total momenta in ��0, nor the
total kinetic energy K�0 in the region �0. As already mentioned, all we need
to prove, to show that Q�0 is Microcanonical, is that∫ ∑

q�; q�∈�0

[
F(T

���
�;� !)− F(!)

]
dQ(!) = 0 (4:2)

19 That is, calling p′�; p′� the new momenta in the con�guration T�
��!, set p

′
� = p� + �� and

p′� = p� − ��. Since we require p� + p� = p′� + p′� and �(p�) + �(p�) = �(p′�) + �(p′�),
it follows that � is uniquely determined
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for any local smooth function F(!) and any arbitrary choice of the vectors ���

(from now on we will set T�;� ≡ T
���
�;� ).

It is very easy to see why (4.2) implies the symmetry of the measure
on the momenta (4.1). Choose F(!) = F1(p�0)F2(q�0 ;��0 ; K�0). Since T�;�
leaves invariant F2, one can condition the relation (4.2) on the quantities on
which F2 depends and obtain∫ [

F1(T�;�p�0)− F1(p�0)
]
dQ(p�0

∣∣q�0 ;��0 ; K�0) = 0; (4:3)

i.e. that the measure de�ned by (4.1) is invariant for exchange of momenta
between particles.
What we already know is that (4.3) is true if � and � are in the same

cluster (de�ned by the con�guration q�0 on which we have conditioned).
By condition (ii)20 of our main theorem, we can choose a ¿ 0 such that

�(!)¿ �∗ + 2a with Q–probability 1. For any ” ¿ 0 small enough, and � ⊃
�0 large enough, with linear size L, de�ne the set of good con�gurations


̂�; ” =
{
!
∣∣∣ ∣∣∣∣ |!�1 ||�1| − �(!)|

∣∣∣∣5 a ;
∣∣∣∣ |!�||�| − �(!)|

∣∣∣∣5 a
}
∩ (
”

�)
c ∩ (
̃”

�)
c;

where �1 is a box concentric to � and of linear size L=2. Then by Lemmas
3.1 and 3.2

lim
”→0

lim
|�|→∞

Q
(
(
̂�;”)c

)
= 0 :

So it is enough to show that, for any ” ¿ 0, we can �nd � large enough
such that ∫


̂�;”

∑
q�;q�∈�0

[
F(T�;�!)− F(!)

]
dQ(!) = 0 (4:4)

for any bounded function F localized in �0.
Let ��(n; �; E; !c) ⊂ R6n be the surface on which n particles have posi-

tions in �, total momentum �, and total energy E (note that the total energy
inside � is a�ected by !c). Because of the boundaries !c, this surface may
have many di�erent connected components �j

�(n; �; E; !c) ⊂ R6n.

Proposition 4.1. For any ” ¿ 0 there exists � large enough such that the
measure Q restricted to �j

�(n; �; E; !c) ∩ 
̂�;”, is proportional to the Micro-
canonical measure21 for almost all �, E and !c.

20 If, as noted in Remark 1.3, the condition is on the potential energy, just substitute the
de�nition of 
̂�;” with


̂�;” =
{
! : U�1 ¿ a|�1|; U� ¿ a|�|

}
∩ (
”

�)
c ∩ (
̃”

�)
c:

and the rest of the argument of this section will remain essentially unchanged
21 To de�ne the microcanonical measure consider that (�×R3)n is foliated by the surfaces
�(E; �) when varying E and �. Accordingly, it is possible to de�ne the conditioning of
the Lebesgue measure on (�×R3)n to almost all the above mentioned surfaces. Such a
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It is easy to see that (4.4), and therefore (4.2), follows from Proposition
4.1. In fact, ! and T�;�! belong always to the same connected component
(connected components can be distinguished only by the positions q’s), and
Microcanonical measures are invariant for exchanges of momenta between the
particles. The rest of the section is dedicated to the proof of Proposition 4.1.
The proof will be complete only at the very end of Sect. 4.
We now �x the box �, and we drop the index � when this will not create

confusion; moreover, in the rest of the paragraph we will drop the index j and
� will refer to a �xed connected component.
What we have proven in the previous section is that our Lie algebra A gen-

erates the tangent space of �(n; �; E; !c) only at those points corresponding
to a unique cluster.
Let us call d�n; �; E; !c(q; p) the measure Q conditioned on surface �(n; �;

E; !c) i.e.∫
�(n; �; E; !c)

f(q; p)d�n; �; E; !c(q; p)

= EQ (f(!�) ∣∣ |!�| = n; ��(!) = �; E�(!) = E; !c
)
:

Since all the quantities we have conditioned on, in the de�nition of �, are con-
served by the vector �elds of the Lie subalgebra generated only by the particles
in �, the conditional measure d� is invariant for such a subalgebra (Lemma
2.7); moreover, the subalgebra is composed by null divergence vector �elds.
This implies that, in a su�ciently small neighborhood B of a point correspond-
ing to a con�guration with a unique cluster, the measure d�n is proportional to
the Microcanonical measure. More precisely consider an open set B ⊂ � with
a constant cluster structure and let � be the characteristic function of such a
set. If all the con�gurations in B have a unique cluster and vi 6= vj for every
i; j, it follows∫

�(n; �; E; !c)
�(q; p)F�(q; p)d�n; �; E; !c(q; p)

= Z(n; �; E; !c)
∫
�(n; �; E; !c)

�(q; p)F�(q; p)dM (q; p)

where dM is the microcanonical measure on � and Z is a normalization con-
stant. To see this, notice that the microcanonical measure is invariant with res-
pect to A�. Moreover, there exists vector �elds {Yi}mi=1 from A� that span all
the tangent space of � at each point of B (provided B is chosen small enough).
Hence, d� must be an invariant measure for the elliptic operator

∑m
i=1 Y

∗
i Yi.

The claim follows since it is well known that such an elliptic operator has a
unique invariant measure.
If in the con�gurations in B are present several not interacting clusters

{�i} = �̃, then from Sect. 2 follows that the Lie algebra A�, restricted to �,

conditional measure is exactly the Microcanonical measure on �. This Microcanonical mea-
sure is also the only one invariant for the action of every zero divergence vector �eld tangent
to the surfaces �. Notice that we use the name “Microcanonical” both for the measure just
described and for its conditional to the positions
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does not necessarily span all the tangent space. Yet, for each �i ∈ �̃, we can
consider the surface �(�i) obtained by �xing the positions of the particles not
in �i

22. From Sect. 2 follows then that the Lie Algebra A�, restricted to the
surface �(�i) spans all its tangent space. Thus, the simple application of the
invariance with respect to the available vector �elds yields the weaker result

∫
�j(n; �; E; !c)

�(q; p)F�(q; p)d�n; �; E; j; !c(q; p)

= Z(n; �; E; j; !c)
∫
�j(n; �; E; !c)

�(q; p)F�(q; p)dM�̃
(q; p)

where

M
�̃
(q; p)(· | (qj; pj) 6∈ �i) = M�i ((q; p) ∈ �i)

M�i being the microcanonical measure for the particles belonging to �i.
Yet, it is possible to use the dynamics generated by the vector �elds in order

to get a better result. We will show that one can construct maps, connected
to cluster deformations, with the property of preserving both the measures d�
and dM . To be more concrete we need to de�ne precisely what is meant by
deforming a cluster.
Recall that �̃ = {(q; p) ∈ � | (pi; pj) ∈ �̃ij for some i; j}. Moreover,

given a partition P of the particles (i.e., ∪P∈PP = {1; :::; n} for each P1; P2 ∈
P, P1 6= P2, P1 ∩ P2 = ∅) we will say that a measure is microcanonical with
respect to the partition P if for each P ∈ P conditioning the measure to all
the particles not in P one obtains the microcanonical measure for the particles
in P. (From now on, with an evident abuse of notations, we will use MP to
designate any measure which is Microcanonical with respect to P.)
Furthermore, by A�;P we will mean the Lie algebra generated by the

vector �elds associated to bonds in which the particles are closer than R1 − �,
for some �xed � smaller than R1 − R0, and belongs to the same element of
the partition P; �nally, by A�;P(�) we designate the restriction of A�;P at
T��23.

De�nition 4.2. By “allowed deformation” with respect to a partition P and
a tolerance � ∈ R+, we mean a piecewise smooth curve  : [0; 1]→ �\�̃ with
the property that, for each s ∈ [0; 1], ′(s) ∈A�;P((s)).

Note that, in a given con�guration, the clusters form a partition.

22 To be more precise, suppose that �i consists of m particles. Fix the position and ve-
locities of all the particles in � not belonging to �i and call their total energy E1 and
their total momentum �1. Then, �(�i) is the surface in Rm de�ned by

∑
�∈�i p� = �−

�1 ≡ �′ and
∑

�∈�i �(p�) + 1
2

∑
�; �∈�i V (q� − q�) +

∑
�∈�i ; � 6∈�i V (q� − q�) = E − E1 ≡

E′. Notice that we are not writing explicitly the dependence on E′ and �′, since this does
not create ambiguities
23 Clearly A�;P(�) is a linear subspace of T��
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De�nition 4.3. Given a set B ∈ � we call “P(B)” the coarsest partition of
{1; :::; n} �ner than (or equal to) the partitions produced by the isolated
clusters at each � in B.

The cornerstone of our approach is given by the following proposition.

Proposition 4.4. Given a con�guration � ≡ (q; p) ∈ �\�̃, let
r = sup

�;�: |q�−q�|¡R1

|q� − q�|

and �5 R1 − r, suppose that there exists a neighborhood B of � in which the
measure � is microcanonical with respect to some partition P (coarser than
P({�})) and an allowed deformation with respect to P and � connecting � to
some other con�guration �1 ∈ �\�̃, then there exists a neighborhood B1 ⊂ B
of � such that24

�|B1 = MP∧P({�1})|B1 :
The proof of Proposition 4.4 is the content of Subsection 4.1.
Proposition 4.4. shows how we can prove that the measure is microcanon-

ical with respect to coarser and coarser partitions. Hence, we can have the
wanted result, provided we can generate enough allowed deformation. In Sub-
sect. 4.2, we will prove the existence of enough cluster deformations, more
precisely we will prove Proposition 4.1.

4.1 Cluster deformation

Proof of Proposition 4.4. The following is a useful auxiliary lemma.

Lemma 4.5. If a measure is microcanonical with respect to a partition P1
and, at the same time, with respect to a partition P2, then it is microcanonical
with respect to the partition P1 ∧P2.

Proof. Start with the following observation: let P and G two element respec-
tively of P1 and P2 such that P ∩ Q 6= ∅. Then since the measure is invariant
for exchanges of momenta between particles inside P and inside Q, then it
is invariant for exchanges in P ∪ Q25. This implies that it is microcanonical
in P ∪ Q. By de�nition of P1 ∧P2, it follows that it is microcanonical with
respect to this coarser partition.

We start by constructing explicitly a map � that leaves invariant � and
such that �(�) = �1. The idea is to de�ne a one parameter family of vector

24 Given two partitions P1; P2 by P1 ∧P2 we mean the �nest partition coarser than both
P1 and P2
25 Since P ∪ Q has less constraints than P and Q separately (namely, only the total mo-
menta and energy in P ∪ Q), the last sentence is not completely obvious. The proof is a
simpli�cation of the one found in Appendix II. The argument in Appendix II is complicated
by the necessity to realize the exchange of momenta via allowed deformations, which it is
irrelevant in the present context
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�elds in a neighborhood of the allowed deformation ; the wanted map will
be obtained by integrating such a family in a neighborhood of the curve 26.
We parameterize  by arc-length. By de�nition,  ⊂ �\�̃. Let L = length()

then (0) = � and (L) = �1. Moreover, for each s ∈ [0; L], ′(s) can be written
as
∑m

i=1 ai(s)Xi where ai(s) are smooth functions depending only on s and Xi

are vector �elds, in the Lie algebra A�;P((s)), that leave Q invariant27; here
m is some integer depending only on . Then we de�ne a time dependent
vector �eld by

V (q; p; s) =
m∑
i=1

ai(s)Xi(q; p)

and the corresponding ow � by28

d
ds
�(q; p; s) = V (�(q; p; s); s)

�(q; p; 0) = (q; p):

By continuity there exists ” such that for each s ∈ [0; 1], setting (s) =
(q(s); p(s)), if q̃ ∈ �n, p̃ ∈ R3n, ‖q̃i − qi(s)‖ ¡ ”, then V ( q̃; p̃; s) ∈A0;P
((q̃; p̃)). By choosing the initial conditions in a su�ciently small neighborhood
B0 of �, we can ensure that the solutions of the di�erential equations, with ini-
tial conditions in B0, are closer than ”

2 to the curve .
We de�ne � on B0 by

�(�) = �(�; L):

Since V is always tangent to � it follows that � is a well de�ned function
from B0 ⊂ �\�̃ to �\�̃.
�(�) = �1 follows immediately from the construction ((s) is a solution

of the di�erential equation). In addition, for each smooth function F , with
suppF ⊂ B0, EQ(F ◦ �−1s ) = EQ(F); that is � is invariant with respect to �.
Next, it is easy to check that the vector �elds Xi have zero divergence and

are tangent to the surfaces of constant momentum and energy of the various
elements in P. Accordingly, any measure that is microcanonical with respect
to a partition coarser than P will be left invariant by the ow; that is MP is
invariant with respect to �.
We are now able to state a �rst helpful result.

Lemma 4.6. Given a con�guration � ≡ (q; p) ∈ �\�̃ suppose that there exists
a neighborhood B of � in which the measure � is Microcanonical with respect

26 Here we will consider only the case in which  is smooth, the generalization to piecewise
smooth being trivial
27 The fact that the ai can be chosen smooth follows from our requirement that ′ ∈A�(),
and is indeed the reason of such a requirement
28 Here we are abusing notations and using the same symbol to designate both the vector
�eld and its coordinates with respect to the basis {9q; 9p}
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to some partition P (coarser than P({�})) and an allowed deformation with
respect to P connecting � to some other con�guration �1 ∈ �\�̃, then there
exists a neighborhood B2 of �1 such that

�|B2 = MP|B2 :

Proof. Choose a neighborhood B1 ⊂ B0 of � such that P(�B1) is equal to
P({�1}). Let � be the characteristic function of �B1 and F� a smooth local
function with support disjoint from �̃.∫

�(n; �; E; !c)
�(q; p)F�(q; p)d�n; �; E; !c(q; p)

=
∫
�(n; �; E; !c)

� ◦�(q; p)F� ◦�(q; p)d�n; �; E; !c(q; p)

=
∫
�(n; �; E; !c)

� ◦�(q; p)F� ◦�(q; p)dMP(q; p)

=
∫
�(n; �; E; !c)

�(q; p)F�(q; p)dMP(q; p):

Since MP(�̃) = 0, for each partition P, and �n;�;E;!c is absolutely continuous
with respect to M for almost all �, E, !c, the equality holds true for each F�.
Note that we have used the invariance, with respect to the map �, both of the
measure � and of the microcanonical measures MP.

The consequence of the above chain of equalities is that �, restricted to
�B1, must be microcanonical with respect to P.

Let us conclude the proof of Proposition 4.4. According to Lemma 4.6 � is
microcanonical with respect to P in a neighborhood of �1. In addition, we know
from the considerations after proposition 4.1 that � must be microcanonical with
respect to P({�1}) as well. Hence, by Lemma 4.5, it must be microcanonical
with respect to P ∧P({�1}) in �B1. Using again Lemma 4.6 (in the opposite
direction) the result follows.

Now that Proposition 4.4 is proven, let us put it to work. Our condition on
the density insures that in the box � there is, at least, a two particle cluster.
If all the clusters in a given con�guration could be connected, via an allowed
deformation, to each nearby cluster, the argument would be easily concluded.
Unfortunately, this is not always possible. The obstacle is that, in order to
extract two particles from a cluster, may be needed more energy than it is
available in the cluster itself 29. Such clusters are “locked” and, in principle, it
may be impossible to remove them.
It is then painfully clear that our argument can be concluded only via a

discussion of such a pathological behavior; this the task of the next section.

29 E.g., think of a cluster at a corner with a concave shape and zero kinetic energy; in
addition the boundary condition may prevent the cluster from sliding along a side of the box
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4.2 Killing locked clusters

This section is dedicated to concluding the proof of Proposition 4.1.
Let �0 ∈ (�\�̃)

⋂

̂�; ”, consider a neighborhood B0 ⊂ �\�̃, contained in a

ball of su�ciently small radius � such that P0 = P({�0}) is equal to P(B0).
Our task will be to show that there is an allowed deformation that, together with
Proposition 4.4, can be used to show that � is microcanonical in a neighborhood
of �0 contained in B0.

We will start by showing that � is microcanonical with respect to partitions
coarser than P0.

Choose any element containing more than one particle, consider its convex
hull and choose a particle � situated at an extremal point but further away
than R1 from the boundary (if such a particle exists). The chosen particle �
can clearly be brought at a distance larger than R0, but less than R1, from the
other particles in the cluster in such a way that along the deformation the total
potential energy decreases (here we are using in an essential way the repellent
nature of the potential). Since along an allowed deformation the total energy
of the element must be conserved, one must change the kinetic energy of the
particles to compensate the change in potential energy30.

Select then the extremal particle in the convex hull of the element (with �
removed), closest to �. Such a particle can be extracted as well to a distance
larger than R0, but less than R1. The two particles can now be brought to
a distance less than R1, but larger than R0, if they are not so already. This
constitutes a two particle cluster that can be moved to touch another element31.

Of course, it could happen that a new element is touched by one of the
two particles before the above process is completed; this would be as good,
since our goal is to join di�erent elements. In addition, if the touched element
consists of only one particle, it is allowed to use such a particle to create a
new two particle cluster (hence, disregarding one of the previous two) that can
be moved to touch other elements.
In force of Proposition 4.4, this allows to show that, in a neighborhood of

�0, � must be microcanonical with respect to coarser partitions than the one in
cluster.
We can iterate the above strategy until we get the coarsest possible partition

P∗. Such a partition depends only on the positions in the con�guration �0 and
is uniquely determined by them.
The partition P∗ is the partition P(�0) that we will use to apply Lemma

3.2.
As we have seen, to carry out the above scheme we need to exchange

freely the momenta among particles in the same element32. More precisely,

30 E.g., choose any two particles �′; �′, with momenta p�′ ; p�′ , belonging to the element
and change their momenta to p�′ + ��, p�′ − ��, where � ∈ R3, ‖�‖ = 1, and � is chosen
to ensure energy conservation
31 By “touch” we always mean “closer than R1 but further away than R0”
32 In reality, up to now it su�ces the already discussed possibility to exchange freely
momenta inside the same cluster (by properly choosing the particles in which to store the
excess of energy), but in the future the extra freedom discussed below will be essential
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given a con�guration � = (q; p) and a partition P let us de�ne

�(�; P) =

{
(q′; p′) ∈ �\�̃

∣∣∣∣ q′ = q; ∀P ∈ P

∑
j∈P

pj =
∑
j∈P

p′j;
∑
j∈P

�(pj) =
∑
j∈P

�(p′j)

}
:

We will call P-complete a con�guration � that can be connected via an allowed
deformation with respect to P to each con�guration in �(�; P)33. In other
words, if � is P complete, then any transformation T�� (cf. (4.2)), in which �; �
belong to the same element of P, can be realized by allowed transformations.
By construction, �0 is P0-complete.

Let us show that �0 is P∗-complete. This is done by exhibiting allowed
deformations relative to P∗ that connect �0 to any other con�guration in
�(�0; P∗). We construct explicitly the needed deformations. To each defor-
mation used to construct P∗ one can associate the following: transfer to the
two particles in question any needed amount of energy and momentum com-
patible with the conservation of total energy and momentum in the cluster.
Extract the two particles from the cluster (the excess of energy so created is
stored in extra kinetic energy of the other particles in the cluster) and move
the two particles to touch the same neighbor cluster as before (without interact-
ing deterministically); at this point energy and momentum can be exchanged.
Finally, move back the two particles to their original position.
By eventually repeating such a procedure, we can exchange any amount

of moments, compatible with the conservation laws, between the two clusters.
Playing this game with all the various deformations used to construct P∗ it
follows that �0 is P∗-complete. Although this last fact seems quite intuitive
the proof is not immediate (due to the limitations on the momentum that can
be exchanged conserving the kinetic energy) and can be found in Appendix II.
If at this point we have obtained the trivial partition we are done. But

sometimes elements may be separated by large clusters with little kinetic en-
ergy. At this point it is necessary to use the properties of the con�gurations in

̂�; ”.

We intend to produce a sequence of con�gurations �i and coarser and
coarser partitions Pi, where �i is connected to �i+1 by an allowed deformation
with respect to Pi. Proposition 4.4 will be used to show that � = MPi in
some neighborhood of �i. From this it will follow that � = MPi also in some
neighborhood of �0 (by Lemma 4.6).

We will also ensure that the con�gurations �i that we are going to construct
are all Pi-complete and that �i ∈ 
̂�; ”.
The general strategy to produce the wanted deformations will be the fol-

lowing: �rst we will see that P∗ contains many particles belonging to “large”
elements, then we will repeatedly apply Lemma 3.2 to show that there is al-
ways at least one element with enough energy to allow the extraction of a two

33 The reason why we are interested in this concept is that, in some sense, it is a gener-
alization of hypoelliticity; in fact, thanks to Proposition 4.4, it allows to conclude that the
measure, restricted to �(�; P) is microcanonical with respect to P
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particle cluster. We will so obtain a partition with only one “large” element,
and Lemma 3.2 will imply that we can create a “free two particles cluster.”
That is, two particles with so much energy that can be moved anywhere in
the box � (remember that �0 ∈ 
̂�;”, so it enjoys a maximal local density in
�, hence there is a maximal potential barrier to moving a particle that grows
only like |�|1=2).

Let us start by seeing that indeed the creation of a “free two particles
cluster” would conclude the argument.

De�nition 4.7. We will call “free two particle cluster” any two particles at
a distance less than R1 such that their “available kinetic energy”34 is larger
than ”−1|�|1=2V0.

The justi�cation of the name lies in the proof of the following Lemma.

Lemma 4.8. If a con�guration � ∈ � ∩ 
̂�; ” contains a free two particles
cluster, then, in a neighborhood of �, � is microcanonical.

Proof. Since � ∈ 
̂�; ” it follows that a free two particles cluster has enough
available energy to be moved anywhere in the box �. Accordingly we can
produce allowed deformations that bring the free two particle cluster in contact
with any given particle in � and the result follows from the repeated use of
Proposition 4.4.

We are left with the task of producing a free two particle cluster. As already
mentioned we will do so by repeated use of Lemma 3.2.
To make the above considerations precise a little geometry is needed, the

geometric ingredient will take the form of a sequence of concentrical boxes.
Consider a sequence of concentrical boxes �k , k ≥ 1, such that �k+1 ⊃ �k and
(B− 1)R1 ¡dist(@�k ; @�k+1)¡ BR1 for some �xed B large enough35. Without
loss of generality, we can assume that there exists a constant C such that
�CL = �.

De�nition 4.9. Given a partition P, we will call an element “large” if it
contains at least one particle belonging to �CL\�CL−1 (i.e., it touches the
boundary) and one belonging to �1.

We now choose P̂(�0) to be exactly the set of large elements of P∗ (P
(�0)). For the application of Lemma 3.2 it is essential to know how many
particles belong to P̂(�0) (if they are less than a

8 |�|, then Lemma 3.2 is empty).

34 By “available energy” of a group of m particles, with total momentum �, we mean the
maximal amount of kinetic energy that can be liberated and transferred to other particles or
converted in potential energy, i.e.

∑
 �(p)− m�( 1m�)

35 For example B ¿ 6R0 would do: it allows to move a two particle cluster in the corridor
between two consecutive boxes being sure that the two particles do no interact deterministi-
cally with the ones outside the corridor. As we will see shortly this is exactly what we will
need to do
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This is easily estimated since, as a result of our previous construction, we
can restrict ourselves to a situation in which all the particles belonging to �1
(in the con�guration �0) must either be part of a large element of the �nal
partition P∗ or constitute a one particle cluster.
In order to see this, suppose that there is an element, not large, containing

more than two particles, with one particle in �1. For it is not large, it does
not touch the boundary: so it is possible to extract a two particle cluster from
its convex hull. Since we have already played this game to exhaustion it must
be that there are no particles outside the convex hull of the element, otherwise
one could obtain a coarser partition by using the above mentioned strategy.
Accordingly, any other particle must be contained in the convex hull of such
an element. Suppose now that there exists another element containing more
than one particle in �1. Such an element cannot touch @�, otherwise it would
have particles outside the convex hull of the element previously considered.
By the same argument as before all the particles must be contained in the
convex hull of the new element. Hence, the convex hull of this two elements
are the same. Therefore the extremal points must be in common contrary to
the assumption that the two elements are di�erent.
The only alternative is that all the other elements consist of only one par-

ticle, but our bound on the density would imply that our element contains
at least a( L2 )

3 particles, and therefore (provided L ¿ (8a−1V0”−1)2=3) enough
available kinetic energy to form a free two particle cluster (see Lemma 3.2).
Therefore, we need consider only the con�gurations �0 for which all the

elements containing more than one particle, of whose at least one in �1, are
large in P(�0). Hence, at least a( L2 )

3 of the particles belong to large elements,
i.e. to P̂(�0), (the other �∗( L2 )

3 particles belonging to �1 may be isolated one
particles clusters). In other words, all the con�gurations that we are left to
study satisfy the �rst condition of 
̃”

�.
Another interesting property of large elements is that we can assume that

they contain at least one particle in each region �k ≡ �k\�k−1. Otherwise, one
can extract a two particle cluster from the element restricted to �k−1 (more
precisely the extremal particles closer to �k) and move the two particles into
the region �k . Since the partition is already the coarsest obtainable with such
deformations it is not possible that the two particles can be brought in contact
with a new particle, i.e. no particle can be contained in �k . This implies
immediately that no other cluster with more than two particles can be present in
�k−1 (again, if this would not be the case, one could extract two particles from
the other element and move them to the element into consideration). Hence,
such an element would contain at least a( L2 )

3 particles and have enough energy
to create a free two particle cluster.
According to Lemma 3.2, there must be at least one (large) element P

of P̂(�0) such that
∑

�∈P[�(p�)− �( 1#P
∑

�∈P p�)] ≥ ”#P. Let us consider
such an element. Clearly, there must be a region �k in which it has less
than (B#P)=L particles. We can assume, without loss of generality, that in
such a region there is a two particle cluster (if not it can be created by an
allowed deformation). Since we can always choose L ¿ ”−1BV0, it follows
that the element can transfer to the two particle cluster enough energy to let it
move anywhere in the region {� ∈ �k | dist(�; @�k)= R0} in order to touch
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another element. If the two particle cluster cannot enter in contact with any
other element, then it would be the only large element, hence, by Lemma 3.2,
it would have at least ”a(L=2)3 available energy, enough to create a free two
particle cluster.
For the remaining con�gurations we have obtained a new partition P1 ∈

P̂P �0
coarser than P∗; yet �0 could not be P1-complete36. To overcome this we

consider a slightly di�erent con�guration �1 ∈ 
�;” that is P1-complete. Simply
move the two particles cluster in the region {� ∈ �k | dist(�; @�k) ≥ R0} at
a distance larger than R0 from the other particles in the same element. This
new con�guration �1 has lower local density, the same density in � and in �1,
higher available energy, and the same large elements; �nally, by the arguments
already mentioned it is P1 complete.

We can then apply Lemma 3.2 to P1 and obtain a new large element from
which, in the con�guration �1, can be extracted a two particle cluster, whereby
obtaining a new, coarser, partition P2 ∈ P̂P �0

and a new con�guration �2 ∈ 
̂�;”
that is P2-complete.
This process will stop only with the creation of a free two particle cluster

or when it will be left just one large element. Since such an element, again by
Lemma 3.2, will have enough energy to create a free two particle cluster we
have shown that � is Microcanonical in some neighborhood of �0.

Conclusion of the proof of Proposition 4.1

Up to now, we have shown that for each � ∈ (�\�̃) ∩ 
̂�; ” there exists a
neighborhood B ⊂ � of �, such that �|B = M |B.
To prove this we have used Proposition 4.4 to show that, if we can construct

allowed deformations that bring particles of di�erent clusters together, then in
a neighborhood of �, � must be microcanonical with respect to a partition
coarser than the one in clusters. The technical obstacle to this program has
been the possibility of very low energy clusters from which no particle can be
extracted37. To overcome such an obstacle we have shown that, if we consider
only elements that contain at least one particle close to the center of the box,
then some locked element must be fairly large and therefore, since � ∈ 
̂�; ”,
must contain su�cient energy to extract a particle. We continue the process
until we are able to extract two particles with so much energy that they can
be brought into contact with any other particle.

It su�ces then to apply the previous discussion to each point in (�\�̃) ∩

̂�;”. Accordingly, in the neighborhood of each point, � is proportional to the
microcanonical measure. This implies immediately that � is proportional to the

36 Think of the case in which the goal is to transfer all the available energy of the element,
to which the two particles belong, to the other element (the one that the two particles are
brought into contact with). It could easily happen that not enough energy is left in the
original element to take the two particles back to their original position
37 Indeed, we extract �rst all the particles that can be extracted without paying any energy;
after that, if more than one element is still present, we need to worry about how much energy
is at our disposal.
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microcanonical measure on all � ∩ 
̂�;”. Hence, it follows (4.4) and we can
assert that Q�0 is microcanonical.

5. Proof of Theorem 1

The conclusion of the previous section is summarized by the following lemma:

Lemma 5.1. For almost every con�guration of the positions !q and any �0,
the conditional measure Q on p�0 given !q and∑

qj∈�
�(pj) = const

∑
qj∈�

pj = const

is the microcanonical measure on the corresponding surface.

At this point we are in the same situation as in [OVY] (after Lemma 4.5
there). In fact, as a consequence of the previous lemma, the distribution of the
momentum conditioned on the positions is given by a convex combination of
measures of the form38

�(dp |�) =
∏
�

exp
[∑3

i=1 �ipi
� − �4�(p�)

]
Normalization

dp�:

Lemma 5.2. For any con�guration ! = {(q�; p�)}, let z̃(!) be the density,
momenta and kinetic energy associated with the con�guration de�ned by

z0(!) = lim
�→0

z0�;�(!) = lim
�→0

�3
∑
q�∈!

�(�q�);

z�(!) = lim
�→0

z��;�(!) = lim�→0
�3
∑
q�∈!

�(�q�)p�
�(!); � = 1; 2; 3;

z4(!) = lim
�→0

z4�;�(!) = lim
�→0

�3
∑
q�∈!

�(�q�)�(p�) :

Here � is a cuto� function of total integral one, z̃ �(!) exist almost every-
where and are independent of the cuto� �. Furthermore, z̃ (!) are constants
of the motion for L in the sense that∫

h(̃z (!)) LF(!)dQ = 0;

for all local smooth functions F and all smooth functions h with compact
support.

Proof. This was proven in [OVY] for bounded �′. For completeness, we
present here the proof for unbounded �′.
38 This is a consequence of the Hewitt–Savage law, cf. [HS]
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By the same argument used immediately after Lemma (1.1) these limits
clearly exist and are independent of the cuto� �.
By condition (iii) in Theorem (1.1)

0 =
∫

L(Fh(z��;�(!)))dQ

=
∫
(LF) h(z��;�(!))dQ +

∫
F L h(z��;�(!))dQ:

The �rst term converges to
∫
h(z�� (!))LF dQ as � → 0. We only have to show

that the second term converges to zero as � → 0. Clearly, it su�ces to show
that as � → 0 ∫

|Lz��;�|dQ → 0 ; � = 0; : : : ; 4: (5:1)

This is easy to show for � = 0; 1; 2; 3 (as in [OVY p. 544]).
For � = 4 we have

EQ (∣∣Lz4�;�∣∣) =EQ

(∣∣∣∣∣� �3
∑
i;�

�i(�q�)�i(p�)�(p�)

∣∣∣∣∣
)

+EQ

∣∣∣∣∣∣�3
∑
� 6=�

∑
i

�(�q�)�i(p�)Vi(q� − q�)

∣∣∣∣∣∣
 :

Only the second term of the right end side present di�culties. Let wi (̃z ) and
�i (̃z ) denote the expectation and variance of �i(p�) with respect to Q condi-
tioned on z̃. These can be computed explicitly by using the characterization of
the conditional measure given !q and z̃. We can bound the second term of the
RHS of the above expression by

EQ

|�3∑
i

∑
� 6=�

�(�q�)�i(p�)Vi(q� − q�)|


= EQ

|�3∑
i

∑
�

�(�q�)
[
�i(p�)− wi

]∑
� 6=�

Vi(q� − q�)|


+EQ

|�3∑
� 6=�

∑
i

�(�q�)Vi(q� − q�)wi|
 :
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The second term of the RHS (third line above) can be bounded as before.
Using the Schwarz inequality the �rst term can be bounded by

∑
i

EQ

EQ


�3∑

�

�(�q�)
[
�i(p�)− wi

]∑
� 6=�

Vi(q� − q�)

2 ∣∣∣∣ z̃

1=2


=
∑

i

EQ

√�i (̃z )�3EQ

∑
�

�(�q�)2
(∑

�

Vi(q� − q�)
)2∣∣∣∣ z̃

1=2


5
∑

i

EQ(�i (̃z ))1=2�3EQ

∑
�

�(�q�)2
(∑

� 6=�

Vi(q� − q�)
)21=2

:

By the condition on � and the entropy argument we have that EQ(�i (̃z )) is
�nite. To bound the second expectation, let us divide the set

{
x | |x|5 2�−1

}
into boxes of size 2R0 (R0 is the range of V ). Let � index the boxes and let
N� be the number of particles in the � box.

�3
∑

i

EQ

∑
�

�(�q�)2

∑
�

Vi(q� − q�)

2

1=2

≤ const. �3EQ

(∑
�

N 3
�

)1=2
:

By convexity and the inequality (
∑

� N
3
� )
1=3 5 (

∑
� N

2
� )
1=2 we see that the

above expression is bounded by

const. �3EQ

[∑
�

N 2
�

]3=45 const. �3
[
EQ

(∑
�

N 2
�

)]3=4
:

By Lemma (1.2)(i) and the translation invariance, EQ(
∑

� N
2
� ) is bounded by

�−3; hence, the quantity under consideration is bounded by const. �3=4. This
concludes the proof of the Lemma 4.2.

By the previous lemma Q conditioned on z̃ (!) is still invariant for L. Since
we assume that Q is translation invariant, we can apply Lemma 4.10 in [OVY]
and obtain that these conditioned distributions are given by grancanonical Gibbs
measures, concluding our proof.

Appendix 1

To show that our conditions on the noise (in particular the one imposed in
Sect. 2) and the kinetic energy in the non-Gaussian case are far from empty,
we give here an example of stochastic perturbation that satis�es such condition.
This is the only point where we use our requirement on the form of the kinetic
energy �.
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Lemma A.1. If {��
��} = {e1 ∧ D��E; e2 ∧ D��E; e3 ∧ D��E} and �(pa) =∑3

i=1 ’(p
i
�), with (’

′′′)2 + ’iv’′′ = 0 at most at �nitely many points, then
condition on the noise is satis�ed.

Proof. A simple computation shows[
X i
��; L

]
q� =H��i

��;[
X i
��; L

]
q� =− H��i

��;[
X j
��;
[
X i
��; L

]]
ql
� =
(
�j
��

)
l

(
�i
��

)
l
H ′

�ll + H�ll

(
ei ∧ (H� + H�)�

j
��

)
l
;[

X i
��;
[
X j
��; L

]]
ql
� =
(
�j
��

)
l

(
�i
��

)
l
H ′

�ll − H�ll

(
ei ∧ (H� + H�)�

j
��

)
l
;

where H�ll stand for the element ll of the diagonal matrix H�. The matrix H ′
�

is the derivative of the matrix H�; (·)l stands for the lth component of the
corresponding vectors. Now, let us take the six vectors obtained by letting i; j
vary only in {1; 2}. We de�ne the vectors wij by

wij
l =

(
�i
��

)
l

(
�j
��

)
l
:

Let us consider
2∑

i=1

�i

[
X i
��; L

]
+

2∑
i;j=1

�ij
[
X j
��;
[
X i
��; L

]]
= 0:

Applying the above vector �elds to q�, q�, we have

0 =
2∑

i=1

�iH��i
�� +

2∑
i;j=1

�ij
[
H ′

�w
ij + H�

(
ei ∧ (H� + H�)�

j
��

)]
;

0 =−
2∑

i=1

�iH��i
�� +

2∑
i;j=1

�ij
[
H ′

�w
ij − H�

(
ei ∧ (H� + H�)�

j
��

)]
:

If we multiply the �rst by (H�)−1, the second by (H�)−1, and add one to the
other, then we get

0 =
2∑

i; j=1

�ijAwij;

where A = 1=2{H ′
�H

−1
� + H ′

�H
−1
� }. Notice that A is invertible out of a set of

codimension 1 (see later for more details), consequently

0 =
2∑

i; j=1

�ijwij;

0 =
2∑

i=1

�i�i
�� +

2∑
i; j=1

�ijei ∧ (H� + H�)�
j
��:
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To conclude we need an explicit representations of the vectors involved in the
previous equations. Let Di

��E = �i, hi = H�ii + H�ii, then a direct computation
yields

�1 = (0; −�3; �2);
�2 = (�3; 0; −�1);
w11 = (0; �23; �

2
2);

w12 = w21 = (0; 0; −�1�2);
w22 = (�23; 0; �

2
1);

e1 ∧ (H� + H�)�1�� = (0; −�2h3; −�3h2);

e1 ∧ (H� + H�)�2�� = (0; �1h3; 0);

e2 ∧ (H� + H�)�1�� = (�2h3; 0; 0);

e2 ∧ (H� + H�)�2�� = (−�1h3; 0; −�3h1):

Immediately follows �22 = �11 = 0 and �12 = −�21, which, substituted in the
remaining equations, yields




 �1
�2
�12

 = 0:

For some matrix 
 with det(
) = �1�2�3(h2 + h3). Since the determinant is
equal zero on a set of codimension one, we have that the vector are linearly
independent, out of a set of codimension one.
This set of codimension one consists of ∪i{p | ’′′′(pi

�)’
′′(pi

�) = −’′′′(pi
�)

’′′(pi
�)}, where the matrix A is not invertible39, and ∪i{pi

� = pi
�}, where the

matrix 
 is not invertible. To get codimension two we have to analyze all
the di�erent cases one by one, since they are treated all in the same way we
will consider only the points on the set {p1� = p1�}, and we will leave the
rest to the skeptical reader. We can clearly ignore points of the above set that
also belong to some other singular set: they belong to a set of codimension
two. For points in the set under consider we will have �1 = 0, while all the
other components will be di�erent from zero. This implies that w12 = w21 =
e1 ∧ (H� + H�)�2�� = 0, we need then to produce more vectors, i.e., compute
more commutators. It turns out to be su�cient to compute[

X 2;
[
X 1
��;
[
X 2
��; L

]]]
q� = H�v1 + H ′

�v2;[
X 2;

[
X 1
��;
[
X 2
��; L

]]]
q� = −H�v1 + H ′

�v2;[
X 2;

[
X 2
��;
[
X 1
��; L

]]]
q� = H ′

�v2;[
X 2;

[
X 2
��;
[
X 1
��; L

]]]
q� = H ′

�v2;

39 The condition of the hypothesis ensure that such set is a smooth codimension one manifold
unless ’′′′(pi

�)
2 + ’iv(pi

�)’
′′(pi

�) = ’′′′(pi
�)
2 + ’iv(pi

�)’
′′(pi

�) = 0, which can happen only

on a set of codimension two
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where v1 = (0; �3h1h3; 0), and v2 = (0; 0; −�2�1h1). We have then to study the
linear combination

2∑
i=1

�i

[
X i
��; L

]
+

2∑
i; j=1

�ij
[
X j
��;
[
X i
��; L

]]
+”1

[
X 2;

[
X 1
��;
[
X 2
��; L

]]]
+”2

[
X 2;

[
X 2
��;
[
X 1
��; L

]]]
= 0

where �12; �21 are taken to be zero since the corresponding commutators, when
restricted to the q�; q� space, would not contribute anything of interest. As
before, we apply the vectors to the coordinates q�; q�, we multiply by H−1

�

and H−1
� and add the corresponding equations, in so doing we obtain

2∑
i; j=1

�ijwij + (”1 + ”2)v2 = 0

from this follows immediately �11 = �22 = 0, ”1 = −”2. Substituting in the orig-
inal equation we get

0 =
2∑

i=1

�iH��i
�� + ”1H�v1;

which implies �i = ”i = 0 on a set of codimension two.

Appendix II

We will prove here that if � is P–complete, and two particle can be extracted
from an element P1 to join P2 (or viceversa), then � is complete for the
partition P∗ obtained from P joining P1 and P2.
Choose � ∈ �(�; P∗). Call �; � the two particles that are allowed to move
along .
The rough idea is to transfer energy and momentum between the elements40

P1 and P2 by using the particles �; �. Unfortunately, there are limits to how
much momentum or energy we can transfer to the particles, due to the neces-
sity to conserve the total energy and momentum of the clusters. To overcome
this we will show that each � ∈ �(�; P∗) can be deformed into the special
con�guration � ∈ �(�; P∗) de�ned by,41

p� =
�(�; P1 ∪ P2)
#(P1 ∪ P2)

∀� 6∈ {�; �};

p� =
�(�; P1 ∪ P2)
#(P1 ∪ P2)

+ �v;

p� =
�(�; P1 ∪ P2)
#(P1 ∪ P2)

− �v;

40 Note that {�; �} ⊂ P1 and that in the con�guration � P1 still form an element
41 For each P ⊂ {1; : : : ; n}, by �(�; P) and K(�; P) we mean, respectively, the total mo-
mentum and kinetic energy, in the con�guration �, of the particles belonging to P; by #P
we mean, as usual, the cardinality of the set P
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with some �xed v ∈ R3, ‖v‖ = 1, and � determined by

K(�; P1 ∪ P2) = [#(P1 ∪ P2)− 2]�
(
�(�; P1 ∪ P2)
#(P1 ∪ P2)

)
+ �(p�) + �(p�):

The desired allowed transformation will then be obtained by deforming � into
� and then by running backward the allowed transformation that connects �
to � (since the reverse of an allowed transformation it is still an allowed
transformation).
Since, by convexity,

K(�; P1 ∪ P2)= #(P1 ∪ P2)�
(
�(�; P1 ∪ P2)
#(P1 ∪ P2)

)
;

if � = 0 then �(�; P∗), restricted to the particles in P1 ∪ P2 consists of
only the point � and we have nothing to prove. Otherwise we proceed
as follows: we make an allowed deformation that set all the moments in
P1\{�; �} equal to (#P1)−1�(�; P1) while p� = (#P1)−1�(�; P1) + �1v and
p� = (#P1)−1�(�; P1) + �1v, and �1 is determined by the conservation of
K(�; P1). Then we move the coordinates of the particles �; � accordingly to
 but without changing their momenta. Once they get in touch with P2 we
change the momenta of the particles in P2 to

p∗ =
1

#P2 + 2
(�(�; P2) +

2
#P1

�(�; P1));

apart from p� = p∗ + �2v and p� = p∗ − �2v, again �2 is determined by the
conservation of the kinetic energy of the new cluster P2 ∪ {�; �}. Finally, we
move back the particles �; � to their original position in the con�guration �
and share again their momentum among all the particles in P1 as we have
done at the beginning. Let us call �1;1 the con�guration reached in such a way.
Calling �0 = (1=#P1)�(�; P1)− (1=#P2)�(�; P2) and �1 = (1=#P1)�(�1;1; P1)−
(1=#P2)�(�1;1; P2) a direct computation shows that

�1 =
(
1− 2#(P1 ∪ P2)

#P1(#P2 + 2)

)
�0:

If we iterate further the procedure just described we see that the di�erence
between the average momentum in P1 and P2 goes to zero, this shows that
we are getting closer and closer to the con�guration �; unfortunately only
asymptotically. Nevertheless, after a �nite number of iterations we will get to
a con�guration �0 for which

2�
(
�(�0; P1)

2
− (#P1 − 2)�(�; P1 ∪ P2)

2#(P1 ∪ P2)

)

+(#P1 − 2)�
(
�(�; P1 ∪ P2)
#(P1 ∪ P2)

)
¡ K(�0; P1): (A2:1)
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Let p�(�) be the momentum of the particle � in the con�guration �. We
deform �0 into �1 de�ned by

p�(�1) =
�(�; P1 ∪ P2)
#(P1 ∪ P2)

for � ∈ P1\{�; �};

p�(�1) =
�(�; P1 ∪ P2)
#(P1 ∪ P2)

+
1
2

[
�(�0; P1)− #P1 �(�; P1 ∪ P2)

#(P1 ∪ P2)

]
+ �v;

p�(�1) =p�(�1)− 2�v;

where � is de�ned by K(�1; P1) = K(�0; P1). All this is possible provided
(A2.1) is satis�ed; in fact, (A2.1) express simply that there is su�cient en-
ergy to deform the momenta of the particles in P1 to the above values. After
achieving the con�guration �1, to obtain the con�guration � it su�ces to take
the particles �; � to P2, adjust the momenta of the particles of P2 to the
value �(�; P1 ∪ P2)=#(P1 ∪ P2), which will make all the momenta agree with
the ones in the con�guration � and take {�; �} back to their original position
in �.
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