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Summary. We formulate large deviations principle (LDP) for diffusion pair
(X5, E%) = (X7, &), where first component has a small diffusion parameter while
the second is ergodic Markovian process with fast time. More exactly, the LDP
is established for (X°?, v*) with v*(dt,dz) being an occupation type measure cor-
responding to ;. In some sense we obtain a combination of Freidlin—Wentzell’s
and Donsker—Varadhan’s results. Our approach relies on the concept of the ex-
ponential tightness and Puhalskii’s theorem.
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1 Introduction

Let ¢ be a small positive parameter, (X°, &) = (X, &¥),»0 be a diffusion pair
defined on some stochastic basis (€2, 7,F = (%),=0,P) by Itd’s equations
w.r.t. independent Wiener processes W; and V;:

dX; :A(‘XV[S: é?)d[ + \/E‘B( [S: é?)th s

1 (1.1)

dei = oeydir | aeyay,
€ Ve

subject to fixed initial point (xg,z).
Assume (X°¢, &%) is an ergodic process in the following sense. Let p(z) be
the unique invariant density of &%,

vP)(dt,dz) = p(z)dtdz,

and X, is a solution of an ordinary differential equation X ¢ = AX;) with
Ax) = fRA(x,z) p(z)dz subject to the same initial point xg. Then for any
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bounded continuous function A(¢,z) and 7 > 0

T T
P —lim [h(t, &)dt = [ [ h(t,z)v'P(dt,dz),
e—0g 0 R (1.2)
P —lim rr(X*,X) =0,

where 77 is the uniform metric on [0, 7']. The above-mentioned ergodic property
is a motivation to examine LDP for pair (X?, &%), or more exactly for pair
(X¢,v%), where v¢ = v¥(dt,dz) is an occupation measure on (R, X R, A(R.)®
BR)) (B(R+), B(R) are the Borel g-algebras on R, and R respectively)
corresponding to &°:

V(A XxT) = Tl(t eEA &el)dt, AeBR,), I'eBR). (1.3)
0

A choice of v* as the occupation measure is natural since the first ergodic
property in (1.2) is nothing but

P — lim pr(+#,1(7) = 0,

where pr is Levy—-Prohorov’s distance for restrictions of measures v¢ and v(»)
on [0, 7] x R. Also the first It6’s equation in (1.1) and the predictable quadratic
variation (M?), of a martingale M} = fot B(X?, E)dW, can be represented in
the term of v*:

t
‘thx = X0 + f fA(Xs‘E’Z)VE(dS’ dZ) + \/SM; ’
0 R

(M*), = f [ BX(XE,z)v¥(ds, dz) .
0 R

The random measure v* obeys the disintegration vé(dt,dz) = dt K,:(t,dz) with
the transition kernel K,:(z,dz) being probabilistic Dirac’s measure that is v*
values in space IM = IM[g ooy of o-finite (locally in ¢) measures v = v(dt,dz)
on (Ry X R, B(R,)® A(R)) obeying the disintegration v(dt,dz) = K,(t,dz) dt
with the probabilistic transition kernel K,(z,dz) ([, 2 Ky(t,dz) = 1). X? values in
the space € = €y, ) of continuous function. Define metrics » and p in € and
M respectively, letting

X/ X// 1 ! !/ 1
rXL X" = re(X7 . )A and p(v', V)= pk(v,vk )A )
k=1 2 k=1 2

Evidently ergodic properties (1.2) are equivalent to

P — lim[r(X*.X) + p(v* ")) = 0

and so for examination of the LDP for (X*,v*) we choose the metric space
(C x M, r x p).
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Recall the definition of LDP from Varadhan [1] adapted to our setting. The
family (X° v*) obeys the LDP in the metric space (C x IM,r x p) if

(0) there exists a function L(X,v), X € C, v € M, values in [0, c0], such that
its level sets are compacts in (C x IM,r X p);

(1) for any open set G from (C x IM,r x p)

limelog P((X?,v*) € G) = — inf L(X,v);
imelog P((X*,v") € G) =2 o Xov);

£—0

(2) for any closed set ' from (C x IM,r X p)
s 3 & & S _ : X
lgr(l)slogP((X,v)eF)_ ()g?)feFL(X,v)

The function L(X,v), meeting in (0), (1), and (2), is named rate function
(action functional in the terminology of Freidlin and Wentzell [2] or good rate
function in the terminology of Stroock [3]).

Below we recall well known particular results in LDPs related to pair
(X% &) and give corresponding forms of rate functions which will be in-
herited by a rate function for our setting. Note at first LDP for family
we(dz) = v¥([0,1],dz) (on the space of probability measures supplied by Levy—
Prohorov’s metric) proved by Donsker and Varadhan [4-7] for a wide class
of Markov processes & = &;,. Corresponding rate function obeys an invariant
form: for any probabilistic measure u on R

L Pu()
160 = —inf [~ 7

(dz),

where ¥ is backward Kolmogorov’s operator, respecting to £, and where
“inf” is taken over all functions u(z) from the domain of definition for
the operator .. For the diffusion case, Gértner’s type of I(u) is well
known [8]:

/ / 2
10 = {éfR @) = 28| me)dz, du=m)dz. dm(z) = ') dz

00, otherwise .
(1.4)

Freidlin—Wentzell’s result [2] is devoted to LDP for diffusion X with drift A(x)
and diffusion B?(x) (independent of z) in the space of continuous functions on
every finite time interval, supplied by the uniform metric. A rate function, say,
for [0, T'] time interval is given by

1T X—AX)P _ v _
S(X)_{2 o VOO, dx, = X dt, Xo = xo, (15)
00, otherwise .

Other type of LDP for a degenerate diffusion X* defined by the first equation
in (1.1) with B(x,z) =0 and & = ., where {, is Markov process values
in a finite state space, also is well known from Freidlin [9]. In this case
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rate function has a form similar to (1.5) (H(y,x) is some non negative
function):

T . .
H(X:, X, X, =X, Xy =
S(X): {f() ( t> Z‘)dta d t tdla 0 X0 » (16)

00, otherwise .

All above-mentioned LDPs are inspired by the examination of the LDP for
(X%,v%). In some sense, the LDP for (X¥v%) is a combination of Donsker—
Varadhan’s and Freidlin—Wenzell’s results. Namely LDP for v* is a general-
ization one for p* while LDP for X* is implied by LDP for v* and for a diffusion
martingale scaled by +/¢. Hence, a rate function for (X¢,v*), is defined as a sum:
L(X,v) = Li(X,v) + Ly(v), where L(X,v) and L,(v) respect to X and v* and
what is more L;(X,v) has the same form as S(x) in (1.5) with A(X;) and B*(X;)
replaced on A,(1,X;) = [, A(X,,2)K\(t,dz) and Bi(t,X,) = [, B*(X;,2)K\(t,dz),
where K,(t,dz) is the transition kernel of measure v.

Note that & € R and so the LDP for its occupation measure responds to a
non compact diffusion case. Also note that diffusion parameter B?(x,z) is not
assumed to be non singular and consequently B%(x,z) =0 is admissible. The
last allows to derive LDP for a singular diffusion parameter case from LDP
for v¢ using the contraction principle of Varadhan [1] (continuous mapping
method of Freidlin [10]). This result extends above-mentioned [9] for non
compact case.

In contrast with Freidlin and Wentzell [2], Donsker and Varadhan [4—
7], Gértner [8], and Veretennikov [11,12], and many others (see e.g. Acosta
[13], Dupuis and Elis [14]) our method of proof is based on Puhalskii’s the-
orem [15,16] and relies concepts of exponential tightness and LD relative
compactness.

The paper is organized as follows. In Sect.2, we formulate the general
assumptions and the main result. Section 3 contains the method of proving
LDP which also has been used in [17]. In Sect. 4, we check the exponential
tightness while in Sects. 5 and 6 the upper and lower bounds in local LDP
are verified. The main results are proved in Sect. 7. All technical results are
gathered in Appendix.

2 Assumptions. Main result

1. We fix the following conditions which are assumed to be fulfilled hereafter.

(A.1) A(x,z) and B(x,z) are continuous in (x,z), Lipschitz continuous in x
uniformly in z, and sup, (]4(0,z)| + |B(0,z)|) < oc;

(A.2) c*(z) is bounded and uniformly positive function; it is continuously dif-
ferentiable, having bounded and Lipschitz continuous derivative;

(A.3) b(z) is Lipschitz continuous, satisfying

lim b(z)signz = —oo .
|z| =00

It would be noted that (A.2) and (A.3) imply, so called, assumption (H*)
from [6].
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2. It is well known (see [18]) that under (A.2) and (A.3) & is ergodic process
obeying the unique invariant density

exp (2[5 (b(») [ () dy)

p(z) = const. 2(2)

2.1)

For any v from IM with the transition kernel K,(t,dz), define K,(¢,dz)-
averaged drift 4,(t,x) = [ rA(x,2)K\(1,dz) and diffusion parameter B(t,x) =
J R B?(x,2)K,(t,dz). If v is absolutely continuous w.r.t. A(dt,dz) = dtdz, put

n(t,z) = SX(t,z). (2.2)

If the density n(z,z) is absolutely continuous w.r.t. dz: d.n(t,z) = n.(t,z)dz, a
function n.(¢,z) is chosen to be measurable in #,z.
Throughout the paper, we use conventions 0/0 = 0 and min(inf)(()) = oo.
For every v € IM and X € C define two quantities (comp. (1.4) and (1.5)):

! / 2
Fv) = [o [r0%() ['Z((;’ZZ)) - ’;((ZZ))] n(t,z)dzdt, dv=nd\, d.n=ndz,

00, otherwise ;
(2.3)
oo [Xi — Ay(t, X))
sy =470 B x)

0, otherwise .

dt, dX ZXdl, Xo=Xxp,

3. Now we are in the position to formulate the main result.
Theorem 2.1 Under (A.1), (A.2), and (A.3) the family (X*,v*) obeys the LDP
in (C x M, r x p) with rate function

L(X,v) = )S(X,v) + §F(v) .

4. LDPs for families (X°) and (&%) run out from Theorem 2.1.
Corollary 2.1 (v%) obeys the LDP in (IM, p) with rate function éF(v).

Corollary 2.2 (comp. [9]) (X?) obeys the LDP in (C,r) with rate function
S(X) =inf,eq L(X,v). In particular, if B(x,z) =0, it is sufficient to take
“inf” over all v from M with the transition kernel K,(t,dz) = u(dz) with
di = m(z) dz such that the density m(z) = (du/dz)(z) is absolutely continuous
w.r.t. dz (m'(z) = dm(z)/dz). In this case, rate function

V[CHX, X)) dt, dX =X dt, Xy =xo,
S(X):{Sf0 (X ) 0= (2.4)

00, otherwise ,
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where
m() P

2
m(z) 2(2) ] m(z)dz , (2.5)

H(y,x)=inf [ ¢*(z) [
R
and where “inf” is taken over all above-mentioned measures p such that

y = [A(x,z)m(z)dz .
R

As an example, also the LDP for the family of the Donsker and Varadhan
occupation measures u°(dz) = v¢([0, 1] x dz), corresponding to diffusion case,
can be derived from Theorem 2.1. In fact, due to the contraction principle, (u?®)
obeys the LDP with Gértner’s type rate function (see (1.4)) /(¢) = inf éF ),
where “inf” is taken over all v € IM such that

v(dt,dz) = I(1 = t)dtu(dz) + I(1 < WP (dt,dz) .

3 Preliminaries

For proving LDP for the family (X% v*) in the metric space (C x IM,r x p)
we apply Dawson—Girtner’s type theorem (see e.g. [19]). Following it the
LDP in (C x IM,r x p) is implied by LDPs in the metric spaces (Cp, . X
Mo,n}, 7 X pu), n = 1, where Cpo, is the space of continuous functions on
the time interval [0,#n], Mo, is the space of finite measures on [0,n] X R,
having probabilistic transition kernel w.r.t. dt, r, is the uniform metric, and p,
is Levy—Prohorov’s metric. The definition of the LDP in (Cjo ) X Mo n}, 7 X
pn) is given in terms of (0), (1), and (2) with obvious modifications. More-
over, if L,(X,v), m =1 are rate functions, corresponding to LDPs
in (Cro, i) X Myo,m,74 X py), n 2 1, then rate function in (C x IM,r x p) is
defined as

L(X,v) = sup L,(X, v) . (3.1

Hence only the LDP in (Cjo,r; X Mo, 73,77 X pr) has to be checked for any
T > 0. Our approach in proving the LDP in (Cjo,r; X Mo, 73,77 X pr), T >0
relies on the concept of the exponential tightness and notions of LD relative
compactness and local LDP. Below we give necessary definitions.

Definition 1 The family (X%, v*) is said to be exponentially tight in the met-
ric space (Cjo,r) X Mo, 11,77 X pr), if there exists an increasing sequence of
compacts (K;)j=>1 such that

hm lirr(l)slogP((Xs,vs) S {(1—:[0’]"] X M[OaT]}\Ki) = —0o0 (32)
J &=

(Deuschel and Stroock [20], Lynch and Sethuraman [21]).

Definition 2 The family (X*,v*) is said to be LD relatively compact in
(Cpo,71 X Mo, 77,77 X pr), if any decreasing to zero sequence (g) contains
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Sfurther subsequence (&) ((ex) C (&)) such that the family (X°%,v%) obeys
the LDP in (Cio, 7 X Mo, 71,77 % pr) (with rate function Ly(X,v)). (Puhalskii
[15,16]).

Definition 3 The family (X°,v*) is said to obey the local LDP in (Cio, 1)

Mo, 3, F7 % pr) with local rate function ZT()(,V), if for any (X,v) from
Cro,ry x Mo, 1)

lim lim £ log P((rr(X*,X) + pr(+*,v) < 9)
—0e—

= ;im lim elog P((rr(X*,X) + pr(v%,v) < 9)

—0,-0

— T (33)

(Freidlin and Wentzell [2]).

The connecting component of these notions used in the proof of the next
result is Puhalskii’s theorem [15,16]. Below we formulate only the first part
of it.

Theorem P If (X?,v°) is exponentially tight family in (Cpo,r) x Mo, 1),
rr X pr), then it is LD relatively compact.

The following result is a reformulation of Theorem 1.3 from [17].

Proposition 3.1 The exponential tightness and the local LDP for the family
(XS,VS) in (C[()’T] X M[O,T],”T X pT) lmply the LDP in ((E[()’T] X M[O’T],
rp X pr) for this family with (good) rate function Lr(X,v) = ZT(X, v), where
ZT(X, v) is the local rate function.

4 Exponential tightness in Co, 71 X Mo, 1)

Theorem 4.1 Under assumptions (A.1), (A.2), and (A.3) the family (X*,v*)
is exponentially tight in Cio,r7 X Mo, 7.

Proof. Following Definition 1, (3.2) has to be checked. It is clear it takes place
if
111’11 hn}) 610gP(AX8 S C[O,T] \Kjl) = —0Q,

J e
(4.1)
lim lim & log P(v* € Mio.r) \ K}') = oo,

J &=

where K j’ and K J{’ are appropriate increasing sequences of compacts from Cpo, 7
and Mo 7} respectively. It is natural to use as compacts K; increasing sets
of uniformly bounded and equicontinuous functions from Cpo 7; parametrized
by j. Since the process (XS, &0);»0 is defined on a stochastic basis with
the filtration F one can use Aldous—Puhalskii’s type sufficient conditions
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(see [15], and also Theorem 3.1 in [17]) for C-exponential tightness:

lim lim ¢logP (sup |X7| >j> =—00,
Jj &e—0 (<T
(4.2)
lim lim ¢log sup P (sup X5, —X¢| > 11> =-—00, Vn>0,
0—0e—0 T<T—6

t<o

where 7 is a stopping time w.r.t. the filtration F. Following Theorem 3.1 in
[17], (4.2) implies the validity of the first part in (4.1) with above-mentioned
compacts K J’ of uniformly bounded and equicontinuous functions. Now, choose

relevant compacts K}/, j = 1:

T
Kj{l = ﬂ {V S M[ojr]l f f V(dl,dZ) < g(m)}, 4.3)
mzj 0 |z|>m

where g(y), y > 0 is positive continuous decreasing function with lim,_,. g(»)
= 0. In fact, if vx € Kj’, k = 1 then we have for any m = j sup, fg f|2\>m
v (dt,dz) < g(m) that is the set K’ is tight and by Prohorov’s theorem (see
[22]) is relatively compact. On the other hand, since the set {z:|z| > m} is
open a limit of any converging sequence from K}’ also belongs to K}’ that
is K;' is compact in (M 7}, pr). Evidently K" C K\ ,. Below we choose a
special function g(y), suited to assumption (A.3), to satisfy the second part
in (4.1).

We check the validity of (4.1) in the next two lemmas.
Lemma 4.1 Under (A.1) the first relation in (4.1) holds.
Lemma 4.2 Under (A.2) and (A.3) the second relation in (4.1) holds.

Proof of Lemma 4.1. Put
7 = sup|Z|.

1<t

By virtue of (A.1) we have |A(x,z)| < Z(1 + |x|). Therefore, with ¢t < T, we
derive from (1.1)

t
X< ol + ) (1L X7 ) ds + VeMy (44)
0

where M} = fot B(X?,E)dW,. Due to Bellman—Gronwall’s inequality, (4.4)
implies X7* < const.(1 + /eM5*) with const., depending only on |xo|,7,
and T. Therefore, the first part of (4.2) holds if

lim lim ¢ log P(M}" > j) = —oc . (4.5)

Jj e—

On the other hand, by Chebyshev’s inequality P(M&* > j) < j~VPE(ME )V
and so, elog P(M#* > j) < —logj + elog E(M&* )2, Thereby (4.5) holds if

lim &log E(ME)V < oo . (4.6)
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Below we check the validity (4.6). Assuming 1/¢ >2 and applying It6’s for-
mula to |MF|'¢, we get

1! IR ¢
M7= LMY (sign MOBOXS, £5) W
0

l—¢e L 1 ,
+ o, JIMTBAXG & ds
2e

that is |M?|' is a submartingale obeying a decomposition: [M?|'/¢ = N? 4 U?
with local martingale N/ and predictable increasing process

l—¢ e|l/e— & ze
Ui =, " [IM B s (4.7)
0

Then, due to a modification of Doob’s inequality (see [23], Theorem 1.9.2)
, Lo\Ve
EM*)" < (1 ) EU . (4.8)
—¢

Now evaluate from above |MZ#|V¢=2B%(XE, &), By virtue of (A.1) |B(x,z)| <
/(1 + |x|). Thereby, due to above-mentioned upper bound X;* < const.
(1 +M7*) which remains true with replacing 7 on s for any s <7, we ar-
rive at

\MEVE2B(XE, &) < comst.(1 + [ME|Ve? 4+ |MEE)

< const.(1 4+ (M)1ey

Substituting the last upper bound in (4.7) and using (4.8) we obtain (1 = 7T)
E(M{*)" < (const./e) [; [1 + E(M{*)"#] ds. Hence, by Bellman—Gronwall’s in-
equality, an upper bound E(M;*)l/s < (const.T/e) exp{(const.T/¢)} holds and
implies (4.6). Consequently the first part in (4.2) is valid. To check the sec-
ond part in (4.2), first use obvious estimates:

P (sup X7, — X7 > 17)

t<o

<P <81<1r5> \XEy — XE >, X7 = j) + P > )
ts

< 2max

P <sup IXE,, — XE| > n, X < j) , P(XT" >j)] :
t<o

Thence, due to proved above the first part of (4.2), the validity of the second
part follows if

0—0¢—0 1<T—5 t

lim lim ¢log sup P (sup |X:, — X >n, X< j> =—-00, j=21,1n>0.
<5

(4.9)
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The simplest way for verifying (4.9) consists in checking the validity of both

T+t

J AKX, &) ds

lim lim ¢log sup P <sup >, XiF < j) = —00,

0—0¢—0 T<T—d (<o

\/8fB(X",€§

s| =1, X;*§]>:_OO

(4.10)

Obviously, the first part in (4.10) holds. To verify the second, note that the

process Y7 = /¢ f;ﬂ B(X¢, &) dW; is continuous martingale w.r.t. the new fil-
tration F* = (%4,);20 (see Chap.4, Sect.7 in [23]). It has the predictable
quadratic variation (Y*), = ¢ f i BX(XE, &) ds. Also define a positive continu-
ous local martingale (wrt the same filtration F*)

lim lim elog sup P | sup
0—0e— T<T—6 <6

Zi = exp(AY; — 12X (Y?),), A€R, (4.11)

which is simultaneously a supermartingale (see [23], Problem 1.4.4) and so
for any Markov time ¢ (w.rt. F*) EZ: < 1. Take ¢ =inf{r <o: |Y}|=n}.
Evidently the second part of (4.10) holds if

lim lim elog sup P(Y:!=n (or £ —), 096, X" < j)=—oc0. (4.12)

0—0e—0 t<T—6

By virtue of an obvious inequality EZ:/(Y: = n, X7* < j) <1 we find that

. X e
elogP(Yizn, 6<6, X;" < j) < —sup [ln — const. 5 58:| (4.13)
2>0
and since
12 5 ’72
m— t. =
,Sli% [ 11— cons 2 8} 2 const. O¢

(4.12) with “= »” is implied by (4.13). The validity (4.12) with “< —#” is
proved in the same way.

Proof of Lemma 4.2. 1t is clear that {v* € Mo r)\K;'} = {/(j,»") < oo},
where '

£(j,v) = min {mgj:f I v(dz,dz)>g(m)}. (4.14)

0 |z|>m

Therefore, the second part of (4.1) is equivalent to
limlin})slogP(/(j,vg)<oo): —00 . (4.15)
J &

To verify (4.15), choose a special function g(y) satisfying the above-mentioned
properties. To this end introduce non linear operator

2 a 2
9 = b(z ) éz) la L+ (ﬁz)] (4.16)
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and choose a non negative twice continuously differentiable function u(z) such
that
—sup Zu(v) = —d > —o0,
vER

(4.17)
lim inf [@u(z) + sup @u(v)} =0.
J=00 2| > vER
Under assumptions (A.2) and (A.3) one can take any of function u(z) with
properties: u(0) =0, u'(z) =signz, |z| > 1, and 0 < u'(z) < 1. With chosen
u(z) put

—12
g(y) = inf {—@u(z) + sup flu(v)} . (4.18)

L

Introduce a positive continuous local martingale (the martingale property is
checked by It6’s formula)

Z} = exp (u(if) o)~ [ %(éi)ds) . (4.19)
0

It is simultaneously a supermartingale (see Problem 1.4.4. in [23]) and so
EZ; < 1. The last implies

EI(/(j,v') <o0)Zi<1. (4.20)

Inequality (4.20) can be sharpened by changing of Z on its lower bound on
the set {/(j,v") <oo} which can be chosen non random. Taking into
account that fOT Gu(&)ds = fOTfR Du(z)v¥(ds,dz) and /(j,v¢)=j we arrive
at

dT 1T
a7 2 ) = 4 [ f o )i
z| >/(j,v¢)
dT 1 T
> uc)- T4l it ounralf [ vdsd)
e el D o120
T 1
> uc)- T4l i [oue) +ar?
& & ‘z‘ >/(j,ve)

dT 1.
> —u(@) =+ inf )+ ] (= log ).

Thereby, from (4.20), with Z% repalced on Z., we derive

elogP(£(j,v") < 00) < eu(&) + dT — |iflf' [—Zu(z) +d]V* ,
z| >

i.e. (4.15) is implied by (4.17).
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5 Upper bound for local LDP in Cjo, 11 X Mg, 1

In this section, we consider family (X°,v*) from Cp, 77 X Mg, r;. Parallel to
F(v) and S(X,v), given in (2.3), let us define F7(v) and S7(X,v) by changing
. o OOy - 13 T”

integrals [~ in (2.3) on “[; . Put

Lr(X,v) = 1Sr(X,v) + sFr(v). (5.1)

Theorem 5.1 Under (A.1), (A.2), and (A.3) for every (X,v) from Ci 1) x
Myo, 7

lim lim ¢ log P(7 (X", X) + pr(v',¥) £ 6) < ~Lr(X,)

Proof of this theorem is based on

Lemma 5.1 Assume (A.1), (A.2), and (A.3). Then for every piece wise
constant function (t) = X; M(t;)I(t; £t <t;11) (with not overlapping inter-
vals [t;,t;11)), and for every compactly supported in z and continuously
differentiable (once in t and twice in z) function u(t,z), and X € Cpo 1),
S M[O, 7]

%in}) lin(l) elog P(rr(X%,X) + pr(v',v) £9)

< —{Z M Xrpyy — Xrag]l — ff)»(t)A(Xz,Z)V(dh dz)
i 0 R

! fT [ 2X()BA(X,, z)v(dt, dz)} + f [ Du(t,z)v(dt,dz) ,
2 0 R 0 R

where 9 is the non linear operator defined in (4.16).

Proof. The following well known fact will be used hereafter. If N, (Ny = 0)
is continuous local martingale and (N), is its predictable quadratic variation,
then the exponential process Z; = exp (N; — (1/2){N);) is a continuous local
martingale too, and what is more if N/, N/' are continuous local martingales
(Ny = NJ = 0) with the mutual predictable quadratic variation (N',N”), =0
and Z/, Z]' are corresponding exponential processes, then the process Z/Z/ is
also local martingale which, being positive, is a supermartingale too (Problem
1.4.4 in [23]) and so EZ/Z/' <1, t 2 0.
Let A(¢) and u(t,z) be functions involved in Lemma 5.1. Put

I 1 £ ze
N =y [ MBS EaWs,

1 1 7 £ &
Nt/ = P fu;(s’ is)a(és)dVV .
>0
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Evidently
(N, = i [ 22(s)BA(X}, Eds
10, (5.2)
(N")e =, JuZ (s, E)o*(&) ds .
0

Since Wiener processes W, and V, are independent and so (N/,N”), =0 a
process

Z, =exp(N] + N/ = JI[(N") + (N")]) (5.3)
is local martingale and also a supermartingale with
EZ, <1, t=0. 54)
Note that
N = | Aol o 2)d (55)

and also find similar representation for N,”. Due to It6’s formula we obtain
1 [ z& & & t & 1 f &
J s, EDa(E) dVy = u(t, &) — u(0,80) — [ur(s, &) ds — [ Lu(s, &) ds
Ve D 0 €0
where ¥ = b(z)(0d/0z) + (6(2)/2)(0*/z*) and consequently
, ! . 1! .
N/ =u(t,&) —u(0,&) + [uy(s, &) ds — . [ Lu(s, &) ds . (5.6)
0 0

(5.4) implies an obvious inequality
El(rr(X°,X) + pr(V',v) S 0)Zr <1, (5.7)

which can be sharpened by changing of Zy by its lower bound. To this end
evaluate from below logZr on the set {rr(X*,X)+ pr(v’,v) < d}. For both
N} — J{(N')r and Ny — J(N")7 we get

Nz — 3 (N')r
1
= . Zi(fi)[XTmm — Xrayl

T

f [ AAX;, z)v(dt, dz) — ! [ | 72(t)B*(X,, z)v(dt, dz)
0 R 2 0 R
1
- { SR F pg = Xrns| + Wi, = Xrag ]
T T
+ [ AOIAKS, &) — AX, &) ds + ; [ 20\B (X7, &) — BA (X, &) ds
0 0

} (5.8)

+

fo [A0)AX,2)| + 22()B*(Xi, 2)IV* — vI(dz, dr )
0 R
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and
N7 = 3 (N")r
17 X ) T i
=, J [ Lu(s, &) + Yul(s, ENlds + u(T, &) — u(0,&0) — [ ui(s, &)
0 0
1z T
=, I [ Qu(s,z)v¥(dz, ds) + u(T, &) — u(0, &) — [ u,(s, &) ds
20 R 0
1 T
> — [ [ Qu(s,z)v(dz,ds)
€0 R
1{ r
- [ [ 2u(s,2)[v* — v](dz,ds)
€l lor
T
+ elu(T, &) + elu(0, &)| + & Jui(s, &) ds} ) (5.9)
0

The terms in the curly brackets in the right hand sides of (5.8) and (5.9)
are random variables. Nevertheless, they can be evaluated from above on the

set {rr(X%,X) + pr(v*.v) £ 6} by non random quantities. Evidently fOTfR A1)
[AXF, &) — A(X,, &)| ds < const. TS and ) foriz(lﬂBz(Xf‘» &) = B*(X, &) ds <

const.d [J [1 + | X,[]ds. Denote by H(s,z) = A(s)A(X;,2) + 12(5)B*(Xs,2)/2.
Since A(s) is piece wise constant function without loss of a generality one
can assume that it is simply constant. Then function H(s,z) is bounded contin-
uous function and so, by Lemma A.1 (see Appendix) for any y >0 and k£ =1
there exist increasing continuous function 4 (y), y = 0 with 4,(0) = 0 and de-
creasing sequence @, k = 1 with lim; ¢ = 0 both dependent on H(s,z) and v
only such that

<4 (0 + o -

fT JH(s,2)[v" — v](ds,dz)
0 R

Further, by the remark to Lemma A.1

<)+ (),

I | Futt 20 — vi(dn,dz)
0 R

where /47(y) is an increasing continuous function with 47(0) = 0 depending on
Pu(s,z) and v only.
Hence, we arrive to the lower bounds (with positive const.’s):

T
Np = 3 N')r 2 i {Z M Xrps,, — Xrag) — [ [ MOAX,, z)v(dt, dz)
i 0 R

- OfT [ POB (X2 ds) | = °°§St'(y +RO) + 1)) (5.10)
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and

" ” T const. N
N — LNy 2 - f,[@uu,z)v(dr,dzr Pt )+ o).
0
(5.11)

By virtue of (5.10) and (5.11) one can choose a non random lower bound:

1 ..
logZr = . 3 M) Xrpiyyy — Xeagl = [ [ ADAX;, 2)v(dt, dz)
i 0 R

fT [ 22()B*(X;,z)v(dt, dz) — : fT [ Gu(t,z)v(dt, dz)
0 R €0 R
= OO Gy HO) + WD) + 0.

=logZ, .

Hence and from (5.7), with replacing of Zy on Z,, it follows

elog P(rr(X%,X) 4+ p(v,v) £0)

T
— | 22 At Xrpnyy — Xrag] = [ [ AOAX;, z)v(dt, dz)
i 0 R

‘:’%’\]

[ 2B (X, z)v(dt,dz) | + fT [ Qu(t,z)v(dt, dz)
R 0 R

+ const.{(¢ + 7 + A'(6) + h.(0) + @)} . (5.12)
The desired result holds since the term in the curly brackets of the right

hand side in (5.12) goes to zero if limit “/imy_ oo lim,_o lims_o lim,_o” is
taken.

Proof of Theorem 5.1. Follows from Lemmas 5.1, A.2, and A.3 (see Appendix)
since

T
i {Z M X ny,y — Xeng) = [ [ AOAX,2)v(dt, dz)
i 0 R

_ f [ 22()B*(X,, z)v(dt, dz)} inf fT [ Gu(t,z)v(dt, dz)
2 0 R 0 R

= —[L,Sr(X.v) + Fr()] = —Lr(X,v) .
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6 Lower bound for local LDP in Cjo, 71 X Mo, 7

Theorem 6.1 Under (A.1), (A.2), and (A.3), for every (X,v) from Cp 1) X
Myo, 7

lim lim elog P(r7 (X%, X) 4+ pr(v,v) £0) = —Lr(X,v) .

0—0¢e—0
Evidently for X,v such that Ly(X,v) = oo it is nothing to prove. Therefore we
consider below only the case Lr(X,v) < oo which distinguishes subsets from
(]:[0’7'] X M[O, T]-

(i) dX, < di and 1Sr(Xv) = 1 [ (IX, — A6, X)P/B2(E X)) di < oc;
(ii) dv = nd2, d.n = n,dz and (Fr(v)=) fOTfR(v%(t,z)/az(z))n(t,z)dz dt <o,
where
a*(z) ni(tz) _ p'(z)

2 {n(t,z) B p(z)} '
It is convenient to consider further subset (ii’) of (ii):
(ii") The function v,(z,z) is compactly supported in z and continuously differ-
entiable in (z,z), having bounded partial derivatives.
The central role in proving Theorem 6.1 plays

Lemma 6.1 Assume (i), (ii’), and inf,, B*(x,z)> 0. Then for any 6 >0 and
y >0 there exists an increasing continuous function h,(y) with h,(0) =0,
depending on v*(s,z)/c*(z) and v only, such that

(6.1)

u(t,z) =

lim ¢log P(rr(X*,X) + pr(v,v) < 8) = —Lr(X,v) — 7 — hy(3) .

e—0

Proof. Put
by(t,z) = b(z) + v,(t,2) ,
- (6.2)
Gy(t,x,2) = XfB é‘ﬁ(t’)xf)B(x,z) + A(x,z)

and parallel to (X7, ¢7) introduce, on the same stochastic basis, new diffusion
pair (X7, &5):

dX! = (1. X!, &) di +/eB(X! &) dW,
1
V

subject to the same initial point (xo, o). Also denote by Vf‘(dﬂtv, dz) the occu-
pation measure corresponding to &: V(A x I') = fooo I(t e AE el)dr.

By virtue of the formula b(z) = }(p/(z)/p(z)) + ¢'(z)a(z) (see (2.1)) we
get

(63)

~ ~ ~
d& = b&)di+ | a(&)dv:

2by(t,z) _ nit2) | ,0'(2)
oX(z)  n(t,z) o(z)
and so
exp(2 5 "5 dy)

P =et)
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with norming constant ¢(¢) such that |, z Pv(t,z) = 1, coincides with n(z,z). Then
by Lemma A.5 (see Appendix)

P~ lim pr(¥,v) =0 and P lim rr(X5,X)=0. (6.4)

Denote by Q° and é“ distributions of (X, &), <7, ()N(;’,E;’), <r respectively. By
Theorem 7.18 (Chap. 7 in [24]) QF is absolutely continuous w.r.t. Q¢ and

do° - | R 1 1
< (X5, &) = M — M* Myp — M .
o TEy = (M= ) () M) ) ) L (65)
where
£ 0y(s, &) t Xy — Ay(5,X;)
MP=— 230 dVy and M, = dawy ,
' 0 a(&) ' bf B\(s,X;)

o s E) R A )P
(M*), = f az(gé) ds and <M>t*‘! B2(s, X;)

By virtue of (6.5) and the rule of changing for probability measure we obtain

dg & N (XX) + pr(Fov) £ 6)

ds .

P(rr(X*,X) + pr(v',v) £9) =

(6.6)

The desired lower bound can be derived from (6.6) provided that a relevant
lower bound for the right hand side of (6.6) can be found. Use an obvious
inequality: ~

[(I"T(XS,X) + pT(F\\;L‘, V) g 5)

= [(rr(X5,X) + pr(V,v) £ 0,|ME| <k, |Mr| <k)

and estimate from below log(dQ’/d 0% )(X*, &) on the set {rr(X%,X) + pr(F,v)
< 5} N{|M§| <k} N {|M7| < k}. Noticing that ) (M)r = }S(X,v)r and éfor
[ (03(s,2)/0%(2))n(t,z) dz dt = ¢Fr(v) we obtain
doF ~ ~ %1
1 Z (X5E)=— — Lp(X,
oo (KE) 2= T L
v3(s,2)

o%(2)

By the remark to Lemma A.l (see Appendix), for any y >0 there exists
increasing continuous function 4,(y) with Ap(0)= 0, depending on v%(s,z)/d?(z)
and v only, such that

ff

m[V(dt,dz) — n(t,z) d= dt| .
28

fo V) o )y — (2 de di

o) <y +hy(d).
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Then the lower bound for the right hand side of (6.6) is the following:
—(2k/\/e) — (1/e)[Lr(X,v) + 7 + hy(0)]. It implies

elogP(rr(X*,X) + pr(v',v) £ 0)
> —Lr(X,v) = 2kv/e — 7 — hy(8) + elog P(rr (X, X ) + pr(¥,v) £ 6,
M| <k, [Mr| <k).
Thus the statement of the lemma holds since

lim lim P(7(X°,X) + pr(V,v) <0, M| Sk, [Mr| <k) =1
e—

what follows by virtue of (6.4), obvious lim; P(|M7| > k) =0 and

E|M:|? _ E(M*)7 _ const.

P(Mf| > k)< o S

—0, k—o0.

Proof of Theorem 6.1. Assume (i), (ii), and inf, . B*(x,z)>0. Due to
Lemma A.4 (see Appendix), one can choose a sequence v¥), k> 1 of mea-
sures such that for every k the function v,u)(4z) satisfies (ii’) and what is
more p(v,v%)) — 0, Ly(X,v®)) — Ly(X,v). On the other hand, by Lemma 6.1
for any ¢ > 0 and y > 0 there exist increasing continuous function /. x(y) with
h, x(0) = 0, depending on v*), such that

lim e log P(rr(X*,X) + pr(v',vF) £8) = —Lr (X, V) —y — =, 1(5) .

e¢—0

Choose ky(6) such that for any k = ko(6) we have 0 <& — pr(v,v¥)) < 5/2.
Then, taking into account the triangular inequality: pr(v¢,v) < pp(vé,v®) +
pr(v,v¥)), we arrive to a lower bound:

lim elog P(rr (X%, X) + pr(v*,v) < 9)

e—0

> lim elog P(rr (X%, X) + pr(v',v")) < 6/2)
e—0

> —Lr(Xv®) — 9 — 7, 1(5/2) .

The right hand side of the last inequality converges to —Lz(X,v) if limit
“limy lim,_ lims_.o” is taken.

Assume only (i) and (ii). Parallel to the process X/ introduce new diffusion
X5, peo:

dX*P = AP, &y dt + /e[ BXEP, &Y dW, + Bdw)]

subject to the same initial point xo, where W, is a Wiener process independent
of (W, ¢%). The diffusion parameter here is B*(x,z) + * and so, due to be
proved above,

lim lim ¢log P(rr(X>#, X) + pr(v5,v) £ 6) = —LE(X,v)

0—0¢e—0
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where L/;(X, V) = ;S?(X, V) + ;;FT(V), and where

Sy = TH - ABOF

0 B%(ta)(l‘)+ﬁ2

Evidently limg_o Sg(X, v) = S7(X,v). On the other hand, by Lemma A.6 (see
Appendix)

éin%) lin(l)slogP(rT(Xs’ﬂ,X‘g) >n)=—00.
—0e—
To get the desired result, we combine both these facts. Namely, using the

triangular inequality: r7(X*,X) < rr(X5F, X%) + rp(X*F,X) and taking n = 6/2
we arrive to an upper bound

P(rr(X5F, X) + pr(v',v) £ 9)
< P(rr(X5,X) + pr(v',v) < 8/2) + P(rr(X“F,X%) > §/2)
< 2max[P(rr(X°. X) + pr(V',v) £ 6/2).P(rr(X*F . X*) > 5/2)],

which implies

lim lim ¢ log P(r7 (X%, X) + pr(v’,v) £ 0) = — }jirr})Lg(X, v)=—Lr(X,v).

0—0¢e—0

Other approach for establishing lower bound with singular diffusion parameter
can be found in Puhalskii [25].

7 Proof of main result

Proof of Theorem 3.1. Due to Theorems 4.1, 5.1, and Proposition 3.1 the
family (X?,v*) obeys the LDP in (Cpo 5 X IMo,4},7% X pi) with rate function
Li(X,v). Then it obeys the LDP in the metric space (C x IM,r x p) with rate
function sup;, Li(X,v) = L(X, v).

Proof of Corollary 2.1. The result holds since infyce S(X,v) is attained at X?,
being a solution of a differential equation: X; = 4,(1,X;’) subject to X = xo,
and so S(X°,v) = 0.

Proof of Corollary 2.2. The first statement is obvious.

Assume B*(x,z) = 0. In this case S(X,v) =0 for any X, being a solution
of a differential equation X; = f 2 A(X;,2)n(t,2) dz subject to Xy = xo; otherwise
S(X,v) = oo. Therefore

] .
S(X) = { g IF . v o A2 2) dz, Xg=vo F(V) .
00, otherwise .
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On the other hand, since F(v) < oo implies dv = ndZ, d,n = n dz, assuming
measurability in ¢ of function

nz) pe)V
nz) p(z)} n(t,z)dz

(7.1)
we arrive at independent of ¢ function H (¢, y,x) = H(y,x), or by other words,
“inf” in (7.1) can be taken over all measures v with densities n(z,z) = m(z).
The last means the desired result holds if the function

H(t.X.,X,) = inf [ %) [
viXe=[p A(Xt,2)n(t,2) dz, Xg=x¢ R

_ . ) m'(z) p'(z) 2
H(yx) = -{dm,lnr,ldfz 1{0' (Z)[m(z) - p(z)] m(z)dz (7.2)
' y=JR A(x,z)m(z) dz

is measurable. We check this by showing that level sets of H(y,x) are closed.

Let ¢ =2 0 be fixed and (y,,x,), n = 1 be a sequence from {(y,x):
H(y,x) £ ¢} converging to a limit point (yg,xp). Show that H(yg,xp) < c.
By virtue of assumption (A.1) the set .Z(y,x) = {m:y = [, A(x,z)m(z)dz}
is closed in the Levy—Prohorov metric that is for every fixed (y,x) there exists
a density m**) from .2Z(y,x) such that

H(y,x)

(m>9@)y P
L TS

00, otherwise .

m»¥)(z)dz, dm) = (m>)Y dz

(7.3)

Note that the function H(y,x), defined in (7.3), obeys a following property:
there exists a measure v(>*) from Mo,1}, having density mY¥(z) w.rt. dtdz,

such that H(y,x) = Fi(v*¥). Since gF;(v) is good rate function level sets
{»,x: H(y,x) < c} are compacts. Therefore H(y,x0) < c.

Appendix

1. Evaluation via Levy—Prohorov’s metric

Lemma A.1 Let T >0, v',v' € My 1, pr(V',V") = q, and f(t,z) be bounded
continuous function. Then for any y > 0 and k = 1 one can choose increasing
continuous function hi(y), y = 0 with h(0) =0 and decreasing sequence
@i, k = 1 with limy @ = 0 both depending on f(t,z) and only from one of
v or V' such that

T
g'{f(t,Z)[V' —v'\dt, dz)| < v+ h(q) + ok -

Remark. If f(t,z) is bounded compactly supported continuous function, then
the statement of the lemma remains true with /;(y) = #’(y) and ¢4 = 0.
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Proof. Assume f(t,z) is continuously differentiable (one in z and twice in
(t,z)) and compactly supported in z. Denote by F’(¢,z) = v/([0,¢] X (—00,z])
that is F’(t,z) is the distribution function correspoding to V. Integrating by
parts we get

fof(r,z)v’(dz, dz) = —fo [af(t ) azé;(a’f) F'(t,z)dz dt
0 R 0 R

and consequently (F” is the distribution functions corresponding to v'')

T
Of 1{ ft2) —V'(dt, dz)

T
< Of 1{ |F'(t,2) — F"(t,2)|m(t,z) dz dt ,

where m(t,z) = [(0/0z)f(t,2)| + |(8*/dtdz) f(1,2)|.

Assume f'(t,z) is compactly supported in z and continuous only. Then,
approximating it by compactly supported and continuously differentiable in z
function f7(,z) in a sense sup, _ | f(t,z) — f7(¢,z)| < y/2T, due to the forego-
ing proof, we get

fff(tz) vV —v'(dt, dz)| y+ff\F (t,z) — F"(t,z)|m"(t,z) dz dt
0 R

with m’(t,z) = |(0/0z) f7(t,z)| + |(0*/otdz) f7(t,2)).

In the general case, one can choose a decomposition f(t,z) = fi(t,z) +
gk(t,z), where fi(t,z) is continuous compactly supported in z on the interval
[—k, k] function while g,(f,z) = 0 on the interval [—(k — 1/2),(k — 1/2)] and
is bounded: |gx(2,z)| < L. Then by foregoing result we get

fo £t —v'(dt, d=)| < y+ff\F (t,2) — F"(t,2)|m)(t,2) d= di
0 R

T
+ L[ [ D+t dz),

0 |z|>k—1/2

where m;(t,z) = |(0/0z) f{(t,z)| + [(8?/0tdz) f](1,z)|. Evaluate from above the
last integral from the right hand side. To this end, choose an increasing
sequences zj; /00, k — oo such that z; < k — 1/2 and for every k z; and —z;
are points of continuity for the distribution function F’(7,z). Then

T
[ [v’+v”](dl,dz)§2f [ V(dt, dz) + f [ Y =", dz)
0 |z| >k

—1/2 0 |z| >z 0 |z| >z

Il

II/\

fT [ V(dt, dz) + |F'(T,z) — F"'(T,z,)|
0z

z| >z

+ |FI(T9_Zk)_F”(Ts_Zk)‘ .
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Now evaluate from above |F'(t,z) — F"(t,z)| via ¢ and F’(¢,z). From the
definition of the Levy—Prohorov metric (see e.g. [22,26]) it follows: g +
F'(t—qz—q)—F'(t,z) S F'(t,z) —F"(t,z) £ g+ F'(t+q9,z+q) — F'(t,2)
and so

‘F/(taz)_FN(taZN é q+ [F/(t‘f'q,z‘f'Q) _Fl(t_q,z_q)] .

Hence, combining all obtained upper estimates, we arrive at the desired
result with

T
h(y)=y (2L+ ffm}i(t,z)dtdz)
0 R

+

O—~

JIF'(t+y,z+y)—F'(t — y,z — y)Im(t,z) dz dt
R

+LIF(T+ y,zk + y) — F'(T — y,zk — )|
+LIF(T+ y,—zk + y) — F'(T — y,—z — y)|
and
T
ok =2L[ [ V(dt, dz).

0 |z| >z

The same proof takes place with F” instead of F’.

2. The Fenchel-Legendre transform

Let A(z) = ZiAMt)I(t; < t <tyy) with non overlapping intervals [f;,21).
For any X € (E[(),T] and v € M[O,T] put fOT )»(l‘)d)(t = Zi/l(ti)[XT/\tiH —XT/\[i],
Ay(t,X) = [ AX,,2)K(t, dz), and Bi(1,X,) = [, B*(X;,2)K\(t, dz). Let & be
non linear operator defined in (4.16).

Lemma A.2 For any X € Cpo,r) and v € My 1
T
sup [ [A(6) dX, — (Au(t.X,) = 322 (D)BY(6.X,)) dt
0
7 [X — Ay(t X)P

)i
=977 BiLX)
00, otherwise ,

dt, dX,=X,dt,

where “sup” is taken over all piece wise constant functions (t).

Lemma A.3 For any v € Mg

T
inf [ [ Qu(t,z)v(dt, dz)
0R

n(t,z) p(2)
00, otherwise ,

/ / 2
{ —é fOT Jx a’(z) ["Z("Z) -7 (Z)] n(t,z)dzdt, dv=ndl, dn=n.dz,
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where “inf” is taken over all continuously differentiable (once in t and twice
in z) compactly supported in z functions u(t,z).

Proof of Lemma A.2. For dX; < dt the result follows from Lemma 6.1 in [17]
(see also Lemma 2.1 in [27]). For dX, = X,dt by Lemma 6.1 [17] “sup fOT”
is equal [, sup,cp{A(X; — 4,(6.X0) — J2BU6X))} di =} [y (IX0 = 46X/
BX(1,X,)) dr.

Proof of Lemma A.3. Assume dv=nd), d.n=n. dz. Due to (2.1), p'(z)/p(z) =

(2b(z) — 20(2)d’(2))/0*(z) and so b(z) = ,[0°(2)(P'(2)/ p(2)) + 20(2)d’(2)].
Putting v(¢,z) = u.(t,z) and taking into account the formula for b(z) we
arrive at

ff@u(z n(tz)dzdi = fo { [az(z)p/(z) +20’(z)0'(z)] o(1,2)
0 R ’ ’ S 2 0 R p(z) ’

+a%(2)(vl(t,z) + vz(t,z))} n(t,z)dzdt . (8.1)

Then, integrating by parts,

[ @) (Wit 2t z)dz = — [ v(t,2)[20(2)d’ (2)n(t,2) + a*(2)nl(t,2)] dz ,
R R

we obtain

fo@u(l,Z)n(t,z)dzdt
0 R

z)

= ; af;{ o%(z) (vz(t,z)n(t,z) +0(t,2) ’;((Z) n(t,z) — nz(t,z)D dz dt .

(8.2)

(8.2) and the method of proving for lemma 6.1 in [17] imply
T
inf [ [ Qu(t,z)n(t,z) dz dt
0 R

_ ; {TRfoz(z)irelg (vzn(t,z) +o E((ZZ))

n(t,z) — nz(t,z)]> dz dt

r (1, @)
[ [e*@2) {"( 2 _ p(z)} n(t,z)dz dt .
0R n(t,z)  p(z)
Thus for “dv = nd/,d.n = n. dz”, the result holds.

Assume dv = ni,d,n < dz. Show that inf fOT S Du(t,z)n(t,z) dz dt = —oo.
To this end, take u(f,z) = u(z) and put v(z) = /(z). The function v(z) is
compactly supported and continuously differentiable and, in particular, has
the finite total variation. Put n(z) = fOT n(t,z)dt and w(z) = éaz(z)n(z). It is
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clear that there exists a positive constant, say, / such that /(v) = [, R[vz(z) +
[v(z)[In(z) dz + [, w(z)dv(z) is an upper bound for the right hand side of (8.1).
Show that /(v) can be chosen less than any negative quantity. Use the fact
that I(v) is well defined not only for compactly supported and continuously
differentiable function v(z) but also for any compactly supported function v*(z)
obeying finite total variation. Assume that there exists a family of v*(z), o €
(0,17 such that
lim /(v*) = —0 (8.3)
o—0
and every function v*(z) obeys an approximation by v%(z), m = 1 of contin-
uously differentiable compactly supported functions in a sense

lim 7(y,) = 1(v") . (8.4)

We show that under (8.3) and (8.4) the desired result holds. In fact, for fixed «
one can choose a number m, such that |/(v*) — I(v}, )| < 1. Hence we obtain

T
inf [ [ Du(t,z)n(t,z)dzdt < 1(v,) < 1+1(v") = —o0, a—0.
0 R
Therefore, only (8.3) and (8.4) have to be checked. Since d.n <§ dz the
function n(z) is not absolutely continuous and w(z) is inherited the same
property. Therefore by the definition of the negation for absolute continu-
ity [28] a constant £ can be chosen such that for any o >0 there exists a
positive constant ¢ and non overlapping intervals (z/,z/') € [—c¢,c], such that

121
"
1

Siw(z") —w(z))| = k and 3; fzz, n(z)dz < o. Put

1
‘ - sign[w(z) —w(z)], z<z=z,
vi(z) = Vo

0, otherwise .

Show that (8.3) holds. Evaluate from above 7(v*):

1(v") = ¢ [[(0"2) + [0z dz + [ w(z)dv'(z)
R R

</ (i + ;) Zf e+ SwEDIE) - V)

< /(1 + Vo) + 2wz (E") — v*(E@)] -

Now, summizing by parts, we find Yw(z))[v*(z]) — v*(z})] = —Zv*(z})
[w(z/") — w(z})]- On the other hand, from the definition of v*(z) it follows
() — wED] = (1)) — w(z)| 2 k/v/. Thereby

1) < £(1 + /o) — j’a

— 00, o—0.
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Evidently to satisfy (8.4), it is sufficient to choose approximating functions
v%(z), m =1 which are compactly supported and continuously differ-
entiable and such that lim, v%(z) =v*(z) in every point of continuity
of v*(z).

Assume v < 4. Put KV(dz) = fOT K,(t,dz) dt and note that K"(dz) < dz. Use
Lebesgue’s decomposition: K'(dz) = q(z) dz + K*(dz), where g(z) is a density
of absolutely continuous part of K*(dz) and K+ (dz) is its singular part. Taking
u(t,z) = u(z) which is compactly supported, say, on [—c,c] we find

T c c
[ Gu(z)w(dt, dz) = [ Du(z)q(z)dz + [ Du(z)K*(dz) .
0 —c —c
Since [u/(z)| < |u/'(0)] + [ [u"(y)| dy there exists constant, say, /, such that

fic u(z)q(z)dz < (1 + f; |#”(y)| dy) and so we arrive to an upper esti-
mate

f@u(z)v(dt, dz) £ ¢ (1 + fc |u"(z)dz> + ; j ()" (2)K*(dz) .
0 Ze 2

Then, using the singularity of K (dz) and dz, one can choose u”’(z) such that
the second integral is less than any negative quantity while the first remains
bounded.

3. Approximation of rate function

For “dX = X, dt, dv=nd), d.n=n’dz” denote by

X — A (X))

T
Y
ST =L gy A
P N (0 B O) B
T(”)_of{“(z)[na,z) - p(z)} nhz)dzdt

Also note one to one correspondence between density n(#,z) and function
vy(t,z) defined in (6.1):

n(t,z) = n(t,0) []jg); exp (ZOj v;gi’;)) dy> . (8.5)
Put
(1) = 1{ n.(t, y)| dy . (8.6)

Lemma A.4 Let B2(x,z) = % > 0. If Sp(X,v) < oo, Fr(v) < oo, then v can be
approximated by a sequence of measures vX), k > 1, satisfying the property:
dv® = n®dj, d.n® = n dz, such that the function v, (1,z), corresponding
to n")(t,z), is compactly supported in z and continuously differentiable in (t,z)
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and what is more
lim pr(v,v) = 0,

1i/£n Sr(X,v®) = Sp(X,v), (8.7)
liFFT(v(k)) =Fr(v).

Proof. Introduce a chain of expanding subclasses of measures v characterized
in terms of n(t,z) and v,(t,z2):

0) v,(t,z) is compactly supported in z and continuously differentiable
in (4,2);

1) vy(¢,z) is compactly supported in z and bounded;

2) vy(t,z) is compactly supported, inf,<7..cr (n(t,2)/p(z)) > 0 and sup, -,
[n(2,0) + $(1)] < o0;

3) v(t,z) is compactly supported, inf, <7 .cr (n(t,z)/p(z)) > 0;

4) v,(t,z) is compactly supported;

5) vy(t,z) satisfies the assumptions of the lemma.

[37¥21)

The proof is based on the following fact. If measure v from class i
(i=1,...,5) can be approximated by v¥), k>1 from class “/ —1” in a
sense (8.7), then the statement of the lemma holds.

Assume v®), k& >1 is such that

Ar — lilfn n®(t,z) = n(t,z) (Ar(dt, dz) = I, dt dz)
1iI£nFT(v(k)) = Fr(v). (8.8)

Then by Scheffe’s theorem [29,22] we have limkaTfR |n(t,z) — n®)(t,z)| dt dz
=0 that is v*) converges to v in the total variation norm which implies con-
vergence in Levy—Prohorov’s metric too: pr(v,v®)) — 0. Since 4, (t,X,) =
Jp AKX, 2)(1,2)dz and B2 (6, X,) = [ BX(X;,2)n™(1,2)dz by Lebesgue
dominated theorem S7(X, v(k)) — S7(X,v). Therefore, for all steps of approxi-
mations only (8.8) has to be checked.

Assume v is from class “1”. Approximate v,(,z) by v(vk)(t,z):

lim
k

=N

[ Tvut,z) — V()P (1 + n(t,2))dtdz = 0,
R

where for all k& the functions vgk)(t,z), k=1 are compactly supported con-
tinuously differentiable in (z,z). Without loss of a generality one can assume
that all function are bounded by the same constant. Similarly to (8.5) define a
density of v(©):

z gk) t,
A0t 2) = n®(1,0) ig; exp ( Of v 62((2; ) dy> , (8.9)
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- (0 -1
o= (‘f o) <of "l @ > dz)

vO(dt, dz) = n™(t,z) dt dz .

with

Put

Evidently v*) belongs to class “0”. It is easy to check that

v0(t,2) = 0,00 (1,2) (8.10)

and the validity of the first part in (8.8). To verify the second part in (8.8),
note that

(v, (2,2

(- ) (k)(t,z)dz dt

Fr(v®) = 4ff
0 R

and consequently

T
|Fr(v) — Fr(V®)| < const. [ [ |n(t,z) — n'™(t,2)|dtdz
0 R

T
+const. [ [ |vi(t,2) — (v, (8,2))*|dt dz
0 R

— 0, k— oo

Assume v is from class “2”. For the definiteness assume that there exists
positive constant zy such that v,(¢,z) =0 out of [—z),zp]. Put v(vk)(t,z) =
vy (,2)I(|n(t,2)| £ k), define n®)(t,z) by (8.9) and take v*) with this den-
sity. It belongs to class “1”. Herewith, v, )(t z) is defined by (8.10). It is clear
that the first part in (8.8) holds and below we check the validity of the second
part. We have

v%(t z)

T
EOVY =4[ [ 2(’2)I(|nz(t,z)|§k)n(k)(t,z)dzdl,
0 |z]=<z

FT(v)=4fT I vggt’z)n(t,z)dzdt.
0 222 ()

The required convergence Fr(v¥)) — Fr(v) holds by Lebesgue dominated
theorem since n'¥)(1,z) < p(z) exp(2¢(t)) < const.n(t,z).

Assume v is from class “3”. Putting v, )(t z) = v,(t,2)[(n(t,0) + Pp(t) < k)
we arrive at
n(t,z), n(t,0)+ (1) =k,
(k)(t z)= {

pz),  n(t,0)+ o) >k,

and since n)(1,0) <k + p(0) and ¢ (1) <k + [, |p'(z)| dz measure v*) with
density n¥)(z,z) belongs to class “2”. It is clear that the first part in (8.8) holds
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and

2
|Fr(v) — Fr(vP)| = 4 Ole lf ”“EZ’ZZ))I(n(t, 0) + ¢(t) > k) p(z) dz dt
< const. OfTI | I ;g(}z)  1(1,0) + () > kon(t,2) dz di
z| <zg

— 0, k— oo.

Assume v is from class “4”. Put n'©)(¢,z)=c®)(t)(n(t,z) V p(z)), where cX)(t)=
(Jp(n(t,2)V p(z))dz)"" is norming constant. v*) with this density belongs to
class “3”. The first part in (8.8) holds and what is more lim; ¢¥)(t) = 1. On
the other hand, since v, (¢,z) = vy(t,2)I(n(t,z) = p(z)/k) we obtain

Fr(v?) = 4fo Uig?zz))l(n(t,Z) > p(2)/k)c O (t)n(t,z) dz dt
0 R
4}] 222 ) n(t,z)dzdt = Fr(v) .
0 R

Assume v is from class “5”. Put 0\°(¢,2) = v,(1,2)T(|z| < k) and define n®¥)(1,z)
by (8.9). Then
n(t, k)

p(2) ., z>k,
p(k)
n®(t,z) = n®(1,0){ n(1,2), lz| <k,
p(2) n(t, =k) z<—k.

p(=k)’
Taking v*) with this density and noticing that lim; n*)(£,0) = 1 we find

2
FT(v<k)):4jT‘ [ (w(5,2)) O(n(t,z)dzdt — Fr(v),

0 |z <k a*(z)
i.e. both parts in (8.8) hold.
4. Ergodic property

Consider diffusion pair ()?;:,E;‘) defined by It6’s differential equations w.r.t.
independent Wiener processes W; and V;:

dXF = G(t, X!, &) dt + eB(XE, E)dW,
1 (8.11)
PRGILL

subject to (xg,z9), where B(x,z) and o(z) are functions involving in (1.1).
Assume b(t,z) is continuous it (z,z), continuously differentiable in ¢, Lipschitz

-~ 1~
dg = . b(t, &) dr +
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continuous in z uniformly in ¢, and zb(¢,z) is negative for large |z| uniformly
in t. Also assume that

th - Ap(tsx)

G(t,x,z) = B,(1.x)
'p\s

B(x,z) + A(x,z) , (8.12)

where A(x,z) involves in (1.1), X; is the Radon-Nykodim derivative of abso-
lute continuous function X; from C with Xy = xo, 4,(t,x) = fRA(x,z)p(t,z)dz,

By(t,x) = \/fRBz(x,z)p(t,z)dz, and where (comp. (2.1))

exp(2 5 25 dv)

o= L

with norming function ¢(¢) such that |, z P(,z)dz = 1. Introduce an occupation

measure V(dt,dz): V(A xT)= [I(t € A& €T)dt and put v(dt,dz) =
p(t,z)dz dt.

Lemma A.5
P —limpr(¥,v) =0 and P - lim rr(X5X)=0.
&e— &E—

Proof. 1t is clear, the first statement of the lemma is equivalent to: for any
bounded and continuous function A(¢,z) fOTfR h(t, &) dt — fOTfR h(t,z)p(t,z) dz dt
in probability or, for h°(t,z) = h(t,z) — fOT Jo h(t, y)p(t, y)dydt,

r ~
P—lim [ [t E)dt=0.
¢=0 70 R

First we check it for continuously differentiable in ¢,z function k(¢,z), having
bounded partial derivatives. Straightforward calculation brings Kolmogorov’s
type differential equation (7 is fixed):

10
(0°(x) p(t,x)) = b(t,2) p(t,2) .
20z
A conjugate differential equation

ow(t,z)

1
o*(z) + b(t,z) = i°(1,2) (8.13)
2 0z
obeys a solution
w(t,z) = I 1@ y)p(t, y)dy .

o%(2)p(t:2) ~o

It is clear that properties of h(t,z) are inherited by w(¢,z) and so func-
tion u(t,z) = foz w(t, y)dy is continuously differentiable once in ¢ and twice
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in z and what is more, due to the boundness of w(z,z), there exists a positive
constant, say ¢, such that |u(t,z)|=</|z| and |u(t,z)|=/|z|. Apply-
ing It6’s formula to u(t,g;") and taking into account that w(z,z) is solu-
tion of differential equation (8.13) we find u(T, &) = u(0, &) + [, ul(t, &) dr

F(1/\e) [ w(t,E)a(E)dV, + (1/e) [} hO(t, &) dr that is

T -
[ &) de = eu(T, &7 ) — eu(0, &)
0

- efTu;(z,Ef)dz - \/sfw(t,'ff)o(éf)dm . (8.14)
0 0

The second term in the right hand of (8.14) converges to zero; the last term
converges to zero in probability since by Problem 1.9.2 in [23] the mentioned

convergence follows from & fOT w(t, 55)02(55) dt — 0; other two terms converge
to zero in probability if lim, ¢ &’E sup,<r (&) = 0. To check the last, apply
1t6’s formula to (e£°)?:

~ t - t ~
(6&))" = (8&0) + 2¢ [ b(s, E)E ds + & [ 07 (&;) ds
0 0
[ ~
+ 2632 [Ea(E)aV .
0

The function b(s,z) is such that zb(¢,z) is negative for large |z| what implies
(6E) < (e&0)? + Teconst. + 2632 IN E6(E)dV,. Thereby E(c¢E) < (&)’ +
Teconst. In turn, using Doob’s inequality (see e.g. Theorem 1.9.1 in [23]),
we arrive to Esuptgr(ggf)2 < (&&y)? + Teconst. + const.&? fOT E(sgf)2 dt and,
due to the above obtained upper bound for E(sg‘f)z, the result holds.

If h(¢,z) is bounded and continuous only, it can be approximated by smooth
functions #,,(¢,z), m = 1 in the following sense: for any £ = 1 lim,, SUP, <7, || <k
|(t,z) — hu(t,z)| = 0. Since for every h,(t,z) the statement of the lemma is
proved, it holds for A(t,z) if

T
lim [ [ |h(t,2) — hu(t,2)| p(t,2) dzdt = 0,
" 0 R
T i i
P — lim lin(l)f |A(t, &) — h(t,E)n(t,2)dt =0 .
m &— 0

The first takes place since limy fOT f\z\> , 1(t,z)dz dt = 0 while the second from
P — lim,, lim,_,¢ fOT I (|Ef)| > k) dt = 0 and the fact that one can choose smooth
bounded functions gx(z), k=1 such that I(|z| > k) < gi(z), limy gx(z)=0,

z € R and by proved above fOTgk(Ef)dl — fOT Je9x(2)p(t,2)dzdt — 0,
k — oo.
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To check the second statement, put A, = )?ft — X,. From the first equation
in (8.11) we find

LTX — Ay(s, X))~ . _ ‘

A= ¢ = Ap(s, ‘)B(X;,§§)+A(X;,§§)—Xs ds + /¢ [ B(X! X¢ “‘g)dW
0 Bp(SaXv) 0

/Yt _Ap(saX)

By BUEHE - B(Xg,:»] ds

I

0

+j I:Xv *Ap(SaXv)
0

B, (s, Xy) (B(X:.C9) — BP(S’Xs))] ds

+ [ (AXEE) — A, EY) ds + [ (A, &) — A,(5,X,)) ds
0 0
e [ BEEEYdW,
0

For brevity put ¢, = (X; — 4,(s,X;))/B,(s,X;). Then by the Lipschitz continu-
ity of A(x,z),B(x,z) in x uniformly in z, say, with constant /, we obtain

t
1A =7 [+ [os])Asds + sup
0 (<T

[ os(B(X;, &) — B,(5,Xy)) ds
0

+ sup f(A(Xs,f ) — Ap(s, X)) ds

t<T

L
+ Vesup | [ B(X], &
t<T |0

Therefore, by Gronwall-Bellman’s inequality

sup | 2] < exp (ff(l + |q>g|>ds)

t<T

(B(X,, &) — By(5,X;)) ds

t
X [sup
<7 |0

+ sup f(A(XS,f) Ap(s,X;)) ds| + /esup fB(X*’,Nf S] .
(<T (<T
Hence, the second statement holds if
P — lim sup v/e sup fB(XS,ff (8.15)
e=0,<7 t<T

and for any measurable function i such that fOT Y2ds < oo and any continuous
function C(x,z), being Lipschitz’s continuous in x uniformly in z,

P — lim sup flps(C(XS,«:) Cp(s, X)) ds

e=0:<T [

=0, (8.16)
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where C,(s,X;) = fR C(X;,z) p(s,z)dz. 1t can be shown (see e.g. the method of
proving the statement (2) of Theorem 4.6, Chap. 4 in [24]) that sup, 7 E()?f)2 <
const. and so E fOT Bz(if,gz)ds =< const. Consequently, by Doob’s inequality

(see e.g. Theorem 1.9.1 [23]) we get Esup, .7 |/¢ fot B()?j,gﬁ)dWSP < econst.
that is (8.15) holds. To check the validity of (8.16) with ,C(x,z) = 0, note
that, due to Problem 5.3.2 in [23], it is sufficient to prove

t -
P - lir%f lkg(C(XS,fﬁ) —Cp(5,X))ds =0, Vt<T, (8.17)
&E— 0

and what is more, due to an arbitrariness of ), and C(x,z), (8.17) implies
(8.16) in the general case since one can use separately (8.17) for positive
(ysC(x,z))" and negative (Y;C(x,z))~ parts. Therefore, (8.17) remains to be
verified. If y is bounded and continuous, (8.17) takes place by virtue of the

first statement of the lemma. If only fOT W2 ds < oo, approximate i, by bounded
and continuous functions 1//S(k) , k=1 such that limy fOT(lﬂY — 1/4.(/‘ ))2 ds = 0 and,

due to the boundness in z of C(x,z) and Cauchy—Schwartz’s inequality, we
find that

f (=) C (X, E—Cy(s, X,)) ds| < const. \/ fr(l//s — YN ds—0, k— oo
0 0

that is (8.17) takes place since it holds for every lﬁs(k).
5. LD-regularization

Parallel to X7, defined in (1.1), determine new diffusion .X*# with uniformly
non singular diffusion parameter B*(x,z) + 2, % >0, letting

dX; P = AT &y di + Vel BOGT Sy AW+ paW]] (8.18)

subject to the same initial point xo, where W/ is a Wiener process independent
of (W, ¢p).

Lemma A.6 Under assumption (A.1) for every T >0 and n >0

lim lim &log P(rr (X, X*) > 1) = —c0 .

p—0e—0

Proof. Put A, = X;* — Xx¢, and

AX",z) — A(X',z)

1

B(x",z) — B(x',z)

aj(x',x",z) = X" —x! ar(x',x",z) = x" —x ’

where for x’ = x” a;(x',x’,z), i = 1,2 are Radon—Nikodym’s derivatives. Note
that for x' +x" a;(x’,x",z), are bounded, say, by constant 7, and so a;(x’,x’,z)
can be taken bounded by the same constant. For brevity, denote by o;(¢) =
a:(X P xp,E0), i=1,2. (8.18) and (1.1) imply: A, = fot a1 (8)As ds + /& fot
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w(s)Ay dW + \/eBW,. Letting &, = exp(fot[oq(s) — (¢/2)03(s)] ds + /¢ fot o)
(s)dW;) and using It6’s formula, we find that A, = \/¢fé&, fot &71dw! and
thereby

t
[& aw]
0

sup |A,| < /ef sup &,sup
(<T

t<T  t<T

Put 'y = {I/N <inf, <7 6, <sup,.y &, <N} and use an upper estimate
P (sup|Af| >n) <p (sup|A,| >n,rN) +P@\Ty)
(<T (ST

< 2 max {P (sup |A] > n,FN> ,P(Q\I‘N)}
(<T

which implies, due to the boundness of o;(s), i = 1,2, the desired statement if

[ aas)dW,
0

lim lim ¢log P <\/ssup >N) = —00,
N &—0 t<T

t
[etaw!

lim lim ¢log P
lim lim & log <\/Sﬁsup0

(<T

>11,FN)—00, YN=1. (8.19)

Let t={t<T:| [, oa(s)dWs|>(N/\/e)} and o= {t<t:|[5 & dW! >
(n/vef)}. Tt is clear that (8.19) is equivalent to:

lil{[n lin(l)slogP <\/8fo¢2(s)dWs >N (or < —N)) = —00,
&— 0

[lgirr%)lin(l)slogP (Jsﬁfé)s_ldWs’ >n (or < —n),FN) =00, YN21.
— E— 0
(8.20)

Below we check (8.20). To this end with 4 € R, introduce continuous local
martingales: Z! = exp(4 fot o (s)dW, — ()h2/2)f0t a3(s)ds) and Z? = exp(4 fot
AW — (32)2) fot &2 ds), where each of them is a supermartingale too (see
Problem 1.4.4. in [23]) that is EZ! <1 and EZ2 < 1. Then we use obvious in-
equalities: EI(v/e [ aa(s)dW, 2 N)Z! <1 and EI(\/¢B [y &,dW! =, Ty)Z?
< 1. Since for 4> 0, logZ! = (AN/\/e) — (J2¢*T/2) and log Z! = (Jn/\/eB) —
(22N2T/2) on sets {\/c [j aa(s)dW; =N} and {\/eB [ &dW] Zn, Ty} res-
pectively, we arrive at (8.20) for “> N> and “> 5", taking A! = (N/\/e/*T) and
42 = (n/+/eBN*T). For “< —N” and “< —y” the validity of (8.20) is proved
in the same way.
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