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Summary. We consider a continuous model for transverse magnetization of
spins diffusing in a homogeneous Gaussian random longitudinal field{λV (x); x ∈
R

d}, where λ is the coupling constant giving the intensity of the random
field. In this setting, the transverse magnetization is given by the formula
M (t) = Eexp{−λ2

∫ t
0

∫ t
0 K (Br − Bs) dsdr}, where {Bt ; t ≥ 0} is the stan-

dard process of Brownian motion andK (x) is the covariance function of the
original random fieldV (x). We use large deviation techniques to show that the
limit S(λ) = limt→∞ 1

t ln M (t) exists. We also determine the smallλ behavior of
the rateS(λ) and show that it is indeed decaying as conjectured in the physics
literature.

Mathematics Subject Classification (1991):60H25

1 Introduction

Random partial differential equations have been used by physicists to model var-
ious important problems of fluid and solid mechanics with great success. One
such model concerns the relaxation of the transverse magnetization of magnetic
moments due to diffusion in an imhomogeneous magnetic field. Though the re-
laxation of the transverse magnetization of spins diffusing in an imhomogeneous
magnetic field is an old problems in physics, it has drawn much attention recently.
Mitra P. P. and Doussal P.L. gave in [17] quite convincing arguments suggesting
several results on the large time behavior of the transverse magnetization. The
goal of this paper is to justify rigorously some of these results.
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We first describe the model. We denote byRd the d-dimensional Euclidean
space and we let{V (x); x ∈ Rd} be a homogeneous mean zero Gaussian random
field with variance 1. Its statistical properpty is completely determined by its
covariance functionK (x) or equivalently by its spectral measureν(dξ). Recall
that the latter are related by:

K (x) =
∫
Rd

eixzν(dz),

The densitym(t , x) of transverse magnetization of spins diffusing in the ran-
dom longitunal fieldH = λV (x)k, after suitable rescaling in space and time, is
governed by the following equation:

∂m(t , x)
∂t

=
1
2
4m(t , x) + iλVm(t , x), m(0, x) ≡ 1 (1)

where i =
√−1. See [17] for details. If we denote by< · > the average

with respect to thedisorder {V (x); x ∈ Rd}, then a quantity of interest is the
magnetization:

M (t) =< m(x, t) >

which is independent ofx because of the shift invariance of the distribution of
V (x). The classical Feymann-Kac formula gives the representation:

M (t) = Eexp[−λ2
∫ t

0

∫ t

0
K (Br − Bs) dsdr], (2)

where {Bt ; t ≥ 0} is a standard process of Brownian motion andE denotes
the expectation with respect to this Brownian motion. The large time behavior
of similar expectations for the pinned down random walk on the one dimen-
sional latticeZ where studied in [16] (see especially Section 2) in the context of
the analysis of random discrete Schrödinger operators. We study the long time
behavior ofM (t) by means of large deviation techniques.

Before we state our main results, we introduce some more notations. We shall
denote byX the spaceC0([0,∞),Rd) of all the continuous function from [0,∞)
into Rd with initial value zero equipped with the topology of the local uniform
convergence. Similarly we shall use the notationXt for the restrictions to the
interval [0, t ] of the elements ofX . the notationC0([0, t ]) will be used.X and
Xt are Polish spaces. A typical element ofX will be written as{ω(t); 0≤ t <
∞}. We denote byPsi(X ) the set of the all the probability measures onX
such that the coordinate process ofX is a process with stationary increments.
Psi(X ) is a Polish space if endowed with the topology of the weak convergence
of probability measures. LetQ0 denote the law of the process{Bt ; t ≥ 0} of
standard Brownian motion. ObviouslyQ0 ∈ Psi(X ). For any P ∈ Psi(X ),
we denote byPt the restriction ofP to theσ-field generated by the coordinate
functionss ↪→ ω(s) for 0 ≤ s ≤ t (or equivalently the restriction ofP to Xt ).
For anyP ∈ Psi(X ) andt > 0, we define the relative entropy ofPt with respect
to Qt

0 by
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H (Pt |Qt
0) = sup

f
{
∫

f dP− ln[
∫

exp(f ) dQ0]},

where the supremum is taken over all the bounded continuous functionsf on
Xt . H (Pt |Qt

0) so-defined is superadditive int and we can define:

H (P|Q0) = lim
t→∞

1
t

H (Pt |Qt
0) (3)

for any P ∈ Psi(X ). We are now in a position to state our main results.

Theorem 1.1 We assume that the function K(x) is nonnegative and that it is
integrable if d= 1 or d = 2 and that it satisfies the condition:∫

ν(dξ)
‖ξ‖2

<∞ (4)

if d ≥ 3. Here and in the following‖ξ‖ denotes the Euclidean norm ofξ ∈ Rd.
Then the limit:

S(λ) = lim
t→∞

1
t

ln M (t) (5)

exists and is given by the formula:

S(λ) = − inf
P∈Psi (X )

[
E

P2λ2
∫ ∞

0
K (ω(t)) dt + H (P|Q0)

]
, (6)

whereEP denotes the expectation with respect to the measure P.

Notice that the existence ofS(λ) is an easy consequence of the subadditivity
property of 1

t ln M (t). We do not know if the nonnegativity of the correlation of
the random fieldV (x) is necessary. The variational formula that we derive here
is very convenient when it comes to analyzing the smallλ behavior ofS(λ) and
to show that the results conjectured in the physics literature (see for example
[17]) do indeed hold. More precisely we prove:

Theorem 1.2 The smallλ behavior of S(λ) is given by:

S(λ)
λ4/3

= O(1) if d = 1, lim
λ↘0

S(λ)
λ2 log(1/λ)

=
2
π

∫
K (x)dx if d = 2, (7)

and:

lim
λ↘0

S(λ)
λ2

= 4
∫

ν(dξ)
‖ξ‖2

, if d ≥ 3 (8)

Remark on Theorem 1.2:As pointed out by the referee, the estimates (7) and
(8) can be derived directly without appealing to the large deviation principle for
white noise. We refrained from doing so because the calculations would not be
significantly shorter. Moreover we believe the large deviation principle given in
Theorem 2.1 is of independent interest, Finally, the use of this principle makes
our proof more transparent and more in tune with the physicsal intuition presented
in [17].
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The above result was extended toα - stable fields on the lattice in [19]. A
variational principle similar to (6) was derived in [10] in the case of the Wiener
sausage with drift.

The main ingredient of the proof of Theorem 1.1 is large deviation techniques.
It is not hard to see that the ”paths”, which contribute most in (2), are paths with a
linear drift. These paths are not typical path for the process of Brownian motion.
We deal here with events of exponentially small probabilities. That is the reason
why large deviation theory plays an inportant role in this problem. Heuristically:

lim
t→∞

1
t

ln M (t) ≈ lim
t→∞

1
t

lnEexp[−2λ2
∫ t

0
(
∫ T

0
K (B(r + s)− B(r )) ds) dr ]

when T is large and consequently, large deviation techniques allow us to pin
down:

lim
t→∞

1
t

lnEexp[−2λ2
∫ t

0
(
∫ T

0
K (B(r + s)− B(r )) ds) dr ]

= − inf
P

[
E

P2λ2
∫ T

0
K (ω(t)) dt + H (P|Q0)

]
.

The close relation between long time behavior of certain Wiener functionals
(many partition functions of physical systems are of such a type) and large
deviation theory is well known. The remarkable works of Donsker and Varadhan
(see [7, 9] for example) are the prime reason and our work is should bring another
example to demonstrate this relationship.

The rest of paper is organized as follow. In Section 2, we establish the facts
from the large deviation theory for white noise which we need. In Section 3, we
prove Theorem 1.1. In Section 4, we will derive Theorem 1.2.

For earlier related works in the physics literature we refer to [4, 3] and to the
references quoted therein. See also [6] for an excellent survey. The probabilistic
analysis of the fine structure of one-dimensional polymer measures can be found
in the recent articles [2] and [12]. The interested reader can also consult the
references quoted therein for earlier related works.

2 Large deviations for white noise

In this section, we establish a large deviation principle for white noise at the
process level. We use the notations introduced in the previous section. For any
t > 0 andω(·) ∈ X , we define the new path

ωt (s) =

{
ω(s) if 0 ≤ s ≤ t
kω(t) + ω(r ) if s = kt + r , with r , k ∈ Z+, 0≤ r < t .

It is not hard to see that theformal derivative of ωt (s) with respect tos is
the periodic extensionof the formal derivativeof ω(s) with period t . For any



Magnetization in a Gaussian random field 237

A ⊂ X , we define the empirical measure for the increment of the coordinate
process:

L(A, t , ω) =
1
t

∫ t

0
1A(ωt (s + ·)− ωt (s)) ds, (9)

where1A denotes the characteristic function, also called the indicator function of
the setA. ObviouslyL(dω̄, t , ω) ∈ Psi(X ). Our first main result in this section
is the following large deviation principle forL(·, t , ω) underQ0.

Theorem 2.1 The law of L(dω̄, t , ω) under Q0 satisfies the large deviation prin-
ciple onPsi(X ) as t→∞ with the rate function H(·|Q0).

Recall that this means that:

lim sup
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ C} ≤ − inf
P∈C

H (P|Q0), (10)

for any closed setC ⊂ Psi(X ); and

lim inf
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ O} ≥ − inf
P∈O

H (P|Q0), (11)

for all the open setO ⊂ Psi(X ).

Remarks on Theorem 2.1 :

1. In fact, the above large deviation principle is the large deviation principle for
the empirical measure of white noise, whichlives on the Schwartz space of
generalized functions. From this point of view, it is the extension of the well
known level 3 large deviation principle for i.i.d random sequence [11]. An
attempt in this direction was made earlier in [14] where a weaker (though very
often equivalent) form of the large deviation principle (10-11) is formulated.
The latter was used in the subsequent paper [15] where asymptotics for one-
dimensional polymers were derived. It is quite possible that the partd = 1
of (7) could be derived from the estimates of this last work.

2. This type of large deviation principle was originally studied in [8]. Although
the above result is not included in the framework of their paper, a slight mod-
ification of their argument for the upper bound (especially the exponentially
tightness) suffices to show our result. We learned through private discussions
with S.R.S. Varadhan that the result was known to him. We include it for the
sake of completeness but instead of giving a detailed proof, we merely pro-
vide the nesssary modifications to the argument of [8]. These modifications
will be organized into several steps.

3. The fact thatH (P|Q0) is a rate function was established in [8]. (i) It is lower
semi-continuous inP; (ii) {P : H (P|Q0) ≤ a} is a compact set for anya.
More surprisingly,H (P|Q0) is linear in P (see Section 3 in [8]).

Following lemma, which provides lower bound(11), follows directly from the
same argument in Sect. 5 of [9].
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Lemma 2.1 Let P ∈ Psi(X ) be such that H(P|Q0) < ∞ and U be the any
neighborhood of P; then

lim
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ U } ≥ −H (P|Q0). (12)

We start to give the modification for arguments of lower bound.

Lemma 2.2 Let F be a continuous function onX depending on paths up to time
T such thatEQ0eF ≤ 1. Then for any t> 0:

E
Q0 exp

[
1
T

∫ t

0
F (ω(· + s)− ω(s)) ds

]
≤ 1

Proof. The method is a slight modication of the argument of Lemma 4.1 in [8].
We define

Gs(ω) =
∑
k:k≥0

s+kT≤t

F (ω(· + s + kT)− ω(s + kT)).

So:

E
Q0 exp

[
1
T

∫ t

0
F (ω(· + s)− ω(s)) ds

]
= E

Q0 exp

[
1
T

∫ T

0
Gs(ω) ds

]
≤ 1

T

∫ T

0
E

Q0 exp{Gs(ω)} ds.

As an immediate consequence of the independence of the increments of Brownian
motion, we have:

E
Q0 exp{Gs(ω)} ≤ 1.

This completes the proof. ut
Lemma 2.3 Let F be a bounded continuous function onX depending on paths
up to time T such thatEQ0eF ≤ 1. Then for all t> 0,

E
Q0 exp

[ t
T
E

L(·,t,ω)F
]
≤ exp[2 sup

ω∈X
|F |]. (13)

Proof. Observe that

|tEL(·,t,ω)F −
∫ t

0
F (ω(· + s)− ω(s)) ds| ≤ 2T sup

ω∈X
|F |.

In account of Lemma 2.2, our result is immediate. ut
Lemma 2.4 Let C be acompactset inPsi(X ). Then

lim sup
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ C} ≤ − inf
P∈C

H (P|Q0).
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Proof. Let ET be the set of all functionsF as in Lemma 2.3. From (13), we have

Q0{ω : L(·, t , ω) ∈ C} ≤ exp{2 sup
ω∈X

|F |}exp{− t
T

inf
P∈C

E
PF},

for any F ∈ ET . Thus

lim sup
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ C} ≤ − sup
T>0

sup
F∈ET

inf
P∈C

1
T

∫
X

F (ω) dP

= − inf
P∈C

sup
T>0

sup
F∈ET

1
T

∫
X

F (ω) dP

= − inf
P∈C

H (P|Q0).

This completes the proof. ut
The following lemma provides theexponential tightnessof L(·, t , ω). It is used
to extend the lower bound estimate in Lemma 2.4 from compact sets to closed
sets.

Lemma 2.5 If we set:

M (ω) =
d∑

i =1

sup
0≤r ,s≤1

|ωi (r + s)− ωi (s)|
r

1
4

,

whereωi stands for the i -th component ofω, then:

lim sup
t→∞

1
t

lnEQ0 exp
[
tEL(·,t,ω)M

]
<∞. (14)

Proof: The result follows immediately from the combination of the argument
in Lemma 2.2 and the following Gaussian estimate:

Eexp

[
sup

0≤s,r≤1

|B(r + s)− B(r )|
s1/4

]
<∞,

which is an immediate consequence of Borell’s inequality (see for example The-
orem 2.1 of [1]). ut

Notice that{P ∈ Psi(X ); EPM ≤ a} is a compact set for anya. The next
lemma is an immediate consequence of combination of the previous lemma and
Lemma 2.4.

Lemma 2.6 Let C be aclosedset inPsi(X ). Then

lim sup
t→∞

1
t

ln Q0{ω : L(·, t , ω) ∈ C} ≤ − inf
P∈C

H (P|Q0).
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Proof of Theorem 2.1.Indeed we have done all necessary steps to prove this
theorem. Here we only need to point out that Lemma 2.1 gives us the (10) and
Lemma 2.6 provides the (11). ut
The following limit is one of the key steps in our proof of the main result of this
paper. It is a consequence of the above large deviation principle and the so-called
Varadhan’s Lemma from the general theory of large deviations (see [20]).

Corollary 2.1 For any T> 0, we have:

lim
t→∞

1
t

lnEQ0 exp

[
−
∫ t

0

(∫ T

0
2λ2K (ω(s + r )− ω(r )) ds

)
dr

]
= − inf

P∈Psi (X )

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
. (15)

Proof. Notice that:∫ t

0
(
∫ T

0
K (ω(s + r )− ω(r )) ds) dr = tEL(·,t,ω)

∫ T

0
K (ω(s)) ds + O(1),

where O(1) is order 1 term int . On the other hand, because of Varadhan’s
Lemma and Theorem 2.1 we have:

lim
t→∞

1
t

lnEQ0 exp

[
−tEL(·,t,ω)

∫ T

0
K (ω(s)) ds

]
= sup

P∈Psi (X )

[
−EP

∫ T

0
2λ2K (ω(s)) ds− H (P|Q0)

]
= − inf

P∈Psi (X )

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
.

Hence:

lim
t→∞

1
t

lnEQ0 exp

[
−
∫ t

0

(∫ T

0
2λ2K (ω(s + r )− ω(r )) ds

)
dr

]
= − inf

P∈Psi (X )

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
.

This completes the proof. ut

3 Decay rate

In this section, we prove Theorem 1.1. We break the proofs into several steps.
We establish the upper bound first.

Lemma 3.1 Assume that K(x) , λ and Q0 are as in Theorem 1.1. Then:

lim sup
t→∞

1
t

ln M (t) ≤ − inf
P∈Psi (X )

[
E

P2λ2
∫ ∞

0
K (ω(t)) dt + H (P|Q0)

]
. (16)
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Proof. SinceK (x) ≥ 0, then for any fixedT such thatt > T > 0 we have:

−
∫ t

0

(∫ t−s

0
K (ω(r + s)− ω(s)

)
dr) ds

≤ −
∫ t−T

0
(
∫ T

0
K (ω(r + s)− ω(s)) dr) ds.

and if we apply Corollary 2.1 to the right hand side of the above expression, we
obtain:

lim sup
t→∞

1
t

ln M (t)

≤ lim sup
t→∞

1
t

lnEQ0 exp

[
−
∫ t−T

0

(∫ T

0
K (ω(r + s)− ω(s)) dr

)
ds

]
= − inf

P

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
.

Now we sendT →∞ and we get:

lim sup
t→∞

1
t

ln M (t) ≤ − lim
T→∞

inf
P

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
.

It only remains to check that:

lim
T→∞

inf
P

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
= inf

P
{EP

∫ ∞

0
2λ2K (ω(s)) ds + H (P|Q0)}.

This will be established in the next lemma. Modulo this, the proof is complete.
ut

The next lemma provides the properties of the decay rate, which we need.

Lemma 3.2 For each fixedλ > 0, there exists a minimizer P0 for the variational
problem (6). It is ergodic and H(P0|Q0) <∞. Moreover:

lim
T→∞

ST = S(λ)

provided we set:

ST (λ) = inf
P

[
E

P
∫ T

0
2λ2K (ω(s)) ds + H (P|Q0)

]
.

Proof. Let us set:

f (P) = EP
∫ ∞

0
2λ2K (ω(s)) ds + H (P|Q0).
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Then f (P) ≥ 0. Next, we consider the upper bound. For each elementβ ∈ Rd

let us denote byQβ the distribution of Brownian motion with driftβ. In other
wordsQβ is the law ofBt + βt if Bt is a standard Brownian motion. Obviously
Qβ ∈ Psi(X ) and it is well known that

H (Qβ |Q0) =
1
2
‖β‖2

.

Using the distributionQβ as a trial in the definition ofS(λ) we get:

S(λ) = inf
P∈Psi (X )

[
2λ2

E
P
∫ ∞

0
K (ω(t)) dt + H (P|Q0)

]
≤ 2λ2

E
Qβ

∫ ∞

0
K (ω(t)) dt + H (Qβ |Q0)}

= 2λ2
∫
Rd

ν(dξ)
‖ξ‖2/2 + i ξ · β +

1
2
‖β‖2

, (17)

if we use (3) and:

E
Qβ

∫ ∞

0
K (ω(t)) dt =

∫ ∞

0
E{K (Bt + βt)}dt

=
∫ ∞

0

∫
Rd
E{ei ξ·(Bt +βt)}ν(dξ)dt

=
∫ ∞

0

∫
Rd

et(‖ξ‖2/2+i ξ·β)}ν(dξ)dt

=
∫
Rd

ν(dξ)
‖ξ‖2/2 + i ξ · β

which shows, provided we chooseβ /= 0 whend = 1 or d = 2, thatS(λ) < ∞
in all cases. LetPn be a minimizing sequence that we select so thatf (Pn) <
f (Qβ) + 1. Therefore:

H (Pn|Q0) < f (Qβ) + 1,

and as a consequence,{Pn}n=1,2.··· is tight. Let P0 be a limit point. The lower
semicontinuity ofH (P|Q0) and standard properties of the weak convergence of
probability measures imply thatP0 is a minimizer. Moreover, the linearity of
H (P|Q0) makes it possible to select an extremum which is ergodic. Obviously

ST (λ) ≤ S(λ),

for any T > 0 and if we letT →∞, we get:

lim
T→∞

ST (λ) ≤ S(λ).

In order to check that:
lim

T→∞
ST (λ) ≥ S(λ),

we choose for eachT > 0, PT ∈ Psi(X ) such that:
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ST (λ) > E
PT

∫ T

0
2λ2K (ω(s)) ds + H (PT |Q0)} − 1

T + 1
.

This implies that:
sup

T
H (PT |Q0) <∞,

and therefore that the family{PT}T is tight. LetP̄ be a limit point. Then for any
T ′ > 0, we have:

lim
T→∞

ST ≥ E
PT

∫ T′

0
K (ω(t)) dt + H (PT |Q0) +

1
T
.

Let T blows to∞, then

lim
T→∞

ST ≥ E
P̄
∫ T′

0
K (ω(t)) dt + lim sup

T→∞
H (PT |Q0).

SinceH (P|Q0) is lower semicontinuous, therefore

lim inf
T→∞

H (PT |Q0) ≥ H (P̄|Q0).

At this point, we sendT ′ →∞, we obtain

lim
T→∞

ST ≥ f (P̄) ≥ S(λ).

This completes our proof. ut
The next lemma establishs the lower bound.

Lemma 3.3 Assume that K(x) , λ and Q0 are as in Theorem 1.1. Then

lim inf
t→∞

1
t

ln M (t) ≥ − inf
P∈Psi (X )

[
2λ2

E
P
∫ ∞

0
K (ω(t)) dt + H (P|Q0)

]
. (18)

Proof. For anyP ∈ Psi(χ) such thatH (P|Q0) < ∞, using Jensen’s inequality
we get:

1
t

ln M (t)

=
1
t

lnEQ0 exp

[
−2λ2

∫ t

0
(
∫ t−s

0
K (ω(r + s)− ω(s)) dr) ds

]
=

1
t

lnEP exp

[
−2λ2

∫ t

0
(
∫ t−s

0
K (ω(r + s)− ω(s)) dr) ds− log

dP
dQ0

|Ft

]
= −2λ2

t
E

P
∫ t

0
(
∫ t−s

0
K (ω(r + s)− ω(s)) dr) ds− 1

t
E

P log
dP
dQ0

|Ft

≥ −2λ2

t
E

P
∫ t

0
(
∫ ∞

0
K (ω(r + s)− ω(s)) dr) ds− 1

t
E

P dP
dQ0

|Ft

= −2λ2
E

P
∫ ∞

0
K (ω(r )) dr − 1

t
H (Pt |Qt

0).
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In the above we used once more the nonnegativity ofK (x) and the stationarity
of the increments underP. Next we sendt →∞. In account of the fact that the
second term in the above right hand side approachesH (P|Q0), we have:

lim inf
t→∞

1
t

ln M (t) ≥ −2λ2
E

P
∫ ∞

0
K (ω(r )) dr − H (P|Q0).

This completes the proof. ut

4 Small λ behavior of the rate S(λ)

This section is devoted to the proof of Theorem 1.2.
We first prove the lower bound. In order to do so we fixt > 0 and we apply

the entropy inequality:

E
Pf ≤ logEQ0ef + H (P|Q0)

to the function:

f = −2λ2t
∫ t

0
K (ω(s)) ds

and to the restrictionsPt andQt
0 of P andQ0 to theσ-field Ft . We get:

− logEQ0e−2λ2t
∫ t

0
K (ω(s)) ds ≤ 2λ2tEP

∫ t

0
K (ω(t)) dt + H (Pt |Qt

0).

Using the superadditivity of the entropy appearing in the right hand side we get
(after dividing both sides byt and using once more the nonnegativity of the
function K ):

− 1
t

logEQ0e−2λ2t
∫ t

0
K (ω(s)) ds ≤ 2λ2

E
P
∫ ∞

0
K (ω(t)) dt + H (P|Q0) (19)

which shows that the left hand side is a lower bound forS(λ). Such a bound
can be derived directly using arguments simular those in Lemma 2.2. But such
a derivation would not be very constructive, so we refrained from using it. We
now consider separately the various cases. Ifd = 1 we chooset = λ−4/3 and the
lower bound becomes:

S(λ) ≥ −λ4/3 logEQ0e−2λ2/3
∫ λ−4/3

0
K (ω(s)) ds

and the Kallianpur-Robbins law for Brownian motion (see for example [13]
p.229) implies that the right hand side is equivalent tocλ4/3 for somec > 0.
The integrability of the covariance functionK was also used. This completes
the proof of the lower bound in one dimension. The Kallianpur-Robbins law can
also be used in the cased = 2 provided we use the substitutiont = a/λ2 log 1/λ
for somea > 0 to be chosen later. The lower bound (19) becomes:

S(λ) ≥ −λ2 log 1/λ
a

logEQ0e−(2a/ log 1/λ)
∫ a/λ2 log 1/λ

0
K (ω(s)) ds
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and consequently:

S(λ)
λ2 log 1/λ

≥ −1
a

logEQ0 exp

[
−2a(

∫
K (x)dx)
π

eλ

]
where, according to the Kallianpur-Robbins law, the random variableeλ con-
verges in distribution to a exponential distribution with parameter 1. Conse-
quently:

lim inf
λ↘0

S(λ)
λ2 log 1/λ

≥ −1
a

log
1

1 + 2a
π

∫
K (x)dx

and letting the parametera go to zero we get:

lim inf
λ↘0

S(λ)
λ2 log 1/λ

≥ 2
π

∫
K (x)dx.

We now consider the cased ≥ 3. Assumption (4) implies that the random variable∫∞
0 K (ω(s))ds exists and is finiteQ0 almost surely. Let us fixδ > 0 andT > 0

momentarily. Substitutingt = δλ−2 in the lower bound (19) gives:

S(λ) ≥ −λ2

δ
logEQ0e−2δ

∫ δλ−2

0
K (ω(s) ds

and consequently (by restrictingλ so thatδλ−2 > T):

lim inf
λ↘0

S(λ)
λ2

≥ −1
δ

logEQ0e−2δ
∫ T

0
K (ω(s) ds

.

Letting δ ↘ 0 in the right hand side we get (see for example Exercise 5.b if
Chapter 3 of [18]):

lim inf
λ↘0

S(λ)
λ2

≥ 2EQ0

∫ T

0
K (ω(s) ds

and we conclude the proof of the lower bound by lettingT ↗∞.

We first consider the cased = 1 and we use the upper bound (17) withβ /= 0.
We get:

S(λ) ≤ λ2
∫ +∞

−∞

ν(dξ)
ξ2/4 +β2

+
1
2
β2.

Using the substitutionβ = λ2/3, the right hand side is easily shown to be con-
trolled by the quantity:

2λ4/3

[
π

∫
K (x)dx +

1
2

]
because of the de la Vallée Poussin theorem which says that:

lim
ε↘0

ε

∫
ν(dξ)
ξ2 + ε2

= π

∫
K (x) dx.
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See for example [5] Chapter I. This concludes the proof of the smallλ asymptotic
in the one dimensional case. Next we consider the cased = 2. Choosingβ of the
form (r cosθ, r sinθ) in (17) and integrating outθ over the unit circle we obtain
the upper bound:

S(λ) ≤ 4λ2
∫

ν(dξ)

‖ξ‖2
√

1 + (2r /‖ξ‖)2
+

1
2

r 2.

Denoting byn(ξ) density of the radial marginal ofν(dξ) we get:

S(λ) ≤ 4λ2
∫ ∞

0

n(ξ)dξ√
ξ2 + 4r 2

+
1
2

r 2.

which proves that:

S(λ) ≤ 8πn(0)λ2 log
1
λ

if we make the substitutionr = λ in the above bound. This completes the proof
of the upper bound and of the expected result in the cased = 2 because:

n(0) =
1

(2π)2

∫
K (x) dx.

Finally we consider the cased ≥ 3. The upper bound is obtained from (17) by
choosingβ = 0 and using assumption (4). As in the cased = 2 the upper bound
so obtained is equal to the lower bound.
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