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Abstract. Let (B, s > 0) be a standard Brownian motion affig its first passage time at

level 1. For every > 0, we consider ladder time s&t® of the Brownian motion with drift

t, BY = B, +ts, and the decreasing sequenice) = (Fi(1), F2(1), . ..) of lengths of the
intervals of the random partition of [@] induced by.#®. The main result of this work

is that(F(r), t > 0) is a fragmentation process, in the sense that fer © < ¢/, F(¢') is
obtained fromF (¢) by breaking randomly into pieces each componerf @ according to

alaw that only depends on the length of this component, and independently of the others. We
identify the fragmentation law with the one that appears in the construction of the standard
additive coalescent by Aldous and Pitman [3].

1. Introduction and main result

For¢ > 0, let S, be the space of non-increasing numerical sequeiices

(€1, €2, ... with>" L := Y"7° ¢, = £.We canthink of as the length of aninterval,
and then ofL € S, as the ranked sequence of the lengths of the subintervals result-
ing from some countable partition. Consider for evéry 0 a probability measure
k(£) onS, (of coursec(0) must be the Dirac point mass at the sequence identical to
0). A fragmentation kerned on'S = |- S¢ can be constructed from the family
(k(¢), £ > 0) as follows. Given a sequende = (£1,£2,...) € S, we consider
independent random variablég, Lo, ... distributed according to the laws¢1),
k(€2), ..., respectively. We then write(L) for the distribution of the decreasing
rearrangement of the elements of the sequehges,, . . .. We say that the family
(k(£), £ > 0) generates the fragmentation kerrek («(L), L € S). Note that a
fragmentation kernel preserves the total length, in the sensethatS,) = 1 for
t=>"L.

Call fragmentation process a time homogeneous Markov process with values
in S, whose transition semigroup is given by fragmentation kernels. Quite recently,
Aldous and Pitman [3] derived a fragmentation process by logging the continuum
random tree along its skeleton at the points of a certain independent Poisson process.
This is connected by time-reversal to the so-called standard additive coalescent (cf.
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also Evans and Pitman [8], and Aldous [2] for a survey of that field). Rephrasing
Theorem 4 in [3], the family of probability measurgs(¢), £ > 0 and:r > 0) that
generates the fragmentation semigroup of Aldous and Pitman can be described as
follows. Fort, ¢ > O, leté&; > & > --- be the atoms of a Poisson measure on

(0, 0o) with intensity ¢ (27 x3)~Y2dx, ranked in the decreasing order. Then we
defined, (£) as the distribution of the sequenge= (&1, &2, . ..) conditionally on

& €Sy, thatis

0,(0)(dL) = p(gedqu:e), LeS; .

We refer to Perman [10] and section 8.1 in Pitman and Yor [15] for more informa-
tion about these conditional laws. We also mention that a different fragmentation
process has been constructed by Pitman [13], again time-reversing a remarkable
coalescent process, cf. Theorem 12 and Corollary 15 there.

Kingman [9] has observed that a regenerative set (i.e. the range of a subordi-
nator) gives rise to an interesting random partition ot which can be used to
define arandom discrete distribution. We refer to [10-12, 14, 15] and the references
therein for some developments over the recent years. This suggests the possibility
of representing certain fragmentation or coalescent processes using partitions of
[0, c0) induced by a nested family of regenerative sets. We refer to [6] and [7] for
applications of this idea, and also to [5] for a related work.

Here, we will construct for each > 0 a regenerative set from the path of a
Brownian motion and observe that the induced partitions p&Q get finer and
finer as increases. More precisely, we will show that the partitiori & obtained
from that atr < ¢’ by breaking randomly into pieces each component of the latter,
independently of the other parts, and according to a distribution that only depends
of the length of this component. In other words, we will construct a fragmentation
process which is naturally related to the Brownian motion.

To give a precise description, IBt= (By, s > 0) be a standard linear Brownian
motion and

T, = inf{s >0:B; > x}, x>0
its first passage process. For every 0, we consider the Brownian motion with
constant drift and its supremum process,

B = Bs +1s, S© = sup BY, s>0.
O<u<s
The ladder time se#?®) of B® is defined as the set of times wh8f’ coincides
with its supremum, i.e.

20 = sz 0:50 ="},

It is well-known that#") is a.s. a random closed set with zero Lebesgue mea-
sure. The simple observation that for every fixe&kOr < ¢, the process —
Bs(t/)—BS(t) = (t'—1)s ismonotone increasing entails the embeddiffy < PO,

As a consequence, the partition of [Q] induced by " is finer than that induced

by 2. We write
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F() = (F1(0), F2(1), ...)

for the sequence of fragmentsrathat is the lengths of the open intervals in the
canonical decomposition of [01]\.#®, arranged according to the decreasing
order.

We will show that(F(z),r > 0) is a fragmentation process. To give a first
description of its semigroup, we construct a family

(¢:(£),t > 0ande > 0)

of probability measures 08, called thefragmentation lawsas follows. For every
¢ > 0, consider a process = (e(s), 0 < s < ¢) having the law of the positive
Brownian excursion with duratiof For everyr > 0, introduce the ladder time set
of (st —e(s5),0<s <¥)

FPD(e) = {sel0,0]:st—e(s) = sup (ut —e(u)) 1)

O<u<s

and writeg, (¢) for the distribution onS, of the sequence of the lengths of the
open intervals in the canonical decomposition aff8, %" (¢) arranged in the
decreasing order. Of coursgy(¢) is just the Dirac point mass &, O, ...). Then
we write ¢, for the fragmentation kernel generated(@y(¢), ¢ > 0).

We now state the main result of this work. Recall thastands for the frag-
mentation kernel of Aldous and Pitman which has been described above.

Theorem 1. (i) (F(¢), t > 0)isafragmentation process with semigraygp, ¢ > 0).
(ii) The fragmentation semigrougs and6, are the same.

The first part of Theorem 1 will be proved in the next section; the argument
combines a variation of Skorohod’s lemma and some features on the excursions of
a Brownian motion with drift away from its supremum. It should be noted that the
Markov property of(F(¢),t > 0) is essentially straightforward. The second part
will be proved in Section 3. Despite the known connections between the continuum
random tree and the normalized Brownian excursion (see [1] and the references
therein), the construction of the fragmentation process by Aldous and Pitman and
the present one look much different, and it is not cleariori why they should
yield the same semigroup. We shall first give an analytic expression for the frag-
mentation lawsp, (£), using special properties oflvy processes with no positive
jumps. Then we check that the fragmentation l&yg) can be given by the same
expression. The final section is devoted to the following interesting identity. Con-
sider the fragmentation process 8n induced as above by a standard Brownian
excursion (i.e. with unit duration), and I&t be an independent variable uniform-
ly distributed on [0 1]. Write A, for the length of the left-most interval resulting
from the fragmentation of [QL] at timez, andA} for the length of the interval that
containsU. Then the processé&s;, t > 0) and(Aj,t > O) have the same law.
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2. The fragmentation property
2.1. A Skorohod-type formula

As a first step, we observe that for every<0r < ¢/, the supremum process”
can be expressed as a simple functionas 6f.

Lemma 2. For every0 < ¢ < ¢/, we have

SO = sup (Sy') —u( - t)) , s >0.

O<u<s

Proof. The proof is an adaptation of the classical argument of Skorohod’s lemma,;
see e.g. [16] on page 239. We first note that the obvious inequality

BY = BY) —u(t' —1) < SO —u(t' —1)

yields
SO < sup (S,ﬁ”) —u(’ —t)) .

O<u<s

Conversely, consider an arbitrary time- 0 at which sug_, . (S,ﬁ’/) —u(t' — t))

increases. Plainly, it must be an instant at whigh increases, and therefore
s = B 1t follows that

sup (Sb(f/) —u( — t)) = B") —s(t' —1t) = BV,
O<u<s

which completes the proof of our claim. O

We next present a useful consequence of the formula of Lemma 2. For each
t > 0 fixed, let%, stand for thedP-completed sigma-field generated by the supre-
mum process®).

Corollary 3. (%4;,t > 0) is afiltration, and(F (¢), t > 0) is (¥,)-adapted.

Proof. Itis plain from Lemma 2 that the proceS$’ is measurable with respect to
%, whent < t',s0(%;,t > 0) is afiltration. Clearlyl’ is 4;-measurable (since it
is obviously%p-measurable); and the same holds for the ladder timg”§ét be-
cause it can be expressed as the support of the Stieltjes mea$iirgVe conclude
that(F(t),t > 0) is (¥4,)-adapted. O

2.2. On the excursions of a reflected Brownian motion with drift

We denote the process of first passage times of the Brownian motion withlolyift

Tx(’):inf{szo:Ss(’)>x], x>0.

Note that in particulaf”©® = T.
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For everyx > 0, we writee(lt))C > E(z’)x > ... for the durations of the ex-
cursions away from 0 accomplished by the reflected pro§€ss- B® on the
time interval [Q Tx(’)], arranged according to the decreasing order. Alternatively,

2(1’))( > E(Z’)x > --- can also be viewed as the decreasing sequence of the amplitude

of the jumps of the first passage proc@s8 on the interval [0x]. Note that this
sequence is measurable with respec¥toFor every integek > 1, we denote by

e,ﬁ’l the corresponding excursion with duratioﬁx, that is, ify € [0, x] is such

thate!”, = 7,” — 7", then
&) =y=BO (1 +5), sel0.€).

In order to state the main technical result of this subsection, it is convenient to de-
note byexc the 1tO measure of positive Brownian excursions, and for e¥esy0,

by exc(¢) the law of the positive Brownian excursion with durati@rthat is that

of the bridge of a 3-dimensional Bessel process with ledg#tarting and ending

at 0 (cf. Theorem XI1.4.2 in [16]).

Lemma 4. LetX be a%,-measurable random variable with valuegs® co). Then

conditionally on%;, the excursionsf)x, eé‘)x, ... form a sequence of independent

processes with distributionscc(ﬁg')x), exc(zg)x), ..., respectively.

Proof. Let us denote byxc® the 16 measure of the excursions §f) — B®
away from 0. It is easily verified by a Girsanov’s transformation #xat’) is abso-
lutely continuous with respect txc, with density 6’25/2, where¢ stands for the
duration of a generic excursion. As a consequence, the excursion meastifes
have all the same conditional laws given the duration eixe” (¢) = exc(¢) in
the obvious notation.

We then first suppose that = x is deterministic and recall tha® is the
local time at O for the reflected proces$’ — B®). The statement is then plain
from excursion theory. The extension to the case wkieés a simple (i.e. that can
only take countably many value%)-measurable random variable is immediate. A
standard argument based on approximating a positive and finite random variable
by a decreasing sequence of simple random variables and using right-continuity
completes the proof. O

Next, writee!”, €, ... for the sequence of excursions away from 0 accom-
plished byS® — B® on the time interval [071], arranged according to the de-
creasing order of the lengths. Note that the sequence of the lengths is precisely
F(1).

Corollary 5. Foreveryfixed > 0, conditionally or#,, the excursions!”, ¢, . ..

form a sequence of independent processes with respective distribestiofs (¢)),
exc(Fo(1)),....

Proof. Recall thatTy is ¢4,-measurable, and so the same holds for the variable
X = S(T’l) = 1++T1. Onthe other hand, we have with probability one ﬂj%)[ =Ty,
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which implieSG,ﬁf)X = e,ﬁ’) for every integek > 1. Lemma 4 thus completes the

proof. O
2.3. Proof of Theorem 1(i)

Corollary 5 makes Theorem 1(i) straightforward. More precisely, for a fixed integer
n > 1,let[g,,d,] C [0, T1] be the interval with lengthF), (¢) corresponding to the
excursiore”. Then

Bl(lt) = Séi) - E)SI)(M - gl’l)s ue [g}’ls dn] ’

and it follows that for any’ > ¢
B = 81 4 (u—ga)(t' —1) — e —gn).  u € [gn. du]

(recall thatg, is a ladder time foB"). It is now plain that the restriction of the
ladder time set 08" to [g,, d,] coincides with the ladder time set of the process

(s(t’ -1 —€P(s),0<s < Fn(t))

shifted byg,. We thus see from Corollary 5 that the conditional distribution of
F(t') given%, is ¢, _,(F(t)), where the transition kernel has been defined in
the first section.

3. ldentification of the fragmentation laws
3.1. Preliminaries

Throughout this section,> 0 is a fixed real number. We first develop some mate-
rial on the first passage proce®). To that end, recall that®) = (Tx(’), x> O) is

a pure jump subordinator, and more precisely #sy-1t6 decomposition is given
by

TV = Y AP,

O<y=x

where the jump process) = (A§’), y > 0) is a Poisson point process (@ oo)
with characteristic measure

1
A([)(ds) = ﬁ eXp{—StZ/Z} ds s> O,
TS

i.e. A® is the Levy measure of ).

We next introduce some notation relatedt@ [0, co), a generic open neigh-
borhood of 0 (since > 0is fixed throughout this section, it is omitted in subsequent
notation such ag ¢ or ®¢ for the sake of simplicity). Distinguishing the jumps of



A fragmentation process connected to Brownian motion 295

A with values in¢ and in©® = [0, 00)\¢ yields the decomposition &f") as
the sum of two independent subordinatdré,and7¢°, where

0 _ ®
Y= ) Al Lavey x20

O<y=<x

and7® =1® -1,

The procesgx — tT)(, x > 0) is the difference between a drift and a subordi-
nator; it is a levy process with no positive jumps and its Laplace expoménis
obtained by the evy-Khintchine formula:

Voo =a- [ (1-em)a0a@s):
o

(see section VII.1 in [4] and recall that thélty measure of ¢ is 10A®). Be-
causeE(Tl‘“) < [E(Tl(’)) = 1/1, this Lévy process has a nonnegative mean, i.e. the
right-derivative ofy¢ at 0 is nonnegative. This ensures that the convex function
¥ : [0, 00) — [0, o0) is strictly increasing, and thus a bijection. We denote by
@Y : [0, 00) — [0, 00) its inverse function, i.e.

w0’ = 1d.
If we write

TSG‘ = inf {sz:x—tha>s}, s >0
for the first passage processiof- 177, it is well-known that(z{, s > 0) is again
a subordinator with Laplace exponebf, i.e.

Eexp|—qz'}) = expl-s0%(@). =0, )

see for instance Theorem VII.1 in [4].
We now end up this subsection by presenting an expression in terms of the
one-dimensional distribution af¢ for the implicit function®?. In this direction,
we point out that the characteristic expongmt> k(1) = —y“(—iA) — ix of
the subordinator ¢ fulfills

lim A7Y29%)| = ¢ >0
|A]— 00

(this is readily seen from thedvy-Khintchine formula, as thedvy measure of ¢
coincides withA @ on a neighborhood of 0). It follows from the Riemann-Lebes-
gue theorem that for evesy> 0 the distribution off,’ has &> density (see for
instance Exercise 1.4 in [4]) that we denote by

pf(x) =P (Tf 1= dx) /dx, s> 0andx >0.
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Lemma 6. The functiond? is given by the &vy-Khintchine formula

o0

o) =g+ [ (=)0 pl/nds, g=0.
0
Proof. On the one hand, it is plain that the drift coefficient®f is given by
lim ©“(q)/q = lim q/y%(@q) = 1.
q— 00 q— 00

On the other hand, thedvy measure of the subordinatdf is the vague limit as
¢ — 0+ of the measures P (z¢ € ds) on(0, co); see e.g. Exercise .1 in [4]. By
Corollary VI1.3 in [4], the latter can be expressedsasP (s — tT € dx)ds/dx
for x = ¢. Since

P <s 11l € dx) = 7 1p0((s — x)/1) dx,
this entails our claim. O

3.2. An analytic expression for the fragmentation law&)

The purpose of this subsection is to present an expression for the fragmentation
laws in terms of quantities introduced in the preceding subsection. The starting
point lies on the following description of the fragmentatibiir) in terms of the
subordinatofl .

Lemma 7. For everyt > 0, F(¢) coincides with the family of the jumps accom-
plished byr ® beforeS(Ttl), (Ag), O<y< S(T'l)>, and arranged in the decreasing
order. Moreover we have

S(T’l) = inf{xzo:x—th(” = 1}.

Proof. The firstassertion is obvious; so let us check the formulé?l())rWe deduce
from Lemma 2 that

T = inf {szo:sy)—ts _ 1},
which entails

Sy = inf ’Sy) 1 SW — s = 1},

and the substitution = S\ , s = 7.”) in the right-hand term yields our claim.
O

Next, recall® C [0, co) is an arbitrary open neighborhood of 0, and wétg)
for the subset o5 consisting of the sequences taking only valueg iiWe first
point out that any probability measure &nthat is supported by the subspace of
strictly decreasingsequences is completely characterized by the masses assigned
to theS(0)’s.
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Lemma 8. LetS’ C S be the subset of strictly decreasing sequences, and consider
two probability measures o/, i1 and 2, such that

1n1(S(0)) = u2(S(O)) forevery® C [0, co) open neighborhood df.
Then,ul = 2.

Proof. Fixan arbitrary > 0 and consider the spa@eof closed subsets of [@] en-
dowed with the Hausdorff distance; in particutais a compact metric space. There
is a canonical applicatio8(]0, ¢]) — % that maps a sequende= ({1, £2,...)
toits closed rang€’;,i = 1, 2, ...} U {0}.

Let M1 andM> be the image measures by this mapping of the restrictian of
andup to S([0, £]). For every open saf C [0, £], denote by¥ (¢) the class of
closed sets included ifi. It is known that the family% (©) , © open setgenerates
the topology or#% induced by the Hausdorff distance. The hypothesis

M1(¢(0)) = p1(S(O)) = u2(S(O)) = M2(% (0))

entails by a monotone class theorem thlat= M>.

The restriction of the canonical m& N S ([0, £]) — ¥ is one-to-one, and
since? can be chosen arbitrarily large, the identiyy = M> yields thatuy = uo.
O

We stress that with probability one, the sequehce) has no multiple points
(because the&vy measure\ ") has no atoms) and thus takes valueSin_.emma
8 applies and ensures that the distribution of the fragmentation process evaluated at
the fixed timer > 0 is characterized by the following (the same remark is relevant
to the fragmentation lawg; (¢) and the next Corollary 10).

Lemma 9. For everya > 0, we have
E (e—“Tl, F() e S(@)) - exp{—@‘”(Am(a‘C) Ya/t)+ a/t} :
Proof. We deduce from Lemma 7 that the evéhtr) € S(0)} occursif and only if
of =inflrz0ix -l =1) <inf{xz0:a0¢0}. @
Note also that themf" = S(Ttl) and hence
_ 0 _ g0 _ (0 _
no=T9 =T = (x¢ = 1) /r
The variable defined by the right-hand side of (3) is the first jump-tin®“of it is
independent off and has an exponential law with parameté? ((°) < oo (the

finiteness follows from the assumption thfats a neighborhood of 0). We deduce
that

E (e—“Tl, F(t) e §((9)) — ¢/ (e—“ff/f, F@) e S(@)) — ¢/ E (e—qtf')

for g = A®(C°) + a/t. Our claim thus follows from (2). O
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It is now easy to deduce the following characterization of the fragmentation
laws ¢, (£), which is the main result of this subsection.

Corollary 10. In the preceding notation, we have for every- 0

0 -1/2
/0 (1 — e*“‘f) (2ne3) 0:(0) (S(0O)) de
= (A% +a/1) — DA (%) —a/t.

Proof. Plainly, F(¢) only takes values id if and only if the same holds for all the
fragmentations atresulting from the components 60). By the Markov property
of Theorem 1(i), conditionally o¥'(0) = (¢1, €2, ...), these fragmentations are
independent with lawg, (£1), ¢;(£2) .... AST1 = £1 + €2 + ..., we thus have

E(e™™ F(1) € SO | FO) = (€1, £2...)) = 1T e,

SinceF (0) has the law of the atoms of a Poisson measur@po) with intensity
(2m¢3)~1/24¢, we get by a classical formula for Poisson clouds

E (e—“Tl, F(r) e S(@‘)) ' ([E (e—“Tl, F(1) € S(O) | F(O)))
- exp{ - /0 ” (1— e—%t(z)(g(@))) (2ne3)—1/2de} .
Applying Lemma 9, we thus get
/0 N (1-ep0(S©O)) @redy2de = &YV () +a/n) —aft,

which readily entails our claim. |

We mention that Corollary 10 can also be deduced from Lemma 9 by a stan-
dard argument of excursion theory (in a Poisson point process, the instant of the
first point in a given set is independent of this first point and has an exponential
distribution whose parameter is the characteristic measure of this set).

3.3. Proof of Theorem 1(ii)

The aim of this subsection is to identify the fragmentation kerfiedsde,. Recall
first from Theorem 4 in [3] that fo¢ > 0, the probability measu(¢) on' S, can
be defined as the ranked sequence of the jumps made by the stapm{bordi-
natorT before timer¢, conditionally onT;, = ¢. By Girsanov theorem, under the
equivalent probability measure

2
t
dP® = exp{—ETt[ +t2£} P,

the procesgTy, 0 < s < r¢) has the same law as the proc<€§§’), O0<s < tﬁ)
underP. It follows that for every open sét C [0, co)



A fragmentation process connected to Brownian motion 299

6OS©O) =P (AV e s <1t | T =¢).

Recall the decompositioh) = 7¢ + 7¢° as the sum of two independent subor-
dinators, that the density of the law ?5;‘,3’) is

1242 2
exp{—g} exp{—% +t2£} , x>0,

tl
2 x3
and thatp, () stands for thes> version of the density of the law @t{. We see
that the former quantity can be expressed as

P (74 =0and7] e de)
6:(0)(S(0))

P (7 eat)

P50 exp{—zeA<’>(@°)} —2:75 .

An application of Lemma 6 at the second identity below entails that for everyd
00 -1/2
/ (1 — e)0,(0)(S(0)) (27r€3> dr
0

o0 de
_ _ aat o ANDC Ay
_/O (1—e )exp[ tOA (@)}p,g(ﬁ)w
= oY (AD(°) +a/t) — /(AP (%)) —aft.

The comparison with Corollary 10 now shows ti§atl) (S(0)) = ¢ (£)(S(0))

for almost every > 0. We then see from Lemma 8 that the la@v&) andg, (¢)
coincide for almost every > 0. A standard argument based on the semigroup and
the scaling properties enables us to remove the word ‘almost’ in the last sentence,
and thus we have established the identity of the fragmentation semigroups.

4. The left-most and the size biased picked fragments

Our purpose in this section is to present an interesting identity arising in the study
of the fragmentation process induced by the standard Brownian excursionSo let
stand for a Brownian excursion with unit duration, a#d’ (¢) for the ladder time

set given by (1). Because limo. €(s)/s = oo a.s., 0 is an isolated point of the
ladder time set, and this incites us to introduce

A = inf{s > 0:st =€(s)},

which can be viewed as the length of the left-most fragment in the partitiomns
also introduce an independent variablevhich is uniformly distributed on [01];
and we writer] for the length of the open interval that contaliisn the canonical
decomposition of0, 1)\ #® (¢). In other words,

Mo=d"w) -
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where foru € (0, 1),
dPw) = inf {s >u.se ,S’(Z)(e)} andg(t)(u) = Sup{s <u:.se 3’(')(6)}

are the first points i?® (¢) to the right ofu and to the left ofs, respectively.
RecallT = (T, x > 0) is the first passage process for the Brownian motion
with zero drift. We now state the following identity.

Proposition 11. The processes$h;,t > 0), (A}, > 0) and (1/(1+ T;), 1 > 0)
have the same distribution. They are Markov processe® oh with semigroup
given by

3 xyt2

X
,dy) = _ ——tdy, O .
Py = =3 exp{ 2<x—y)} Yo EysS

Proof. Here is a slick proof due to Jim Pitman. Singg = 6;, t > 0) is the frag-
mentation semigroup introduced by Aldous and Pitman [3] by logging the contin-
uum random tree, the proces’, 1 > 0) is identical in distribution to the process

of the mass of the tree component containing a random leaf picked according to
the mass measure of the continuum random tree, in the fragmentation process of
Aldous and Pitman. By Theorem 6 in [3], we get the identity in distribution

@

(A, t=0) = (1/A+T),t>0)

Next, recallthatifs = (B(s), s > 0) is a 3-dimensional Brownian motion started at
0,thenthe proces(sﬂ(%), 0 < s < 1)isaversion of the standard 3-dimensional

Brownian bridge; see e.g. Exercise 1.3.10 in [16]. This entails th&t4f | 8| de-
notes a 3-dimensional Bessel process started from 0, then a version of the standard
Brownian excursion is given by

1—v

N

e(s):sR( ), O<s<1.

Working with this version, it is immediate that for all> 0

. 1
T 1+4L,

whereL, = sup{s > 0: R; = x} stands for the last-passage timeRfat level
x > 0. As the processad. ., x > 0) and(Ty, x > 0) have the same law, the first
claim of the statement is proven. The second follows readily. O

Acknowledgementd. should like to thank Jim Pitman for many stimulating comments on
the first draft of this work, including the slick proof of Proposition 11.
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