Limiting angle of Brownian motion on certain manifolds

Huiling Le
University of Nottingham, Department of Mathematics, University Park, Nottingham NG7 2RD, UK

Received: 7 December 1994/In revised form: 2 September 1995

Abstract

Summary. Suppose that \mathbf{M} is a complete, simply connected Riemannian manifold of non-positive sectional curvature with dimension $m \geqq 3$. If, outside a fixed compact set, the sectional curvatures are bounded above by a negative constant multiple of the inverse of the square of the geodesic distance from a fixed point and below by another negative constant multiple of the square of the geodesic distance, then the angular part of Brownian motion on M tends to a limit as time tends to infinity, and the closure of the support of the distribution of this limit is the entire \mathbf{S}^{m-1}. This improves a result of Hsu and March.

Mathematics Subject Classification (1991): 60G65, 58G32

1 Introduction

The existence of non-constant bounded harmonic functions on general Riemannian manifolds has been investigated using both geometric and probabilistic methods. A detailed survey of recent progress on this area has been given in the introduction to [6]. The following is a summary of the results relevant to this paper.

Greene and Wu conjectured in [4] that a Cartan-Hadamard manifold, that is a complete, simply connected Riemannian manifold with non-positive sectional curvature, always possesses non-constant bounded harmonic functions if, outside a fixed compact set, the upper bound of its curvatures decays proportionally to the inverse of the square of the geodesic distance from a fixed point.

For a rotationally symmetric manifold of negative curvature, March proved in [10], by considering the condition for the invariant σ-field of Brownian motion to be non-trivial, that there exist non-constant bounded harmonic functions on the manifold if the radial curvatures at any point x are bounded above by
$-c /\left(r^{2} \log r\right)$ for $c>c_{m}$, where r is the Riemannian distance from x to a fixed reference point of the manifold with respect to which it is rotationally symmetric, m denotes the dimension of the manifold and $c_{2}=1, c_{m}=1 / 2$ for $m \geqq 3$. If, instead, the above bound is the lower bound of the radial curvatures, then there exist no non-constant bounded harmonic functions.

For a general simply connected manifold of negative curvature, one probabilistic method for constructing non-constant bounded harmonic functions is to consider the asymptotic behaviour of the angular component of Brownian motion on the manifold. For instance, Hsu and Kendall confirmed in [6] the Greene and Wu conjecture for the case of 2 -dimensional manifolds using this method to extend ideas of $[9,5]$. They proved that, under the appropriate Greene and Wu hypotheses, the angular component of Brownian motion converges to a limit as time tends to infinity and the closure of the support of the distribution of this limit is the entire circle of possible directions. For a manifold with dimension at least 3, Hsu and March proved in [5] a similar result if, off a given compact set, the sectional curvatures are bounded above by $-c r^{-2}$ for $c>2$ and below by $-\tilde{c} r^{2 \beta}$ for $\tilde{c}>0$ and $\beta<1-4 /(1+\sqrt{ } 1+4 c)$. Note that this requires β to approach zero as c approaches 2 .

In this paper we obtain a similar result again but under more satisfyingly symmetric constraints than that of Hsu and March. Firstly we may take $\beta=1$ irrespective of c and, except in dimension 3, c itself may be an arbitrary positive number. The strategy of our proof is a combination of that of [6] with ideas similar to those of Darling in [2]. In particular it is the introduction of a function analogous to Darling's persistence functions which enables us to weaken the hypotheses on the lower bound. Note that, if a manifold with dimension at least 3 has uncontrolled negative sectional curvatures then Brownian motion upon it may have a non-random limiting direction or no limiting direction at all (cf. [6]).

2 The main theorem

We assume throughout that \mathbf{M} is a complete m-dimensional simply connected Riemannian manifold of non-positive sectional curvature, where $m>2$. Then \mathbf{M} is diffeomorphic to \mathbb{R}^{m}, with the diffeomorphism realised by the exponential map at any fixed reference point o in \mathbf{M}, so that \mathbf{M} has global geodesic polar coordinates $(r, \theta) \in \mathbb{R}_{+} \times \mathbf{S}^{m-1}$ with respect to o. In particular, $r(x)$ gives the distance between x and o. Suppose moreover that, for x outside a compact set, the sectional curvatures of \mathbf{M} at x are bounded above by $-c r^{-2}(x)$ and below by $-\tilde{c} r^{2}(x)$, where c and \tilde{c} are two arbitrary positive constants, except that we require $c>3 / 4$ when $m=3$. Without loss of generality we may take the compact set to be $\left\{x: r(x) \leqq r_{1}\right\}$, where r_{1} is at least 1 and satisfies the further technical restrictions, which we shall require, that (1) $2^{3 / 2} \tilde{c}^{1 / 4} r_{1} \sqrt{ } \log r_{1} \geqq 1$ and (2) $\operatorname{coth}\left(2 \sqrt{ } \tilde{c} r_{1}\right) \leqq 2$.

Suppose that X is Brownian motion on \mathbf{M} constructed on a probability space $\left(\Omega, \mathscr{F}^{\prime}, \mathscr{F}_{t}, \mathbb{P}\right)$ and define $R_{t}=r\left(X_{t}\right), \Theta_{t}=\theta\left(X_{t}\right)$, then our result is the following.

Theorem. With the notation and hypotheses on \mathbf{M} stated above,

$$
\mathbb{P}\left[\lim _{t \rightarrow \infty} \Theta_{t} \text { exists }\right]=1
$$

The closure of the support of the probability law of the limit of Θ_{t} is \mathbf{S}^{m-1}.
Our proof, like that of [6], has three main ingredients. We first use a comparison of \mathbf{M} with a rotationally symmetric manifold to obtain an inequality relating the 'angular' distance between two points to their metric distance. Secondly we compare the radial part R of X, starting from an arbitrary point $x_{0}=(r, \theta)$ of \mathbf{M}, with a suitable Bessel process to obtain a probabilistic lower bound, $p(r)$, on the rate of growth of R, where $p(r) \rightarrow 1$ as $r \rightarrow \infty$. Finally we obtain a sequence of stopping times T_{n} which, with probability at least $p(r)$, tend to infinity in such a way as to fit together with the other estimates to give the required result. That the T_{n} themselves tend to infinity follows from an estimate on the growth of ρ, the distance from the starting point x_{0}, obtained in the manner of Darling [2], from a bound on the Hessian of ρ.

3 The angular distance

We denote by $\delta\left(\theta_{1}, \theta_{2}\right)$ the distance, measured on the unit tangent sphere at the point o, between two of its points θ_{1}, θ_{2}. Let $\alpha=(1+\sqrt{ } 1+4 c) / 2$ so that $c=\alpha(\alpha-1)$ and $\alpha>1$. We fix ε such that $0<\varepsilon<\min \{1, \alpha-1\}$. For the following lemma we would only need $\varepsilon<1$ but, when it is applied in Sect. 6, we shall also require $\alpha-\varepsilon>1$.
Lemma 1 There exists $r_{\varepsilon}>2 r_{1}$ such that if $r\left(x_{1}\right) \geqq r_{\varepsilon}$ and $\operatorname{dist}\left(x_{1}, x_{2}\right) \leqq$ $r^{\varepsilon}\left(x_{1}\right)$ then

$$
\delta\left(\theta\left(x_{1}\right), \theta\left(x_{2}\right)\right) \leqq 2^{\alpha} \frac{\operatorname{dist}\left(x_{1}, x_{2}\right)}{r^{\alpha}\left(x_{1}\right)}
$$

Proof. Let $\tilde{\mathbf{M}}$ be an m-dimensional rotationally symmetric manifold with a pole \tilde{o} and with the Riemannian metric given by $d \tilde{s}^{2}=d \tilde{r}^{2}+g^{2}(\tilde{r}) d \tilde{\theta}^{2}$, where $(\underset{\sim}{\tilde{r}}, \tilde{\theta})$ is the geodesic polar coordinates around \tilde{o}. Then the radial curvature of $\tilde{\mathbf{M}}$ at \tilde{x} is given by (cf. [4, p. 30])

$$
-g^{\prime \prime}(\tilde{r}(\tilde{x})) / g(\tilde{r}(\tilde{x})) .
$$

This will always be greater than or equal to the radial curvatures of \mathbf{M} at x with $r(x)=\tilde{r}(\tilde{x})$ and equal to $-c \tilde{r}^{-2}(\tilde{x})$ if $\tilde{r} \geqq r_{2}$, for any given $r_{2}>r_{1}$, provided we can find a smooth function $g \geqq 0$ defined on \mathbb{R}_{+}satisfying the following conditions.
(1) $g(0)=0$ and $g^{\prime}(0)=1$;
(2) for $t \leqq r_{2},-g^{\prime \prime}(t) / g(t)$ is bounded below by the supremum of the sectional curvatures of \mathbf{M} at x with $r(x)=t$;
(3) for $t \geqq r_{2}, g(t)=t^{\alpha}$.

However the existence of such smooth functions can be established as follows. Fix any smooth increasing function $h: \mathbb{R}_{+} \rightarrow[0,1]$ such that $\left.h\right|_{\left[0, r_{1}\right]}=0$ and
$\left.h\right|_{\left.r_{2}, \infty\right)}=1$. Write $K(t)=c h(t) t^{-2}$. Then the solution for the differential equation $g^{\prime \prime}(t) / g(t)=K(t)$ with the boundary conditions $g(0)=0$ and $g^{\prime}(0)=1$ has the required properties.

Suppose first that \tilde{x}_{1} and \tilde{x}_{2} are two points in $\tilde{\mathbf{M}} \backslash\{\tilde{o}\}$ which are the images of v_{1} and v_{2} in the tangent space $\tau_{\tilde{o}}(\tilde{\mathbf{M}})$ at \tilde{o}, under the exponential map $\exp _{\tilde{o}}$ at \tilde{o}, and are such that $\operatorname{dist}\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \leqq \tilde{r}^{\varepsilon}\left(\tilde{x}_{1}\right)$. Write $\delta_{0}=\delta\left(\tilde{\theta}\left(\tilde{x}_{1}\right), \tilde{\theta}\left(\tilde{x}_{2}\right)\right)$. Without loss of generality, we may assume that $\delta_{0}>0$. Then the image, under $\exp _{\bar{\sigma}}$, of the linear subspace of $\tau_{\bar{\sigma}}(\tilde{\mathbf{M}})$ spanned by v_{1} and v_{2} is a 2 -dimensional totally geodesic submanifold, $\tilde{\mathbf{M}}_{0}$, of \mathbf{M} and the induced Riemannian metric structure on $\tilde{\mathbf{M}}_{0}$ still has the form

$$
d \tilde{r}^{2}+g^{2}(\tilde{r}) d \tilde{\theta}^{2}
$$

where ($\tilde{r}, \tilde{\theta}$) are the geodesic polar coordinates on $\tilde{\mathbf{M}}_{0}$ (cf. [4, pp. 25, 30]). If the geodesic segment $\tilde{x}(s)$ joining \tilde{x}_{1} and \tilde{x}_{2}, which lies entirely in $\tilde{\mathbf{M}}_{0}$, has parameter $0 \leqq s \leqq \delta_{0}$ then, by the triangle inequality, we have

$$
\tilde{r}(\tilde{x}(s)) \geqq \tilde{r}\left(\tilde{x}_{1}\right)-\operatorname{dist}\left(\tilde{x}_{1}, \tilde{x}(s)\right) \geqq \tilde{r}\left(\tilde{x}_{1}\right)-\operatorname{dist}\left(\tilde{x}_{1}, \tilde{x}_{2}\right), \quad 0 \leqq s \leqq \delta_{0} .
$$

Thus, there exists an $r_{\varepsilon} \geqq 2 r_{2}$ such that, if $\tilde{r}\left(\tilde{x}_{1}\right) \geqq r_{\varepsilon}$, then $2 \tilde{r}(\tilde{x}(s)) \geqq$ $\tilde{r}\left(\tilde{x}_{1}\right), \forall 0 \leqq s \leqq \delta_{0}$. This implies that, if $\tilde{r}\left(\tilde{x}_{1}\right) \geqq r_{\varepsilon}$, then

$$
\begin{aligned}
\operatorname{dist}\left(\tilde{x}_{1}, \tilde{x}_{2}\right) & =\int_{0}^{\delta_{0}} \sqrt{ }\left(\tilde{r}^{\prime}(\tilde{x}(s))\right)^{2}+g^{2}(\tilde{r}(\tilde{x}(s))) d s \\
& \geqq \int_{0}^{\delta_{0}} g(\tilde{r}(\tilde{x}(s))) d s=\int_{0}^{\delta_{0}} \tilde{r}^{\alpha}(\tilde{x}(s)) d s \geqq 2^{-\alpha} \tilde{r}^{\alpha}\left(\tilde{x}_{1}\right) \delta_{0} .
\end{aligned}
$$

Now, suppose that x_{1} and x_{2} are two points in $\mathbf{M} \backslash\{o\}$ such that $\operatorname{dist}\left(x_{1}, x_{2}\right) \leqq r^{\varepsilon}\left(x_{1}\right)$. Choose two points \tilde{x}_{i} in $\tilde{\mathbf{M}}$ such that $\tilde{r}\left(\tilde{x}_{i}\right)=r\left(x_{i}\right)$, $i=1,2$, and $\delta\left(\tilde{\theta}\left(\tilde{x}_{1}\right), \tilde{\theta}\left(\tilde{x}_{2}\right)\right)=\delta\left(\theta\left(x_{1}\right), \theta\left(x_{2}\right)\right)$. Then there is a linear isomorphism I between the tangent spaces $\tau_{0}(\mathbf{M})$ and $\tau_{\bar{o}}(\tilde{\mathbf{M}})$ such that the corresponding polar map, $\exp _{\tilde{o}} \circ I \circ \exp _{o}^{-1}$, takes x_{i} to \tilde{x}_{i}. Thus, by the Rauch Comparison Theorem (cf. [1, p. 30]),

$$
\operatorname{dist}\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \leqq \operatorname{dist}\left(x_{1}, x_{2}\right) \leqq \tilde{r}^{a}\left(\tilde{x}_{1}\right),
$$

and the result follows from the above.

4. The rate of growth of the radial part of X

Write $\partial_{\mathbf{M}}$ for the radial tangent vector field $\partial / \partial r$ on \mathbf{M}. Since the Ricci curvature of a radial tangent vector can be expressed as the sum of the sectional curvatures of the planes spanned by the radial tangent vector together with each of a set of tangent vectors which are orthonormal to it and orthogonal each other (cf. [11, p. 88]), the Ricci curvature of $\partial_{\mathbf{M}}$ at x is less than or equal to the Ricci curvature of $\partial_{\mathbb{R}^{m}}$ at any \hat{x} such that the radial component of \hat{x} is
equal to $r(x)$. By the Laplacian Comparison Theorem (cf. [4, p. 26]), we have

$$
\Delta r \geqq \frac{m-1}{r} \quad \forall r>0
$$

as $(m-1) / r$ is the Laplacian of the radial function on \mathbb{R}^{m} (cf. [4, p. 30]). Thus the Itô stochastic differential equation for the radial part R_{t} of X satisfies

$$
d R_{t}=d B_{t}+\frac{1}{2} \Delta R_{t} d t \geqq d B_{t}+\frac{m-1}{2 R_{t}} d t
$$

where B is Brownian motion on \mathbb{R}. Since Brownian motion in \mathbb{R}^{m} is transient for $m \geqq 3$, it follows that R will tend to infinity as time tends to infinity. Outside our compact set, $\left\{x: r(x) \leqq r_{1}\right\}$, we can obtain a lower bound for the rate of growth of the radial component of R of X.

Let $\hat{\alpha}=(m-1) \alpha, \mathrm{BES}_{r}^{\beta}$ be the Bessel process of index β starting at r and denote by $\mathbb{P}^{r, \theta}$ the conditional probability measure obtained from \mathbb{P} by conditioning on $X_{0}=(r, \theta)$.

Lemma 2 For $r>r_{1}^{2}$ and for all sufficiently small η

$$
\mathbb{P}^{r, \theta}\left[R_{t} \geqq \sqrt{ } r \vee t^{1 / 2-\eta}, \forall t\right] \geqq p(r),
$$

where

$$
p(r)=\left\{1-\left(r_{1} / r\right)^{\hat{\alpha}-1}\right\}\left\{\mathbb{P}\left[\operatorname{BES}_{1}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}\right]-r^{-(\hat{\alpha}-1) / 2}\right\}
$$

Proof. The Laplacian of the radial function \tilde{r} on $\tilde{\mathbf{M}}$, where $\tilde{\mathbf{M}}$ is constructed as in the proof of Lemma 1, is given by

$$
\Delta \tilde{r}=(m-1) \frac{g^{\prime}(\tilde{r})}{g(\tilde{r})}
$$

and so, for $\tilde{r} \geqq r_{2}, \Delta \tilde{r}=\hat{\alpha} / \tilde{r}$. Since the Ricci curvature of \mathbf{M} for $\partial_{\mathbf{M}}$ at x is less than or equal to the Ricci curvature of $\tilde{\mathbf{M}}$ for $\partial_{\mathbf{M}}$ at any \tilde{x} such that $\tilde{r}(\tilde{x})=r(x)$, the Laplacian Comparison Theorem implies that

$$
\Delta r \geqq \frac{\hat{\alpha}}{r} \quad \text { for } r \geqq r_{2}
$$

Therefore, we have that, when $R_{t} \geqq r_{2}$,

$$
d R_{t} \geqq d B_{t}+\frac{\hat{\alpha}}{2 R_{t}} d t
$$

Now, the solution of the stochastic differential equation

$$
d Y_{t}=d B_{t}+\frac{\hat{\alpha}}{2 Y_{t}} d t
$$

where the Brownian motion B is the martingale part of R, is a Bessel process $\mathrm{BES}^{\hat{\alpha}}$. Then, by comparison of R with this $\mathrm{BES}^{\hat{\alpha}}$, we have, for all $r \geqq r_{2}^{2}$
and all sufficiently small η,

$$
\begin{aligned}
& \mathbb{P}^{r, \theta} {\left[R_{t} \geqq \sqrt{ } r \vee t^{1 / 2-\eta}, \forall t\right] } \\
& \geqq \mathbb{P}^{r, \theta}\left[R_{t} \geqq \sqrt{ } r \vee t^{1 / 2-\eta}, \forall t \mid \mathrm{BES}_{r}^{\hat{\alpha}} \text { never hits the level } r_{2}\right] \\
& \quad \times \mathbb{P}^{r, \theta}\left[\mathrm{BES}_{r}^{\hat{\alpha}} \text { never hits the level } r_{2}\right] \\
& \geqq \\
& \mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}}(t) \geqq \sqrt{ } r \vee t^{1 / 2-\eta}, \forall t\right] \times \mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}} \text { never hits the level } r_{2}\right] .
\end{aligned}
$$

Now,

$$
\mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}} \text { never hits the level } r_{2}\right]=1-\left(r_{2} / r\right)^{\hat{\alpha}-1}
$$

(cf. [8, pp. 195, 238]) and

$$
\begin{aligned}
& \mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}}(t) \geqq \sqrt{ } r \vee t^{1 / 2-\eta}, \forall t\right] \\
& =\mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}}(t) \geqq \sqrt{ } r, \forall 0 \leqq t<r^{1 /(1-2 \eta)}, \text { and } \mathrm{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta},\right. \\
& \left.\quad \forall t \geqq r^{1 /(1-2 \eta)}\right] \\
& = \\
& =\mathbb{P}\left[\operatorname{BES}_{r}^{\hat{\alpha}}(t) \geqq \sqrt{ } r, \forall t, \text { and } \mathrm{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}\right] \\
& = \\
& \mathbb{P}\left[\operatorname{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}\right] \\
& \quad-\mathbb{P}\left[\operatorname{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}, \text { and } \mathrm{BES}_{r}^{\hat{\alpha}}(t)<\sqrt{ } r \text { for some } t \geqq 0\right] \\
& \geqq \\
& \geqq \mathbb{P}\left[\operatorname{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}\right]-\mathbb{P}\left[\mathrm{BES}_{r}^{\hat{\alpha}} \text { hits the level } \sqrt{ } r\right] \\
& \geqq \\
& \geqq \mathbb{P}\left[\operatorname{BES}_{r}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}, \forall t \geqq r^{1 /(1-2 \eta)}\right]-r^{-(\hat{\alpha}-1) / 2} .
\end{aligned}
$$

Thus, the required result follows by letting $r_{2} \downarrow r_{1}$.
Since almost surely $\operatorname{BES}_{1}^{\hat{\alpha}}(t) \geqq t^{1 / 2-\eta}$ for sufficiently large t (cf. [12]), $p(r)$ will tend to 1 as r tends to infinity, and so $\mathbb{P}^{r, \theta}\left[R_{t} \geqq \sqrt{ } r \vee t^{1 / 2-\eta}\right.$, $\left.\forall t\right]$ tends to 1 , uniformly with respect to θ, as r tends to infinity.

5 The sequence of stopping times

In this section we study the sequence of stopping times T_{n}, required for the proof of the theorem. We fix $x_{0} \in \mathbf{M} \backslash\{o\}$ such that $r_{0}=r\left(x_{0}\right)>r_{1}$ and write $\rho(x)=\operatorname{dist}\left(x, x_{0}\right)$. Then the sectional curvatures at x, for all $x \in \mathbf{M}$, are bounded below by

$$
-\tilde{c}\left\{r_{0}+\rho(x)\right\}^{2} .
$$

Define the function ϕ on \mathbb{R}_{+}by

$$
\phi(t)=a \sqrt{ } \log \left(r_{0}+t\right), \quad a=2^{-1 / 2} \tilde{c}^{-1 / 4} .
$$

Then

$$
\phi(0)=a \sqrt{ } \log \left(r_{0}\right) \geqq 0 \quad \text { and } \quad \phi^{\prime}(t)=\frac{a}{2\left(r_{0}+t\right) \sqrt{ } \log \left(r_{0}+t\right)}
$$

Thus ϕ^{\prime} is decreasing and $\phi^{\prime}(0)=a /\left(2 r_{0} \sqrt{ } \log \left(r_{0}\right)\right)<1$, by the hypothesis (1) made on r_{1} in Sect. 2, so that in particular $\phi^{\prime \prime}(t) \leqq 0$.

Lemma 3 For $\rho \geqq 1$, the Hessian of ρ acting on any unit tangent vector which is orthogonal to a radial tangent vector is bounded by

$$
\frac{1}{\phi(\rho) \phi^{\prime}(\rho)}=2 \frac{r_{0}+\rho}{a^{2}} .
$$

Proof. By the Hessian Comparison Theorem (cf. [4, p. 19]), we only need to show that this is true for an m-dimensional rotationally symmetric manifold with radial curvature function $-\tilde{c}\left(r_{0}+\hat{r}\right)^{2}$. Write the Riemannian metric of such a manifold as $d \hat{r}^{2}+f^{2}(\hat{r}) d \hat{\theta}^{2}$, where f satisfies the Jacobi equation $f^{\prime \prime}(t)=\tilde{c}\left(r_{0}+t\right)^{2} f(t)$ with $f(0)=0$ and $f^{\prime}(0)=1$. Then the Hessian of \hat{r} acting on any tangent vector orthonormal to a radial tangent vector is equal to $f^{\prime}(\hat{r}) / f(\hat{r})$ (cf. [4, p. 30]). On [0, 1], $f^{\prime \prime}(t) \leqq 4 \tilde{c} r_{0}^{2} f(t)$ and so $\left(f^{\prime} / f\right)(t) \leqq 2 r_{0} \sqrt{ } \tilde{c} \operatorname{coth}\left(2 r_{0} \sqrt{ } \tilde{c} t\right)$, since the function on the right hand side is the Hessian of the distance function on a Riemannian manifold with constant sectional curvature $-4 \tilde{c} r_{0}^{2}$ acting on any tangent vector orthonormal to a radial tangent vector. Thus, in particular, $\left(f^{\prime} / f\right)(1) \leqq 2 r_{0} \sqrt{ } \tilde{c} \operatorname{coth}\left(2 r_{0} \sqrt{ } \tilde{c}\right)$. Now consider $\tilde{f}:[1, \infty) \rightarrow \mathbb{R}_{+}$such that $\tilde{f}(t)=\exp \left(\tilde{a}\left(r_{0}+t\right)^{2}\right)$, where $\tilde{a}=$ $\sqrt{ } \tilde{c} \operatorname{coth}\left(2 r_{0} \sqrt{ } \tilde{c}\right)$. Then

$$
\left(\tilde{f}^{\prime \prime} \mid \tilde{f}\right)(t) \geqq 4 \tilde{c} \operatorname{coth}^{2}\left(2 r_{0} \sqrt{ } \tilde{c}\right)\left(r_{0}+t\right)^{2}>\tilde{c}\left(r_{0}+t\right)^{2}=\left(f^{\prime \prime} / f\right)(t)
$$

and

$$
\left(\tilde{f}^{\prime} \mid \tilde{f}\right)(t)=2 \sqrt{ } \tilde{c} \operatorname{coth}\left(2 r_{0} \sqrt{ } \tilde{c}\right)\left(r_{0}+t\right)
$$

so that $\left(\tilde{f}^{\prime} / \tilde{f}\right)(1) \geqq 2 r_{0} \sqrt{ } \tilde{c} \operatorname{coth}\left(2 r_{0} \sqrt{ } \tilde{c}\right) \geqq\left(f^{\prime} / f\right)(1)$. Since

$$
\left\{\tilde{f} f^{\prime}-f \tilde{f}^{\prime}\right\}^{\prime}=f \tilde{f}\left\{f^{\prime \prime} / f-\tilde{f}^{\prime \prime} \mid \tilde{f}\right\} \leqq 0
$$

it follows that, on $[1, \infty),\left(f^{\prime} / f\right)(t) \leqq\left(\tilde{f}^{\prime} / \tilde{f}\right)(t)$. Thus the required bound follows from the second hypothesis on r_{1}, made in Sect. 2.

We next use this bound on the Hessian of ρ to obtain a bound on the growth of $\rho_{t}=\rho\left(X_{t}\right)$ in a manner similar to Darling's use of 'persistence functions' in [2]. This type of argument and the estimates that result from it originated in Kallenberg-Sztencel [7]. Since we follow the proof of Darling's Proposition 5.2 and Theorem 2.1 quite closely, we just sketch the argument.

Lemma 4 If ρ is sufficiently large, then

$$
\mathbb{P}\left[\sup \left\{\rho_{s}: 0 \leqq s \leqq t\right\} \geqq \rho\right] \leqq\left\{\mathbb{P}\left[B_{1} \geqq 1\right]\right\}^{-1} \exp \left\{-\frac{\log \left(r_{0}+\rho\right)}{32 \sqrt{ } \tilde{c} t}\right\}
$$

where B is standard Brownian motion on \mathbb{R}^{1} starting from 0 .
Proof. If we denote by $(\rho, \tilde{\theta})$ the global geodesic polar coordinates with respect to x_{0}, then

$$
t=[X]_{t}=[\rho]_{t}+[\tilde{\theta}(X)]_{t}
$$

where $[X]_{t}=\int g_{\mathbf{M}}\left(X_{s}\right)\left(d X_{s}, d X_{s}\right)$ and $[\rho]$ and $[\tilde{\theta}(X)]$ are similarly defined. Thus we have $0 \leqq[\rho]_{t} \leqq t$ and, in fact, $[\rho]_{t}<t$ a.s. Define

$$
H_{t}=\phi\left(\rho_{t}\right)-\phi(1)-\sqrt{ } t-[\rho]_{t} .
$$

Then $H_{t}>0$ implies that $\rho_{t}>1$. Write H_{t}^{+}for the positive part of H_{t} and decompose $d H_{t}^{+}$as $d H_{t}^{+}=d M_{t}+d L_{t}-d V_{t}$, such that M is a local martingale, L is the local time of H at zero, V is a process of locally bounded variation and $M_{0}=V_{0}=L_{0}=0$. Since for any vector field v

$$
\operatorname{Hess}^{\rho}(\partial / \partial \rho, v)=0
$$

(cf. [2, Lemma 1.4]), we have

$$
\operatorname{Hess}^{\rho}\left(d X_{t}, d X_{t}\right)=\operatorname{Hess}^{\rho}\left(d \tilde{\Theta}_{t}, d \tilde{\Theta}_{t}\right),
$$

where $\tilde{\Theta}_{t}=\tilde{\theta}\left(X_{t}\right)$, and thus

$$
d V_{t}=\frac{1}{2} 1_{\left\{H_{t}>0\right\}}\left\{2 d \sqrt{ } t-[\rho]_{t}-\phi^{\prime}\left(\rho_{t}\right) \operatorname{Hess}^{\rho}\left(d \tilde{\Theta}_{t}, d \tilde{\Theta}_{t}\right)-\phi^{\prime \prime}\left(\rho_{t}\right) d[\rho]_{t}\right\} .
$$

It then follows from Lemma 3 and the definition of H^{+}that

$$
d V_{t} \geqq-\frac{1}{2} \phi^{\prime \prime}\left(\rho_{t}\right) d[\rho]_{t} \geqq 0
$$

and so $L_{t}=-\inf \left\{M_{s}-V_{s}: 0 \leqq s \leqq t\right\}$ by Skorohod's lemma. Hence

$$
H_{t}^{+} \leqq M_{t}-\inf \left\{M_{s}: \quad 0 \leqq s \leqq t\right\} .
$$

Expressing the local martingale M as random time changed Brownian motion, that is, $M_{t}=\tilde{B} \circ[M]_{t}$ and noting that $\tilde{B}_{t}-\inf \left\{\tilde{B}_{s}: 0 \leqq s \leqq t\right\}$ is the modulus of another Brownian motion, we have

$$
H_{t}^{+} \leqq\left|B \circ[M]_{t}\right|,
$$

so that $\phi\left(\rho_{t}\right) \leqq\left|B \circ[M]_{t}\right|+\phi(1)+\sqrt{ } t-[\rho]_{t}$. Since $[M]_{t} \leqq[\rho]_{t} \leqq t$, it follows that

$$
\phi\left(\sup \left\{\rho_{s}: 0 \leqq s \leqq t\right\}\right) \leqq \phi(1)+\sup \left\{\left|B_{s}\right|+\sqrt{ } t-s: 0 \leqq s \leqq t\right\} .
$$

Thus, if $\phi^{-1}(\rho)>1$,

$$
\begin{aligned}
& \mathbb{P}\left[\sup \left\{\rho_{s}: 0 \leqq s \leqq t\right\} \geqq \phi^{-1}(\rho)\right] \\
& \quad \leqq \mathbb{P}\left[\sup \left\{B_{s}+\sqrt{ } t-s: 0 \leqq s \leqq t\right\} \geqq \rho-\phi(1)\right]
\end{aligned}
$$

as $-B$ is also a Brownian motion. By Brownian motion scaling and the strong Markov property of B at the stopping time $\inf \left\{s \in[0, t]: B_{t}+\sqrt{ } t-s \geqq \rho-\right.$ $\phi(1)\}$, we then have

$$
\mathbb{P}\left[\sup \left\{\rho_{s}: 0 \leqq s \leqq t\right\} \geqq \phi^{-1}(\rho)\right] \leqq \begin{gathered}
\mathbb{P}\left[\sup \left\{B_{s}: 0 \leqq s \leqq t\right\} \geqq \rho-\phi(1)\right] \\
\mathbb{P}\left[B_{1} \geqq 1\right]
\end{gathered},
$$

and so the standard properties of Brownian motion show that, if $\rho>1$,

$$
\left.\left.\begin{array}{rl}
\mathbb{P}\left[\sup \left\{\rho_{s}: 0 \leqq s \leqq t\right\} \geqq \rho\right] & \leqq \mathbb{P}\left[\sup \left\{B_{s}: 0 \leqq s \leqq t\right\} \geqq \phi(\rho)-\phi(1)\right] \\
\mathbb{P}\left[B_{1} \geqq 1\right]
\end{array}\right] \begin{array}{cc}
\mathbb{P}\left[B_{t} \geqq \phi(\rho)-\phi(1)\right] \\
& \mathbb{P}\left[B_{1} \geqq 1\right]
\end{array}\right] \begin{array}{cc}
\exp \left\{-(\phi(\rho)-\phi(1))^{2} / 2 t\right\} \\
& \mathbb{P}\left[B_{1} \geqq 1\right]
\end{array}
$$

When ρ is sufficiently large, we have

$$
\begin{aligned}
\sqrt{ } \log \left(r_{0}+\rho\right)-\sqrt{ } \log \left(r_{0}+1\right) & =\frac{\log \left(r_{0}+\rho\right)-\log \left(r_{0}+1\right)}{\sqrt{ } \log \left(r_{0}+\rho\right)+\sqrt{ } \log \left(r_{0}+1\right)} \\
& \geqq \frac{\log \left(r_{0}+\rho\right)-\log \left(r_{0}+1\right)}{2 \sqrt{ } \log \left(r_{0}+\rho\right)} \\
& \geqq \frac{1}{4} \sqrt{ } \log \left(r_{0}+\rho\right)
\end{aligned}
$$

which gives the stated result.
We now define the sequence of stopping times

$$
\begin{aligned}
T_{0} & =0 \\
T_{n+1} & =\inf \left\{t>T_{n}: \operatorname{dist}\left(X_{t}, X_{T_{n}}\right)=\left(R_{T_{n}}\right)^{\varepsilon}\right\}
\end{aligned}
$$

with $\inf \{\varnothing\}=\infty$.
Lemma 5 If $R_{0}=r>r_{1}^{2}$, then there is a positive constant $\tilde{\beta}$ such that with probability at least $p(r) T_{n} \geqq \tilde{\beta} n$ for all sufficiently large n.
Proof. When T_{n} is finite, define

$$
L_{n+1}=T_{n+1}-T_{n}
$$

Then, for $\beta>0$ such that $1-2 \exp \{-1 /(32 \beta \sqrt{ } \tilde{c})\}=l>0$ and for $R_{T_{n}}>r_{1}$, we have by Lemma 4 that

$$
\begin{aligned}
p_{n} & \equiv \mathbb{P}\left[L_{n+1} \geqq \beta \log \left(R_{T_{n}}+\left(R_{T_{n}}\right)^{\varepsilon}\right) \mid \mathscr{F}_{T_{n}}\right] \\
& \geqq 1-2 \exp \left\{-\frac{1}{32 \beta \sqrt{ } \tilde{c}}\right\}=l>0 .
\end{aligned}
$$

For a sequence of i.i.d. random variables V_{1}, V_{2}, \ldots with uniform distribution on $[0,1]$ and independent of $\mathscr{F}_{\infty}=\bigvee_{n} \mathscr{F}_{T_{n}}$, define, for $n \geqq 0$,

$$
U_{n+1}= \begin{cases}1 & \text { if } L_{n+1}>\beta \log \left(R_{T_{n}}+\left(R_{T_{n}}\right)^{\varepsilon}\right) \text { and } p_{n} V_{n+1}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Then U_{n+1} takes values 0 and 1 and is measurable with respect to the σ field generated by $\mathscr{F}_{T_{n+1}}$ and V_{1}, \ldots, V_{n}. Lemma 2 and the fact that $R_{0}=r>$
r_{1}^{2} imply that, with probability at least $p(r), R_{t}>r_{1}$ for all t. Hence, the $\left\{U_{n}: n \geqq 1\right\}$ constructed in this way form a sequence of i.i.d. non-degenerate $\{0,1\}$-valued random variables and, with probability at least $p(r)$,

$$
\mathbb{P}\left[U_{n+1}=1 \mid \mathscr{F}_{T_{n}}, V_{1}, \ldots, V_{n}\right]=l
$$

Since

$$
L_{n+1}=T_{n+1}-T_{n} \geqq \beta \log \left(R_{T_{n}}+\left(R_{T_{n}}\right)^{\varepsilon}\right) U_{n+1}
$$

then, with probability at least $p(r)$,

$$
L_{n+1} \geqq \beta U_{n+1}
$$

and so

$$
T_{n+1} \geqq \beta S_{n+1}
$$

where $S_{n}=\sum_{1 \leqq k \leqq n} U_{k}$. Since S_{n} / n tends to l almost surely when n tends to infinity, we have the required result.

6 Proof of the Theorem

If $r \geqq r_{\varepsilon}^{2}$ then, with $\mathbb{P}^{r, \theta}$-probability at least $p(r), R_{t} \geqq \sqrt{ } r \vee t^{1 / 2-\eta}$ for all t, so that, with $\mathbb{P}^{r, \theta}$-probability at least $p(r), R_{T_{n}} \geqq r_{\varepsilon}$ for all n. Choosing η small enough such that $(1-2 \eta)(\alpha-\varepsilon)>1$ then, it follows from the proof of Lemma 5 that the intersection of the events $\left\{T_{n} \geqq \tilde{\beta} n\right\}$ and $\left\{R_{t} \geqq \sqrt{ } r \vee\right.$ $\left.t^{1 / 2-\eta}, \forall t\right\}$ occurs with probability at least $p(r)$ and so, with $\mathbb{P}^{r, \theta}$-probability at least $p(r)$,

$$
\begin{aligned}
4^{-\alpha} \sup _{t \geqq 0} \delta^{2}\left(\theta, \Theta_{t}\right) & \leqq 4^{-\alpha} \sum_{n=0}^{\infty} \sup _{T_{n} \leqq t \leqq T_{n+1}} \delta^{2}\left(\Theta_{T_{n}}, \Theta_{T_{n}+t}\right) \\
& \leqq \sum_{n=0}^{\infty}\left(R_{T_{n}}\right)^{2(\varepsilon-\alpha)} \quad \text { by Lemma } 1 \\
& \leqq \sum_{n=0}^{\infty}\left\{\sqrt{ } r \vee T_{n}^{1 / 2-\eta}\right\}^{2(\varepsilon-\alpha)} \quad \text { by Lemma } 2 \\
& \leqq \sum_{0 \leqq n \leqq N} r^{\varepsilon-\alpha}+\sum_{n=0}^{\infty}\left\{r \vee(\tilde{\beta} n)^{1-2 \eta}\right\}^{\varepsilon-\alpha} \quad \text { by Lemma } 5 \\
& =N r^{\varepsilon-\alpha}+\sum_{0 \leqq \tilde{\beta} n \leqq r^{1 /(1-2 \eta)}} r^{\varepsilon-\alpha}+\sum_{\tilde{\beta} n>r^{1 /(1-2 \eta)}}\{\tilde{\beta} n\}^{(1-2 \eta)(\varepsilon-\alpha)} \\
& \leqq\left\{N+\tilde{\beta}^{-1}\right\} r^{2 \lambda}+\tilde{\beta}^{-1} \int_{r^{1 /(1-2 \eta)}}^{\infty}(x-1)^{(1-2 \eta)(\varepsilon-\alpha)} d x \\
& \leqq\left\{N+\tilde{\beta}^{-1}\right\} r^{2 \lambda}-\tilde{\beta}^{-1} \\
& \leqq C_{0}^{2}(r-1)^{2 \lambda},
\end{aligned}
$$

where $N=N(\omega)$ is a positive integer such that $T_{n} \geqq \tilde{\beta} n$ for all $n \geqq N$,

$$
\begin{aligned}
\lambda & =\frac{\varepsilon-\alpha}{2}+\frac{1}{2(1-2 \eta)}<0 \text { and } \\
C_{0}(\omega) & =\sqrt{N+\left\{1-\frac{1}{(1-2 \eta)(\varepsilon-\alpha)+1}\right\} \tilde{\beta}^{-1} .}
\end{aligned}
$$

Write τ_{r} for $\inf \left\{t \geqq 0: R_{t}=r\right\}$. Then, for $r>r_{\varepsilon}^{2}$, we have

$$
\begin{equation*}
\mathbb{P}\left[\sup _{t \geqq 0} \delta\left(\Theta_{\tau_{r}}, \Theta_{\tau_{r}+t}\right) \leqq 2^{\alpha} C_{0}(\omega)(r-1)^{\lambda}\right] \geqq p(r) \tag{*}
\end{equation*}
$$

Let $k_{1}=1$ and $k_{n}=n \vee \min \{k$: k satisfies the inequality $(I)\}$ for $n \geqq 2$, where the inequality (I) is

$$
\begin{equation*}
1-\mathbb{P}\left[\mathrm{BES}_{1}^{\hat{\alpha}} \geqq t^{1 / 2-\eta}, \forall t \geqq k^{1 /(1-2 \eta)}\right] \leqq n^{-(\hat{\alpha}-1) / 2} \tag{I}
\end{equation*}
$$

By the remark at the end of Sect. 4 , such $\left\{k_{n}: n \geqq 1\right\}$ exist. Define
$A_{n}=\left\{\omega\right.$: there exist $s, t>\tau_{k_{n}}(\omega)$ such that $\left.\delta\left(\Theta_{s}, \Theta_{t}\right)(\omega)>2^{1+\alpha} C_{0}(\omega)\left(k_{n}-1\right)^{\lambda}\right\}$.
Then, since, by the triangle inequality, $\delta\left(\theta_{1}, \theta_{2}\right) \leqq \delta\left(\theta_{1}, \theta_{0}\right)+\delta\left(\theta_{2}, \theta_{0}\right)$ for any three points $\theta_{i}, i=0,1,2$, on the unit tangent sphere at the pole,
$\mathbb{P}\left[A_{n}\right] \leqq \mathbb{P}\left[\omega\right.$: there exist $s, t>\tau_{k_{n}}(\omega)$ such that $\delta\left(\Theta_{s}, \Theta_{\tau_{k_{n}}}\right)(\omega)$

$$
\begin{aligned}
& \left.\quad+\delta\left(\Theta_{t}, \Theta_{\tau_{k_{n}}}\right)(\omega)>2^{1+\alpha} C_{0}\left(k_{n}-1\right)^{\lambda}\right] \\
& =1-\mathbb{P}\left[\omega: \forall s, t \geqq \tau_{k_{n}}(\omega), \delta\left(\Theta_{s}, \Theta_{\tau_{k_{n}}}\right)(\omega)\right. \\
& \\
& \left.\quad+\delta\left(\Theta_{t}, \Theta_{\tau_{k_{n}}}\right)(\omega) \leqq 2^{1+\alpha} C_{0}\left(k_{n}-1\right)^{\lambda}\right] \\
& =1-\mathbb{P}\left[\omega: \sup _{s, t>\tau_{k_{n}}(\omega)}\left\{\delta\left(\Theta_{s}, \Theta_{\tau_{k_{n}}}\right)\right.\right. \\
& \\
& \left.\left.\quad+\delta\left(\Theta_{t}, \Theta_{\tau_{k_{n}}}\right)\right\}(\omega) \leqq 2^{1+\alpha} C_{0}\left(k_{n}-1\right)^{\lambda}\right] \\
& =1-\mathbb{P}\left[\omega: \sup _{t>\tau_{k_{n}}(\omega)} \delta\left(\Theta_{t}, \Theta_{\tau_{k_{n}}}\right)(\omega) \leqq 2^{\alpha} C_{0}\left(k_{n}-1\right)^{\lambda}\right] \\
& \leqq 1-p\left(k_{n}\right) \quad \text { when } n>r_{\varepsilon} \\
& \leqq\left(r_{1} / k_{n}\right)^{\hat{\alpha}-1}+k_{n}^{-(\hat{\alpha}-1) / 2}+n^{-(\hat{\alpha}-1) / 2} \quad \text { when } n>r_{\varepsilon}^{2} \\
& \leqq 3 n^{-(\hat{\alpha}-1) / 2} \quad \text { when } n>r_{\varepsilon}^{2} .
\end{aligned}
$$

It follows from $m \geqq 3$, and $c>3 / 4$ if $m=3$, that $\hat{\alpha}=(m-1) \alpha=(m-1)$ $(1+\sqrt{ } 1+4 c) / 2>3$ so that

$$
\sum_{n \geqq 1} \mathbb{P}\left[A_{n}\right]<\infty
$$

and, by the Borel-Cantelli lemma, we have

$$
\mathbb{P}\left[A_{n} \text { happens infinitely often }\right]=0
$$

By Lemma 5, $C_{0}(\omega)<\infty$ almost surely and so it follows that $C_{0}(\omega)\left(k_{n}-1\right)^{\lambda}$ tends to zero as n tends to infinity. Hence

$$
\begin{aligned}
\mathbb{P}\left[\lim _{t \rightarrow \infty} \Theta_{t} \text { exists }\right] \geqq & \mathbb{P}\left[\omega: \exists N \geqq 1 \text { s.t. } \forall n \geqq N \text { and } \forall s, t>\tau_{k_{n}}(\omega)\right. \\
& \left.\delta\left(\Theta_{s}, \Theta_{t}\right)(\omega) \leqq 2^{1+\alpha} C_{0}(\omega)\left(k_{n}-1\right)^{\lambda}\right] \\
= & \mathbb{P}\left[\omega: \exists N \geqq 1 \text { s.t. } \forall n \geqq N \omega \in A_{n}^{c}\right] \\
= & \mathbb{P}\left[\bigcup_{n \geqq 1} \bigcap_{k \geqq n} A_{k}^{c}\right]=1,
\end{aligned}
$$

where A_{k}^{c} denotes the complementary set of A_{k}. It is clear that $\lim _{t \rightarrow \infty} \Theta_{t}$ is invariant with respect to time t.

Finally, since the Laplace-Beltrami operator is uniformly elliptic in any ball of \mathbf{M}, and so the support of $\mathbb{P}^{r, \theta}$ is the class of continuous mappings from \mathbb{R}_{+} to \mathbf{M} starting at (r, θ) (cf. [13, p. 169]), we have, for any non-empty open set U in \mathbf{M},

$$
\mathbb{P}^{r, \theta}\left[\Theta_{\tau_{r^{\prime}}} \in U \text { for sufficiently large } r^{\prime}\right]>0
$$

This, together with $(*)$, shows that the closure of the support of the probability law of the limit of Θ_{t} is the entire \mathbf{S}^{m-1} (cf. [5]).

Acknowledgement. The author is grateful to the referee for a number of helpful remarks which have improved the original exposition.

References

1. Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam: North-Holland 1975
2. Darling, R.W.R.: Exit probability estimates for martingales in geodesic balls, using curvature. Probab. Theory Relat. Fields 93, 137-152 (1992)
3. Emery, M.: Stochastic calculus in manifolds. Berlin Heidelberg New York: Springer 1989
4. Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Berlin Heidelberg New York: Springer 1979
5. Hsu, P., March, P.: The limiting angle of certain Riemannian Brownian motions. Comm. Pure Appl. Math. 38, 755-768 (1985)
6. Hsu, P., Kendall, W.S.: Limiting angle of Brownian motion in certain two-dimensional Cartan-Hadamard manifolds. Department of Statistics, University of Warwick 216 (1991)
7. Kallenberg, O., Sztencel, R.: Some dimension-free features of vector-valued martingales. Probab. Theory Relat. Fields 88, 215-247 (1991)
8. Karlin, S., Taylor, H.M.: A second course in stochastic processes. New York London: Academic Press 1981
9. Kendall, W.S.: Brownian motion on 2-dimensional manifolds of negative curvature. Séminaire de Probabilités XVII. (Lect. Notes Math. Vol. 1059, pp. 70-76) Berlin Heidelberg New York: Springer 1984
10. March, P.: Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14, 793-801 (1986)
11. O'Neill, B.: Semi-riemannian geometry with applications to relativity. New York London: Academic Press 1983
12. Shiga, T., Watanabe, S.: Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheori. Verw. Geb. 27, 37-46 (1973)
13. Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: Springer 1979
