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Cyclically stationary Brownian local time processes
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Summary. Local time processes parameterized by a circle, de�ned by the
occupation density up to time T of Brownian motion with constant drift on the
circle, are studied for various random times T . While such processes are typi-
cally non-Markovian, their Laplace functionals are expressed by series formulae
related to similar formulae for the Markovian local time processes subject to
the Ray–Knight theorems for BM on the line, and for squares of Bessel pro-
cesses and their bridges. For T the time that BM on the circle �rst returns to
its starting point after a complete loop around the circle, the local time process
is cyclically stationary, with same two-dimensional distributions, but not the
same three-dimensional distributions, as the sum of squares of two i.i.d. cycli-
cally stationary Gaussian processes. This local time process is the in�nitely
divisible sum of a Poisson point process of local time processes derived from
Brownian excursions. The corresponding intensity measure on path space, and
similar L�evy measures derived from squares of Bessel processes, are described
in terms of a 4-dimensional Bessel bridge by Williams’ decomposition of Itô’s
law of Brownian excursions.

Mathematics Subject Classi�cation (1991): 60J55, 60J65, 60G10

1 Introduction

Let P� denote the probability distribution and associated expectation operator
governing a one-dimensional Brownian motion (Bt; t = 0) started at B0 = 0;
with drift �. So the P� distribution of Bt is Gaussian with P�Bt = �t and
P�[(Bt − �t)2] = t. Let (B◦t ; t = 0) be the BM on a circle of unit circum-
ference obtained as B

◦
t = Bt mod 1, where the circle is identi�ed with [0; 1).
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Let (Lxt ; x ∈ R; t = 0) be the usual bicontinuous local time process of B,
normalized as occupation density relative to Lebesgue measure. The corre-
sponding local time process for B

◦
is (L

◦u
t =

∑
z∈Z L

u+z
t ; 05 u ¡ 1) where Z

is the set of integers. For a subinterval I of R, let C+(I) denote the space
of non-negative continuous paths with domain I . For a random time T , set
L
◦
T = (L

◦u
T ; 05 u ¡ 1), and view L

◦
T as a C

+[0; 1) valued random path. This
paper describes the P� distribution of L

◦
T on C

+[0; 1), for various random times
T , by a combination of three methods:

1) decomposition of the Brownian path by excursion theory;

2) the Ray–Knight description of various linear local time processes in terms
of squares of Bessel processes;

3) application of series formulae for the Laplace functionals of squares of
Bessel processes.

Following Williams [66–68], methods 1) and 2) have been developed and
applied by several authors. See for instance [51, 61, 40], and further work cited
in [61]. Method 3), which is described in Sect. 2, is a substitute for the tra-
ditional approach to computing Laplace transforms of additive functionals of
BM via solutions of a Sturm–Liouville equation, as presented for example in
[23, 34, 24, 51, 6]. Series formulae for solutions of Sturm–Liouville equations
are well known to analysts [42, 25, 9]. But this method has been neglected by
probabilists, even though it greatly simpli�es the computation of moment gen-
erating functions of stopped additive functionals of one-dimensional di�usions.
Such applications, indicated brie
y in Sects. 2 and 6 of this paper, will be
treated in more detail elsewhere [53]. As indicated in [50], these techniques
can also be applied to analyse local time processes de�ned by di�usions on
a network as considered in [3]. The circle is the simplest example where the
Markovian properties of linear local time processes are lost due to the feedback
e�ect of a loop [12].

For a constant time t, Bolthausen [5] showed that as t →∞ the P0 dis-
tribution of (L

◦
t −t)

√
t on C[0; 1) converges weakly to a cyclically station-

ary Gaussian process (2bu − 2
∫ 1
0 bv dv; 05 u5 1) where b is a standard

Brownian bridge. Leuridan [40] used methods 1) and 2), as developed in
[51], to describe the P0 distribution of L

◦
T for T a hitting time or an in-

verse local time of B
◦
, and to recover Bolthausen’s Gaussian limit. The pro-

cess L
◦
T is not cyclically stationary for a �xed time T , nor for any of the

random T ’s considered by Leuridan. A central result of this paper is the
following:

Proposition 1 Let T± = inf{t : |Bt | = 1}, the time when B◦ �rst returns to 0
by a complete loop around the circle, so L

◦u
T± = L

u
T± + L

u−1
T± ; 05 u ¡ 1. For

each � ∈ R, the P� distribution of L◦T± on C+[0; 1) is cyclically stationary,
reversible, and in�nitely divisible, with exponential marginals.
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Proposition 1, which is proved in Sect. 3, is a circular analog of the fol-
lowing result for linear BM:

Proposition 2 For each � ¿ 0, the P� distribution of (Lu∞; 05 u ¡∞)
on C[0;∞) is stationary, reversible, and in�nitely divisible, with exponential
marginals.

See [44, 51, 46] for similar variations of the Ray–Knight theorems from
which Proposition 2 is easily obtained along with this more precise description:

(Lu∞; 05 u ¡∞; P�) d=(Y 2(u) + Z2(u); 05 u ¡∞; P̃�) (1)

where d= denotes equality in distribution of processes on C[0;∞), and P̃�
governs (Y (u); u= 0) and (Z(u); u= 0) as two i.i.d. stationary Ornstein–
Uhlenbeck processes which are centered Gaussian with covariance func-
tion P̃�[Y (u)Y (v)] = (2�)−1e−�|v−u|. For a vector of non-negative random
variables (V1; : : : ; Vn) de�ned on some probability space (
;F; P), call the
distribution of (V1; : : : ; Vn) multivariate �2 with d degrees of freedom if it is
the distribution of the sum of squares of d independent copies of a vector of
centered jointly Gaussian variables, say (Z1; : : : ; Zn), for some d = 1; 2; : : : . In
particular, say that the distribution of (V1; V2) is �2(d; �; �2) if V1 and V2 have
a bivariate �2 distribution with d degrees of freedom, and common mean �
and correlation �2. Then Z1 and Z2 have common variance �=d and correlation
�. In terms of Laplace transforms, the P distribution of (V1; V2) is �2(d; �; �2)
i� for �i = 0

P exp(−�1V1 − �2V2) = (1 + �1� + �2� + (1− �2)�2�1�2)−d=2 : (2)

See for instance [28, 8]. According to (1) for 05 u ¡ v ¡∞

the P� distribution of (Lu∞; L
v
∞) is �

2(2; �−1; e−2�(v−u)) : (3)

Proposition 2 implies the bivariate �2 distribution is in�nitely divisible for
all choices of the parameters, a result found analytically by Vere–Jones [64],
who gave formulae for the corresponding density and L�evy measure. See also
[27, 41] for related derivations of the multivariate �2 distribution from occu-
pation times of birth and death processes, and [18] regarding conditions for
in�nite divisibility of the multivariate �2 distribution. In view of the close par-
allel between Propositions 1 and 2, it is natural to expect a �2 representation
like (1) for the circular local time process L

◦
T± . It will be shown that for all

� ∈ R and 05 u5 v ¡ 1

the P� distribution of (
◦
LuT± ;

◦
LvT±) is �

2(2; ��; �2�(v− u)) (4)

where �0 = 1; �20(p) = 1− 2p�p with �p = 1− p, and for �-0

�� = �−1 tanh � ; �2�(p) = 1−
2 sinh(p�) sinh( �p�)

cosh(�) tanh2(�)
: (5)
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But the parallel stops here. It turns out that for each �

the P� trivariate distributions of
◦
LT± are not trivariate �2 : (6)

This follows by comparison of the well known determinant formula for the
Laplace transform of the multivariate �2 distribution with the Laplace trans-
form of the �nite-dimensional distributions of L

◦
T± , which can be described as

follows (Corollary 10 and Proposition 11): for every �nite subset F of [0; 1),
and �u = 0

P0 exp
(
−∑
u∈F

�u
◦
LuT±

)
=

(
1 +

1
2
∑
A⊆F

◦
�(A)

∏
u∈A
(2�u)

)−1
(7)

where
∑

A⊆F is a sum over all non-empty subsets A of F , and
◦
�(A) is the

product of the spacings around the circle between points of A:

◦
�({u1; : : : ; un}) =

n∏
k=1
(uk − uk−1) (05 u1 ¡ · · ·¡ un ¡ 1) (8)

where u0 = un − 1. The cyclic stationarity of L◦T± under P0 is evident in this

formula by the invariance of
◦
�(A) under cyclic shifts of A. For �-0 the

corresponding formula for P� is obtained by the following modi�cation of the
right side of (7): replace the 1

2 by (2 cosh �)
−1, and modify the de�nition (8)

of
◦
�(A) by replacing each factor (uk − uk−1) by �−1 sinh(uk − uk−1)�.
The existence of a cyclically stationary Brownian local time process was

suggested by a problem about random mappings posed by Steve Evans, and
the Brownian bridge asymptotics for random mappings of Aldous–Pitman [1].
See [2] for details. The process that arises in this setting is L

◦
T−1 where T−1

is the hitting time of −1 by B governed by P0. Section 5 considers the dis-
tribution of L

◦
T for various random times T including T−1. It appears that

none of these local time processes L
◦
T has the two-sided Markov property.

Eisenbaum–Kaspi [12] show this for one particular T , and similar arguments
apply to the various other T ’s considered here. See also [19, 29] regarding
the circular Ornstein–Uhlenbeck process, which is the two-sided Markov cycli-
cally stationary Gaussian process with covariance function of (u; v) equal to
(2�(1− e−�))−1(e−�p + e−�(1−p)) for p = |v− u|. It is curious that this pro-
cess does not seem to arise in the description of circular Brownian local times.
From (4) one can construct a cyclically stationary Gaussian process with con-
tinuous paths, the sum of squares of two i.i.d. copies of which has the same
two-dimensional distributions as L

◦
T± . But even this process is not the circular

Ornstein–Uhlenbeck process. As an immediate consequence of Proposition 1
there is the following:

Corollary 3 For each �= 0 there is a di�erent one parameter family

of in�nitely divisible distributions on C+[0; 1), denoted (
◦
Q��; � ¿ 0), such

that
◦
Q1� is the P� distribution of the normalized circular local time process
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(� coth �) L
◦
T± with mean 1. Under

◦
Q�� the coordinate process (Xu; 05 u ¡

1) is cyclically stationary and reversible with gamma (�; 1) marginals.

To illustrate, replacing the power −1 by −� in (7) gives the ◦
Q�0 joint

Laplace transform of (Xu; u ∈ F). The structure of the in�nitely divisible
family (

◦
Q�0 ; � ¿ 0) is exposed in Sect. 4 by an explicit description of the corre-

sponding L�evy measure on C+[0; 1). The basic idea is that a process with distri-
bution

◦
Q�0 can be represented as an in�nite sum of random pulses where a pulse

is a continuous function on the circle which is strictly positive on some open
interval and vanishes on the complement of this interval. The random pulses are
the points of a Poisson point process on C+[0; 1) with intensity measure �

◦
M

for a �-�nite L�evy measure
◦
M on C+[0; 1) which is concentrated on pulses. A

similar description can be given for any �, by following the method of [51],
where the L�evy measure corresponding to the Ornstein–Uhlenbeck process in
Proposition 2 is described. To be more precise, make the following de�nition:

De�nition 4 Say that a C+(I) valued random variable Z = (Zu; u ∈ I)
admits a stron+ L�evy–Itô (�) representation if Zu =

∑
i Z

u
i for all u ∈ I

almost surely, where the Zi are the points of a Poisson process on C+(I)
with mean measure �, de�ned with Z on some common probability space
(
; F; P).

The distribution Q of Z on C+(I) is then the in�nitely divisible distribution
determined by the L�evy–Khintchine formula:

P exp(−mZ) = Q exp(−mX ) = exp(�(1− e−mX )) (9)

where m is a bounded positive measure on I , and for W = X or Z; mW =∫
I Wu m(du): In Sect. 4, after some development of results of [51] concern-
ing the L�evy–Itô representation of squares of Bessel processes, it is shown
that under P0 the circular local time process L

◦
T± admits a strong L�evy–Itô

(
◦
M) representation for a L�evy measure

◦
M which is described explicitly in

terms of 4-dimensional Bessel bridges. In the Poisson (
◦
M) point process

of pulses whose sum is L
◦
T± , each pulse is an increment L

◦
S − L

◦
R of the

C[0; 1) valued local time process, derived from an excursion interval (R; S)
of the basic Brownian motion B, that is an interval such that BR = BS = y
for some y, and Bt-y for t ∈ (R; S). These excursion intervals are de�ned to
be 
at intervals of the past maximum process of B if BT± = 1, and 
at in-
tervals of the past minimum process of B if BT± = −1. Call a pulse long
if it is strictly positive over the whole circle, and otherwise call it short.
Ignoring events of probability zero, the pulse associated with an excursion
interval (R; S) is long if maxR5t5S Bt −minR5t5S Bt = 1, that is if

◦
B vis-

its every point on the circle during the interval [R; S]. Summing the pulses
of the local time process over long and short excursions yields an interest-
ing decomposition of L

◦
T± into two independent in�nitely divisible cyclically
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stationary processes: L
◦
T± = L

◦
short +

◦
Llong. To illustrate, the Laplace trans-

form of the exponential distribution of L
◦u
T± admits the factorization (1 + �)−1

= �short(�)�long(�) where �short(�) = P0 exp(−�
◦
Lushort) is given by the formula

�short(�) = e
(√

2 + �−√
�√

2 + �+
√
�

)(1+�)=(√�√2+�)
: (10)

The density of the corresponding L�evy measure is K1(x)e−x where K1(x) is
the modi�ed Bessel function. The decomposition of T± into time spent during
long and short excursions yields some novel in�nitely divisible laws on (0;∞)
with Laplace transforms involving hyperbolic functions.
Finally, some open problems are mentioned in Sect. 7.

2 Squares of Bessel processes

For d = 1; 2; : : : a process (Rt; t = 0) is a d-dimensional Bessel process
started at r or BESdr for short, if (R

2
t ; t = 0) is the sum of squares of d

independent Brownian motions started at points x1; : : : ; xd with
∑

i x
2
i = r

2. For
r with r2 = x, the process (R2t ; t = 0) is then a squared d-dimensional Bessel
process started at x, or BESQdx . The distribution of a BESQ

d
x process on the

space C+[0;∞) of continuous non-negative paths is denoted by Qdx . Following
Shiga–Watanabe [60], the de�nition of Qdx extends to all real d= 0 via the
in�nite divisibility properties of the two parameter family Qdx ; x = 0; d= 0.
See also [51, 56]. Let (Xu; u= 0) denote the co-ordinate process on C+[0;∞).
As shown by Pitman–Yor [51, 52], for a positive measure m on (0;∞)

Qdx exp
(
−
∞∫
0
Xum(du)

)
= 	−d=21 exp

(
− x	0
2	1

)
(11)

where 	0 = 	0(m) and 	1 = 	1(m) can be expressed in terms of the unique
solution �m of the Sturm–Liouville equation

1
2
�′′ = m · � on (0;∞) with �(0) = 1; 05 �5 1 ; (12)

to be precise,
	1 =

1
�m(∞) ;

	0
	1

= −�′m(0) (13)

where �′m is the right derivative of �m, and �m(∞) is the limit of �m at ∞.
It is known to analysts [25, 9] that under mild conditions on m solutions of
Sturm–Liouville equations such as (12) can be expressed as in�nite series of
terms obtained from appropriate iterated intergrals with respect to m. See [53]
for discussion of such formulas and their relation to the series for the 	i(m)
presented in the following proposition:

Proposition 5 For each positive measure m on [0;∞) such that
m[0;∞)¡∞ and

∞∫
0
xm(dx)¡∞ (14)
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formula (11) holds with 	i as follows for i = 0 or 1:

	i(m) = i +
∞∑
n=1
min2n (15)

where

min =
∫

05u1¡···
m(du1) · · ·

∫
···¡un¡∞

m(dun) ui1
n∏
k=2
(uk − uk−1) : (16)

For n = 1 the empty product in (16) equals 1. So the �rst few min are

m01 = m[0;∞); m02 =
∞∫
0
m(du)

∞∫
u
(v− u)m(dv) ;

m11 =
∞∫
0
um(du); m12 =

∞∫
0
m(du)

∞∫
u
u(v− u)m(dv)

Proof. Take (15) as the de�nition of the 	i(m). It can be shown directly that
(11) holds, without consideration of the Sturm–Liouville equation. Note �rst
that it is enough to show (11) for x = 0 and some d ¿ 0, and for d = 0 and
some x ¿ 0. For a discrete measure m =

∑
u∈F �u�u, where F is a �nite subset

of [0;∞) and �u is a unit mass at u, the 	i de�ned by (15) reduce to

	i

(∑
u∈F

�u�u

)
= i +

∑
A⊆F

�i(A)
∏
u∈A
2�u (17)

where
∑

A⊆F is a sum over all non-empty subsets A of F , and

�i({u1; : : : ; un}) = ui1
n∏
k=2
(uk − uk−1) (05 u1 ¡ · · ·¡ un ¡∞) :

The special case of (11) for x = 0, d = 2, and such a discrete m, appears in
Problems 5 and 6 of Sect. 2.8 of Itô–McKean [23], solutions of which appear
in Sect. 6.4B of [26]. The discrete form of (11) with d = 0, x ¿ 0 can be
established by the method of [23], that is induction on the number of elements
of F , using the recursion derived from the Markov property of Qdx that ap-
pears in formulae (1.20) and (1.21) of Shiga–Watanabe [60], or see formula
(2.j) of [51] (which should be corrected as follows: on the second last line of
page 431, �i+1 should be �̃i+1). Formula (11) for a bounded positive measure
m with �nite �rst moment is obtained from the discrete case by straightfor-
ward approximation. In particular, elementary estimates show that the series
for 	i converge rapidly provided m has a �nite �rst moment. (cf. [9, Sect. 5.4,
Exercises 1–3]).

The Ray–Knight Theorems
The solution of the problems of [23] cited above for a discrete m yields also
the following Laplace transform, where T1 = inf{t : Bt = 1}: for every bounded
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m with support contained in [0; 1], and � ¿ 0,

P0 exp
(
−�

1∫
0
L1−u�1

m(du)
)
=

1
	1(�m)

: (18)

Combined with (11) for x = 0, d = 2, this amounts to the theorem of
Ray–Knight [30, 54] that

(L1−u�1
; 05 u5 1; P0)

d= (Xu; 05 u5 1; Q20) (19)

where d= denotes equality of distributions on C+[0; 1]. Closing up the gaps
between positive excursions of B to obtain a re
ecting BM (see [23, Sect. 2.11]
or [58, Sect. III. 22]) yields the result of Knight [31] that also

(L1−uT± + Lu−1T± ; 05 u5 1; P0)
d= (Xu; 05 u5 1; Q20) : (20)

Consequently,

formula (18) holds also with L1−uT± + Lu−1T± instead of L1−uT1
: (21)

Let (�‘; ‘= 0) be the right-continuous inverse of the process (L0t ; t = 0) of
local times of B at zero. Using the formula of Williams [66] which is derived
in Sect. 6.4C of [26], an argument parallel to the derivation of (18) shows that
for every bounded positive measure m on [0;∞) with �nite �rst moment, and
� ¿ 0,

P0 exp
(
−�

∞∫
0
Lx�‘m(dx)

)
= exp

(
−‘
2
	0(�m)
	1(�m)

)
: (22)

Combined with (11) for d = 0, x = ‘, this amounts to the Ray–Knight theorem
that

the P0 distribution of (Lu�‘ ; u= 0) is Q0‘ : (23)

Some further applications of these formulae are indicated brie
y in Sect. 6.
See also [68, 43–46, 48, 59, 56, 71, 61, 65] for other approaches to the Ray–
Knight theorems and related connections between squared Bessel processes
and Brownian local times.

Examples. For m(dy) = f(y)dy write 	i(f) and fin instead of 	i(m) and min.
Set f(y) = 0 if y ¡ 0. For a; b; c ¿ 0, let fa;b; c : x → af((x − c)=b). Then for
i = 0 or 1 and n = 1; 2; : : : ; (15) and (16) imply

(fa;b; c)in = anb2n−i(fin + icf0n) ; (24)

	i(fa;b; c) = b−i	i(ab2f) + ic	0(ab2f) : (25)

For m the uniform distribution on (0; 1) with density 1(0;1), the integrals (16)
and series (15) are easily evaluated as follows

(1(0;1))0n =
1

(2n− 1)! ; (1(0;1))1n =
1

(2n)!

	0(�1(0;1)) =
√
2� sinh

√
2� ; 	1(�1(0;1)) = cosh

√
2� : (26)
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For the indicator of an interval (c; d), say 1(c; d)(x) = 1(0;1)(x − c)=(d− c), the
formula (25) yields

	0(�1(c; d)) =
√
2� sinh(

√
2�(d− c)) ; (27)

	1(�1(c; d)) = cosh(
√
2�(d− c)) + c	0(2�1(c; d)) : (28)

Substituting these expressions in (18) and (22) yields formulae for the Laplace
transform of the time spent by B in (c; d) up to time T1 for 05 c ¡ d5 1,
or up to time �‘ for 05 c ¡ d ¡∞. Similar formulae can be obtained with
one or both of c and d negative. Another variation is obtained with (21). See
[69, 32, 34, 51, 13] for instances of these formulae, and further variations which
can be recovered by the same method. Formula (36) in the next section gives
an application on the circle. As a general rule, any explicit solution of a Sturm
–Liouville problem like (12), of which a great many are known, (see e.g. [9,
Exercise 5.4.15; 51, 53]), typically yields an evaluation of one or both of the
basic functions 	i(m) for some m. Such 	i can then be transformed to obtain
other 	i as above, without any further discussion of boundary conditions for the
Sturm–Liouville equation. See also [9, Sect. 6.9], for some more sophisticated
transformations related to Krein’s theory of strings.

Formulae for Bessel bridges
For x; y; d= 0 let Qdx→y denote the distribution on C

+[0; 1] or C+[0; 1) of the
BESQd bridge obtained from the Qdx conditional distribution of (Xu; 05u51)
given X1 = y. According to [51, 52], for m with support contained in [0; 1]

Qdx→0 exp
(
−
1∫
0
Xum(du)

)
= 	−d=2 exp

(
− x
2

(
	̂1
	

− 1
))

(29)

where 	̂1 = 	̂1(m) = 	1(m̂) for m̂ the image of m via the map u→ 1− u,
and 	 = (	1	̂1 − 1)=	0. It can also be shown that

	̂1(m) = 1 +
∞∑
n=1
m̂n2n ; 	(m) = 1 +

∞∑
n=1
mn2n (30)

where both m̂n and mn are given by expressions like (16). To be precise, m̂n =
m01n and mn = m11n where, for i = 0 or 1, mi1n is de�ned like min in (16) but
with an extra factor (1− un) in the integrand. In particular, to complement (26),

	̂1(�1(0;1)) = cosh
√
2� ; 	(�1(0;1)) = sinh

√
2�=

√
2� : (31)

3 The circular local time process at T±

The following lemma is a key ingredient in the proof of Proposition 1.
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Lemma 6 (Knight [31]). Let G be the time of the last zero of B before time
T±. Under P0 governing B as a Brownian motion with zero drift,

(i) L0T± has standard exponential distribution: P0(L
0
T± ∈ d‘) = e−‘d‘, ‘ ¿ 0.

(ii) Given L0T± = ‘ the processes (L
u
G; 05 u5 1) and (L−uG ; 05 u5 1)

are independent with identical distribution Q0‘→0.

(iii) The process (L|u|T± − L
|u|
G ; 05 u5 1) has distribution Q20→0.

(iv) The two processes (LvG; −15 v5 1) and (L|u|T± − L
|u|
G ; 05 u5 1) and

the random sign BT± ∈ {−1;+1} are mutually independent.

Remark 7. The process in (iii) is the process of occupation densities of the
path fragment (|B|G+s; 05 s5 T± − G). As shown by Williams [66–68],
this fragment has the distribution of a BES30 process stopped at its �rst hit
of 1.

Translating Lemma 6 into terms of the circular local time process yields
the next lemma. See also Proposition 21 for a generalization derived by ex-
cursion theory. Note that G is also the last zero of B

◦
before time T±, and that

L
◦0
T± = L

0
T± . Let P ∗ Q denote convolution of two distributions on C+[0; 1), that

is the distribution of Y + Z for independent random elements Y and Z with
distributions P and Q.

Lemma 8 Under P0

(i) The distribution of L
◦
G on C

+[0; 1) is
∫∞
0 Q

0
‘→0 ∗ Q̂

0
‘→0e

−‘ d‘ where Q̂
0
‘→0

is image of Q0‘→0 via time reversal.

(ii) The distribution of L
◦
T± − L

◦
G on C

+[0; 1) is Q20→0.

(iii) The two processes L
◦
G and L

◦
T± − L

◦
G and the random sign BT± are mu-

tually independent.

(iv) The distribution of L
◦
T± is Q20→0 ∗ (

∫∞
0 Q

0
‘→0 ∗ Q̂

0
‘→0e

−‘ d‘).

(v) The process L
◦
T± and the random sign BT± are independent.

Proof. Part (i) follows from parts (i) and (ii) of Lemma 6 by conditioning on
L0T± . Parts (ii) and (iii) follow from (ii) and (iii) of Lemma 6 and reversibility
of Q20→0. Parts (iv) and (v) follow from parts (i), (ii) and (iii).

Notation. For the rest of this section, let m denote an arbitrary bounded
positive measure on [0; 1), and let 	0;	1; 	̂1;	 be de�ned in terms of m as
in (15) and (30). For a process (Xu; 05 u ¡ 1) let mX =

∫ 1
0m(du)Xu.
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Proof of Proposition 1. Consider �rst the case � = 0. Part (iv) of Lemma 8
combined with (29) allows the following computation:

P0 exp(−m
◦
LT±) = (Q

2
0→0e

−mX )
∞∫
0
(Q0‘→0e

−mX )(Q̂
0
‘→0e

−mX )e−‘ d‘

= 	−1
∞∫
0
d‘ exp

[
−‘
2

(
	̂1
	

− 1
)
− ‘
2

(
	1
	

− 1
)
− ‘
]
=

2

	1 + 	̂1
:

Take m to be discrete and use (17). The result is (7), since for a �nite subset
A of [0; 1), �

◦
(A) = �1(A) + �1(Â) where Â is the reversal of A. The cyclic

stationarity of L
◦
T is now apparent, and reversibility is obvious for � = 0. In-

�nite divisibility follows easily from the same decomposition, using standard
ideas of subordination, and the in�nite divisibility of the exponential distri-
bution of L

◦0
T and the various squared Bessel components. See formula (51)

in the next section for the consequent expression for the L�evy measure. For
�-0 the Cameron–Martin formula (see e.g. [16, Sect. I.11]) combined with
the independence of L

◦
T± and BT± yields

P� exp
(
−m ◦
LT±

)
= cosh(�)P0 exp

(
−
(
m+

1
2
�2�
)

◦
LT±

)
(32)

where � is Lebesgue measure on [0; 1). This formula and the cyclic stationarity
of L

◦
T± under P0 imply that L

◦
T± is cyclically stationary under P� too.

The same goes for reversibility. The P� distribution of L
◦
T± can be shown

to be in�nitely divisible by using the Cameron–Martin formula to obtain a
variation of Lemma 8 for P�. See also Remark 15 in Sect. 4.

De�nition 9 For a measure m on [0; 1) de�ne 	
◦
= 	

◦
(m) by

◦
	 =

1
2
(	1 + 	̂1) = 1 +

1
2

∞∑
n=1

◦mn2n (33)

where m◦n = m1n + m̂1n, that is

◦mn =
∫

05u1¡···
m(du1) · · ·

∫
···¡un¡1

m(dun)
n∏
k=1
(uk − uk−1) where u0 = un − 1 :

(34)

From the proof of Proposition 1 and the formulae of Proposition 5, there
is the following companion to the Ray–Knight formulae (18), (21) and
(22):

Corollary 10

P0 exp
(
−�m ◦

LT±

)
=
(
◦
	(�m)

)−1
=
(
1 +

1
2

∞∑
n=1

◦mn(2�)n
)−1

: (35)

To illustrate, for m(du) = f(u)du, formula (35) gives the Laplace trans-
form of

∫ T±
0 f(B

◦
t)dt. If U1; : : : ; Un are i.i.d with density f=‖f‖, where ‖f‖
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=
∫ 1
0f(u)du, then m

◦
n equals ‖f‖n=n! times the expected product of the n

spacings around the circle between points of the random set {U1; : : : ; Un}.

Occupation time of an interval on the circle
Consider the occupation time A(I; t) =

∫ t
01(B

◦
s ∈ I)ds for an interval I on the

circle. From (35), (27), (28), for every interval I of the circle of length p, the
time A(I; T±) that B

◦
spends in I up to time T± has the same in�nitely divisible

distribution with Laplace transform

P0 exp(−�A(I; T±)) =
(
cosh(p

√
2�) +

1
2
(1− p)

√
2� sinh(p

√
2�)
)−1

: (36)

According to Theorem 4.2.16 of Knight [34], which follows similarly from
(21), (27) and (28), the P0 Laplace transform of the time spent by |B| in
[0; p] before time T± is given by the right side of (36) with the 1

2 replaced
by 1. That the 1

2 is needed in (36) can be checked as follows: as p→ 0,
A([0; p]; T±)=p converges a.s. to L0T± with Laplace transform 1=(1 + �). But
the time spent by |B| in [0; p] before time T± must be normalized by 2p
instead of p to obtain the same limit.

The Laplace functional of the P� distribution of L
◦
T±

For the circular Brownian motion with drift, a �rst formula for the Laplace
functional of the P� distribution of L

◦
T± is obtained by combining (32) and

(35). But there is a more interesting formula which lies a little deeper:

Proposition 11 For �-0:

P� exp(−m◦
LT±) =

(
1 + (2 cosh �)−1

∞∑
n=1

◦
mn;�2n

)−1
(37)

where

◦
mn;� = �−n

∫
05u1¡···

m(du1) · · ·
∫

···¡un51
m(dun)

n∏
k=1
sinh(uk − uk−1)� (38)

with u0 = un − 1.
Proof. Formula (37) will be obtained by development of the right side of (32).
Consider �rst m = �0�0 + �u�u where �u is a unit mass at u. Let � = 1

2�
2� where

� is Lebesgue measure on [0; 1). Then from (33)

P0 exp
(
−�0

◦
L
0
T± − �u

◦
L
u
T± −

1
2
�2T±

)
=
(
1 +

1
2

∞∑
n=1
(�0�0 + �u�u + �)◦n 2

n
)−1

where (�0�0 + �u�u + �)◦n denotes the quantity m
◦
n in (33) for the measure

m = �0�0 + �u�u + �. Let �n denote the coe�cient mn in (30) for m = �, and
let �u = 1− u. The quantity (�0�0 + �u�u + �)◦n can be evaluated as follows:
for n = 1: �

◦
1 + �0 + �u

for n = 2: �
◦
2 + (�0 + �u)�1 + �0�u u �u
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for n = j + 2= 2

◦�n + (�0 + �u)�n−1 + �0�uu �u
j∑
k=0
u2k�k �u2j−2k�j−k :

The summation index k counts how many ui in the repeated integral (34) for
(�0�0 + �u�u + �)◦n fall in the interval (0; u). The powers of u and �u appear by
making the appropriate linear changes of variables to replace each integral over
[0; u] or [u; 1] by an integral over [0; 1]. Summing over n, the desired Laplace
transform is found to be(

◦
	(�) + (�0 + �u)	(�) + 2�0�uu �u	(u2�)	( �u2�)

)−1
:

Combined with (26), (31) and (32), this yields the proposition for m = �0�0 +
�u�u. A similar calculation yields the result for a general discrete m, and the
argument is completed for an arbitrary �nite measure m on [0; 1) by a routine
weak approximation.

Example 12 Let m = �� for a positive scalar � and Lebesgue measure � on
[0; 1). From (32)

P� exp(−�� ◦LT±) = P� exp(−�T±) =
cosh �

cosh
√
2�+ �2

Comparison with formula (38) yields the identity

cosh
√
2�+ �2 = cosh �+ 1

2

∞∑
n=1

1
n

(
2�
�

)n
fn(�) (39)

where f1(�) = sinh(�) and for n = 2; 3; : : :

fn(�) =
∫

vi=0;
· · · ∫∑n

1vi=1

n∏
i=1
f1(vi�)dv1 · · · dvn−1 : (40)

For instance,

f2(�) =
1
2�
(� cosh �− sinh �); f3(�) =

1
8�2

(�2 sinh �− 3� cosh �+ 3 sinh �) :

A generalization of the identity (39)

To check (39) directly, consider functions fn(�) de�ned by the integral formula
(40), for an arbitrary continuous function f1 de�ned on [0, 1] instead of f1(�) =
sinh �. The fn(�) are then determined by

fn(�) =
1∫
0
vn−2fn−1(v�)f1( �v�)dv (41)

where �v = 1− v. Let
F(�; �) =

∞∑
n=1
fn(�)�n : (42)
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Then easily from (41)

F(�; �) = �f1(�) + �
1∫
0
v−1F(v�; v�)f1( �v�)dv : (43)

Retracing this argument shows that if a function F(�; �) is of the form (42) for
some sequence of continuous functions fn(�), and F(�; �) satis�es (43), then
(41) and (40) hold. Returning to consideration of (39), di�erentiation with
respect to � shows that (39) is equivalent to

F(�; �) =
��√
��+ �2

sinh
√
��+ �2 for f1(�) = sinh � : (44)

This is veri�ed by checking (43), which, after setting � =
√
��+ �2, reduces

to the elementary formula

1∫
0
sinh (v�) sinh ( �v�)dv =

� sinh � − � sinh �
�2 − �2 : (45)

4 L�evy–Itô representations

If a probability measure Q and a �-�nite measure � on C+(I) are related by the
L�evy–Khintchine formula (9), let us say simply that Q is in�nitely divisible
with L�evy measure �. Assume that � places zero mass on the path that is
identically zero. Then Q and � determine each other uniquely. As shown in
Pitman–Yor [51], it follows from (11) and (29) that

Qdx is in�nitely divisible with L�evy measure xM + dN (46)

Qdx→0 is in�nitely divisible with L�evy measure xM0 + dN0 (47)

for some L�evy measure M;N on C+[0;∞) and M0 and N0 on C+[0; 1]. These
L�evy measures will now be described by a development of ideas from [51]. The
following results involve the Ray–Knight descriptions of linear Brownian local
times, and Williams’ decomposition of a Brownian excursion, [70, Sect. II.67].
The basic idea can be stated informally as follows. When a Brownian local
time process indexed by v ∈ I is decomposed as a sum of pulses derived from
various excursions, the pulse derived from either an excursion above x with
maximum level y or an excursion below y with minimum level x, typically
has the following distribution Px;y :

De�nition 13 For a subinterval I of R; and x; y ∈ I with x ¡ y; let Px;y be
the probability distribution on C+(I) of a process Xx;y that vanishes o� the
interval (x; y); and on (x; y) is a BESQ4 bridge from 0 to 0 of length (y − x) :

Xx;y(v) = (y − x) S4
(
v− x
y − x

)
1(x 5 v5 y) (v ∈ I) (48)

where S4 has distribution Q40→0.
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Proposition 14 The L�evy measures de�ned by (46) and (47) are

M = 1
2

∞∫
0
dy
P0;y
y2
; N = 1

2

∞∫
0
dx

∞∫
x
dy

Px;y
(y − x)2 ; (49)

M0 = 1
2

1∫
0
dy
P0;y
y2
; N0 = 1

2

1∫
0
dx

1∫
x
dy

Px;y
(y − x)2 : (50)

Proof. As shown in [51], a strong L�evy–Itô (‘M) representation of the
BESQ0‘ distributed process in (23) is obtained by decomposing the C

+[0;∞)
valued local time process L�‘ as the sum of pulses derived from excursions of
B from 0. Consequently (Theorem (4.2) of [51]), M is the distribution of the
total local time pulse generated by a Brownian excursion (�t ; 05 t 5 �) dis-
tributed according to Itô’s law for positive excursions of B from 0. Williams’s
description of (�t ; 05 t 5 �) given max05t5� �t = y, in terms of pasting back
to back two independent BES30 processes (each run till it �rst hits y), implies
the formula for M in (49) with P0;y the distribution on C+[0;∞) of the to-
tal local time process derived from the two BES3 fragments. By Remark 7 and
Brownian scaling, each BES3 fragment has a local time process on [0; y] which
is a BESQ2 bridge from 0 to 0 of length y. Summing the two independent
BESQ2 bridges yields a BESQ4 bridge. So P0;y is the distribution described by
De�nition 13 for x = 0. This proves the formula for M in (49). The formula for
N in (49) follows from the description of N obtained similarly in [51] using the
other Ray–Knight theorem (19) : N =

∫∞
0 Mx dx where under Mx the path is id-

entically zero up to time x and (Xx+u; u= 0) has distribution M . To ob-
tain the expressions (50), consider a process Z=(Z(u); u=0) with strong
L�evy–Itô (�) representation, for �=M or N , and condition on the event
on Z(1)=0.

Remark 15 As in [51], the results of Proposition 14 have straightforward ex-
tensions to the case with squares of Ornstein–Uhlenbeck processes instead of
squares of Bessel processes. The connection with local time processes and ex-
cursions of BM with drift � is provided by Proposition 2. But details of this
case are left to the reader.

Circular L�evy–Itô representations
By development of Proposition 14 and its relation to local times of linear BM
there is the following result for circular BM. The discussion will be restricted
to the case of zero drift. But similar results for non-zero drift can be obtained
using Remark 15.

Proposition 16 Under P0 the local time process
◦
LT±; whose distribution is

determined by (7); admits a strong L�evy–Itô (
◦
M) representation; with

◦
M =

1∫
0
dy

y∫
−1

◦
Px;y

(y − x)2dx = 2N0 +
∞∫
0
v−1e−v dvQ0v→0 ∗ Q̂0v→0 (51)
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where
◦
Px;y is the image of Px;y after wrapping of the pulse around the circle;

that is the probability distribution on C+[0; 1) of

(Xx;y(u) + Xx;y(u− 1); 05 u ¡ 1)

for Xx;y the random path in C+[−1; 1] de�ned in (48).
Notation For a random subset A of [0;∞), let LA denote the process

LxA =
∞∫
t=0
1(t ∈ A)dLxt (x ∈ [−1; 1]) : (52)

In particular, for a random interval, say A = [R; S]; L[R; S] = LS − LR for LS
and LR as before, e.g. LS = L[0; S]. Put

◦
LuA = L

u
a + L

u−1
a ; 05 u5 1 and

◦
LA = (

◦
LuA; 05 u5 1). For any random interval A, and also for various other

A’s considered below which are countable unions of intervals, the processes
LA and

◦
LA have continuous paths. Then LA and

◦
LA will be regarded as random

paths in C+[−1; 1] and C+[0; 1) respectively.

Proof of Proposition 16. Due to the independence of
◦
LT± and BT±

(Lemma 8(v)), it su�ces to consider the process
◦
LT± conditionally given

BT± = 1. Let Ty = inf{t: Bt ¿ y}. As a consequence of Itô’s theory of Brown-
ian excursions, [22, 57, 56] conditionally given BT± = 1, the C+[−1; 1] valued
point process of local time pulses (L[Ty−;Ty]; 05 y 5 1) is an inhomoge-
neous Poisson marked point process with intensity measure dy �y(d�); 05
y 5 1; � ∈ C+[−1; 1] where �y =

∫ y
−1 (y − x)−2Px;y dx. So given BT± = 1,

the C+[0; 1) valued point process

(
◦
L [Ty− ;Ty]; 05 y 5 1) (53)

is also inhomogeneous Poisson, with intensity measure the dy �y(d�) distri-
bution of (�u + �u−1; 05 u5 1). This observation, and the decomposition
◦
LT± =

∑
0¡y¡1

◦
L [Ty− ;Ty] conditionally given BT± = 1, imply all the assertions

of the Proposition, apart from the second equality in (51). But this follows
easily from Lemma 8. (See the proof of Proposition 17 for some details.)

Decompositions of the circular local time process

Various decompositions of
◦
LT±, can now be described by splitting the Pois-

son point process of pulses (53) into independent components. As a pre-
liminary, observe that given BT± = 1, the C+[−1; 1] valued local time pro-
cess LT± decomposes as the sum of three independent components LT± =
Lshort+ + Lshort− + Llong obtained by classifying the pulses into the following
three categories, where y and x represent the levels of the maximum and min-
imum of the excursion associated with a pulse:

short+ if 0¡ x ¡ y

short− if y − 1¡ x 5 0¡ y

long if x 5 y − 1
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Thus a pulse (or its corresponding excursion) is called as short or long accord-
ing to whether the range y − x of the excursion is less than 1 or at least 1.
Each short pulse is further classi�ed as + if its support is entirely contained
in (0; 1) and − if its support intersects [−1; 0]. By wrapping around the circle,
there is a corresponding decomposition of

◦
LT± into three independent in�nitely

divisible components

◦
LT± =

◦
Lshort+ +

◦
Lshort− +

◦
Llong (54)

which holds also without conditioning on BT± provided the de�nitions are
modi�ed appropriately given BT± = −1. Call a C[0; 1) valued process, or a
measure on C[0; 1); symmetric if it is cyclically stationary and reversible.

Proposition 17 The following statements hold under P0. In the decompo-
sition (54) of

◦
L T±; the distribution of

◦
Lshort+ is Q20→0 with L�evy measure

◦
Mshort+ = 2N0. The distribution of

◦
Lshort− +

◦
Llong is

∫∞
0 e−‘ d‘Q0‘→0 ∗ Q̂

0
‘→0;

with L�evy measure

◦
M −2N0 =

∞∫
0
v−1e−v dvQ0v→0 ∗ Q̂

0
v→0 : (55)

Let
◦
Lshort =

◦
Lshort+ +

◦
Lshort−. The decomposition

◦
LT± =

◦
Lshort +

◦
L long (56)

expresses
◦
LT± as the sum of two independent processes; each of which is

in�nitely divisible and symmetric. The corresponding L�evy measures
◦
Mshort

and
◦
Mlong on C+[0; 1] are

◦
Mshort =

1∫
0
dy

y∫
y−1

◦
Px;y

(y − x)2dx;
◦
Mlong =

1∫
0
dy

y−1∫
−1

◦
Px;y

(y − x)2dx : (57)

Each of the measures
◦
Mshort ;

◦
Mlong; and

◦
M is symmetric.

Proof. These assertions follow directly from the preceding development. The
identi�cation

◦
Mshort+ = 2N0 follows from (51) and (50), so the distribution

of
◦
Lshort+ is Q20→0. Comparison with the last-exit decomposition in Lemma 8,

that is
◦
LT± =

◦
LG +

◦
L[G;T±] (58)

where G is the time of the last zero of B before time T±, identi�es the
distribution of

◦
Lshort− +

◦
Llong, and yields its L�evy measure, due to the in�nite

divisibility of the family (Q0‘→0; ‘= 0) and the well known formula v−1e−v
for the density at v of the L�evy measure of the standard exponential distribu-
tion of L0T±. (The identity (55) can also be derived using the relation between
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BESQ0 and BESQ4 bridges described above (5.c) of [51]). The measure
◦
M

is symmetric by the symmetry of
◦
LT± and the L�evy–Khintchine formula (9).

Since‘
◦
Mlong is the restriction of

◦
M to the symmetric subset {inf u Xu ¿ 0} of

C+[0; 1], this measure too is symmetric, and so is
◦
Mshort =

◦
M − ◦

Mlong. Again
by the L�evy–Khintchine formula, the distributions of both

◦
Lshort and

◦
Llong must

be symmetric.

A path transformation

According to the above proposition and Lemma 8(ii), the process
◦
Lshort has

the same distribution as
◦
L[G;T±]. There is the following pathwise explanation of

this identity in distribution : given BT± = 1, if the short+ excursions are strung
together to form a process by closing up the gaps between these excursions,
the resulting process has the same distribution as (BG+v; 05 v5 T± − G),
as described in Remark 7. This follows from the identical Poisson character of
the two excursion processes.

The L�evy measure for the short excursions

The symmetry of
◦
Mshort is made obvious by the following variations of (57):

◦
Mshort =

1∫
0
dy�y(M̂ 0) =

1∫
0
dy�y(M0)

where �y(K) denotes the image of the measure K on C+[0; 1] after a cyclic
shift by y; M̂0 =

∫ 0
−1

◦
Px;0x−2 dx is the time reversal of M0 in (50), and the

expression with M0 instead of M̂0 follows from the time reversibility of Q40→0.

The L�evy measure for the long excursions

From (57), the measure
◦
Mlong on C+[0; 1] has total mass

∫ 1
0 dy

∫ y−1
−1 (y − x)−2 dx = 1− log 2:

So the number of long excursions up to time T±, say #long, has Poisson dis-
tribution with mean (1− log 2). Given that #long = n, the local time pulses
of these excursions, when presented in a random order independent of the
excursions, form a sequence of n i.i.d random pulses with the distribution◦
Mlong=(1− log 2). (This is false if the randomized order is replaced by the
natural time ordering of excursions : before wrapping, a pulse of range r ¿ 1
cannot occur until the maximum process has reached at least r − 1, so bigger
pulses will tend to come later). To describe

◦
Mlong more explicitly, let

(Y; Z) be picked at random from [0; 1]2 according to the probability
density

P(Y ∈ dy; Z ∈ dz) = 1(z + y 5 1)dz dy
(1− log 2)(y + z)2
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and let S have distribution Q40→0 independently of (Y; Z). Then, from (57), the
random pulse

(Y + Z)
[
S4

(
u+ Z
Y + Z

)
1(u ¡ Y ) + S4

(
u+ Z − 1
Y + Z

)
1(u ¿ 1− Z)

]
(59)

where 05 u5 1.

has distribution
◦
Mlong=(1− log 2). According to Proposition 17, this process is

symmetric, something not at all obvious from the above construction.

Decomposition of the one-dimensional distributions
For x ¿ 0 let �short(x) and �long(x) denote the densities at x of the one-

dimensional distributions of
◦
Mshort and

◦
Mlong respectively. Let �short(�) and

�long(�) be the corresponding Laplace transforms of
◦
Lushort and

◦
Lulong. Thus for

every 05 u5 1; � ¿ 0

P0 exp(−�◦Lushort) = �short(�) = exp
(
−
∞∫
0
(1− e−�x)�short(x) dx

)
(60)

and similarly for long instead of short. The one-dimensional distribution of◦
L uT± is exponential with rate 1, with Laplace transform (1 + �)−1 and L�evy
density x−1e−x; x ¿ 0, So the independent decomposition (56) gives

�short(�)�long(�) = (1 + �)−1 (� ¿ 0) (61)

�short(x) + �long(x) = x−1e−x (x ¿ 0) (62)

Proposition 18

�short(x) =
1
2

1∫
0
u−2 exp

( −x
2u(1− u)

)
du = K1(x)e−x (63)

where K1(x) is the modi�ed Bessel function;

�short(�) = exp
( ∞∑
n=1

(n− 1)!(n+ 1)!
(2n+ 1)!

(−2�)n
)

(64)

and there is the alternative expression (10) for �short(�).

Remark. 19 The coe�cient of � in (64) shows that
◦
Lushort has mean 2=3. Conse-

quently from (56),
◦
Lulong has mean 1=3. Integration over u shows that the mean

total lengths of the short and long excursions are also 2=3 and 1=3 respectively.
See (68) and (69) for the corresponding Laplace transforms.
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Proof. By symmetry, it su�ces to consider u = 0. From (51), for any non-
negative function f vanishing at 0

∞∫
0
f(x)�short(x)dx =

1∫
0
dy

1−y∫
0

◦
P−z;yf(X0)(y + z)−2dz

where the
◦
P −z;y distribution of X0 is gamma with shape parameter 2 and rate

(y + z)=(2y), so

◦
P−z;yf(X0) =

∞∫
0
f(x)

(
y + z
2y

)2
x exp

(
−x(y + z)

2y

)
dx :

The �rst equality in (63) follows easily. A change of variables yields

�short(x) = e−2x
∞∫
0
(t + 1)t−1=2(t + 2)−1=2e−tx dt :

Now the standard integral
∫∞
0 t

−1=2(t + 2)−1=2e−tx dt = exK0(x) where K0 is
the usual modi�ed Bessel function (see e.g. [47, p. 18, 2.48], where the right
side should be corrected as follows: eapK0(ap) should be e(1=2)apK0((1=2)ap))
allows the evaluation

�short(x) = e−2x
(
e xK0(x)− d

dx
[e xK0(x)]

)
= e−xK1(x) :

Formulae (64) and (10) are obtained by substituting the middle expression in
(63) into (60) and then switching the order of integration.

Decomposition of the total time
From (54) the time T± is the sum of independent random times spent during
various types of excursions, say T± = Tshort+ + Tshort− + Tlong. As shown by
Knight [31], the last-exit decomposition (58) implies that the Laplace transform
P0 exp(−�T±) = (cosh �)−1, where � =

√
2�, factors as

1
cosh(�)

=
(

�
sinh �

)(
tanh �
�

)
(65)

where the factors are the Laplace transforms of T± − G and G, as restated in
the second equalities of (66) and (67) below. These equalities, and the second
equality in (68), also due to Knight [31], follow from Lemma 6, (27)–(29) and
(31). The remaining equalities in (66)–(70) follow immediately by Proposi-
tion 17. Using the notation � =

√
2�, and writing simply P instead of P0

governing B as a BM with no drift,

P exp(−�Tshort+) = �
sinh �

= P exp(−�(T± − G)) ; (66)

P exp(−�(T± − Tshort+)) = tanh �
�

= P exp(−�G) ; (67)

P exp(−�Tshort) = exp(1− � coth �) = P exp(−�G|L0T± = 1) ; (68)
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P exp(−�Tlong) = exp(� coth �− 1)
cosh �

; (69)

P exp(−�Tshort−) = sinh �
�

exp(1− � coth �) : (70)

Of these formulae, the most interesting are (69) and (70), which present the
Laplace transforms of two in�nitely divisible distributions on [0; ∞) that do
not seem to have been encountered before. The Laplace transform (69) expands
as

P exp(−�Tlong) = 1− 1
3
�+

3
10
�2 − 1409

5670
�3 + · · · (71)

con�rming the result of Remark 19 that the mean of Tlong is 1/3. In fact,
each of the random variables Tshort+; Tshort− and Tlong has the same mean 1/3.
Both Tshort+ and Tshort− are strictly positive random variables with continuous
distributions on (0; ∞). However Tlong has a compound Poisson distribution
that has a continuous component on (0;∞) and an atom at 0 whose size may
be found from (69):

P(Tlong = 0) = lim
�→∞ P exp(−�Tlong) = 2=e : (72)

As a check, from the discussion above (59), Tlong is distributed as the sum
of #long i.i.d. r.v’s with continuous distribution on (0;∞), where #long is Pois-
son with mean 1− log 2. So P(Tlong = 0) = exp(log 2− 1) = 2=e. The common
distribution of the terms in this sum have density �(x)=(1− log 2) where (69)
yields

∞∫
0
x�(x)e−�x dx =

(
1

sinh �

)2
− 1
� sinh � cosh �

: (73)

5 Results for other random times

The Laplace functional of L
◦
T for many random times T besides T± can be

obtained by variations of the method of Sect. 3. Throughout this section, let
P = P0 govern B as a BM with zero drift. Extensions to P� for �-0 are
straightforward, as in Sect. 3.
A class T of random times T such that B

◦
T = 0 will now be de�ned. This

class T includes T±, the inverse local time of B at zero �l = inf{t : L0t ¿ l},
and the inverse local time of B

◦
at zero �◦l = inf{t : L

◦0
t ¿ l}.

De�nition 20 Let T be the collection of random times T of the form either
T = �◦R or T = �

◦
R− where R is a positive measurable function of the time-

changed process (B�◦l ; l= 0).

The process (B�◦l ; l= 0) is a continuous time symmetric random walk on
the integers, with i.i.d. exponential (1) holds independent of i.i.d. Bernoulli(1/2)
jumps of ±1. Note that if T ∈T then B

◦
T = 0 and L

◦0
T = R. Let NT be the

number of loops (of either sign) completed by B
◦
up to time T . That is to

say NT is the number of jumps of (B�◦l ; 05 l5 L
◦0
T ), where a jump if any
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at local time L
◦0
T = R is counted if T = �

◦
R but not if T = �

◦
R−. The following

proposition generalizes Lemma 8 and the similar decomposition of L
◦
�◦l given in

Leuridan [40]. See also [50] where this proposition is generalized to Brownian
motion on a network. Recall that ∗ denotes convolution of distributions on
C[0; 1).

Proposition 21 For T ∈T the conditional distribution of L
◦
T given NT =

n and L
◦0
T = l is Q

0
l→0 ∗ Q̂0l→0 ∗ Q2n0→0. That is to say; the distribution of

L
◦
T is

∞∫
0

∞∑
n=0
P(NT = n; L

◦0
T ∈ dl)Q0l→0 ∗ Q̂

0
l→0 ∗ Q2n0→0 : (74)

Proof. Following the style of argument in Sect. 5 of [51], decompose L
◦
T as

the sum of pulses derived from individual excursions �◦ of B
◦
away from 0.

Call �◦ a loop if �◦ returns to 0 on the opposite side from which it starts.
Otherwise call �◦ a non-loop. According to Itô’s [22] excursion theory, when
the pulses are viewed as a C+[0; 1) valued point process parameterized by
local time of B

◦
at 0, the pulses of loops and the pulses of non-loops form

independent Poisson processes. The point process of pulses of loops is de�ned
by the sequence of i.i.d. exponential spacings between loops on the local time
scale, and the i.i.d. sequence of C+[0; 1) valued pulses. By Lemma 8 the pulse
of each loop has distribution Q20→0, independently of the signs of all the loops.
The distribution of the sum of n such pulses is therefore Q2n0→0 by the additivity
of squares of Bessel bridges. Similarly, if non-loops are classi�ed in the obvious
way as either positive or negative, for each �xed l the local time process
L
◦
�◦l contains a contribution from pulses of positive non-loops with distribution

Q0l→0, and an independent contribution from pulses of negative non-loops with
distribution Q̂0l→0. By de�nition, T ∈T has the property that (NT ; L

◦0
T ) is a

measurable function of (B�◦l ; l= 0), that is a function of the i.i.d exponential
spacings between loops on the local time scale and the i.i.d. sequence of signs
of the loops. So (NT ; L

◦0
T ) is independent of both the i.i.d. sequence of pulses

of the loops, and of the Poisson point process of pulses of non-loops. Since
B
◦
T = 0 the process L

◦
T decomposes as the sum of pulses from NT loops, and

the sum of pulses of the non-loops up to local time L
◦0
T and the conclusion

follows.

Corollary 22 For T ∈T;

P exp(−mL◦T ) =
∞∫
0

∞∑
n=0
P(NT = n; L

◦0
T ∈ dl)	−n exp(−l(	

◦ − 1)) (75)

for 	
◦
and 	 as in (33) and (30).

Proof. Apply the previous proposition and (29).
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Example 23 Leuridan [40] obtained (74) for �◦l = inf{t : L
◦0
t ¿ l}. Then L◦0

�◦l
=

l and N�◦l has Poisson distribution with mean l. So (75) yields

P exp(−mL◦�◦l) = exp
(
−l(	◦ − 1)=	

)
: (76)

The calculation of features of the one- and two-dimensional distributions of
L
◦
�◦l , as undertaken in [40], is simpli�ed by application of this formula.

Corollary 24 Let T(0) = 0 and let T(1); T(2); : : : be the successive times that
B
◦
returns to 0 after complete loops around the circle. Let Sn = BT(n) ; so

(S0; S1; : : :) is the usual embedding of a symmetric random walk in Brownian
motion. Let N be a non-negative integer valued r.v. which is conditionally
independent of (Bt; t = 0) given (S1; S2; : : :). Let

G(z) =
∑
n
P(N = n)zn :

Then the circular local time process L
◦
T(N ) is cyclically stationary; with

P exp(−mL◦T(N ) ) = G(1=	
◦
) :

Proof. By the strong Markov property of B
◦
, the sequence of circular local

time processes (L
◦
T(n) − L

◦
T(n−1) ; n = 1; 2; : : :) is a sequence of i.i.d. copies of

L
◦
T (1) − L

◦
T (0) = L

◦
T±. By Lemma 8, this i.i.d. sequence is independent of the

i.i.d. sequence of signs of the successive loops of B
◦
that determine the random

walk (Sn). Corollary 24 now follows from (35).

To illustrate, Corollary 24 shows that P exp(�L
◦u
T (N )) = G(1=(1 + �)) for

05u¡1, and with (36) gives the Laplace transform of the time spent by B
◦

in an interval of length p up to time T(N ). If the distribution of N is in�nitely

divisible, then so is the distribution of L
◦
T(N ) , by a standard subordination argu-

ment. The following example shows that the distribution L
◦
T(N ) may be in�nitely

divisible even if that of N is not:

Example 25 Let Ta be the �rst time Bt hits a. Then T1 = T(N ) where N is the
hitting time of 1 for the walk, with G(z) = z−1(1−√

1− z2). So

P exp(−mL◦T1) = 	
◦
(
1−

√
1− (	◦)−2

)
: (77)

For example

P exp(�L
◦u
T1
) = 1 + �−

√
2�+ �2 (05 u ¡ 1) : (78)

For u = 0; L
◦0
T1
= inf{l : B�◦l = 1} is the hitting time of 1 by a continuous

time symmetric random walk on the integers. Formula (78) then agrees with
the standard expression [15, formula (3.10)] for the Laplace transform of this
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hitting time. The fact that the distribution of L
◦
T1 is cyclically stationary can

be seen directly as follows. For 0¡a¡1 the distribution of B is preserved
by the path transformation which exchanges the segments of path of B

◦
on

[0; Ta] and [Ta; T1]. This remark, combined with the observation that L
◦
T1 is

the sum of N i.i.d. copies of L
◦
T± , yields an elementary proof of the cyclic

stationarity of L
◦
T± . In this example, the possible values of N are {1; 3; 5; : : :},

so the distribution of N is not in�nitely divisible. However, by considera-
tion of excursions below the maximum, much as in Sect. 4, it is clear that the
distribution of L

◦
T1 is in�nitely divisible, with L�evy measure � on C

+[0; 1) that
may be obtained as follows from M on C[0;∞) as in (49): � = 2 ∫ 10 M◦u du
where M

◦
u is image of M

◦
0 after a cyclic shift by u, and M

◦
0 is the M distribution

of (
∑∞

n=0 Xn+v; 05 v ¡ 1). The identity obtained by inserting this description
of � and (77) into the L�evy–Khintchine formula (9) seems quite non-trivial.

The cover time
Let Tcover be the cover time for the circular Brownian motion, that is the inf of
times t such that the range of (B

◦
s; 05 s5 t) equals [0,1). Put another way,

Tcover = inf{t : Rt = 1} where Rt = max05s5t Bs −min05s5t Bs. It is known
that

P(BTcover ∈ dx) = |x|dx (−15 x 5 1) (79)

which implies B
◦
Tcover has uniform distribution on [0,1). Let T̃ be the �rst time

that B
◦
reaches the point B

◦
Tcover. There is the following Williams decomposition

at time T̃ which is a variation of results of Imhof [20, 21] and Vallois [62,
63]: Conditionally given BTcover = x ¿ 0, the processes (x − Bt; 05 t 5 T̃ )
and (BT̃+s; 05 s5 Tcover − T̃ ) are independent, the �rst a BES31−x run till
its hitting time of 1; and the second a BES30 run till its hitting time of 1.
This decomposition and Remark 7 yield a formula for the Laplace functional
of L

◦
Tcover:

P exp(−mL◦Tcover) =
1∫
0

x	(xm0x) + �x	( �xmx1)
	2(mx)

dx (80)

where 	 is de�ned by (29), �x = 1− x, and for a measure m on [0,1) and
x ∈ [0; 1) the measures mx; m0x and mx1 on [0,1) are de�ned as follows:

mx is the image of m via the map u→ u− xmod 1;
m0x is the image of the restriction of m to [0,x) via the map u→ u=x;
mx1 is the image of the restriction of m to [x,1) via u→ (u− x)=(1− x).
In particular, given BTcover = x ¿ 0 the local time L

◦0
Tcover = L

0
Tcover decom-

poses as the sum of two i.i.d. exponentials with rates (2x �x)−1, and (80) yields

P exp(−�L◦0Tcover) =
1∫
0

dx
(1 + 2�x �x)2

=
1

2 + �
+
2arctanh

√
�
2+�√

�(2 + �)3=2
: (81)

A similar but more complicated expression can be obtained from (80) for
the Laplace transform of L

◦
u
Tcover for all 0¡ u ¡ 1. The transform (81) can
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be explicitly inverted by noting that P(L
◦0
Tcover = l) = P(Xl + Yl 5 1) where

Xl = max05s5�lBs and Yl = −min05s5�lBs, and �l is the inverse local time
process of B at zero. It is well known that Xl and Yl are i.i.d. with P(Xl 5
x) = exp(−l=2x), and the convolution integral can be evaluated using formulae
around (63) to give

P(L
◦0
Tcover = l) = lK1(l)e−l (82)

where K1 is the modi�ed Bessel function. The inequality L
◦0
Tcover 5 L0T± and

the exponential distribution of L0T± imply lK1(l)5 1, as is easily veri�ed
analytically. As another example, taking m = �� in (80) for Lebesgue measure
� on [0,1) recovers the formula P exp(−�Tcover) = sech2(

√
�=2) obtained in

[20].
Let U = B

◦
Tcover. Note that U is the a.s. unique zero of the process L

◦
Tcover.

From the Williams decomposition and Remark 7, U has uniform distribution
on [0,1), and independently of U

the process (L
◦
U+s
Tcover − L

◦
U+s
T̃
; 05 s ¡ 1) has distribution Q20→0 (83)

where U + s is understood mod 1. So the process L
◦
Tcover − L

◦
T̃ is stationary,

with Laplace functional

P exp[−m(L◦Tcover − L
◦
T̃ )] =

1∫
0

dx
	(mx)

: (84)

But neither the processes L
◦
Tcover and L

◦
T̃ is stationary, due to (85) below.

The �rst zero after the cover time
Let T be a stopping time of B, and 05 c ¡∞. An argument using Dynkin’s
formula shows that

PL
◦
u
T = c for all 05 u ¡ 1 if and only if PT = c and B

◦
T = 0 a:s: (85)

And it is easily seen that if T ¿ 0 and L
◦
T is stationary then T = Tcover a.s..

See [14] for related results. Let T∗ be the time of the �rst return of B
◦
to 0

after time Tcover. Combining the above observations shows that

if T ¿ 0 and PT ¡∞ and L
◦
T is stationary; then a:s: BT = 0 and T = T∗

(86)
So the following question arises:
Question 26 Is the process L

◦
T∗ stationary ?

The Williams decomposition used to obtain (80) yields the following ex-
pression for the Laplace functional L

◦
T∗ :

P exp(−mL◦T∗) =
1

	(m)

1∫
0

(
x	(xm0x) + �x	(�xmx1)

	(mx)

)2
dx : (87)
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So the question is whether this expression is invariant under cyclic shifts of
m. Consider the following two special cases:

(i) m is concentrated on at most two points.
(ii) m is a multiple of uniform distribution on a subinterval of the circle.

Formula (87) in case (i) gives the joint Laplace transform of L
◦
u
T∗ and L

◦v
T∗

for arbitrary u and v in [0,1), and in case (ii) gives the Laplace transform of the
occupation time of a subinterval of the circle up to time T∗. In both cases it is
possible to simplify the right side of (87) by calculus. In separate calculations
for the two cases using Mathematica, some remarkable simpli�cations occur.
It is found that in both these cases the Laplace functional can be expressed as
follows:

P exp(−mL◦T∗) =
�

1 + �

(
1 +

�√
1− �2 arctanh

√
1− �2

)
(88)

where � = �(m) = P exp(−mL◦T±) = 1=	
◦
(m) as in (33), and

arctanh (x) = x +
1
3
x3 +

1
5
x5 + · · · (x2 ¡ 1)

so the right side of (88), call it �∗, expands as

�∗ = �+ (1− �)�2
(
1
3
+
1
5
(1− �2) + 1

7
(1− �2)2 + · · ·

)
: (89)

Because �(m) is invariant under cyclic shifts of m, so is �∗(m). So (88) in
case (i) shows that the two-dimensional distributions of L

◦
T∗ are invariant under

cyclic shifts, and in case (ii) that the distribution of the occupation time of
a sub-interval of the circle up to time T∗ depends only on the length of the
interval. Note that for m a point mass at 0, L

◦0
T∗ = L

◦0
Tcover = L

0
Tcover, and (88)

then reduces to (81). So for every u ∈ [0; 1) the distribution of L◦uT∗ is identical
to the distribution of L

◦0
Tcover described by formula (82).

Using (88) for two-point distributions, it can be checked for arbitrary m
that the two sides of (88) with �m instead of m, viewed as power series in �,
have the same coe�cients of 1; � and �2, namely 1; −P(mL◦T∗) = −(2=3)m◦1;
and

1
2
P((mL

◦
T∗)

2) =
2
5
m
◦2
1 −

4
3
m
◦
2 (90)

where the m◦n are de�ned by (34). So there is much evidence for the following
conjecture, which would imply an a�rmative answer to question (26):

Conjecture 27 Formula (88) holds for all �nite measures m on [0; 1).

In connection with this conjecture, it turns out that for m a point mass or
Lebesgue measure, the expression (�=

√
1− �2) arctanh√1− �2 appearing in

(88) is identical to the Laplace functional in (84). While it should be easier
to resolve whether or not this identity extends to all measures m, the relation
between this coincidence and (88) is not clear.
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6 Further applications of the series formulae for Bessel processes

This section points out a number of applications of Proposition 5 to one-
dimensional di�usion processes. See [53] for further details and developments.

Assumption Throughout this section suppose as in (14) that the measure m
on [0;∞) has �nite total mass and �nite �rst moment.
Corollary 28 Let min be as in (16). The functions 	0(�m) and 	1(�m) are
entire functions of � de�ned by the power series

	i(�m) = i +
∞∑
n=1
min(2�)n (i = 0 or 1) (91)

Consequently; (11); (18) and (22) hold for all � ¿ −�m for some �m ¿ 0.

Thus (11), (18), (22) and other such formulae for Laplace transforms in-
volving the 	i yield moment generating functions, from which moments can
be read by formal manipulation of power series. For example:

Corollary 29 All positive integer moments of the Qdx distribution of
∫∞
0 Xum(du)

are �nite; and given by polynomials in x; d and the min obtained from formal
power series manipulations on (11) with 	i(�m) instead of 	i.

There is an alternative expression for the Laplace transform in (22) which
is well known (see e.g. [23, Sect. 6.1–6.2 ; 33; 35, Sect. 4]). Let Am(t) =∫∞
0 Lut m(du). Then

P0 exp(−�Am(�l)) = exp
( −l
gm(�; 0; 0)

)
(92)

where gm(�; x; y) is the Green function of the quasi-di�usion Xm de�ned by
Xm(u) = B(Tm;u) where (Tm;u; u= 0) is the right-continuous inverse of the
additive functional (Am(t); t = 0) of B. As shown in [33, 35], the function
�→ gm(�; 0; 0) is the function known in Krein’s theory of vibrating strings
[36, 37, 25, 35] as the characteristic function of the mass distribution 2m, for
which many di�erent expressions are known. Combining (22) and (92) yields
a particularly simple one that does not seem to appear in the literature:

Corollary 30
gm(�; 0; 0) = 2	1(�m)=	0(�m) (93)

where the 	i(�m) are the entire functions de�ned by the series (91).

According to a remarkable result of Krein, the mass distribution 2m can be
recovered from its characteristic function. As a consequence:

Corollary 31 The measure m can be recovered from the two positive sequences
(m01; m11; : : :) and (m11; m21; : : :) de�ned by (16).

By considering variations of the functions 	i like 	 in (30) with an arbi-
trary endpoint x instead of 1, both the increasing and decreasing solutions of the
Sturm–Liouville equation 1

2�
′′ = �m · �, hence the Green function gm(�; x; y),

can be expressed by explicit series formulae involving iterated integrals with
respect to m (cf. [9, Sect. 5.4; 25, Sect. 2.3]). Such formulae have numerous
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applications to the computation of quantities of probabilistic interest, by clas-
sical applications of the Green function [23]. To illustrate, assume now for
simplicity that m{0} = 0. Di�erentiation of the exponent in (92) yields:
Corollary 32 The L�evy measure �m of the subordinator (Am(�l); l= 0);
which is the inverse of the local time of process of X at zero; is given by

∞∫
0
y�m (dy) e−�y = − d

d�
	0(�m)
2	1(�m)

: (94)

Consequently; all moments of �m are �nite; and these moments are polynomi-
als in (m01; m11; : : :) and (m11; m21; : : :) with rational coe�cients obtained from
(91) and (94) by formal power series manipulations.

In connection with formula (94), by combination of standard renewal
theory [15] and the theory of excursions for the stationary version of the quasi-
di�usion Xm; for which see [49], the measure

Fm(dy) =
(∞∫
0
x�m(dx)

)−1
y�m(dy)

has the following probabilistic interpretation. Let Gm;u be the last zero of Xm
before time u and Dm;u the �rst zero of Xm after time u. Then Fm is the limiting
distribution of Dm;u − Gm;u as u→∞.

For some recent applications of Krein’s theory of strings to probabilistic
problems, and references to earlier work, see [4, 7, 39, 38].

7 Open Problems

1. See Question 26 and Conjecture 27.
2. Provide some criteria for when expressions like (7) and the inverse of (17)
for i = 1 generate multivariate Laplace transforms. The structure of the ex-
pression with the sum over subsets gives consistency of corresponding f.d.d.’s
if they exist. So this is a natural way to generate processes with exponential
marginals. The question is what sort of function of A is an acceptable substitute
for the product �

◦
(A) in (7) or �1(A) in (17)? See e.g. [55] for background on

related questions. What about other parameter sets besides the line or a circle?
If there are more such processes, are they continuous? in�nitely divisible?
3. For Q

◦�
� as in Corollary 3, �nd the distribution of max05u¡1 Xu and/or

min05u¡1 Xu. It is easy to see that argmax05u¡1 Xu is Q
◦�
� a.s. unique for

all �= 0; � ¿ 0, hence uniformly distributed on [0; 1) by cyclic stationarity.
From the local time representation for � = 1 it is clear that Q

◦�
�(min05u51 Xu ¿

0) = 1 for �= 1, and then argmin05u¡1 Xu will be Q
◦�
� a.s. unique and uniform

on [0; 1). But for 0¡ � ¡ 1 the L�evy–Itô representation and the recurrence
of state 0 for BESd0 with d ¡ 2 imply that Q

◦�
�(min05u51 Xu = 0) is strictly

between 0 and 1, and given this event X will have lots of zeros. A �nite di-
mensional integral for the probability of this event can be given using results of
Sect. 4 and excursion theory. See Eisenbaum [11] regarding related questions
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for linear Brownian local times and references to earlier work of Borodin and
others on this topic.
4. It is known that squares of Bessel processes arise as the total mass process of
measure-valued branching process. Le Gall [17] established deep connections
between such superprocesses and the theory of Brownian excursions. Is there
a superprocess analog of Proposition 5? If so, how does it relate to Dynkin’s
[10] formulae for moments of the random �eld generated by a superprocess?

Acknowledgments. Thanks to Steve Evans and Marc Yor for stimulating conversations and
remarks on preliminary versions of this paper, to Frank Knight, Paul McGill, James Norris,
Chris Rogers and Paavo Salminen for help with the literature, and to Mathematica for
assistance with algebra and calculus.
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