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The trace of spatial brownian motion
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Summary. We show that with probability 1, the trace B[0; 1] of Brownian
motion in space, has positive capacity with respect to exactly the same kernels
as the unit square. More precisely, the energy of occupation measure on B[0; 1]
in the kernel f(|x − y|); is bounded above and below by constant multiples
of the energy of Lebesgue measure on the unit square. (The constants are
random, but do not depend on the kernel.) As an application, we give almost-
sure asymptotics for the probability that an �-stable process approaches within
� of B[0; 1], conditional on B[0; 1].

The upper bound on energy is based on a strong law for the approximate
self-intersections of the Brownian path.
We also prove analogous capacity estimates for planar Brownian motion

and for the zero-set of one-dimensional Brownian motion.

1 Introduction and main results

It is well-known that for d= 2, the range of d-dimensional Brownian motion
has Hausdor� dimension 2, but its two-dimensional measure is almost surely 0.
Hausdor� dimension is de�ned via Hausdor� measures, but has an equally
important interpretation (due to Frostman [10]) as the critical parameter for
positivity of Riesz capacities. Exact Hausdor� measure is one much-studied
means of specifying more precisely the size of a “small” set (see Taylor [25]
for a comprehensive survey in the context of random sets); exact capacity is
a di�erent one, that is directly relevant to intersections of the small set with
other random sets. Cieselski and Taylor [6] found the exact Hausdor� measure
for the trace of Brownian motion in space, which quanti�es to what extent
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the trace is “smaller” than the plane. Here we show that with probability 1,
the spatial Brownian trace has positive capacity exactly in the same kernels
as the plane. Theorem 1.1 is a quantitative version of this; Theorems 1.2 and
1.6 give analogous statements for planar Brownian motion and for the zero-set
of one-dimensional Brownian motion, respectively. The latter theorem sharpens
an integral test due to Kahane and Hawkes.
For a decreasing kernel function f : [0;∞)→ [0;∞]; de�ne the energy of

a Borel measure � on Rd with respect to f by

Ef (�) =
∫
Rd

∫
Rd
f(|x − y|)d�(x)d�(y)

and the capacity of a Borel set � ⊂ Rd with respect to f by

Capf(�) =
[
inf
�(�)=1

Ef (�)
]−1

:

Thus Capf(�)¿ 0 if and only if there exists a Borel measure � supported
on � such that Ef (�)¡∞. When f(r) = r−�, we write Cap� for Capf,
and then the “capacitary dimension” sup{� : Cap� (�)¿ 0} of a Borel set
� is equal to its Hausdor� dimension (see, e.g., Carleson [4]; Kahane
[12, p 133]).
In the sequel we assume that all kernel functions f considered are (weakly)

decreasing and satisfy limr↓0 f(r) = f(0) if this limit is �nite.
Pemantle and Peres [18] introduced a notion of “capacity-equivalence”,

which we specialize to Rd :

De�nition 1 The sets A; B ⊂ Rd are capacity-equivalent if there exist positive
constants C1; C2 such that

C1 Capf(B)5 Capf(A)5 C2 Capf(B) for all f :

Let (Bt(!): 05 t51) be d-dimensional Brownian motion started at 0, and
consider its range B[0; 1] = {x ∈ Rd: Bt = x for some 05 t51}. It is classical,
and follows easily from Theorem 2.1 below (see the discussion around (9)),
that for any kernel f, if m denotes Lebesgue measure on [0; 1]2, then

Ef (m)5 C[Capf([0; 1]
2)]−1 ;

where C is an absolute constant. In particular, [0; 1]2 has positive capacity with
respect to the kernel function f if and only if∫

0+
f(r)r dr ¡∞ :

Theorem 1.1 implies, a fortiori, that with probability 1, the same criterion
holds for B[0; 1] in dimension d= 3, uniformly over kernels.

Theorem 1.1 For d= 3; the Brownian trace B[0; 1] is a.s. capacity-equivalent
to [0; 1]2. More precisely; with probability 1 there exist random constants
C1; C2 ¿ 0 such that

C1 Capf([0; 1]
2)5 Capf(B[0; 1])5 C2 Capf([0; 1]

2) for all f : (1)
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In two-dimensions, the recurrence of (Bt) leads to a slight modi�cation:

Theorem 1.2 For any decreasing f; denote f̃(r) = f(r) log (1=r): For planar
Brownian motion; with probability 1 there exist random constants C1; C2 ¿ 0
such that

C1 Capf̃ ([0; 1]
2)5 Capf(B[0; 1])5 C2 Capf̃ ([0; 1]

2) for all f : (2)

Our main interest in capacity is that for many stochastic processes, particularly
Markov processes (see [5, 9] and the references therein) and certain fractal
percolation processes (see [18]), hitting probabilities of sets are equivalent to
their capacities.
The next theorem exploits this equivalence, as well as the fact that our almost-
sure capacity estimates hold uniformly over all kernels. Aizenman [1] showed
that if [B] and [B′] are the traces of two independent d-dimensional Brownian
motions started apart, then

P[dist([B]; [B′])¡ �] �
{
�d−4 if d ¿ 4 ;

(log 1� )
−1 if d = 4 ;

as � ↓ 0. (Earlier, Lawler [14] had obtained precise asymptotics for the analo-
gous problem for two random walks on Z4. See Albeverio and Zhou [2] for a
recent re�nement of Aizenman’s estimates.) Theorem 2.6 of [19] contains the
following generalization of Aizenman’s result: If [X �] and [B] denote the traces
of an independent �-stable process and Brownian motion, started apart, then

P[dist([B]; [X �])¡ �] �
{
�d−�−2 if � ¡ d− 2 ;
(log 1

� )
−1 if � = d− 2 ;

as � ↓ 0.
We derive an almost-sure version of these estimates, uniform over �, con-

ditional on the Brownian motion B. For 0¡�52, let P�x be the law of a
symmetric �-stable process (X �t ) in R

d started at x, so that

E�xe
i� · (Xt−x) = e−|�|�t

for � ∈ Rd, and let f(�)(|x − y|) = c(�)|x − y|�−d be the corresponding po-
tential density. We always consider B and X � to be independent. Write
[B] = B[0; 1] and [X �] = X �[0;∞).
Theorem 1.3 Suppose d= 3. Let

m(x; B) = inf
y∈[B]

|x − y| M (x; B) = sup
y∈[B]

|x − y| :

Then for some constants cd; c′d ¿ 0 the following is true: For a.e. Brownian
path B and all x ∈ Rd; there exists �0 = �0(B; x) such that; for all 0¡�¡�0;

cd M (x; B)�−d 5
P�x[dist([B]; [X

�])¡ � |B]
�(d− �− 2)�d−�−2 5 c′d m(x; B)

�−d
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for all 0¡�¡ d− 2 such that �5 2; and when d = 3; 4 also

cd M (x; B)−2 5
P�x[dist([B]; [X

�])¡ � |B]
(d− 2)(log 1

� )
−1 5 c′d m(x; B)

−2

for � = d− 2.
Remark. Note the uniformity in � in the statement above. Even for a �xed �,
the proof of Theorem 1.3, given in Sect. 4, requires estimating the capacity of
a �xed sample path [B] in in�nitely many kernels simultaneously.

Theorems 1.1 and 1.2 say nothing about which measures supported on
B[0; 1] have low energy with respect to di�erent kernels. It turns out that, up
to a random constant not dependent on the kernel, one measure �ts all kernels.
Let � denote the occupation measure of (Bt), de�ned by

�(�) =
1∫
0
1�(Bt)dt

for Borel sets � ⊂ Rd. Clearly � has total mass 1 and is supported on B[0; 1].
Roughly speaking, for questions of capacity, � plays the same role for B[0; 1]
that Lebesgue measure plays for [0; 1]2. More precisely, the lower bounds on
Capf(B[0; 1]) in (1) and (2) follow directly via Theorem 2.1 from the next
theorem, which says that, with probability one, the energy of � on B[0; 1] is
bounded by a random constant times the energy of Lebesgue measure on the
unit square, uniformly over kernels.

Theorem 1.4 With probability one; there exists a C = C(!) such that

Ef(�)5 C


∫ 1
0 rf(r)dr; d= 3

for all f :∫ 1
0 r log

1
r f(r)dr; d = 2

(3)

A key tool for the proof of the above theorems is a simple formula
for energy proved in Benjamini and Peres [3] (for logarithmic energy) and
in Pemantle and Peres [18] (for general kernels), which we state later as
Theorem 2.1. As we will show, the upper bounds on capacity given in The-
orems 1.1 and 1.2 follow easily from known asymptotics for the volumes
of Wiener sausages. The lower bounds on capacities are, as we illustrate
in Sect. 3, easily proved for �xed kernels, but the fact that, with proba-
bility one, these bounds hold uniformly over kernels, is new. The proofs
use Theorem 2.1 together with Theorem 1.5 below. The proof of Theo-
rem 1.3, given in Sect. 4, is similar, and uses the additional determinis-
tic fact that the capacity of an �-sausage is equivalent to the capacity of
the original set with respect to an �-smoothed kernel (Proposition 4.1), to-
gether with the equivalence of capacities and hitting probabilities for stable
processes.
For � ¿ 0 and y ∈ Rd, de�ne

g�(y) = exp(−|y|2=2�2) ;
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where | · | denotes Euclidean norm. Let

S� =
1∫
0
dt1

1∫
0
dt2 g�(Bt1 − Bt2)

=
∫
Rd

∫
Rd
g�(x − y)d�(x)d�(y) :

When suitably scaled, S� may be interpreted as measuring the “approxi-
mate self-intersections” of the Brownian path. The case d = 2 of the follow-
ing theorem follows from Varadhan’s renormalization of S� (see Sect. 6 for
details).

Theorem 1.5 (A strong law for approximate self-intersections) For d= 3;

S�
�2

→ 4
d− 2 as � ↓ 0; a.s :

For d = z;
S�

�2 log 1�
→ 4 as � ↓ 0; a.s :

To explain the connection to the energy estimates in Theorem 1.4, we start
with the observation that the ratio �(Q)=side(Q)2 cannot be uniformly bounded
as Q ranges over all cubes, since the two-dimensional Hausdor� measure of
the Brownian trace vanishes. The �-weighted average of this ratio, taken over
the collection Dn of all dyadic cubes Q of side 2−n, is

4n
∑
Q∈Dn

�(Q)2 : (4)

Theorem 1.5 implies that, in dimension d= 3; these weighted averages are
bounded uniformly in n. (See the inequality (15) in Subsect. 3.1.) Theorem 2.1
is then used to express the energy of � as a positive linear combination of the
averages (4), and thus to compare it to the energy of Lebesgue measure on
the unit square.

1.1 The zero set

We have analogous results for the zero-set of one-dimensional Brownian mo-
tion, Z = {t ∈ [0; 1]: Bt = 0}. These results are technically easier than the cor-
responding ones for the Brownian trace, and led us to the latter. It is classical
that Z a.s. has Hausdor� dimension 1

2 (again, with zero measure in that di-
mension), so here a natural comparison set is the “middle- 12 Cantor set”

K =
{ ∞∑
n=1
bn4−n: bn = 0; 3

}
:

K is a standard example of a set of Hausdor� dimension 1
2 , that has positive

and �nite measure in that dimension.
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Theorem 1.6 The Brownian zero-set Z is a.s. capacity-equivalent to the
middle- 12 Cantor set K. More precisely; with probability one there exist ran-
dom C1; C2 ¿ 0; such that

C1 Capf(K)5 Capf(Z)5 C2 Capf(K) for all f : (5)

Let (l(t): 05 t 5 1) be Brownian local time at zero, normalized so that,
by results of L�evy, l(t) has the same law as the running maximum max�5tB�.
We abuse notation slightly and also let l denote the measure, supported on Z ,
for which it is the distribution function.
The lower bound on Capf(Z) in (5) is implied by the following energy

estimate:

Theorem 1.7 With probability one there exists C = C(!) such that

Ef(l)5 C
1∫
0
f(r)r−1=2 dr; for all f : (6)

In the �rst 1968 edition of [12], Kahane established that, for a �xed f of
“positive type”, �niteness of the integral in (6) is su�cient for the Brownian
zero-set Z to a.s. have positive capacity with respect to f (see [12, p 236,
Theorem 2]). This is the �rst “exact capacity” result we are aware of. Hawkes
([11, Theorem 5]) proved the converse (�niteness of the integral is necessary
for positive capacity) under a slightly stronger assumption (log-convexity) on
the kernel f. In view of the expression (10) for the capacity of K , Theorem 1.6
is a uniform version of this result of Kahane and Hawkes; it also shows that
the side conditions on the kernel are not needed. In the last section we describe
a di�erent random set that illustrates why the uniformity in the kernel is not
automatic.

2 Upper bounds on capacities

The following representation of energy from [18] is basic for most of the results
in this paper. Its proof is based on a trick from [3]. Let Dn denote the collection
of all dyadic cubes Q = [ j12−n; (j1 + 1)2−n)× : : :× [ jd2−n; (jd + 1)2−n) for
(j1; : : : ; jd) ∈ Zd.
Theorem 2.1 ([18, Theorem 3.1]) Let f : [0;∞)→ [0;∞] be a weakly
decreasing function. Then for any Borel measure � supported on the unit
cube [0; 1]d;

Ef(�) �
∞∑
n=0
(f(2−n)− f(21−n)) ∑

Q∈Dn
�(Q)2 ; (7)

where � means that the ratio of the two quantities is bounded between two
positive constants depending only on d.

Remark. The proof of this in [18] assumes that f(0+) =∞ and that � has
no atoms, but these assumptions can be avoided as long as f(0) = f(0+): If
� has atoms at the points {xj}j=1, then there is a contribution of ∑jf(0)�(xj)2
to the energy Ef(�) coming from the diagonal. On the right-hand side of (7),
we get the same contribution.
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We �rst note an easy general upper bound on capacity, which is essentially
the same as Theorem IV.2 in Carleson [4]. Let Nn(�) be the number of dyadic
cubes Q ∈ Dn (as de�ned in Theorem 2.1) that intersect a Borel set � ⊂ Rd.
Then there is a constant c ¿ 0, depending only on the ambient dimension d,
such that for any probability measure � supported on �, and any kernel f, we
have

Ef(�)= c
∑
n
(f(2−n)− f(21−n)) ∑

Q∈Dn
�(Q)2

= c
∑
n
(f(2−n)− f(21−n))Nn(�)−1 :

Therefore

Capf(�)5 c−1
[∑
n
(f(2−n)− f(21−n))Nn(�)−1

]−1
: (8)

If for some c, the set � carries a positive measure � such that �(Q)5 cNn(�)−1
for all Q ∈ Dn and all n, then this bound is sharp (up to a constant factor
independent of f).
Thus we get

Capf([0; 1]
2) �

[∑
n
(f(2−n)− f(21−n))4−n

]−1
�
[ 1∫
0
f(r)r dr

]−1
(9)

and similarly, for the middle- 12 Cantor set

Capf(K) �
[∑
n
(f(2−n)− f(21−n))2−n=2

]−1
�
[ 1∫
0
f(r)r−1=2 dr

]−1
;

(10)
where � means that the ratio of the two sides is bounded above and below
by positive absolute constants. The minimum energies are attained within a
constant factor by Lebesgue measure in the case of [0; 1]2, and, for K , by the
measure that makes the digits (bn) ∼ i.i.d. Bernoulli ( 12 ), when K is represented
as {∑∞

n=1bn4
−n : bn = 0; 3}.

Proof of Theorems 1.1 and 1.2 (upper bound). Strong laws for volumes of
Wiener sausages (see [16, Chap. VI] and the references therein) imply that,
with probability one, there exist random C1; C2 ∈ (0;∞) such that for all n,

C1 5
Nn(B[0; 1])

4n
5 C2 for d= 3 ;

C1 5
n · Nn(B[0; 1])

4n
5 C2 for d = 2 : (11)

Substituting the above into (8) and comparing with (9) gives, with probability
one,

Capf (B[0; 1])5 C(!)

Capf̃([0; 1]
2); d = 2

Capf ([0; 1]
2); d= 3

for all f ;

where f̃ is de�ned in the statement of Theorem 1.2.
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Proof of Theorem 1.6 (upper bound). We need an analog of (11) for Z . This
is provided by Kingman’s [13] construction of local time, which we sketch here
for the Brownian case. Recall L�evy’s classical result (see, e.g., [21, p 447])

�1=2Ñ� →
(
2
�

)1=2
l(1); as � ↓ 0; a:s: ; (12)

where Ñ� is the number of maximal intervals Ij of [0; 1]\Z have length greater
than �. Now if

Z� = {u ∈ [0; 1] : Bt = 0 for some t with |u− t|¡ �=2} ;
and m denotes Lebesgue measure on R+, then, using the fact that m(Z) = 0
a.s., we obtain

m(Z�) =
∑
j
[m(Ij) ∧ �] + O(�) ;

where the sum extends over all maximal intervals in [0; 1]\Z . By Fubini’s the-
orem, this sum can be written as

∫ �
0 Ñ� d�+ O(�). Together with (12), this

implies that

�−1=2m(Z�)→ 2
(
2
�

)1=2
l(1) as � ↓ 0; almost surely :

Thus for suitable absolute constants c1; c2¿0, there almost surely exists a
random integer n∗; such that

c1l(1)5 2−n=2Nn(Z)5 c2l(1) for all n= n∗ : (13)

The upper bound on Capf(Z) now follows from the general upper bound (8)
and the estimate (10).

3 Lower bounds on capacities

Remark For a �xed kernel, it is easy to see that �niteness of the integral on
the right-hand side of (3) or (6) implies that the left-hand side is �nite. We
show this for (3) in the case d = 3; the other proofs are similar. Recall that
for any non-negative Borel function h : R3 → R,

E
∞∫
0
h(Bt)dt =

1
2�

∫
R3
h(x)

dx
|x| ; (14)

where | · | is the Euclidean norm and dx denotes Lebesgue measure. By the
Markov property, we have

EEf(�)5 2E
1∫
0
f(|Bt |)dt :

Since f is monotone decreasing, f(|x|)5 f(|x|)1{|x|51} + f(1): Invoking
(14), we get

EEf(�)5 2
(
1
2�

1∫
0
f(r) · 4�r2dr

r
+ f(1)

)
5 (4 + 4)

1∫
0
f(r)r dr ;

where the last step used the monotonicity of f again.
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3.1 The Brownian trace

Proof of Theorem 1.4 Recall that Dn is the collection of dyadic squares of
side 2−n. For � = 2−n we have, by the de�nition of S�, that

S� =
∑
Q∈Dn

∫
Q

∫
Q
g�(x − y)d�(x)d�(y) :

All the integrands on the right-hand side are bounded below by a positive
constant c = c(d) which does not depend on n. Hence by Theorem 1.5, there
is a random constant C′ = C′(!) such that, with probability one, for all n∑

Q∈Dn
�(Q)2 5 c−1S2−n 5 C′

{
4−n; d= 3 ;
n4−n; d = 2 :

(15)

Thus, by Theorem 2.1, with probability 1,

Ef(�)5 C′c1
∞∑
n=n0

(f(2−n)− f(21−n))
{
4−n; d= 3 ;
n4−n; d = 2 ;

where n0 = n0(!) is de�ned by 2−n0 = diameter(B[0; 1])¿2−n0−1; and c1
depends only on d. Since f is monotone decreasing, by adjusting C′ we
may replace n0 by 1 in the above sum, and we obtain (3) after a summation
by parts.

3.2 The zero-set

We �rst prove a proposition, which, loosely speaking, will play the role that
Theorem 1.5 did in the previous proof. Recall that l( · ) denotes local time
at 0.

Proposition 3.1 Consider the quadratic variation of l at scale �:

L� =
d�−1e∑
j=0

[l((j + 1)�)− l(j�)]2 :

With probability 1, there exists a random C = C(!) such that

L� 5 C�1=2 for all � ¿ 0 : (16)

Proof. We consider separately the summands for odd and even j in L�. Denote
one-dimensional Brownian motion by Bt . For �xed �¿0, let j1; j2; : : : ; be a
left-to-right enumeration of all the odd j = 1 such that Bt = 0 for some t in
the interval [(j − 1)�; j�]. Let M (�) := max{i: ji�5 1 + �} be the number of
these intervals which intersect [0; 1].
De�ne stopping times Ti = inf{t ∈ [(ji − 1)�; ji�]: Bt = 0}, and let Xi :=

l(Ti + �)− l(Ti). The strong Markov property at the times Ti implies that, for
�xed �, the variables {Xi}i=1 are i.i.d. with the law of l(�), which is the same
as the law of |B�|. In particular X 2i have mean � and exponentially decaying
tails. Thus the partial sums Yk(�) :=

∑k
i=1Xi satisfy

P(Yk(�)¿ 2k�)5 e−ck for some constant c ¿ 0 : (17)
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By the argument leading to (13), with probability 1 there exists a �∗ = �∗(!)
such that

M (�)5 c2l(1)�−1=2 for all � ¡ �∗ ; (18)

with c2 an absolute constant.
Denote Y (n) := YM (2−n)(2

−n). Since k = k(n) = c2l(1)2n=2 is eventually
larger than n, we see that

P[Y (n) ¿ 2c2l(1)2−n=2 i:o:]

5 P[M (2−n)¿ c2l(1)2n=2 i:o:]

+ P [for in�nitely many n; ∃k ¿ n : Yk(2−n)¿ 2k2−n] :

The �rst probability in the sum vanishes by (18), and the second by (17)
and Borel–Cantelli. Thus a.s. there is a random constant A = A(!) such that
Y (n) 5 A2−n=2 for all n. Now Y (n) is an upper bound for the sum over all
odd indices j in the quadratic variation L2−n , and the even indices are handled
similarly. Consequently 2n=2L2−n is a.s. bounded by a random constant.

To go from the powers of 1
2 to general �, observe that any interval I can

be covered by three shorter dyadic intervals, say J1; J2; J3. Clearly l(I)2 5
3(l(J1)2 + l(J2)2 + l(J3)2). Therefore, if 21−n¿�= 2−n then L� 5 6L2−n .
This concludes the proof.

Proof of Theorem 1.7 Follow the proof of Theorem 1.4 given in Sect. 3.1,
replacing � by l and using Proposition 3.1.

4 Probabilities of �-approach

In this section we prove Theorem 1.3. The next deterministic proposition states
that the capacity of an �-sausage is equivalent to the capacity of the original set
with respect to an �-smoothed kernel. More precisely, given a kernel function
f and �¿0; let

�f(�) = �−dd
�∫
0
f(s)sd−1ds ;

and de�ne

f�(r) =
{
f(r) if r = � ;
�f(�) if r ¡ � :

Note that f� is decreasing, since f is. Also, �f(�)¡∞ provided that
Capf(R

d)¿0; which we may always assume.
For a Borel set � ⊂ Rd; we denote the �-sausage about � by

�� = {x: |x − y|¡ � for some y ∈ �} :
Recall that “�” (“is comparable to”) means that the two quantities are within
�nite positive constant multiples of each other, the constants depending only
on the dimension d. Similarly, the expression “a ≺̇ b” will mean “a5 cdb”.
We also use the notation Q ∈ Dn for dyadic cubes introduced at the beginning
of Sect. 2.
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Proposition 4.1 For any Borel set � ⊂ Rd; kernel function f; and �¿0; we
have

Capf(��) � Capf�(�) : (19)

Proof. It clearly su�ces to prove the proposition for compact �. We �rst show
that the left-hand side of (19), is, up to a constant factor, greater than the right.
Given a probability measure � on �, it is natural to smooth it by convolving
with normalized Lebesgue measure on a ball of radius �. It will be even easier
to control a discrete version of this convolution. Choose m� and n� so that

2−m� ¡ �5 2−m�+1 and
√
d2−n� ¡ �5

√
d2−n�+1 :

Observe that the de�nition of �f(�) and the monotonicity of f imply that

�f(�) � ∑
n=m�

f(2−n)2d(m�−n) : (20)

De�ne a smoothed probability measure �� by

d�� | Q = 2n�d�(Q)dx | Q; for Q ∈ Dn� ;
where dx denotes Lebesgue measure.
Suppose � is supported on �; then �� is supported on ��. Note that for every
n we have ∑

Q∈Dn
��(Q)2 5 2d(n�−n)

∑
Q∈Dn�

�(Q)2 ;

indeed for n= n� the two sides are clearly equal, while for n¡n� the inequal-
ity follows from Cauchy–Schwarz, since every Q ∈ Dn is the union of 2d(n�−n)
cubes in Dn� . Thus using (7) to expand Ef(��) gives

Ef(��)
≺̇ ∑
n¡m�

(f(2−n)− f(21−n)) ∑
Q∈Dn

�(Q)2

+
∑
n=m�

(f(2−n)− f(21−n))2d(n�−n) ∑
Q∈Dn�

�(Q)2 : (21)

Since 2dn� � 2dm� ; by (20) the last line is comparable to
( �f(�)− f(21−m�)) ∑

Q∈Dn�
�(Q)2 :

Invoking (7) again, we infer that

Ef(��)
≺̇
Ef�(�) : (22)

(The reverse inequality �̇ also holds, but we will not need it.) The asserted
inequality Capf(��)

−1 ≺̇ Capf�(�)
−1 now follows by taking the in�mum in

(22) as � ranges over probability measures on �.
To obtain the reverse inequality, we use a Borel-measurable mapping

� : �� → �, which moves every point by at most �. For instance, �(x) can
be de�ned as the lexicographically minimal y ∈ � such that |y − x|5 �.
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Suppose that � is a probability measure on ��; and consider the projected
measure ��−1 on �. As before, we have

Ef�(��
−1) � ∑

n¡m�
(f(2−n)− f(21−n)) ∑

Q∈Dn
��−1(Q)2

+ ( �f(�)− f(21−m�)) ∑
Q∈Dm�

��−1(Q)2 : (23)

Now for each cube Q ∈ Dn, the preimage �−1(Q) is contained in the union of
the cubes Q′ ∈ Dn such that dist (Q′; Q)¡�. If n5 m�, then there are at most
5d such cubes Q′; and hence by Cauchy–Schwarz,

��−1(Q)2 5 5d
∑

Q′∈Dn
�(Q′ ∩ �−1Q)2 :

Therefore for n5 m�,∑
Q∈Dn

��−1(Q)2 5 5d
∑

Q′∈Dn

( ∑
Q∈Dn

�(Q′ ∩ �−1Q)2
)
5 5d

∑
Q′∈Dn

�(Q′)2 :

(24)
Combining (23) and (24), we get

Ef�(��
−1) ≺̇

∑
n¡m�

(f(2−n)− f(21−n)) ∑
Q∈Dn

�(Q)2

+ ( �f(�)− f(21−m�)) ∑
Q∈Dm�

�(Q)2 : (25)

On the other hand, we can use Cauchy–Schwarz to bound the energy Ef(�)
from below:

Ef(�)
�̇ ∑
n¡m�

(f(2−n)− f(21−n)) ∑
Q∈Dn

�(Q)2

+
∑
n=m�

(f(2−n)− f(21−n))2m�−n ∑
Q∈Dm�

�(Q)2 : (26)

By using (20) to compare (25) and (26), we see that

Ef�(��
−1) ≺̇ Ef(�) ;

and taking the in�mum over probability measures � on �� completes the proof.

Next, we recall the well-known quantitative version of the classical equiv-
alence between the capacity of a set and its probability of being hit by a
stable process. As in the introduction, let P�x denote the law of a symmetric
�-stable process (X �t ) started at x ∈ Rd with potential density f(�)(|x − y|) =
c(�)|x − y|�−d and trace [X �].

Proposition 4.2 (see, e.g., [24, Lemma 2], or [19, Proposition 3.2]) Let � be
any Borel subset of Rd; and suppose there are positive numbers k and K such
that k 5 f(�)(|x − y|)5 K for all y ∈ �. Then

k Capf(�) (�)5 P�x[[X
�] ∩ �-∅]5 K Capf(�) (�) :
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Proof of Theorem 1.3 Recall the notation �f(�) and f� introduced at the
beginning of this section. The proof begins similarly to that of Theorem 1.4.
By Theorem 1.5, for some �xed constants c and c′¿0; with probability 1 there
exists n∗ = n∗(!) such that

c4−n 5 S2−n 5 c′4−n for n ¿ n∗ : (27)

By (7) and (15), we have

E
f (�)�
(�) ≺̇

( ∑
n5n∗

+
∑
n¿n∗

)
(f(�)� (2−n)− f(�)� (2−n+1)) S2−n : (28)

Assume that �¡2−n∗ . Then the �rst sum is clearly 5f (�)(2−n∗). On the other
hand, a simple integration shows that

f(�)(�) =
c(�)
�
��−d for �¿0 : (29)

Assume now that �¡d− 2. Substituting (27) into the second sum in (28),
summing by parts (as in the proof of Theorem 1.4), and letting �↓0 shows that

E
f (�)�
(�) ≺̇

c(�)
�(d− �− 2) �

2+�−d

for all � less than some �0(!). So, by Proposition 4.1,

Capf (�) ([B]�) � Capf (�)�
([B]) �̇

�(d− �− 2)
c(�)

�d−2−�

for �¡�0. Since dist([X �]; [B])¡� if and only if X � hits [B]�, the above estimate
and Proposition 4.2 establish the desired lower bound on P�x[dist([X

�]; [B])¡
� |B]. A similar calculation handles the case � = d− 2. The proof of the upper
bound is entirely analogous, using the general upper bound on capacity (8) and
the strong law for volumes of Wiener sausages alluded to above (11) instead
of Theorem 1.5.

5 Proof of the strong law for S� (Theorem 1.5)

We prove Theorem 1.5 only for the case d=3. Our elementary method
also works with only minor modi�cations for d = 2, but since this case
follows from Varadhan’s renormalization, which has received at least four
proofs ([26, 22, 15, 28]), we omit it here. Throughout this section, we assume
d=3.
The argument follows classical lines: Estimate the �rst two moments, use

Chebyshev’s inequality to obtain convergence along a subsequence, and inter-
polate. However, showing that the variance of S� is of lower order than the
squared mean requires some care, so we include the details.
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5.1. Moment estimates

De�ne the joint probability densities p(t1; : : : ; tk ; x1; : : : ; xk) by

P(Bt1 ∈ A1; : : : ; Btk ∈ Ak) =
∫

A1×:::×Ak
dx1 : : : dxk p(t1; : : : ; tk ; x1; : : : ; xk) ;

Ai ⊂ Rd Borel.
Proposition 5.1

ES� =
4

d− 2�
2 + �d(�) ; (30)

where

�d(�) =


O(�3); d = 3 ;
O(�4 log 1� ); d = 4 ;

O(�4); d=5 ;

as �↓0.
Proof. By de�nition,

ES� = 2
∫

05 t15 t251
dt1 dt2

∫
(Rd)2

dx1 dx2 p(t1; t2; x1; x2) g�(x1 − x2)

= 2
1∫
0
ds

1− s
(2�s)d=2

∫
Rd
dy exp

[
−1
2
|y|2

(
1
s
+
1
�2

)]
;

after changing variables s ≡ t2 − t1 and y ≡ x2 − x1 and integrating out �rst x1
and then t1. Therefore

ES� = 2
1∫
0
ds (1− s)

(
�2

�2 + s

)d=2

= 2�d
1∫
0

ds
(�2 + s)d=2

− 2�d
1∫
0

s ds
(�2 + s)d=2

:

One readily checks that the �rst term equals the right-hand side of (30), while
the second is easily bounded using

1∫
0

s ds
(�2 + s)d=2

5
1∫
0

ds

(�2 + s)
d
2−1

Proposition 5.2 (The second moment)

ES2� =
(

4
d− 2�

2
)2
+ �′d(�) ; (31)
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where

�′d(�) =


O(�5); d = 3 ;
O(�6 log 1� ); d = 4 ;

O(�6); d=5 ;
as �↓0.
In the calculations below, we always have s; si; t=0. We will repeatedly

use the following bound:∫∫
s+t51

ds dt
s

(�2 + s)d=2
1

(�2 + t)d=2
5

1∫
0

ds
(�2 + s)d=2−1

1∫
0

dt
(�2 + t)d=2

=


O(�−1); d = 3 ;
O(�−2 log 1� ); d = 4 ;

O(�6−2d); d=5 :

(32)

Call these orders of magnitude 	d(�). Note that

�2d	d(�) = �′d(�) : (33)

Proof of Proposition 5.2

ES2� = 8
∫∫∫∫

05 t15:::5 t451
dt1 : : : dt4

∫∫∫∫
(Rd) 4

dx1 : : : dx4 p(t1; : : : ; t4; x1; : : : ; x4)

× {g�(x1 − x2)g�(x3 − x4) + g�(x1 − x3)g�(x2 − x4)
+ g�(x1 − x4)g�(x2 − x3)}

= 8(I1 + I2 + I3) ;

say. The calculations below show that 8I1 is equal to the right side of (31), and
that the other integrals are of the smaller order. The latter fact makes intuitive
sense: as �↓0, the major contribution to each Ii comes from the region of
the time simplex where the path increments being weighted by g� have small
time increments. But for I2; I3, this requires that at least three time-increments
be small simultaneously, putting us in a corner of the simplex and so losing
powers of � asymptotically.

Estimation of I1 Changing variables si ≡ ti+1 − ti and yi ≡ xi+1 − xi, and in-
tegrating out two unweighted space–time increments,

I1 =
∫∫

s1+s351
ds1 ds3

(1− s1 − s3)2
2

× 1
(2�s1)d=2

∫
Rd
dy1 exp

[
−1
2
|y1|2

(
1
s1
+
1
�2

)]

× 1
(2�s3)d=2

∫
Rd
dy3 exp

[
−1
2
|y3|2

(
1
s3
+
1
�2

)]

= �2d
∫∫

s1+s351
ds1 ds3

(1− s1 − s3)2
2

1
(�2 + s1)d=2

1
(�2 + s3)d=2

: (34)
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Expanding (34) and using (32) and (33),

I1 =
1
2
�2d

∫∫
s1+s351

ds1 ds3
1

(�2 + s1)d=2
1

(�2 + s3)d=2
+ �′d(�) : (35)

To handle the �rst term,

1∫
0
ds1

1
(�2 + s1)d=2

1−s1∫
0
ds3

1
(�2 + s3)d=2

=
1∫
0
ds1

1
(�2 + s1)d=2

2
d− 2(�

2−d − (�2 + 1− s1)1− d
2 ) : (36)

The �rst term of this is (
2

d− 2
)2
�4−2d + O(�2−d)

while the absolute value of the second (negative) term in (36) is bounded by
integrating on [0, 12 ] and [

1
2 , 1] separately:

1∫
0
ds1

1
(�2 + s1)d=2

1

(�2 + 1− s1) d2−1
5 	d(�)

with room to spare. Multiplying everything by 8 · 1
2�
2d gives the right-hand

side of (31).

Estimation of I2 With the same change of variables si ≡ ti+1 − ti and yi ≡
xi+1 − xi, we integrate out y0 and s0 to obtain
I2 =

∫∫∫
s1+s2+s351

ds1 ds2 ds3 (1− s1 − s2 − s3)

× 1
(2�s1)d=2

1
(2�s2)d=2

∫∫
(Rd)2

dy1 dy2 exp−
1
2

( |y1|2
s1

+
|y2|2
s2

+
|y1 + y2|2

�2

)

× 1
(2�s3)d=2

∫
Rd
dy3 exp−

1
2

( |y3|2
s3

+
|y2 + y3|2

�2

)
:

Changing variables t ≡ s1 + s2; z ≡ y1 + y2 and integrating out y1 and s1,
we get

I2 =
∫∫

t+s351
dt ds3 (1− t − s3)t

× 1
(2�t)d=2

∫
Rd
dz exp

[
−1
2
|z|2
(
1
t
+
1
�2

)]

× 1
(2�s3)d=2

∫
Rd
dy3 exp−

1
2

( |y3|2
s3

+
|y2 + y3|2

�2

)
: (37)
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We bound the last factor above (line (37)) by noticing that it is

= (2��2)d=2
∫
Rd
p(s3;y3)p(�2;−y2 − y3) dy3

= (2��2)d=2 p(s3 + �2;−y2)

5
�d

(�2 + s3)d=2
:

Thus

I2 5 �2d
∫∫

t+s351
dt ds3 (1− t − s3)t 1

(�2 + t)d=2
1

(�2 + s3)d=2

5 �2d
∫∫

t+s351
dt ds3

1

(�2 + t)
d
2−1

1
(�2 + s3)d=2

= �′d(�)

by (32) and (33).

Estimation of I3 Similarly,

I3 =
∫∫∫

s1+s2+s351
ds1 ds2 ds3 (1− s1 − s2 − s3)

× 1
(2�s2)d=2

∫
Rd
dy2 exp

[
−1
2
|y2|2

(
1
s2
+
1
�2

)]

× 1
(2�s1)d=2

1
(2�s3)d=2

∫
(Rd)2

dy1 dy3

× exp−1
2

( |y1|2
s1

+
|y3|2
s3

+
|y1 + y2 + y3|2

�2

)
:

Changing variables t ≡ s1 + s3; z ≡ y1 + y3 and integrating out y1 and s1,
we have

I3 =
∫∫

t+s251
dt ds2 (1− t − s2)t

× 1
(2�s2)d=2

∫
Rd
dy2 exp

[
−1
2
|y2|2

(
1
s2
+
1
�2

)]

× 1
(2�t)d=2

∫
Rd
dz exp−1

2

( |z|2
t
+
|z + y2|2
�2

)
:
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As at (37), the last factor above is bounded by �d=(�2 + t)d=2, and we obtain

I3 5 �2d
∫∫

t+s251
dt ds2 (1− t − s2)t 1

(�2 + s2)d=2
1

(�2 + t)d=2

5 �2d
∫∫

t+s251
dt ds2

1
(�2 + s2)d=2

1

(�2 + t)
d
2−1

= �′d(�)

by (32) and (33).

5.2 Almost-sure convergence

We need the following deterministic lemma. For any Borel measure � on Rd

and �¿0, de�ne

S�(�) =
∫
Rd

∫
Rd
g�(|x − y|)d�(x)d�(y) :

Thus S� = S�(�):

Lemma 5.3 For any Borel measure � on Rd; the quantity �−dS�(�) is mono-
tone decreasing in �. In particular; �−dS� is a.s. monotone decreasing in �.

Proof. Let ̂ denote the Fourier transform, so that for � ∈ Rd;
ĝ� (�) = (2�)−d=2

∫
Rd
g�(x)e−i� · x dx

= �de−�
2|�|2=2 :

Then, by Plancherel’s formula,

�−dS�(�) = �−d
∫
Rd
ĝ� (�)|̂�(�)|2 d�

=
∫
Rd
e−�

2|�|2=2 |̂�(�)|2 d� :

and the lemma clearly follows.

Proof of Theorem 1.5

By Propositions 5.1 and 5.2,

Var(S�) =


O(�5); d = 3 ;

O(�6 log 1
� ); d = 4 ;

O(�6); d= 5 :

By Chebyshev’s inequality, for any � ¿ 0,

P(|S� − ES�|¿ ��2)5 �−2�−4 Var(S�) = O(�) :
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The right-hand side is summable as � runs over the sequence �n = n−2, so by
Borel–Cantelli and Proposition 5.1,

�−2n S�n →
4

d− 2 as n→∞; a:s : (38)

Now for arbitrary positive � ¡ 1, choose n such that �n+1 ¡ �5 �n. Then
by Lemma 5.3,

�−dn S�n 5 �−dS� 5 �−dn+1S�n+1
so that

(�=�n)d−2�−2n S�n 5 �−2S� 5 (�=�n+1)d−2�−2n+1S�n+1 :

Thus �−2S� is sandwiched between two expressions which tend to 4=(d− 2)
as � ↓ 0, and we’re done.

6 Concluding remarks

(1) The following example shows that the uniformity in capacity-equivalence
statements for random sets is not automatic. Consider the random Cantor set
� in [0; 1] constructed as follows. For each k = 1, pick a random integer nk
uniformly in the interval [3k + k; 3k+1 − k], with all picks independent; de�ne
� to be the set of all sums

∑∞
n=1 an4

−n with

an =


0 for n ∈ (nk − k; nk ] ;
0; 1; 2; 3 for n ∈ (nk ; nk + k] ;
0; 3 otherwise :

Then it is not hard to check that for �xed f; with probability one, Capf (�)¿ 0

if and only if
∫ 1
0 f(r)r

−1=2dr ¡∞. (See [20] for details.) However, � is not
capacity-equivalent to the middle- 12 Cantor set; indeed there exists a random
kernel f∗ (depending on the sample �) that satis�es this integrability condition
but gives Capf∗ (�) = 0.
(2) In 1969 Varadhan [26] proved that, in two-dimensions two, �−2(S� − ES�)
converges a.s. to a well-de�ned random variable. This clearly implies the pla-
nar case of our Theorem 1.5. Varadhan’s renormalization has received many
proofs and extensions. (See [26, 22, 15, 28, 7, 8] as well as Chap. VIII of [16]
and the bibliographical notes there.) Rosen [23, Remarks II–III], gives detailed
calculations which are close in spirit to ours (though more Fourier-analytic),
and which could probably be extended to d= 3 to yield our Theorem 1.5.
While self-intersection local time exists in three-dimensions 3 as well as two-
dimensions 2, there seems to be no analogue of Varadhan’s almost-sure renor-
malization there. However, Yor [27] shows that the renormalized S� converge in
law for d = 3. Yor establishes that �−3(log 1

� )
−1=2(S� − ES�) converges in law

(to a Gaussian) as � ↓ 0; this seems tighter than the estimate Var[S�] = O(�5)
given in (31).
(3) Does Brownian motion in three-space almost surely have the property that
all of the orthogonal projections to planes of its trace are capacity-equivalent
to each other?
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(4) Let B and B′ be two independent standard Brownian motions in R3. The
“fractal percolation” methods of [18, 19], which are based on the results of
Lyons [17], imply the following: for any �xed kernel f; the capacity of the in-
tersection Capf (B[0; 1] ∩ B′[0; 1]) is almost surely positive if Capf ([0; 1])¿0;
otherwise with probability 1 the intersection has capacity 0 in this kernel. How-
ever, these methods do not indicate if this holds uniformly in the kernel.

Is the intersection B[0; 1] ∩ B′[0; 1] of two independent Brownian traces in
R3; almost-surely capacity-equivalent to [0; 1]?
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