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Summary. We apply a version of the Strassen–Dudley theorem for Markov
kernels to obtain a strong approximation theorem for sequences of random vari-
ables with values in Polish spaces. The conditions are expressed in terms of the
Prohorov distance of regular conditional distributions. By avoiding discrete ap-
proximation of the random variables we can improve the upper bounds for the
approximation.
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1. Introduction

Strong approximation results have been proved under various assumptions. These
can be traced back to the work of Strassen (1964), where an almost sure invari-
ance principle was established for sums of independent identically distributed
random variables using the Skorohod embedding theorem. By the technique de-
veloped in Berkes and Philipp (1979) it was possible to derive invariance prin-
ciples not only for real valued but also for random variables with values in a
separable Banach space. Several papers deal with this situation (see Morrow and
Philipp (1982), Monrad and Philipp (1991) or Philipp (1986)). This method also
can be used to derive strong approximation theorems for time continuous stochas-
tic processes (see Eberlein (1989, 1992) and Besdziek (1991)).

All these results are based on the following situation: Let X, Y be random
variables on (Ω,F,P) with values in a Polish space S. Letµ denote a law on
S× S with first marginalL(Y) such that the second marginal is close toL(X)
(in some sense). Then, we are interested in the existence of a random variable
Z on (Ω,F,P) such that (Y,Z) is distributed according toµ and Z is close to X
with probability close to 1.
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This procedure can be splitted into two steps: First, we look for an appropriate
law on the product space and second, we have to find random variables defined
on (Ω,F,P), which are distributed according to this law. The latter point is
answered almost completely by Dudley and Philipp (1983), Lemma 2.11. For
the first step, it is essential to find a proper formulation for the condition on the
closeness of the conditional laws.

The purpose of this paper is to state the conditions for nearby variables in
terms of a modification of the Prohorov distance of regular conditional distri-
butions. The advantage of this is twofold: Avoiding the necessity of discrete
approximation the proof becomes much more elegant and above this, we get a
stronger quantitative estimate (see Remark 2.3). The simple and useful tool for
this is the formulation of the Strassen-Dudley theorem for Markov kernels in
Lemma 3.1.

We use this estimate to establish a strong approximation theorem for se-
quences of random variables where an appropriate adapted sequence of ran-
dom variables will be defined on a given filtered space. This result can be ap-
plied to the approximation of stochastic processes (see Römersperger (1993) and
Eberlein and R̈omersperger (1996)).

2. Statement of results

Let (S, σS) be a Polish space provided by the Borelσ-fieldB(S) and denote by
M(S) the set of Borel probability measures on S. Forµ, ν ∈ M(S) andα > 0
we set

π(α, µ, ν) := inf{β > 0|µ(A) ≤ ν(Aα] ) + β for all closed A⊂ S} ,
whereAα] denotes the closedα-neighbourhood of A. We denote byM(µ, ν) the
set of measuresλ ∈ M(S× S) with marginalsµ, ν. We use the corresponding
notation for the Polish spaces (R, σR) and (T, σT ) and denote byL(Y) or Y(Q)
the distribution of a random variable Y (under Q).σ(Y) stands for the sub-σ-field
generated by the random variable Y.

Our main result is the following:

Theorem 1. Let (Ω,F,P), (E ,G,Q) be probability spaces and letF1, F2 be
sub-σ-fields ofF such thatF1 ⊂ F2. We consider the following random variables,
each having values in a Polish space:

(V ,Y ,Z) : (E ,G,Q) → (R× S× T,B(R× S× T)) ,

Y∗ : (Ω,F1,P) → (S,B(S)) ,

X : (Ω,F2,P) → (T,B(T)) .

Assume thatL(Y) = L(Y∗) holds. Forα > 0 let β : S → [0,∞[ denote a measu-
rable function such that there are regular versions of the conditional distributions
for which
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π(α,P[X ∈ ·|Y∗ = y],Q[Z ∈ ·|Y = y]) ≤ β(y) (2.1)

holds for all y∈ S . Assume that there exist a random variable U: (Ω,F2,P) → R

and a regular version of the conditional distribution P[U ∈ du|(X,Y∗) = (x, y)]
having no atoms for all(x, y) ∈ T × S . Then there exist random variables

Z∗ : (Ω,F2,P) → (T,B(T)) ,

V ∗ : (Ω,F2,P) → (R,B(R)) ,

with the following properties:

L(Y ,Z ,V ) = L(Y∗,Z∗,V ∗) ,

P[σT (X,Z∗) > α] ≤ EQ[β(Y)] .

Remark 2.1.At a first reading the random variables V andV ∗ can be neglected.
They are of use in cases, where we want to redefine besides Z some other random
variable V in keeping with the common distribution.

Remark 2.2.For the applicability of Theorem 1 it is crucial to express Ineq. (2.1)
in terms of standard conditions. In the special caseT = Rd this can be done using
conditional characteristic functions. Ford = 1 let N0, % be fixed with 2N0 ≥ %.
N (0, 1) denotes the standard normal distribution. Then a functionβ(·) satisfying
Ineq. (2.1) can be chosen such that

EQ[β(Y)]

≤ 2π−1N0α%
−1

∫
{|u|≤2α−1%2}

EQ

[∣∣∣EQ[exp(iuZ)− EP[exp(iuX)|Y∗ = ·](Y)|σ(Y)]
∣∣∣]du

+P[|X| > N0α%
−1] + (7N0 + 3)N (0, 1)[| · | > %] .

By reason of symmetry the termP[|X| > N0α%
−1] on the right-hand side can

be replaced byQ[|Z | > N0α%
−1]. If X is independent ofF1 then we have a. s.

EP[exp(iuX)|Y∗ = ·] = EP[exp(iuX)] .

Remark 2.3.To illustrate the use, let us mention that Theorem 1 in Monrad and
Philipp (1991) can be deduced as a corollary of our main theorem with a better
estimation, i.e. (ford = 1) the constantα can be chosen as

α := 12T−1 log(T) + 2π−1λT2 + δ

instead of (2.1.6) in Monrad and Philipp (1991). The same improvement holds
for all other comparable estimates (e.g. in Berkes and Philipp (1979); Monrad
and Philipp (1992)).



374 M. Römersperger

Theorem 2. Let (E ,G , (Gk)k∈N,Q) be a filtered space, i.e. a probability space
provided by an increasing sequence of sub-σ-fields. Let(Vk)k∈N and (Zk)k∈N be
sequences of random variables defined on(E ,G ,Q) and adapted to(Gk)k∈N
such that Vk (resp. Zk) takes values in a Polish space(Rk , σRk ) (resp.(Tk , σTk ))
for each k∈ N. Let (Xk)k∈N be an adapted sequence of random variables on
the filtered space(Ω,F, (Fk)k∈N,P) such that Xk is independent ofFk−1 and
takes values in(Tk , σTk ). Denote byF0 and G0 the trivial σ-field. Assume that
there exists an adapted sequence(Uk)k∈N of real-valued random variables on
(Ω,F, (Fk)k∈N,P) such that a suitable regular version P[Uk ∈ ·|Xk = x] of
the conditional distribution has no atoms for all x∈ Tk and that (Uk ,Xk) is
independent ofFk−1.

Let βk :
∏k−1

j =1 Rj ×
∏k−1

j =1 Tj → [0, 1] be a measurable function such that for

a fixed sequence(αk)k∈N of non-negative numbers and for all y∈ ∏k−1
j =1 Rj ×∏k−1

j =1 Tj , k ∈ N

π(αk ,P[Xk ∈ ·],Q[Zk ∈ ·|((Vj )j≤k−1, (Zj )j≤k−1) = y]) ≤ βk(y) . (2.2)

Then there exist adapted sequences(V ∗
k )k∈N, (Z∗

k )k∈N of random variables on
(Ω,F, (Fk)k∈N,P) withL((Vk ,Zk)k∈N) = L((V ∗

k ,Z
∗
k )k∈N) such that for all k∈ N

P[σTk (Xk ,Z
∗
k ) > αk ] ≤ EQ[β((Vj )j≤k−1, (Zj )j≤k−1)] .

Remark 2.4.Setting Yk := ((Vj )j≤k−1, (Zj )j≤k−1) and Y∗
k := ((V ∗

j )j≤k−1,
(Z∗

j )j≤k−1) for eachk ≥ 2 the proof follows inductively by application of The-
orem 1.

Remark 2.5.In the special caseTk = R a sequence (βk(·))k∈N of measurable
functions satisfying (2.2) can be chosen such that for all non-negative numbers
Nk , %k with 2Nk ≥ %k

EQ[βk((Vj )j≤k−1, (Zj )j≤k−1)]

≤ 2π−1Nkαk%k
−1

∫
{|u|≤2αk

−1%k
2}

EQ

[∣∣∣EQ[exp(iuZk)|Gk−1] − EP[exp(iuXk)]
∣∣∣]du

+P[|Xk | > Nkαk%k
−1] + (7Nk + 3)N (0, 1)[| · | > %k ]

holds for allk ∈ N. This follows along the same line as Remark 2.2.

3. Proofs

Let (R, σR), (S, σS) and (T, σT ) be Polish spaces. Then the Strassen–Dudley
theorem (Dudley (1989), Theorem 11.6.2) can be restated for Markov kernels,
which is essential for the proof of the theorem.
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Lemma 3.1. Let K, L be Markov kernels from S to T and letβ : S → [0,∞[ be
a measurable function. Assume that for a fixedα > 0 and for all x ∈ S

π(α,K (x, ·), L(x, ·)) ≤ β(x) .

holds. Then for eachµ ∈M(S) there exists a Markov kernel M from S to T× T
such that forµ-a.e. x∈ S

M (x, ·) ∈ M(K (x, ·), L(x, ·)) , (3.1)

M (x, {σT (·, ·) > α}) ≤ β(x) . (3.2)

Proof. The existence of a measureM (x, ·), x ∈ S with the desired properties
immediately follows by the Strassen-Dudley theorem. All we have to think about
is the measurability. For this, we define a multifunction F on S,

F (x) := {λ ∈M(T × T)|λ ∈ M(K (x, ·), L(x, ·)), λ(σT (·, ·) > α) ≤ β(x)} .
Denote byB̂(S) the (universal) completion ofB(S). By applying a measurable
selection theorem (Sainte-Beuve (1974), Proposition 3) we get a Markov kernel
M̂ from (S, B̂(S)) to (T × T,B(T × T)) such that (3.1) and (3.2) hold for all
x ∈ S. For µ ∈ M(S) let µ̂ be the unique extension ofµ to B̂(S) and define
λ̂ ∈M(S× T × T, B̂(S)⊗B(T × T)) by

λ̂(A) :=
∫

S

∫
T×T

1A(x, y1, y2)M̂ (x, dy1, dy2)µ̂(dx) .

and considerλ as the restriction of̂λ to B(S) ⊗B(T × T). Choosing M as a
suitable factorization ofλ = M ⊗ µ we get the appropriate kernel.

Lemma 3.2. Let X : (Ω,F,P) → (S,B(S)) be a random variable, let Q be a
Borel law on S×T with marginalL(X) on S. Assume there is a random variable
U : (Ω,F,P) → (R,B(R)) and a regular version of the conditional distribution
P[U ∈ du|X = x] having no atoms for all x∈ S . Then there exists a random
variable Y : (Ω,F,P) → (T,B(T)) with L(X,Y) = Q .

This is just a modification of Dudley and Philipp (1983), Lemma 2.11, but
in some situations this version is more tractable. The equivalence of both
versions immediately can be deduced applying the lemma to a suitable pro-
duct measure Q. As the proof is nearly the same the reader is refered to
Dudley and Philipp (1983).

Proof (of Theorem 1).Lemma 3.1 yields the existence of a Markov kernel M
from S toT × T such that forY(Q)-a.e.y ∈ S

M (y, ·) ∈ M(P[X ∈ ·|Y∗ = y],Q[Z ∈ ·|Y = y]) ,

M (y, {σT (·, ·) > α}) ≤ β(y) .

Let K : S× T ×B(R) → [0, 1] be a regular version ofQ[V ∈ ·|(Y ,Z) = ·]. We
define a lawλ ∈M(S× T × T × R) by
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λ(C) :=
∫ ∫ ∫

1C (y, x, z, v)K (y, z, dv)M (y, dxdz)Y(Q)(dy) .

Denoting byπI the projection corresponding toI ⊂ {1, 2, 3, 4} and remembering
L(Y) = L(Y∗) we get

π{1,3,4}(λ) = L(Y ,Z ,V ) ,

π{1,2}(λ) = L(Y∗,X) ,

π{2,3}(λ)({σT (·, ·) > α}) ≤ EQ[β(Y)] .

In this situation we obtain from Lemma 3.2 random variablesZ∗, V ∗ on
(Ω,F2,P) with values in T and R such that

λ = L(Y∗,X,Z∗,V ∗) .

By the above mentioned properties ofλ the theorem is proved.

Proof (of Remark 2.2).Applying Eberlein (1989), Lemma 2 withN := N0α%
−1,

M := 2%2α−1, r := 2−1α andλ := N (0, 4−1α2%−2) we get for ally ∈ R

π(α,P[X ∈ ·|Y∗ = y],Q[Z ∈ ·|Y = y])

≤ 2π−1N0α%
−1

∫
{|u|≤2α−1%2}∣∣∣ ∫

R

exp(iuz)Q[Z ∈ dz|Y = y] −
∫
R

exp(iux)P[X ∈ dx|Y∗ = y]
∣∣∣du

+P[|X| > N0α%
−1|Y∗ = y] + (7N0 + 3)N (0, 1)[| · | > %] .

We defineβ(y) as the right-hand side of this inequality. Because of the relation
between regular conditional distribution and conditional expectation we get

β(Y) = 2π−1N0α%
−1

∫
{|u|≤2α−1%2}∣∣∣EQ[exp(iuZ)|σ(Y)] − EP[exp(iuX)|Y∗ = ·](Y)

∣∣∣du

+P[|X| > N0α%
−1|Y∗ = ·](Y) + (7N0 + 3)N (0, 1)[| · | > %] .

and hence the remark is proved.

Proof (of Remark 2.3).Recalling the notation of Theorem 1 in Monrad and
Philipp (1991) let X be aR-valued random variable defined on a probability
space (Ω,F,P) and letF1 be a countably generated sub-σ-field of F. Let U be a
uniformly distributed random variable on (Ω,F,P) assuming values in [0, 1] that
is independent of theσ-field generated byF1 andσ(X). Let G[·|F1] be a regu-
lar conditional distribution onR with conditional characteristic functiong(·|F1).
Suppose that for some numbersλ, δ > 0 andT ≥ 2
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{|u|≤T}

E
[∣∣∣E[exp(iuX)|F1] − g(u|F1)

∣∣∣]du ≤ 2λT

and
E[G[| · | ≥ 2−1T|F1]] < δ .

Since the sub-σ-field F1 is countably generated there exists a real valued ran-
dom variable Y such thatσ(Y) = F1. According to Monrad and Philipp (1991),
Lemma 2.2.1 we find aR-valued random variable Z on (Ω,F,P) and a regular
version of the conditional distribution withP[Z ∈ ·|Y = ·](Y) = G[·|F1](·).
For the application of Theorem 1 the random variable V is negligible, so
we take V := 1. Denoting Y∗ = Y Theorem 1 together with Remark 2.2
yields the existence of aR-valued random variableZ∗ on (Ω,F,P) such that
L(Y ,Z) = L(Y∗,Z∗) and

P[|X − Z∗| > α] ≤ 4π−1N0α%
−1λT + δ + (3 + 7N0)N (0, 1)(| · | > %) .

With N0 := α(2−1Tα−1)
3/2

and %2 := 2−1Tα we obtain the statement of the
remark.
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