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Summary. The analytic treatment of problems related to the asymptotic be-
haviour of random dynamical systems generated by stochastic di�erential equa-
tions su�ers from the presence of non-adapted random invariant measures.
Semimartingale theory becomes accessible if the underlying Wiener �ltration
is enlarged by the information carried by the orthogonal projectors on the
Oseledets spaces of the (linearized) system.
We study the corresponding problem of preservation of the semimartingale

property and the validity of a priori inequalities between the norms of stochastic
integrals in the enlarged �ltration and norms of their quadratic variations in
case the random element F enlarging the �ltration is real valued and possesses
an absolutely continuous law. Applying the tools of Malliavin’s calculus, we
give smoothness conditions on F under which the semimartingale property is
preserved and a priori martingale inequalities are valid.

Mathematics Subject Classi�cation (1991): 60G48, 60H07, 60J65, 60H30

1 Introduction

The ergodic theory of random dynamical systems provided the problems mo-
tivating this study of the relationship between Malliavin’s calculus and the
enlargement (“grossissement”) of the Wiener �ltration. They typically arise
in the following context. Consider a linear Stratonovitch stochastic di�erential
equation of the simple form

dxt = A0xt dt +
n∑

i=1
Aixt ◦ dW i

t

in Rd, with d× d-matrices Ai, 05 i 5 n, and an n-dimensional Wiener
process (Wt)t∈R. Its fundamental (matrix) solution (�(t; · ))t∈R gives an
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example of a random dynamical system (see [1]). The asymptotic properties
of the solution trajectories are determined by its Lyapunov numbers and “Os-
eledets spaces” just as eigenvalues of d× d-matrix and eigenspaces characterize
the exponential growth of the solutions of a deterministic di�erential equation
(see for example [1]). Indeed, in the spectral decompositions

lim
t→±∞ [�(t; · )∗�(t; · )]1=2|t| =

r∑
i=1

e�iQ±i ;

the Lyapunov numbers �i and random linear subspaces U±
i with correspond-

ing orthogonal projectors Q±i , 15 i 5 r, appear. If a trajectory starts in
V+i = U+

i ⊕ : : :⊕ U+
r , but not in V+i+1, its asymptotic exponential growth rate

will be �i for t near +∞, whereas for t near −∞ the growth rate �i will
be seen when starting in V−i = U−

r+1−i ⊕ : : :⊕ U−
r , and not in V−i+1. Hence

the Oseledets spaces Ei = V+i ∩ V−i , 15 i 5 r, play the roles of deterministic
eigenspaces. They are random and draw, due to the de�nition of V+i and V−i ,
information from the whole history of W . The Oseledets spaces are invari-
ant and, more importantly, the random invariant measures of the system take
their support within them, and consequently are non-adapted with respect to
the Wiener �ltration. These random measures appear in many problems con-
cerning the asymptotic behaviour of the system, for example in formulas of the
type of Furstenberg–Khasminskii representing the Lyapunov exponents as spa-
tial means, in a normal form theory for random dynamical systems generated
by stochastic di�erential equations, the concept of “rotation numbers” which
in analogy to the Lyapunov exponents characterize the asymptotic rotational
behaviour, or the theory of linearization of random dynamical systems in the
sense of Hartman–Grobman (see [21, 1, 2]).
The desire to use the powerful tools of semimartingale theory for the treat-

ment of these problems con
icts with the non-adaptedness of the invariant
measures. One way out of the con
ict is the enlargement of �ltrations. If Ri,
15 i 5 r, are the orthogonal projectors on the Oseledets spaces, one may
enlarge the Wiener �ltration (Ft)t=0 to get

Gt =Ft ∨ �(Ri : 15 i 5 r); t = 0 :

The obvious questions that arise at this point are among the classical questions
of the “grossissement de �ltrations”:

1) Do (Ft)-semimartingales remain semimartingales w.r.t. (Gt)?
2) If yes, are stochastic integrals of integrands adapted w.r.t. the large �ltration
su�ciently well-behaved, i.e. are there a priori inequalities linking norms of
these integrals with norms of their quadratic variations?

In a rather general framework, they have found answers in a series of deep
theoretical works by Barlow [3], Jacod [8], Jeulin [9, 10], Chaleyat–Maurel
and Jeulin [5], Meyer [12], Yoeurp [16] and Yor [17–20]. Our intention in this
study is not to add to these far-reaching and powerful results, but to provide
a satisfactory framework for a treatment of the above mentioned problems of
ergodic theory by answering 1) and 2), thereby making as much use as possible
of them.
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Apart from trivial cases, our random variables of “grossissement initial”
have no discrete laws. So our starting point had to be Jacod’s criterion for a
positive answer to 1). Let us model the random element by which we enlarge
by F . The criterion states that if there exists a common measure � on the
space where F takes its values such that the conditional laws of F given Ft
are absolutely continuous w.r.t. � for all t = 0, then any (Ft)-semimartingale
is a (Gt)-semimartingale. If F takes its values in a �nite dimensional Euclidean
space, we may take Lebesgue measure for � and try to formulate the absolute
continuity criteria via the tools of Malliavin’s calculus. For an application of
Malliavin’s calculus to an enlargement problem related to time reversal of
di�usion see Pardoux [15], for “partial Malliavin’s calculus” Nualart-Zakai [14]
and Kusuoka and Stroock [11].
This way we �nd ourselves in a framework in which the beautiful results

of Yor [18, 19] concerning a priori estimates in the sense of question 2) are
not quite su�cient. Yor [18] treats the enlargement by a countable partition of
the probability space, whereas Yor [19] takes care of the “grossissement pro-
gressif ” which makes a random time into a stopping time. Our “grossissement
initial” is with respect to an absolutely continuous random variable. Therefore
having to deal with non-bounded positive martingales in the Girsanov formu-
lation of the problem, we were led to extensions of the inequalities of Yor the
conditions of which take a somewhat di�erent form. We emphasize that the
ideas and methods of both papers were of great importance hereby.
Now remember that the random vectors of enlargement in the situation

we ultimately have in mind take their values in projective space or even on
Grassmannian manifolds. Our original plan was to treat the real valued case
�rst, and then pass on to the �nite dimensional Euclidean and �nally the case
where F takes its values on a Riemannian manifold. But especially the fact that
we had to extend results on some very basic questions of martingale inequalities
made our manuscript grow fast. So we decided to just treat the real valued case
here and defer the manifold valued case to a forthcoming paper.
Assuming therefore that F takes real values, we derive in Sect. 3 su�cient

conditions on the Malliavin derivative DF under which Jacod’s above men-
tioned criterion holds true. We show that the conditional law of F given Ft is
absolutely continuous w.r. to Lebesgue measure provided

∫∞
t (DuF)2 du ¿ 0

P-a.s.
In Sect. 5 we give su�cient criteria to be veri�ed by the Malliavin deriva-

tives of F in order that the a priori inequalities between norms of stochastic
integrals of (Gt)-adapted processes and norms of their quadratic variations de-
rived in Sect. 4 are valid. We prove that the existence of the second Malliavin
derivative of F and integrability properties on (

∫∞
t (DuF)2 du)−1 are enough.

Under some additional smoothness assumptions on F , in Sect. 6 an explicit
formula for the compensating process of bounded variation appearing in the de-
composition of local (Ft)-martingales w.r.t. (Gt) is given. With the assistance
of the formula of Clark–Ocone for representation of Wiener functionals the
integrand of the process of bounded variation is seen to be a “logarithmic
Malliavin derivative” of the conditional densities of F given Ft , t = 0.
The applications of the results thus obtained to the problems of
multiplicative ergodic theory sketched above will appear in a subsequent paper
Imkeller [7].
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2 Preliminaries and notation

Our basic probability space is the 1-dimensional canonical Wiener space
(
;F; P), equipped with the canonical Wiener process W = (Wt)t=0. More
precisely, 
 = C(R+;R) is the set of continuous functions on R+ starting
at 0, F the �-algebra of Borel sets with respect to uniform convergence on
compacts of R+, P Wiener measure and W the coordinate process. The natural
�ltration (Ft)t=0 of W is assumed to be completed by the sets of P-measure
0. Let us brie
y recall the basic concepts of Malliavin’s calculus needed. We
refer to Nualart [13] for a more detailed treatment.
Let S be the set of smooth random variables on (
;F; P), i.e. of random

variables of the form

F = f(Wt1 ; : : : ; Wtn); f ∈ C∞0 (R
n); t1; : : : ; tn ∈ R+ :

For F ∈S we may de�ne the Malliavin derivative

(DF)s = DsF =
n∑

i=1

@
@xi

f(Wt1 ; : : : ; Wtn)1[0; ti](s); s ∈ R+ :

We may regard DF as a random element with values in L2(R+), and then
de�ne the Malliavin derivative of order k by k fold iteration of the above
derivation. It will be denoted by D⊗k F , and is a random element with values
in L2(Rk

+). Its value at (s1; : : : ; sk) ∈ Rk
+ is written D⊗k

s1 ;:::; sk .
If S; T = 0, S 5 T , p= 1 and k ∈ N, we denote by Dp; k([S; T ]) the

Banach space given by the completion of S with respect to the norm

‖F‖p; k = ‖F‖p +
∑

15j5k
E

([ T∫
S
(D

⊗j
s1 ;:::; sjF)

2ds1 : : : dsj

]p=2)1=p
; F ∈S :

More generally, if H is a Hilbert space and SH the set of linear combinations
of tensor products of elements of S with elements of H; Dp; k([S; T ]; H) will
denote the closure of SH w.r. to the norm

‖F‖p; k = ‖ |F |H ‖p +
∑

15j5k
E

([ T∫
S
|D⊗j

s1 ;:::; sjF |2Hds1 : : : dsj

]p=2)1=p
; F∈SH ;

where the Malliavin derivatives of smooth functions are given in an obvious
way, and | · |H denotes the norm on H induced by the scalar product. These
de�nitions are consistent. For example,

‖F‖p + ‖DF‖p; k−1 = ‖F‖p; k ; F ∈ Dp; k([S; T ]);

if H = L2([S; T ]) equipped with the canonical scalar product 〈 · ; · 〉TS . It will
usually be unambiguous from the environment of the formulas which interval
[S; T ] we refer to. Not to overload the notation, we therefore do not index the
norms with S; T .
If D is considered as a linear operator with values in L2(
× [S; T ]), its

adjoint, the “Shorokhod integral” from S to T , will be denoted by �T
S . We shall
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have the opportunity to work on products 
× 
 of our canonical Wiener space
with itself. In this case, to identify the number of the coordinate with respect
to which the Malliavin derivative resp. the Shorokhod integral is taken, we
write D1; D2; �1; �2 etc. If on F⊗F we consider the measure P ⊗ P and take
expectations w.r. to one component while �xing the other, an index Ei with the
expectation will indicate the number of the component of integration, if there
is ambiguity, i = 1; 2. The domains of the respective Shorokhod integrals are
denoted by dom(�), dom(�1) etc.

3 The absolute continuity of conditional laws

Let (
;F; P) be the canonical 1-dimensional Wiener space of continuous func-
tions on R+ starting at 0. Assume that F ∈ L2(
;F; P) is a random variable,
and let

Gt =Ft ∨ �(F); t = 0 ;

be the canonical �ltration enlarged by the information present in F . We em-
phasize that (Ft)t=0 is supposed to satisfy the usual conditions, hence so does
(Gt)t=0. We shall answer the question: under which conditions is a semimartin-
gale w.r.t. (Ft)t=0 still a semimartingale w.r.t. (Gt)t=0? Jacod [8] showed that
this is the case provided the conditional laws of F given Ft possess densities
with respect to a common reference measure. We shall assume that Lebesgue
measure is this common reference measure, and use Malliavin’s criterion for
absolute continuity to provide densities for the conditional laws. To represent
conditional laws we shall use the following transformations on Wiener space.
For t = 0, let

St : 
× 
 → 


(!1; !2) →
( !1(u); u5 t

u →
!1(t) + !2(u− t); u ¿ t

)
:

Then it is obvious that St is Ft ⊗F−F-measurable, and the Markov property
for Brownian motion simply states that

(1) (P ⊗ P) ◦ S−1t = P; t = 0 :

In terms of these transformations, the conditional laws of F have a simple
representation.

Lemma 1 Let t = 0. Then

(!;C)→ P({F ◦ St(!; · ) ∈ C})

is a regular conditional probability of F given Ft .

Proof. First of all, we have

! → F ◦ St(!; · ) is Ft-measurable, hence
! → P({F ◦ St(!; · ) ∈ C})Ft-measurable for C ∈ B(R).
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Moreover, for A ∈Ft we have

S−1t [A] = A× 
 :

Hence the transformation theorem for measures implies for C ∈ B(R)
P(A ∩ {F ∈ C})

= P ⊗ P(S−1t [A] ∩ {F ◦ St ∈ C}) ((1))

= P ⊗ P(A× 
 ∩ {F ◦ St ∈ C})

=
∫
A
P({F ◦ St(!; · ) ∈ C})dP(!) (Fubini)

This is what had to be shown.

Remark. As was pointed out by a referee, Lemma 1 reproves a version of
what is known as “Dawson’s formula”.
Let us next see how Malliavin derivatives and Shorokhod integrals behave

when passing from 
 to the product 
× 
 via St .
For an L2-function on 
× 
 we denote by D1 resp. D2 the Malliavin

derivatives with respect to the �rst resp. second variable, and by D1
p;1 resp.

D2
p;1 etc. the respective Sobolev spaces, p= 1.

Lemma 2 Let 05 t ¡ T; F ∈ D2;1([0; T ]): Then

F ◦ St ∈ D1
2;1([0; t]) ∩D2

2;1([0; T − t])

and we have
D1· [F ◦ St] = D· F ◦ St

�⊗ P ⊗ P-a:s:

D2· [F ◦ St] = Dt+ · F ◦ St

Proof. A usual completion argument boils the assertion down to a statement
about F ∈S, the space of smooth cylinder functions.
Assume F is of the form

F = f(Wt1 ; : : : ; Wtn) ;

where t1; : : : ; tk 5 t; tk+1; : : : ; tn ¿ t; f ∈ C∞0 (R
n).

Let us denote by W 1; W 2 the �rst resp. second coordinate canonical pro-
cesses on 
× 
. Then we have

F ◦ St = f(W 1
t1
; : : : ; W 1

tn ; W
1
t +W 2

tk+1−t ; : : : ; W
1
t +W 2

tn−t) :

Hence for u5 t

D1u[F ◦ St] =
n∑

i=1

@
@xi

f(W 1
t1
; : : : ; W 1

tk
; W 1

t +W 2
tk+1−t ; : : : ; W

1
t +W 2

tn−t)1[0; ti∧t](u)
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and

DuF ◦ St =
n∑

i=1

@
@xi

f(W 1
t1
; : : : ; W 1

tk
; W 1

t +W 2
tk+1−t ; : : : ; W

1
t +W 2

tn−t)1[0; ti](u) :

This implies
DuF ◦ St = D1u[F ◦ St] ;

as asserted. Moreover, for 05 u5 T − t

D2u[F ◦ St] =
n∑

i=k+1

@
@xi

f(W 1
t1
; : : : ; W 1

tk
; W 1

t +W 2
tk+1−t ; : : : ; W

1
t +W 2

tn−t)1[0; ti−t](u)

and

Dt+uF ◦ St =
n∑

i=1

@
@xi

f(W 1
t1
; : : : ; W 1

tk
; W 1

t +W 2
tk+1−t ; : : : ; W

1
t +W 2

tn−t)1[0; ti](t + u)

=
n∑

i=k+1

@
@xi

f(W 1
t1
; : : : ; W 1

tk
; W 1

t +W 2
tk+1−t ; : : : ; W

1
t +W 2

t+tn−t)1[0; ti−t](u) ;

hence also
Dt+uF ◦ St = D2u[F ◦ St] :

This completes the proof.

We are ready to give a criterion for the absolute continuity of conditional
laws of F .

Theorem 1 Assume that 05 t ¡ T; F ∈ D2;1([0; T ]). Then the conditional law
of F given Ft is P-a.s. absolutely continuous w.r. to Lebesgue measure; if

T∫
t
(DuF)2 du ¿ 0 P-a:s:

Proof. According to Lemma 1, a version of the regular conditional law of F
given Ft is given by

(!;C)→ P({F ◦ St(!; · ) ∈ C}); ! ∈ 
; C ∈ B(R) :
Now according to the hypothesis, we have

T∫
t
(DuF)2 du ◦ St =

T−t∫
0
(D2u[F ◦ St])2 du ¿ 0; P ⊗ P-a:s: (Lemma 2) ;

hence by Fubini’s theorem

T−t∫
0
(D2u[F ◦ St])2(!; · )du ¿ 0 P-a:s: for P-a:e: ! ∈ 
 :

This implies by Nualart [13, p. 89] that for P-a.e. ! ∈ 
 the P-law of
F ◦ St(!; · ) is absolutely continuous with respect to Lebesgue measure. This
is what had to be shown.
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Remark. Theorem 1 is a special case of the more general Theorem 4.2 of
Nualart and Zakai [14], an elaborated version of which can also be found
as Theorem 5.2.7 of Bouleau and Hirsch [4]. In both references the notation
is comparable. To explain the relationship with our result, we stick to the
notation of [4]. Given 0¡ t ¡ T , we there have to choose 
 = C0([0; T ];R),
the Wiener measure m and X = (Ws)05s5t . For the Dirichlet space D we take
D2;1([0; T ]), the classical Dirichlet space over 
. Then for F ∈ D we get

DX
s F = 1[t; T ](s)DsF ;

and the Dirichlet form EX associated with DX , given by the formula

EX (F) = 1
2E(〈DXF;DXF〉) ;

is closed due to Proposition 5.2.5b of [4]. Hence in this setting the hypotheses
of Theorem 5.2.7 are ful�lled and it implies that if F ∈ D and

�X (F) = 〈DXF;DXF〉 = ∫ T
t (DsF)2 ds ¿ 0

m-a.s., then F possesses a conditional density given �(X ) =Ft . Theorem 5.2.9
of [4] gives a multidimensional version of this result.
Despite these facts we chose to keep our original proof of Theorem 1

for two reasons. Firstly, it is more elementary and direct than the one given
in the general setting by Nualart and Zakai [14] or Bouleau and Hirsch [4].
Secondly, it �ts better in our framework since it puts to work the technique of
factorization of the Wiener space which will be explicitly employed in Sects. 5
and 6.

Corollary 1 Assume that F ∈ D2;1([0; T ]) for any T ¿ 0; and that for 05 t
there exists T ¿ t such that

T∫
t
(DuF)2 du ¿ 0 P-a:s: :

Then any (Ft)-semimartingale is a (Gt)-semimartingale

Proof. According to Theorem 1 for any t = 0 the regular conditional law of
F given Ft possesses a density w.r.t. Lebesgue measure. According to Jacod
[8, p. 15] this implies that the semimartingale property is preserved.

4 The integrability of the compensator

To give estimates of the moments of the compensator of local martingales in the
larger �ltration, in this section we shall always assume that Jacod’s [8] criterion
is ful�lled with respect to Lebesgue measure as common reference measure.
According to Corollary 1 this is the case if F ∈ D2;1([0; T ]) for T ¿ 0 and for
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any t ¿ 0 there exists T ¿ t such that

T∫
t
(DuF)2 du ¿ 0; P-a:s:

We �rst recall some results of Jacod [8, pp. 18–22], which will be essential
to the following. First of all, there exists a version of the conditional densities
measurable in all these variables. More precisely, there exists a function

(!; t; x)→ p(!; t; x)

measurable with respect to F⊗B(R+)⊗B(R) such that
(2) (p( · ; t; x))t=0 is a cadlag, P-a.s. continuous (Ft)-martingale for any x ∈ R,
(3) p( · ; t; x)�(dx) is a version of the regular conditional law of F given Ft ,
for any t = 0 (see [8, pp. 18, 19]).
The P-a.s. continuity in (2) stems from the fact that (Ft)t=0 is the Wiener
�ltration. If we de�ne for x ∈ R; a= 0

Tx
a = inf{t = 0 : p( · ; t−; x)5 a} ;

then Tx
a is an (Ft)-stopping time, and TF

a a (Gt)-stopping time, such that
(4) p( · ; · ; x)¿ 0 and p( · ; ·−; x)¿ 0 on [0; T x

0 [; p( · ; · ; x) = 0 on [Tx
0 ;∞[;

(5) TF
0 =∞ P-a.s., and TF

1=n ↑ ∞ P-a.s. (see [8, pp. 19, 20]).
Moreover, the proof of Theorem 2.1 of Jacod [8, p. 20] contains the statement
that there exists a process

(!; t; x)→ �(!; t; x) ;

which is product measurable and satis�es
(6) �( · ; · ; x) is (Ft)-adapted, and

p( · ; t; x) =
t∫
0
�( · ; s; x)dWs + p(x) ; t = 0

for any x ∈ R;
where p(x) = p( · ; 0; x) is the density of F with respect to �.

Finally, if we de�ne

k(!; t; x) =

{
�(!; t; x)
p(!; t; x) if p(!; t; x)¿ 0;

0 else,

we obtain a product measurable process which satis�es
(7) k( · ; · ; x) is (Ft)-adapted, for any x ∈ R,
(8) k( · ; · ; F) = �( · ; · ; F)

p( · ; · ; F) ;

due to (5), and, most importantly, for any local (Ft)-martingale M =
∫ ·
0 �sdWs

we have
(9) M̃t = Mt −

∫ t
0 �sk( · ; s; F)ds

is a local (Gt)-martingale (see [8, Th�eor�eme 2.1]).
Our aim will be to derive a priori estimates for the moments of the com-

pensator in (9), and this way to obtain imbedding results for martingale spaces
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w.r.t. (Ft)t=0 in martingale spaces w.r.t. (Gt)t=0. Hereby we shall be guided
by Yor [18, 19], where the cases of “grossissement initial” with respect to a
countable family of sets in 
 resp. “grossissement progressif ” by a random
variable that has to become a stopping time in the larger �ltration, are treated.
The key step will consist in an estimate for the potential of the process

At =
t∫
0
k2( · ; s; F)ds =

t∫
0

�( · ; s; F)2
p( · ; s; F) ds ; t = 0 (see (8)):

To obtain this estimate, let us localize along the sequences of (Ft)-stopping
times

Sx
n = inf

{
t = 0 :

t∫
0
k( · ; s; x)2 ds= n

}
; n ∈ N; x ∈ R :

Note that for n ∈ N
SF
n is a (Gt)-stopping time,

which according to (9) has the property
(10) SF

n ↑ ∞ (n →∞):
Let us consider the (Ft)-stopping times

Ux
n = Sx

n ∧ Tx
1=n; x ∈ R; n ∈ N ;

and the increasing processes

An
t = At∧UF

n
; n ∈ N; t = 0 ;

as well as the martingales

Mn
t (x) =

t∫
0
1[0;Ux

n [(s)k( · ; s; x)dWs :

By de�nition of the stopping times we have

Mn
t (x) =

t∫
0
1[0; Ux

n [(s)
�( · ; s; x)
p( · ; s; x) dWs; t = 0; n ∈ N; x ∈ R :

Abbreviate

Nn
t (x) = p( · ; t ∧ Ux

n ; x); t = 0; x ∈ R; n ∈ N :

Then (6) and Itô’s formula give for x ∈ R; n ∈ N; t = 0

1{Ux
n¿0}[ lnN

n
t (x)− lnp(x)](11)

=
t∫
0
1[0; Ux

n [(s)
1

Nn
s (x)

dNn
s (x)− 1

2

t∫
0
1[0; Ux

n [(s)
1

Nn
s (x)2

d〈Nn
s (x)〉s

= Mn
t (x)− 1

2

t∫
0
1[0; Ux

n ](s)
�2( · ; s; x)
p2( · ; s; x) ds :

Equation (11) will give the following estimate of the potential of An.
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Lemma 3 Let s; t = 0; s5 t; n ∈ N. Then
E(An

t − An
s |Gs) = 2 1{UF

n ¿0}[ lnN
n
s (F)− E(lnNn

t (F)|Gs)] :

Proof. Let X : R× 
→ R be a bounded product measurable random variable.
Then, as is seen by a monotone class argument starting with indicators of
{F ∈ C} × A; C ∈ B(R); A ∈F, we have
(12) E(X (F; · )|Gt) = E(X (x; · )|Ft)|x=F :

Now we start with (11), applying (12) twice, once to

X (x; · ) =
t∫
s
1[0; Ux

n [(u)
�2( · ; u; x)
p2( · ; u; x) du ;

once to
X (x; · ) = lnNn

t (x); x ∈ R :
The resulting equation is

E(An
t − An

s |Gs)(13)

= E
( t∫

s
1[0; UF

n [
(u)

�( · ; u; F)2
p( · ; u; F)2 du|Gs

)

= E
( t∫

s
1[0; Ux

n [(u)
�( · ; u; x)2
p( · ; u; x)2 du

∣∣∣∣Fs

) ∣∣∣∣
x=F

= 2 1{Ux
n¿0}(E(lnN

n
s (x)− lnNn

t (x)|Fs))|x=F

= 2 1{UF
n ¿0}[ lnN

n
s (F)− E(lnNn

t (F)|Gs)] :
Here we have used the martingale property of Mn(x); n ∈ N; x ∈ R. This
completes the proof.

The following inequality combines the observation of Lemma 3 with the
inequality of Burkholder–Davis–Gundy.

Lemma 4 For T ¿0; p¿1; n ∈ N; we have

E((An
T )

p)1=p 5 p
2p− 1
p− 1 E(1{UF

n ¿0} sup
05t5T

|lnNn
t (F)|p)1=p :

Proof. By Lemma 3 and the inequality of Burkholder–Davis–Gundy for rough
increasing processes (see [12, p. 138]) we have

E((An
T )

p)1=p(14)

5 p E(1{UF
n ¿0} sup

05t5T
|lnNn

t (F)− E(lnNn
T (F)|Gt)|p)1=p

5 p

[
E
(
1{UF

n ¿0} sup
05t5T

|lnNn
t (F)|p

)1=p

+E
(
1{UF

n ¿0} sup
05t5T

|E(lnNn
T (F)|Gt)|p

)1=p]
:
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Now apply Doob’s inequality to the second term in (14) and compare with the
�rst. This gives the desired result.

Our next task will be to estimate sup05t5T |lnNn
t (F)|p.

For this purpose it is necessary to give a general estimate for such an
expression. Let f: [0; T ]→ R be a nonnegative cadlag function such that
f(0) = 1 and set

iT = inf
05t5T

f(t); sT = sup
05t5T

f(t) :

Then obviously
iT 5 15 sT ;

and so

sup
05t5T

|lnf(t)| = ln 1
iT
1{sT51=iT } + ln sT 1{sT¿1=iT }(15)

5 ln
1
iT
+ ln sT :

Let us now consider the following martingales. Take

Kn
t (x) =


Nn

t (x)
p(x) ; p(x)¿0 ;

0; p(x) = 0 ;

t = 0; n ∈ N; x ∈ R. Then obviously on {UF
n ¿0};

(16) Kn
0 (F) = 1 :

Hence we may estimate for p¿1; n ∈ N; T ¿0, with a universal constant cp,

(17)

E
(
sup

05t5T
|lnNn

t (F)|p 1{Ux
n¿0}

)
=
∫
R

E
(
Nn

T (x) sup
05t5T

|lnNn
t (x)|p 1{Ux

n¿0}

)
dx (Nn(x)FUx

n
-measurable)

5 cp

[ ∫
R

p(x)|lnp(x)|p dx +
∫
R

p(x)E
(
Kn

T (x) sup
05t5T

|lnKn
t (x)|p

)
dx
]

5 cp

[ ∫
R

p(x)|lnp(x)|p dx +
∫
R

p(x)E
(
Kn

T (x)
(
ln sup

05t5T
Kn

t (x)
)p)

dx

+
∫
R

p(x)E
(
Kn

T (x)
(
ln

1
inf 05t5T Kn

t (x)

)p)
dx
]

:

Let us �rst consider the last term in (17). It may be treated in a similar fashion
as in Yor [19]. Indeed, as we shall see, the �niteness of the �rst term on the
rhs of (17) is su�cient.
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Lemma 5 Let T ¿ 0; p ¿ 1. Then

sup
n∈N

∫
R

p(x)E
(
Kn

T (x)
(
ln

1
inf 05t5T Kn

t (x)

)p)
dx ¡ ∞ :

Proof. For abbreviation, put

IT = inf
05t5T

Kn
t (x) ;

�xing n ∈ N; x ∈ R. Moreover, let
�b = inf{t = 0: Kn

t (x)5 b} ∧ T; b ¿ 0 :

It is clear that �b is an (Ft)-stopping time. The law of IT can then be estimated
as follows. We have for b ∈]0; 1] by Doob’s optional stopping theorem

E(1{IT¡b} Kn
T (x)) = E(1{�b¡T} Kn

T (x))(18)

= E(1{�b¡T} Kn
�b
(x))

= bP(IT ¡ b) :

Equation (18) yields for p ¿ 1; T ¿ 0∫
R

E
((
ln
1
IT

)p

Kn
T (x)

)
p(x)dx(19)

= E
((
ln

1
inf 05t5T Kn

t (F)

)p)

= p
∞∫
1
�p−1P

(
inf

05t5T
Kn

t (F)¡ e−�
)

d�

= p
∞∫
1
�p−1 ∫

R
E(1{IT¡e−�}K

n
T (x))p(x)dx d�

5 p
∞∫
1
�p−1e−� d� ¡ ∞ ((18)) :

This completes the proof.

The estimate of the second term in (17) is harder. We shall use the fol-
lowing lemma.

Lemma 6 Let p= 0; (Xt)t=0 a positive, cadlag, P-a.s. continuous martingale
such that X0 = 1. Let T ¿ 0; and set

X ∗T = sup
05t5T

Xt :

Then, there is a universal cp such that

E(X ∗T (ln X
∗
T )

p)5 cp(1 + E(XT (ln
+ XT )p+1)) :
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Proof. First of all, Dellacherie and Meyer [6, p.19] yields

(20) E(X ∗T (ln X
∗
T )

p) =
1

p+ 1
E(XT (ln X ∗T )

p+1) + E(XT (ln X ∗T )
p) :

Moreover, for x; y ¿ 0; x ¡ y; y = 1, we have

x ln y − x ln+ x 5
y
e

(see [6, p. 20]) ;

hence for p ¿ 1

x(ln y)p − x(ln+ x)p 5 xp
y∫

x∨1

(ln t)p−1

t
dt(21)

5 p(ln y)p−1x(ln y − ln+ x)

5 p(ln y)p−1
y
e

:

As a consequence of (21), we may write

E(X ∗T (ln X
∗
T )

p)5
1

p+ 1
E(XT (ln

+ XT )p+1)(22)

+
1
e
E(X ∗T (ln X

∗
T )

p) + E(XT (ln X ∗T )
p) ;

that is, using again (20)

E(X ∗T (ln X
∗
T )

p)(23)

5
e

e − 1
[

1
p+ 1

E(XT (ln
+ XT )p+1) + E(XT (ln X ∗T )

p)
]

5
e

e − 1
[

1
p+ 1

E(XT (ln
+ XT )p+1)

+
p
e
E(X ∗T (ln X

∗
T )

p−1) + E(XT (ln
+ XT )p)

]
:

From this formula it is clear how to obtain the desired inequality by induction,
for it may be proved by simpler arguments for the interval p ∈]0; 1].

We are ready to estimate the second term in (17).

Lemma 7 Let p ¿ 1; T ¿ 0. Assume that

(24) E(ln+ NT (F)p)¡ ∞ ;

and

(25)
∫
R

p(x)
(
ln+

1
p(x)

)p

dx ¡ ∞ :
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Then we have

sup
n∈N

∫
R

p(x)E
(
Kn

T (x)
(
ln sup

05t5T
Kn

t (x)
)p)

dx ¡ ∞ ;

and in particular ∫
R

p(x)| lnp(x) |p dx ¡ ∞ :

Proof. Recall the de�nition of N (x) which was given in the remarks before
Lemma 3. By convexity and Doob’s optional stopping theorem we have �rst
of all

sup
n∈N

E(ln+ Nn
T (F)

p) = sup
n∈N

∫
R

E(Nn
T (x)(ln

+ Nn
T (x))

p)dx(26)

5
∫
R

E(NT (x)(ln
+ NT (x))p)dx

= E(ln+ NT (F)p)¡ ∞ :

Note that this also implies∫
R

p(x)(ln+p(x))p dx ¡ ∞ ;

so that we have already proved∫
R

p(x) | lnp(x) |p dx ¡ ∞ :

To prove the �rst inequality, �x n ∈ N, and let for x ∈ R; b= 1

�b = inf{t = 0: Kn
t (x)= b} ∧ T :

Then �b is an (Ft)-stopping time, and, denoting

ST (x) = sup
05t5T

Kn
t (x) ;

we have the analogue of (18)

(27) E(1{ST (x)¿b}Kn
T (x)) = b P(ST (x)¿ b) :

Hence, we obtain an analogue of (19):∫
R

p(x) E((ln ST (x))p Kn
T (x))dx(28)

= p
∞∫
1
�p−1 ∫

R
e�P(ST (x)¿ e�)p(x)dx d�

= p
∞∫
e
(ln t)p−1

∫
R

P(ST (x)¿ t)p(x)dx dt

5 p
∫
R

E((ln ST (x))p−1ST (x))p(x)dx (Fubini) :
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We next apply Lemma 6 to the last expression in (28). An appeal to (26)
�nishes the proof.

We are ready to state the main boundedness result.

Lemma 8 Let p ¿ 1; T ¿ 0; and assume that (24) and (25) are satis�ed.
Then we have

E(AP
T )¡ ∞ :

Proof. By Lemma 4, we have to show that (17) is bounded in n ∈ N. But
this is a consequence of Lemmas 5 and 7 together with (24) and (25).

Here is the main result of this section.

Theorem 2 Let r; p; q ¿ 1 such that 1=r = 1=p+ 1=q; T ¿ 0. Assume that u
is a (Gt)-adapted process which is locally square integrable P-a.s. Then there
is a universal constant cr; q such that∥∥∥∥ sup

05t5T

∣∣∣∣ t∫
0
us dWs

∣∣∣∣∥∥∥∥
r

5 cr; q

∥∥∥∥∥
[ T∫
0
u2s ds

]1=2∥∥∥∥∥
q

if

E((ln+ NT (F))p ¡ ∞;
∫
R

p(x)
(
ln+

1
p(x)

)p

dx ¡ ∞ :

Proof. By the usual stopping and completion argument, we may assume that
u is bounded. (9) tells us that

W̃t = Wt −
t∫
0
k( · ; s; F)ds

= Wt −
t∫
0

�( · ; s; F)
Ns(F)

ds

is a (Gt)-Wiener process. Hence

·∫
0

us dWs =
∫
0
us dW̃s +

·∫
0

us k( · ; s; F)ds

and therefore∥∥∥∥ sup
05t5T

∣∣∣∣ t∫
0
us dWs

∣∣∣∣∥∥∥∥
r

5
∥∥∥∥ sup
05t5T

∣∣∣∣ t∫
0
us dW̃s

∣∣∣∣∥∥∥∥
r

+
∥∥∥∥ sup
05t5T

∣∣∣∣ t∫
0
us k( · ; s; F)ds

∣∣∣∣∥∥∥∥
r

5 c1

∥∥∥∥∥
[ T∫
0
u2s ds

]1=2∥∥∥∥∥
r

+

∥∥∥∥∥
[ T∫
0
u2s ds

]1=2 [ T∫
0
k( · ; s; F)2ds

]1=2∥∥∥∥∥
r
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5 c1

∥∥∥∥∥
[ T∫
0
u2s ds

]1=2∥∥∥∥∥
q

+

∥∥∥∥∥
[ T∫
0
u2s ds

]1=2∥∥∥∥∥
q

∥∥∥A1=2T

∥∥∥
p

=
[
c1 +

∥∥∥A1=2T

∥∥∥
p

] ∥∥∥∥∥
[ T∫
0
u2s ds

]1=2∥∥∥∥∥
q

According to Lemma 8,

cr; q = c1 + ‖A1=2T ‖p ¡ ∞
due to the hypotheses. This completes the proof.

Theorem 2 is a purely martingale theoretic result. We now have to return
to the framework of Malliavin’s calculus to look for conditions on F under
which the hypotheses of Theorem 2 are valid.

5 The representation of conditional densities

We now return to the methods of Malliavin’s calculus. It provides the neces-
sary tools to describe the conditional densities of F explicitly under su�cient
regularity conditions. These representations play an important role in our anal-
ysis, since they will be the starting point for the study of the hypotheses of
Theorem 2. Indeed, regularity assumptions in terms of Malliavin’s calculus con-
cerning F will guarantee that Theorem 2 is applicable. This way we gain control
over the compensator in the canonical decomposition of (Ft)-martingales with
respect to the enlarged �ltration.
Using the representation of conditional laws found in Sect. 1, let us now

derive representations of their densities. Hereby, Shorokhod’s integral will enter
the scene. In Sect. 1, we made use of a switch between the space 
 and
the space 
× 
 by means of the measure preserving maps St . We made the
transport of Malliavin derivatives explicit. Let us now exhibit how Shorokhod
integrals and conditional expectations are transported.

Remark. For t = 0 and an integrable random variable H on Wiener space the
statement

E(H |Ft) =
∫


H ◦ St( · ; !2)P(d!2)

is a special case of Lemma 1.
Recall that the Shorokhod integral on 
 will be denoted by �, and

the Shorokhod integrals on the respective components of 
× 
 by �1; �2.
For integrals from s to t we write �t

s etc, and 〈u; v〉ts for
∫ t
s urvrdr; u; v

square integrable. The following lemma deals with the transfer of Shorokhod
integrals.

Lemma 9 Let 05 r 5 s5 t; u ∈ dom(�t
s). Then

ur+· ◦ Sr ∈ dom((�2)t−r
s−r) P-a.s.; and;
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if de�ned trivially on the exceptional set; we have

(�2)t−r
s−r(ur+· ◦ Sr) = �t

s(u) ◦ Sr (P ⊗ P-a.s.):

Proof. Let H ∈ D2;1([s; t]); G ∈ D2;1([0; r]) Fr-measurable, bounded. Then by
Lemma 2

H ◦ Sr ∈ D2
2;1([s− r; t − r])

and
D2[H ◦ Sr] = Dr+·H ◦ Sr :

Hence
E(G E(〈ur+· ◦ Sr; D2(H ◦ Sr)〉t−r

s−r))

= E ⊗ E(G ◦ Sr〈ur+· ◦ Sr; D2(H ◦ Sr)〉t−r
s−r)

= E ⊗ E(〈ur+· ◦ Sr; D2((G · H) ◦ Sr)〉t−r
s−r)

= E ⊗ E(〈u; D(G · H)〉ts ◦ Sr)

= E(〈u; D(G · H)〉ts)
= E(�t

s(u)G · H) (u ∈ dom(�t
s))

= E ⊗ E(�t
s(u) ◦ Sr (G · H) ◦ Sr)

= E(G E(�t
s(u) ◦ Sr H ◦ Sr)) :

This equation generalizes immediately to general Fr-measurable bounded G.
Hence we obtain

E(〈ur+· ◦ Sr; D2(H ◦ Sr)〉t−r
s−r) = E(�t

s(u) ◦ Sr H ◦ Sr) P-a.s.

Hence P-a.s. we have
ur+· ◦ Sr ∈ dom((�2)t−r

s−r)

and (de�ning the integral trivially on the set of measure 0)

�t−r
s−r(ur+· ◦ Sr) = �t

s(u) ◦ Sr :

This is the asserted equation.

We are ready for the representation formula of conditional densities.

Theorem 3 Let 05 t 5 T . Assume that F ∈ D2;1([0; T ]) and

DF
〈DF;DF〉Tt

∈ dom(�T
t ) :

Then the P-a.s. bounded and continuous function

p+(!; t; x) = E
(
1{F¿x}�T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)
;

! ∈ 
; x ∈ R; is a version of the density of the regular conditional law of F
given Ft .
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Proof. According to Lemma 2, for P-a.e. ! ∈ 
, we have
F ◦ St(!; · ) ∈ D2

2;1([0; T − t])

and

(29) D2[F ◦ St](!; · ) = Dt+·F ◦ St(!; · ) :
To abbreviate, let G = F ◦ St . Then (29) implies also that for P-a.e. ! ∈ 


(30)
Dt+ · F

〈DF;DF〉Tt
◦ St(!; · ) = D2G(!; · )

〈D2G;D2G〉T−t
0 (!; · ) :

Moreover, Lemma 9 allows us to a�rm that for P-a.e. ! ∈ 


(31)
Dt+ · F

〈DF;DF〉Tt
◦ St(!; · ) ∈ dom((�2)T−t

0 )

and

(32) (�2)T−t
0

(
D2G

〈D2G;D2G〉T−t
0

)
(!; · ) = �t

s

(
DF

〈DF;DF〉Tt

)
◦ St(!; · ) :

Now we take up the arguments of Nualart [13, p. 80]. Let [a; b] ⊂ R an inter-
val and

 = 1[a; b]; ’+(y) =
y∫

−∞
 (z) dz :

Then for P-a.e. ! ∈ 
 his arguments give

(33) E( (G)(!; · )) = E
(
’+(G)(�2)T−t

0

(
D2G

〈D2G;D2G〉T−t
0

)
(!; · )

)
:

Now use the preceding statements to translate this result back into the language
of conditional laws. We have for P-a.e. ! ∈ 


P(!; t; [a; b]) = P(F ◦ St(!; · ) ∈ [a; b])
= P(G(!; · ) ∈ [a; b])
= E( (G)(!; · ))

= E
(
’+(F)�T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)

= E

(
F∫

−∞
 (x) dx �T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)

=
b∫
a
E
(
1{F¿x}�T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)
dx :

This gives the desired formula. It remains to remark that the integrand clearly
is a bounded continuous function due to dominated convergence.
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Remark. There is another canonical version of the conditional density given
by Theorem 3. As an immediate consequence of the zero mean property of the
Skorokhod integral it is seen to be given by the formula

p−(!; t; x) = −E
(
1{F¡x}�T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)
;

! ∈ 
; x ∈ R; 05 t¡T . It will be used together with p+ in the proof of
Theorem 4.

The second criterion of Theorem 3 is hard to verify. Let us give a su�cient
criterion for its validity.

Corollary 2 Let 05 t¡T; p; q¿1 such that 1=p+ 1=q = 1
2 . Assume that

F ∈ Dp;2([0; T ]) and

1
〈DF;DF〉Tt

∈ Lq(
;F; P) :

Then the P-a.s. bounded and continuous function

p+(!; t; x) = E
(
1{F¿x}�T

t

(
DF

〈DF;DF〉Tt

)
◦ St(!; · )

)
;

! ∈ 
; x ∈ R; is a version of the density of the regular conditional law of F
given Ft .

Proof. According to Nualart [13, p. 72], we have to show that

(34)
∥∥∥∥ DF
〈DF;DF〉Tt

∥∥∥∥
1;2

¡ ∞ ;

where the norm is taken with respect to [t; T ].
For this sake, let us consider more closely the Malliavin derivative of the

integrand. For t5u5T we have

Du

[
DF

〈DF;DF〉Tt

]
=

DuDF
〈DF;DF〉Tt

− 2DF
(〈DF;DF〉Tt )2

〈DuDF;DF〉Tt :

Hence (〈
D
[

DF
〈DF;DF〉Tt

]
; D
[

DF
〈DF;DF〉Tt

]〉T
t

)1=2
(35)

5
1

〈DF;DF〉Tt
(〈D⊗2F;D⊗2F〉Tt )1=2

+ 2
(〈DF;DF〉Tt )1=2
(〈DF;DF〉Tt )2

( T∫
t
(〈DuDF;DF〉Tt )2 du

)1=2
5

1
〈DF;DF〉Tt

(〈D⊗2F;D⊗2F〉Tt )1=2
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+
2

(〈DF;DF〉Tt )2
〈DF;DF〉Tt (〈D⊗2F;D⊗2F〉Tt )1=2 (Cauchy–Schwarz)

5
3

〈DF;DF〉Tt
〈D⊗2F;D⊗2F〉1=2 :

From (35) it is clear that (34) reduces to the hypotheses F ∈ Dp;2([0; T ]),
1=〈DF;DF〉Tt ∈ Lq(
;F; P), by H�older’s inequality.

We are now ready to combine Theorem 2 with Theorem 3, to obtain a
regularity result for the compensator in the enlarged �ltration (Gt)t=0.

Theorem 4 Let S; T ¿0; S¡T . Assume r; p; q¿1 are such that 1=r = 1=p+
1=q. Suppose furthermore that F ∈ D2;1([0; T ]); that for 05 t5S we have
〈DF;DF〉Tt ¿0 P-a.s.; and that for s = 0; S we have

DF
〈DF;DF〉Ts

∈ dom(�T
s ) :

Finally; suppose that putting

Xs = �T
s

(
DF

〈DF;DF〉Ts

)
; s = 0; S ;

we have

E
(
|F | |X0|

(
ln+

1
|X0|

)p)
¡ ∞ ;(36)

E
(
|F | |XS |

(
ln+

1
|XS |

)p)
¡ ∞ :(37)

Then for any (Gt)-adapted P-a.s. locally square integrable process u we have
with a universal constant cr; q∥∥∥∥ sup

05t5S

∣∣∣∣ t∫
0
us dW s

∣∣∣∣ ∥∥∥∥
r

5 cr; q

∥∥∥∥∥
[ S∫
0
u2s ds

]1=2∥∥∥∥∥
q

:

Proof. For s = 0; S let p+( · ; s; · ) be the conditional densities provided by
Theorem 3. They are well de�ned by Theorem 1 and represented by the for-
mulas of Theorem 3. All we have to show is that the hypotheses of Theorem 2
are consequences of (1), (2). Let us do this for s = S. Note �rst that for any
x ∈ R; ! ∈ 
 we have, due to the convexity of the function

x → x(ln+x)p ;

and Jensen’s inequality

p+(!; S; x)(lnp+(!; S; x))p 5 E([1{F¿x}|XS |(ln+1{F¿x}|XS |)p] ◦ SS(!; · )) ;
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and a similar inequality for p−. Hence,

E((ln+p+( · ; S; F))p) = ∫
R

E(p+( · ; S; x)(ln+p+( · ; S; x)))p dx

=
∞∫
0
E(p+( · ; S; x)(ln+p+( · ; S; x)))p dx

+
0∫

−∞
E(p−( · ; S; x)(ln+p−( · ; S; x)))p dx

5
∞∫
0
E(1{F¿x}|XS |(ln+|XS |)p) dx

+
0∫

−∞
E(1{F¡x}|XS |(ln+|XS |)p) dx

= E(|F | |XS | (ln+|XS |)p) :
This boils the �rst condition of Theorem 2 down to (37).
In the same way, the second one is related to (36). This completes the

proof.

Let us now answer the question, under which conditions (36) and (37) are
satis�ed. They easily follow from conditions of the type of Corollary 1.

Corollary 3 Suppose that �; �; 
¿1 are such that

1
�
+
1
�
+
1


¡ 1; r; q ¿ 1 such that r ¡ q :

Let 05S¡T .
Assume that F ∈ L�(
;F; P) ∩D�;2([0; T ]); and

1
〈DF;DF〉Tt

∈ L
(
;F; P); s = 0; S :

Then there exists a constant cr; q such that for any (Gt)-adapted P-a.s. locally
square integrable process u we have∥∥∥∥ sup

05t5S

∣∣∣∣ t∫
0
us dWs

∣∣∣∣ ∥∥∥∥
r

5 cr; q

∥∥∥∥∥
[ S∫
0
u2s ds

]1=2∥∥∥∥∥
q

:

Proof. Let p be such that
1
r
=
1
p
+
1
q

:

Choose �¿0 such that

1 + � =
1− 1=�
1=� + 1=


;

which is possible due to the hypotheses. We have to verify (36) and (37).
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Let us concentrate on (36). We �rst apply H�older’s inequality to obtain in the
notation of the theorem

E(|F | |X0|(ln+|X0|)p)5 ‖F‖�‖X0(ln+|X0|)p‖�=(�−1) :

Now, choose a constant c1, such that

(ln+|x|)p 5 c1|x|�; x ∈ R :

Then by Nualart [13], p. 72, we have

‖X0(ln+|X0|)p‖�=(�−1) 5 c1‖ |X0|1+�‖�=(�−1)
= c1‖X0‖1=(1+�)

(�=(�−1))(1+�)

5 c2

∥∥∥∥ DF
〈DF;DF〉T0

∥∥∥∥1=(1+�)

1=(1=�+1=
)2
:

Now we can proceed just as in the proof of Corollary 1, in which the role
of 2 is taken by (1=� + 1=
)−1, those of p; q by � and 
. This completes the
proof.

6 The compensator in terms of a logarithmic Malliavin derivative

In Jacod [8], the conditional densities of F given Ft were shown to be mar-
tingales in t. Since we are working with the Wiener �ltration, they can be
represented as Ito integrals of adapted processes �, as in (6). The purpose of
the following investigations will be to establish more precisely the link between
� and the conditional density. We shall show that the compensator of W w.r.t.
(Gt)t=0 is indeed given in terms of a logarithmic Malliavin derivative of p.
For this comparison, however, we shall need additional smoothness hypotheses
on F . They shall be investigated in the following.

Lemma 10 Let 05 t¡T; X ∈ D2;1([0; T ]).
Then

! → E(X ◦ St(!; · )) ∈ D2;1([0; t]) and for 05 u5 t

DuE2(X ◦ St( · ; · )) = E2(DuX ◦ St( · ; · )) :

Proof. This is a special case of a more general result stating that the Malliavin
derivative commutes with the conditional expectation provided the conditioning
�-�eld is generated by a Gaussian subspace of Wiener space.

Modifying the formula of Theorem 1 a bit, we obtain the following repre-
sentation of the conditional densities. We remark that we now work with strict
regularity assumptions on F , since we want to keep the statements relatively
simple. We recall that the Sobolev norms with which we have to work satisfy
an inequality of the H�older type.
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Remark. Assume that r; p; q¿1 such that 1=r = 1=p+ 1=q. Let k ∈ N; T ¿0
and X ∈ Dp; k([0; T ]); Y ∈ Dq; k([0; T ]). Then X · Y ∈ Dr; k([0; T ]) and with a
universal constant cp; q we have

(39) ‖X · Y‖r; k 5 cp; q‖X ‖p; k‖Y‖q; k :

This is a simple consequence of the inequality of Cauchy–Schwarz (see also
[22, p. 50, Proposition 1.10]).

Lemma 11 Let 05 t5T; k ∈ N0; F∈Dp; k+1([0; T ]) such that (〈DF;DF〉Tt )−1∈
Lp(
;F; P); p=1.
Then the L2([0; T ])-valued random variable

Xu =
DF

〈DF;DF〉Tu
; 05 u5 T ;

satis�es
sup
05u5t

‖Xu‖p; k ¡ ∞ for any p= 1 :

Proof. According to the rules of di�erentiation for D, there is an L2([0; T ]l+1)-
valued random variable Zl such that

t∫
0
· · ·

t∫
0
(D⊗l

s1 :::sl
Xu)2 ds1 : : : dsl 5

Zl

(〈DF;DF〉Tu )l+1

5
Zl

(〈DF;DF〉Tt )l+1
; 05 l5 k; 05 u5 t :

Now apply the inequality of the preceding remark and take the sup over
05u5 t on the left hand side.

Corollary 4 Let T ¿0; 05 t¡T . Under the assumptions of Lemma 11 for
k = 2 we have

sup
05u5t

‖�T
u (Xu)‖p;1 ¡ ∞ ;

sup
05u5t

‖Xu�T
u (Xu)‖p;1 ¡ ∞ :

Proof. First of all, Nualart [13, Proposition 1.5.4] yields that there exists a
constant c1 such that

‖�T
u (Xu)‖p;1 5 c1‖Xu‖p;2

for u ∈ [0; t]. Hence the �rst inequality comes directly from the lemma. For
the second, we have in addition to invoke the inequality (39).

The following proposition gives representations of the conditional densities
under additional regularity assumptions.

Proposition 1 Let 05 t¡T . Assume F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P); p= 1. Then the function

p+(!; t; x) = E((F − x)+�T
t (Xt�T

t (Xt)) ◦ St(!; · )) ;
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! ∈ 
; x ∈ R; is a version of the density of the regular conditional law of F
given Ft ; where Xt = DF=〈DF;DF〉Tt .
Proof. According to Corollary 4, we have

Xt�T
t (Xt) ∈ dom (�T

t ) :

Hence we may proceed exactly as in the proof of Theorem 3, replacing Xt
with Xt�T

t (Xt) and  = 1[a; b] with  = 1] x;∞[.

Proposition 1 allows us to obtain a formula for the Malliavin derivative of
the regular conditional density.

Proposition 2 Let 05 t¡T . Assume that F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P); p=1. Then in the notation of Proposition 1; p+( · ; t; x) ∈
Dp;1([0; t]) for p=1; x ∈ R; and

Drp+(!; t; x) = E(1{F¿x}[DrF �T
t (Xt�T

t (Xt))

+ 〈DF;Dr[Xt�T
t (Xt)]〉Tt ] ◦ St(!; · )) ;

05r5 t; ! ∈ 
; x ∈ R; is a version of the Malliavin derivative of the density
of the regular conditional law of F given Ft .

Proof. Suppose �rst that u ∈ Dp;2([0; T ]; L2([0; T ])), and X ∈ Dp;1([0; T ]) for
p=1. Then Lemma 10 and the duality of D and �T

t yield the following chain
of equations for 05r5 t:

DrE2(X · �T
t (u) ◦ St( · ; · ))(40)

= E2(Dr[X · �T
t (u)] ◦ St( · ; · ))

= E2([DrX · �T
t (u) + X · �T

t (Dru)] ◦ St( · ; · )) (r 5 t)

= E2([DrX · �T
t (u) + 〈DX;Dru〉Tt ] ◦ St( · ; · )) :

Now the right hand side of (40) converges if we approximate u by a sequence
of functions (un)n∈N in Dp;1([0; T ]; L2([0; T ])). Hence the Malliavin di�eren-
tiability extends to expressions containing these functions. Now replace X by
(F − x)+; x ∈ R, and u by Xt�T

t (Xt) to obtain the desired formula. Hereby keep
in mind that Xt�T

t (Xt) ∈ Dp;1([0; T ]; L2([0; T ])) due to Corollary 4.

By the remark made at the beginning of Sect. 3 and the law of iterated con-
ditional expectations Proposition 2 immediately gives us versions of conditional
derivatives.

Corollary 5 Let T ¿t=0. Assume that F∈Dp;3([0; T ]); and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P) for p=1. Then for any x ∈ R the Malliavin derivative
Drp+( · ; t; x) given by Theorem 3 satis�es

E(Drp+(!; t; x)|Fr)

= E(1{F¿x}[DrF �T
t (Xt�T

t (Xt)) + 〈DF;Dr[Xt�T
t (Xt)]〉Tt ] ◦ Sr(!; · )) ;

for P ⊗ �-a:e: (!; r) ∈ 
× [0; t] :
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We shall now make use of the formula of Clark–Ocone (see [13, p. 45])
to identify the process � in the representation of the conditional densities of
F . Under the conditions of Proposition 2 it yields the relationship

p+( · ; t; x) = E(p+( · ; t; x)) +
t∫
0
E(Drp+( · ; t; x) |Fr) dWr :

Let us consider the stochastic integrand more closely. Lemma 10 essentially
tells us that Malliavin derivative and conditional expectation can be inter-
changed. Taking into account that p+( · ; t; x) is a martingale we therefore obtain
formally

(41) E(Drp+( · ; t; x) |Fr) = Drp+( · ; r; x)
for a �xed r ∈ [0; 1]. But the Malliavin derivative DX of a random vari-
able X is an element of L2(R+ × 
), hence its value DrX for r �xed is
not well de�ned unless the function r → DrX possesses some additional regu-
larity. We shall give a su�cient criterion under which the Malliavin derivative
of p+( · ; r; x) is left continuous at r. This will enable us to write (41) for all r.
Lemma 12 Let T ¿ t = 0. Assume that F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P) for p= 1. Assume moreover that

r → DrF ;(42)

r → DrDF ;(43)

r → DrD⊗2F(44)

are continuous respectively as mappings from [0; t] to L2(
) resp. L2([t; T ]×

) resp. L2([t; T ]2 × 
).
Then the mapping r → Drp+( · ; s; x) is left continuous in L1(
;F; P) at
s ∈ [0; t]; x ∈ R.
Proof. We write p instead of p+. Fix s ∈ [0; t]. Then according to Corollary 5
a version of Dp( · ; s; x) in the notation of Lemma 11 is given by

Drp(!; s; x) = E(1{F¿x}[DrF �T
s (Xs�T

s (Xs))

+ 〈DF;Dr[Xs�T
s (Xs)]〉Ts ◦ Ss(!; · ))

! ∈ 
; r ∈ [0; s].
Now for r 5 s, writing Ds

r = Ds − Dr , we have by Jensen’s inequality

E(|Ds
r p( · ; s; x)|)5 E(|Ds

r F | |�T
s (Xs�T

s (Xs))|)(45)

+ E(|〈DF;Dr[Xs�T
s (Xs)]〉Ts |) :

It is immediately clear how the �rst term on the rhs of (45) may be estimated.
One has to use H�older’s inequality, Nualart [13, p. 72] and Corollary 3. (42)
forces the expression to 0 as r approaches s from below. Let us discuss more
precisely the more di�cult second term. First note that by r 5 s

(46) Ds
r [Xs �T

s (Xs)] = Ds
r Xs · �T

s (Xs) + Xs · �T
s (D

s
r Xs) :
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Moreover,

Ds
r Xs = Ds

r
DF

〈DF;DF〉Ts
(47)

=
Ds

r DF
〈DF;DF〉Ts

− 2DF
(〈DF;DF〉Ts )2

〈Ds
r DF;DF〉 ;

and hence

Ds
r DXs = Ds

r

[
D⊗2F

〈DF;DF〉Ts
− 2DF
(〈DF;DF〉Ts )2

〈D⊗2F;DF〉
]

(48)

=
Ds

r D
⊗2F

〈DF;DF〉Ts
− 2D⊗2F
(〈DF;DF〉Ts )2

〈Ds
r DF;DF〉

− 2Ds
r DF

(〈DF;DF〉Ts )2
〈D⊗2F;DF〉

+
8DF

(〈DF;DF〉Ts )3
〈Ds

r DF;DF〉〈D⊗2F;DF〉

− 2DF
(〈DF;DF〉Ts )2

[〈Ds
r D

⊗2F;DF〉+ 〈D⊗2F;Ds
r DF〉] :

Using just Cauchy–Schwarz’s inequality several times we get

(49) 〈Ds
r Xs; Ds

r Xs〉1=2 5 3
(〈Ds

r DF;Ds
r DF〉Ts )1=2

〈DF;DF〉Ts
;

and

〈Ds
r DXs; Ds

r DXs〉1=2 5 3
(〈Ds

r D
⊗2F;Ds

r D
⊗2F〉Ts )1=2

〈DF;DF〉Ts
(50)

+ 14
(〈D⊗2F;D⊗2F〉Ts )1=2(〈Ds

r DF;Ds
r DF〉Ts )1=2

(〈DF;DF〉Ts )3=2

(46) and (49) give

|〈DF;Ds
r (Xs�T

s (Xs))〉Ts |

= |〈DF;Ds
r Xs〉Ts �T

s (Xs) + �T
s (D

s
r Xs)|

5 (�T
s (Xs))(〈DF;DF〉Ts )1=2(〈Ds

r Xs; Ds
r Xs〉Ts )1=2 + |�T

s (D
s
r Xs)|

5 3(�T
s (Xs))

(〈Ds
r DF;Ds

r DF〉Ts )1=2
(〈DF;DF〉Ts )1=2

+ |�T
s (D

s
r Xs)| :
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Hence by H�older’s inequality and Nualart [13, p. 72] and (50)

E(|〈DF;Ds
r (Xs �T

s (Xs))〉Ts |)(51)

5 c1‖(〈Ds
r DF;Ds

r DF〉Ts )1=2‖2 + ‖Ds
r Xs‖2;1

5 c2[‖(〈Ds
r DF;Ds

r DF〉Ts )1=2‖2 + ‖(〈Ds
r D

⊗2F;Ds
r D

⊗2F〉Ts )1=2‖2]
with suitable constants c1; c2. Due to (43) and (44), the rhs of (51) converges
to 0 as r ↑ s. This completes the proof.

Lemma 12 has prepared the proof of the main result of this section.

Theorem 5 Let 05 t ¡ T . Assume that F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P) for p= 1. Assume that

r → DrF ;

r → DrDF ;

r → DrD⊗2F

are continuous as mappings from [0; t] to L2(
) resp. L2([t; T ]× 
) resp.
L2([t; T ]2 × 
). Then for x ∈ R we have

(52) p( · ; t; x) =
t∫
0
Dup( · ; u; x)dWu + p(x) :

Moreover; for any local (Ft)-martingale M =
∫ ·
0 �s dWs we have

M̃t = Mt −
t∫
0
�s

Dsp( · ; s; x)
p( · ; s; x)

∣∣∣∣
x=F

ds; 05 t ¡ T ;

is a (Gt)-local martingale. In particular;

W̃t = Wt −
∫ t
0

Dsp( · ; s; x)
p( · ; s; x)

∣∣∣∣
x=F

ds

is a (Gt)-Wiener process.

Proof. The second and third assertion follow obviously from (52). See (6)–(9).
Fix x ∈ R. We may use p+ and write p again. The formula of Clark–Ocone
(see [13, p. 45]) is applicable due to Corollary 4 and gives

(53) p( · ; t; x) = p(x) +
t∫
0
E(Dsp( · ; t; x)|Fs)dWs :

Now �x 05 s5 t. Lemma 10 and the remark made at the beginning of Sect. 3
allow us to write

E(Drp( · ; t; x)|Fs) = DrE(p( · ; t; x)|Fs) = Drp( · ; s; x)

for �-a.e. r ∈ [0; s].
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But by Lemma 12, this process is left continuous in L1(
;F; P) at s. Hence

E(Dsp( · ; t; x)|Fs) = lim
r↑s

Drp( · ; s; x) = Dsp( · ; s; x) :

This yields the desired formula, apart from a canonical measurability argu-
ment.

Proposition 2 and Corollary 5 indicate that even if r 7→ Drp+( · ; s; x) is
not left continuous at s, and thus Drp+( · ; r; x) has no canonical meaning, we
can still obtain a version of the result of Theorem 5. Indeed, the right hand
side of the formula given in Proposition 2 still makes sense if we set t = r.
We shall therefore, abusing the notation a bit, continue to write in the sequel

Drp+(!; r; x)

= E(1{F¿x}[DrF �T
r (Xr�T

r (Xr)) + 〈DF;Dr[Xr�T
r (Xr)]〉Tr ] ◦ Sr(!; · )) ;

05 r ¡ T . We shall use Corollary 5 to show that the process Drp+( · ; r; x)
de�ned this way still yields the formulas obtained in Theorem 5. For this pur-
pose we just have to extend the estimates given in Lemma 11 and Corollary 4
respectively to prove continuity of the mappings

t 7→ �T
t (Xt�T

t (Xt)) and t 7→ Xt�T
t (Xt))

in appropriate Sobolev norms.

Lemma 13 Let 05 t ¡ T . Assume F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P); p= 1. Then the mapping s 7→ �T

s (Xs�T
s (Xs)) is continuous with

respect to ‖ · ‖p; the mapping s 7→ Xs�T
s (Xs) continuous with respect to

‖ · ‖p;1 on [0; t] for any p= 1.

Proof. Fix p= 1. Using the remark preceding Lemma 11 and Corollary 4,
we �nd constants c1; c2 and q= 1 such that for 05 u5 v5 t

‖�T
v (Xv�T

v (Xv))− �T
u (Xu�T

u (Xu))‖p

5 ‖�v
u(Xv�T

v (Xv))‖p + ‖�T
u ((Xv − Xu)�T

v (Xv))‖p

+ ‖�T
u (Xu�v

u(Xv))‖p + ‖�T
u (Xu�T

u (Xv − Xu))‖p

5 c1‖1[u; v]‖q + c2‖〈DF;DF〉vu‖q;2 :
Due to our hypotheses, dominated convergence applies and yields the conver-
gence to 0 of the rhs of the above inequality as |v− u| → 0. This implies the
�rst one of the continuity properties stated. The argument for the second one
is evidently simpler.

We obtain the following generalization of Theorem 5.
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Theorem 6 Let 05 t ¡ T . Assume F ∈ Dp;3([0; T ]) and (〈DF;DF〉Tt )−1
∈ Lp(
;F; P); p= 1. Then the process

Drp+(!; r; x)

= E(1{F¿x}[DrF �T
r (Xr�T

r (Xr)) + 〈DF;Dr[Xr�T
r (Xr)]〉Tr ] ◦ Sr(! · )) ;

! ∈ 
; x ∈ R; 05 r 5 t; is well de�ned and ful�lls the assertions of
Theorem 5.

Proof. We continue to write p instead of p+. Let (Jn)n∈N be a sequence
of partitions of [0; t] by nontrivial intervals J = [sJ ; tJ ] the mesh of which
converges to 0 as n →∞. Let

Xn(s) =
∑

J∈Jn
E(Dsp( · ; tJ ; x)|Fs)1J (s) ;

n ∈ N; 05 s5 t. Then the theorem of Clark–Ocone gives

p( · ; t; x) = p(x) +
t∫
0
Xn(s)dWs

for any n ∈ N. Moreover, as a consequence of Lemma 13 we have Xn →
D:p( · ; · ; x) in L2(
× [0; t]). Since evidently the limit process is adapted,
we obtain the desired formula

p( · ; t; x) = p(x) +
t∫
0
Dsp( · ; s; x)dWs ;

from which the formula for the compensator of W in the enlarged �ltration
follow readily.
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