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Summary. We formulate large deviations principle (LDP) for di�usion pair
(X �; ��) = (X �

t ; �
�
t ), where �rst component has a small di�usion parameter while

the second is ergodic Markovian process with fast time. More exactly, the LDP
is established for (X �; ��) with ��(dt; dz) being an occupation type measure cor-
responding to ��

t . In some sense we obtain a combination of Freidlin–Wentzell’s
and Donsker–Varadhan’s results. Our approach relies on the concept of the ex-
ponential tightness and Puhalskii’s theorem.

Mathematics Subject Classi�cation (1991): 60F10

1 Introduction

Let � be a small positive parameter, (X �; ��) = (X �
t ; �

�
t )t=0 be a di�usion pair

de�ned on some stochastic basis (
;F;F = (Ft)t=0;P) by Itô’s equations
w.r.t. independent Wiener processes Wt and Vt :

dX �
t = A(X �

t ; �
�
t ) dt +

√
�B(X �

t ; �
�
t ) dWt ;

d��
t =

1
�
b(��

t ) dt +
1√
�
�(��

t ) dVt

(1:1)

subject to �xed initial point (x0; z0).
Assume (X �; ��) is an ergodic process in the following sense. Let p(z) be

the unique invariant density of ��,

�(p)(dt; dz) = p(z) dt dz ;

and X t is a solution of an ordinary di�erential equation Ẋ t = A(X t) with
A(x) =

∫
R A(x; z)p(z) dz subject to the same initial point x0. Then for any
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bounded continuous function h(t; z) and T ¿0

P− lim
�→0

T∫
0
h(t; ��

t )dt =
T∫
0

∫
R
h(t; z)�(p)(dt; dz) ;

P− lim
�→0

rT (X �; X ) = 0 ;

(1:2)

where rT is the uniform metric on [0; T ]. The above-mentioned ergodic property
is a motivation to examine LDP for pair (X �; ��), or more exactly for pair
(X �; ��), where �� = ��(dt; dz) is an occupation measure on (R+ × R;B(R+)⊗
B(R)) (B(R+), B(R) are the Borel �-algebras on R+ and R respectively)
corresponding to ��:

��(�× �) =
∞∫
0
I(t ∈ �; ��

t ∈ �) dt; � ∈ B(R+); � ∈ B(R) : (1:3)

A choice of �� as the occupation measure is natural since the �rst ergodic
property in (1.2) is nothing but

P− lim
�→0

�T (��; �(p)) = 0 ;

where �T is Levy–Prohorov’s distance for restrictions of measures �� and �(p)

on [0; T ]× R: Also the �rst Itô’s equation in (1.1) and the predictable quadratic
variation 〈M�〉t of a martingale M�

t =
∫ t
0 B(X

�
s ; �

�
s)dWs can be represented in

the term of ��:

X �
t = x0 +

t∫
0

∫
R
A(X �

s ; z)�
�(ds; dz) +

√
�M�

t ;

〈M�〉t =
t∫
0

∫
R
B2(X �

s ; z)�
�(ds; dz) :

The random measure �� obeys the disintegration ��(dt; dz) = dtK��(t; dz) with
the transition kernel K��(t; dz) being probabilistic Dirac’s measure that is ��

values in space M =M[0;∞) of �-�nite (locally in t) measures � = �(dt; dz)
on (R+ × R;B(R+)⊗B(R)) obeying the disintegration �(dt; dz) = K�(t; dz) dt
with the probabilistic transition kernel K�(t; dz) (

∫
R K�(t; dz) ≡ 1). X � values in

the space C = C[0;∞) of continuous function. De�ne metrics r and � in C and
M respectively, letting

r(X ′; X ′′) =
∑
k=1

rk(X ′; X ′′) ∧ 1
2k

and �(�′; �′′) =
∑
k=1

�k(�′; �′′) ∧ 1
2k

:

Evidently ergodic properties (1.2) are equivalent to

P− lim
�→0
[r(X �; X ) + �(��; �(p))] = 0

and so for examination of the LDP for (X �; ��) we choose the metric space
(C×M; r × �).
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Recall the de�nition of LDP from Varadhan [1] adapted to our setting. The
family (X �; ��) obeys the LDP in the metric space (C×M; r × �) if

(0) there exists a function L(X; �), X ∈ C, � ∈M, values in [0;∞], such that
its level sets are compacts in (C×M; r × �);

(1) for any open set G from (C×M; r × �)

lim
�→0

� logP((X �; ��) ∈ G)= − inf
(X;�)∈G

L(X; �) ;

(2) for any closed set F from (C×M; r × �)

lim
�→0

� logP((X �; ��) ∈ F)5 − inf
(X;�)∈F

L(X; �) :

The function L(X; �), meeting in (0), (1), and (2), is named rate function
(action functional in the terminology of Freidlin and Wentzell [2] or good rate
function in the terminology of Stroock [3]).
Below we recall well known particular results in LDPs related to pair

(X �; ��) and give corresponding forms of rate functions which will be in-
herited by a rate function for our setting. Note at �rst LDP for family
��(dz) = ��([0; 1]; dz) (on the space of probability measures supplied by Levy–
Prohorov’s metric) proved by Donsker and Varadhan [4–7] for a wide class
of Markov processes ��

t = �t=�. Corresponding rate function obeys an invariant
form: for any probabilistic measure � on R

I(�) = − inf ∫
R

Lu(z)
u(z)

�(dz) ;

where L is backward Kolmogorov’s operator, respecting to �, and where
“inf ” is taken over all functions u(z) from the domain of de�nition for
the operator L. For the di�usion case, G�artner’s type of I(�) is well
known [8]:

I(�) =

{
1
8

∫
R �2(z)

[
m′(z)
m(z) − p′(z)

p(z)

]2
m(z) dz; d� = m(z) dz; dm(z) = m′(z) dz ;

∞; otherwise :
(1:4)

Freidlin–Wentzell’s result [2] is devoted to LDP for di�usion X � with drift A(x)
and di�usion B2(x) (independent of z) in the space of continuous functions on
every �nite time interval, supplied by the uniform metric. A rate function, say,
for [0; T ] time interval is given by

S(X ) =

{
1
2

∫ T
0
[Ẋt−A(Xt)]2

B2(Xt)
dt; dXt = Ẋt dt; X0 = x0 ;

∞; otherwise :
(1:5)

Other type of LDP for a degenerate di�usion X � de�ned by the �rst equation
in (1.1) with B(x; z) ≡ 0 and ��

t = �t=�, where �t is Markov process values
in a �nite state space, also is well known from Freidlin [9]. In this case
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rate function has a form similar to (1.5) (H (y; x) is some non negative
function):

S(X ) =

{∫ T
0 H (Ẋt ; Xt) dt; dXt = Ẋt dt; X0 = x0 ;

∞; otherwise :
(1:6)

All above-mentioned LDPs are inspired by the examination of the LDP for
(X �; ��). In some sense, the LDP for (X �; ��) is a combination of Donsker–
Varadhan’s and Freidlin–Wenzell’s results. Namely LDP for �� is a general-
ization one for �� while LDP for X � is implied by LDP for �� and for a di�usion
martingale scaled by

√
�. Hence, a rate function for (X �; ��), is de�ned as a sum:

L(X; �) = L1(X; �) + L2(�); where L1(X; �) and L2(�) respect to X � and �� and
what is more L1(X; �) has the same form as S(x) in (1.5) with A(Xt) and B2(Xt)
replaced on A�(t; Xt) =

∫
R A(Xt; z)K�(t; dz) and B2�(t; Xt) =

∫
R B2(Xt; z)K�(t; dz),

where K�(t; dz) is the transition kernel of measure �:
Note that ��

t ∈ R and so the LDP for its occupation measure responds to a
non compact di�usion case. Also note that di�usion parameter B2(x; z) is not
assumed to be non singular and consequently B2(x; z) ≡ 0 is admissible. The
last allows to derive LDP for a singular di�usion parameter case from LDP
for �� using the contraction principle of Varadhan [1] (continuous mapping
method of Freidlin [10]). This result extends above-mentioned [9] for non
compact case.
In contrast with Freidlin and Wentzell [2], Donsker and Varadhan [4–

7], G�artner [8], and Veretennikov [11,12], and many others (see e.g. Acosta
[13], Dupuis and Elis [14]) our method of proof is based on Puhalskii’s the-
orem [15,16] and relies concepts of exponential tightness and LD relative
compactness.
The paper is organized as follows. In Sect. 2, we formulate the general

assumptions and the main result. Section 3 contains the method of proving
LDP which also has been used in [17]. In Sect. 4, we check the exponential
tightness while in Sects. 5 and 6 the upper and lower bounds in local LDP
are veri�ed. The main results are proved in Sect. 7. All technical results are
gathered in Appendix.

2 Assumptions. Main result

1. We �x the following conditions which are assumed to be ful�lled hereafter.

(A.1) A(x; z) and B(x; z) are continuous in (x; z), Lipschitz continuous in x
uniformly in z, and supz (|A(0; z)|+ |B(0; z)|)¡∞;

(A.2) �2(z) is bounded and uniformly positive function; it is continuously dif-
ferentiable, having bounded and Lipschitz continuous derivative;

(A.3) b(z) is Lipschitz continuous, satisfying

lim
|z|→∞

b(z)sign z = −∞ :

It would be noted that (A.2) and (A.3) imply, so called, assumption (H∗)
from [6].
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2. It is well known (see [18]) that under (A.2) and (A.3) �� is ergodic process
obeying the unique invariant density

p(z) = const.
exp

(
2
∫ z
0 (b(y)

/
�2(y)) dy

)
�2(z)

: (2:1)

For any � from M with the transition kernel K�(t; dz), de�ne K�(t; dz)-
averaged drift A�(t; x) =

∫
R A(x; z)K�(t; dz) and di�usion parameter B2�(t; x) =∫

R B2(x; z)K�(t; dz). If � is absolutely continuous w.r.t. �(dt; dz) = dtdz, put

n(t; z) =
d�
d�
(t; z) : (2:2)

If the density n(t; z) is absolutely continuous w.r.t. dz: dzn(t; z) = n′z(t; z)dz, a
function n′z(t; z) is chosen to be measurable in t; z:

Throughout the paper, we use conventions 0=0 = 0 and min(inf )(∅) =∞.
For every � ∈M and X ∈ C de�ne two quantities (comp. (1.4) and (1.5)):

F(�) =


∫∞
0

∫
R �2(z)

[
n′z(t; z)
n(t; z) − p′(z)

p(z)

]2
n(t; z) dz dt; d� = nd�; dzn = n′z dz ;

∞; otherwise ;
(2:3)

S(X; �) =


∫∞
0

[Ẋt − A�(t; Xt)]2

B2�(t; Xt)
dt; dX = Ẋ dt; X0 = x0 ;

∞; otherwise :

3. Now we are in the position to formulate the main result.

Theorem 2.1 Under (A.1), (A.2), and (A.3) the family (X �; ��) obeys the LDP
in (C×M; r × �) with rate function

L(X; �) = 1
2S(X; �) +

1
8F(�) :

4. LDPs for families (X �) and (��) run out from Theorem 2.1.

Corollary 2.1 (��) obeys the LDP in (M; �) with rate function 1
8F(�):

Corollary 2.2 (comp. [9]) (X �) obeys the LDP in (C; r) with rate function
S(X ) = inf �∈M L(X; �): In particular, if B(x; z) ≡ 0, it is su�cient to take
“inf ” over all � from M with the transition kernel K�(t; dz) ≡ �(dz) with
d� = m(z) dz such that the density m(z) = (d�=dz)(z) is absolutely continuous
w.r.t. dz (m′(z) = dm(z)=dz). In this case, rate function

S(X ) =

{
1
8

∫∞
0 H (Ẋt ; Xt) dt; dX = Ẋ dt; X0 = x0 ;

∞; otherwise ,
(2:4)
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where

H (y; x) = inf
∫
R
�2(z)

[
m′(z)
m(z)

− p′(z)
p(z)

]2
m(z) dz ; (2:5)

and where “inf ” is taken over all above-mentioned measures � such that

y =
∫
R
A(x; z)m(z) dz :

As an example, also the LDP for the family of the Donsker and Varadhan
occupation measures ��(dz) = ��([0; 1]× dz), corresponding to di�usion case,
can be derived from Theorem 2.1. In fact, due to the contraction principle, (��)
obeys the LDP with G�artner’s type rate function (see (1.4)) I(�) = inf 18F(�);
where “inf ” is taken over all � ∈M such that

�(dt; dz) = I(1= t) dt�(dz) + I(1¡ t)�(p)(dt; dz) :

3 Preliminaries

For proving LDP for the family (X �; ��) in the metric space (C×M; r × �)
we apply Dawson–G�artner’s type theorem (see e.g. [19]). Following it the
LDP in (C×M; r × �) is implied by LDPs in the metric spaces (C[0; n] ×
M[0; n]; rn × �n); n= 1, where C[0; n] is the space of continuous functions on
the time interval [0; n], M[0; n] is the space of �nite measures on [0; n]× R,
having probabilistic transition kernel w.r.t. dt, rn is the uniform metric, and �n
is Levy–Prohorov’s metric. The de�nition of the LDP in (C[0; n] ×M[0; n]; rn ×
�n) is given in terms of (0), (1), and (2) with obvious modi�cations. More-
over, if Ln(X; �); n= 1 are rate functions, corresponding to LDPs
in (C[0; n] ×M[0; n]; rn × �n); n= 1, then rate function in (C×M; r × �) is
de�ned as

L(X; �) = sup
n

Ln(X; �) : (3:1)

Hence only the LDP in (C[0; T ] ×M[0; T ]; rT × �T ) has to be checked for any
T ¿0. Our approach in proving the LDP in (C[0; T ] ×M[0; T ]; rT × �T ); T ¿0
relies on the concept of the exponential tightness and notions of LD relative
compactness and local LDP. Below we give necessary de�nitions.

De�nition 1 The family (X �; ��) is said to be exponentially tight in the met-
ric space (C[0; T ] ×M[0; T ]; rT × �T ), if there exists an increasing sequence of
compacts (Kj)j=1 such that

lim
j
lim
�→0

� logP((X �; ��) ∈ {C[0; T ] ×M[0; T ]}\Kj) = −∞ (3:2)

(Deuschel and Stroock [20], Lynch and Sethuraman [21]).

De�nition 2 The family (X �; ��) is said to be LD relatively compact in
(C[0; T ] ×M[0; T ]; rT × �T ), if any decreasing to zero sequence (�k) contains
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further subsequence (�k) ((�k) ⊆ (�k)) such that the family (X �k ; ��k ) obeys
the LDP in (C[0; T ] ×M[0; T ]; rT × �T ) (with rate function LT (X; �)). (Puhalskii
[15,16]).

De�nition 3 The family (X �; ��) is said to obey the local LDP in (C[0; T ] ×
M[0; T ]; rT × �T ) with local rate function L̂T (X; �), if for any (X; �) from
C[0; T ] ×M[0; T ]

lim
�→0

lim
�→0

� logP((rT (X �; X ) + �T (��; �)5 �)

= lim
�→0

lim
�→0

� logP((rT (X �; X ) + �T (��; �)5 �)

= −L̂T (X; �) (3:3)

(Freidlin and Wentzell [2]).

The connecting component of these notions used in the proof of the next
result is Puhalskii’s theorem [15,16]. Below we formulate only the �rst part
of it.

Theorem P If (X �; ��) is exponentially tight family in (C[0; T ] ×M[0; T ];
rT × �T ), then it is LD relatively compact.

The following result is a reformulation of Theorem 1.3 from [17].

Proposition 3.1 The exponential tightness and the local LDP for the family
(X �; ��) in (C[0; T ] ×M[0; T ]; rT × �T ) imply the LDP in (C[0; T ] ×M[0; T ],
rT × �T ) for this family with (good) rate function LT (X; �) ≡ L̂T (X; �), where
L̂T (X; �) is the local rate function.

4 Exponential tightness in C[0; T ] ×M[0; T ]

Theorem 4.1 Under assumptions (A.1), (A.2), and (A.3) the family (X �; ��)
is exponentially tight in C[0; T ] ×M[0; T ].

Proof. Following De�nition 1, (3.2) has to be checked. It is clear it takes place
if

lim
j
lim
�→0

� logP(X � ∈ C[0; T ] \ K ′
j) = −∞ ;

lim
j
lim
�→0

� logP(�� ∈M[0; T ] \ K ′′
j ) = −∞ ;

(4:1)

where K ′
j and K ′′

j are appropriate increasing sequences of compacts from C[0; T ]
and M[0; T ] respectively. It is natural to use as compacts K ′

j increasing sets
of uniformly bounded and equicontinuous functions from C[0; T ] parametrized
by j. Since the process (X �

t ; �
�
t )t=0 is de�ned on a stochastic basis with

the �ltration F one can use Aldous–Puhalskii’s type su�cient conditions
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(see [15], and also Theorem 3.1 in [17]) for C-exponential tightness:

lim
j
lim
�→0

� logP
(
sup
t5T

|X �
t |¿j

)
= −∞ ;

lim
�→0

lim
�→0

� log sup
�5T−�

P

(
sup
t5�

|X �
�+t − X �

� |¿�

)
= −∞; ∀�¿0 ;

(4:2)

where � is a stopping time w.r.t. the �ltration F. Following Theorem 3.1 in
[17], (4.2) implies the validity of the �rst part in (4.1) with above-mentioned
compacts K ′

j of uniformly bounded and equicontinuous functions. Now, choose
relevant compacts K ′′

j ; j=1:

K ′′
j =

⋂
m=j

{
� ∈M[0; T ] :

T∫
0

∫
|z|¿m

�(dt; dz)5 g(m)

}
; (4:3)

where g(y); y¿0 is positive continuous decreasing function with limy→∞ g(y)
= 0. In fact, if �k ∈ K ′′

j ; k = 1 then we have for any m= j supk
∫ T
0

∫
|z|¿m

�k (dt; dz)5 g(m) that is the set K ′′
j is tight and by Prohorov’s theorem (see

[22]) is relatively compact. On the other hand, since the set {z : |z|¿m} is
open a limit of any converging sequence from K ′′

j also belongs to K ′′
j that

is K ′′
j is compact in (M[0; T ]; �T ). Evidently K ′′

j ⊆ K ′′
j+1. Below we choose a

special function g(y), suited to assumption (A.3), to satisfy the second part
in (4.1).

We check the validity of (4.1) in the next two lemmas.

Lemma 4.1 Under (A.1) the �rst relation in (4.1) holds.

Lemma 4.2 Under (A.2) and (A.3) the second relation in (4.1) holds.

Proof of Lemma 4.1. Put
Z∗t = sup

t′5t
|Zt′ | :

By virtue of (A.1) we have |A(x; z)|5 ‘(1 + |x|). Therefore, with t 5 T , we
derive from (1.1)

X �∗
t 5 |x0|+ ‘

t∫
0
(1 + X �∗

s ) ds +
√
�M�∗

T ; (4:4)

where M�
t =

∫ t
0 B(X

�
s ; �

�
s) dWs: Due to Bellman–Gronwall’s inequality, (4.4)

implies X �∗
T 5 const.(1 +

√
�M�∗

T ) with const., depending only on |x0|; ‘;
and T . Therefore, the �rst part of (4.2) holds if

lim
j
lim
�→0

� logP(M�∗
T ¿j) = −∞ : (4:5)

On the other hand, by Chebyshev’s inequality P(M�∗
T ¿j)5 j−1=�E(M�∗

T )
1=�

and so, � logP(M�∗
T ¿j)5 − log j + � logE(M�∗

T )
1=�: Thereby (4.5) holds if

lim
�→0

� logE(M�∗
T )

1=�¡∞ : (4:6)
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Below we check the validity (4.6). Assuming 1=�¿2 and applying Itô’s for-
mula to |M�

t |1=�, we get

|M�
t |1=� =

1√
�

t∫
0
|M�

s |1=�−1 (signM�
s )B(X

�
s ; �

�
s) dWs

+
1− �
2�

t∫
0
|M�

s |1=�−2B2(X �
s ; �

�
s) ds ;

that is |M�
t |1=� is a submartingale obeying a decomposition: |M�

t |1=� = N�
t + U�

t
with local martingale N�

t and predictable increasing process

U�
t =

1− �
2�

t∫
0
|M�

s |1=�−2B2(X �
s ; �

�
s) ds : (4:7)

Then, due to a modi�cation of Doob’s inequality (see [23], Theorem 1.9.2)

E (M�∗
t )

1=�5
( 1
1− �

)1=�
EU�

t : (4:8)

Now evaluate from above |M�
s |1=�−2B2(X �

s ; �
�
s). By virtue of (A.1) |B(x; z)|5

‘(1 + |x|). Thereby, due to above-mentioned upper bound X �∗
T 5const:

(1 +M�∗
T ) which remains true with replacing T on s for any s¡T , we ar-

rive at

|M�
s |1=�−2B2(X �

s ; �
�
s)5 const:(1 + |M�

s |1=�−2 + |M�
s |1=�)

5 const:(1 + (M�∗
s )

1=�) :

Substituting the last upper bound in (4.7) and using (4.8) we obtain (t5T )
E(M�∗

t )
1=�5(const:=�)

∫ t
0 [1 + E(M

�∗
t )

1=�] ds. Hence, by Bellman–Gronwall’s in-
equality, an upper bound E(M�∗

T )
1=�5(const:T=�) exp{(const:T=�)} holds and

implies (4.6). Consequently the �rst part in (4.2) is valid. To check the sec-
ond part in (4.2), �rst use obvious estimates:

P

(
sup
t5�

|X �
�+t − X �

� |¿�

)

5 P

(
sup
t5�

|X �
�+t − X �

� |¿�; X �∗
T 5 j

)
+ P(X �∗

T ¿j)

5 2max

[
P

(
sup
t5�

|X �
�+t − X �

� |¿�; X �∗
T 5 j

)
;P(X �∗

T ¿j)

]
:

Thence, due to proved above the �rst part of (4.2), the validity of the second
part follows if

lim
�→0

lim
�→0

� log sup
�5T−�

P

(
sup
t5�

|X �
�+t − X �

� |¿�; X �∗
T 5 j

)
= −∞; j=1; �¿0 :

(4:9)
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The simplest way for verifying (4.9) consists in checking the validity of both

lim
�→0

lim
�→0

� log sup
�5T−�

P

(
sup
t5�

∣∣∣∣ �+t∫
�

A(X �
s ; �

�
s) ds

∣∣∣∣¿�; X �∗
T 5 j

)
= −∞ ;

lim
�→0

lim
�→0

� log sup
�5T−�

P

(
sup
t5�

∣∣∣∣√�
�+t∫
�

B(X �
s ; �

�
s) dWs

∣∣∣∣¿�; X �∗
T 5 j

)
= −∞ :

(4:10)

Obviously, the �rst part in (4.10) holds. To verify the second, note that the
process Y �

t =
√
�
∫ �+t
� B(X �

s ; �
�
s) dWs is continuous martingale w.r.t. the new �l-

tration F� = (F�+t)t=0 (see Chap. 4, Sect. 7 in [23]). It has the predictable
quadratic variation 〈Y �〉t = �

∫ �+t
� B2(X �

s ; �
�
s) ds: Also de�ne a positive continu-

ous local martingale (w.r.t. the same �ltration F�)

Z�
t = exp(�Y

�
t − 1

2�
2〈Y �〉t); � ∈ R ; (4:11)

which is simultaneously a supermartingale (see [23], Problem 1.4.4) and so
for any Markov time � (w.r.t. F�) EZ�

�51. Take � = inf{t5� : |Y �
t |=�}.

Evidently the second part of (4.10) holds if

lim
�→0

lim
�→0

� log sup
�5T−�

P(Y �
�=� (or 5 −�); �5�; X �∗

T 5 j) = −∞ : (4:12)

By virtue of an obvious inequality EZ�
�I(Y

�
�=�; X �∗

T 5 j)51 we �nd that

� logP(Y �
�=�; �5�; X �∗

T 5 j)5 − sup
�¿0

[
��− const: �

2

2
��
]

(4:13)

and since

sup
�¿0

[
��− const: �

2

2
��
]
=

�2

2 const: ��

(4.12) with “= �” is implied by (4.13). The validity (4.12) with “5 −�” is
proved in the same way.

Proof of Lemma 4.2. It is clear that {�� ∈M[0; T ]\K ′′
j } = {‘(j; ��)¡∞},

where

‘(j; �) = min

{
m=j :

T∫
0

∫
|z|¿m

�(dt; dz)¿g(m)

}
: (4:14)

Therefore, the second part of (4.1) is equivalent to

lim
j
lim
�→0

� logP(‘(j; ��)¡∞) = −∞ : (4:15)

To verify (4.15), choose a special function g(y) satisfying the above-mentioned
properties. To this end introduce non linear operator

D = b(z)
@
@z
+

�2(z)
2

[
@2

@z2
+
(

@
@z

)2]
(4:16)
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and choose a non negative twice continuously di�erentiable function u(z) such
that

− sup
v∈R
Du(v) = −d¿−∞ ;

lim
j→∞

inf
|z|¿j

[
−Du(z) + sup

v∈R
Du(v)

]
=∞ :

(4:17)

Under assumptions (A.2) and (A.3) one can take any of function u(z) with
properties: u(0) = 0, u′(z) = sign z; |z|¿ 1, and 05u′′(z)51. With chosen
u(z) put

g(y) = inf
|z|¿y

[
−Du(z) + sup

v
Du(v)

]−1=2
: (4:18)

Introduce a positive continuous local martingale (the martingale property is
checked by Itô’s formula)

Z�
t = exp

(
u(��

t )− u(�0)−
t∫
0
Du(��

s) ds
)

: (4:19)

It is simultaneously a supermartingale (see Problem 1.4.4. in [23]) and so
EZ�

T51. The last implies

EI(‘(j; ��)¡∞)Z�
T51 : (4:20)

Inequality (4.20) can be sharpened by changing of Z�
T on its lower bound on

the set {‘(j; ��)¡∞} which can be chosen non random. Taking into
account that

∫ T
0 Du(��

s) ds =
∫ T
0

∫
RDu(z)��(ds; dz) and ‘(j; ��)=j we arrive

at

log Z�
T = −u(�0)− dT

�
+
1
�

T∫
0

∫
|z|¿‘( j;��)

[−Du(z) + d] ��(ds; dz)

= −u(�0)− dT
�
+
1
�

inf
|z|¿‘( j;��)

[−Du(z) + d]
T∫
0

∫
|z|¿‘( j;��)

��(ds; dz)

= −u(�0)− dT
�
+
1
�

inf
|z|¿‘( j;��)

[−Du(z) + d]1=2

= −u(�0)− dT
�
+
1
�
inf
|z|¿j

[−Du(z) + d]1=2 (= log Z∗) :

Thereby, from (4.20), with Z�
T repalced on Z∗, we derive

� logP
(
‘(j; ��)¡∞)5�u(�0) + dT − inf

|z|¿j
[−Du(z) + d]1=2 ;

i.e. (4.15) is implied by (4.17).
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5 Upper bound for local LDP in C[0; T ] ×M[0; T ]

In this section, we consider family (X �; ��) from C[0; T ] ×M[0; T ]. Parallel to
F(�) and S(X; �), given in (2.3), let us de�ne FT (�) and ST (X; �) by changing
integrals “

∫∞
0 ” in (2.3) on “

∫ T
0 ”. Put

LT (X; �) = 1
2ST (X; �) + 1

8FT (�) : (5:1)

Theorem 5.1 Under (A.1), (A.2), and (A.3) for every (X; �) from C[0; T ] ×
M[0; T ]

lim
�→0

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)5−LT (X; �) :

Proof of this theorem is based on

Lemma 5.1 Assume (A.1), (A.2), and (A.3). Then for every piece wise
constant function �(t) =

∑
i �(ti)I(ti5 t¡ti+1) (with not overlapping inter-

vals [ti; ti+1)); and for every compactly supported in z and continuously
di�erentiable (once in t and twice in z) function u(t; z); and X ∈ C[0; T ];
� ∈M[0; T ]

lim
�→0

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)

5 −
{∑

i
�(ti)[XT∧ti+1 − XT∧ti ]−

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)

− 1
2

T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)

}
+

T∫
0

∫
R
Du(t; z)�(dt; dz) ;

where D is the non linear operator de�ned in (4.16).

Proof. The following well known fact will be used hereafter. If Nt (N0 = 0)
is continuous local martingale and 〈N 〉t is its predictable quadratic variation,
then the exponential process Zt = exp (Nt − (1=2)〈N 〉t) is a continuous local
martingale too, and what is more if N ′

t ; N
′′
t are continuous local martingales

(N ′
0 = N ′′

0 = 0) with the mutual predictable quadratic variation 〈N ′; N ′′〉t ≡ 0
and Z ′t ; Z

′′
t are corresponding exponential processes, then the process Z ′t Z

′′
t is

also local martingale which, being positive, is a supermartingale too (Problem
1.4.4 in [23]) and so EZ ′t Z

′′
t 51; t=0:

Let �(t) and u(t; z) be functions involved in Lemma 5.1. Put

N ′
t =

1√
�

t∫
0
�(s)B(X �

s ; �
�
s) dWs ;

N ′′
t =

1√
�

t∫
0
u′z(s; �

�
s)�(�

�
s) dVs :
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Evidently

〈N ′〉t = 1
�

t∫
0
�2(s)B2(X �

s ; �
�
s) ds ;

〈N ′′〉t = 1
�

t∫
0
u′2z (s; �

�
s)�

2(��
s) ds :

(5:2)

Since Wiener processes Wt and Vt are independent and so 〈N ′; N ′′〉t ≡ 0 a
process

Zt = exp(N ′
t + N ′′

t − 1
2 [〈N ′〉t + 〈N ′′〉t]) (5:3)

is local martingale and also a supermartingale with

EZt51; t=0 : (5:4)

Note that

N ′
t =

1
�

t∫
0
�(s)[dX �

s − A(X �
s ; �

�
s) ds] (5:5)

and also �nd similar representation for N ′′
t . Due to Itô’s formula we obtain

1√
�

t∫
0
u′z(s; �

�
s)�(�

�
s) dVs = u(t; ��

t )− u(0; �0)−
t∫
0
u′t(s; �

�
s) ds −

1
�

t∫
0
Lu(s; ��

s) ds ;

where L = b(z)(@d=@z) + (�2(z)=2)(@2=z2) and consequently

N ′′
t = u(t; ��

t )− u(0; �0) +
t∫
0
u′t(s; �

�
s) ds −

1
�

t∫
0
Lu(s; ��

s) ds : (5:6)

(5.4) implies an obvious inequality

EI(rT (X �; X ) + �T (��; �)5�)ZT51 ; (5:7)

which can be sharpened by changing of ZT by its lower bound. To this end
evaluate from below log ZT on the set {rT (X �; X ) + �T (��; �)5�}. For both
N ′

T − 1
2 〈N ′〉T and N ′′

T − 1
2 〈N ′′〉T we get

N ′
T − 1

2 〈N ′〉T

=
1
�
∑
i
�(ti)[XT∧ti+1 − XT∧ti ]

− 1
�

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)− 1

2

T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)

− 1
�

{∑
i
|�(ti)|[|X �

T∧ti+1
− XT∧ti+1 |+ |X �

T∧ti − XT∧ti |]

+
T∫
0
|�(t)||A(X �

t ; �
�
t )− A(Xt; ��

t )| ds +
1
2

T∫
0
�2(t)|B2(X �

t ; �
�
t )− B2(Xt; ��

t )| ds

+
∣∣∣∣ T∫
0

∫
R
[�(t)A(Xt; z)|+ �2(t)B2(Xt; z)][�� − �](dz; dt)

∣∣∣∣
}

(5:8)
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and

N ′′
T − 1

2 〈N ′′〉T

= −1
�

T∫
0
[Lu(s; ��

s) +
1
2u
2
z (s; �

�
s)] ds + u(T; ��

T )− u(0; �0)−
T∫
0
ut(s; ��

s)

= −1
�

T∫
0

∫
R
Du(s; z)��(dz; ds) + u(T; ��

T )− u(0; �0)−
T∫
0
ut(s; ��

s) ds

= −1
�

T∫
0

∫
R
Du(s; z)�(dz; ds)

− 1
�

{∣∣∣∣ T∫
0

∫
R
Du(s; z)[�� − �](dz; ds)

∣∣∣∣
+ �|u(T; ��

T )|+ �|u(0; �0)|+ �
T∫
0
|ut(s; ��

s)| ds
}

: (5:9)

The terms in the curly brackets in the right hand sides of (5.8) and (5.9)
are random variables. Nevertheless, they can be evaluated from above on the
set {rT (X �; X ) + �T (��:�)5�} by non random quantities. Evidently ∫ T

0

∫
R |�(t)|

|A(X �
t ; �

�
t )− A(Xt; ��

t )| ds5const:T� and 1
2

∫ T
0 �

2(t)|B2(X �
t ; �

�
t )− B2(Xt; ��

t )| ds5
const:�

∫ T
0 [1 + |Xt |] ds: Denote by H (s; z) = �(s)A(Xs; z) + �2(s)B2(Xs; z)=2.

Since �(s) is piece wise constant function without loss of a generality one
can assume that it is simply constant. Then function H (s; z) is bounded contin-
uous function and so, by Lemma A.1 (see Appendix) for any 
¿0 and k=1
there exist increasing continuous function h


k(y); y=0 with h

k(0) = 0 and de-

creasing sequence ’k; k=1 with limk ’k = 0 both dependent on H (s; z) and �
only such that ∣∣∣∣ T∫

0

∫
R
H (s; z)[�� − �](ds; dz)

∣∣∣∣5
+ h

k(�) + ’k :

Further, by the remark to Lemma A.1∣∣∣∣ T∫
0

∫
R
Du(t; z)[�� − �](dt; dz)

∣∣∣∣5
+ h
(�) ;

where h
(y) is an increasing continuous function with h
(0) = 0 depending on
Du(s; z) and � only.
Hence, we arrive to the lower bounds (with positive const.’s):

N ′
T − 1

2 〈N ′〉T = 1
�

[∑
i
�(ti)[XT∧ti+1 − XT∧ti ]−

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)

−
T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)

]
− const:

�
(
+ h


k(�) + ’k)) (5:10)
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and

N ′′
T − 1

2 〈N ′′〉T = −1
�

T∫
0

∫
R
Du(t; z)�(dt; dz)− const:

�
(�+ 
+ h
(�) + ’k)) :

(5:11)

By virtue of (5.10) and (5.11) one can choose a non random lower bound:

log ZT =
1
�

[∑
i
�(ti)[XT∧ti+1 − XT∧ti ]−

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)

−
T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)− 1

�

T∫
0

∫
R
Du(t; z)�(dt; dz)

]

− const:
�
(�+ 
+ h
(�) + h


k(�) + ’k):

= log Z∗ :

Hence and from (5.7), with replacing of ZT on Z∗, it follows

� logP(rT (X �; X ) + �(��; �)5�)

5 −
[∑

i
�(ti)[XT∧ti+1 − XT∧ti ]−

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)

− 1
2

T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)

]
+

T∫
0

∫
R
Du(t; z)�(dt; dz)

+ const:{(�+ 
+ h
(�) + h

k(�) + ’k)} : (5:12)

The desired result holds since the term in the curly brackets of the right
hand side in (5.12) goes to zero if limit “limk→∞ lim
→0 lim�→0 lim�→0” is
taken.

Proof of Theorem 5.1. Follows from Lemmas 5.1, A.2, and A.3 (see Appendix)
since

− sup
�

{∑
i
�(ti)[XT∧ti+1 − XT∧ti ]−

T∫
0

∫
R
�(t)A(Xt; z)�(dt; dz)

− 1
2

T∫
0

∫
R
�2(t)B2(Xt; z)�(dt; dz)

}
+ inf

u

T∫
0

∫
R
Du(t; z)�(dt; dz)

= −[ 12ST (X; �) + 1
8FT (�)] = −LT (X; �) :
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6 Lower bound for local LDP in C[0; T ] ×M[0; T ]

Theorem 6.1 Under (A.1), (A.2), and (A.3), for every (X; �) from C[0; T ] ×
M[0; T ]

lim
�→0

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)=−LT (X; �) :

Evidently for X; � such that LT (X; �) =∞ it is nothing to prove. Therefore we
consider below only the case LT (X; �)¡∞ which distinguishes subsets from
C[0; T ] ×M[0; T ]:
(i) dX t � dt and 1

2ST (X; �) = 1
2

∫ T
0 ([Ẋ t − A�(t; Xt)]2=B2�(t; Xt)) dt¡∞;

(ii) d� = n d�; dzn = n′z dz and
1
8FT (�) = 1

2

∫ T
0

∫
R(v

2
�(t; z)=�

2(z))n(t; z) dz dt¡∞,
where

v�(t; z) =
�2(z)
2

[n′z(t; z)
n(t; z)

− p′(z)
p(z)

]
: (6:1)

It is convenient to consider further subset (ii′) of (ii):
(ii′) The function v�(t; z) is compactly supported in z and continuously di�er-
entiable in (t; z); having bounded partial derivatives.
The central role in proving Theorem 6.1 plays

Lemma 6.1 Assume (i), (ii′), and inf x; z B2(x; z)¿0. Then for any �¿0 and

¿0 there exists an increasing continuous function h
(y) with h
(0) = 0;
depending on v2�(s; z)=�

2(z) and � only; such that

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)=−LT (X; �)− 
− h
(�) :

Proof. Put
b�(t; z) = b(z) + v�(t; z) ;

G�(t; x; z) =
Ẋ t − A�(t; Xt)

B�(t; Xt)
B(x; z) + A(x; z)

(6:2)

and parallel to (X �
t ; �

�
t ) introduce, on the same stochastic basis, new di�usion

pair (X̃ �
t ; �̃

�
t ):

dX̃ �
t = G�(t; X̃ �

t ; �̃
�
t ) dt +

√
�B(X̃ �

t ; �̃
�
t ) dWt ;

d�̃�
t =

1
�
b�(t; �̃�

t ) dt +
1√
�
�(�̃�

t ) dVt

(6:3)

subject to the same initial point (x0, �0). Also denote by �̃�(dt; dz) the occu-
pation measure corresponding to �̃�: �̃�(�× �) = ∫∞0 I(t ∈ �; �̃�

t ∈ �) dt:
By virtue of the formula b(z) = 1

2 (p
′(z)=p(z)) + �′(z)�(z) (see (2.1)) we

get
2b�(t; z)
�2(z)

=
n′z(t; z)
n(t; z)

+ 2
�′(z)
�(z)

and so

p�(t; z) = c(t)
exp(2

∫ z
0

b�(t;y)
�2(y)

dy)

�2(z)
;
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with norming constant c(t) such that
∫
R p�(t; z) = 1, coincides with n(t; z). Then

by Lemma A.5 (see Appendix)

P− lim
�→0

�T ( �̃�; �) = 0 and P− lim
�→0

rT (X̃ �; X ) = 0 : (6:4)

Denote by Q� and Q̃� distributions of (X �
t ; �

�
t )t5T , (X̃ �

t ; �̃
�
t )t5T respectively. By

Theorem 7.18 (Chap. 7 in [24]) Q� is absolutely continuous w.r.t. Q̃� and

dQ�

dQ̃�
(X̃ �; �̃�) = exp

(
1√
�
M�

T −
1
2�
〈M�〉T + 1√

�
MT − 1

2�
〈M 〉T

)
; (6:5)

where

M�
t = −

t∫
0

v�(s; �̃�
s)

�(�̃�
s)

dVs and Mt = −
t∫
0

Ẋs − A�(s; Xs)
B�(s; Xs)

dWs ;

〈M�〉t =
t∫
0

v2�(s; �̃
�
s)

�2(�̃�
s)
ds and 〈M 〉t =

t∫
0

[Ẋs − A�(s; Xs)]2

B2�(s; Xs)
ds :

By virtue of (6.5) and the rule of changing for probability measure we obtain

P(rT (X �; X ) + �T (��; �)5�) = E
[
dQ�

dQ̃�
(X̃ �; �̃�)I(rT (X̃ �; X ) + �T ( �̃�; �)5�)

]
:

(6:6)

The desired lower bound can be derived from (6.6) provided that a relevant
lower bound for the right hand side of (6.6) can be found. Use an obvious
inequality:

I(rT (X̃ �; X ) + �T ( �̃�; �)5�)

= I(rT (X̃ �; X ) + �T (̃��; �)5�; |M�
T |5k; |MT |5k)

and estimate from below log(dQ�=dQ̃�)(X̃ �; �̃�) on the set {rT (X̃ �; X ) + �T ( �̃�; �)
5 �} ∩ {|M�

T |5k} ∩ {|MT |5k}. Noticing that 12 〈M 〉T = 1
2S(X; �)T and

1
2

∫ T
0∫

R (v
2
�(s; z)=�

2(z))n(t; z) dz dt = 1
8FT (�) we obtain

log
dQ�

dQ̃�
(X̃ �; �̃�)=− 2k√

�
− 1

�
LT (X; �)

− 1
2�

∣∣∣∣ T∫
0

∫
R

v2�(s; z)
�2(z)

m[ �̃�(dt; dz)− n(t; z) dz dt
∣∣∣∣ :

By the remark to Lemma A.1 (see Appendix), for any 
¿0 there exists
increasing continuous function h
(y) with h
(0)= 0, depending on v2�(s; z)=�

2(z)
and � only, such that

1
2

∣∣∣∣ T∫
0

∫
R

v2�(s; z)
�2(z)

[ �̃�(dt; dz)− n(t; z) dz dt
∣∣∣∣5
+ h
(�) :
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Then the lower bound for the right hand side of (6.6) is the following:
−(2k=√�)− (1=�)[LT (X; �) + 
+ h
(�)]. It implies

� logP(rT (X �; X ) + �T (��; �)5�)

= −LT (X; �)− 2k
√
�− 
− h
(�) + � logP(rT (X̃ �; X ) + �T ( �̃�; �)5�;

|M�
T |5k; |MT |5k) :

Thus the statement of the lemma holds since

lim
k
lim
�→0

P(rT (X̃ �; X ) + �T ( �̃�; �)5�; |M�
T |5k; |MT |5k) = 1

what follows by virtue of (6.4), obvious limk P(|MT |¿k) = 0 and

P(|M�
T |¿k)5

E|M�
T |2

k2
=
E〈M�〉T

k2
5
const:
k2

→ 0; k →∞ :

Proof of Theorem 6.1. Assume (i), (ii), and inf x; z B2(x; z)¿0. Due to
Lemma A.4 (see Appendix), one can choose a sequence �(k); k=1 of mea-
sures such that for every k the function v�(k) (t; z) satis�es (ii

′) and what is
more �(�; �(k))→ 0; LT (X; �(k))→ LT (X; �). On the other hand, by Lemma 6.1
for any �¿0 and 
¿0 there exist increasing continuous function h
; k(y) with
h
; k(0) = 0, depending on �(k), such that

lim
�→0

� logP(rT (X �; X ) + �T (��; �(k))5�)=−LT (X; �(k))− 
− h
; k(�) :

Choose k0(�) such that for any k=k0(�) we have 0¡�− �T (�; �(k))5�=2.
Then, taking into account the triangular inequality: �T (��; �)5�T (��; �(k)) +
�T (�; �(k)), we arrive to a lower bound:

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)

= lim
�→0

� logP(rT (X �; X ) + �T (��; �(k))5�=2)

= −LT (X; �(k))− 
− h
; k(�=2) :

The right hand side of the last inequality converges to −LT (X; �) if limit
“limk lim
→0 lim�→0” is taken.

Assume only (i) and (ii). Parallel to the process X �
t introduce new di�usion

X �;�
t ; �-0:

dX �; �
t = A(X �;�

t ; ��
t ) dt +

√
�[B(X �;�

t ; ��
t ) dWt + � dW ′

t ]

subject to the same initial point x0, where W ′
t is a Wiener process independent

of (Wt; ��
t ). The di�usion parameter here is B2(x; z) + �2 and so, due to be

proved above,

lim
�→0

lim
�→0

� logP(rT (X �;�; X ) + �T (��; �)5�)=−L�
T (X; �) ;
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where L�
T (X; �) =

1
2S

�
T (X; �) +

1
8FT (�), and where

S�
T (X; �) =

∞∫
0

[Ẋt − A�(y; Xt)]2

B2�(t; Xt) + �2
dt :

Evidently lim�→0 S
�
T (X; �) = ST (X; �). On the other hand, by Lemma A.6 (see

Appendix)

lim
�→0

lim
�→0

� logP(rT (X �;�; X �)¿�) = −∞ :

To get the desired result, we combine both these facts. Namely, using the
triangular inequality: rT (X �; X )5rT (X �;�; X �) + rT (X �;�; X ) and taking � = �=2
we arrive to an upper bound

P(rT (X �;�; X ) + �T (��; �)5�)

5 P(rT (X �; X ) + �T (��; �)5 �=2) + P(rT (X �;�; X �)¿�=2)

5 2max[P(rT (X �; X ) + �T (��; �)5 �=2);P(rT (X �;�; X �)¿�=2)] ;

which implies

lim
�→0

lim
�→0

� logP(rT (X �; X ) + �T (��; �)5�)=− lim
�→0

L�
T (X; �) = −LT (X; �) :

Other approach for establishing lower bound with singular di�usion parameter
can be found in Puhalskii [25].

7 Proof of main result

Proof of Theorem 3.1. Due to Theorems 4.1, 5.1, and Proposition 3.1 the
family (X �; ��) obeys the LDP in (C[0; k] ×M[0; k]; rk × �k) with rate function
Lk(X; �). Then it obeys the LDP in the metric space (C×M; r × �) with rate
function supk Lk(X; �) = L(X; �).

Proof of Corollary 2.1. The result holds since inf X∈C S(X; �) is attained at X 0
t ,

being a solution of a di�erential equation: Ẋt = A�(t; X 0
t ) subject to X 0

0 = x0,
and so S(X 0; �) = 0.

Proof of Corollary 2.2. The �rst statement is obvious.

Assume B2(x; z) ≡ 0. In this case S(X; �) = 0 for any Xt being a solution
of a di�erential equation Ẋt =

∫
R A(Xt; z)n(t; z) dz subject to X0 = x0; otherwise

S(X; �) =∞. Therefore

S(X ) =
{ 1
8 inf � : Ẋt=∫R A(Xt ; z)n(t; z) dz; X0=x0

F(�)

∞; otherwise :
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On the other hand, since F(�)¡∞ implies d� = n d�; dzn = n′z dz, assuming
measurability in t of function

H (t; Ẋt ; Xt) = inf
� : Ẋt=∫R A(Xt ; z)n(t; z) dz; X0=x0

∫
R
�2(z)

[
n′z(t; z)
n(t; z)

− p′(z)
p(z)

]2
n(t; z) dz

(7:1)
we arrive at independent of t function H (t; y; x) ≡ H (y; x), or by other words,
“inf ” in (7.1) can be taken over all measures � with densities n(t; z) ≡ m(z).
The last means the desired result holds if the function

H (y; x) = inf
m:

{
dm=m′dz
y=∫R A(x; z)m(z) dz

∫
R
�2(z)

[
m′(z)
m(z)

− p′(z)
p(z)

]2
m(z) dz (7:2)

is measurable. We check this by showing that level sets of H (y; x) are closed.
Let c= 0 be �xed and (yn; xn); n= 1 be a sequence from {(y; x) :

H (y; x)5 c} converging to a limit point (y0; x0). Show that H (y0; x0)5 c.
By virtue of assumption (A.1) the set A(y; x) = {m : y = ∫R A(x; z)m(z) dz}
is closed in the Levy–Prohorov metric that is for every �xed (y; x) there exists
a density m(y; x) from A(y; x) such that

H (y; x)

=


∫
R �2(z)

[
(m(y; x)(z))′

m(y; x)(z)
− p′(z)

p(z)

]2
m(y; x)(z) dz; dm(y; x) = (m(y; x))′ dz ;

∞; otherwise :
(7:3)

Note that the function H (y; x), de�ned in (7.3), obeys a following property:
there exists a measure �(y; x) from M[0;1], having density m(y; x)(z) w.r.t. dt dz,
such that H (y; x) = F1(�(y; x)). Since 1

8F1(�) is good rate function level sets{y; x : H (y; x)5 c} are compacts. Therefore H (y0; x0)5 c:

Appendix

1. Evaluation via Levy–Prohorov’s metric

Lemma A.1 Let T ¿0; �′; �′′ ∈M[0; T ]; �T (�′; �′′) = q; and f(t; z) be bounded
continuous function. Then for any 
 ¿ 0 and k = 1 one can choose increasing
continuous function h


k(y); y = 0 with h

k(0) = 0 and decreasing sequence

’k; k = 1 with limk ’k = 0 both depending on f(t; z) and only from one of
�′ or �′′ such that∣∣∣∣ T∫

0

∫
R
f(t; z)[�′ − �′′](dt; dz)

∣∣∣∣5 
+ h

k(q) + ’k :

Remark. If f(t; z) is bounded compactly supported continuous function, then
the statement of the lemma remains true with h


k(y) ≡ h
(y) and ’k ≡ 0:
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Proof. Assume f(t; z) is continuously di�erentiable (one in z and twice in
(t; z)) and compactly supported in z. Denote by F ′(t; z) = �′([0; t]× (−∞; z])
that is F ′(t; z) is the distribution function correspoding to �′. Integrating by
parts we get

T∫
0

∫
R
f(t; z)�′(dt; dz) = −

T∫
0

∫
R

[
@f(t; z)

@z
+

@2f(t; z)
@t@z

]
F ′(t; z) dz dt

and consequently (F ′′ is the distribution functions corresponding to �′′)∣∣∣∣ T∫
0

∫
R
f(t; z)[�′ − �′′](dt; dz)

∣∣∣∣5 T∫
0

∫
R
|F ′(t; z)− F ′′(t; z)|m(t; z) dz dt ;

where m(t; z) = |(@=@z)f(t; z)|+ |(@2=@t@z)f(t; z)|.
Assume f(t; z) is compactly supported in z and continuous only. Then,

approximating it by compactly supported and continuously di�erentiable in z
function f
(t; z) in a sense supt; z |f(t; z)− f
(t; z)|5 
=2T ; due to the forego-
ing proof, we get∣∣∣∣ T∫

0

∫
R
f(t; z)[�′ − �′′](dt; dz)

∣∣∣∣5 
+
T∫
0

∫
R
|F ′(t; z)− F ′′(t; z)|m
(t; z) dz dt

with m
(t; z) = |(@=@z)f
(t; z)|+ |(@2=@t@z)f
(t; z)|:
In the general case, one can choose a decomposition f(t; z) = fk(t; z) +

gk(t; z), where fk(t; z) is continuous compactly supported in z on the interval
[−k; k] function while gk(t; z) ≡ 0 on the interval [−(k − 1=2); (k − 1=2)] and
is bounded: |gk(t; z)|5 L: Then by foregoing result we get∣∣∣∣ T∫

0

∫
R
f(t; z)[�′ − �′′](dt; dz)

∣∣∣∣5 
+
T∫
0

∫
R
|F ′(t; z)− F ′′(t; z)|m


k(t; z) dz dt

+ L
T∫
0

∫
|z|¿k−1=2

[�′ + �′′](dt; dz) ;

where m

k(t; z) = |(@=@z)f


k (t; z)|+ |(@2=@t@z)f

k (t; z)|. Evaluate from above the

last integral from the right hand side. To this end, choose an increasing
sequences zk↗∞, k →∞ such that zk 5 k − 1=2 and for every k zk and −zk
are points of continuity for the distribution function F ′(T; z). Then

T∫
0

∫
|z|¿k−1=2

[�′ + �′′](dt; dz)5 2
T∫
0

∫
|z|¿zk

�′(dt; dz) +

∣∣∣∣∣ T∫
0

∫
|z|¿zk

[�′ − �′′](dt; dz)

∣∣∣∣∣
5 2

T∫
0

∫
|z|¿zk

�′(dt; dz) + |F ′(T; zk)− F ′′(T; zk)|

+ |F ′(T;−zk)− F ′′(T;−zk)| :
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Now evaluate from above |F ′(t; z)− F ′′(t; z)| via q and F ′(t; z). From the
de�nition of the Levy–Prohorov metric (see e.g. [22, 26]) it follows: q+
F ′(t − q; z − q)− F ′(t; z)5 F ′(t; z)− F ′′(t; z)5 q+ F ′(t + q; z + q)− F ′(t; z)
and so

|F ′(t; z)− F ′′(t; z)|5 q+ [F ′(t + q; z + q)− F ′(t − q; z − q)] :

Hence, combining all obtained upper estimates, we arrive at the desired
result with

h

k(y) = y

(
2L+

T∫
0

∫
R
m


k(t; z) dt dz
)

+
T∫
0

∫
R
[F ′(t + y; z + y)− F ′(t − y; z − y)]m


k(t; z) dz dt

+ L|F ′(T + y; zk + y)− F ′(T − y; zk − y)|
+ L|F ′(T + y;−zk + y)− F ′(T − y;−zk − y)|

and

’k = 2L
T∫
0

∫
|z|¿zk

�′(dt; dz) :

The same proof takes place with F ′′ instead of F ′.

2. The Fenchel–Legendre transform

Let �(t) =
∑

i�(ti)I(ti 5 t¡ti+1) with non overlapping intervals [ti; ti+1).
For any X ∈ C[0; T ] and � ∈M[0; T ] put

∫ T
0 �(t)dXt =

∑
i�(ti)[XT∧ti+1 − XT∧ti ],

A�(t; Xt) =
∫
R A(Xt; z)K�(t; dz), and B2�(t; Xt) =

∫
R B2(Xt; z)K�(t; dz). Let D be

non linear operator de�ned in (4.16).

Lemma A.2 For any X ∈ C[0; T ] and � ∈M[0; T ]

sup
T∫
0

[
�(t)dXt − (A�(t; Xt)− 1

2�
2(t)B2�(t; Xt)) dt

=

 1
2

∫ T
0

[Ẋt − A�(t; Xt)]2

B2�(t; Xt)
dt; dXt = Ẋt dt ;

∞; otherwise ;

where “sup” is taken over all piece wise constant functions �(t).

Lemma A.3 For any � ∈M[0; T ]

inf
T∫
0

∫
R
Du(t; z)�(dt; dz)

=

{
− 1
8

∫ T
0

∫
R �2(z)

[
n′z(t; z)
n(t; z) − p′(z)

p(z)

]2
n(t; z) dz dt; d� = n d�; dzn = n′z dz ;

−∞; otherwise ;
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where “inf ” is taken over all continuously di�erentiable (once in t and twice
in z) compactly supported in z functions u(t; z):

Proof of Lemma A.2. For dXt �| dt the result follows from Lemma 6.1 in [17]
(see also Lemma 2.1 in [27]). For dXt = Ẋt dt by Lemma 6.1 [17] “sup

∫ T
0 ”

is equal
∫ T
0 sup�∈R{�(Ẋt − A�(t; Xt))− 1

2�
2B2�(t; Xt))} dt= 1

2

∫ T
0 ([Ẋt − A�(t; Xt)]=

B2�(t; Xt)) dt.

Proof of Lemma A.3. Assume d�=n d�; dzn=n′z dz. Due to (2.1), p
′(z)=p(z) =

(2b(z)− 2�(z)�′(z))=�2(z) and so b(z) = 1
2 [�

2(z)(p′(z)=p(z)) + 2�(z)�′(z)]:
Putting v(t; z) = u′z(t; z) and taking into account the formula for b(z) we
arrive at

T∫
0

∫
R
Du(t; z)n(t; z) dz dt =

1
2

T∫
0

∫
R

{[
�2(z)

p′(z)
p(z)

+ 2�(z)�′(z)
]
v(t; z)

+�2(z)(v′z(t; z) + v2(t; z))
}

n(t; z) dz dt : (8:1)

Then, integrating by parts,∫
R
�2(z)(v′z(t; z)n(t; z) dz = − ∫

R
v(t; z)[2�(z)�′(z)n(t; z) + �2(z)n′z(t; z)] dz ;

we obtain

T∫
0

∫
R
Du(t; z)n(t; z) dz dt

=
1
2

T∫
0

∫
R
�2(z)

(
v2(t; z)n(t; z) + v(t; z)

[
p′(z)
p(z)

n(t; z)− nz(t; z)
])
dz dt :

(8:2)

(8.2) and the method of proving for lemma 6.1 in [17] imply

inf
T∫
0

∫
R
Du(t; z)n(t; z) dz dt

=
1
2

T∫
0

∫
R
�2(z) inf

v∈R

(
v2n(t; z) + v

[
p′(z)
p(z)

n(t; z)− nz(t; z)
])
dz dt

= −1
8

T∫
0

∫
R
�2(z)

[
nz(t; z)
n(t; z)

− p′(z)
p(z)

]2
n(t; z) dz dt :

Thus for “d� = n d�; dzn = n′z dz”, the result holds.
Assume d� = n�; dzn�| dz. Show that inf

∫ T
0

∫
RDu(t; z)n(t; z) dz dt = −∞.

To this end, take u(t; z) ≡ u(z) and put v(z) = u′(z). The function v(z) is
compactly supported and continuously di�erentiable and, in particular, has
the �nite total variation. Put n(z) =

∫ T
0 n(t; z) dt and w(z) = 1

2�
2(z)n(z). It is
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clear that there exists a positive constant, say, ‘ such that I(v) = ‘
∫
R[v

2(z) +
|v(z)|]n(z) dz + ∫R w(z)dv(z) is an upper bound for the right hand side of (8.1).
Show that I(v) can be chosen less than any negative quantity. Use the fact
that I(v) is well de�ned not only for compactly supported and continuously
di�erentiable function v(z) but also for any compactly supported function v�(z)
obeying �nite total variation. Assume that there exists a family of v�(z); � ∈
(0; 1] such that

lim
�→0

I(v�) = −∞ (8:3)

and every function v�(z) obeys an approximation by v�m(z); m= 1 of contin-
uously di�erentiable compactly supported functions in a sense

lim
m

I(v�m) = I(v�) : (8:4)

We show that under (8.3) and (8.4) the desired result holds. In fact, for �xed �
one can choose a number m� such that |I(v�)− I(v�m�)|5 1. Hence we obtain

inf
T∫
0

∫
R
Du(t; z)n(t; z) dz dt5 I(v�m�)5 1 + I(v�)→ −∞; � → 0 :

Therefore, only (8.3) and (8.4) have to be checked. Since dzn�| dz the
function n(z) is not absolutely continuous and w(z) is inherited the same
property. Therefore by the de�nition of the negation for absolute continu-
ity [28] a constant k can be chosen such that for any �¿0 there exists a
positive constant c and non overlapping intervals (z′i ; z

′′
i ) ∈ [−c; c], such that∑

i|w(z′′i )− w(z′i)|= k and
∑

i
∫ z′′i
z′i

n(z) dz 5 �. Put

v�(z) =

− 1√
�
sign [w(z′′i )− w(z′i)]; z′i ¡z 5 z′′i ;

0; otherwise :

Show that (8.3) holds. Evaluate from above I(v�):

I(v�) = ‘
∫
R
[(v�(z))2 + |v�(z)|]n(z) dz + ∫

R
w(z)dv�(z)

5 ‘
(
1
�
+

1√
�

)∑
i

z′′i∫
z′i

n(z) dz +
∑
i
w(z′i)[v

�(z′′i )− v�(z′i)]

5 ‘(1 +
√
�) +

∑
i
w(z′i)[v

�(z′′i )− v�(z′i)] :

Now, summizing by parts, we �nd
∑

iw(z′i)[v
�(z′′i )− v�(z′i)] = −∑iv�(z′′i )

[w(z′′i )− w(z′i)]: On the other hand, from the de�nition of v�(z) it follows∑
iv�(z′′i )[w(z

′′
i )− w(z′i)] = (1=

√
�)
∑

i|w(z′′i )− w(z′i)|= k=
√
�: Thereby

I(v�)5 ‘(1 +
√
�)− k√

�
→∞; � → 0 :
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Evidently to satisfy (8.4), it is su�cient to choose approximating functions
v�m(z); m= 1 which are compactly supported and continuously di�er-
entiable and such that limm v�m(z) = v�(z) in every point of continuity
of v�(z).

Assume ��| �. Put K�(dz) =
∫ T
0 K�(t; dz) dt and note that K�(dz)�| dz: Use

Lebesgue’s decomposition: K�(dz) = q(z) dz + K⊥(dz), where q(z) is a density
of absolutely continuous part of K�(dz) and K⊥(dz) is its singular part. Taking
u(t; z) ≡ u(z) which is compactly supported, say, on [−c; c] we �nd

T∫
0
Du(z)�(dt; dz) =

c∫
−c
Du(z)q(z) dz +

c∫
−c
Du(z)K⊥(dz) :

Since |u′(z)|5 |u′(0)|+ ∫ c
−c |u′′(y)| dy there exists constant, say, ‘, such that∫ c

−cDu(z)q(z) dz 5 ‘(1 +
∫ c
−c |u′′(y)| dy) and so we arrive to an upper esti-

mate

T∫
0
Du(z)�(dt; dz)5 ‘

(
1 +

c∫
−c
|u′′(z)| dz

)
+
1
2

c∫
−c

�2(z)u′′(z)K⊥(dz) :

Then, using the singularity of K⊥(dz) and dz, one can choose u′′(z) such that
the second integral is less than any negative quantity while the �rst remains
bounded.

3. Approximation of rate function

For “dX = Ẋt dt; d� = n d�; dzn = n′z dz” denote by

ST (X; �) =
T∫
0

[Ẋt − A�(t; Xt)]2

B2�(t; Xt)
dt ;

FT (�) =
T∫
0

∫
R
�2(z)

[
n′z(t; z)
n(t; z)

− p′(z)
p(z)

]2
n(t; z) dz dt :

Also note one to one correspondence between density n(t; z) and function
v�(t; z) de�ned in (6.1):

n(t; z) = n(t; 0)
p(z)
p(0)

exp
(
2

z∫
0

v�(t; y)
�2(y)

dy
)

: (8:5)

Put
�(t) =

∫
R
|n′z(t; y)| dy : (8:6)

Lemma A.4 Let B2(x; z)=�2¿0: If ST (X; �)¡∞; FT (�)¡∞; then � can be
approximated by a sequence of measures �(k); k=1; satisfying the property:
d�(k) = n(k)d�; dzn(k) = n(k)z dz; such that the function v� (k) (t; z); corresponding
to n(k)(t; z); is compactly supported in z and continuously di�erentiable in (t; z)
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and what is more
lim
k

�T (�; �(k)) = 0 ;

lim
k

ST (X; �(k)) = ST (X; �) ;

lim
k

FT (�(k)) = FT (�) :

(8:7)

Proof. Introduce a chain of expanding subclasses of measures � characterized
in terms of n(t; z) and v�(t; z):

0) v�(t; z) is compactly supported in z and continuously di�erentiable
in (t; z);
1) v�(t; z) is compactly supported in z and bounded;
2) v�(t; z) is compactly supported, inf t5T; z∈R (n(t; z)=p(z))¿0 and supt5T

[n(t; 0) + �(t)]¡∞;
3) v�(t; z) is compactly supported, inf t5T; z∈R (n(t; z)=p(z))¿0;
4) v�(t; z) is compactly supported;
5) v�(t; z) satis�es the assumptions of the lemma.

The proof is based on the following fact. If measure � from class “i”
(i = 1; : : : ; 5) can be approximated by �(k); k=1 from class “i − 1” in a
sense (8.7), then the statement of the lemma holds.
Assume �(k); k=1 is such that

�T − lim
k

n(k)(t; z) = n(t; z) (�T (dt; dz) = I[0; T ] dt dz) ;

lim
k

FT (�(k)) = FT (�) : (8:8)

Then by Sche�e’s theorem [29, 22] we have limk
∫ T
0

∫
R |n(t; z)− n(k)(t; z)| dt dz

= 0 that is �(k) converges to � in the total variation norm which implies con-
vergence in Levy–Prohorov’s metric too: �T (�; �(k))→ 0. Since A� (k) (t; Xt) =∫
R A(Xt; z)n(k)(t; z) dz and B2

� (k)
(t; Xt) =

∫
R B2(Xt; z)n(k)(t; z) dz by Lebesgue

dominated theorem ST (X; �(k))→ ST (X; �). Therefore, for all steps of approxi-
mations only (8.8) has to be checked.
Assume � is from class “1”. Approximate v�(t; z) by v(k)� (t; z):

lim
k

T∫
0

∫
R
[v�(t; z)− v(k)� (t; z)]

2(1 + n(t; z)) dt dz = 0 ;

where for all k the functions v(k)� (t; z); k=1 are compactly supported con-
tinuously di�erentiable in (t; z). Without loss of a generality one can assume
that all function are bounded by the same constant. Similarly to (8.5) de�ne a
density of �(k):

n(k)(t; z) = n(k)(t; 0)
p(z)
p(0)

exp

(
z∫
0

v(k)� (t; y)
�2(z)

dy

)
; (8:9)
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with

n(k)(t; 0) =

(∫
R

p(z)
p(0)

exp

(
z∫
0

v(k)� (t; y)
�2(z)

dy

)
dz

)−1
:

Put
�(k)(dt; dz) = n(k)(t; z) dt dz :

Evidently �(k) belongs to class “0”. It is easy to check that

v(k)� (t; z) ≡ v� (k) (t; z) (8:10)

and the validity of the �rst part in (8.8). To verify the second part in (8.8),
note that

FT (�(k)) = 4
T∫
0

∫
R

(v�(k) (t; z))
2

�2(z)
n(k)(t; z) dz dt

and consequently

|FT (�)− FT (�(k))|5const.
T∫
0

∫
R
|n(t; z)− n(k)(t; z)|dtdz

+ const.
T∫
0

∫
R
|v2�(t; z)− (v�(k) (t; z))2|dt dz

→ 0; k →∞:

Assume � is from class “2”. For the de�niteness assume that there exists
positive constant z0 such that v�(t; z) ≡ 0 out of [−z0; z0]. Put v(k)� (t; z) =
v�(t; z)I(|n′z(t; z)|5k), de�ne n(k)(t; z) by (8.9) and take �(k) with this den-
sity. It belongs to class “1”. Herewith, v(k)� (t; z) is de�ned by (8.10). It is clear
that the �rst part in (8.8) holds and below we check the validity of the second
part. We have

FT (�(k)) = 4
T∫
0

∫
|z|5z0

v2�(t; z)
�2(z)

I(|nz(t; z)|5k)n(k)(t; z) dz dt ;

FT (�) = 4
T∫
0

∫
|z|5z0

v2�(t; z)
�2(z)

n(t; z) dz dt :

The required convergence FT (�(k))→ FT (�) holds by Lebesgue dominated
theorem since n(k)(t; z)5p(z) exp(2�(t))5const.n(t; z):

Assume � is from class “3”. Putting v(k)� (t; z) = v�(t; z)I(n(t; 0) + �(t)5k)
we arrive at

n(k)(t; z) =

{
n(t; z); n(t; 0) + �(t)5k ;

p(z); n(t; 0) + �(t)¿k ;

and since n(k)(t; 0)5k + p(0) and �(k)(t)5k +
∫
R |p′(z)| dz measure �(k) with

density n(k)(t; z) belongs to class “2”. It is clear that the �rst part in (8.8) holds
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and

|FT (�)− FT (�(k))| = 4
T∫
0

∫
|z|5z0

v2�(t; z)
�2(z)

I(n(t; 0) + �(t)¿k)p(z) dz dt

5const.
T∫
0

∫
|z|5z0

v2�(t; z)
�2(z)

I(n(t; 0) + �(t)¿k)n(t; z) dz dt

→ 0; k →∞:

Assume � is from class “4”. Put n(k)(t; z)=c(k)(t)(n(t; z) ∨ p(z)); where c(k)(t)=
(
∫
R(n(t; z)∨p(z)) dz)−1 is norming constant. �(k) with this density belongs to

class “3”. The �rst part in (8.8) holds and what is more limk c(k)(t) = 1. On
the other hand, since v�(k) (t; z) = v�(t; z)I(n(t; z)=p(z)=k) we obtain

FT (�(k)) = 4
T∫
0

∫
R

v2�(t; z)
�2(z)

I(n(t; z)=p(z)=k)c(k)(t)n(t; z) dz dt

→ 4
T∫
0

∫
R

v2�(t; z)
�2(z)

n(t; z)dzdt = FT (�) :

Assume � is from class “5”. Put v(k)� (t; z) = v�(t; z)T (|z|5k) and de�ne n(k)(t; z)
by (8.9). Then

n(k)(t; z) = n(k)(t; 0)


p(z)

n(t; k)
p(k)

; z¿k ;

n(t; z); |z|5k ;

p(z)
n(t;−k)
p(−k)

; z¡−k :

Taking �(k) with this density and noticing that limk n(k)(t; 0) = 1 we �nd

FT (�(k)) = 4
T∫
0

∫
|z|5k

(v�(t; z))2

�2(z)
c(k)(t)n(t; z) dz dt→ FT (�) ;

i.e. both parts in (8.8) hold.

4. Ergodic property

Consider di�usion pair (X̃ �
t ; �̃

�
t ) de�ned by Itô’s di�erential equations w.r.t.

independent Wiener processes Wt and Vt :

dX̃ �
t = G(t; X̃ �

t ; �̃
�
t ) dt +

√
�B(X̃ �

t ; �̃
�
t ) dWt ;

d�̃�
t =

1
�
b(t; �̃�

t ) dt +
1√
�
�(�̃�

t ) dVt

(8:11)

subject to (x0; z0), where B(x; z) and �(z) are functions involving in (1.1).
Assume b(t; z) is continuous it (t; z), continuously di�erentiable in t, Lipschitz
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continuous in z uniformly in t, and zb(t; z) is negative for large |z| uniformly
in t. Also assume that

G(t; x; z) =
Ẋt − Ap(t; x)

Bp(t; x)
B(x; z) + A(x; z) ; (8:12)

where A(x; z) involves in (1.1), Ẋt is the Radon–Nykodim derivative of abso-
lute continuous function Xt from C with X0 = x0, Ap(t; x) =

∫
R A(x; z)p(t; z) dz,

Bp(t; x) =
√∫

R B2(x; z)p(t; z) dz, and where (comp. (2.1))

p(t; z) = c(t)
exp(2

∫ z
0

b(t;y)
�2(y)

dy)

�2(z)

with norming function c(t) such that
∫
R p(t; z) dz = 1: Introduce an occupation

measure �̃�(dt; dz): �̃�(�× �) = ∫∞0 I(t ∈ �; �̃�
t ∈ �) dt and put �(dt; dz) =

p(t; z) dz dt.

Lemma A.5

P− lim
�→0

�T ( �̃�; �) = 0 and P− lim
�→0

rT (X̃ �; X ) = 0 :

Proof. It is clear, the �rst statement of the lemma is equivalent to: for any
bounded and continuous function h(t; z)

∫ T
0

∫
R h(t; �̃�

t ) dt→
∫ T
0

∫
R h(t; z)p(t; z) dz dt

in probability or, for h0(t; z) = h(t; z)− ∫ T
0

∫
R h(t; y)p(t; y) dy dt,

P− lim
�→0

T∫
0

∫
R
h0(t; �̃�

t ) dt = 0 :

First we check it for continuously di�erentiable in t; z function h(t; z), having
bounded partial derivatives. Straightforward calculation brings Kolmogorov’s
type di�erential equation (t is �xed):

1
2

@
@z
(�2(x)p(t; x)) = b(t; z)p(t; z) :

A conjugate di�erential equation

1
2
�2(z)

@w(t; z)
@z

+ b(t; z) = h0(t; z) (8:13)

obeys a solution

w(t; z) =
2

�2(z)p(t; z)

z∫
−∞

h0(t; y)p(t; y) dy :

It is clear that properties of h(t; z) are inherited by w(t; z) and so func-
tion u(t; z) =

∫ z
0 w(t; y) dy is continuously di�erentiable once in t and twice
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in z and what is more, due to the boundness of w(t; z), there exists a positive
constant, say ‘, such that |u(t; z)|5‘|z| and |ut(t; z)|5‘|z|: Apply-
ing Itô’s formula to u(t; �̃�

t ) and taking into account that w(t; z) is solu-
tion of di�erential equation (8.13) we �nd u(T; �̃�

T ) = u(0; �0) +
∫ T
0 u′t(t; �̃

�
t ) dt

+(1=
√
�)
∫ T
0 w(t; �̃�

t )�(�̃
�
t ) dV t + (1=�)

∫ T
0 h0(t; �̃�

t ) dt that is

T∫
0
h0(t; �̃�

t ) dt = �u(T; �̃�
T )− �u(0; �0)

− �
T∫
0
u′t(t; �̃

�
t ) dt −

√
�

T∫
0
w(t; �̃�

t )�(�̃
�
t ) dVt : (8:14)

The second term in the right hand of (8.14) converges to zero; the last term
converges to zero in probability since by Problem 1.9.2 in [23] the mentioned
convergence follows from �

∫ T
0 w2(t; �̃�

t )�
2(�̃�

t ) dt → 0; other two terms converge

to zero in probability if lim�→0 �2E supt5T (�̃
�
t )
2 = 0: To check the last, apply

Itô’s formula to (��̃�
t )
2:

(��̃�
t )
2 = (��0)2 + 2�

t∫
0
b(s; �̃�

s)�̃
�
s ds + �

t∫
0
�2(�̃�

s) ds

+ 2�3=2
t∫
0
�̃�
s�(�̃

�
s) dVs :

The function b(s; z) is such that zb(t; z) is negative for large |z| what implies
(� �̃�

t )
25(��0)2 + T� const. + 2�3=2

∫ t
0 �̃

�
s�(�̃

�
s) dVs. Thereby E(� �̃�

t )
25(��0)2+

T�const. In turn, using Doob’s inequality (see e.g. Theorem 1.9.1 in [23]),
we arrive to E supt5T (� �̃

�
t )
2 5 (��0)2 + T� const. + const.�3

∫ T
0 E(��̃

�
t )
2 dt and,

due to the above obtained upper bound for E(� �̃�
t )
2, the result holds.

If h(t; z) is bounded and continuous only, it can be approximated by smooth
functions hm(t; z); m=1 in the following sense: for any k=1 limm supt5T; |z|5k

|h(t; z)− hm(t; z)| = 0: Since for every hm(t; z) the statement of the lemma is
proved, it holds for h(t; z) if

lim
m

T∫
0

∫
R
|h(t; z)− hm(t; z)|p(t; z) dz dt = 0 ;

P− lim
m
lim
�→0

T∫
0
|h(t; �̃�

t )− hm(t; �̃
�
t )|n(t; z) dt = 0 :

The �rst takes place since limk
∫ T
0

∫
|z|¿k n(t; z) dz dt = 0 while the second from

P− limm lim�→0
∫ T
0 I(|�̃�

t )|¿k) dt = 0 and the fact that one can choose smooth
bounded functions gk(z); k=1 such that I(|z|¿k)5gk(z), limk gk(z)=0;
z ∈ R and by proved above

∫ T
0 gk(�̃

�
t ) dt →

∫ T
0

∫
R gk(z)p(t; z) dz dt → 0;

k →∞:
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To check the second statement, put �t = X̃ �
t t − Xt . From the �rst equation

in (8.11) we �nd

�t =
t∫
0

[
Ẋt − Ap(s; Xs)

Bp(s; Xs)
B(X̃ �

s ; �̃
�
s) + A(X̃ �

s ; �̃
�
s)− Ẋs

]
ds+

√
�

t∫
0
B(X̃ �

s ; �̃
�
s) dWs

=
t∫
0

[
Ẋt − Ap(s; Xs)

Bp(s; Xs)
(B(X̃ �

s ; �̃
�
s)− B(Xs; �̃

�
s))
]
ds

+
t∫
0

[
Ẋs − Ap(s; Xs)

Bp(s; Xs)
(B(Xs; �̃

�
s)− Bp(s; Xs))

]
ds

+
t∫
0
(A(X̃ �

s ; �̃
�
s)− A(Xs; �̃

�
s)) ds +

t∫
0
(A(Xs; �̃

�
s)− Ap(s; Xs)) ds

+
√
�

t∫
0
B(X̃ �

s ; �̃
�
s) dWs :

For brevity put ’s = (Ẋs − Ap(s; Xs))=Bp(s; Xs). Then by the Lipschitz continu-
ity of A(x; z); B(x; z) in x uniformly in z, say, with constant ‘, we obtain

|�t |5‘
t∫
0
(1 + |’s|)�s ds+ sup

t5T

∣∣∣∣ t∫
0
’s(B(Xs; �̃

�
s)− Bp(s; Xs)) ds

∣∣∣∣
+ sup

t5T

∣∣∣∣ t∫
0
(A(Xs; �̃

�
s)− Ap(s; Xs)) ds

∣∣∣∣+√� sup
t5T

∣∣∣∣ t∫
0
B(X̃ �

s ; �̃
�
s) dWs

∣∣∣∣ :

Therefore, by Gronwall–Bellman’s inequality

sup
t5T

|�t |5exp
(
‘

T∫
0
(1 + |’s|) ds

)

×
[
sup
t5T

∣∣∣∣ t∫
0
’s(B(Xs; �̃

�
s)− Bp(s; Xs)) ds

∣∣∣∣
+ sup

t5T

∣∣∣∣ t∫
0
(A(Xs; �̃

�
s)− Ap(s; Xs)) ds

∣∣∣∣+√� sup
t5T

∣∣∣∣ t∫
0
B(X̃ �

s ; �̃
�
s) dWs

∣∣∣∣] :

Hence, the second statement holds if

P− lim
�→0

sup
t5T

√
� sup
t5T

∣∣∣∣ t∫
0
B(X̃ �

s ; �̃
�
s) dWs

∣∣∣∣ = 0 (8:15)

and for any measurable function  s such that
∫ T
0  2s ds¡∞ and any continuous

function C(x; z), being Lipschitz’s continuous in x uniformly in z,

P− lim
�→0

sup
t5T

∣∣∣∣ t∫
0
 s(C(Xs; �̃

�
s)− Cp(s; Xs)) ds

∣∣∣∣ = 0 ; (8:16)
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where Cp(s; Xs) =
∫
R C(Xs; z)p(s; z) dz: It can be shown (see e.g. the method of

proving the statement (2) of Theorem 4.6, Chap. 4 in [24]) that supt5T E(X̃
�
t )
25

const. and so E
∫ T
0 B2(X̃ �

s ; �̃
�
s) ds5const. Consequently, by Doob’s inequality

(see e.g. Theorem 1.9.1 [23]) we get E supt5T |
√
�
∫ t
0 B(X̃

�
s ; �̃

�
s) dWs|25�const.

that is (8.15) holds. To check the validity of (8.16) with  sC(x; z)=0, note
that, due to Problem 5.3.2 in [23], it is su�cient to prove

P− lim
�→0

t∫
0
 s(C(Xs; �̃

�
s)− Cp(s; Xs)) ds = 0; ∀t5T ; (8:17)

and what is more, due to an arbitrariness of  s and C(x; z), (8.17) implies
(8.16) in the general case since one can use separately (8.17) for positive
( sC(x; z))+ and negative ( sC(x; z))− parts. Therefore, (8.17) remains to be
veri�ed. If  s is bounded and continuous, (8.17) takes place by virtue of the
�rst statement of the lemma. If only

∫ T
0  2s ds¡∞, approximate  s by bounded

and continuous functions  (k)s ; k=1 such that limk
∫ T
0 ( s −  (k)s )2 ds = 0 and,

due to the boundness in z of C(x; z) and Cauchy–Schwartz’s inequality, we
�nd that∣∣∣∣ t∫
0
( s− (k)s )(C(Xs; �̃

�
s−Cp(s; Xs)) ds

∣∣∣∣5const.
√

T∫
0
( s −  (k)s )2 ds→0; k →∞

that is (8.17) takes place since it holds for every  (k)s :

5. LD-regularization

Parallel to X �
t , de�ned in (1.1), determine new di�usion X �;�

t with uniformly
non singular di�usion parameter B2(x; z) + �2; �2¿0, letting

dX �;�
t = A(X �;�

t ; ��
t ) dt +

√
�[B(X �;�

t ; ��
t ) dWt + � dW ′

t ] (8:18)

subject to the same initial point x0, where W ′
t is a Wiener process independent

of (Wt; ��
t ):

Lemma A.6 Under assumption (A.1) for every T ¿0 and �¿0

lim
�→0

lim
�→0

� logP(rT (X �;�; X �)¿�) = −∞ :

Proof. Put �t = X �;�
t − X �

t , and

a1(x′; x′′; z) =
A(x′′; z)− A(x′; z)

x′′ − x′
; a2(x′; x′′; z) =

B(x′′; z)− B(x′; z)
x′′ − x′

;

where for x′ = x′′ ai(x′; x′; z); i = 1; 2 are Radon–Nikodym’s derivatives. Note
that for x′-x′′ ai(x′; x′′; z); are bounded, say, by constant ‘, and so ai(x′; x′; z)
can be taken bounded by the same constant. For brevity, denote by �i(t) =
ai(X

�;�
t ; X �

t ; �
�
t ); i = 1; 2. (8.18) and (1.1) imply: �t =

∫ t
0 �1(s)�s ds +

√
�
∫ t
0
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�2(s)�s dWs +
√
��W ′

t . Letting Et = exp(
∫ t
0 [�1(s)− (�=2)�22(s)]ds+

√
�
∫ t
0 �2

(s)dWs) and using Itô’s formula, we �nd that �t =
√
��Et

∫ t
0 E

−1
s dW ′

s and
thereby

sup
t5T

|�t |5
√
�� sup

t5T
Etsup

t5T

∣∣∣∣ t∫
0
E−1s dW ′

s

∣∣∣∣ :
Put �N = {1=N5 inf t5T Et5supt5T Et5N} and use an upper estimate

P
(
sup
t5T

|�t |¿�
)
5P

(
sup
t5T

|�t |¿�;�N

)
+ P(
\�N )

52max
[
P
(
sup
t5T

|�t |¿�;�N

)
;P(
\�N )

]
which implies, due to the boundness of �i(s); i = 1; 2, the desired statement if

lim
N
lim
�→0

� logP
(√

� sup
t5T

∣∣∣∣ t∫
0
�2(s) dWs

∣∣∣∣¿N
)
= −∞;

lim
�→0

lim
�→0

� logP
(√

�� sup
t5T

∣∣∣∣ t∫
0
E−1s dW ′

s

∣∣∣∣¿�;�N

)
= −∞; ∀N=1 : (8:19)

Let � = {t5T : | ∫ t
0 �2(s) dW s|¿(N=

√
�)} and � = {t5 t : | ∫ t

0 E
−1
s dW ′

s |¿
(�=
√
��)}. It is clear that (8.19) is equivalent to:

lim
N
lim
�→0

� logP
(√

�
�∫
0
�2(s) dW s=N (or5−N )

)
= −∞ ;

lim
�→0

lim
�→0

� logP
(√

��
�∫
0
E−1s dW ′

s=� (or5−�);�N

)
= −∞; ∀N=1 :

(8:20)

Below we check (8.20). To this end with � ∈ R, introduce continuous local
martingales: Z1t = exp(�

∫ t
0 �2(s) dWs − (�2=2)

∫ t
0 �

2
2(s) ds) and Z2t = exp(�

∫ t
0

E−1s dW ′
s − (�2=2)

∫ t
0 E

−2
s ds), where each of them is a supermartingale too (see

Problem 1.4.4. in [23]) that is EZ1� 51 and EZ
2
�51. Then we use obvious in-

equalities: EI(
√
�
∫ �
0 �2(s) dW s=N )Z1� 51 and EI(

√
��
∫ �
0 EsdW ′

s=�; �N )Z2�
51. Since for �¿0, log Z1� =(�N=

√
�)− (�2‘2T=2) and log Z1�=(��=

√
��)−

(�2N 2T=2) on sets {√�
∫ �
0 �2(s) dW s=N} and {√��

∫ �
0 EsdW ′

s=�;�N} res-
pectively, we arrive at (8.20) for “=N” and “=�”, taking �1 = (N=

√
�‘2T ) and

�2 = (�=
√
��N 2T ). For “5−N” and “5−�” the validity of (8.20) is proved

in the same way.
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