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Summary. We consider the superposition of a speeded up symmetric simple
exclusion process with a Glauber dynamics, which leads to a reaction di�usion
equation. Using a method introduced in [Y] based on the study of the time
evolution of the H−1 norm, we prove that the mean density of particles on
microscopic boxes of size N�, for any 12=13¡�¡1, converges to the solution
of the hydrodynamic equation for times up to exponential order in N , provided
the initial state is in the basin of attraction of some stable equilibrium of the
reaction–di�usion equation. From this result we obtain a lower bound for the
escape time of a domain in the basin of attraction of the stable equilibrium
point.

Mathematics Subject Classi�cation (1991): 60K35, 82A05

Introduction

The major problem in the theory of hydrodynamic limit of interacting particle
systems consists in describing the macroscopic time evolution of a gas from
the microscopic interaction between molecules. Although physically well under-
stood, this passage from the microscopic dynamics to macroscopic behaviour
still presents in the general case some di�cult mathematical problems.
The interacting particle systems introduced by Spitzer constitute a class of

stochastic models with one macroscopic variable, the density, complex enough,
one the one hand, to present interesting macroscopic behaviour and relatively
simple, on the other hand, to allow rigorous mathematical proofs.
Until the breakthrough of Guo, Papanicolaou and Varadhan [GPV], where

the intensive use of large deviation techniques led to a robust proof of
the hydrodynamic behaviour of a large class of gradient systems with one
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conserved quantity, most methods to derive the hydrodynamic limit relied on
speci�c properties of each model.
Investigating the time evolution of the entropy of the state of the pro-

cess with respect to some reference equilibrium measure, Guo, Papanicolaou
and Varadhan proved a law of large numbers for the empirical measure, the
measure obtained assigning mass N−d to each particle, where parameter N−1
represents the interdistance between particles and d the dimension. In other
words, they proved that the density of particles in a small macroscopic neigh-
borhood of a space point a at time t converges in probability to �(t; a),
where � is the solution of a di�erential equation, the so called hydrodynamic
equation.
In this article we study a class of reaction di�usion models introduced

by De Masi, Ferrari and Lebowitz in [DFL] and obtained by superposition
of a speeded up stirring process and a Glauber dynamics in in�nite volume,
the lattice Zd. The authors proved, for this class of systems, propagation of
chaos, a strong version of the hydrodynamic behaviour. They showed that under
di�usive rescaling the time evolution of the density is described by solutions
of reaction–di�usion equations of the type

@t� =
1
2
��+ G(�) : (0:1)

Later, [JLV], following the ideas of [DV] and [KOV], proved large deviations
from the hydrodynamic limit in in�nite volume.
More recently, Yau in [Y], studying the time evolution of the H−1 norm

of continuous spin systems associated to reaction–di�usion equations in �nite
volume, proved another strong version of the hydrodynamic limit. He showed
that the mean density of particles on microscopic boxes of length N�, for some
0¡�¡1, around a at time t converges in probability to �(t; a) provided G
is a one well potential. This statement being correct for exponentially, with
respect to the parameter N , large time t.
In this article, exploiting the technique introduced by Yau, we prove an

exponential estimate for the H−1 norm of the process in in�nite volume. This
is the content of the �rst main theorem.
On the contrary to large deviations estimates obtained in [JLV] the present

method allows to go beyond the hydrodynamic scale provided the initial data
is in the basin of attraction of some stable equilibrium of the hydrodynamic
equation. It provides also information about the empirical measure in a more
re�ned scale than the hydrodynamic one.
More precisely, as an application of the basic exponential estimate stated

in Theorem 1.1, if the initial state is, in a sense to be speci�ed later, in the
basin of attraction of some stable equilibrium m∗ of the ordinary di�erential
equation m′(t) = G(m(t)), then the empirical density of particles in boxes of
microscopic size of order N�, for any 12=13¡�¡1, around a macroscopic
point a at time t converges in probability to �(t; a), if � denotes the solution
of the hydrodynamic equation (0.1) and t is of order at most exponential. It
should be stressed that we do not require m∗ to be the unique stable equilibrium
of equation (0.1). We do not reach � close to 0 because the hydrodynamic
equation is not scale invariant.
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From this estimate we get a lower bound for the escape time from a domain
in the basin of attraction of a stable equilibrium m∗. This lower bound is
exponential but is certainly not optimal.
Several articles have been devoted to the understanding of long time

behaviour of interacting particle systems associated to reaction–di�usion equa-
tions when propagation of chaos is broken. Several situations have also been
examined concerning the escape from certain unstable equilibrium points of
equation (0.1), which requires a logarithmical or polynomial time (in the scal-
ing parameter). Such analysis relies on estimates of truncated correlation func-
tions which, in the case of a superposition of a speeded up stirring process and
a Glauber dynamics, were developed exploiting the self duality of the stirring
process. (cf. [CPPV, DP, DPPV, G] and references therein). In [DOPT] such
an analysis is carried out for Glauber dynamics in Kac model and the authors
also study the empirical density in boxes of intermediate space scale.

1 Notation and results

We consider a family of Markov processes on X = {0; 1}Z, whose generator
is LN = N 2L0 + LG given by

(L0f)(�) =
1
2
∑
x
(f(�x; x+1)− f(�)) ;

(LGf)(�) =
∑
x
r(x; �)(f(�x)− f(�)) :

In this formula, for an integer x and a con�guration �, �x; x+1 and �x stand,
respectively, for the con�guration obtained from � by interchanging the occu-
pation variables �(x) and �(x + 1) and by ipping �(x):

�x; x+1(z) =


�(z) if z-x; y
�(x + 1) if z = x
�(x) if z = x + 1

�x(z) =
{

�(z) if z-x
1− �(z) if z = x

and r(x; �) = r(�x �) for some positive cylinder function r. Here �x � represents
the translation of � by x: �x �(y) = �(x + y) for all y ∈ Z.

For a con�guration �, PN
� will denote the law on the path space D([0;∞);X)

of the Markov process with generator LN when it starts from � and EN
� the

expectation with respect to PN
� . Sometimes we will omit superscript N and use

the same symbol to denote the restriction of the measure to some D([0; t0];X).
Moreover, if � is a measure on X then PN

� denotes the measure corresponding
to the process starting from � : PN

� ( · ) =
∫
PN
� ( · )� (d�).

For 05 �51, let �� be the translation invariant product measure on X
with marginals given by

��{�; �(x) = 1} = � :
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It is well known (cf. [DFL, DP]; see also [JLV] for another approach of the
“kinetic limit” based on the behaviour of empirical measures) that in the limit
N ↑ ∞ there is propagation of chaos:

lim
N→∞

sup
x1 ;:::; xk

∣∣∣∣EN
�

[
k∏

i=1
�t(xi)

]
−

k∏
i=1

EN
� [�t(xi)]

∣∣∣∣ = 0
for any con�guration �. In this formula the supremum is taken over all distinct
sites x1; : : : ; xk . Moreover

lim
N→∞

|EN
� [�t(xi)]− uN

t (xi)| = 0

where u = uN is the solution to the discretized version of the hydrodynamic
equation (0.1): {

@t uN
t (x) =

N 2

2 (�uN
t )(x) + G(uN

t (x))

uN
0 (x) = �(x)

(1:1)

for x ∈ Z and t = 0. Here � stands for the discrete Laplacian:

(�f)(x) = f(x + 1) + f(x − 1)− 2f(x); x ∈ Z ;

and G(�) for the algebraic expected value, under the product measure ��, of
the rate at which particles are ipped:

G(�) = ��[(1− 2�(0))r(�)] :
It follows from this result that if (�N )N=1 is a sequence of product mea-
sures associated to some smooth pro�le � : R→ R+(�N [�(x)] = �(x=N ) for
x ∈ Z), then

lim
N→∞

sup
x;:::; xk

∣∣∣∣EN
�

(
k∏
�t(xi)

)
−

k∏
�(t; xi=N )

∣∣∣∣ = 0 ;

where � is the solution of equation (0.1) and the supremum is taken over all
distinct sites x1; : : : ; xk .
These results state that �t should be close to the solution uN

t of the di�er-
ential equation (1.1). Our main theorem gives an exponential estimate for the
H−1 norm of the di�erence �t − ut . To state this theorem we need to introduce
some notation. For a cylinder function  we denote by  ̃ (�) the expected value
of  under ��:

 ̃ (�) = ��[ ] :

Denote by ‘2(Z) the space of functions f : Z→ R with summable square.
For two functions f and g in ‘2(Z), f ∗ g represents the convolution of f
with g. Denote by KN the kernel associated to the operator (I − N 2�)−1
in ‘2(Z) in the sense that (I − N 2�)−1 f = KN ∗ f for all functions f
in ‘2(Z). The exact expression and basic properties of the kernel KN are given
in the Appendix for the sake of completeness, even if this is a simple calcu-
lation with Fourier transforms.
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Fix a smooth function � : R→ R+ that coincides with the absolute value
outside the interval [−1; 1]: �(a) = |a| for |a|= 1 and denote by KN;�(x; y)
the kernel de�ned by

KN;�(x; y) = exp {−�(x=N )}KN (x; y) exp{−�(y=N )} :

For a bounded function f : Z→ R, we represent by ‖f‖−1 the H−1 norm
of f de�ned by

‖f‖2−1 = 〈KN;� f; f〉 ;

where 〈f; g〉 is the inner product on ‘2(Z) given by 〈f; g〉 = N−1∑
x f(x)g(x).

The two main results of this article may be stated as follows.

Theorem 1.1 There exists an universal constant C0 and � = �(�; G) such that
for all � ¡ 2=13 we have:

sup
�

E�

[
sup
s5t

exp {N�‖�s − uN
s ‖2−1e−�s}

]
5 C0eC0t

for any t = 0; where uN is the solution of equation (1.1).

In light of this result we study the behaviour of the process �t in the basin of
attraction of a stable equilibrium point m∗ of the ordinary di�erential equation
m′(t) = G(m(t)). Starting from a con�guration in this region, we prove a strong
version of the hydrodynamic behaviour of �t in the following sense. We show
that the empirical density on boxes of size N�, for some 0¡�¡1 and for
a time interval [0; exp{N}], ¿0, converge to the solution �(t; a) of the
hydrodynamic equation (0.1).
For a positive integer ‘, denote by �‘(x) the mean density of particles in

a box of length ‘ around x:

�‘(x) = (2‘ + 1)−1
∑

|y−x|5‘
�(y) :

Denote by m∗ a stable equilibrium of the ordinary di�erential equation
m′(t) = G(m(t)) :G(m∗) = 0 and G′(m∗)¡0. Let d¿0 so that [m∗−d;m∗+d]
is contained in the basin of attraction of m∗ in the following sense: sup|m−m∗|5d

G′(m)¡0. In particular, there exists a constant E0(d;G) so that for every m
in [m∗ − d;m∗ + d],

|m(t)− m∗|5 |m− m∗|e−E0t (1:2)

if m(t) is the solution of m′(t) = G(m(t)) with initial data equal to m.

Theorem 1.2 Let � be given by Theorem 1:1 and �x 1− (�=2)¡�¡1 and
denote N� by M . Let �0 : R→ [0; 1] be a smooth pro�le in the basin of
attraction of m∗:

sup
u∈R

|�0(u)− m∗|¡ d :

Assume that �(N ) is a sequence of con�gurations on X associated to �0:

lim
N→∞

sup
x∈Z

|�M
(N )(x)− �0(x=N )| = 0 :
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Let �¿0 be given by Theorem 1:1. Then; for all �¿0; and all ¡�=2 = 1=13;

lim
N→∞

P�(N )

[
sup

t5eN
sup

|x|5eN
|�M

t (x)− �(t; x=N )| ¿ �

]
= 0 :

The condition on the sequence of initial data can be relaxed. We need
only the sequence to be close to the pro�le �0 in an exponential box of size
C exp{N} for some �nite constant C:

lim
N→∞

sup
|x|5CeN

|�M
(N )(x)− �0(x=N )| = 0 :

It follows from Theorem 1.2 that the time needed to leave the domain of
attraction of a stable equilibrium point m∗ is at least of order exp{N}
for ¡1=13.
This article is divided as follows. In Sect. 2 we reduce the proof of

Theorem 1.1 to the proof of a N�-block estimate, for some 0¡�¡1, in the
now classical terminology of entropy methods for derivation of hydrodynamic
equations of interacting particle systems. In Sect. 3 we prove the N�-block
estimate. In Sect. 4 we prove Theorem 1.2. The last two sections contain some
technical results used in the article.

2 An exponential estimate

The proof of Theorem 1.1 will be based on the analysis of some exponential
martingales which we now consider and the “N�-block estimate” proven in the
next section.
For each z ∈ Z, denote by J z; z+1

t the number of times in [0; t] that the
occupation variables �(z) and �(z + 1) are interchanged and by J z

t the number
of times that the variable �(z) is ipped:

J z; z+1
t := #{s5 t : �s = �z; z+1

s− ; �s-�s−}
J z
t := #{s5 t : �s = �z

s−} :

Recall from the statement of the theorem the de�nition of � and denote
by F(�; t) the corrected H−1 norm of the di�erence �t − ut :

F(�; t) := e−�t‖�t − ut‖2−1 :

F(�t ; t) can be expressed in terms of the generalized Poisson processes {J z; z+1
t ;

z ∈ Z} and {J z
t ; z ∈ Z}:

F(�t ; t)− F(�0; 0)−
t∫
0
@s F(�s; s) ds

=
∑
z

t∫
0
(F(�z; z+1

s ; s)− F(�s; s)) dJ
z; z+1
s +

∑
z

t∫
0
(F(�z

s; s)− F(�s; s)) dJ
z
s :
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Recall that J̃
z; z+1
t = J z; z+1

t − (1=2)N 2
∫ t
0 ds [�s(z)− �s(z + 1)]2 and J̃

z
t = J z

t −∫ t
0 r(z; �s) ds are mean zero martingales (cf. [KL]). Since they have no common
jumps, they are orthogonal. In particular, for any  ∈ R, the process M(t)
de�ned by:

M(t) = exp
{
F(�t; t)− F(�0; 0)− 

t∫
0
@s F(�s; s) ds

− N 2

2
∑
z

t∫
0
(e∇z; z+1F(�s; s) − 1)[�s(z)− �s(z + 1)]2 ds

−∑
z

t∫
0
r(z; �s)(e∇zF(�s; s) − 1) ds

}
is a mean 1 positive local martingale. Here we used the notation

∇z; z+1F(�s; s) = F(�z; z+1
s ; s)− F(�s; s) ;

∇zF(�s; s) = F(�z
s; s)− F(�s; s) :

Notice that ∇z; z+1F(�s; s) vanishes if �(z) = �(z + 1). In particular, we may
remove [�s(z)− �s(z + 1)]2 in the second time integral in the de�nition
of M(t). On the other hand, the H−1 norm of the di�erence �t − ut van-
ishes at time t = 0 by de�nition of ut : F(�0; 0) = 0. Thus, from the de�nition
of the martingale M(t) and computing the time derivative of the H−1 norm,
we obtain that

exp 
{
F(�t; t) +

t∫
0
�F(�s; s) ds

}

= M(t) exp
{ t∫
0
e−�s @s‖�− us‖2−1

∣∣
�=�s

ds
}

× exp∑
z

t∫
0
ds
{
N 2

2
(e∇z; z+1F(�s; s) − 1) + r(z; �s)(e∇zF(�s; s) − 1)

}
:

(2:1)
Set, once for all,  to be equal to N� for some 0¡�. To prove a slightly

weaker version of the theorem, one that does not include a supremum over
time, we just need to show that the right hand side of the last expression
has bounded expected value. The following lemma is the �rst step in this
direction. Its proof is an easy consequence of the explicit form of the kernel
KN ( · ) associated to the H−1 norm. For this reason we postponed it to Sect. 5
at the end of this article.

Lemma 2.1 There exists an universal constant B0 so that

|∇z; z+1F(�; s)|5 B0
N 2 e

−�(z=N ) and |∇zF(�; s)|5 B0
N

e−�(z=N ) :
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From the elementary inequality |ex − 1− x|5 x2

2 e
|x| and Lemma 2.1 we

get that the third line of (2.1) is bounded above by

exp {C1(r; �)N 2�−1 t}

× expN�
{
N 2

2
∑
z

t∫
0
∇z; z+1F(�s; s) ds +

∑
z

t∫
0
r(z; �s)∇zF(�s; s) ds

}
for some constant C1(r; �) that depends only on ‖r‖∞ and �. We are now
left to bound the expected value of the product of the �rst term on the right
hand side of (2.1) with this last exponential. A simple computation, presented
in Sect. 5 (cf. Lemma 5.1) for the sake of completeness, shows that

@s‖�s − us‖2−1 + (1=2)N 2∑
z
∇z; z+1‖�s − us‖2−1 +

∑
z
�zr(�s)∇z‖�s − us‖2−1

= N−2∑
x;y
[�s(x)− us(x)]KN;�(x; y)[N 2�[�s( · )− us( · )]](y)

+ 2N−2∑
x;y
[�s(x)− us(x)]KN;�(x − y)[�yr0(�s)− G(us(y))]

+ (1=2)N−1∑
x
(�s(x + 1)− �s(x))2

× N [KN;�(x + 1; x + 1) + KN;�(x; x)− 2KN;�(x; x + 1)]

+ N−2∑
x
KN; �(x; x)�xr(�) : (2:2)

In Lemma 5.2 we shall prove that this expression is bounded above by

C(r; �)

√
‘√
N
+ �(r; �)‖�s − us‖2−1 + C(r)N−1∑

x
|�xVr0 ; ‘(�s)|e−2�(x=N )

+ N−1∑
x
|�xVW;‘(�s)|e−2�(x=N ) + C(�)

‘
N

N−1∑
x
|(N∇u)(x)|e−2�(x=N )

(2:3)

for every positive ‘ and some �nite constant �(r; �). In this formula, r0(�)
stands for the cylinder function [1− 2�(0)]r(�) and W (�) for �(0)�(1). More-
over, for a cylinder function  and a positive integer ‘, we denote by V ; ‘ the
corrected average of  on a box of length ‘ around the origin:

V ; ‘(�) = (2‘′ + 1)−1
∑

|x|5‘′
{�x (�)−  ̃ (�‘(x))} : (2:4)

Here ‘′ = ‘( ) = ‘ − s( ) where s( ) is de�ned as the support of the cylinder
function  : s( ) = min{n∈N;  is a function of {�(−n); : : : ; �(n)}}. Notice
that ‘′ is de�ned so that V ; ‘ depends on the con�guration � only through
�(x) for x in {−‘; : : : ; ‘}. We shall let ‘ depend on N later on.
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Thus, choosing � appropriately, up to this point we proved that
exp{F(�t ; t)} is bounded above by

exp {C(r; �)[N 2�−1 + ‘1=2N�−(1=2)] t}M(t)

× expN�
t∫
0

{
C(r)N−1∑

x
|�xVr0 ; ‘(�s)|e−2�(x=N )

+ N−1∑
x
|�xVW;‘(�s)|e−2�(x=N )

}
ds

× expN�
{ t∫
0

‘
N

C(�)N−1∑
x
|(N∇us)(x)|e−2�(x=N ) ds

}
for some �nite constants C(r), C(�) and C(r; �).
We shall prove in Lemma (6.2) of the Appendix that the time integral

of the L1 norm of the discrete derivative of u is bounded. More precisely that
there exists a constant B2 = B2(G) such that

t∫
0
N−1∑

x
|(N∇us)(x)|e−2�(x=N ) ds 5 B2(1 + t) :

From this bound and Schwarz inequality we obtain that

E�

[
sup
t5t0

exp {F(�t ; t)}
]

5 exp {C(r; �)[N 2�−1 + ‘1=2N�−(1=2)] t0} × E1=2�

[
sup
t5t0

(M(t))2
]

× E1=4�

[
exp 4N�C(r)

t0∫
0
N−1∑

x
|�xVr0 ; ‘(�s)e−2�(x=N )| ds

]

× E1=4�

[
exp 4N�

t0∫
0
N−1∑

x
|�xVW;‘(�s)|e−2�(x=N ) ds

]
:

Notice that (M(t))2 is equal to

M 2(t) exp
{
N 2

2
∑
z

t∫
0
[(e2∇z; z+1F(�s; s) − 1)− 2(e∇z; z+1F(�s; s) − 1)] ds

}

× exp
{∑

z

t∫
0
r(z; �s)[(e2∇zF(�s; s) − 1)− 2(e∇zF(�s; s) − 1)] ds

}
:

Here we used again that ∇z; z+1F(�s; s) vanishes if �s(z) = �s(z + 1). Using
the elementary inequality |(e2x − 1)− 2(ex − 1)|5 3x2 e|2x|, from Lemma 2.1
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we get that (M(t))2 is bounded above by

M 2(t) exp

[
C(r)

{
N 3
(
B0N�

N 2

)2
e2B0N

�−2
t + N

(
B0N�

N

)2
e2B0N

�−1
t

}]
5 M 2(t) exp {C(r)N 2�−1 t}

for some constant C(r) depending only on r. In particular E�[{supt5t0
M(t)}2]

¡∞ and by Doob’s maximal inequality

E�

(sup
t5t0

M(t)

)25 2 exp {C(r)N 2�−1 t0} :

To conclude the proof of Theorem 1.1 it remains to show that, for �¡2=13,
there exists a sequence ‘N � N 1−2� such that for every cylinder function  ,

sup
�

E�

[
expN�

{ t∫
0
N−1∑

x
|�xV ; ‘N (�s)|e−2�(x=N ) ds

}]
5 eC(r; �;  )t

for all t = 0 and for some constant C(r; �;  ) depending on r, � and  only.
This is the content of the main result of next section.

3 N�-block estimate

Proposition 3.1 Fix a cylinder function  . Recall the de�nition of V ; ‘(�)
given in (2:4). There exists a �nite constant C(r; �;  ) such that

log sup
�

E�

[
expN�

t∫
0

1
N
∑
x
|�xV ; ‘N (�s)|e−2�(x=N ) ds

]

5 C(r; �;  )t

{
1 +

√
‘ + N 1+a−(�=2)‘

N 1−(3�=2) +
N�
√
‘

}
: (3:1)

for all a¿0; 0¡�¡1 and positive integer ‘.

In the light of this statement it is easy to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1 Recall from Sect. 2 the following restrictions on � and
‘ : �¡1=2; ‘¡N 1−2�. From these inequalities it follows that ‘¡N 1+a−(�=2).
In particular the right hand side of (3.1) is bounded by

C(r; �;  )t
{
1 +

‘
N {(1−a)=2}−(5�=4) +

N�
√
‘

}
:

The best choice of ‘ is ‘ = N {(1−a)=3}−(�=6). With this choice we obtain that
the last expression is bounded by

C(r; �;  )t{1 + N (13�=12)−{(1−a)=6}}
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which is bounded by C(r; �;  )t for �¡2=13 and a su�ciently small. Moreover,
with such �, we have that ‘ = ‘N is indeed bounded by N 1−2�.

We turn now to the proof of Proposition 3.1.

Proof of Proposition 3.1 Fix a cylinder function  and a positive inte-
ger ‘. To keep notation as simple as possible denote the positive function
N�−1∑

x |�xV ; ‘N (�)|e−2�(x=N ) simply by V�(�). From the Markov property,
for any positive integer M we have that

sup
�

E�

[
exp

t∫
0
V�(�s) ds

]
5

(
sup
�

E�

[
exp

t=M∫
0

V�(�s) ds

])M
:

Expanding the exponential we obtain that the logarithm of the right hand side
is equal to

M log sup
�

∑
k=0

∫ · · · ∫
0¡t1¡···¡tk¡t=M

E�

[
k∏

i=1
V�(�ti)

]
dt1 · · · dtk :

Since V� is positive, we apply again Markov property to bound this expression
by

M log
∑
k=0

(
sup
�

E�

[
t=M∫
0

V�(�s) ds

])k
= M log

(
1− sup

�
E�

[
t=M∫
0

V�(�s) ds

])−1

provided that

sup
�

E�

[
t=M∫
0

V�(�s) ds

]
¡1 : (3:2)

From the de�nition of V� we see that it is a positive function bounded
above by C(�)N�‖ ‖∞. In particular the left hand side of (3.2) is bounded
by 1=2 if M ¿C′(�)N�t ‖ ‖∞. Choosing such M and since log{(1− A)−1}5
A=(1− A)5 2A if A5 1=2, we obtain that the left hand side of (3.1) is
bounded above by

2M sup
�

E�

[
t=M∫
0

V�(�s) ds

]
provided M ¿C′(�)N�t ‖ ‖∞.
Recall the de�nition of V�. The above expectation is bounded by

2MN−1+�∑
x

e−2�(x=N ) sup
�

E�

[
t=M∫
0

�xV ; ‘(�s) ds

]

5 C(�)MN� sup
�

E�

[
t=M∫
0

V ; ‘(�s) ds

]
(3:3)

since the dynamics is translation invariant. To conclude the proof of the propo-
sition it remains to show that the above expression is bounded by the right
hand side of (3.1). This is done following the standard method of reducing
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an estimate of a non equilibrium expectation to an equilibrium large deviation
estimate by means of the entropy inequality.
Since the invariant measures of the process are not explicitly known we are

forced to use the space–time entropy to compare our process with one that has
a di�erent dynamics. The natural reference process is the one where particle
ips at a constant rate since for this one the Bernoulli product measure with
density 1=2 is invariant.
Consider thus P̃� the law of the Markov process on D([0; t];X) with gen-

erator
L̃N = N 2 L0 +

∑
x
(f(�x)− f(�))

and initial measure ��, the Bernoulli product measure with density �. Notice
that since ip rates are constant �1=2 is reversible for this process.

Of course, since we are in in�nite volume P� is not absolutely continuous
with respect to P̃1=2 and we need to perform a cuto� to restrict the original
problem to a �nite volume problem. This is the content of the �rst lemma.
To state it we need to introduce some notation. For a positive integer n and
a measure � on X, denote by P̃n

� the probability on the path space D([0; t];X)
of the process evolving according to the generator

L̃N; n = N 2 L0 +
∑

x∈�n

r(x; �)[f(�x)− f(�)] +
∑

x ∈| �n

[f(�x)− f(�)]

and starting from �. Here and below, for a positive integer m; �m={−m; : : : ; m}.
Moreover, denote by Ẽn

� expectation with respect to P̃n
� . Thus, for the dynamic

L̃N; n, on �n particles ip as in the original process and outside �n they ip
independently at a constant rate. It is natural to believe that the expectation of
a local function under P� and under P̃n

� do not di�er too much if n is large.
This is the content of the next lemma.

Lemma 3.2 For each positive integer n; denote by En the set of pair of
con�gurations (�; �) that coincide on {0; 1}�n :

En = {(�; �) ∈ X2; �(x) = �(x) for x ∈ �n} :

Then;

sup
(�;�)∈En

∣∣∣∣∣E�

[
t=M∫
0

V ; ‘(�s) ds

]
− Ẽn

�

[
t=M∫
0

V ; ‘(�s) ds

] ∣∣∣∣∣
5 C( )e(2b+1)t=M

N 2t
[n− ‘]M

exp {−C1[n− ‘]2M (N 2t)−1} (3:4)

provided n− ‘ � N 2M−1. In this formula and below; b denotes the length of
the support of r( · ).
Proof The main problem is to control the information coming from in�n-
ity in �nite time. Fix a pair of con�gurations (�; �) in En. We shall couple
both processes so that particles jump and ip together as much as possible.
The absolute value of the di�erence of expectations is bounded above by
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2‖ ‖∞ times the probability of having a discrepancy among the two processes
in {−‘; : : : ; ‘} before time t=M .
For y∈| �n, denote by X y

t the position at time t of the particle (or the hole)
at y at time 0. X y

t behaves as a symmetric random walk with jump rate N 2.
Recall that we denote by b the support of the ip rate r(�). Assume without
loss of generality that r is bounded by 1. In particular, if there is a discrepancy
at site z, at rate at most 1, a new discrepancy appears at site y for |y − z|5b.
Let Xt be a branching random walk starting with one particle at the origin.

Particles move as nearest neighbor symmetric exclusion random walks with
rate N 2 and a particle at site x creates a new particle at site x + y at rate 1
for y ∈ �b. Thus for each t, Xt is a �nite subset of Z that corresponds to
the position of particles at time t. We shall denote by Nt the total number of
particles for Xt : Nt = |Xt |.

With these notation, the absolute value of the di�erence of expectations in
the statement of the lemma is bounded by

4‖ ‖∞
∑

y ∈| �n

P[{Xs + y} ∩ �‘ = ∅ for all 05 s5 t=M ] :

The sum over y is equal to∑
y ∈| �n

∑
k=1

P[{Xs + y} ∩ �‘ = ∅ for all 05 s5 t=M |Nt=M = k]P[Nt=M = k] :

Denote by Zs a random walk starting from the origin with jump rates N 2=2 to
the left and (N 2=2) + b to the right. Given that there are k particles at time t=M
and since the branching mechanism is independent from the particles jumps, the
probability of Xs + y intercepting �‘ is bounded above by kP[sup05s5t=M Zs =
y − ‘]. Thus the last sum is bounded by

2E[Nt=M ]
∑
y=n

P

[
sup

05s5t=M
Zs = y − ‘

]
:

These two quantities are not di�cult to estimate. The expectation of the total
number of particles is bounded by the expectation of the total population of a
branching process with rate B = 2b+ 1. It is therefore bounded by eBt=M .
On the other hand, since the random walk Zs has a constant drift to the

right, by the reexion principle, the probability is bounded above by

2
∑
y=n

P[Zt=M = y − ‘] :

By Tchebyche� exponential inequality and standard large deviations argu-
ments, this probability is bounded above by C0([n− ‘]M=N 2t)−1 exp {−C1[n−
‘]2M (N 2t)−1} for some universal constants C0 and C1 and provided n− ‘ �
N 2M−1. We have thus proved that the supremum in the statement of the lemma
is bounded above by

C( )eBt=M
N 2t

[n− ‘]M
exp {−C1[n− ‘]2M (N 2t)−1}

provided n− ‘ � N 2M−1.
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We have now to choose n appropriately. The unique restriction on n is that
the right hand side of (3.4) multiplied by N�M should be uniformly bounded
on N . We set therefore once for all n− ‘ = N 1+a(t=M)1=2 for some small
positive a. With this choice and averaging over con�gurations, we have that
the expectation (3.4) is bounded above by

C(�)MN� sup
�∈Xn

Ẽn
��;1=2

[
t=M∫
0

V ; ‘(�s) ds

]
+ oN (1)t : (3:5)

In this formula, Xn denotes the space of con�gurations {0; 1}�n and ��;1=2 the
product measure with marginals equal to the Bernoulli measure for x∈| �n and
equal to � for x ∈ �n:

��;1=2{�; �(x) = 1} =
{

�(x) if x ∈ �n ;
1=2 otherwise :

Now that we reduced our in�nite volume problem to a �nite volume one, we
are in a position to apply the entropy inequality.
For any ¿0 we have by the entropy inequality that

En
��;1=2

[
t=M∫
0

V ; ‘(�s) ds

]

5
1

H (Pn

��;1=2
|P̃1=2) + 1 log Ẽ1=2

[
exp

[


t=M∫
0

V ; ‘(�s) ds

]]
; (3:6)

where H (Pn
��;1=2

|P̃1=2) is the relative entropy of Pn
��;1=2

with respect to P̃1=2 on

D([0; t=M ];X) and Ẽ1=2 denotes expectation with respect to P̃1=2. We need to
estimate each term on the right hand side of (3.6). We consider �rst the relative
entropy.

Lemma 3.3 There exists a constant C = C(r) so that for all M= t

H (Pn
��;1=2

|P̃1=2) =
∫
log

(
dPn

��;1=2

dP̃1=2

)
dPn

��;1=2
5 C(2n+ 1)

uniformly over � ∈ Xn.

Proof Since the Radon-Nikodym derivative of Pn
��;1=2

with respect to P̃1=2 is
equal to

d��;1=2

d�1=2
exp

{ ∑
x∈�n

t=M∫
0
log �x r(�s) dJ

x
s −

∑
x∈�n

t=M∫
0
{�x r(�s)− 1} ds

}

we have that the relative entropy of Pn
��;1=2

with respect to P̃1=2 is equal to

H (��;1=2|�1=2) + E��;1=2

[ ∑
x∈�n

t=M∫
0
log �x r(�s) dJ

x
s −

∑
x∈�n

t=M∫
0
{�x r(�s)− 1} ds

]
:
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In this formula H (��;1=2|�1=2) stands for the relative entropy of ��;1=2 with re-
spect to the product measure �1=2. Since for every cylinder function � and x
in �n,

∫ t
0 �(�s) dJ

x
s −

∫ t
0 �(�s)(�xr)(�s) ds is a mean zero martingale, this last

expectation is equal to

(2n+ 1) log 2 + E��;1=2

[ ∑
x∈�n

t=M∫
0
[�x r(�s) log �x r(�s)− �x r(�s) + 1] ds

]

5 (2n+ 1) log 2 +
(2n+ 1)t

M
sup

05�5‖r‖∞
{� log �− �+ 1}5 C(2n+ 1)

for all M = t. The lemma is therefore proved with C = log 2 + sup05�5‖r‖∞
{� log �− �+ 1}.
We now turn back to the proof of Proposition 3.1 and consider the second

term of the right hand side of (3.6).

Lemma 3.4 There exists a �nite constant C( ) such that

−1 log Ẽ1=2

[
exp

[


t=M∫
0

V ; ‘(�s) ds

]]
5 C( )

t
M

{
‘2

N 2 +
1

‘1=2

}
for all ¿0.

Proof By Feymann-Kac formula and reversibility of �1=2 we have

−1 log Ẽ1=2

[
exp

[


t=M∫
0

V ; ‘(�s) ds

]]

5
t
M
sup
f

{∫
X

V ; ‘ f d�1=2 − −1D̃N (f)
}

; (3:7)

where the supremum is carried over all densities f with respect to �1=2 (f=0
and

∫
f d�1=2 = 1) and where D̃N is the Dirichlet form associated to the

generator L̃N :

D̃N (f) = −〈
√

f; L̃N

√
f〉�1=2

= −N 2〈
√

f; L0
√

f〉�1=2 +
1
2

∫ ∑
i∈Z
(
√

f(�i)−
√

f(�))2 d�1=2 :

Here 〈 · ; · 〉1=2 represents the usual inner product in L2(�1=2). Denote by DN

the accelerated part of the Dirichlet form D̃N :

DN (f) = −〈
√

f; L0
√

f〉�1=2 =
∑
i∈Z

Ii; i+1(f)

where

Ii; i+1(f) =
1
4

∫
(
√

f(�i; i+1)−
√

f(�))2 d�1=2
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so that N 2DN (f)5 D̃N (f). In particular the right hand side of (3.7) is
bounded above by

t
M
sup
f

{∫
X

V ; ‘ f d�1=2 − N 2−1DN (f)
}

: (3:8)

For a positive integer k, denote by �k1=2 the product measure on Xk = {0; 1}�k

with marginals equal to the marginals of �1=2 and by Dk the Dirichlet form
DN restricted to Xk :

Dk(f) =
k−1∑
i=−k

I ki; i+1(f)

where

I ki; i+1(f) =
1
4

∫
(
√

f(�i; i+1)−
√

f(�))2 d�k1=2 (3:9)

for all densities f with respect to �k1=2. Moreover, for a density f with respect
to �1=2, denote by fk the conditional expectation of f given {�(x); |x|5 k}:

fk(�) = E�1=2 [f
∣∣ �(x) = �(x) for |x|5k] for all � ∈ Xk :

Recall from the previous section that the cylinder function V ; ‘ depends on �
only through the coordinates {�(x); |x|5 ‘}. In particular∫

X

V ; ‘ f d�1=2 =
∫
X‘

V ; ‘ f‘ d�‘1=2

On the other hand, by the convexity of the Dirichlet form, we have that
D‘(f‘)5 DN (f) since for each −‘5 i 5 ‘ − 1, I ‘i; i+1(f‘)5 Ii; i+1(f).
Therefore the supremum (3.8) is bounded above by

t
M
sup
f

{ ∫
X‘

N �V ; ‘ f d�‘1=2 − N 2−1D‘(f)

}
:

Here the supremum is carried over all densities with respect to the product
measure �‘1=2 and D‘ is the Dirichlet form de�ned in (3.9).

The second step consists in projecting the density over hyperplanes with
�xed total number of particles since it is on these hyperplanes that the
process is ergodic. For each integer 05 j 5 2‘ + 1, denote by �‘; j the re-
striction of the measure �‘1=2 on the hyperplane X‘; j of con�gurations of X‘

with j particles:

X‘; j =

{
� ∈ X‘;

∑
|x|5‘

�(x) = j

}

�‘; j(�) =
�‘1=2(�)

�‘1=2(�; � ∈ X‘; j)
for all � ∈ X‘; j :
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Notice that �‘; j is the uniform measure on X‘; j. For each density f on X‘,
denote by fj the projection of f on the hyperplane X‘; j:

fj(�) =
f(�)

E�1=2

[
f
∣∣∑|x|5‘ �(x) = j

] = f(�)∫
f(�)�‘; j (d�)

·

With this notation, we may rewrite the expression inside the last supremum as

2‘+1∑
j=0

Cj(f)

{ ∫
X‘; j

V ; ‘ fj d�‘; j − N 2−1D‘; j(fj)

}
: (3:10)

Here Cj(f) =
∫
1{X‘; j}f d�‘1=2 and D‘; j is the Dirichlet form D‘ restricted to

the hyperplane X‘; j:

D‘; j(f) = (1=4)
‘−1∑
i=−‘

∫
(
√

f(�i; i+1)−
√

f(�))2 d�‘; j

for all densities f with respect to �‘; j. Notice that
∑

j Cj(f) = 1.
We shall decompose the sum (3.10) in two terms:

2‘+1∑
j=0

Cj(f)
∫
X‘; j

V ; ‘ d�‘; j

+
2‘+1∑
j=0

Cj(f)

{ ∫
X‘; j

V ; ‘ (fj − 1)d�‘; j − N 2−1D‘; j(f)

}
: (3:11)

Recall the de�nition of the cylinder function V ; ‘. By Schwarz inequality, for
each �xed j, the integral appearing on the �rst line is bounded above by{

1
(2‘ + 1)2

∑
y; x

�‘; j[{�y  −  ̃ (j=2‘ + 1)}{�x  −  ̃ (j=2‘ + 1)}]
}1=2

:

Here summation is carried over all integers x and y such that |x|5 ‘′ and
|y|5 ‘′ and ‘′ = ‘( ) is de�ned just after (2.4) in the previous section. For
a cylinder function �, by the local central limit theorem (cf. [DF]), there exists
a constant C(�) such that

sup
05j52‘+1

|�‘; j(�)− �j=2‘+1(�)|5 C(�)‘−1 :

In particular the last expression is bounded above by{
1

(2‘ + 1)2
∑
y; x

�( j=2‘+1)[{�y  −  ̃ (j=2‘ + 1)}

× {�x  −  ̃ (j=2‘ + 1)}] + C( )
‘

}1=2
:
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Since
∑

j Cj(f) = 1, since �� is a product measure and since  ̃ (�) is the expec-
tation of  with respect to ��, this expression is bounded above by C( )‘−1=2.
On the other hand, since ‖V ; ‘‖∞ 5 2‖ ‖∞ and since fj is a density with

respect to the measure �‘; j, the expression inside braces in the second line
of (3.11) is bounded above by

C( )
∫
X‘; j

∣∣∣∣∣fj(�)−
∫
X‘; j

fj(�) �‘; j (d�)

∣∣∣∣∣ �‘; j (d�)− N 2−1D‘; j(f)

5 C( )
∫ ∫

�‘; j (d�) �‘; j (d�) |√fj(�)−
√

fj(�)| |
√

fj(�) +
√

fj(�)|

− N 2−1D‘; j(f) :

From now on, to keep the notation simple, we omit the subscript j of the
density fj. Moreover, until the end of the proof of the lemma, the value of
the constant C( ) may change from line to line. By Schwarz inequality and
since f is a density this expression is bounded above by

C( )
(∫ ∫

�‘; j (d�) �‘; j (d�) |
√

f(�)−
√

f(�)|2
)1=2

− N 2−1D‘; j(f) :

Notice that the integral of the last formula is equal to two times the variance
of
√

f. By the spectral gap for symmetric simple exclusion processes in �nite
volume (cf. [Q]), the last expression is bounded above by

C( )‘
√
D‘; j(f)− N 2−1D‘; j(f)5 C( )

‘2
N 2

since supx{�x − �̃x2}5 �2=(4�̃).
In conclusion, since

∑
j Cj(f) = 1, we proved that the right hand side

of (3.7) is bounded above by

C( )
t
M

{
‘2

N 2 +
1

‘1=2

}
:

We are now ready to conclude the proof of Proposition 3.1. From Lemmas 3.3
and 3.4 it follows that the left hand side of (3.6) is bounded above by

C( ; r)
{
n

+

t
M

‘2

N 2 +
t
M

1
‘1=2

}
for all positive . Optimizing in  we obtain that this last expression is bounded
by

C(r;  )

{√
t
M

n1=2‘
N

+
t
M

1
‘1=2

}
:
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From this bound and in view of (3.5), we have that (3.3) is bounded above
by

C(r; �;  )N�M

{√
t
M
{‘ + N 1+a

√
t=M}1=2‘

N
+

t
M

1
‘1=2

}
+ oN (1)t :

Notice that this expression is increasing in M and recall that the unique res-
triction imposed on M is that M = C(�;  )N�t. We shall therefore choose
such M and obtain that this expression is bounded above by

C(r; �;  )tN 2�
{{‘ + N 1+a−(�=2)}1=2‘

N 1+(�=2) +
1

N�‘1=2

}
+ oN (1)t :

This concludes the proof of the proposition.

4 Long time behaviour

The proof of Theorem 1.2 is divided in few lemmas. We need �rst to compare
the discrete solution uN

t de�ned in (1.1) with the continuous solution �.

Lemma 4.1 For each con�guration � on X, denote by �� the solution of the
hydrodynamic equation (0.1) with initial data given by �0(a) = �([aN ]), for a
in R. There exists a constant C0 depending only on ‖G‖∞ and ‖G′‖∞ so
that

sup
�
sup
x
|uN;�

t (x)− ��
t (x=N )|5

C0
N

eC0t :

Proof Fix a con�guration �. Since � shall remain �xed, we omit in this proof
indices � of u�

t and ��
t . This lemma is a simple consequence of the integral

representation of the di�erential equations for u and �:

ut(x) =
∑
y
pt(y; x)�(y) +

t∫
0
ds
∑
y
pt−s(y; x)G(us(y)) ;

�t(a) =
∫
Wt(a− b)�([bN ]) db+

t∫
0
ds
∫
Wt−s(a− b)G(�s(b)) db ;

where Wt : R→R+ stands for the gaussian kernel: Wt(a) = (2�t)−1=2 exp
{−a2=2t} and pt for the transition probability of a symmetric nearest neighbor
random walk on Z accelerated by N 2.

From this representation and since
∫
db |Wt(b− a)−Wt(b− a′)|5 C1

|a− a′|t−1=2 for some universal constant C1, we have that
|�t(a)− �t(a′)|5 C(‖G‖∞){t−1=2 + t1=2}|a− a′| :

On the other hand, by the local central limit theorem, there exists an universal
constant C2 such that∑

y

∣∣∣∣∣pt(y − x)−
(y+1)=N∫
y=N

dbWt(b− (x=N ))
∣∣∣∣∣5 C2

N
√
t
:
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In view of the previous two estimates and the integral representation of u
and �, it is not di�cult to conclude the proof of the lemma with a Gronwall
type argument.

If the initial con�guration � is close to a stable equilibrium point m∗ of
equation m′(t) = G(m(t)), we would expect the solution u�

t to remain close to
the stable equilibrium m∗. This is the content of the next result.

Lemma 4.2 Recall the de�nition of d given just before Theorem 1.2. Consider
a sequence �(N ) of con�gurations such that

lim
N→∞

sup
x
|�N
(N )(x)− m∗|¡d :

Then, for all �¿0, there exists t0 = t0(�), such that for all su�ciently
large N ,

sup
t=t0

sup
x∈Z

|u�(N )
t (x)− m∗|5 � :

In particular, since the H−1 norm is bounded above by the L2 norm and u
�(N )
t

is positive and bounded by 1, supt=t0
supx ‖�xu

�(N )
t − m∗‖2−1 5 �D1(�) where

D1(�) = max

{
1; sup

N
N−1∑

y
e−2�(y=N )

}
: (4:1)

Proof Fix �5 d and �¿0. By assumption, there exists N0 so that |�N
(N )(x)−

m∗|5 d− � for all x in Z and N = N0. Fix 0¡�¡1. It follows from last
bound, the integral representation for �

�(N )
t and some simple computations that

sup
a
|��(N )

N−�(a)− m∗|5 d− (�=2) (4:2)

for all N = N (�; �). We shall prove this claim at the end of the lemma.
By Lemma 4.1, we obtain that

sup
x
|u�(N )

N−�(x)− m∗|5 d

for N su�ciently large.
Recall from Sect. 1 the de�nition of d and E0. Let u± : Z→R be de�ned by

u±(x) = m∗ ± d for all x in Z. The solution u±t of the discrete hydrodynamic
equation (1.1) with initial data u± is constant in space and u±t (0)=mt , where
mt is the solution of the ordinary di�erential equation m′(t) = G(m(t)). In
particular, by (1.2), |u±t (x)− m∗|5 d exp{−E0t}.
On the other hand, by the maximum principle, solutions of the discrete

hydrodynamic equation (1.1) are monotone in the sense that u1 5 u2 implies
that u1t 5 u2t for all t = 0. Therefore, since u− 5 uN−� 5 u+,

sup
t=0

sup
x
|u�(N )

t+N−�(x)− m∗|5 de−E0t

for all N = N (�; �; G). This concludes the proof of the lemma.
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We now return to the proof of estimate (4.2). By the integral representation
of �

�(N )
t and since the gaussian kernel is an even function, |��(N )

t (a)− m∗| is
bounded above by

∑
z

∣∣∣∣∣Ht(z=N − a)− (2N + 1)−1 ∑
|y−z|5N

Ht(y=N − a)

∣∣∣∣∣
+
∑
z
Ht(z=N − a)|�N

(N )(z)− m∗|+ ‖G‖∞t :

In this formula, Ht(a) stands for
∫ a+(1=N )
a Wt(b) db. Recall the de�nition of N0

given in the beginning of the proof. For N = N0, the second term is bounded
by d− �. A simple Taylor’s expansion shows that the �rst term is bounded by
C(tN )−1 for some �nite universal constant C. In particular, for any 0¡�¡1,
there exists N (�; �) so that |��(N )

N−�(a)− m∗|5 d− (�=2) for N = N (�; �).

It is easy to extend the proof of Lemma 4.2 to the case where �
�(N )
t

replaces u
�(N )
t . In particular, under the assumption of Lemma 4.2, in view of

Lemma 4.1, for every �¿0, there exists N0(�) so that

sup
t=0

sup
x
|u�(N )

t (x)− �
�(N )
t (x=N )|5 � (4:3)

for all N = N0(�).
The next step in the proof consists in showing that if the initial pro�le is

close in a compact set to the stable equilibrium m∗, it shall remain close to
the equilibrium at later times in smaller compacts. More precisely, we have
the following result.

Lemma 4.3 For every �¿0, there exists t0 = t0(�) with the following
property. For all t1 = t0 and t2¿0, there exists and B = B(�; t1; t2) such
that for each R:

sup
|a|5R+B

|�0(a)− m∗|5 d ⇒ sup
t15t5t1+t2

sup
|a|5R

|�t(a)− m∗|5 � :

Proof Fix �¿0 and t2¿0. Let B¿0 to be appropriately chosen later. Denote,
respectively, by �t and �̃t the solutions of the hydrodynamic equation (0.1) with
initial pro�le �0 and �̃0 given by

�0(a) = m∗ + d; �̃0(a) = (m∗ + d) 1{|a|5 R+ B}+ 1{|a|¿R+ B} :

Since and �0 5 �̃0 we have that �t 5 �̃t for all t = 0. On the other hand,
by (1.2), supa �t(a)5 m∗ + d exp{−E0t}.
Denote by A(t; a) the di�erence �̃t(a)− �t(a). By the integral representation

of solutions of the hydrodynamic equation, we have that

A(t; a)5
∫

|b|=R+B
Wt(a− b) db+ ‖G′‖∞

t∫
0
ds
∫
dbWt−s(a− b)A(s; b) :



172 C. Landim, M.E. Vares

By Gronwall inequality and some simple computation, if we denote by F(t; a)
the function

∫
|b|=R+B Wt(a− b) db, we have that

A(t; a)5 F(t; a) + C
t∫
0
eC(t−s)[Wt−s ∗ F(s; · )](a) ds 5 {1 + CeCt}F(t; a) ;

where C = ‖G′‖∞.
Therefore, since �t is bounded above by �̃t , and At = �̃t − �t , from the

previous estimate on �t and on At , we obtain that for all a in [−R; R],

�(t; a)5 m∗ + de−E0t + {1 + CeCt} ∫
|b|=R+B

Wt(a− b) db

5 m∗ + de−E0t + C2eCt exp{−Bt−1=2}
for some constants C and C2 depending only on G.

Let t0 be chosen so that de−C0t 5 �=2. For every t1 = t0, we may �nd
B = B(�; t1; t2) so that supt15t5t1+t2

C2 exp{Ct − Bt−1=2}5 �=2.

Lemma 4.4 There exists �0 = �(�; G), such that for every �¡�0 there exists
t0 = t0(�) with the following property. For all t1 = t0 and t2¿0 there exists
K = K(�; t1; t2) such that

sup
|x|5(R+K)N

‖�x�− m∗‖2−1 5 � ⇒ sup
t15t5t1+t2

sup
|x|5RN

‖�xu�
t − m∗‖2−1 5 �=2

(4:4)
for all N = N (�).

Proof The proof is divided in several steps. We �rst de�ne K . Recall the
de�nition of D1(�) given in (4.1). Let D2(�; �) be large enough so that
N−1∑

|y|=D2N
exp{−2�(y=N )}5 �=6. Set K(�; t1; t2) = B(�=(4D1(�)); t1+

td; t2) + D2(�; �), where B(�; t1; t2) is the constant given by Lemma 4.3 and
td = d=(2‖G‖∞).

We now show that we may bound the empirical density around the origin by
the H−1 norm. More precisely, let H : R→ R+ be a smooth positive function
such that N−1∑

x H (x=N ) = 1. Denote by �H (x) the integral of H with respect
to the empirical measure translated by x: �H (x) = N−1∑

y H (y=N )�(x + y).
By Schwarz inequality,

|�H (x)− m∗|5 ‖He2�(·)‖1‖�x�− m∗‖−1 : (4:5)

Therefore, by assumption,

sup
|x|5(R+K)N

|�H (x)− m∗|5 ‖He2�(·)‖1�1=2 :

The third step consists in proving that the hydrodynamic solution ��
t is uni-

formly close to m∗ in the compact [−R− K; R+ K] at time td = d=(2‖G‖∞).
By the integral representation for ��

t and with the notation just introduced,
|��

t (a)− m∗| is bounded above by |�Ha; N
t ([aN ])− m∗|+ ‖G‖∞t. Here Ha;N

t

is de�ned by Ha;N
t (b) = NHt([aN ]N−1 − a+ b) and Ht is the function intro-

duced in the proof of Lemma 4.2. By (4.5), |�Ha; N
t ([aN ])− m∗| is bounded by



Exponential estimate for reaction di�usion models 173

‖Ha;N
t e2�(·)‖1 ‖�[aN ]�− m∗‖−1. On the one hand, a simple computation shows

that sup|b|51 ‖NHt(b− · )e2�(·)‖21 is bounded by C(�)(1 + t−2)t−1=2 exp{t=2}.
On the other hand, by assumption, for |a|5 R+ K , ‖�[aN ]�− m∗‖2−1 5 �. In
conclusion, we showed that

sup
|a|5R+K

|��
t (a)− m∗|5 {C(�)(1 + t−2)t−1=2et=2�}1=2 + ‖G‖∞t :

Therefore, if we set td = d=(2‖G‖∞) and choose �0(�; G) so that C(�)(1 +
t−2d )t−1=2d exp{td=2}�0 is bounded by d2=4, for con�gurations � satisfying
assumption (4.4), with �¡�0 we have that sup|a|5R+K |��

td(a)− m∗|5 d.
Fix such �¡�0. By Lemma 4.3 there exists s0 = s0(�) such that for all

s1 = s0 and t2¿0,

sup
s15t5s1+t2

sup
|a|5R+K−B

|��
td+t(a)− m∗|5 �

4D1(�)

for B = B(�=(4D1(�)); s1; s2). In particular, if we set t0(�) = td + s0(�), for all
t1 = t0 and t2¿0,

sup
t15t5t1+t2

sup
|a|5R+K−B

|��
t (a)− m∗|5 �

4D1(�)

for B = B(�=(4D1(�)); t1 + td; t2).
By Lemma 4.1, for N = N (�),

sup
t15t5t1+t2

sup
|x|5(R+K−B)N

|u�
t (a)− m∗|5 �

3D1(�)
: (4:6)

To conclude the proof of the lemma it remains to bound the H−1 norm
of u�

td+t − m∗ by its L1 norm. This is not di�cult. Recall the de�nition
of D1(�) and D2(�; �) given in the beginning of the proof. Since the H−1
norm is bounded by the L2 norm and since u�

t and m∗ are positive and
bounded by 1,

‖�xu�
t − m∗‖2−1 5 D1(�) sup

|y|5D2N
|u�

t (x + y)− m∗|+ �=6 :

Thus for |x|5 RN and t1 5 t 5 t1 + t2,

‖�xu�
t − m∗‖2−1 5 D1(�) sup

|y|5(R+D2)N
|u�

t (y)− m∗|+ �=65 �=2 :

Last inequality follows from (4.6) and because we set K = B+ D2.

We are now ready to prove a result concerning the long time behaviour
of (�t).

Proposition 4.5 Let �(N ) be a sequence of con�gurations in the basin of
attraction of the stable equilibrium m∗ in the following sense:

lim
N→∞

sup
x
|�N
(N )(x)− m∗|¡d :
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Then, for every �¿0 and every ¡�=2,

lim
N→∞

P�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
‖�x�t − �xu

�(N )
t ‖2−1¿�

]
= 0 :

In fact, it follows from the proof of this proposition that the probability
converges exponentially fast to 0.

Proof To distinguish among t0 given by Lemmas 4.2 and 4.4, we shall denote
the �rst one by t20 and the second one by t40 . Recall the de�nition of �0 given
in Lemma 4.4. Fix 0¡�¡�0 and T ¿0 to be chosen later. Denote by ũt the
function de�ned by

ũt =

 u
�(N )
t for 05 t¡T ,

u
�kT−T=2
t−kT+T=2 for kT5 t¡(k + 1)T and k = 1.

By Theorem 1.1, by Markov property and by de�nition of ũt ,

P�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
‖�x�t − �xũt‖2−1¿�=4

]

converges exponentially fast to 0 because the dynamics is translation invariant,
�xu

�
t = u�x�

t and 2¡�. Therefore, by the elementary inequality (a+ b)2 5
2a2 + 2b2, to prove the proposition, it is enough to show that T can be chosen
so that

P�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
‖�xũt − �xu

�(N )
t ‖2−1¿�=4

]

vanishes as N ↑ ∞. Since ũt and u
�(N )
t coincide for t 5 T , we may restrict

the supremum to the interval [T; exp{N}]. If T is chosen larger than
t20(�=16D1(�)), by Lemma 4.2, for t = T , ‖�xu�(N )

t − m∗‖2−1 5 �=16. In parti-
cular, ‖�xũt − �xu

�(N )
t ‖2−1 5 2‖�xũt − m∗‖2−1 + �=8. Therefore, to prove the the-

orem, it is enough to show that

P�(N )

[
max

15k5T−1 exp{N}
sup

T=25t53T=2
max

|x|5exp{N}
‖�xu�kT−T=2

t − m∗‖2−1¿�=16

]

vanishes as N ↑ ∞. To keep notation simple we shall denote �=16 by �′.
Assume that T = 2t40(�

′) and that K = K(2�′; T=2; T ) given by Lemma 4.4.
Set ZN = 3T−1KN exp{N}. The above probability is bounded by

P�(N )

[
max

15k5T−1 exp{N}
max

|x|5ZN−kKN
sup

T=25t53T=2
‖�xu�kT−T=2

t − m∗‖2−1¿�′
]

:
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By Lemma 4.4 and our choice of K , max|x|5ZN−kKN supT=25t53T=2 ‖�xu
�kT−T=2
t −

m∗‖2−15�′ provided that we have max|x|5ZN−(k−1)KN‖�x�kT−T=2−m∗‖2−152�′.
Last probability is therefore bounded by

P�(N )

[
max

15k5T−1 exp{N}
max

|x|5ZN−(k−1)KN
‖�x�kT−T=2 − m∗‖2−1¿2�′

]
:

Denote by Sk the set of con�gurations � such that max|x|5Bn−kKN‖�x�−
m∗‖2−1 5 2�′. Last expression is bounded above by

P�

[
max
|x|5ZN

‖�x�T=2 − m∗‖2−1¿2�′
]
+

T−1 exp{N}∑
k=2

sup
�∈Sk−2

P�[�T=2 ∈Sc
k−1] :

(4:7)
We shall estimate these two terms separately.
For � in Sk−2, T ¿2t40(�

′) and K = K(�′; T=2; T ), by Lemma 4.4, ‖�xu�
T=2 −

m∗‖2−1 5 �′=2 for |x|5 ZN − (k − 1)KN . Therefore, for x in this range,
‖�x�T=2 − m∗‖2−1 5 2‖�x�T=2 − �xu

�
T=2‖2−1 + �′. In particular,

sup
�∈Sk−2

P�[�T=2∈Sc
k−1]5 sup

�∈Sk−2
P�

[
max

|x|5ZN−(k−1)KN
‖�x�T=2−�xu

�
T=2‖2−1¿�′=2

]
:

Since the process is translation invariant and �xu
�
t = u�x�

t , by Theorem 1.1, this
probability is bounded by

ZN sup
�

P�[‖�T=2 − u�
T=2‖2−1¿�′=2]5 C(T )ZN exp{−C(T )�′N�}

for some �nite constant C(T ) depending on T only. It follows from the def-
inition of ZN that the second term in (4.7) converges exponentially fast to 0
because, by assumption, 2¡�.
We now turn to the �rst term of (4.7). Notice that for T=2= t20(�

′=2D1(�)),
‖�xu�(N )

T=2 − m∗‖2−1 5 �′=2. Thus ‖�x�T=2 − m∗‖2−1 5 2‖�x�T=2 − �xu
�(N )
T=2 ‖2−1 + �′.

The �rst term in (4.7) is therefore bounded by

P�(N )

[
max
|x|5ZN

‖�x�T=2 − �xu
�(N )
T=2 ‖2−1¿�′=2

]
:

The very same reasons invoked above to prove that the second term in (4.7)
converges to 0, shows that this probability vanishes exponentially fast.
To conclude the proof of this proposition, it remains to recollect all restric-

tions on T and K and check that they are not self contradictory. Notice that
t20( · ), t40( · ) and K( · ; t1; t2) are increasing functions of �−1. In light of this,
we impose T to be larger than 2t20(�=32D1(�)) and 2t

4
0(�=16). For such �xed

T , we asked K to be larger than K(�=16; T=2; T ).

We are now ready to prove Theorem 1.2. Fix a positive integer M and
denote by �t the Markov process with generator N 2L0 +M−2LG. Later on M
shall be taken as N 1−� for 0¡�¡1. �t may therefore be interpreted as a small
perturbation of the symmetric simple exclusion process. For these �xed N and
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M , and a con�guration � in X, denote by w�;N;M
t : Z→ [0; 1] the solution of

the equation{
@tw

�;N;M
t (x) = (N 2=2)(�w�;N;M

t )(x) +M−2G(w�;N;M
t (x))

w�;N;M
0 (x) = �(x) :

The reader should check that the same arguments presented in this section and
in Sects. 2 and 3 apply to this new dynamics were the Glauber part is decel-
erated by M 2. In fact estimates of Sects. 2 and 3 are slightly better since this
process is a small perturbation of the symmetric exclusion dynamics for which
all estimates are simpler. For the results presented in this section, however, one
should be careful since the relaxation times t0 of Lemmas 4.2, 4.3 and 4.4 will,
of course, depend on M since it is the Glauber part that makes the density con-
verge to the equilibrium states of equation m′(t) = G(m(t)). More precisely, t0
is of order M 2. This forces us to apply Theorem 1.1 for times of this order. In
this case, in order to estimate probabilities by using Chebyshev inequality and
Theorem 1.1, we have to take M 2 � N� if we want these probabilities to be
exponentially small. This imposes 2(1− �)¡� since by de�nition M = N 1−�.
By Proposition 4.5, for all sequences �(N ) of con�gurations such that

lim
N→∞

sup
x
|�N
(N )(x)− m∗|¡d ;

every �¿0 and every ¡�=2,

PN;M
�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
‖�x�t − �xw

�(N )
t ‖2−1¿�

]
(4:8)

converges exponentially fast to 0. Here the superindices N;M of P indicates
that �t is evolving according to the generator N 2L0 +M−2LG.
Denote by �t the process �t accelerated by M 2. �t evolves according to the

generator (NM)2L0 + LG. Let v
�;N;M
t = w�;N;M

tM2 . It is easy to check that vt is the
solution of {

@tv
�;N;M
t (x) = ((NM)2=2)(�v�;N;M

t )(x) + G(v�;N;M
t (x))

v�;N;M
0 (x) = �(x) :

By (4.3), v�;N;M
t is close to the solution ��

t of the hydrodynamic equation (0.1)
with initial condition �: for all �¿0, there exists N0 such that

sup
t=0

sup
x
|v�;N;M

t (x)− ��
t (x=NM)|5 � (4:9)

for all N su�ciently large. Notice that in this last formula, for �t , space is
now rescaled by NM .
Since we are rescaling time by a polynomial factor in N and our estimates

are exponential, by (4.8),

PN;M
�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
‖�x�tM2 − �x!

�(N )
tM2 ‖2−1¿�

]
vanishes as N ↑ ∞ for all �¿0 provided ¡�=2.
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Let H be a positive smooth function with compact support and such that
N−1∑

x H (x=N ) = 1. We have seen in Lemma 4.4 that for all functions  
in ‘2(Z), |N−1∑

x H (x=N )�x | is bounded by C(H)‖ ‖2−1. In particular, taking
 = �x�tM2 − �x!

�(N )
tM2 we obtain that∣∣∣∣∣�H

tM2(x)− N−1∑
y

H (y=N )!
�(N )
tM2 (y + x)

∣∣∣∣∣
2

5 C′(H)‖�x�tM2 − �x!
�(N )
tM2 ‖2−1 :

Here we used the notation introduced in Lemma 4.4. In particular, for every
�¿0,

lim
N→∞

PN;M
�(N )

[
sup

t5exp{N}
max

|x|5exp{N}

∣∣∣∣∣�H
tM2(x)−N−1∑

y
H (y=N )v

�(N )
t (y + x)

∣∣∣∣∣¿�

]
= 0:

By (4.9), we may replace in this probability v
�(N )
t (y + x) by �

�(N )
t ((y +

x)=MN ). On the other hand, arguments similar to the ones of Lemma 4.1 and
4.2 show that if the sequence �(N ) is associated to the pro�le �0 : R→ [0; 1]
in the sense that

lim
N→∞

sup
x
|�N
(N )(x)− �0(x=MN )| = 0 :

then ��(N ) is uniformly close to the solution of the hydrodynamic equation (0.1)
with initial data �0: for every �¿0 and t¿0, there exists N0 such that

sup
t5t0

sup
a
|��(N )

t (a)− �(t; a)|5 � :

Moreover, if �0 belongs to the basin of attraction of m∗ : supa |�0(a)− m∗|¡d,
then we may iterate the previous argument to extend the inequality to all times:

sup
t=0

sup
a
|��(N )

t (a)− �(t; a)|5 �

for all su�ciently large N . In this case we may replace in the previous prob-

ability �
�(N )
t (a) by �(t; a). Moreover, in the case where �0 is smooth we get

that �(t; · ) is smooth as well. In particular N−1∑
y H (y=N )�(t; (x + y)=MN )

is close to �(t; x=NM) since N−1∑
y H (y=N ) = 1. In conclusion,

lim
N→∞

PN;M
�(N )

[
sup

t5exp{N}
max

|x|5exp{N}
|�H

tM2(x)− �(t; x=MN )|¿�

]
= 0 :

To conclude the proof of Theorem 1.2, it remains to choose a sequence Hk

of functions converging to (1=2)1{|a|5 1} and set Ñ = NM .

5. Auxiliary lemmas

In this section we shall prove all bounds used in Sect. 3. We start proving
Lemma 2.1.
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Proof of Lemma 2.1 From the de�nition of ∇z; z+1 and ∇z, it follows that

∇z; z+1F(�; s)

=
2e−�s

N 2 [�(z + 1)− �(z)]
∑
x
[�(x)− us(x)][KN;�(x; z)− KN;�(x; z + 1)]

+
e−�s

N 2 [�(z + 1)− �(z)]2{KN;�(z; z)− 2KN;�(z; z + 1) + KN;�(z + 1; z)} :
(5:1)

Since, by Lemma 6.1, supx N |KN (x + 1)− KN (x)|5 B1, since �( · ) is a smooth
function, and since �(x) and ut(x) are smaller than or equal to 1, the last ex-
pression is bounded above by

C(�; B1)e−�(z=N )N−3∑
x
e−�(x=N ) :

This proves the �rst inequality in Lemma 2.1. On the other hand, we have that

∇zF(�; x) =
2e−�s

N 2 [1− 2�(z)]∑
x
[�(x)− us(x)]KN;�(x; z)

+
e−�s

N 2 e−2�(z=N )KN (0) : (5:2)

To conclude the proof we just have to remember that the kernel KN ( · ) is
bounded in virtue of Lemma 6.1.

Lemma 5.1 Recall that uN
t is the solution of the di�erential equation (1:1):

Then;

@s‖�− us‖2−1 + LN‖�− us‖2−1
= N−2∑

x; y
[�(x)− us(x)]KN;�(x; y)[N 2�[�( · )− us( · )]](y)

+ 2N−2∑
x; y
[�(x)− us(x)]KN;�(x; y)[�yr0(�)− G(us(y))]

+ (1=2)N−1∑
x
(�(x + 1)− �(x))2N [KN;�(x + 1; x + 1)

+ KN;�(x; x)− 2KN;�(x; x + 1)] + N−2∑
x
KN; �(x; x)�xr(�) : (5:3)

Proof Since u = uN is the solution of equation 1.1, the time derivative of the
H−1 norm of the di�erence �− us is easy to compute. It is given by

@s‖�− us‖2−1 = −2∑
x; y
{�(x)− us(x)}KN;�(x; y){(N 2=2)(�us)(y) + G(us(y))}

To conclude the proof of the lemma we just need to recall from the proof
of Lemma 2.1 the computation of LN‖�− us‖2−1.

We conclude this section by proving an upper bound for @s‖�− us‖2−1 +
LN‖�− us‖2−1 that was needed in the proof of Theorem 1.1.
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Lemma 5.2 There exists positive �nite constants C0(r; �); � = �(r; �); C1(�)
and C2(r); such that for every positive integer ‘;

@s‖�− us‖2−1 + LN‖�− us‖2−1 5 C0(r; �)

√
‘√
N
+ �‖�− us‖2−1

+ C1(�)
‘
N

N−1∑
x
|(N∇u)(x)|e−2�(x=N )

+ C2(r)N−1∑
x
|�xVr0 ; ‘(�)|e−2�(x=N )

+ N−1∑
x
|�xVW;‘(�)|e−2�(x=N ) :

Proof We obtained at Lemma 5.1 an explicit expression for @s‖�− us‖2−1 +
LN‖�− us‖2−1. We will bound each term of this explicit expression separately.

We start with the fourth line of the right hand side of (5.3) which is the
simplest one. Since the kernel KN ( · ) is uniformly bounded, the fourth line is
bounded by C(r; �)N−1.

The third line is also simple to compute. Since, by Lemma 6.1, 2N [KN (0)−
KN (1)]5 1 it is not di�cult to see that this expression is bounded above by

1
2N
∑
x
(�(x + 1)− �(x))2e−2�(x=N ) + C(�)N−1 : (5:4)

We now turn to the �rst line on the right hand side of (5.3). A simple summa-
tion by parts and the computation of the discrete laplacian applied to a product
of two functions shows that this expression is equal to

− N−2∑
x; y
[�(x)− us(x)]e−�(x=N )(−N 2�KN (x; · ))(y)[�(y)− us(y)]e−�(y=N )

+ N−2∑
x; y
[�(x)− us(x)]e−�(x=N )KN (x; y)(N 2�e−�( · =N ))(y)[�(y)− us(y)]

+ N−2∑
x; y
[�(x)− us(x)]e−�(x=N )(N∇KN (x; · ))(y)

× (N∇e−�( · =N ))(y)[�(y)− us(y)]

+ N−2∑
x; y
[�(x)− us(x)]e−�(x=N )(N∇KN (x; · ))(y − 1)

× (N∇e−�( · =N ))(y − 1)[�(y)− us(y)] : (5:5)

Since KN ( · ) is the kernel (I − N 2�)−1, adding and subtracting the ‘2 norm
of �− u, we obtain that the �rst line is equal to

−‖�− u‖20 + ‖�− u‖2−1 : (5:6)

Notice that the summation of this expression with (5.4) is equal to

−N−1∑
x
[�(x)�(x + 1)−2�(x)us(x)+us(x)2]e−2�(x=N )+‖�−u‖2−1+C(�)N−1 :
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Since the expectation of �(x)�(x + 1) with respect to �� is equal to �2, it is
natural to use the one block estimate to replace �(x)�(x + 1) by (�‘(x))2 and
to perform a summation by parts to replace �(x) by �‘(x) in order to close the
square. We rewrite thus the sum of the �rst line of (5.5) with (5.6) as

− N−1∑
x
[�‘(x)− us(x)]2e−2�(x=N ) + ‖�− us‖2−1

− N−1∑
x

{
(2‘′ + 1)−1

∑
|y−x|5‘′

�(y)�(y + 1)− (�‘(x))2
}

e−2�(x=N )

+ 2N−1∑
x
�(x)[us(x)− u‘′

s (x)]e
−2�(x=N ) + C(�)‘N−1 :

Here ‘′ = ‘ − 1 so that ∑|y|5‘′ �(y)�(y + 1) depends on � only through
{�(−‘); : : : ; �(‘)}.
Notice that the �rst term of this expression comes with a negative sign.

We are thus allowed in the rest of the proof to bound any expression by a
small constant times the ‘2 norm of �‘ − us. In order to take advantage of this
negative term, we will need to use the one block estimate to replace cylinder
functions by functions that depend on �‘(x). We shall do it systematically up
to the end of the proof.
We now turn to the second line of (5.5). We have just argued that the �rst

step should be a one block estimate. We thus rewrite the second line of (5.5)
as

N−2∑
x; y
[�(x)− u(x)]e−�(x=N )KN (x; y)(N 2�e−�(· =N ))(y)[�(y)− �‘(x)

]
+ N−2∑

x; y
[�(x)− u(x)]e−�(x=N )KN (x; y)(N 2�e−�(· =N ))(y)[�‘(y)−u(y)

]
:

Since �( · ) is a smooth function and KN ( · ) has a bounded discrete derivative,
by summation by parts, the �rst line is bounded above by C(�)‘N−1. On the
other hand, by Schwarz inequality, the second line is bounded above by

(�−1=2)‖�− us‖2−1 + (�=2)‖(N 2�e−�(· =N ))e�(· =N )[�‘ − us]‖2−1
for any positive �. Since the H−1 norm is bounded above by the ‘2 norm and
since the function (N 2�e−�(· =N ))e�(· =N ) is uniformly bounded, we have shown
that the second line of (5.5) is bounded above by

(�−1=2)‖�− us‖2−1 + (�=2)‖�‘ − us‖20 + C(�)‘N−1

for any positive �.
We now turn to the third line of (5.5). Repeating the strategy adopted

above, we �rst introduce by force �‘(y) and rewrite the third line as

N−2∑
x; y
[�(x)−us(x)]e−�(x=N )(N∇KN (x; · ))(y)(N∇e−�(· =N ))(y)[�(y)− �‘(y)]

+ N−2∑
x; y
[�(x)− us(x)]e−�(x=N )(N∇KN (x; · ))(y)

× (N∇e−�(· =N ))(y)[�‘(y)− us(y)] : (5:7)
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The �rst line of this decomposition, by summation by parts, is equal to

N−2∑
x; y

R�(x)(2‘ + 1)−1
∑

|z−y|5‘
(N∇KN (x; · ))(z){(N∇e−�(· =N ))(y)

− (N∇e−�(· =N ))(z)}�(y)
+ N−2∑

x; y
R�(x)(2‘+1)−1

∑
|z−y|5‘

{(N∇KN (x; · ))(y)−(N∇KN (x; · ))(z)}

× (N∇e−�(· =N ))(y)�(y) :
Here and below, to keep notation simple, we abbreviated [�(x)− u(x)]e−�(x=N )

as R�(x). Since �( · ) is a smooth function and KN ( · ) has a bounded discrete
derivative, the �rst line is bounded above by C(�)‘N−1.
Since KN has a singularity at the origin, to bound the second line, we shall

�x a positive integer A= 2‘ and decompose the sum according to the value
of |x − y|. For the values of x and y such that |x − y|5 A, since everything
is bounded, the sum is bounded by C(�)AN−1. On the other hand, for values
of x and y such that |x − y|= A, since, by Lemma 6.1, the discrete Laplacian
of KN ( · ) at z is bounded by N=|z|, the sum is bounded above by

C(�)N−2 ∑
|x−y|=A

e−�(x=N )e−�(y=N )

×
∣∣∣∣∣(2‘ + 1)−1 ∑

|z−y|5‘
{(N∇KN (x; · ))(y)− (N∇KN (x; · ))(z)}

∣∣∣∣∣
5 C′(�)N−2 ∑

|x−y|=A
e−�(x=N )e−�(y=N ) ‘

|x − y| − ‘
:

Since we chose A= 2‘, this sum is bounded above by C(�)‘A−1. Minimizing
over A= 2‘ and recollecting all terms, we obtain that the �rst line of (5.7)
is bounded above by C(�)‘1=2N−1=2.

We now turn to the second line of (5.7). By Schwarz inequality it is
bounded above by

(�=2)C(�)N−1∑
y
[�‘(y)− us(y)]2e−2�(y=N )

+ (�−1=2)N−1∑
y

{
N−1∑

x
R�(x) [N∇KN (x; · )](y)

}2
for any positive �. The �rst term is just the ‘2 norm of �‘ − us, while the
second, by summation of parts, may be rewritten as

(�−1=2)N−1∑
y
[KN ∗ R�](y)[(−N 2�KN ) ∗ R�](y) :

Here f ∗ g denotes the convolution of two functions f and g in ‘2(Z).
A simple argument involving Fourier transforms shows that this expression
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is bounded above by �−1=2 times the H−1 norm of �− us. In conclusion, we
proved that the third line of (5.5) is bounded above by

C(�)� ‖�‘ − us‖20 + (�−1=2)‖�− us‖2−1 + C(�)‘1=2N−1=2 :

By similar reasons the fourth line of (5.5) is bounded by the same expres-
sion. It is now time to summarize what we did up to this point. Choosing an
appropriate �, we proved that the sum of the �rst, third and fourth line of (5.3)
are bounded above by

− (1=2)‖�‘ − us‖20 + C(�)‖�− us‖2−1 + C0(r; �)

√
‘√
N

+ C1(�)
‘
N

N−1∑
x
|(N∇u)(x)|e−2�(x=N ) + N−1∑

x
|�xVW;‘(�)|e−2�(x=N )

for all ‘= 1 and some �nite constant C(�).
We now turn to the second line on the right hand side of (5.3). Again, the

�rst step consists in applying the one block estimate. We therefore rewrite this
expression as

2N−2∑
x; y

R�(x)KN (x; y)e−�(y=N )

{
�yr0(�)− (2‘′ + 1)−1

∑
|z−y|5‘′

�zr0(�)

}

+ 2N−2∑
x; y

R�(x)KN (x; y)e−�(y=N )

{
(2‘′ + 1)−1

∑
|z−y|5‘′

�zr0(�)− G(�‘(y))

}

+ 2N−2∑
x; y

R�(x)KN (x; y)e−�(y=N ){G(�‘(y))− G(us(y))} : (5:8)

In this formula ‘′ = ‘(r0) stands for ‘ − s(r0), where s(r0) denotes the length
of the support of r0 and is de�ned in Sect. 2 just after (2.4).

By summation of parts since r0(�) and the discrete derivatives of the kernel
KN are bounded, the �rst line is bounded above by C(�)‘N−1.

By Schwarz inequality and since the H−1 norm is bounded above by
the ‘2 norm, the second line is bounded by

�

∥∥∥∥∥(2‘′ + 1)−1 ∑|z|5‘′
�zr0 − G(�‘(0))

∥∥∥∥∥
2

−1
+ �−1 ‖�− us‖20

for every positive �. Since r0 is a bounded function the �rst term is bounded
by

C(r)�N−1∑
x
e−�(x=N )|�xV‘; r0 | :

Here we used again notation introduced in (2.4).
At last, by similar reasons, the third line of (5.8) is bounded above by

�−1‖�− us‖2−1+�‖G(�‘(0))−G(us)‖205�−1‖�− us‖2−1+�‖G′‖2∞‖�‘(0)−us‖20
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Thus the second line of (5.3) is bounded above by

2�−1‖�− us‖2−1 + �‖G′‖2∞‖�‘(0)− us‖20
+ C(r)�N−1∑

x
e−�(x=N )|�xV‘; r0 |+ C(�)‘N−1 :

To conclude the proof of the lemma, we just have to collect all terms.

6 Appendix

In this last section we present some results concerning the operator
(I − N 2�)−1 used throughout the article and on solutions of the di�erential
equation (1.1).
For a �xed positive integer N endow the space ‘2(Z) = {f : Z→ R;∑

x f(x)
2 ¡ ∞} with the inner product

〈f; g〉 = 1
N
∑
x
f(x)g(x) :

Moreover, for two functions f and g in ‘2(Z), we represent by f ∗ g the
convolution of f with g : (f ∗ g)(x) = N−1∑

y f(y)g(x − y). Recall also from
Sect. 2 that for f in ‘2(Z) we denote, respectively, by ∇f and �f the discrete
derivative and discrete laplacian of f:

(∇f)(z) = f(z + 1)− f(z)

(�f)(z) = f(z + 1) + f(z − 1)− 2f(z) :
For f in ‘2(Z) de�ne the Fourier transform f̂ : [−�; �]→ C of f by

f̂(�) =
1
N
∑
x
f(x)ei�x :

It is straightforward to see that the inverse Fourier transform is then given by

�f(x) =
N
2�

�∫
−�

f(�)e−i�x d� :

De�ne KN : Z→ R by

KN (x) =
N
2�

�∫
−�

cos(�x)
1 + 2N 2(1− cos �) d�

Then an easy computation involving Fourier transforms shows that

(I − N 2�)−1f(x) = (KN ∗ f)(x) :

KN ( · ) is a regular function with a singularity at the origin. More precisely,
�x 0¡a¡1. The Fourier transform of the sequence a|x|, x ∈ Z, is equal to

1
N

1− a2

(1− a)2 + 2a(1− cos �) =
1 + a√

a
1

1 + 2N 2(1− cos �)
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if N =
√
a=(1− a). In particular,

KN (x; y) =
√
a

1 + a
a|x−y| (6:1)

with a the solution of N =
√
a=(1− a). We now summarize the properties of

the kernel KN needed in the proof of the exponential estimates.

Lemma 6.1 There exists an universal constant B1 so that

sup
x∈Z

|KN (x)|5 KN (0)5 B1; sup
x∈Z

|N∇KN (x)|5 B1 ;

sup
x∈Z

{
|N 2�KN (x)| − B1

N
1 + |x|

}
5 0 and N |KN (1)− KN (0)|5 1=2

(6:2)

for every N=1.

The proof is standard and thus omitted.
We now turn to the proof of some regularity of the solution of the di�er-

ential equation (1.1).

Lemma 6.2 For each N and each initial condition uN : Z→ [0;1] there exists
a unique solution uN of the equation @t uN

t (x) =
N 2

2
(�uN

t )(x) + G(uN
t (x)) ;

uN
0 ( · ) = uN ( · ) :

Moreover the solution is positive; bounded by 1 and there exists a constant B2
depending only on G and � such that

t∫
0
ds
1
N
∑
x
|(N∇us)(x)|2e−2�(x=N ) 5 1 + B2t :

Proof Existence and uniqueness in �nite volume are proven by usual contrac-
tion methods (cf. [Sm, Chapter 11] for instance). That the solution is positive
and bounded by 1 follows from the maximum principle since G(0)= 0 and
G(1)5 0. A standard argument proves the existence of a solution for the in-
�nite volume problem from existence in �nite volume. Uniqueness in in�nite
volume follows, for instance, by H−1 methods.

We now prove a bound on the ‘2 norm of the derivative of solutions. By
a summation by parts and since the solution is bounded by 1, we have that

@t
1
N
∑
|x|5A

(ut(x))2e−2�(x=N ) 5 − 1
N
∑
|x|5A

(N∇uN
t (x))

2e−2�(x=N )

+
2
N
∑
|x|5A

uN
t (x)G(u

N
t (x))e

−2�(x=N ) + CNe−2�(A=N )

− 1
N
∑
|x|5A

uN
t (x + 1) (N∇uN

t (x))N{e−2∇�(x=N ) − 1}e−2�(x=N )
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for some universal constant C and every positive integer A. Therefore, inte-
grating over time and applying the elementary inequality 2ab5 a2 + b2, we
get that

t∫
0
ds

1
2N

∑
|x|5A

(N∇uN
s (x))

2e−2�(x=N ) 5
1
N
∑
|x|5A

(uN
0 (x))

2e−2�(x=N )

− 1
N
∑
x
(uN

t (x))
2e−2�(x=N ) +

2
N

t∫
0

∑
|x|5A

uN
s (x)G(u

N
s (x))e

−2�(x=N ) ds

+CtNe−2�(A=N )+
1
2N

t∫
0

∑
|x|5A

(uN
s (x + 1))

2 [N{e−2∇�(x=N )− 1}]2e−2�(x=N ) ds :

We conclude the proof of the lemma letting A increase to ∞ and recalling that
the solution is bounded by 1 in absolute value.

Acknowledgement. We thank the anonymous referee for pointing the explicit formula (6.1)
for the kernel KN .
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