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Abstract. Let (Bs, s ≥ 0) be a standard Brownian motion andT1 its first passage time at
level 1. For everyt ≥ 0, we consider ladder time setL(t) of the Brownian motion with drift
t , B(t)s = Bs + ts, and the decreasing sequenceF(t) = (F1(t), F2(t), . . .) of lengths of the
intervals of the random partition of [0, T1] induced byL(t). The main result of this work
is that(F (t), t ≥ 0) is a fragmentation process, in the sense that for 0≤ t < t ′, F(t ′) is
obtained fromF(t) by breaking randomly into pieces each component ofF(t) according to
a law that only depends on the length of this component, and independently of the others. We
identify the fragmentation law with the one that appears in the construction of the standard
additive coalescent by Aldous and Pitman [3].

1. Introduction and main result

For ` ≥ 0, let S` be the space of non-increasing numerical sequencesL =
(`1, `2, . . .)with

∑
L := ∑∞

1 `n = `. We can think of̀ as the length of an interval,
and then ofL ∈ S` as the ranked sequence of the lengths of the subintervals result-
ing from some countable partition. Consider for every` ≥ 0 a probability measure
κ(`) onS` (of courseκ(0)must be the Dirac point mass at the sequence identical to
0). A fragmentation kernelκ onS = ⋃

`≥0 S` can be constructed from the family
(κ(`), ` ≥ 0) as follows. Given a sequenceL = (`1, `2, . . .) ∈ S, we consider
independent random variablesL1, L2, . . . distributed according to the lawsκ(`1),
κ(`2), . . ., respectively. We then writeκ(L) for the distribution of the decreasing
rearrangement of the elements of the sequencesL1, L2, . . .. We say that the family
(κ(`), ` ≥ 0) generates the fragmentation kernelκ = (κ(L), L ∈ S). Note that a
fragmentation kernel preserves the total length, in the sense thatκ(L)(S`) = 1 for
` = ∑

L.
Call fragmentation process a time homogeneous Markov process with values

in S, whose transition semigroup is given by fragmentation kernels. Quite recently,
Aldous and Pitman [3] derived a fragmentation process by logging the continuum
random tree along its skeleton at the points of a certain independent Poisson process.
This is connected by time-reversal to the so-called standard additive coalescent (cf.
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also Evans and Pitman [8], and Aldous [2] for a survey of that field). Rephrasing
Theorem 4 in [3], the family of probability measures(θt (`), ` ≥ 0 andt ≥ 0) that
generates the fragmentation semigroup of Aldous and Pitman can be described as
follows. For t, ` > 0, let ξ1 > ξ2 > · · · be the atoms of a Poisson measure on
(0,∞) with intensity t`(2πx3)−1/2dx, ranked in the decreasing order. Then we
defineθt (`) as the distribution of the sequenceξ = (ξ1, ξ2, . . .) conditionally on
ξ ∈ S`, that is

θt (`)(dL) = P
(
ξ ∈ dL |

∑
ξ = `

)
, L ∈ S` .

We refer to Perman [10] and section 8.1 in Pitman and Yor [15] for more informa-
tion about these conditional laws. We also mention that a different fragmentation
process has been constructed by Pitman [13], again time-reversing a remarkable
coalescent process, cf. Theorem 12 and Corollary 15 there.

Kingman [9] has observed that a regenerative set (i.e. the range of a subordi-
nator) gives rise to an interesting random partition of [0,∞) which can be used to
define a random discrete distribution. We refer to [10–12, 14, 15] and the references
therein for some developments over the recent years. This suggests the possibility
of representing certain fragmentation or coalescent processes using partitions of
[0,∞) induced by a nested family of regenerative sets. We refer to [6] and [7] for
applications of this idea, and also to [5] for a related work.

Here, we will construct for eacht ≥ 0 a regenerative set from the path of a
Brownian motion and observe that the induced partitions of [0,∞) get finer and
finer ast increases. More precisely, we will show that the partition att ′ is obtained
from that att < t ′ by breaking randomly into pieces each component of the latter,
independently of the other parts, and according to a distribution that only depends
of the length of this component. In other words, we will construct a fragmentation
process which is naturally related to the Brownian motion.

To give a precise description, letB = (Bs, s ≥ 0) be a standard linear Brownian
motion and

Tx = inf {s ≥ 0 : Bs > x}, x ≥ 0

its first passage process. For everyt ≥ 0, we consider the Brownian motion with
constant driftt and its supremum process,

B(t)s = Bs + ts, S(t)s = sup
0≤u≤s

B(t)u , s ≥ 0.

The ladder time setL(t) of B(t) is defined as the set of times whenB(t) coincides
with its supremum, i.e.

L(t) =
{
s ≥ 0 : S(t)s = B(t)s

}
.

It is well-known thatL(t) is a.s. a random closed set with zero Lebesgue mea-
sure. The simple observation that for every fixed 0≤ t < t ′, the processs →
B
(t ′)
s −B(t)s = (t ′−t)s is monotone increasing entails the embeddingL(t) ⊆ L(t ′).

As a consequence, the partition of [0, T1] induced byL(t ′) is finer than that induced
byL(t). We write
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F(t) = (F1(t), F2(t), . . .)

for the sequence of fragments att , that is the lengths of the open intervals in the
canonical decomposition of [0, T1]\L(t), arranged according to the decreasing
order.

We will show that(F (t), t ≥ 0) is a fragmentation process. To give a first
description of its semigroup, we construct a family

(ϕt (`), t ≥ 0 and` ≥ 0)

of probability measures onS, called thefragmentation laws, as follows. For every
` > 0, consider a processε = (ε(s),0 ≤ s ≤ `) having the law of the positive
Brownian excursion with duratioǹ. For everyt ≥ 0, introduce the ladder time set
of (st − ε(s),0 ≤ s ≤ `)

L(t)(ε) =
{
s ∈ [0, `] : st − ε(s) = sup

0≤u≤s
(ut − ε(u))

}
(1)

and writeϕt (`) for the distribution onS` of the sequence of the lengths of the
open intervals in the canonical decomposition of [0, `]\L(t)(ε) arranged in the
decreasing order. Of course,ϕ0(`) is just the Dirac point mass at(`,0, . . .). Then
we writeϕt for the fragmentation kernel generated by(ϕt (`), ` ≥ 0).

We now state the main result of this work. Recall thatθt stands for the frag-
mentation kernel of Aldous and Pitman which has been described above.

Theorem 1. (i) (F (t), t ≥ 0) is a fragmentation process with semigroup(ϕt , t ≥ 0).
(ii) The fragmentation semigroupsϕt andθt are the same.

The first part of Theorem 1 will be proved in the next section; the argument
combines a variation of Skorohod’s lemma and some features on the excursions of
a Brownian motion with drift away from its supremum. It should be noted that the
Markov property of(F (t), t ≥ 0) is essentially straightforward. The second part
will be proved in Section 3. Despite the known connections between the continuum
random tree and the normalized Brownian excursion (see [1] and the references
therein), the construction of the fragmentation process by Aldous and Pitman and
the present one look much different, and it is not cleara priori why they should
yield the same semigroup. We shall first give an analytic expression for the frag-
mentation lawsϕt (`), using special properties of Lévy processes with no positive
jumps. Then we check that the fragmentation lawsθt (`) can be given by the same
expression. The final section is devoted to the following interesting identity. Con-
sider the fragmentation process onS1 induced as above by a standard Brownian
excursion (i.e. with unit duration), and letU be an independent variable uniform-
ly distributed on [0,1]. Write λt for the length of the left-most interval resulting
from the fragmentation of [0,1] at timet , andλ∗

t for the length of the interval that
containsU . Then the processes(λt , t ≥ 0) and

(
λ∗
t , t ≥ 0

)
have the same law.



292 J. Bertoin

2. The fragmentation property

2.1. A Skorohod-type formula

As a first step, we observe that for every 0≤ t < t ′, the supremum processS(t)

can be expressed as a simple functional ofS(t
′).

Lemma 2. For every0 ≤ t < t ′, we have

S(t)s = sup
0≤u≤s

(
S(t

′)
u − u(t ′ − t)

)
, s ≥ 0 .

Proof. The proof is an adaptation of the classical argument of Skorohod’s lemma;
see e.g. [16] on page 239. We first note that the obvious inequality

B(t)u = B(t
′)

u − u(t ′ − t) ≤ S(t
′)

u − u(t ′ − t)

yields

S(t)s ≤ sup
0≤u≤s

(
S(t

′)
u − u(t ′ − t)

)
.

Conversely, consider an arbitrary times ≥ 0 at which sup0≤u≤·
(
S
(t ′)
u − u(t ′ − t)

)
increases. Plainly, it must be an instant at whichS(t

′)· increases, and therefore

S
(t ′)
s = B

(t ′)
s . It follows that

sup
0≤u≤s

(
S(t

′)
u − u(t ′ − t)

)
= B(t

′)
s − s(t ′ − t) = B(t)s ,

which completes the proof of our claim. ut
We next present a useful consequence of the formula of Lemma 2. For each

t ≥ 0 fixed, letGt stand for theP-completed sigma-field generated by the supre-
mum processS(t).

Corollary 3. (Gt , t ≥ 0) is a filtration, and(F (t), t ≥ 0) is (Gt )-adapted.

Proof. It is plain from Lemma 2 that the processS(t) is measurable with respect to
Gt ′ whent < t ′, so(Gt , t ≥ 0) is a filtration. ClearlyT1 isGt -measurable (since it
is obviouslyG0-measurable); and the same holds for the ladder time setL(t), be-
cause it can be expressed as the support of the Stieltjes measuredS(t). We conclude
that(F (t), t ≥ 0) is (Gt )-adapted. ut

2.2. On the excursions of a reflected Brownian motion with drift

We denote the process of first passage times of the Brownian motion with driftt by

T (t)x = inf
{
s ≥ 0 : S(t)s > x

}
, x ≥ 0 .

Note that in particularT (0) = T .
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For everyx > 0, we write`(t)1,x > `
(t)
2,x > · · · for the durations of the ex-

cursions away from 0 accomplished by the reflected processS(t) − B(t) on the
time interval [0, T (t)x ], arranged according to the decreasing order. Alternatively,
`
(t)
1,x > `

(t)
2,x > · · · can also be viewed as the decreasing sequence of the amplitude

of the jumps of the first passage processT (t) on the interval [0, x]. Note that this
sequence is measurable with respect toGt . For every integerk ≥ 1, we denote by
ε
(t)
k,x the corresponding excursion with duration`(t)k,x , that is, ify ∈ [0, x] is such

that`(t)k,x = T
(t)
y − T

(t)
y−, then

ε
(t)
k,x(s) = y − B(t)

(
T
(t)
y− + s

)
, s ∈ [0, `(t)k,x ].

In order to state the main technical result of this subsection, it is convenient to de-
note byexc the Itô measure of positive Brownian excursions, and for every` > 0,
by exc(`) the law of the positive Brownian excursion with duration`, that is that
of the bridge of a 3-dimensional Bessel process with length`, starting and ending
at 0 (cf. Theorem XII.4.2 in [16]).

Lemma 4. LetX be aGt -measurable random variable with values in(0,∞). Then
conditionally onGt , the excursionsε(t)1,X, ε

(t)
2,X, . . . form a sequence of independent

processes with distributionsexc(`(t)1,X), exc(`
(t)
2,X), . . ., respectively.

Proof. Let us denote byexc(t) the Itô measure of the excursions ofS(t) − B(t)

away from 0. It is easily verified by a Girsanov’s transformation thatexc(t) is abso-
lutely continuous with respect toexc, with density e−t2ζ/2, whereζ stands for the
duration of a generic excursion. As a consequence, the excursion measuresexc(t)

have all the same conditional laws given the duration, i.e.exc(t)(`) = exc(`) in
the obvious notation.

We then first suppose thatX = x is deterministic and recall thatS(t) is the
local time at 0 for the reflected processS(t) − B(t). The statement is then plain
from excursion theory. The extension to the case whenX is a simple (i.e. that can
only take countably many values)Gt -measurable random variable is immediate. A
standard argument based on approximating a positive and finite random variable
by a decreasing sequence of simple random variables and using right-continuity
completes the proof. ut

Next, writeε(t)1 , ε
(t)
2 , . . . for the sequence of excursions away from 0 accom-

plished byS(t) − B(t) on the time interval [0, T1], arranged according to the de-
creasing order of the lengths. Note that the sequence of the lengths is precisely
F(t).

Corollary 5. For every fixedt ≥ 0, conditionally onGt , the excursionsε(t)1 , ε
(t)
2 , . . .

form a sequence of independent processes with respective distributionsexc(F1(t)),
exc(F2(t)), . . ..

Proof. Recall thatT1 is Gt -measurable, and so the same holds for the variable
X = S

(t)
T1

= 1+tT1. On the other hand, we have with probability one thatT
(t)
X = T1,
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which impliesε(t)k,X = ε
(t)
k for every integerk ≥ 1. Lemma 4 thus completes the

proof. ut

2.3. Proof of Theorem 1(i)

Corollary 5 makes Theorem 1(i) straightforward. More precisely, for a fixed integer
n ≥ 1, let [gn, dn] ⊆ [0, T1] be the interval with lengthFn(t) corresponding to the
excursionε(t)n . Then

B(t)u = S(t)gn − ε(t)n (u− gn), u ∈ [gn, dn] ,

and it follows that for anyt ′ > t

B(t
′)

u = S(t
′)

gn
+ (u− gn)(t

′ − t)− ε(t)n (u− gn), u ∈ [gn, dn]

(recall thatgn is a ladder time forB(t
′)). It is now plain that the restriction of the

ladder time set ofB(t
′) to [gn, dn] coincides with the ladder time set of the process(
s(t ′ − t)− ε(t)n (s),0 ≤ s ≤ Fn(t)

)
shifted bygn. We thus see from Corollary 5 that the conditional distribution of
F(t ′) givenGt is ϕt ′−t (F (t)), where the transition kernelϕs has been defined in
the first section.

3. Identification of the fragmentation laws

3.1. Preliminaries

Throughout this section,t > 0 is a fixed real number. We first develop some mate-

rial on the first passage processT (t). To that end, recall thatT (t) =
(
T
(t)
x , x ≥ 0

)
is

a pure jump subordinator, and more precisely its Lévy-Itô decomposition is given
by

T (t)x =
∑

0≤y≤x
1(t)y ,

where the jump process1(t) =
(
1
(t)
y , y ≥ 0

)
is a Poisson point process on(0,∞)

with characteristic measure

3(t)(ds) = 1√
2πs3

exp
{
−st2/2

}
ds s > 0 ,

i.e.3(t) is the Ĺevy measure ofT (t).
We next introduce some notation related toO ⊆ [0,∞), a generic open neigh-

borhood of 0 (sincet > 0 is fixed throughout this section, it is omitted in subsequent
notation such asT O or8O for the sake of simplicity). Distinguishing the jumps of
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1(t) with values inO and inOc = [0,∞)\O yields the decomposition ofT (t) as
the sum of two independent subordinators,T O andT Oc

, where

T O
x =

∑
0≤y≤x

1(t)y 1{1(t)y ∈O} , x ≥ 0

andT Oc = T (t) − T O.
The process

(
x − tT O

x , x ≥ 0
)

is the difference between a drift and a subordi-
nator; it is a Ĺevy process with no positive jumps and its Laplace exponentψO is
obtained by the Ĺevy-Khintchine formula:

ψO(q) = q −
∫
O

(
1 − e−qts)3(t)(ds) ;

(see section VII.1 in [4] and recall that the Lévy measure ofT O is 1O3(t)). Be-
causeE(T O

1 ) ≤ E(T
(t)
1 ) = 1/t , this Lévy process has a nonnegative mean, i.e. the

right-derivative ofψO at 0 is nonnegative. This ensures that the convex function
ψO : [0,∞) → [0,∞) is strictly increasing, and thus a bijection. We denote by
8O : [0,∞) → [0,∞) its inverse function, i.e.

ψO ◦8O = Id .

If we write

τOs = inf
{
x ≥ 0 : x − tT O

x > s
}
, s ≥ 0

for the first passage process ofx − tT O
x , it is well-known that

(
τOs , s ≥ 0

)
is again

a subordinator with Laplace exponent8O, i.e.

E(exp
{
−qτOs

}
) = exp{−s8O(q)}, q ≥ 0 , (2)

see for instance Theorem VII.1 in [4].
We now end up this subsection by presenting an expression in terms of the

one-dimensional distribution ofT O for the implicit function8O. In this direction,
we point out that the characteristic exponentλ → κO(λ) = −ψO(−iλ) − iλ of
the subordinatorT O fulfills

lim
|λ|→∞

|λ|−1/2|<κO(λ)| = c > 0

(this is readily seen from the Lévy-Khintchine formula, as the Lévy measure ofT O

coincides with3(t) on a neighborhood of 0). It follows from the Riemann-Lebes-
gue theorem that for everys > 0 the distribution ofT O

s has aC∞ density (see for
instance Exercise I.4 in [4]) that we denote by

pOs (x) = P
(
T O
s ∈ dx

)
/dx, s > 0 andx ≥ 0 .
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Lemma 6. The function8O is given by the Ĺevy-Khintchine formula

8O(q) = q +
∫ ∞

0

(
1 − e−qs) (ts)−1pOs (s/t) ds, q ≥ 0 .

Proof. On the one hand, it is plain that the drift coefficient of8O is given by

lim
q→∞8

O(q)/q = lim
q→∞ q/ψ

O(q) = 1 .

On the other hand, the Lévy measure of the subordinatorτO is the vague limit as
ε → 0+ of the measuresε−1P(τOε ∈ ds) on(0,∞); see e.g. Exercise I.1 in [4]. By
Corollary VII.3 in [4], the latter can be expressed ass−1P

(
s − tT O

s ∈ dx) ds/dx
for x = ε. Since

P
(
s − tT O

s ∈ dx
)

= t−1pOs ((s − x)/t) dx,

this entails our claim. ut

3.2. An analytic expression for the fragmentation lawsϕt (`)

The purpose of this subsection is to present an expression for the fragmentation
laws in terms of quantities introduced in the preceding subsection. The starting
point lies on the following description of the fragmentationF(t) in terms of the
subordinatorT (t).

Lemma 7. For everyt > 0, F(t) coincides with the family of the jumps accom-

plished byT (t) beforeS(t)T1
,
(
1
(t)
y ,0 ≤ y ≤ S

(t)
T1

)
, and arranged in the decreasing

order. Moreover we have

S
(t)
T1

= inf
{
x ≥ 0 : x − tT (t)x = 1

}
.

Proof. The first assertion is obvious; so let us check the formula forS
(t)
T1

. We deduce
from Lemma 2 that

T1 = inf
{
s ≥ 0 : S(t)s − ts = 1

}
,

which entails

S
(t)
T1

= inf
{
S(t)s : S(t)s − ts = 1

}
,

and the substitutionx = S
(t)
s , s = T

(t)
x in the right-hand term yields our claim.

ut
Next, recallO ⊆ [0,∞) is an arbitrary open neighborhood of 0, and writeS(O)

for the subset ofS consisting of the sequences taking only values inO. We first
point out that any probability measure onS that is supported by the subspace of
strictly decreasingsequences is completely characterized by the masses assigned
to theS(O)’s.
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Lemma 8. LetS′ ⊆ S be the subset of strictly decreasing sequences, and consider
two probability measures onS′, µ1 andµ2, such that

µ1(S(O)) = µ2(S(O)) for everyO ⊆ [0,∞) open neighborhood of0.

Thenµ1 = µ2.

Proof. Fix an arbitrarỳ > 0 and consider the spaceC of closed subsets of [0, `] en-
dowed with the Hausdorff distance; in particularC is a compact metric space. There
is a canonical applicationS([0, `]) → C that maps a sequenceL = (`1, `2, . . .)

to its closed range{`i, i = 1,2, . . .} ∪ {0}.
LetM1 andM2 be the image measures by this mapping of the restriction ofµ1

andµ2 to S([0, `]). For every open setO ⊆ [0, `], denote byC (O) the class of
closed sets included inO. It is known that the family(C (O) ,O open set) generates
the topology onC induced by the Hausdorff distance. The hypothesis

M1(C (O)) = µ1(S(O)) = µ2(S(O)) = M2(C (O))

entails by a monotone class theorem thatM1 = M2.
The restriction of the canonical mapS′ ∩ S ([0, `]) → C is one-to-one, and

since` can be chosen arbitrarily large, the identityM1 = M2 yields thatµ1 = µ2.
ut

We stress that with probability one, the sequenceF(t) has no multiple points
(because the Ĺevy measure3(t) has no atoms) and thus takes values inS′. Lemma
8 applies and ensures that the distribution of the fragmentation process evaluated at
the fixed timet > 0 is characterized by the following (the same remark is relevant
to the fragmentation lawsϕt (`) and the next Corollary 10).

Lemma 9. For everya ≥ 0, we have

E
(
e−aT1, F (t) ∈ S(O)

)
= exp

{
−8O(3(t)(Oc)+ a/t)+ a/t

}
.

Proof. We deduce from Lemma 7 that the event{F(t) ∈ S(O)} occurs if and only if

τO1 := inf
{
x ≥ 0 : x − tT O

x = 1
}
< inf

{
x ≥ 0 :1(t)x /∈ O

}
. (3)

Note also that thenτO1 = S
(t)
T1

and hence

T1 = T
(t)

τO1
= T O

τO1
=

(
τO1 − 1

)
/t.

The variable defined by the right-hand side of (3) is the first jump-time ofT Oc
; it is

independent ofτO1 and has an exponential law with parameter3(t)(Oc) < ∞ (the
finiteness follows from the assumption thatO is a neighborhood of 0). We deduce
that

E
(
e−aT1, F (t) ∈ S(O)

)
= ea/t E

(
e−aτO1 /t , F (t) ∈ S(O)

)
= ea/t E

(
e−qτO1

)
for q = 3(t)(Oc)+ a/t . Our claim thus follows from (2). ut
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It is now easy to deduce the following characterization of the fragmentation
lawsϕt (`), which is the main result of this subsection.

Corollary 10. In the preceding notation, we have for everya > 0∫ ∞

0

(
1 − e−a`

) (
2π`3

)−1/2
ϕt (`) (S(O)) d`

= 8O(3(t)(Oc)+ a/t)−8O(3(t)(Oc))− a/t .

Proof. Plainly,F(t) only takes values inO if and only if the same holds for all the
fragmentations att resulting from the components ofF(0). By the Markov property
of Theorem 1(i), conditionally onF(0) = (`1, `2, . . .), these fragmentations are
independent with lawsϕt (`1), ϕt (`2) . . .. As T1 = `1 + `2 + . . ., we thus have

E
(
e−aT1, F (t) ∈ S(O) | F(0) = (`1, `2, . . .)

)
=

∏
n=1,2,...

e−a`nϕt (`n)(S(O)) .

SinceF(0) has the law of the atoms of a Poisson measure on(0,∞) with intensity
(2π`3)−1/2d`, we get by a classical formula for Poisson clouds

E
(
e−aT1, F (t) ∈ S(O)

)
= E

(
E

(
e−aT1, F (t) ∈ S(O) | F(0)

))
= exp

{
−

∫ ∞

0

(
1 − e−a`ϕt (`)(S(O))

)
(2π`3)−1/2d`

}
.

Applying Lemma 9, we thus get∫ ∞

0

(
1 − e−a`ϕt (`)(S(O))

)
(2π`3)−1/2d` = 8O(3(t)(Oc)+ a/t)− a/t ,

which readily entails our claim. ut
We mention that Corollary 10 can also be deduced from Lemma 9 by a stan-

dard argument of excursion theory (in a Poisson point process, the instant of the
first point in a given set is independent of this first point and has an exponential
distribution whose parameter is the characteristic measure of this set).

3.3. Proof of Theorem 1(ii)

The aim of this subsection is to identify the fragmentation kernelsθt andϕt . Recall
first from Theorem 4 in [3] that for̀ > 0, the probability measureθt (`) onS` can
be defined as the ranked sequence of the jumps made by the stable(1/2) subordi-
natorT before timet`, conditionally onTt` = `. By Girsanov theorem, under the
equivalent probability measure

dP(t) := exp

{
− t

2

2
Tt` + t2`

}
dP ,

the process(Ts,0 ≤ s ≤ t`) has the same law as the process
(
T
(t)
s ,0 ≤ s ≤ t`

)
underP. It follows that for every open setO ⊆ [0,∞)



A fragmentation process connected to Brownian motion 299

θt (`)(S(O)) = P
(
1(t)s ∈ O, s ≤ t` | T (t)t` = `

)
.

Recall the decompositionT (t) = T O + T Oc
as the sum of two independent subor-

dinators, that the density of the law ofT (t)t` is

t`√
2πx3

exp

{
− t

2`2

2x

}
exp

{
− t

2x

2
+ t2`

}
, x > 0 ,

and thatpOt`(·) stands for theC∞ version of the density of the law ofT O
t` . We see

that the former quantity can be expressed as

θt (`)(S(O)) =
P

(
T Oc

t` = 0 andT O
t` ∈ d`

)
P

(
T
(t)
t` ∈ d`

)

= pOt`(`)exp
{
−t`3(t)(Oc)

} √
2π`

t
.

An application of Lemma 6 at the second identity below entails that for everya > 0∫ ∞

0
(1 − e−a`)θt (`)(S(O))

(
2π`3

)−1/2
d`

=
∫ ∞

0
(1 − e−a`)exp

{
−t`3(t)(Oc)

}
pOt`(`)

d`

t`

= 8O(3(t)(Oc)+ a/t)−8O(3(t)(Oc))− a/t .

The comparison with Corollary 10 now shows thatθt (`)(S(O)) = ϕt (`)(S(O))
for almost everỳ > 0. We then see from Lemma 8 that the lawsθt (`) andϕt (`)
coincide for almost everỳ> 0. A standard argument based on the semigroup and
the scaling properties enables us to remove the word ‘almost’ in the last sentence,
and thus we have established the identity of the fragmentation semigroups.ut

4. The left-most and the size biased picked fragments

Our purpose in this section is to present an interesting identity arising in the study
of the fragmentation process induced by the standard Brownian excursion. So letε

stand for a Brownian excursion with unit duration, andL(t)(ε) for the ladder time
set given by (1). Because lims→0+ ε(s)/s = ∞ a.s., 0 is an isolated point of the
ladder time set, and this incites us to introduce

λt = inf {s > 0 : st = ε(s)} ,
which can be viewed as the length of the left-most fragment in the partition att . We
also introduce an independent variableU which is uniformly distributed on [0,1];
and we writeλ∗

t for the length of the open interval that containsU in the canonical
decomposition of(0,1)\L(t)(ε). In other words,

λ∗
t = d(t)(U)− g(t)(U)
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where foru ∈ (0,1),

d(t)(u) = inf
{
s ≥ u : s ∈ L(t)(ε)

}
andg(t)(u) = sup

{
s ≤ u : s ∈ L(t)(ε)

}

are the first points inL(t)(ε) to the right ofu and to the left ofu, respectively.
RecallT = (Tx, x ≥ 0) is the first passage process for the Brownian motion

with zero drift. We now state the following identity.

Proposition 11. The processes(λt , t ≥ 0),
(
λ∗
t , t ≥ 0

)
and (1/(1 + Tt ), t ≥ 0)

have the same distribution. They are Markov processes on[0,1] with semigroup
given by

ρt (x, dy) = t

√
x3

2πy(x − y)3
exp

{
− xyt2

2(x − y)

}
dy, 0< y < x .

Proof. Here is a slick proof due to Jim Pitman. Since(ϕt = θt , t ≥ 0) is the frag-
mentation semigroup introduced by Aldous and Pitman [3] by logging the contin-
uum random tree, the process

(
λ∗
t , t ≥ 0

)
is identical in distribution to the process

of the mass of the tree component containing a random leaf picked according to
the mass measure of the continuum random tree, in the fragmentation process of
Aldous and Pitman. By Theorem 6 in [3], we get the identity in distribution

(
λ∗
t , t ≥ 0

) (d)= (1/(1 + Tt ), t ≥ 0)

Next, recall that ifβ = (β(s), s ≥ 0) is a 3-dimensional Brownian motion started at

0, then the process
(
sβ(1−s

s
),0< s ≤ 1

)
is a version of the standard 3-dimensional

Brownian bridge; see e.g. Exercise I.3.10 in [16]. This entails that ifR = |β| de-
notes a 3-dimensional Bessel process started from 0, then a version of the standard
Brownian excursion is given by

ε(s) = sR

(
1 − s

s

)
, 0< s ≤ 1 .

Working with this version, it is immediate that for allt ≥ 0

λt = 1

1 + Lt
,

whereLx = sup{s ≥ 0 : Rs = x} stands for the last-passage time ofR at level
x ≥ 0. As the processes(Lx, x ≥ 0) and(Tx, x ≥ 0) have the same law, the first
claim of the statement is proven. The second follows readily. ut
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4. Bertoin, J.:Lévy processes, Cambridge University Press, Cambridge, 1996
5. Bertoin, J.: Renewal theory for embedded regenerative sets, Ann. Probab.27, 1523–1535

(1999)
6. Bertoin, J., Le Gall, J.-F.: The Bolthausen-Sznitman coalescent and the genealogy of

continuous-state branching processes. To appear inProbab. Theory Relat. Fields.
7. Bertoin, J., Pitman, J.: Two coalescents derived from the ranges of stable subordinators.

To appear in Electronic J. Probab. (2000)
8. Evans, S.N., Pitman, J.: Construction of Markovian coalescents.Ann. Inst. H. Poincaŕe,
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