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Summary. Suppose that M is a complete, simply connected Riemannian
manifold of non-positive sectional curvature with dimension m= 3. If, out-
side a �xed compact set, the sectional curvatures are bounded above by a
negative constant multiple of the inverse of the square of the geodesic distance
from a �xed point and below by another negative constant multiple of the
square of the geodesic distance, then the angular part of Brownian motion on
M tends to a limit as time tends to in�nity, and the closure of the support of
the distribution of this limit is the entire Sm−1. This improves a result of Hsu
and March.
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1 Introduction

The existence of non-constant bounded harmonic functions on general
Riemannian manifolds has been investigated using both geometric and prob-
abilistic methods. A detailed survey of recent progress on this area has been
given in the introduction to [6]. The following is a summary of the results
relevant to this paper.
Greene and Wu conjectured in [4] that a Cartan–Hadamard manifold, that

is a complete, simply connected Riemannian manifold with non-positive sec-
tional curvature, always possesses non-constant bounded harmonic functions if,
outside a �xed compact set, the upper bound of its curvatures decays pro-
portionally to the inverse of the square of the geodesic distance from a �xed
point.
For a rotationally symmetric manifold of negative curvature, March proved

in [10], by considering the condition for the invariant �-�eld of Brownian mo-
tion to be non-trivial, that there exist non-constant bounded harmonic functions
on the manifold if the radial curvatures at any point x are bounded above by
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−c=(r2 log r) for c¿cm, where r is the Riemannian distance from x to a �xed
reference point of the manifold with respect to which it is rotationally symmet-
ric, m denotes the dimension of the manifold and c2 = 1; cm = 1=2 for m= 3.
If, instead, the above bound is the lower bound of the radial curvatures, then
there exist no non-constant bounded harmonic functions.
For a general simply connected manifold of negative curvature, one prob-

abilistic method for constructing non-constant bounded harmonic functions is
to consider the asymptotic behaviour of the angular component of Brown-
ian motion on the manifold. For instance, Hsu and Kendall con�rmed in [6]
the Greene and Wu conjecture for the case of 2-dimensional manifolds us-
ing this method to extend ideas of [9, 5]. They proved that, under the appro-
priate Greene and Wu hypotheses, the angular component of Brownian mo-
tion converges to a limit as time tends to in�nity and the closure of the
support of the distribution of this limit is the entire circle of possible di-
rections. For a manifold with dimension at least 3, Hsu and March proved
in [5] a similar result if, o� a given compact set, the sectional curvatures
are bounded above by −cr−2 for c¿2 and below by −c̃r 2� for c̃¿0 and
� ¡ 1− 4=(1 +√

1 + 4c). Note that this requires � to approach zero as c
approaches 2.
In this paper we obtain a similar result again but under more satisfyingly

symmetric constraints than that of Hsu and March. Firstly we may take � = 1
irrespective of c and, except in dimension 3; c itself may be an arbitrary
positive number. The strategy of our proof is a combination of that of [6]
with ideas similar to those of Darling in [2]. In particular it is the introduc-
tion of a function analogous to Darling’s persistence functions which enables
us to weaken the hypotheses on the lower bound. Note that, if a manifold
with dimension at least 3 has uncontrolled negative sectional curvatures then
Brownian motion upon it may have a non-random limiting direction or no
limiting direction at all (cf. [6]).

2 The main theorem

We assume throughout that M is a complete m-dimensional simply connected
Riemannian manifold of non-positive sectional curvature, where m¿2. Then
M is di�eomorphic to Rm, with the di�eomorphism realised by the exponential
map at any �xed reference point o in M, so that M has global geodesic polar
coordinates (r; �) ∈ R+ × Sm−1 with respect to o. In particular, r(x) gives the
distance between x and o. Suppose moreover that, for x outside a compact set,
the sectional curvatures of M at x are bounded above by −cr−2(x) and below
by −c̃r2(x), where c and c̃ are two arbitrary positive constants, except that
we require c¿3=4 when m = 3. Without loss of generality we may take the
compact set to be {x : r(x)5 r1}, where r1 is at least 1 and satis�es the further
technical restrictions, which we shall require, that (1) 23=2c̃1=4r1

√
log r1 = 1

and (2) coth(2
√
c̃r1)5 2.

Suppose that X is Brownian motion on M constructed on a probability
space (
;F;Ft ;P) and de�ne Rt = r(Xt); �t = �(Xt), then our result is the
following.
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Theorem. With the notation and hypotheses on M stated above;

P
[
lim
t→∞ �t exists

]
= 1 :

The closure of the support of the probability law of the limit of �t is S
m−1.

Our proof, like that of [6], has three main ingredients. We �rst use a
comparison of M with a rotationally symmetric manifold to obtain an inequality
relating the ‘angular’ distance between two points to their metric distance.
Secondly we compare the radial part R of X , starting from an arbitrary point
x0 = (r; �) of M, with a suitable Bessel process to obtain a probabilistic lower
bound, p(r), on the rate of growth of R, where p(r)→ 1 as r →∞. Finally
we obtain a sequence of stopping times Tn which, with probability at least
p(r), tend to in�nity in such a way as to �t together with the other estimates
to give the required result. That the Tn themselves tend to in�nity follows from
an estimate on the growth of �, the distance from the starting point x0, obtained
in the manner of Darling [2], from a bound on the Hessian of �.

3 The angular distance

We denote by �(�1; �2) the distance, measured on the unit tangent sphere at
the point o, between two of its points �1; �2. Let � = (1 +

√
1 + 4c)=2 so that

c = �(�− 1) and �¿1. We �x � such that 0¡ � ¡ min{1; �− 1}. For the
following lemma we would only need � ¡ 1 but, when it is applied in Sect. 6,
we shall also require �− �¿1.
Lemma 1 There exists r�¿2r1 such that if r(x1)= r� and dist(x1; x2)5
r�(x1) then

�(�(x1); �(x2))5 2�
dist(x1; x2)
r�(x1)

:

Proof. Let M̃ be an m-dimensional rotationally symmetric manifold with a pole
õ and with the Riemannian metric given by ds̃ 2 = dr̃ 2 + g2(r̃)d�̃ 2, where (r̃; �̃)
is the geodesic polar coordinates around õ. Then the radial curvature of M̃ at
x̃ is given by (cf. [4, p. 30])

−g ′′(r̃(x̃))=g(r̃(x̃)) :
This will always be greater than or equal to the radial curvatures of M at
x with r(x) = r̃(x̃) and equal to −cr̃−2(x̃) if r̃ = r2, for any given r2¿r1,
provided we can �nd a smooth function g= 0 de�ned on R+ satisfying the
following conditions.
(1) g(0) = 0 and g′(0) = 1;
(2) for t 5 r2; −g ′′(t)=g(t) is bounded below by the supremum of the sectional
curvatures of M at x with r(x) = t;
(3) for t = r2; g(t) = t�.
However the existence of such smooth functions can be established as follows.
Fix any smooth increasing function h : R+ → [0; 1] such that h|[0; r1] = 0 and
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h|[r2 ;∞) = 1. Write K(t) = ch(t)t
−2. Then the solution for the di�erential equa-

tion g ′′(t)=g(t) = K(t) with the boundary conditions g(0) = 0 and g′(0) = 1
has the required properties.
Suppose �rst that x̃1 and x̃2 are two points in M̃\{õ} which are the images

of v1 and v2 in the tangent space �õ( M̃) at õ, under the exponential map expõ at
õ, and are such that dist(x̃1; x̃2)5 r̃�(x̃1). Write �0 = �(�̃(x̃1); �̃(x̃2)). Without
loss of generality, we may assume that �0¿0. Then the image, under exp �o, of
the linear subspace of � �o( M̃) spanned by v1 and v2 is a 2-dimensional totally
geodesic submanifold, M̃0, of M̃ and the induced Riemannian metric structure
on M̃0 still has the form

dr̃ 2 + g2(r̃)d�̃ 2 ;

where (r̃; �̃) are the geodesic polar coordinates on M̃0 (cf. [4, pp. 25, 30]). If
the geodesic segment x̃(s) joining x̃1 and x̃2, which lies entirely in M̃0, has
parameter 05 s5 �0 then, by the triangle inequality, we have

r̃(x̃(s))= r̃(x̃1)− dist (x̃1; x̃(s))= r̃(x̃1)− dist(x̃1; x̃2); 05 s5 �0 :

Thus, there exists an r� = 2r2 such that, if r̃(x̃1)= r�, then 2r̃(x̃(s))=
r̃(x̃1); ∀ 05 s5 �0. This implies that, if r̃(x̃1)= r�, then

dist (x̃1; x̃2) =
�0∫
0

√
(r̃′(x̃(s)))2 + g2(r̃(x̃(s)))ds

=
�0∫
0
g(r̃(x̃(s)))ds =

�0∫
0
r̃ �(x̃(s))ds= 2−�r̃�(x̃1)�0 :

Now, suppose that x1 and x2 are two points in M\{o} such that
dist(x1; x2)5 r�(x1). Choose two points x̃i in M̃ such that r̃(x̃i) = r(xi);
i = 1; 2, and �(�̃(x̃1); �̃(x̃2)) = �(�(x1); �(x2)). Then there is a linear isomor-
phism I between the tangent spaces �0(M) and � �o( M̃) such that the correspond-
ing polar map, expõ ◦ I ◦ exp−1o , takes xi to x̃i. Thus, by the Rauch Comparison
Theorem (cf. [1, p. 30]),

dist (x̃1; x̃2)5 dist(x1; x2)5 r̃�(x̃1) ;

and the result follows from the above.

4. The rate of growth of the radial part of X

Write @M for the radial tangent vector �eld @=@r on M. Since the Ricci cur-
vature of a radial tangent vector can be expressed as the sum of the sectional
curvatures of the planes spanned by the radial tangent vector together with
each of a set of tangent vectors which are orthonormal to it and orthogonal
each other (cf. [11, p. 88]), the Ricci curvature of @M at x is less than or equal
to the Ricci curvature of @Rm at any x̂ such that the radial component of x̂ is
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equal to r(x). By the Laplacian Comparison Theorem (cf. [4, p. 26]), we have

�r =
m− 1
r

∀r¿0

as (m− 1)=r is the Laplacian of the radial function on Rm (cf. [4, p. 30]). Thus
the Itô stochastic di�erential equation for the radial part Rt of X satis�es

dRt = dBt +
1
2
�Rt dt = dBt +

m− 1
2Rt

dt ;

where B is Brownian motion on R. Since Brownian motion in Rm is tran-
sient for m=3, it follows that R will tend to in�nity as time tends to
in�nity. Outside our compact set, {x : r(x)5 r1}, we can obtain a lower
bound for the rate of growth of the radial component of R
of X .
Let �̂ = (m− 1)�, BES�r be the Bessel process of index � starting at r

and denote by Pr; � the conditional probability measure obtained from P by
conditioning on X0 = (r; �).

Lemma 2 For r¿r 21 and for all su�ciently small �

Pr; �[Rt=
√
r ∨ t1=2−�; ∀t]=p(r) ;

where

p(r) = {1− (r1=r) �̂−1}{P[BES �̂1 (t)= t1=2−�; ∀t=r1=(1−2�)]− r−( �̂−1)=2} :

Proof. The Laplacian of the radial function r̃ on M̃, where M̃ is constructed
as in the proof of Lemma 1, is given by

�r̃ = (m− 1)g
′(r̃)
g(r̃)

and so, for r̃=r2; �r̃ = �̂=r̃. Since the Ricci curvature of M for @M at x
is less than or equal to the Ricci curvature of M̃ for @ M̃ at any x̃ such that
r̃(x̃) = r(x), the Laplacian Comparison Theorem implies that

�r=
�̂
r

for r=r2 :

Therefore, we have that, when Rt=r2,

dRt=dBt +
�̂
2Rt

dt :

Now, the solution of the stochastic di�erential equation

dYt = dBt +
�̂
2Yt

dt ;

where the Brownian motion B is the martingale part of R, is a Bessel process
BES �̂. Then, by comparison of R with this BES �̂, we have, for all r=r22
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and all su�ciently small �,

Pr; �[Rt=
√
r ∨ t1=2−�; ∀t]

=Pr; �[Rt=
√
r ∨ t1=2−�; ∀t |BES �̂r never hits the level r2]

× Pr; �[BES �̂r never hits the level r2]
=P[BES �̂r (t)=

√
r ∨ t1=2−�; ∀t]× P[BES �̂r never hits the level r2] :

Now,
P[BES �̂r never hits the level r2] = 1− (r2=r) �̂−1

(cf. [8, pp. 195, 238]) and

P[BES �̂r (t)=
√
r ∨ t1=2−�; ∀t]

= P[BES �̂r (t)=
√
r; ∀ 05 t¡r1=(1−2�); and BES �̂r (t)= t1=2−�;

∀t=r1=(1−2�)]
= P[BES �̂r (t)=

√
r; ∀t; and BES �̂r (t)= t1=2−�; ∀t=r1=(1−2�)]

= P[BES �̂r (t)= t
1=2−�; ∀t=r1=(1−2�)]

− P[BES �̂r (t)= t1=2−�; ∀t=r1=(1−2�); and BES �̂r (t)¡
√
r for some t=0]

=P[BES �̂r (t)= t
1=2−�; ∀t=r1=(1−2�)]− P[BES �̂r hits the level

√
r]

=P[BES �̂r (t)= t
1=2−�; ∀t=r1=(1−2�)]− r−( �̂−1)=2 :

Thus, the required result follows by letting r2 ↓ r1.
Since almost surely BES �̂1 (t)= t

1=2−� for su�ciently large t (cf. [12]), p(r)
will tend to 1 as r tends to in�nity, and so Pr; �[Rt=

√
r ∨ t1=2−�; ∀t] tends

to 1, uniformly with respect to �, as r tends to in�nity.

5 The sequence of stopping times

In this section we study the sequence of stopping times Tn, required for the
proof of the theorem. We �x x0 ∈M\{o} such that r0 = r(x0)¿r1 and write
�(x) = dist(x; x0). Then the sectional curvatures at x, for all x ∈M, are bounded
below by

−c̃{r0 + �(x)}2 :
De�ne the function � on R+ by

�(t) = a
√
log(r0 + t); a = 2−1=2c̃−1=4 :

Then

�(0) = a
√
log(r0)=0 and �′(t) =

a
2

1

(r0 + t)
√
log(r0 + t)

:

Thus �′ is decreasing and �′(0) = a=(2r0
√
log(r0))¡1, by the hypothesis (1)

made on r1 in Sect. 2, so that in particular �′′(t)50.
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Lemma 3 For �=1; the Hessian of � acting on any unit tangent vector which
is orthogonal to a radial tangent vector is bounded by

1
�(�)�′(�)

= 2
r0 + �
a2

:

Proof. By the Hessian Comparison Theorem (cf. [4, p. 19]), we only need to
show that this is true for an m-dimensional rotationally symmetric manifold
with radial curvature function −c̃(r0 + r̂)2. Write the Riemannian metric of
such a manifold as dr̂2 + f2(r̂)d�̂2, where f satis�es the Jacobi equation
f′′(t) = c̃(r0 + t)2f(t) with f(0) = 0 and f′(0) = 1. Then the Hessian of
r̂ acting on any tangent vector orthonormal to a radial tangent vector is
equal to f′(r̂)=f(r̂) (cf. [4, p. 30]). On [0, 1], f′′(t)54c̃r 20f(t) and so
(f′=f)(t)52r0

√
c̃ coth(2r0

√
c̃t), since the function on the right hand side is

the Hessian of the distance function on a Riemannian manifold with cons-
tant sectional curvature −4c̃r 20 acting on any tangent vector orthonormal to
a radial tangent vector. Thus, in particular, (f′=f)(1)52r0

√
c̃ coth(2 r0

√
c̃).

Now consider f̃ : [1;∞)→ R+ such that f̃(t) = exp (ã(r0 + t)2), where ã =√
c̃ coth(2r0

√
c̃). Then

(f̃′′=f̃)(t)=4c̃ coth2(2r0
√
c̃)(r0 + t)2¿c̃(r0 + t)2 = (f′′=f)(t)

and
(f̃′=f̃)(t) = 2

√
c̃ coth(2r0

√
c̃)(r0 + t) ;

so that (f̃′=f̃)(1)=2r0
√
c̃ coth(2r0

√
c̃)=(f′=f)(1). Since

{f̃f′ − ff̃′}′ = ff̃{f′′=f −f̃′′=f̃}50 ;

it follows that, on [1;∞); (f′=f)(t)5(f̃′=f̃)(t). Thus the required bound fol-
lows from the second hypothesis on r1, made in Sect. 2.

We next use this bound on the Hessian of � to obtain a bound on the
growth of �t = �(Xt) in a manner similar to Darling’s use of ‘persistence
functions’ in [2]. This type of argument and the estimates that result from
it originated in Kallenberg–Sztencel [7]. Since we follow the proof of Dar-
ling’s Proposition 5.2 and Theorem 2.1 quite closely, we just sketch the
argument.

Lemma 4 If � is su�ciently large, then

P[sup{�s : 05s5 t}=�]5{P[B1=1]}−1 exp
{
− log(r0 + �)

32
√
c̃t

}
;

where B is standard Brownian motion on R1 starting from 0.

Proof. If we denote by (�; �̃) the global geodesic polar coordinates with respect
to x0, then

t = [X ]t = [�]t + [�̃(X )]t
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where [X ]t =
∫
gM(Xs)(dXs; dXs) and [�] and [�̃(X )] are similarly de�ned.

Thus we have 05 [�]t5 t and, in fact, [�]t ¡t a.s. De�ne

Ht = �(�t)− �(1)−
√
t − [�]t :

Then Ht¿0 implies that �t¿1. Write H+t for the positive part of Ht and de-
compose dH+t as dH+t = dMt + dLt − dVt , such that M is a local martingale,
L is the local time of H at zero, V is a process of locally bounded variation
and M0 = V0 = L0 = 0. Since for any vector �eld v

Hess�(@=@�; v) = 0

(cf. [2, Lemma 1.4]), we have

Hess�(dXt; dXt) = Hess�(d�̃t ; d�̃t) ;

where �̃t = �̃(Xt), and thus

dVt =
1
2
1{Ht¿0}{2d

√
t − [�]t − �′(�t)Hess�(d�̃t ; d�̃t)− �′′(�t)d[�]t} :

It then follows from Lemma 3 and the de�nition of H+ that

dVt=−1
2
�′′(�t)d[�]t=0

and so Lt = − inf{Ms − Vs : 05s5 t} by Skorohod’s lemma. Hence
H+t 5Mt − inf{Ms : 05s5 t} :

Expressing the local martingale M as random time changed Brownian motion,
that is, Mt = B̃ ◦ [M ]t and noting that B̃t − inf{B̃s : 05s5 t} is the modulus
of another Brownian motion, we have

H+t 5 |B ◦ [M ]t | ;
so that �(�t)5 |B ◦ [M ]t |+ �(1) +

√
t − [�]t . Since [M ]t5 [�]t5 t, it follows

that

�(sup{�s : 05s5 t})5�(1) + sup{|Bs|+
√
t − s : 05s5 t} :

Thus, if �−1(�)¿1,

P[sup{�s : 05s5 t}=�−1(�)]
52P[sup{Bs +

√
t − s : 05s5 t}=�− �(1)]

as −B is also a Brownian motion. By Brownian motion scaling and the strong
Markov property of B at the stopping time inf{s∈ [0; t] : Bt +

√
t − s=�−

�(1)}, we then have

P[sup{�s : 05s5 t}=�−1(�)]5 P[sup{Bs : 05s5 t}=�− �(1)]
P[B1=1]

;
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and so the standard properties of Brownian motion show that, if �¿1,

P[sup{�s : 05s5 t}=�]5 P[sup{Bs : 05s5 t}=�(�)− �(1)]
P[B1=1]

= 2
P[Bt=�(�)− �(1)]

P[B1=1]

5
exp{−(�(�)− �(1))2=2t}

P[B1=1]
:

When � is su�ciently large, we have√
log(r0 + �)−

√
log(r0 + 1) =

log(r0 + �)− log(r0 + 1)√
log(r0 + �) +

√
log(r0 + 1)

=
log(r0 + �)− log(r0 + 1)

2
√
log(r0 + �)

=
1
4

√
log(r0 + �) ;

which gives the stated result.

We now de�ne the sequence of stopping times

T0 = 0

Tn+1 = inf{t¿Tn : dist
(
Xt; XTn

)
=
(
RTn

)�}
with inf{?} =∞.
Lemma 5 If R0 = r¿r 21 ; then there is a positive constant �̃ such that with
probability at least p(r) Tn= �̃n for all su�ciently large n.

Proof. When Tn is �nite, de�ne

Ln+1 = Tn+1 − Tn :
Then, for �¿0 such that 1− 2 exp{−1=(32�√c̃)} = l¿0 and for RTn ¿r1,
we have by Lemma 4 that

pn ≡ P[Ln+1=� log(RTn + (RTn)�) |FTn ]

=1− 2 exp
{
− 1

32�
√
c̃

}
= l¿0 :

For a sequence of i.i.d. random variables V1; V2; : : : with uniform distribution
on [0, 1] and independent of F∞ =

∨
nFTn , de�ne, for n=0,

Un+1 =
{
1 if Ln+1¿� log(RTn + (RTn)

�) and pnVn+1¡1 ;
0 otherwise :

Then Un+1 takes values 0 and 1 and is measurable with respect to the �-
�eld generated by FTn+1 and V1; : : : ; Vn. Lemma 2 and the fact that R0 = r¿
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r 21 imply that, with probability at least p(r); Rt ¿r1 for all t. Hence, the
{Un: n= 1} constructed in this way form a sequence of i.i.d. non-degenerate
{0; 1}-valued random variables and, with probability at least p(r),

P[Un+1 = 1 |FTn ; V1; : : : ; Vn] = l :
Since

Ln+1 = Tn+1 − Tn = � log(RTn + (RTn)
�)Un+1

then, with probability at least p(r),

Ln+1 = �Un+1
and so

Tn+1 = �Sn+1 ;

where Sn =
∑
15k5nUk . Since Sn=n tends to l almost surely when n tends to

in�nity, we have the required result.

6 Proof of the Theorem

If r = r2� then, with Pr; �-probability at least p(r); Rt =
√
r ∨ t1=2−� for all

t, so that, with Pr; �-probability at least p(r); RTn = r� for all n. Choosing �
small enough such that (1− 2�)(�− �)¿ 1 then, it follows from the proof
of Lemma 5 that the intersection of the events {Tn = �̃n} and {Rt =

√
r ∨

t1=2−�; ∀t} occurs with probability at least p(r) and so, with Pr; �-probability
at least p(r),

4−� sup
t=0

�2(�;�t)5 4−�
∞∑
n=0

sup
Tn5t5Tn+1

�2(�Tn ;�Tn+t)

5
∞∑
n=0
(RTn)

2(�−�) by Lemma 1

5
∞∑
n=0

{√r ∨ T 1=2−�n }2(�−�) by Lemma 2

5
∑

05n5N
r�−� +

∞∑
n=0

{r ∨ (�̃n)1−2�}�−� by Lemma 5

= Nr�−� +
∑

05�̃n5r1=(1−2�)
r�−� +

∑
�̃n¿r1=(1−2�)

{�̃n}(1−2�)(�−�)

5 {N + �̃−1}r2� + �̃−1
∞∫

r1=(1−2�)
(x − 1)(1−2�)(�−�) dx

5 {N + �̃−1}r2� − �̃−1

(1− 2�)(�− �) + 1(r − 1)
(1−2�)(�−�)+1

1−2�

5 C20 (r − 1)2� ;
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where N = N (!) is a positive integer such that Tn = �̃n for all n= N;

� =
�− �
2

+
1

2(1− 2�) ¡ 0 and

C0(!) =

√
N +

{
1− 1

(1− 2�)(�− �) + 1
}
�̃−1 :

Write �r for inf{t = 0: Rt = r}. Then, for r ¿ r2� , we have

P
[
sup
t=0

�(��r ;��r+t)5 2�C0(!)(r − 1)�
]
= p(r) : (∗)

Let k1 = 1 and kn = n ∨min{k: k satis�es the inequality (I)} for n= 2;
where the inequality (I) is

(I) 1− P[BES �̂1 = t1=2−�; ∀t = k1=(1−2�)]5 n−( �̂−1)=2 :

By the remark at the end of Sect. 4, such {kn: n=1} exist. De�ne
An={!: there exist s; t¿�kn(!) such that �(�s;�t)(!)¿21+�C0(!)(kn − 1)�} :
Then, since, by the triangle inequality, �(�1; �2)5 �(�1; �0) + �(�2; �0) for any
three points �i; i = 0; 1; 2; on the unit tangent sphere at the pole,

P[An]5 P[!: there exist s; t¿�kn(!) such that �(�s;��kn )(!)

+ �(�t ;��kn )(!)¿ 21+�C0(kn − 1)�]
= 1− P[!: ∀s; t = �kn(!); �(�s;��kn )(!)

+ �(�t ;��kn )(!)52
1+�C0(kn − 1)�]

= 1− P
[
!: sup

s; t¿�kn (!)
{�(�s;��kn )

+ �(�t ;��kn )}(!)521+�C0(kn − 1)�
]

= 1− P
[
!: sup

t¿�kn (!)
�(�t ;��kn )(!)52

�C0(kn − 1)�
]

5 1− p(kn) when n¿r�

5 (r1=kn) �̂−1 + k−( �̂−1)=2n + n−( �̂−1)=2 when n¿r2�

5 3n−( �̂−1)=2 when n ¿ r2� :

It follows from m= 3; and c¿3=4 if m = 3; that �̂ = (m− 1)� = (m− 1)
(1 +

√
1 + 4c)=2¿3 so that ∑

n=1
P[An]¡∞
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and, by the Borel–Cantelli lemma, we have

P[An happens in�nitely often] = 0 :

By Lemma 5, C0(!)¡∞ almost surely and so it follows that C0(!)(kn − 1)�
tends to zero as n tends to in�nity. Hence

P
[
lim
t→∞ �t exists

]
= P[!: ∃N = 1 s.t. ∀n= N and ∀s; t ¿ �kn(!)

�(�s;�t)(!)5 21+�C0(!)(kn − 1)�]
= P[!: ∃N = 1 s.t. ∀n= N ! ∈ Acn]

= P

[ ⋃
n=1

⋂
k=n

Ack

]
= 1 ;

where Ack denotes the complementary set of Ak . It is clear that limt→∞�t is
invariant with respect to time t.
Finally, since the Laplace–Beltrami operator is uniformly elliptic in any ball

of M, and so the support of Pr; � is the class of continuous mappings from R+
to M starting at (r; �) (cf. [13, p. 169]), we have, for any non-empty open set
U in M,

Pr; �[��r′ ∈U for su�ciently large r′]¿ 0 :

This, together with (∗), shows that the closure of the support of the probability
law of the limit of �t is the entire S

m−1 (cf. [5]).

Acknowledgement. The author is grateful to the referee for a number of helpful remarks
which have improved the original exposition.
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