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Summary. We study systems of reaction–di�usion equations of KPP-type with
the coe�cients and nonlinear terms slowly varying in the space variables. The
long time behavior of the solution to such systems can be characterized by
the motion of wave fronts. We describe the wave front motion, using the
Feynman–Kac formula and the large deviation principle for the corresponding
di�usion–transmutation process. We give a geometrical description of the
motion in the examples and show some e�ects which appear in case of systems
but not in the single RDE’s.
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1 Introduction

An equation

(1:1)
@v(t; x)
@t

=
D
2
@2v
@x2

+ f(v); t ¿ 0; x ∈ R1 ;

is called KPP-equation (see [KPP]) if D¿0 is a constant and f(v) = c(v)v,
where c(v) is continuous, c(v)¿0 for v¡1, c(v)¡0 for v¿1 and c = c(0) =
max05v c(v).

It was proved in [KPP] that the solution of (1.1) with initial condition

v(0; x) = �−(x) =
{
1; x 5 0 ;
0; x ¿ 0

for large t behaves as a running wave ’(x − �t). So the asymptotic behavior is
characterized by the shape ’(z) and the speed � of the wave. If we replace (1.1)
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by an equation with space dependent coe�cients then, in general, we can not
expect such a regular behavior of the solution as t →∞. But if the dependence
on x is slow, so that the di�usivity and the non-linear term actually depend on
�x; 0¡ �� 1, one can describe the asymptotic behavior of the solution for
� ↓ 0; t ∼ �−1. Let v(t; x) be the solution of (1.1) with D and f(v) replaced
by D(�x) and f(�x; v) correspondingly, v(0; x) = �−(x). Then the equation for
u�(t; x) = v( t� ;

x
� ) will have the form

@u�(t; x)
@t

=
�D(x)
2

@2u�

@x2
+
1
�
f(x; u�); u�(0; x) = �−(x) :

A theory of such kind of equations in Rr as � ↓ 0 was developed in [F1, F2] and
[F4] by probabilistic methods. Then an analytic proof and some generalizations
of those results were given in [ES].
Generalizations of such results for PDE-systems of reaction-di�usion

equation (RDE) type are of interest. A class of spatially homogeneous RDE
systems which can be looked at as a generalization of KPP-equation was
considered in [F1, F3] using the probabilistic approach. In [BES] a sim-
ilar problem was considered for a wider class of spatially homogeneous
systems.
Here we study the non-homogeneous in space case. As it is known [F1]

even for one equation a number of new e�ects appear in the non-homogeneous
case such as, for example, jumps of the wave fronts or a non-Markovian law
of wave front propagation (see Example 1 in Sect. 4 of the present paper).
A Markov di�usion–transmutation process can be connected with PDE sys-

tems considered in this paper. If the system contains a small parameter, the
corresponding process also depends on that parameter. The asymptotic behavior
of the solutions of these systems is de�ned by a large deviation principle for
the family of corresponding processes.
We consider the RDE systems of the following form:

(1:2)
@u�k(t; x)
@t

= L�ku
�
k(t; x) +

1
�
Fk(x; u�); t ¿ 0; x ∈ Rr; k = 1; 2; : : : ; n :

Here L�k =
�
2
∑r
i; j=1

aijk (x)
@2

@xi@x j are elliptic operators, u� = (u�1; : : : ; u
�
n), and

Fk(x; u); 15 k 5 n, are continuously di�erentiable in x and in u. The dif-
fusion coe�cients aijk (x) are assumed to be Lipschitz continuous and

A
r∑
1
p2i 5

r∑
i; j=1

aijk (x)pipj 5 �A
r∑
1
p2i

for some positive A; �A.
Three assumptions concerning the vector �eld u→ F(x; u) = (F1(x; u); : : : ;

Fn(x; u)) indexed by x ∈ Rr will be made.
(A1) There exists B¿0 such that for every x ∈ Rr the vector �eld F(x; u)
points strictly inward from the boundary of the cube [0; B]n, except at u = 0;
F(x; 0) = 0, and inf{Fk(x; u) : 15 k 5 n; u ∈ [0; B]n; x ∈ Rr}¿−∞.
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(A2) Let ckm(x) = @Fk(x; 0)=@um; the n× n matrix (ckm(x)) is denoted by c(x).
Assume that ckm(x) are Lipschitz continuous and

sup{ckm(x) : 15 k; m5 n; x ∈ Rr} = � ¡∞ ;

inf{ckm(x) : 15 k; m5 n; x ∈ Rr} = � ¿ 0 :

Note that u = 0 is an unstable equilibrium point for the �eld F(x; u) for
any x ∈ Rr .
(A3) Fk(x; u)5

∑n
m=1
ckm(x)um; 15 k 5 n; x ∈ Rr; u ∈ [0; B]n.

For every ¿0 there exists B′ = B′()¿0 (independent of x ∈ Rr) such
that

Fk(x; u)=
n∑
m=1

(ckm(x)− )um; 15 k 5 n; u ∈ [0; B′]n :

Remark 1 These assumptions are analogous to the KPP conditions in the single
equation case. Assumption (A1) is the counterpart of the assumption that the
nonlinear term in the KPP equation is negative for u¿1 and equal to zero at
u = 0. But there is also a di�erence: In the KPP case, the point u = 1 is a stable
attractor, and the solution converges to u = 1, a constant function, as t →∞.
We do not assume that the vector �eld F(x; u) in [0; B]n has a stable equilib-
rium point. Correspondingly, the statement of the main result (Theorem 1) will
be weaker. The point is that in the case of systems an asymptotically stable
equilibrium point of the vector �eld F(x; u), as a rule, will not be an attractor
for the solution of the RDE-systems. Actually, a similar e�ect does not allow
to replace the cube [0; B]n by a general domain invariant for the dynamical
system du=dt = F(x; u); u ∈ Rn; x ∈ Rr is a parameter.

Assumption (A3) is the counterpart of the assumption that in the KPP case
F(u)=u has it’s maximum at u = 0. This condition is essential and can unlikely
be seriously weakened.
Assumption (A2) can be slightly weakened. At least, one can assume that

cij(x)¿0 just for distinct i; j; ci; i(x) can be of any sign. One can also weaken
the uniformity in x condition.
A Markov process (X �t ; �

�
t ) in the state space R

r × {1; : : : ; n} can be con-
nected with the linear system (see [F1])

(1:3)
@v�k
@t
= L�kv

�
k +

1
�

n∑
i=1
cki(x)(v�i − v�k); 15 k 5 n; t ¿ 0; x ∈ Rr :

The process (X �t ; �
�
t ) can be uniquely characterized as follows:

dX �t = �
1=2�v�t (X

�
t )dWt; X �0 = x ∈ Rr; t ¿ 0 ;

where Wt is a standard Wiener process in Rr; �m(x); 15 m5 n, are such
that �m(x)�∗m(x) = (a

ij
m(x)); and ��t is {1; : : : ; n}-valued right-continuous process

such that

P{��t+� = m |X �t = y; ��t = l} =
clm(y)
�

�+ o(�); � ↓ 0 ;
l; m ∈ {1; 2; : : : ; n}; l-m; ��0=k∈{1; : : : ; n} :
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The solutions of the Cauchy problem and of some initial-boundary value prob-
lems for system (1.3) can be written as expectations of proper functionals of
the process (X �t ; �

�
t ) (see [F1, Ch. 5; EF]).

Let us de�ne

Z�t =
( t∫
0
�1(��s)ds; : : : ;

t∫
0
�n(��s)ds

)
;

where �k is the indicator function of the point k. To study wave front
propagation for system (1.2) we need the large deviation principle for the
family (X �t ; Z

�
t ); 05 t 5 T , as � ↓ 0. The action functional �−1S0T (’; �) for

this family, in the uniform topology, was found in [FL]:

S0T (’; �) =



∫ T
0 �(’s; ’̇s; �̇s)ds if ’ and � are

absolutely continuous;
∑n
k=1
�ks = s; 05 s5 T; and �ks

are nondecreasing in s; 15 k 5 n ;
+∞ otherwise:

Here ’ : [0; T ]→ Rr; � = (�1; : : : ; �n) : [0; T ]→ Rn. The function �(x; q; �) is
the Legendre transformation in p and � of the principal eigenvalue �(x; p; �)
of the matrix

ĉ(x) + � (x; p; �) ;

where ĉ(x) = (ĉij(x)); ĉij(x) = cij(x) for i-j; ĉkk(x) = −∑j-k ckj(x) and
�(x; p; �) is the diagonal matrix with elements

�kk =
1
2
∑
i; j
aijk (x)pipj + �k ; k = 1; : : : ; n :

The function �(x; q;�) is non-negative; �(x; q;�)¡∞ only for �=(�1; �2; : : : ; �n)
such that �i = 0;

∑n
1
�i = 1; �(x; q; �) = 0 only at q = 0 and � = �(x) equal

to the stationary distribution of the continuous time Markov chain with n states
{1; 2; : : : ; n} and transition intensity matrix ĉ(x).
We add to (1.2) the initial conditions

(1:4) u�k(0; x) = gk(x) ∈ [0; B]; 15 k 5 n; x ∈ Rr ;
where gk are continuous; G0 =

⋃n
k=1 supp(gk). Here supp(gk) is the closure of

the set {x ∈ Rr : gk(x)¿ 0}.
Denote by �(x;p) the principle eigenvalue of the matrix

c(x) + diag
(
1
2
p · ak(x)p

)
; p; x ∈ Rr ;

which exists according to the Frobenius theorem. It is known that �(x;p) is
convex in p ∈ Rr . Let
(1:5) �(x; q) = − sup

p∈Rr
[q·p− �(x; p)]; x; q ∈ Rr ;

which is concave in q.
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The following simple relation follows from the fact that the Legendre trans-
formation is an involution:

(1:6) �(x; q) = sup
�∈Rn

[b(x)·� − �(x; q; �)]; x; q ∈ Rn ;

where b(x) = (
∑n
m=1

c1m(x); : : : ;
∑n
m=1

cnm(x)); due to the properties of �(x; q; �)
mentioned above, the supremum in (1.6) can be taken just over the set {� =
(�1; : : : ; �n) : �i = 0;

∑n
1
�i = 1}.

Let

V (t; x) = sup
{
min
05a5t

a∫
0
�(’s; ’̇s)ds : ’ is absolutely continuous,

’0 = x; ’t∈G0
}
;

t ¿ 0; x ∈ Rr . Since one can take a = 0 we conclude that −∞¡ V (t; x)5 0.

The main result of this paper is the following.

Theorem 1 Assume that (A1)–(A3) hold. Then the following relations for
the solution u�(t; x) = (u�1(t; x); : : : ; u

�
n(t; x)) of problem (1:2); (1:4) hold:

(i) lim�→0u�k (t; x) = 0 for 15 k 5 n; uniformly in (t; x) from any compact
subset of {(t; x) : t ¿ 0; x ∈ Rr; V (t; x)¡ 0};
(ii) lim�→0u

�
k (t; x)¿ 0 for 15 k 5 n; uniformly in (t; x) from any compact

subset of ({(t; x) : t ¿ 0; x ∈ Rr; V (t; x) = 0}); where (A) means the interior
of the set A.
Moreover, the function V (t; x) is locally Lipschitz continuous in t ¿ 0;

x ∈ Rr .
The remainder of this paper is organized into three sections. In Sect. 2 we

present some properties of the function V (t; x). In Sect. 3 we prove Theorem 1.
In Sect. 4 we consider examples. We pay special attention to the geomet-
ric description of the motion of the wave fronts. In particular, under some
conditions we describe the motion by a Huygens principle (see Sect. 4) in a
proper Riemannian or Finsler metric and provide example showing that such a
description is not always possible.

2 Properties of the function V

We prove some properties of the function � in Lemmas 2.1 and 2.2 and then use
them to show that the function V is locally Lipschitz continuous in Lemma 2.3.

Lemma 2.1 Let A
�
; �A be as in the uniform ellipticity condition in the

Introduction. Then
(i) −|q|2=(2 �A) + n ��= �(x; q)= −|q|2=(2A

�
) + n�

�
; x; q ∈ Rr; where �

�
and ��

are de�ned in (A2).
(ii) There exists c¿0; independent of x; q ∈ Rr such that

�(x; q) = − max
|p|5c|q|

[q ·p− �(x; p)] :
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(iii) there exists c¿0; independent of x; q; �q ∈ Rr such that
|�(x; �q)− �(x; q)|5 c(| �q|+ |q|)| �q− q| :

(iv) there exists c¿0; independent of x; y; q ∈ Rr such that
|�(x; q)− �(y; q)|5 c(1 + |q|2)|x − y| :

Proof. It is easy to see that for all x; p ∈ Rr

�(x; p)=
A
�
2
|p|2 + �(x; 0)= A

�
2
|p|2 + n�

�
;

�(x; p)5
�A
2
|p|2 + �(x; 0)5

�A
2
|p|2 + n �� ;

(i) then follows easily.
Since

q ·p− �(x; p)5 q ·p− A
�
|p|2
2

− �(x; 0)

5 |p|
(
|q| − A

�
2
|p|
)
+ [q · 0− �(x; 0)] ;

which is less than [q · 0− �(x; 0)] when |p|¿ 2
A
�
|q|, (ii) is true for c = 2

A
�
.

It follows from (ii) that there exists p∗ = p∗(q) such that |p∗|5 c|q| and
�(x; q) = −[q ·p∗ − �(x; p∗)] :

We then have

�(x; �q)− �(x; q) = −
{
max

|p|5c| �q|
[ �q ·p− �(x; p)]

}
+ [q ·p∗ − �(x; p∗)]

5 −[ �q ·p∗ − �(x; p∗)] + [q ·p∗ − �(x; p∗)] = (q− �q) ·p∗ :
Exchange the roles of q and �q to get

�(x; q)− �(x; �q)5 ( �q− q) ·p∗( �q) :
These two inequalities imply (iii).
Recall that we assume the functions ckm(x); a

ij
k (x) to be Lipschitz contin-

uous. This implies the existence of c1¿0 such that

|�(x; p)− �(y; p)|5 c1(1 + |p|2)|x − y| for all x; y; p ∈ Rr :
Thus, by (ii) (renotate the constant c by c2)

�(x; q) = min
|p|5c2|q|

[−q ·p+ �(x; p)]

5 min
|p|5c2|q|

[−q ·p+ �(y; p)] + max
|p|5c2|q|

[�(x; p)− �(y; p)]

5 �(y; q) + c1(1 + c22|q|2)|x − y|
5 �(y; q) + c1(1 + c22)(1 + |q|2)|x − y| :

Because the roles of x and y can be exchanged, (iv) is proved with c =
c1(1 + c22).
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Lemma 2.2 Let ’ be such that
∫ t
0�(’s; ’̇s)ds-−∞. The following two prop-

erties hold.
(i) Let ’bs = ’bs; 05 s5 b−1t; b¿0. Then

lim
b→1

∣∣∣∣∣ t=b∫0 �(’bs ; ’̇bs )ds−
t∫
0
�(’s; ’̇s)ds

∣∣∣∣∣ = 0 :
(ii) Let �̃(x; q) be de�ned as �(x; q) for functions cij(x) replaced by c̃ij(x).
Then

t∫
0
�̃(’s; ’̇s)ds→

t∫
0
�(’s; ’̇s)ds as  ≡ sup

x∈Rr ; 15i; j5n
|c̃ij(x)− cij(x)| → 0 :

Proof. A change of variable s = bs′ shows that∣∣∣∣∣ t=b∫0 �(’bs′ ; ’̇bs′)ds′ −
t∫
0
�(’s; ’̇s)ds

∣∣∣∣∣ =
∣∣∣∣ t∫
0
b−1�(’s; b’̇s)ds−

t∫
0
�(’s; ’̇s)ds

∣∣∣∣
5 b−1

t∫
0
|�(’s; b’̇s)|ds− �(’s; ’̇s)|ds

+ |b−1 − 1|
∣∣∣∣ t∫
0
�(’s; ’̇s)ds

∣∣∣∣ :
It is clear that the second term in the righthand side tends to 0 as b→ 1. The
�rst term in the righthand side is bounded, via Lemma 2.1(iii) and (i), by

b−1c(b+ 1) |b− 1|
t∫
0
|’̇s|2 ds5 b−1c(b+ 1)|b− 1|2 �A

t∫
0
(n �� − �(’s; ’̇s))ds ;

which again tends to 0 as b→ 1. Statement (i) is proved.
Let �̃(x; p) be de�ned as �(x; p) for function cij(x) replaced by c̃ij(x).

Then,
|�̃(x; p)− �(x; p)|5 n :

Hence,
|�̃(x; q)− �(x; q)|5 n

from which (ii) follows.

Lemma 2.3 The function V (t; x) is locally Lipschitz continuous in t¿0;
x ∈ Rr : For any compact subset F of {(t; x) : t¿0; x ∈ Rr} there exists K =
KF such that |V (s; x)− V (t; y)|5 K(|t − s|+ |x − y|) for (s; x); (t; y) ∈ F .
Proof. Throughout the proof c means a constant which may vary from place
to place. The proof consists of two steps.

Step 1 For given t¿0; x ∈ Rr , there exist constants A; �¿0 such that
|V (T; z)− V (T; y)|5 A|z − y| for |y − x|¡�; |z − x|¡� and |T − t|¡� :
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It follows from Lemma 2.1(i) that a constant M = Mt; x; � exists such that

V (T; y) = sup
’∈CM ;’0=y;’T∈G0

min
05a5T

a∫
0
�(’s; ’̇s)ds

for |x − y|5 �; |T − t|5 �, where

CM =

{
’ ∈ C0; t+� :

t+�∫
0
|’̇s|2 ds5 M

}
:

Let �s = �s[’] = ’s + (T − s)q; q = 1
T (z − y). Then �0 = z; �T = ’T ∈ G0

if ’0 = y; ’T ∈ G0, and
|V (T; z)− V (T; y)|

5 sup
’∈CM ;’0=y;’T∈G0

T∫
0
|�(�s; �̇s)− �(’s; ’̇s)|ds

5 sup
’∈CM ;’0=y;’T∈G0

T∫
0
|(�(�s�̇s| − �(’s; �̇s) + (�(’s; �̇s)− �(’s’̇s))|ds

5 sup
’∈CM ;’0=y;’T∈G0

T∫
0
{c|x − y|+ c|q|

T∫
0
(|’̇s|+ |�̇s|)ds} ;

where the last inequality uses Lemma 2.1(iii) and (iv). By the Schwartz
inequality

T∫
0
|’̇s|ds5

(
T
T∫
0
|’̇s|2 ds

)1=2
5 (TM)1=2 :

Using the same bound for
∫ T
0 |�̇s[’]|ds and the fact that q = 1

T (z − y) we
derive step 1.

Step 2 There exist K; �¿0 such that

|V (T1; x)− V (T; x)|5 K(T1 − T ) for t + �¿T1¿T¿t − � :
Let � = T1 − T . Then

V (T1; x)5 sup
{

min
�5a5T+�

a∫
0
�(’s; ’̇s)ds : ’0 = x; ’T+� ∈ G0; ’ ∈ CM

}
5 sup

{
n ���−

�∫
0
|’̇s|2 ds=(2 �A) + V (T; ’�) :

’0 = x; ’T+� ∈ G0; ’ ∈ CM
}
;

where the last inequality uses Lemma 2.1(i). The result of step 1 guarantees

|V (T; ’�)− V (T; x)|5 A|’� − x| :
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Combining these two estimates we derive

V (T1; x)− V (T; x)

5 n ���+ sup

{
−

�∫
0
|’̇s|2 ds=(2 �A) + A|’� − x| : ’0 = x and ’ ∈ CM

}
:

Set u = |’� − x| = |
∫ �
0 ’̇s ds| and apply the Schwartz inequality

�∫
0
|’̇s|2 ds=

u2

�
:

Then,

V (T1; x)− V (T; x)5 n ���+ sup
u=0
(Au− u2=(2 �A�) = (n �� + A2 �A=2)� :

Step 2 is completed once we show that V (T1; x)− V (T; x)= 0 for T1 = T :

V (T1; x)= sup
{

min
05a5T+�

a∫
0
�(’s; ’̇s)ds : ’s = x

for 05 s5 � and ’T+� ∈ G0
}

= V (T; x) ;

where the last inequality uses Lemma 2.1(i).

We introduce two other functions, V0 and V1 which are more familiar
in the literature of wave front propagation cf. [ES, F3]. We shall prove that
V = V0 = V1 in Lemma 2.4. A functional � : C([0; t]; Rr)→ [0; t] is called a
stopping time if � depends only on ’s; 05 s5 u, when restricted to {�5 u}.
Let �t be the collection of all stopping times not greater than t. If F is a closed
subset of [0; t]× Rr and {0} × Rr ⊂ F , then

�F ≡ min{s : s= 0 and (t − s; ’s) ∈ F}

is clearly a stopping time not greater than t. Let �t be the collection of �F . Let

V0(t; x) = inf
�∈�t

{
sup

�∫
0
�(’s; ’̇s)ds : ’ is absolutely continuous;

’0 = x and ’t ∈ G0
}
;

V1(t; x) = inf
�∈�t

{
sup

�∫
0
�(’s; ’̇s)ds : ’ is absolutely continuous;

’0 = x and ’t ∈ G0
}
; t¿0; x ∈ Rr :
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Due to (1.6), the functions V (t; x); V0(t; x); V1(t; x) can be expressed through
�(x; q; �) instead of �(x; q). For example,

V1(t; x) = inf
�∈�t

sup
{ �(’)∫

0

[
n∑

k; j=1
ckj(’s)�̇ks − �(’s; ’̇s; �̇s)

]
ds : ’ ∈ C0t ; ’0 = x;

’t ∈ G0; �s = (�1s ; : : : ; �ns ); �is are non-decreasing
absolutely continuous functions on [0; t];

n∑
i=1
�is = s

}
:

This representation shows the connection between V1(t; x) and the action func-
tional for the family (X �t ; Z

�
t ).

The de�nition of V0 and V1 di�ers only in the admissible set of stopping
times. It is easy to see that V 5 V0 5 V1. We prove

Lemma 2.4 The three functions V; V0 and V1 are equal.

Proof. It su�ces to prove that V1 5 V . Suppose that V1(T; X )¿V (T; X )
for some T ¿0; x ∈ Rr . We shall produce a contradiction. Let F = {(s; y) :
V (s; y) = 0 or s = 0} ∩ {s5 T}. Since V is (Lipschitz) continuous, the set
F is closed and � = �F ∈ �T . The de�nition of V1 guarantees the existence of
’ : [0; T ]→ Rr; ’0 = X; ’T ∈ G0 such that

(2:1)
�[’]∫
0
�(’s; ’̇s)ds¿V (T; X ) :

If �[’]¡T , the de�nition of � yields

(2:2) V (T − �[’]; ’�[’]) = 0 ;
and

(2:3) V (T − b; ’b)¡0 for 05 b5 �[’] :

Equality (2.2) ensures that for any �¿0 there exists a reconstruction of ’ in
the time interval (�[’]; T ] such that for the new ’

(2:4)
a∫
0
�(’s; ’̇s)ds=

�[’]∫
0
�(’s; ’̇s)ds− � for �[’]5 a5 T :

One then concludes from (2.3) that

(2:5)
b∫
0
�(’s; ’̇s)ds¿

�[’]∫
0
�(’s; ’̇s)ds for 05 b5 �[’] :

Then (2.4) and (2.5) imply that V (T; X )=
∫ �[’]
0 �(’s; ’̇s)ds− �, for any

�¿0, which contradicts (2.1). If �[’] = T , (2.3) still holds and implies that

V (T; X )= min
05a5T

a∫
0
�(’s; ’̇s)ds =

T∫
0
�(’s; ’̇s)ds :

This contradicts (2.1) and completes the proof.
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Let

V ∗(t; x) = sup
’0=x;’t∈G0

t∫
0
�(’; ’̇s)ds; t¿0; x ∈ Rr :

This function takes a form simpler than V .
We say that condition (N) is ful�lled, if

(N) V ∗(t; x) = sup
{ t∫
0
�(’s; ’̇s)ds : ’0 = x; ’t ∈ G0

and

V ∗(t − s; ’s)¡0 for 0¡ s ¡ t
}
; whenever V ∗(t; x)5 0 :

Condition (N) is ful�lled when, for example, aijk (x) and ckm(x) are constants.

Lemma 2.5 If (N) is ful�lled, then V (t; x) = min(V ∗(t; x); 0).

Proof. In view of Lemma 2.4 it su�ces to prove that (i) and (ii) hold:
(i) V1(t; x)= V ∗(t; x)= V (t; x) when V ∗(t; x)5 0.
(ii) V (t; x) = 0 when V ∗(t; x)¿0.
Statement (ii) follows from statement (i) and the monotonicity of V and V ∗

in t. The second inequality of (i) is obvious. Next, we prove the �rst inequality.
From the condition (N) and the de�nition of V ∗(t; x) one can conclude that
for any �¿0 there exists �s = ��s ; 05 s5 t; �0 = x; �t ∈ G0, such that

V ∗(t; x)5
t∫
0
�(�s; �̇s)ds+ � ;

V ∗(t − s; �s)¡0 for 0¡ s ¡ t :

Then we obtain

V1(t; x)= inf
�∈�t

�[�]∫
0
�(�s; �̇s)ds= inf

05a5t

a∫
0
�(�s; �̇s)ds

=
t∫
0
�(�s; �̇s)ds= V ∗(t; x)− � ;

where the equality follows from the fact that
∫ t
0 �(�s; �̇s)ds¡0 for 05 a¡t

since V ∗(t − a; �a)¡0. Since � is an arbitrary positive number we conclude
that V1(t; x)= V ∗(t; x).

Remark 1 It follows from Lemma 2.5 that {V (t; x)¡0} = {V ∗(t; x)¡0} and
({V (t; x) = 0}) = ({V ∗(t; x)= 0}), if (N) is ful�lled.
Remark 2 One should compare our condition (N) to that given in [F2], in
which n = 1 (one reaction–di�usion equation) is considered and

(2:6)

V ∗(t; x) = sup
’=x; ’t∈G0

[ t∫
0
c(’s)ds− S0t(’)

]
;

S0t(’) =
1
2

t∫
0

r∑
i; j=1

aij(’s)’̇is’̇
j
s ds; (aij(x)) = (a

ij(x))−1 :
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Recall from (1.6) that

�(x; q) = sup
�k=0;

∑n
k=1 �k=1

 n∑
m=1
k=1

ckm(x)�k

− �(x; q; �)
 :

It is clear that our V ∗ function reduces to (2.6) when n = 1.

3 Proof of Theorem 1

The proof goes according to the following plan: First, as shown in Lemma 2.4,
one can replace V (t; x) by V1(t; x). Then we prove in Lemma 3.1 a compari-
son result, which allows to reduce the proof of both statements of Theorem 1
to equations with simpler nonlinearities. In Lemma 3.2 we prove the �rst
statement of the Theorem by replacing in (1.2) the function Fk(x; u) by
F̃k(x; u) =

∑n
j=1 ck; j(x)uj + uk(1− uk=M ′) with proper ;M ′¿0. The solution

of problem (1.2), (1.4) with the nonlinear terms F̃k(x; u) can be bounded from
above using the Feynman–Kac formula and the upper large deviation bound
for the Markov process corresponding to system (1.3).
The second statement of Theorem 1 follows from Lemmas 3.4 and 3.6.

Lemma 3.4 is proved using a comparison with a single KPP-type equation given
in Lemma 3.3. The proof of Lemma 3.6 is based on the lower large deviation
bound and the fact that Fk(x; u), for small |u|, not only can be bounded from
above but also can be approximated by

∑n
j=1 ckj(x)uj. Lemma 3.5 contains a

simple auxiliary statement.

Lemma 3.1 Assume that conditions (A1)–(A3) are ful�lled. Then the follow-
ing statements hold;
(i) The cube [0; B]n is an invariant region for problem (1.2), that is; if the
initial conditions (g1(x); : : : ; gn(x)) ∈ [0; B]n for x ∈ Rr then u�(t; x) ∈ [0; B]n
for any t = 0; x ∈ Rr .
(ii) Let f(v); v ∈ R1; be continuously di�erentiable and f(v)= 0 for 05
v5 B. De�ne F̃k(x; u) =

∑n
j=1 ckj(x)uj + f(uk); and let ũ �(t; x) = (ũ

�
1(t; x); : : : ;

ũ �n(t; x)) be the solution of problem (1.2)–(1.4) with Fk(x; u) replaced by
F̃k(x; u); k = 1; : : : ; n,

Then ũ �k (t; x)= u�k (t; x) for any t = 0; x ∈ Rr; k = 1; : : : ; n.
(iii) Let f(z); z ∈ R1; be a continuously di�erentiable function such that
Fk(x; u1; : : : ; un)= f(uk). Denote �u�k (t; x) the solution of the Cauchy problem

@ �u�k
@t
= L�k �u

�
k +

1
�
f( �u�k); t¿0; x ∈ Rr ;

�u�k (0; x) = gk(x) ;

where L�k is the same as in (1.2) and gk(x) is the same as in (1.4). Then
u�k(t; x)= �u�k (t; x) for t = 0; x ∈ Rr .
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Proof. Statement (i) follows from Theorem 14.7 in [S].
To prove (ii) denote by vk(t; x) the di�erence ũ �k (t; x)− u�k(t; x). From

the mean value theorem we derive that for given ũ �k (t; x) and u
�
k(t; x) con-

tinuous functions c̃k(t; x), the dependence on � being omitted, exist such
that

f(ũ �k (t; x))− f(u�k(t; x))
= c̃k(t; x)(ũ �k (t; x)− u�k(t; x) ; k = 1; : : : ; n; t = 0; x ∈ Rr :

Let ck(x)=
∑n
j=1 ckj(x); ĉk(t; x)=ck(x) + c̃k(t; x); gk(t; x)= F̃k(x; u

�)− Fk(x; u�).
The functions vk(t; x); k = 1; : : : ; n, satisfy the equations

@vk
@t
= L�vk +

1
�
[F̃k(x; ũ �)− Fk(x; u�)] = L�kvk

+
1
�

[
n∑
j=1
ckj(x)(vj − vk) + ĉk(t; x)vk + gk(t; x)

]
;

vk(0; x) = 0; t¿0; x ∈ Rr; k = 1; : : : ; n :
Let (X �t ; �

�
t ) be the Markov process in R

r × {1; : : : ; n} corresponding to the sys-
tem (1.3). Then the functions vk(t; x) can be represented by the Feynman–Kac
formula

vk(t; x) =
1
�
Ex; k

t∫
0
gv�t (t − s; X �s ) exp

{
1
�

s∫
0
ĉ��s (t − s1; X �s1)ds1

}
ds:

Since gk(t; x) = F̃k(x; u�)− Fk(x; u�)= f(u�k)= 0 by (A3), statement (ii) fol-
lows from this representation and statement (i).
To prove (iii) put wk(t; x) = u�(t; x)− �u�k (t; x). The function wk(t; x) satis�es

the equation

@wk
@t

= L�kwk +
1
�
[Fk(x; u�)− f(u�k)] +

1
�
[f(u�k)− f( �u�k))

= L�kwk +
1
�
f′(û �k)wk +

1
�
[Fk(x; u�)− f(u�k)] ;

wk(0; x) = 0 :

Here û �k = û
�
k (t; x) is an intermediate point between �u

�
k and u

�
k . Since Fk(x; u)−

f(uk)= 0, we conclude from the maximum principle for linear parabolic equa-
tions that w�k(t; x) = u

�
k(t; x)− �u�k (t; x)= 0:

Remark. Statements (ii) and (iii) are special cases of a more general com-
parison theorem for system (1.2). The general result also can be proved using
the probabilistic representation. One can derive it using an analytic approach
as well (see Theorem 4.4.1 in [LLV]).

Lemma 3.2 Let u�(t; x) be the solution of problem (1.2), (1.4), and � be a
compact subset of the set {(t; x): t¿0; x ∈ Rr; V1(t; x)¡0}. Then

lim
�↓0

u�k(t; x) = 0 uniformly in (t; x) ∈ �; k = 1; : : : ; n :
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Proof. Let

ck(x) =
n∑
j=1
ckj(x) ;

|c| = max
x∈Rr ; 15k5n

ck(x) ;

F̃k(x; v) = F̃k; ;M (x; v) =
n∑
j=1
ckj(x)(vj + vk) +

(
vk
(
1− vk

M ′
))
;

where, ;M ′¿0. Consider the system

(3:1)

@v�k(t; x)
@t

= L�kv
�
k +

1
�
F̃k(x; v�); t¿0; x ∈ Rr ;

v�k(0; x) = gk(x); 15 k 5 n :

Let M ′¿B;  will be chosen later. One can check that then

F̃k(x; v)=
∑
j
ckj(x)vj; v ∈ [0; B]n :

It follows from the statement (ii) of Lemma 3.1

(3:2) 05 u�k(t; x)5 v�k(t; x); t = 0; x ∈ Rr; 15 k 5 n :

Now to prove Lemma 3.2 it is enough to check that v�k(t; x)→ 0 as � ↓ 0
uniformly in (t; x) ∈ �.
System (3.1) is of the same type as system (1.2), (1.4). One can introduce

the function Ṽ1(t; x) for the system (3.1) in the same way as the function
V1(t; x) was introduced for (1.2). It is easy to check that the vector �eld
F̃(x; v) = (F̃1(x; v); : : : ; F̃n(x; v)) satis�es condition (A1) with B replaced by
M = M ′(|c|+)

 + B, and then

05 vk(t; x)5 M for all t = 0; x ∈ Rr; 15 k 5 n :

Since

c̃ki(x) =
@F̃k(x; v)
@vi

∣∣∣∣
v=0

= cki(x) for k-i and c̃kk(x) = ckk(x) +  ;

it follows from (1.6), the de�nition of V1(t; x) and Lemma 2.4, that

(3:3) Ṽ1(t; x)5 V1(t; x) + t :

Since V1(t; x) is continuous (see Lemmas 2.3 and 2.4),

max{V1(t; x) : (t; x) ∈ �} = −�¡0 :
Let

T = max{t : (t; x) ∈ � for some x ∈ Rr} ;
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T ¡∞ because of compactness of �. It follows from (3.3) that ¿0 can be
chosen so small that Ṽ1(t; x)¡− �

2 for (t; x) ∈ �.
Let (X �t ; �

�
t ) be the Markov process in the state space R

r × {1; : : : ; n} such
that its generator A acts on a smooth function h(x; k) as follows:

Ah(x; k) = L�kh(x; k) +
1
�

n∑
j=1
ckj(x)(h(x; j)− h(x; k)) :

Such a process exists and is unique (see, for example, [F1, Sk]). Using the
Feynman–Kac formula one can write the following relation for the solution of
problem (3.1)

(3:4) v�k(t; x) = Ex; kv
�
���
(t − �; X �� ) exp

{
1
�

�∫
0
c̃ ��s (X

�
s ; v

�(t − s; X �s ))ds
}
;

where c̃ k (x; v) = (+ ck(x))(1− vk
M ), and � is any stopping time for the process

(X �t ; �
�
t ) such that Px; k{�5 t} = 1. We conclude from (3.4) that

05 v�k(t; x)5 MEx; k�t;G0 exp
{
1
�

�∫
0
(c̃ ��s (X

�
s ; v

�(t − s; X �s ))ds
}
= D�k(t; x) ;

(3:5)

where �t;G0 is the indicator function of the complement of the set{�= t; X �t ∈|G0};
G0 = {x ∈ Rr: ∑n

1 gi(x)¿0}.
Now, since Ṽ1(t; x)¡− �

2 for (t; x) ∈ �, the de�nition of V1 in Sect. 2
implies that there exist a closed set F and the corresponding stopping time
�∗ = �F ∈ �t such that

sup
{ �∗∫
0

[
+

(∑
k
ck(’s)�̇ks )− �(’s; ’̇s; �̇s

)]
ds : ’0 = x; ’t ∈ G0

}
¡−�

2
:

Denote �l the indicator of the set

Sl =
{
t(l− 1)
m

5 �∗¡
tl
m

}
; l = 1; : : : ; m :

Then taking into account that ck(x)= 0, we can write:

D�k(t; x)5 M
m∑
l=1
Ex; k�l�t;G0 exp

{
1
�

tl=m∫
0
(+ c��s (X

�
s ))ds

}

+MEx; k��∗ = t�t;G0 exp
{
1
�

t∫
0
(+ cv�s (X

�
s )ds

}
:(3:6)

Notice that the set {� : �0 = x; �t ∈ G0; � ∈ Sl} is contained in

Tl={� : �0=x; �t ∈ G0; (t − s; �(s)) ∈ F for some (l−1)t=m5 s5 lt=m} ;



54 M.I. Freidlin, T.-Y. Lee

which is closed with respect to the supremum norm. Using the large deviation
principle, we get

lim
�↓0
� ln Ex; k�l�t;G0 exp

{
1
�

tl=m∫
0
(c��s (X

�
s ) + )ds

}

5 sup

{
tl=m∫
0

(
+

∑
k
ck(’s)�̇ks

)
ds− S0; tl=m(’; �): � ∈ Tl

}
:(3:7)

Note that the supremum in the righthand side of (3.7) is bounded from above by

sup
{ �∗∫
0

[(
+

∑
i
ci(’s)�̇is

)
− �(’s; ’̇s; �̇s)

]
ds : � ∈ Tl

}
+
t
m
(+ |c|)5 −�

2
+
t(+ |c|)

m
;(3:8)

for l = 1; : : : ; m and � as in (3.7). Now choosing m¿ 4t
� (+ |c|) we derive

from (3.7) and (3.8) that

(3:9) lim
�↓0

� ln Ex; k�l�t;G0 exp
{
1
�

�∗∫
0
cv�s (X

�
s )ds

}
5 −�

4
:

A similar bound holds for the last term in the righthand side of (3.6):

(3:10) lim
�↓0

� ln Ex; k��∗ = t�t;G0 exp
{
1
�

t∫
0
cv�s (X

�
s )ds

}
5 −�

4
:

The statement of Lemma 3.2 follows from (3.2), (3.5)–(3.10).

Consider an auxiliary problem

@u�(t; x)
@t

=
�
2

r∑
i; j=1

aij(x)
@2u�

@xi@xj
+
1
�
f(u�)

= �Lu� +
1
�
f(u�); t¿0; x ∈ G ⊂ Rr; u�(t; x)

∣∣∣∣
x∈@G

= 0 ;

(3:11) u�(0; x) = g�(x)= 0; �¿0 :

We assume that L is an elliptic operator with bounded smooth enough coe�-
cients, g�(x) is bounded and continuous except on maybe a �nite number
of smooth manifolds of dimension r − 1, where it has simple discontinities:
lim g�(x) exists when x approaches a point on the discontinuity manifold from
one side and equal to a continuous function on the manifold. The nonlinear
term in (3.11) is assumed to be of KPP type: there exists �¿0 such that
f(u) = c(u)u, where c(u) is Lipschitz continuous, c(u)¿0 for 0¡u¡�,
c(�) = 0, c = c(0) = maxu=0 c(u); c(u)¡0 for u¿�. One can check that
05 u�(t; x)5 max(�; supx g(x)) (see [F3]). Denote �( · ; · ) the Riemannian
metric in Rr corresponding to the form

∑n
i; j=1 aij(x)dx

i dxj, (aij(x))=(aij(x))−1.
Let G = Gh = {x ∈ Rr; �(x; 0)¡h}, h¿0, and let @G be a smooth (r − 1)-
dimensional manifold.
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Lemma 3.3 Assume that for any �¿0 there exists �0¿0 such that g�(x)¿
e−�=� for |x|¡e−2�=� and � ∈ (0; �0).

Then
lim
�↓0

u�(t; x) = �

for the points (t; x) such that �(x; 0)¡min(t
√
2c; h). The convergence is uni-

form in (t; x) from any compact subset of {(t; x) : t¿0; x ∈ Rr and �(x; 0)¡
min(t

√
2c; h)}.

Proof. Let

g��(x) =
{
e−�=�; for |x|5 e−2�=� ;
0; for |x|¿e−2�=� ;

The solution of problem (3.11) with g�(x) = g��(x) is denoted u
�
�(t; x). It follows

from Theorem 6.2.2 of [F1] that

(3:12) lim
�→0

u��(t; x) = 0 if �(x; 0)¿t
√
2c ;

uniformly in any compact subset of {(t; x): t¿0; h¿�(x; 0)¿t√2c}.
Now, let us prove that

(3:13) lim
�↓0
� ln u�� (t; x)¿−6�

if � = (x; 0) = t
√
2c ¡ h. Using the Feynman–Kac formula we get

(3:14) u�� (t; x) = Ex g
�
� (X

�
t ) exp

{
1
�

t∫
0
c(u�� (t − s; X �s ))ds

}
��¿t ;

where X �t is the di�usion process in Rr governed by the operator �L;
� = min {t : X �t ∈| G} and ��¿t is the indicator function of the set {�¿t}. Let
’̂s; 05 s5 t, be the minimal geodesic in the metric � connecting points x
and 0; ’̂0 = x; ’̂t = 0; �(x; 0)¡ h, with the parametrization proportional to
the Riemannian length. Let �¿0 be so small that

(3:15) 3c� ¡ �;
�2(0; x)
t − 3� − �2(0; x)

t
¡ �;

�2(0; ’̂t−3�)
�

¡ � ;

and �1¿0 be such that the transition density p�(t; x; y) of the process X �t
satis�es the inequality

(3:16) p�(�; x; y)¿exp
{
−�
�

}
for |x|¡ �1; |y|¡ �1 :

The existence of such �1 follows, for example, from the Varadhan’s result [V]:

lim
�↓0
� lnp�(t; x; y) = −�

2(x; y)
2t

:
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Consider the function �’s; 05 s5 t − �, de�ned as follows:

�’s =


x if 05 s5 � ;
’̂s−� if �5 s5 t − 2� ;
’̃s−(t−2�) if t − 2�5 s5 t − � ;

where ’̃s is the minimal geodesic connecting points ’̂t−3� and 0 in time [0; �]
with the parameter proportional to the Riemannian length. The function �’s;
05 s5 t − �, starts at x and ends at 0. Denote

�2 = max
�5s5t−2�

|’̂s − �’s|; � = 1
2 min(�1; �2) :

Note that the closure of the Euclidean �-neighborhood �� of the curve
(t − s; �’s); �5 s5 t − 2�, belongs to the set {(t; x) : �(x; 0)¿t√2c}. Thus,
due to (3.12), there exists �0¿0 such that c(u�(t − s; x))¿c − �

t for (t −
s; �’s) ∈ ��, � ¡ �0. Denote �

�
�’ the indicator of ��. Then we have from (3.14)

and the large deviation principle for �¿0 small enough

u�� (t; x)= Ex u�� (�; X
�
t−�)�

�
�’ exp

{
1
�

t−�∫
0
c(u�� (t − s; X �s )ds

}
= Ex min|y|5�

u�� (�; y) exp
{
1
�
[c(t − �)− S∗0; t−� ( �’)− �]

}
;(3:17)

where 1
� S
∗
0T ( �’) is the action functional for the process X

�
s as � ↓ 0. As shown

in [F1, Sect. 6.2]

S∗0; t−� ( �’) =
�2(x; ’̂t−3�)
2(t − 3�) +

�2(’̂t−3�; 0)
2�

:

We conclude from (3.15) that

(3:18) S∗0; t−� ( �’)¡
�2(x; 0)
2t

+ � :

One can derive from (3.14) and (3.16) that

(3:19) u�� (�; x)¿e
−3�=� for |x|5 � :

Gathering bounds (3.17)–(3.19), we derive (3.13).
Since g�(x)= g��(x) we conclude that

u�(t; x)= e−10�=� if �(x; 0) = t
√
2c ¡ h

and � is small enough. Taking into account that �¿0 is arbitrary we get

(3:20) lim
�↓0
� ln u�(t; x) = 0 ;

if �(x; 0) = t
√
2c ¡ h. The statement of Lemma 3.3 follows from (3.20),

(3.14) and the strong Markov property by standard arguments (see Sect. 6.2 in
[F1] or [F2]), and we omit them.
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Let
KAt0 ; x0 = {(t; x): t¿t0; |x − x0|¡ A(t − t0)} ;
DAt0 ; x0 = {(t; x) : 0¡ t ¡ t0; |x0 − x|¡ A(t0 − t)} :

Lemma 3.4 Assume that for some k0 ∈ {1; : : : ; n}; t0 = 0; x0 ∈ Rr

lim
�↓0
� ln u�k0 (t0; x0) = 0 :

Then there exists A¿0 such that

lim
�↓0
u�k (t; x)¿0 ;

uniformly in (t; x) from any compact subset of KAt0 ; x0 and any k ∈ {1; : : : ; n}.

Proof. Let � be as in condition (A2), B′ = B′(
�
2 )¡ B as in condition (A3).

Let −M be the in�mum in (A1). Let f(u) be a continuously di�erentiable
function on [0;∞) such that

f(u) =

{
�
2 · u(1− 2u

B′ ) if 05 u5 B′
2 ;

−M if u¿B′

and let f(u) decreases on (B
′
2 ; B

′).
Consider the following system of uncoupled equations:

@v�k
@t
= L�kv

�
k +

1
�
f(v�k); t¿0; x ∈ Rr ;

v�k (0; x) = u
�
k (t0; x); k = 1; : : : ; n :

Because of conditions (A1)–(A3)

Fk(x; u)= f(uk); x ∈ Rr; u ∈ [0; B]n; k = 1; : : : ; n :
It is readily checked that the vector �eld f satis�es (A1)–(A3). Thus, accord-
ing to Lemma 3.1(i) and (iii),

(3:21) u�k (t0 + t; x)= v�k (t; x); t = 0; x ∈ Rr; 15 k 5 n :

Note that if functions u�1(t; x); : : : ; u
�
n (t; x) satisfy (1.2), (1.4), then �u

�
k (t; x) =

u�k (�t; �x); k = 1; : : : ; n; satisfy equations

@ �u�k
@t

=
1
2

n∑
i; j=1

aijk (�x)
@2 �u�k
@xi@xj

+ Fk(�x; �u�1 ; : : : ; �u
�
n) ;

t¿0; x ∈ Rr; k = 1; : : : ; n ;
and according to Lemma 3.1(i), 05 �u�k (t; x)5 B. Taking into account that
the equations for �u�k are parabolic uniformly in � ∈ (0; 1] and have bounded
coe�cients and their �rst derivatives, we conclude from the standard apriori
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bounds for the solutions of (linear) parabolic equations (see, for example,
[Fri, Theorem 4 in Ch. 7]) that |∇x �u�k (t; x)|¡ const: ¡∞ uniformly in � ∈
(0; 1]. Thus |∇x u�k (t; x)|5 const: �−1. The last bound implies, that if
lim�↓0 � ln u�k0 (t0; x0) = 0 then for any �¿0 there exists �0 such that

u�k0 (t0; x)¿e
−�=� for |x − x0|¡ e−2�=�; 0¡ � ¡ �0 :

Then we derive from Lemma 3.3, that there exists A¿0 such that for any
compact subset K of the cone KA0; x0

lim
�↓0
v�k0 (t; x) =

B′

2
uniformly in (t; x) ∈ K :

Thus due to (3.21)

lim
�→0

u�k0 (t; x)=
B′

2
;

uniformly in (t; x) from any compact subset of the cone KAt0 ; x0 .
To �nish the proof of Lemma 3.4 we need to show that for all k = 1; 2; : : : ; n

and some �¿0

(3:22) lim
�→0

u�k (t; x)= � ;

uniformly in any compact subset of KAt0 ; x0 .
It follows from (A1)–(A3) and the mean value theorem that

Fk(x; u) =
n∑
j=1
ckj(x; u)uj; 15 k 5 n; x ∈ Rr; u ∈ Rn ;

where ckj(x; u) are continuous and bounded and ckj(x; u)= 0 for x ∈ Rr; |u|¡
�1 for some �1¿0. Let ��s = (ts; X

�
s ; �

�
s) be the Markov process in the state

space R1 × Rr × {1; : : : ; n} governed by the generator A:

Ah(s; x; k) = −@h
@s
+ L�h+

1
�

n∑
j=1
ckj(x; u�(s; x)) (h(s; x; j)− h(s; x; k)) ;

where u�(s; x) is the solution of problem (1.2), (1.4). The process �s is de�ned
at least in the domain {(s; x; k) : |u�(s; x)|¡ �1}; ts = t0 − s:

Suppose (3.22) is not true: there exist k1; a compact K ∈ KAt0 ; x0 ; �2; 0¡
�2 ¡ 1

2 min(�1; B
′), and a sequence (t�

′
; x�

′
) ∈ K , such that

lim
�′↓0

u�
′
k1

(
t�

′
; x�

′)
¡ �2 ¡ 1

2 min(�1; B
′) :

Denote
��

′
= {(s; y; k) : u�′k (s; y)¡ 2�2} :

��
′
= 1

2 min
((
t�

′ − t0
)
; min

{
s : (ts; X �

′
s ; �

�′
s ) ∈| ��

′})
:
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Taking into account that c�
′
k (s; x) =

∑n
j=1ckj(�; u

�′(s; x))¿0 in ��
′
we conclude

from the Feynman–Kac formula that

(3:23) u�
′
k1

(
t�

′
; x�

′)
= Et�′; x�′ ; k1

u�
′
��
′
��′

(
t�

′ − ��′ ; X �′
��′
)
:

The di�erence t�
′ − t0 is bounded from below by a positive constant since

all (t�
′
; x�

′
) ∈ K ⊂ KAt0 ; x0 . Taking into account the positivity of the jumping

intensities ck; j(x; u) and the result for u�k0 (t; x) we can conclude that

Pt�′; x�′; k1
{
��

′
¡ 1

2

(
t�

′ − t0
)}→ 1 as �′ ↓ 0 ;

and thus

(3:24) Pt�′; x�′; k1
{
u�

′
��
′
��′

(
t�′ − ��

′
; X �

′
��′
)
= 2�2

}→ 1 as � ↓ 0 :

From (3.23) and (3.24) we conclude that

lim
�′→0

u�
′
k1

(
t�

′
; x�

′)
= �2 :

This contradiction proves (3.22).

Denote

E(�
′) =

{
(t; x) : t¿0; x ∈ Rr; lim

�′→0
u�

′
k (t; x) = 0 for some k = 1; : : : ; n

}
:

Here (�′) is a sequence such that �′¿0, �′ → 0.

Lemma 3.5 (i) If (t0; x0) ∈ E(�′) then there exists A¿0 such that
lim
�′↓0

�′ ln u�
′
k (t; x)¡ 0

for any point (t; x) ∈ DAt0 ; x0 and any k = 1; : : : ; n.
(ii) For any compact K contained in the interior (E(�

′)) of the set E(�
′)

lim
�′↓0

u�
′
k (t; x) = 0 ;

uniformly in (t; x) ∈ K and 15 k 5 n.
(iii) E(�

′) ⊂ [(E(�′))]; where [D] means the closure of the set D. If (t; x) ∈ E(�′);
then (t − h; x) ∈ (E(�′)) for 0¡ h ¡ t.

Proof. The �rst statement follows immediately from Lemma 3.4. To prove the
second statement note that K can be covered by a �nite number of cones DAtk ; xk
with vertices (tk ; xk) ∈

(
E(�

′))∖K . The uniformity follows from the uniformity
of the bound in Lemma 3.4. The last statement follows from (i) and (ii).

Denote
M = {(t; x) : t¿0; x ∈ Rr; V1(t; x) = 0} ;

(M) means the interior of M .
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Lemma 3.6 Let K be compact; K ⊂ (M). Then for any k = 1; 2; : : : ; n:

lim
�↓0
� ln u�k (t; x) = 0

uniformly in (t; x) ∈ K .
Proof. The proof of this lemma is similar to the proof of Lemma 4 of [F3].
Assume that for a point (t; x) ∈ (M) and for some k = 1; : : : ; n there exists a
sequence �′ ↓ 0 such that lim�′↓0 �′ ln u�′k (t; x) = −� ¡ 0. Then lim�′↓0 u�

′
k (t; x) =

0; that is, (t; x) ∈ E(�′). Without loss of generality we can assume that (t; x) ∈(
E(�

′)). If this is not true, one can take a point (t − h; x) with small enough
h¿0. This new point belongs to

(
E(�

′)) due to Lemma 3.5(iii) and belongs
to (M) since (M) is open.
De�ne the stopping time � corresponding to the complement of the set(

E(�
′)):

� = �(t; ’) = min{s : (t − s; ’s) ∈|
(
E(�

′))} :
It is clear that �5 t a.s.
Since (t; x) ∈ M

sup
{ �∫
0
�(’s; ’̇s)ds : ’0 = x; ’t ∈ G0

}
= 0 ;

where G0 is the support of
∑n
i=1gi(x). Therefore for any �¿0 there exists

’s = ’�s ; 05 s5 t; ’0 = x; ’t ∈ G0, such that

R0; �(’) =
�∫
0
�(’s; ’̇s)ds= −�

4
;

(t − s; ’s) ∈ (E(�′)) for 05 s ¡ �(t; ’) ;

(t − �(t; ’); ’�(t;’)) ∈ @E(�′) :

Now we de�ne a reconstruction of ’s such that the new function �’s, 05 s5
�T ; spends most of the time in

(
E(�

′)), ends outside of the closure [E(�′)] of
E(�

′) and satis�es R0; �T ( �’)= − �
2 .

Let �1; �2 be small positive numbers, T = �(t; ’). De�ne

�’s = ’
�1 ; �2 =


x for s ∈ [0; �1] ;
’(s−�1)(T−�1)=(T−2�1) for s ∈ [�1; T − �1] ;
’T−�1+(s−T+�1)=(1−�2) for s ∈ [T − �1; T − �1�2] ;

The function �’s is de�ned for s ∈ [0; T − �1�2], �’ �T = ’T = z; where �T =
T − �1�2.
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According to Lemma 2.2(i) one can choose the numbers �1; �2¿0 so small
that

(3.25)

�T∫
0
�( �’s; �̇’s)ds= −�

2
;

T∫
�T−2(�1+�2)

�( �’s; �̇’s)ds ¡
�
8
;

(�1 + �2)(1 + ��)¡
�
8
;

�� is as in (A2). Note that since (s− �1)(T − �1)(T − 2�1)−1 5 s; for s5
T − �1,

(t − s; �’s) ∈
(
E(�

′)); 05 s5 T − �1 :

Since (t − T; z) ∈| (E(�′)) and �T ¡ T we conclude from Lemma 3.4 that
(t − �T ; z) ∈| [E(�′)]. Thus there exists a subsequence {�′′} of {�′} and �0; �¿0
such that

(3:26) lim
�′′↓0

u�
′′
k (t − �T ; x)= �¿0; 15 k 5 n; |x − z|¡ �0 :

Let c̃ij(x) = cij(x)− ; 0¡¡ �
2 . Denote �̃(x; q) the function de�ned

by (1.5) for {cij(x)}n1 replaced by {c̃ij(x)}n1. Let ¿0 be so small that if
supx∈R r ; 15 i; j5n |cij(x)− c̃ij(x)|¡, then

(3:27)

∣∣∣∣∣ �T∫
0
�̃( �’s; �̇’s) ds −

�T∫
0
�( �’s; �̇’s) ds

∣∣∣∣∣¡ �
8
:

Such ¿0 exists according to Lemma 2.2(ii). Let B′ = B′() be chosen as in
condition (A3), and � ∈ (0; �0) be so small that

(3:28)

G� = {(t − s; x) : 05s5 t − 2�1; |x − �’s|52�} ⊂
(
E(�

′)) ;∑
i; j
|c̃ij(x)− c̃ij(y)|¡ �

8t
for |x − y|¡� :

Consider the Markov process (X̃ �t ; �̃
�
t ) in the state space R

r × {1; : : : ; n} corre-
sponding to the generator Ã,

Ãh(x; k) = L�kh(x; k) +
1
�

n∑
j=1
c̃kj(x)(h(x; j)− h(x; k)) :

Denote
��1 = min{s : (t − s; X̃ �s ) ∈| G�} ;
��2 = min{s : u��̃ �s (t − s; X̃

�
s ) =

1
2 min(�; B

′)} ;
�� = min(��1; �

�
2) :

From now on we will write superscript � in place of �′′. Since G�⊂
(
E(�

′)) and
u�(t − �T ; x)¿ �

2 for |x − z|¡� and � small enough,
(3:29) Px; k{ �T ¿��2¿(T − 2�1) or ��1¡��2} = 1 :
for � small enough, |x − z|¡�.
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Using the Feynman–Kac formula one can write:

u�k(t; x) = Ex; ku
�
�̃ �
� �
(t − ��; X̃ �� �) exp

{
1
�

� �∫
0
c̃�̃ �s (X̃

�
s ) ds

}

+
1
�
Ex; k

� �∫
0

[
F��s (X̃

�
s ; u

�(t − s; X̃ �s ))−
n∑
j=1
c̃�̃ �s j(X̃

�
s )u

�
j(t − s; X̃ �s )

]

× exp
{
1
�

s∫
0
c̃�̃ �s (X

�
s ) ds

}
ds ;(3:30)

where c̃k(x)=
∑n
j=1c̃kj(x). SinceFk(x; u)−�jc̃kj(x)uj=0 for uj5B′; 15j5n,

the second term in the righthand side of (3.30) is positive. Taking into account
the de�nition of ��2 we derive from (3.30):

(3:31) u�k(t; x)=
1
2 min(�; B

′)Ex; k�� �1¿��2 exp

{
1
�

� �2∫
0
c̃�̃ �s (X̃

�
s ) ds

}
;

where �� �1¿��2 is the indicator function of the set {��1¿��2}. It follows from
(3.29) and (3.31) that

u�k(t; x)=
1
2 min(�; B

′)Ex; k�� �1¿ �T exp

{
1
�

T−2�1∫
0

c̃�̃ �s (X̃
�
s ) ds

}
;

and because of (3.25) and (3.28)

(3:32) u�k(t; x)= e−�=2�Ex; k�� �1¿T−2�1 exp

{
1
�

T−2�1∫
0

c̃�̃ �s (X̃
�
s ) ds − �

}
;

for �¿0 small enough.
One can derive from the lower bound for probabilities of large deviations

for process (X̃ �s ; �̃
�
s ) that

(3:33) � ln Ex; k�� �1¿T−2�1 exp

{
1
�

T−2�1∫
0

c̃�̃ �s (X̃
�
s ) ds

}
=

T−2�1∫
0

�̃( �’s; �̇’s) ds − �

if � is small enough. From (3.25), (3.27), (3.32) and (3.33) we conclude that
there exists �0¿0 such that

u�k(t; x)= e−10�=�; �¡�0 :

Since � is an arbitrary positive number, the last inequality contradicts to the
assumption that lim�′↓0 �′ ln u�

′
k (t; x) = −�¡0, and thus

(3:34) lim
�↓0
� ln u�k(t; x)= 0 :
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On the other hand, it follows from Lemma 3.1(i) that

(3:35) lim
�↓0
� ln u�k(t; x)5 0 :

We derive from (3.34) and (3.35) that

lim
�→0

� ln u�k(t; x) = 0; (t; x) ∈ (M) :

To �nish the proof of the lemma we need to show that the convergence is
uniform in (t; x) ∈ K . The compact K can be covered by a �nite number of
cones KA=2ti ; xi ; i = 1; : : : ; N , with the vertices (ti; xi) ∈ (M)\K , where the constant
A is de�ned as in Lemma 3.4. It was proved that lim�↓0 � ln u�k(ti; xi) = 0 for
15 i5N and 15k5n. Now the uniformity of the convergence follows from
Lemma 3.4.

Proof of Theorem 1.1. The �rst statement follows from Lemmas 2.4 and 3.2.
The second statement follows from Lemmas 2.4, 3.4, and 3.6.

4 Geometric description of wave fronts: Some examples

Suppose the space Rr is provided with a Riemannian metric ds2 =
∑ r
i; j=1aij(x)

dxi dx j.
We say that domains Gt ⊂ Rr; t=0, grow according to the Huygens prin-

ciple with a velocity �eld v(x; p); x; p ∈ Rr , if

Gt1 =

y ∈ Rr : inf
’0∈Gt0 ; ’1=y

1∫
0

√
�aij(’s)’̇is’̇

j
s

v(’s; ’̇s)=|’̇s|
ds¡t1 − t0


for any 05 t05 t1¡∞. The in�mum here is taken over all smooth ’s;
05s51, with values in Rr , connecting points of Gt0 and y ∈ Rr .

It is well known that many asymptotic problems for hyperbolic di�erential
equations describing wave processes lead to a Huygens principle. It was proved
in [F1] that the asymptotic behavior of the solution of problem (1.2), (1.4) as
� ↓ 0 for a single equation (n = 1) also can be described by a Huygens principle
if c(x) = @F1(x; u)=@u|u=0 = c independent of x ∈ Rr . Namely, it was shown
that domains Gt = {x : V ∗(t; x)¿0} grow according to the Huygens principle,
and the corresponding velocity �eld v(x; p) is homogeneous and isotropic if
calculated in Riemannian metric with (aij(x)) = (aij(x))−1, where (aij(x)) is
the di�usion matrix; v(x; p) =

√
2c in this metric.

If c(x) = @F(x; u)=@u|u=0 depends on x, then there exists no universal
(independent of the initial data) Huygens principle, describing the motion of
the interface between areas where u�(t; x) tends to zero as � ↓ 0 and where
lim�→0 u

�(t; x)¿0. Moreover, the motion of the interface (wave front) can be
non-Markovian: for a given position of the interface at time s, the future motion
can depend on the behavior of the front before time s (see example 2 in [F2]).
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In the case of systems it was noticed in [F2] that if all the operators L�k
are the same: L�k =

�
2
∑n
i; j=1a

ij(x)@2=@xi@x j and ckj(x) = ckj are positive con-
stants, then the front also propagates according to the Huygens principle. In
the Riemannian metric with (aij(x)) = (aij(x))−1 the velocity is equal to

√
2�,

where � is the principle eigenvalue of the matrix (cij).
In a number of asymptotic problems for RDE’s (see [F1] chap. 7, [F3]) the

motion of the front can be described by a Huygens principle, but the velocity
�eld has the simplest form not in a Riemannian but in a Finsler metric (The
Finsler metric is a generalization of the Riemannian metric, when the unit
spheres in the tangent spaces are not ellipsoids but any convex sets (see [R]).
If the unit spheres are the same at all points x ∈ Rr , such a metric is called
the Minkovskii metric.)
We present here four examples to demonstrate some possible motion of

wave fronts in geometric terms. Some new e�ects are pointed out that are
possible in a system of RDE but not in a single equation.
1. As it was mentioned above, for the case n = 1 (no transmutations) if
c(x) = c is a constant, then wave fronts propagate according to a Huygens
principle related to the di�usion matrix (aij1 (x)) and the constant c. In what
follows we show by example that an analogy for n=2 does not hold. In our
example n = 2; ckm(x) = ckm for k; m ∈ (1; 2); c11 + c12 = c = c21 + c22; r = 1
and assumptions (A1)–(A3) are satis�ed. We show that the Huygens principle
does not hold.
Let �[A] denote the maximal eigenvalue of matrix A and let � be a �xed

positive number. De�ne

(4:1) � = sup
p∈R

{
p− �

[ 1
2p

2 − � �

� p2 − �

]}
:

Note that

(4:2) sup
p∈R

p− �
 p2

4� − � �

� p2

4� − �

 = sup
p∈R

{
p− p2

4�

}
= � :

Consider the system of RDE with small parameter �.

@u�1
@t

=
1
2
�a1(x)

@2u�1
2@x2

+ �−1[�u�1(1− u�1) + �(u�2 − u�1)] ;

@u�2
@t

=
1
2
�a2(x)

@2u�2
2@x2

+ �−1[�u�2(1− u�2) + �(u�1 − u�2)]; t¿0; x ∈ R ;

u�1(0; x) = u
�
2(0; x) = �

−(x) ;

where the functions a1(x) and a2(x) are continuously di�erentiable positive
functions such that

a1(x) =

{
1; x51;
1
2� ; x=2;

a2(x) =

{
2; x51 ;
1
2� ; x=2 :
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Note that assumption (A1) is satis�ed with B = 1. Assumptions (A2) and (A3)
are satis�ed since ckm(x) = ckm are constants and u(1− u)5u; u ∈ [0; 1].
Let us de�ne

�x(p) = �

[
a1(x)p

2

2 + � − � �

� a2(x)p
2

2 + � − �

]

= � − �+ (a1(x) + a2(x))p
2

4
+
[
�2 +

(a1(x) + a2(x))2p4

8

]1=2
:

It can be checked that

(4:4)
d�1
dp
(p)-

d�2
dp
(p) ;

when �1(p) = �2(p) and p¿0.
Also recall from (1.5) the de�nition of �(x; q):

(4:5) �x(q) ≡ �(x; q) = − sup
p∈R
[qp− �x(p)]

We claim

(4:6)
d�1
dq
(1)-

d�2
dq
(1) :

This can be proved as follows. If (4.6) is not true, then we have

d�1
dq
(1) =

d�2
dq
(1) ;

�1(1) = �2(1) ;

where the last equality follows from (4.1) and (4.2). Let px be the maximizer
in (4.5) for q = 1, that is, px be such that

(4:7)
d�x
dp
(px) = 1; x ∈ R :

It then follows from the properties of the Legendre transform that

p1 = p2 = p∗ ¿ 0 ;

�1(p∗)− p∗ = �2(p∗)− p∗; thus �1(p∗) = �2(p∗)
From (4.4) one can obtain

d�1
dp
(p∗)-

d�2
dp
(p∗) ;

which contradicts (4.7).
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Next we shall show that if

d�1
dq
(1)¿

d�2
dq
(1) ;

then the Huygens principle does not hold for the RDE system (4.3). It follows
from (4.1) and (4.2) that

�(x; q) = 0 for x ∈ (−∞; 1]⋃ [2;∞); |q| = 1 ;
Therefore, should the Huygens principle hold, the position x = 1 would become
excited at time 1 (it means that u�k(t; 1) tends to 0 as � ↓ 0 for t ¡ 1 and
tends to 1 for t ¿ 1). The position x = 2 would become excited at time 1 + �;
� being a certain positive number and the position x = 3 at time 1 + �+ 1 =
�+ 2. We shall show that V (T; 3) = 0 for some T less than �+ 2, thus the
Huygens principle can NOT hold. The idea is to look at ’; ’0 = 3 such
that |’̇s| = 1=(1 + �)¡ 1 when ’s = 2 (thus �(’s; ’̇s)¿ 0); |’̇s| = 1=(1− �)
when ’s 5 1 (thus �(’s; ’̇s)¡ 0) and �(’s; ’̇s) = 0 when 1¡ ’s ¡ 2. Notice
that ’1+� = 2; ’1+�+r = 1; ’2+r = ’1+�+r+1−� = 0 and take into consideration
that �2(1) = 0 = �1(1); then

2+r∫
0
�(’s; ’̇s)ds = (1 + �)�2

(
1

1 + �

)
+ � · 0 + (1− �)�1

(
1

1− �
)

=
[
d�1
dq
(1)− d�2

dq
(1)
]
�+ o(�) as �→ 0 ;

The positivity of [(d�1=dq)(1)− (d�2=dq)(1)] guarantees the existence of T ¡
�+ 2 such that V (T; 3) = 0 for some � ¿ 0.

Now, if the di�erence [(d�1=dq)(1)− (d�2=dq)(1)] is not positive, in view
of (4.6), it must be negative. Then the Huygens principle does not hold for
the new system of the same form as (4.3) but with the functions a1(x); a2(x)
replaced by a1(3− x); a2(3− x) correspondingly. This can be proved by the
same arguments.
Let �(a; b) be the �rst time the position x = b; b ¿ a; is excited when

the initial data is the indicator function of (−∞; a]. This example actually
shows that

�(0; 1) + �(1; 2) + �(2; 3)-�(0; 3) :

Thus the excited region at the present does not determine the motion of wave
front in the future. We refer to this behavior as a non-Markovian law, which
is a stronger statement than that no Huygens principle can hold.
2. Suppose that the RDE system (1.2) is space-homogeneous, that is,

aijk (x) = a
ij
l and ckm(x) = ckm are constants

for i; j ∈ {1; : : : ; r} and k; m ∈ {1; : : : ; n}. Suppose also that assumptions (A1)–
(A3) are satis�ed. Then, in (1:5); �(x; q) = �(q); and from the concavity of �
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it follows that

V (t; x) = sup
{
min
05a5t

a∫
0
�(’̇s)ds : ’s = x + s

y − x
t
; y ∈ G0

}

= sup
y∈G0

min
(
0; t�

(
y − x
t

))

= tmin

(
0; sup
y∈G0

�
(
y − x
t

))
:

This result was obtained in [BES] under assumptions on the vector �eld similar
to (A1)–(A3). A special case was considered in [F1, F2]. It implies that the
wave front propagates according to the Huygens principles, and its speed is 1
with respect to the Minkovskii metric associated with the unit ball H :

H = {q ∈ Rr: �(q)= 0} :
In the particular case of n = 1 this metric is always Riemannian [F1]. For
n = 2 this metric is in general not Riemannian.
3. Consider the RDE system like (1.2) but with two parameters, � and �,

(4:8)
@u�; �k (t; x)

@t
L�ku

�; �
k +

1
�
F�k (u

�; �); t ¿ 0; x ∈ Rr; 15 k 5 n ;

where F�k (u) = fk(uk) + �
∑

m-kckm(um − uk); ckm are positive numbers and L�k
are independent of x. We assume fk(v) to be of KPP type, i.e., fk(v)¡ 0 for
v ∈ (−∞; 0) ∪ (1;∞); fk(v)¿ 0 for v ∈ (0; 1); and f′k (0) = supv¿0 fk(v)=v.
Assumptions (A1)–(A3) are satis�ed for each � ¿ 0. The RDE system (4.8)
is space-homogeneous. Let ��(q); ��(q) be as in (1.5) (now depending on �
and not on x). It follows from example 2, that the wave front, formed as �→ 0,
propagates according to the Huygens principle with speed 1 with respect to the
Minkovskii metric with unit ball H�

H� = {q ∈ Rr : ��(q)= 0} :
Denote by conv[w( · )] the largest convex function which is no greater than
the function w : Rr → R. Denote by  = (1; : : : ; n) the invariant distribution
associated with transmutation intensities ckm; k-m, i.e.,

k ¿ 0;
n∑
k=1
k = 1 ;

( ∑
k-m

kckm

)
− m

( ∑
l-m

cml

)
= 0 for m ∈ {1; : : : ; n} :

The action function L�(�); � ∈ Rn for the occupation time Z�t ; t = 1, as �→ 0
is strictly positive except at � =  where it is 0. A simple scaling argument
shows that, in fact, L� = �L1. This follows, for example, from Sect. 4 of Chap. 7
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in [FW]. Moreover, the functions L�;�� are conjugate with respect to the
Legendre transform. This implies that

(4:9) ��(p) = sup
�∈Rn

[
n∑
k=1
�k(pȧkp=2 + f′k (0))− �L1(�)

]
:

Thus,

lim
�→∞

��(p) =
n∑
k=1
k(pȧkp=2 + f′k (0)) :

Note also that

lim
�→0

�0(p) = ��(p) = max
k
(pȧkp=2 + f′k (0)) :

By the last two identities and straightforward calculation we see that �� has
the following limits as � ↓ 0 and as � ↑ ∞.

lim
�→0

��(q) = − sup
p∈R r

{
q ·p− max

15k5n
(p · akp=2 + f′k (0))

}

= −conv
[
min
15k5n

(q · a−1k q=2− f′k (0))
]
;

lim
�→∞

��(q) = −
[
q ·
(

n∑
k=1
kak

)−1
q=2−

n∑
k=1
kf′(0)

]
:

The order of the lim and sup can be exchanged because for each q the sup
occurs in a bounded set of p (depending on q, but not on �) and because
the principal eigenvalue depends on the entries of the matrix continuously.
Correspondingly, the set H� has the limits

H 0 ≡ lim
�→0

H� =
{
q : conv

[
min
15k5n

(q · a−1k q=2− f′k (0))
]
5 0

}
;

H∞ ≡ lim
�→∞

H� =

{
q : ·

(
n∑
k=1
kak

)−1
q=25

n∑
k=1
kf′k (0)

}
:

Note that H∞ corresponds to a Riemannian metric while H�, ∞¿ �= 0 are
in general not Riemannian. Comparing this result with the n = 1 case one �nds
that frequent transmutation (�→∞) makes the wave front behave like coming
from a single RDE with average di�usion and multiplication coe�cients.
4. Consider (4.8) with one space variable. It is instructive to compare the speed
v� of wave front for the system with the speeds of decoupled single RDE’s as
� = 0. The latter speeds are

vk =
√
2akf′k (0); 15 k 5 n :
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The speeds should be considered with respect to the Euclidean metric. The
following simple bounds of v� are readily checked√

2
(
max
k
ak

)(
max
k
f′k (0)

)
= inf

p¿0
max
k

(
akp
2
+
f′k (0)
p

)
= v�

=
√
2(�kak)(�kf′k (0))=

n∑
k=1
kvk :(4:10)

The �rst inequality is obtained by replacing ak ; f′k (0) with their maximum
over k. The second inequality follows from the simple fact that

��(p)5 max
k
[akp2=2 + f′k (0)]

and a simple calculation. The third inequality holds once we show that

��(p)=
n∑
k=1
k [akp2=2 + f′k (0)] ;

which is obtained using � = 0 in (4.9). The last inequality follows from the
fact that the function (a; b)→ (ab)1=2; a; b ¿ 0 is concave. As the coupling
intensity � vanishes, the lower bound in strengthened (see (4.9)) into

lim
�↓0
v� = max

{
max
k
vk ;
√
2(�kak) (�kf′k (0))

}
:

The following RDE system demonstrates that the speed of system can be
arbitrarily larger than that of each decoupled RDE,

@u�1(t; x)=@t =
�
2
@2u�1
@x2

+
1
�
[f1(u�1) + (u

�
2 − u�1)] ;

@u�2(t; x)=@t =
��
2
@2u�2
@x2

+
1
��
[f2(u�2) + (u

�
1 − u�2)]; t ¿ 0; x ∈ R ;

u�k(0; x) = � − (x); k = 1; 2; x ∈ R ;
where fk are of KPP type and f′1(0) = 1; f

′
2(0) = 1=�. According to (4.10)

the speed v satis�es

v=
√
2 (
∑
kak)

(∑
kf′k (0)

)
=

√
1 + �
2

(
1 +

1
p

)
:

The righthand side tends to ∞ as �→∞ or �→ 0 while the speed
√
2akf′k (0)

of each decoupled equation is
√
2 for k = 1; 2 (compare with [F3], Sect. 4).

The increase of the speed of the front in the system, roughly speaking, is due
to the fact, that the particles can use one type for multiplication and the other
type for motion.
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