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Abstract. We consider a proper submarkovian resolvent of kernels on a Lusin measurable
space and a given excessive meaguré/ith every quasi bounded excessive function we
associate an excessive kernel and the corresponding Revuz measure. Every finite measure
charging n&—polar setis such a Revuz measure, provided the hypothesis (B) of Hunt holds.
Under a weak duality hypothesis, we prove the Revuz formula and characterize the quasi
boundedness and the regularity in terms of Revuz measures. We improve resulésma Az

[2] and Getoor and Sharpe [20] for the natural additive functionals of a Borel right process.

1. Introduction

Let% = (Uy)a>0 be a submarkovian resolvent of kernels on a Lusin measurable
spacg X, %). We suppose tha is proper and that the sét, of all #—measurable
J—excessive functions ok which are finiteZ—almost everywhere contains the
positive constant functions, is min—stable and generatddote that the resolvent
of a transient Borel right process verifies the above conditions.

The purpose of this paper is to give a new approach for the Revuz measures,
improving results of Getoor and Sharpe [20] anceAm [2].

If % possesses a reference meagutben there exists #—measurable subset
X, of X such thatX \ X, is semipolar and such that sufficiently many excessive
functionss may be described as tlBreen potentialef measures; on X, given by

vs (1) = [¢, 5]
wheret runs in the set of all coexcessive functions andidenotes the usual duality

generated byn, between the excessive and coexcessive functions. In fact in this
case (see [10]) there exists a Green functiany) — G(x, y) onX, x X, such that

s = /G(~, ydvs(y) = Vsl
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whereV; is theexcessive kerneln X, defined byV; f = /G(-, v) f(ndvg(y).
The above relation betweerandv, becomes th®evuz formula

[, s] = [1, Vs1]

andv; is the so calledRevuz measure of

If % does not possess a reference measure then for @varycessive measure
& and eacte—natural potential (in the sense of [20]), the Revuz measufeis
defined by

V() =lim TP F(X)dA]
t—0 0.,1]
or equivalently (cf. [24] and [11])
(%) vE(f) = L(E, Vs f)

o0

whereV; f(x) = Px[/ f(Xu—)dAul, A = (Ar)s>0 is the natural additive func-

tional whose potentiaﬁ function isand L is the energy functional (see [24], [20]
and [2]). This construction demands that the process possesses left linits in
We remark that will be £é—natural potential if and only if it i§—quasi bounded.
For each natural additive functional (having the potential functiprV; is the
unique kernel orX with V;1 = s, V f being#—excessive iff > 0, and such that
B°V,(1g) = V,s(1¢) for every Ray open subsétof X (cf. [23] and [11]). Alsas

will be é—regular if and only if the associated additive functional is continuous or
equivalentlyBM v (1,,) = V(1y) forall M € 4.

In this paper we construct the Revuz measufrewithout assuming the ex-
istence of the left limits for the process, using the above forngdlavhere the
excessive kernel; is obtained directly frony, by potential theoretic techniques
on excessive functions. We show (Theorem 4.4) thatisfé—quasi bounded then
vf charges ng—polar set. Conversely, there exists-ssemipolar seH such that
every finite measure ok \ H, charging n&—polar set is the Revuz measure of a
&—quasi bounded excessive function. If the hypothesis (B) of Hunt holds then the
exceptional seH disappears. This is an improvement of a result oéma [2],
obtained under restrictive assumtions. Moreoyesill be &—regular if and only
if its Revuz measuref charges ng—semipolar set andis uniquely determined
&—quasi everywere byf (Theorem 4.3). Note that every finite measureXon
charging ncs—semipolar set is of the above fonvfl with &—regulars. Such type
of results have been previously obtained in [23], [2], [25], [15] and [16], in various
contexts.

Under a weak duality hypothesis similar to that of Getoor and Sharpe [20], we
are able to obtain (Theorem 4.5) the corresponding Revuz formula

L(t-§,5) = L(, Vst)

for each coexcessive functian(see [25], [20] and [11]). We underline that we
do not assume thaX is sufficiently large to support the both direct and dual
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processes. Using this formula we show (Theorem 4.7 and Theorem 4.9) that an
excessive function i§—quasi bounded (resp—regular) if and only if its Revuz
measure charges ris-copolar set (resg—cosemipolar set). Particularly we get
that thet—cosemipolar sets afe-semipolar and if the hypothesis (B) of Hunt holds,
then thet—copolar sets arg—polar; compare with [20].

2. Preliminaries

Throughout the papef/ will be a resolvent as in Introduction.

Recall that the sek is calledsemisaturatedwith respect to% if each %—
excessive measure dominated by a potential is also a potential. This property is
equivalent with the existence of a Borel right processdmaving% as associated
resolvent. Thédine topologyis the topology orX generated by, . We denote by
Excy the set of al/—excessive measures &@n(see e.g. [12]). Also, if € Excy
then we denote by";{ the set of all#—measurabld/—excessive functions which
are finitet—almost everywhere {a.e.) and byExc; the set of thosé/—excessive
measures which are absolutely continuous with respegtt to

If M C X ands is a%—excessive function oK (i.e.s is universally measurable
andaUys /' s asa /' o0o) then theréduite of s on M is the functionRMs on X
defined by

RMs :=inf{t/t —excessives <tonM} .

If moreoverM e % thenRMs is universally measurable (cf. [4]) and we denote
by BM s its %—excessive regularization.

Letd be a measure oK. We say that a se/ € % is §—polar if 6(BM1) = 0.
An arbitrary subset aX is calledd—polar if it is a subset of #—measurablé—polar
set. A property is said to holt-quasi everywhere(6—g.e.) if the set where it does
not hold ise—polar andd—negligible.

Recall that a seM € # is thin at a pointx € X if there existss € &4 such
that BMs(x) < s(x). An arbitrary subset oX is called thin atv if it is a subset of
a Z#—measurable set which is thin.atA subset ofX is said to bdotally thin if it
is thin at each point ok. A semipolarset is a countable union of totally thin sets.
A setA € % is termedd—semipolar if it is of the form A = A, U A1 whereA,,

A1 € # with A, 6—polar andA1 semipolar.

Recall now some considerations concerning the Ray compactification. Since
the initial kernelU of the resolven® = (U,)4>0 iS proper, there exists a bounded
submarkovian resolvemt”™ = (V,)q>0 On X such that¢y, = &4. A Ray cone
will be a subconez of the bounded/—excessive functions which is min-stable,
separable in the uniform norm, generatesdh@lgebraz and moreover k& %,
V(R —R)y) C R, Vo(R) C #, « > 0. A Ray topology is the topology on
X generated by a Ray cone. We considerRay compactification Y of X with
respecttaz. Since(X, %) is a Lusin measurable space, it follows thaits a Borel
subset ofY and%(Y)|x = 4%, whereZ4(Y) denotes ther—algebra of all Borel
subsets of.
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Letu € &4,u > 0, andé € Excy. Afunctions € & is called(u, £)—quasi
bounded if there exists a sequengg,) in &4 such thats = Zs,, £—q.e. and
n

sp < u &—q.e. for alln.
A functions € &4 is calledu—quasi boundedif there exists a sequence;)

in &7 such thaty = an ands, < u for all n. We say simplyquasi bounded

n
instead of 1—quasi bounded. If we denoteA¥(& ) the factor set oﬁaf” by the
equivalence relation
s~t < (s=t £-q.e)
thenE% (£4) becomes afl—cone with respect to the order relation
§<7 iff s<r &-g.e.

wheres denotes the equivalence class af éiz
From [3] and [6] it follows that a function € (EEZ, will be (u, £)—quasi bounded
if and only if /\ R(s —nu) = 0£—q.e. or equivalently\ R — nit) = 0. Also,

s € &y will be u—quasi bounded if and only y\ R(s — nu) = 0. Note that

s € & will be (u, £)—quasi bounded, if and only if there existss &4 such that
s’ = s £—q.e. and’ is u—quasi bounded. Moreovet may be chosen specifically
dominated by.

A functions € of‘/f,/ is termeds—quasi boundedif it is (u, §)—quasi bounded

forallu € &%, u > 0. We denote byD,, (&, &) the set of alls € 5)“} which are
&—quasi bounded and &9, (&%) the set of alk € &4 which areu—quasi bounded
forallu € &4, u > 0. From the above consideration we get

Qvan)= () Qval6u,§) .

E€Excy

We remark that it € Qpa(Ex), u > 0, thenQpq (&) coincides with the set of
all functionss € &4 which areu—quasi bounded. Als@ (&, &) coincides with
the set of alls € o‘i, which are(u, £)—quasi bounded.

Remark.Suppose that/ is the resolvent of a Borel right process &n Recall
thats € &y is calledé—natural potential (& is a given%—excessive measure)
if for every increasing sequencé;,) of stopping times with7,, ¢ we have
P*[s(X1,)] \\ O &—a.e. Letf, be az#—measurable functions axi, 0 < f, < 1,
such thatU f, is bounded. If we define the finely open €&t := [s < nUf,] then
the sequence of stopping tim&&y\ p,) has the propertfx\p, ,/ ¢. Onthe other
hand it is easy to see that the functiowill be £é—quasi bounded if and only if

BX\Prg \, 0 £-a.e.

By straightforward calculation it follows thdf f, is &—natural potential for al.
From the above considerations we conclude shaill be é—natural potential if
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and only if it isé—quasi bounded. In particular we deduce thaill be £é—natural
potential if and only if for every increasing sequeriék,) of Z—measurable finely
open sets WitlTx\p, /' ¢ we haveBX\Prs N\ 0 £-a.e. This result is a version of
Theorem 3.3 in [20].

Leté € Excy. Afunctions € (55” is calledé—regular if for every increasing
sequences,) in é%, with sups,, > s £—g.e. we havq’\ R(s —s,) =0&—q.e.
n

n

The functions € & is termedregular if it is §—regular for alls € Excq. We
denote byé“‘i,’ the set of alk—regular functions fronff” and by#”, the set of all
regular functions fron#'s.

Obviously every¢—regular functions € @‘5,, belongs toQ,q (&%, &). Particu-
larly, each regular function € &4 belongs toQ,q (&% ).

Note that there existg € &, u > 0 which is regular. More precisely if is
a positivez#—measurable function ok such that O< f <1 andUf € &4 then
Uf is regular.

Proposition 2.1. For all ¢ € Excy and everyé—regular %—excessive function
there exists a sequen¢s,) of regular %—excessive functions such t@ Sp < S
n
ands = Zs,, &—q.e.(< denotes the specific order in the-excessive functions.)
n

Proof. Firstly suppose that 5?/ N Qpa (&, ). We construct inductively the

sequencess; ),>o0 and(r,),>o0 in &7 as follows:

S/O =s,r0=0, rpy1= /\ R(s,/l — mUms,/l), s,/H_l = s;l — Fpt1 -
m
o0
Sincer,+1 < s), we have indeed, ,; € &4 ands = Zrk + s wheres’ =
k=0
AMs, / n € N} (L, Y are the lattice operations with respect to the specific
order in&y). Becauses € @@%/ we getr, = 0 &—g.e. We show that’ is reg-

ular. This fact follows from/\ R(s' — mUy,s") < r; for all k and consequently
m

/\ R(s' —mU,s") = 0. By Proposition 2.1 in [7] we conclude thditis regular.

m

Let nows € e@f?f be arbitrary and € Qpy (&%, &), u > 0.

Ifforall n > Owe setp, = R(s —s Anu) thenp,, < s and there exists, € &
suchthat = ¢, + p, andt, < s A nu. Sinces is &—regular it follows that, is also
&—regular and therefore, by the above considerations there gxisi’, such that
t, <ty andt, = t; £é—g.e. We puko = rj ands, = Y{,/0 < k <n} — Y{£;/0 <

k <n—1)forn > 1. We haves, € &7, , an < sand from/\pn = 0&-q.e.
n n

we gets = Y s, -q.€.
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Proposition 2.2. Suppose thaX is semisaturated with respect4o. If ¢ € Excy
ands € & then the following assertions are equivalent

i) The functiony is é-regular.

i) Foreverysequendg,) of positive measures aghsuchthaje,oU \, uoU,
irr!f Un(s) < oo andu, charging noé—polar sefwe have'r;lf Un(s) = u(s).

iii) For every increasing sequen¢®,,) of finely opern/—measurable subsets
of X we havdgf BX\Png(x) = u,(s) E—a.e. (inx) where for allx € X, u, denotes

the measure o such thate, o BX\PrU N\, o U.

iv) For each potentiab o U € Excy suchthatd o U « &,& « 6 o U,
0(s) < oo and for every increasing sequeng®,,) of finely openz—measurable
subsets ok we have

inf 0(BX\Prg) = A(s)

whered is the measure oX defined by = /dee(x).

Proof. The equivalence) < ii) follows from [4] and [7]. The implications

ii) = iii) andiii) = iv) are immediate.

iv) = i). Let (s,,) be an increasing sequencedy such that sup, = s £€-a.e.
n

Letr = /\R(s —sy)and foralle > 1lletD, (= X \ [a(s —s,) —r > O]f,

where for a subse¥ of X we have denoted bﬁf its fine closure. As in the proof
of Theorem 2.3 in [4] it follows thaBX\Py = r for all n. From

r(x) = BX\Prr(x) < aB¥\Pr (s — 5,)(x) < [ BX\Prs(x) — 1y (s0)]

we deduce (r) + af(s) < inf0(BX\Pns), 0(r) < 0,r =0 &—q.e., completing
n
the proof.

Remark.Suppose tha¥ is the resolvent of a Borel right process. Then:

a) From the above equivalenée <= ii) and Proposition 2.5 in [17] it follows
thats € &y, s < oo, will be é-regular if and only if there exists a continuous
additive functional whose associated potential is eguaig.e.

b) The assertionsii) andiv) in Proposition 2.2 are versions of the characteriza-
tion of the regularity in terms of hitting times (see (3.4) in [20]) instead of arbitrary
stopping times.

The following two results are essentially well known (see e.g [9], ch. VI, (3.6)).

Lemma 2.3. Let./" be a set of7—measurable subsets ¥fsuch that if(M,,) c A~
thenU M, € /. Then for every—finite measure. on X there exists a unique

n
decompositionw = u/ + 1" wherep is carried by a set from/” and 1 charges
no set from4”.
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Corollary 2.4. Let& be a%—excessive measure apdbe aoc—finite measure on
X. Thenu can be written uniquely in the forp = ' + 1" wherey is carried by
a &é—semipolar (resps—polar) #—measurable set and”’ charges n&—semipolar
(resp.£—polar) set.

Lemma 2.5. Let .# be a set of positive finite measures @f, %) such that if
v € ./ thend € ./ for every positive measutewith 6 < v. Let furtheru be a
finite positive measure aXi such that ifF € 4 thenv(F) = Oforall v € .# if and

only if w(F) = 0. Then there exists a sequengg,) in .# such thaty = Z -

Proof. We consider the se# , of all #-measurable functiong : X — [0, 1]
such that there exists a sequerigg) in .# with f - u = Z v,. Itis easy to see

n
that for every sequendag,) in # , the function sugy,, belongs also t& .. Hence

n
there existsf, € #, such thatf, > f p-a.e. forallf € #,. On the other hand
we have 0< f, +inf(1— f,, fo) <1, fo +inf(1— f,, fo) € #,. Consequently
we getinf(l — f,, f,) = 0 n-a.e. or equivalently there exists a éte % with
fo=1p p-a.e. Fromlx r-u) Av =0forallv € .# itfollows thatv(X\ F) =0
for everyv € .# and thereforeu(X \ F) =0i.e.f, - u = u.

3. Excessive kernels

In this section we consider a fixed Ray coieand the Ray compactification of
X with respect toz.

Definition. If s € &4 we denote bycarr s the set of all pointy € Y such that
BX\Vs £ s for each open neighbourhodd of y.

It follows immediately thatarr s is a closed subset 6f such that for alk, r € &4
we havecarr R(s —t) C [s > ¢f] andcarr s C carr t whenever < .

Definition. We say that a function € &4 is of potential type ony if

teéy, t=<s, cartr=0=—1r=0.
We denote by?4(Y) the set of all functions which are of potential type n

Theorem 3.1. Every bounded function € & is of potential type orY. The set
P (Y) is a convex subcone &fy, solid in &4 with respect to the specific order.

If s € &9 is such that = Zs,, where(s,) C &4 thens € 24,(Y) if and only if

n
sp € P (Y) for all n, in which case we have

carrs = U carrs, .
n

Moreover for alls € 24/(Y), carrs is the smallest closed subgétof Y such that
BC¢"Xs = s for every open neighbourhoagl of K .
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Proof. The fact that each boundede &4 belongs ta?4(Y) is a result of Witt-
mann (cf. [27]). The proof for the other assertions in the theorem is standard and
similar with the case whetiy is anH —cone of functions on the sét (see [10]).

Remark.Every quasi bounded function fro#y, is of potential type orY .
Definition. A functions € & is calledof potential type onX if
teéy, t<s, cartNX=0P=1=0.

The set of all functions of potential type dnis denoted by?4 (X). Obviously
Py(X) is aoc—band iné4 and we have?y (X) C #4(Y). Also, it is easy to see
thatifs € 24(Y) thens € Z4(X) ifand onlyifcarrt = carrt N X forall 7 < s.

Proposition 3.2. Lets € 24 (X). Thens € Qpq(84) if and only ifs is quasi
bounded.

Proof. Suppose that < 1. We may assume also thet((#Z — %),) C %. If we
setr, = R(s —nU1) then we have;, < s ands, = s —r, < nUL There-
fore s, € Qpa(6#). On the other handarrr, C [s >nU1] C [1 > nU1]
(where U1 denotes the continuous extension of the functioh € % to Y)
ands = A{r,/n € N} + Y{s,/n € N}. SinceY{s,/n € N} € Qps(Ex)
andcarrr N X = ¥ wherer := A{r,/n € N} € Z4(X) then we getr = 0
and consequently = Y{s,/n € N}.

Definition. If s € &4 then we denote byarrys the set of all points: € X such
that BX\Vs = s for each finely open neighbourhodtiof x, V € 4.

It is easy to see thatarrss is finely closed and for alt, r € &4 we have

carrgR(s —1) C [s > t]f. If s < ¢ thencarrys C carryt. Obviously we have
carrgs C carr s N X.

We denote by?é(X) the set of alls € &4 such that

tedy, t=<s, canmpg=0=1=0.

We have?),(X) C Z4/(X).

The setX is callednearly saturated with respect to% if every %—excessive
measure oX which is a quasi continuous element frdinc (see [4]) is a potential.
Recall that an elemete Excy is termedquasi continuousif for each sequence
(&) In Excqy with &, 7 & we haveR(& — &,) N\ 0. It is known (cf. [4]) that if
& = noU e Pot then& will be quasi continuous if and only i charges no
semipolar subset of .

Remark.a) There exists a Lusin measurable spéke, %1) such thatX is a#1—
measurable subset &f and a submarkovian resolvefit = (U],)q~0 0N X1 such
that X1 \ X is #'—negligible,U,, f|x =U,(f|x) for all « > 0 and every positive
#1—measurable functioff on X1 and such that ever§y € Excy =Excy with
(£,1) < 1lis a potential ornX; (see [5]). The sek; is uniquely determined and
called thesaturation of X. ParticularlyX; is semisaturated.

b) One can show that is nearly saturated if and only if the sE{ \ X is semipolar
(with respect ta’). Consequently i is semisaturated then it is nearly saturated.
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Theorem 3.3. Suppose thak is nearly saturated. Then every regul@rexces-

sive function belongs t@f,/(X). Forall s e e@j;/(X) the setcarrys is the smallest

finely closed subsef of X such thatR¥s = s. The setﬂﬁj;(X) is ac—band in

&y and for all s € yj;(X) and all (s,) C &« such thats = Zs,, we have
n

carrys = U carrss, .

n

Proof. The first assertion follows from [7]. The rest of the proof is standard.
We denote byZ (Y) (resp.# (X)) the set of all positive numerical Borel mea-
surable (respz—measurable) functions dn(resp. onX).

Definition. A kernelV : #(Y) — % (X) is callednatural excessivéf

i) Vf isu—excessive for every bounded functipr 7 (Y).

i) Thereexisty, € #(¥),0 < f, < 1suchthat f, € &4 andB" XV (f,15)
= V(f,1¢) for each open subsét of Y.

If v.:7#(¥) — Z(X)is anatural excessive kernel such thafLy\x) = 0
then we say thaV is anatural excessive kernel onX. Consequently, a natural
excessive kernel o is precisely a kernel oX, V : #(X) — Z(X), such
that V f is %—excessive for every bounded functighe % (X) and there exists
fo € #(X),0< f, < 1lsuchthatVf, € &4 andBCV (f,16) = V(f,1g) for
each Ray open subsétof X.

Remark.a) If V is a natural excessive kernel ghandg € 7 (X) is finite then
the kernelg-V on X defined by(g-V)(f) = V(gf), f € Z#(X), is also a natural
excessive kernel oX .

b) If (V,) is a sequence of natural excessive kernelonﬂnenZ V, is also a

n
natural excessive kernel on provided that there exist§, € #(X),0< f, <1
such that) "V, f, € &4.

o) If U is tnhe resolvent of a special standard procesXdsee e.g. [19] or [26])
andA = (A;);>o is an additive functional then its potential ker@&{ (Un f (x) :=

o
P"[/ f oX;dA;], assumed to be proper) will be a natural excessive kernel (with

respgct to the Ray topology associated with the process) if and only if the disconti-
nuities ofA are disjoint from those of the process. Such a functional was teofed
class (U)by Meyer [23] anchatural by Blumenthal and Getoor [9]. & is general

then it was noted in [11] that the kerriéK on X given by

Upfx) = 1’”[/<>O foXi—dA]
0

is a natural excessive kernel provided it is proper. (ObvioUg\Iy: Up if Ais nat-
ural.) Note that the natural excessive kernels have been considered also by Garcia
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Alvarez [18], in connection with the problem of characterization of the potential
kernels of the additive functionals.

Another method to obtain natural excessive kernels was given Bgnazn [1]
and essentially, it will be used in the following theorem.

Theorem 3.4. For eachs € 24(Y) there exists a unique natural excessive kernel
Vi . #(Y) — Z (X) such thatV;1 = 5. Moreover we have

Vi(1g) = AM{sAB®Xs / G open G > K}

for every compact subsét of Y. V; is a natural excessive kernel ¢hif and only
if s € yuy(X)

Proof. For each compact subsktof ¥ we putV,(1g) := A{s AB¢"Xs /G open,
G D K}. The existence of (1) follows from the fact that there exists a countable
fundamental system of open neighbourhood& of

Following [1] one can show that for each two compact subketk, of Y we
have

VS(1K1UK2) + VS(lKlﬂkz) = VS(lKl) + Vs(le) .

By the definition, it follows that for alk € X with s(x) < co and every sequence
(K,) such thatk,, N\, K we haveV;(1g,)(x) \( Vs;(1x)(x). Therefore for each
x € X withs(x) < oothere exists ameasupg onY suchthap, (K) = V,(1g)(x)
for every compact subsét of Y. Using standard arguments of monotone class, it
follows that for eactM € %(Y) there exists a unique excessive functi@iil,,)
&y such thatV(1y)(x) = ¢(M) for all x € [s < oo]. Obviously the map
M — Vi(1p)(x) is a measure oiif for all x € X andV;1 = s. If G is an open
subset oftY and K is a compact subset @ thenV,(1x) < B¢"Xs. Therefore
BE" Xy (1) =Vi(1k) and consequentlB¢ XV, (15) = Vi(1¢).

LetnowV : #(Y) — Z (X) be a natural excessive kernel such that=
s. For each compact subs&t of Y and every open neighbourhoad of K we
haveV(1g) < V(1g). As a consequence, sin& "XV (15) = V(15), we get
B Xy (1) = V(1g). FromV (1k) < sitfollows V (1x) < s A B¢"Xs and con-
sequentlyV (1) < Vi(1lk). HenceV (1y) < Vi(1y) forall M € %(Y). Since
V(Am) + V(dy\m) =V1=s =V,1 we obtainV (1)) = Vs(1y) on[s < oc] and
we conclude thaV (1) = V(1) forall M € %(Y).

Suppose now tha¥; is a natural excessive kernel dhand letr € &4 be
such thatr < s andcarrtr N X = @. From Vs(1carr ) = O it follows 0 =
A{sABS"Xs / G open, G D carr t}. Since for each seF, G O carr r, we have
t = tABS"Xt <sABC"Xs, we getr = 0. Hences € 24(X). Conversely, if
s € P4(X) and K is a compact subset df \ X thencarr V;(1x) C K and
Vs(1lg) < s. ThereforeV;(1x) = 0 and consequently; is a natural excessive
kernel onX.

Proposition 3.5. Let V be a natural excessive kernel ah Then the following
assertions are equivalent.
i) There existy, € # (X), 0 < f, < 1,such thatV f, is quasi bounded.
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i) If f e Z(X)issuchthatVf € &4 thenV f is quasi bounded.
iii) There exists a sequen¢s) of quasi bounded/—excessive functions such

thatV =) " V,.
n

Definition. A natural excessive kern&l on X is calledquasi bounded excessive
kernelif it satisfies one of the equivalent conditions from Proposition 3.5. Note that
every proper natural excessive kernel is a quasi bounded excessive kernel.

Proposition 3.6. The following assertions are equivalent for a natural excessive
kernelV on X.

i) Thereexisty, € #(X),0 < f, < 1,suchthatVf, is aregularZ—excessive
function.

i) Foreveryf € #(X) suchthatVf e &4 it follows thatV f is regular.

iii) There exists a sequen¢s,) of regular —excessive functions such that

V=>"V,.
n

Definition. A natural excessive kern&l on X is calledregular excessive kernel
if it satisfies one of the equivalent conditions from Proposition 3.6.

Recall that a kernelV on X is termedsubordinated to &y if for eachs € &y
and f, g € #(X) we haveVf < Vg + s wheneverVf < Vg + s on the set

[f >0l

Theorem 3.7. Let V be a natural excessive kernel &h ThenV is subordinated
to &y if and only if it is a regular excessive kernel. Partlculﬁf (X) coincides
with the set of all regulat/—excessive functions if and onlyifis nearly saturated.

Proof. Let f, € #(X),0 < f, < 1, be suchthaVf, € &4. If V is regular then
V f, is regular and therefore (cf. [7]) there exists a natural excessive KérpalX
such thatW1l = V£, and such thaW is subordinated t&;. From the uniqueness
of the natural excessive kernél on X with W1 e 24(X) we getW = f,-V and
consequently is also subordinated 6. Conversely, suppose thetis subor-
dinated ta&'y. If (s,) C Ex,sn /' Vo andM, :=[e+s, > Vo] N[V, < 00],
thenV(f,1m,) / Vf, andR(Vf, — s,,) < &+ V(fo1lx\m,). Consequently
we get/\ RWVf,—sy) =0.If s € J,,/(X) then the natural excessive kernel

Vs 97(X) —> Z (X) is subordinated t&’; and therefore = V1 is regular.
Remark.Every regular excessive kernel is proper.

Lemma 3.8. Lets € 24 (Y),t € &4 and(s,) be asequence i?y (Y) withs, <t
for all n, such thats, — s. Then for each positive lower semicontinous function
fonY we haveV f(x) < Iinl)iglof Vs, f(x) in every pointr € X withz(x) < oo.

n

Proof. We take a compact subsktof Y, an open neighbourhoad of K and we
show thatV; (1) (x) < liminf V, (1) (x) forallx € [r < oo]. If x is such a point
n—>oo

then the sefs, / n € N} is relatively weakly compact ilsgf . Recall that (see [8]

X
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and [13]) if6 is a finite measure ok thensg denotes the set of allsupermedian
functionals which are finite of and,//;r is the set of all positive mesurgson X
suchthajtoU < a6 o U for a suitable positive number. If F € Sef then, arguing
as in the proof of Theorem 10 in [13], it follows that the §6te ng /G < F}is
sequentially compact with respect to the weak topol@gygf , /%g ). Hence there

exists a subsequeneg, ) of (s,) suchthatVy, (1)) and(Vs, (1y\c)) are weakly
convergent ta’ and respectively” and

liminf Vs, (16)(x) = lim Vy, (16)(x) -

From Vs, (1g) + Vi, (Ing) = V5,1 = sx, we gett’ + 1" = s e,—q.e. Let
us denote byl" an open subset of with K NT = ¢ andI" ¢ Y \ G. Since
B"XV, (In¢) = Vg, (Ine) it follows that B'"X¢” = ¢ ¢,—q.e. Hence
Vi(lx) < t' + BT X¢" ¢.—q.e. Therefore, by [7] and fromarr u ¢ K NT = @
whereu = V,(1x) AB""X¢” < 5, we obtainV(1g) < t’e,—q.e. and consequent-
ly Vs(Lg)(x) < liminf V5, (16)(x).

Since for each open subggtof Y we have

Vs(1g)(x) = supVs(1k)(x) / K C G, K compact

we deduce tha¥ (15)(x) < Iimigof Vi, (1g)(x). If f is a positive lower semicon-
tinuous function or andx € [t < oo] then, using Fatou Lemma we conclude
that

Vi f(x) = /Oo Vs(l[f>a])(x)da < liminf /OO Vs,,(l[f>ot])(x)da
0 n—o0 Jq :

=liminf V, f(x) .
n—oo

Theorem 3.9. Lets € 24 (X), t € &4 and (s,) be a sequence iy (X) such

thats, < ¢ for all n ands, — s. Then for each positivdbounded continuous

function f on X and allx € X withz(x) < oo we haveV; f(x) = lim V; f(x).
n—oo

Proof. Obviously we may suppose th#t< 1 . We denote byf the lower semi-
continuous extension of to Y. SinceV;(1y\x) = 0, V;, (1y\x) = 0, by Lemma
3.8 we have

Vo f ) = Vi) < liminf Vi, F(x) = liminf Vi, f(x)

forall x € [t < oo]. We have alsd/;(1 — f)(x) < liminf V; (1 — f)(x). From
n—oQ

Vif +Vs(l—=f)=Vsl=s,V, f+V,,(1— f)=V,,1=s, we conclude that
Vi f(x) = lim Vg, f(x) inall pointx € [t < oo], completing the proof.
n—od

Corollary 3.10. For all s € 24(X), every sequencés,) of positive bounded

Z—measurable functions axi such thatUg,, ' s and each positive bounded real

continuous functiof on X we haveV; f(x) = lim U(fg,)(x)inall pointx € X
n— o0

withs(x) < oo.
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Let.7 be atopology orX such thatX, 7) is a Lusin topological space having
% as itso—algebra of Borel sets. Let furthérbe a%—excessive measure dh
andp, € Qpa(Ex, &), po > 0. A numerical functionf on X is calledé—quasi
continuous(with respect ta7” andé’y) if there exists a decreasing sequenGg)
of 7 —open subsets df such thatf|x\g, is 7 —continuous for alk and such that
inf BSG"p, =0¢&-a.e.

Remark.a) The £—quasi continuity does not depend @p. Indeed, ifg, €
Opa(Eu, £), q, > 0, then it is sufficient to show that if® ¢, = 0 £-a.e. for
n
each sequendé&,,) as above. Sincg, is é—quasi bounded we may find a sequence
(gn)n=1 C &4 such thaig, = an £—q.e. andy, < p,. For allk € N we get
n>1
BOq, < kBSp,+ Y g, é-ae. and consequently iBCrg, < > g,
n
n>k+1 n>k+1
inf B9ng, = 0&-a.e.
n
b) If 6 is a finite positive measure ok with 6(p,) < oo and such that the
&—polar sets coincide with the sets which &@rgpolar andd—negligible (always
such a measure exists), then an increasing sequéngeof 7 —open sets verifies
the condition infBC» p, = 0 £—a.e. if and only if infcg"(Gn)zo wherec,” is the
n n

‘capacity’ onX given byc?’ (M) :=0 @R p,) for all M € 2.

¢) In many cases, in the definition gfquasi continuity, the constant function 1
is prefered agp, even if it is noté—quasi bounded. The reason for is the follow-
ing: If p, is finite andZ —continuous and/’ is the resolvent of kernels diX, %)
having the initial kernelU/p, then &y,= &4/p, and Excqy = Excy. Since
Po € Qpa(Ey, &) it follows that 1€ Qpq(E9, ). A numerical functionf on X
will be £—quasi continuous with respect 0 and &y if and only if it is é—quasi
continuous with respect tg and&'y.

Proposition 3.11. Let 7 be a topology onX as above. We suppose in addition
that

a) for each positive#—measurable functiofi on X, Uf is é—quasi continuous
with respect to7” and &, provided thatU f € &;

B) there exists an increasing sequen(@g,) of 7 —compact subsets of such
thatigf BX\Knp, = 0&-a.e.

Then thet—quasi continuity with respect tg" and with respect to every Ray
topology onX generated by a sequen¢€f,) C &4 are the same. Moreover for
every such a Ray topolog¥, on X, the sequencék,,) from conditiong) may be
chosen such tha¥ , |k, = 7 |k, for all n.

Proof. Let(Uf,) C &4 (with 4—measurablg,,0 < f, < 1) be asequence which
generates the topolog¥ ,. By hypothesidJ f, is §é—quasi continuous with respect
to 7 and therefore there exists an increasing sequéhgeof 7 —compact subsets
of X with L, C K, igf BX\Lnp, = 0 and such thal/ £, |, is 7 —continuous for

allm. We get7 ,|1, C 7|, and consequently”,|., = 7 |.,. Note that if(G,)
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is a decreasing sequence of eiteropen or7 ,—open sets the(G,, U (X \ L,))
is a decreasing sequencednand.7 ,. In addition we have in8° p, = 0 if and
n

only if inf BG»Y(X\Lw) , - — 0. From the above considerations it is easy to see that
n

the £—quasi continuity with respect t&° and .7, are the same, completing the
proof.

Corollary 3.12. Suppose tha¥ is the resolvent of a Borel right process@x, 7).

If the topologys satisfies the above two conditiomgand 8) then the process is
specialé-standard see [20].(For the situation when the converse holds see [21]
and [22)]).

In the sequel, the topology on X will be a Ray topology and we say simply
‘£—quasi continuous’ instead af-quasi continous with respect 0 andé& .

Note that each regula¥—excessive function is—quasi continuous for all €
Excy (see [8]). Particularly, iff is a positivez—measurable function ok then
Uf is é—quasi continuous whenever it is fingea.e.

Theorem 3.13. Lets € 24(X), (s,) be a sequence ity (X) andt € &4 be a
&—quasi bounded excessive function such that ¢ for all n ands,, — s. Then
for every positive boundeg-quasi continuous functiofi on X we have

Vif = lim Vg f &-q.e.
n—o0
Proof. Suppose thaf < 1. Let(G,) be a decreasing sequence of open subsets of

X such thatf|x\g, is continuous and such that iBC" p, = 0 £-q.e., wherep,
n

is é—quasi boundeds, > 0. If we denote byy, a positive continuous extension of
flx\G, to X such thatf, < 1then, by Theorem 3.9 we ha¥gf, = lim V;, f,
m— 00

on [t < oc]. Also

Vs f = Vsful <2Vs(1g,) < 2BCns < ZBG”I,
|‘/me - Vsm ﬁl' S ZVSm (1Gn) S ZBGnt .
Since infB¢"p, = 0 &—q.e. andr is (p,, £)—quasi bounded we deduce that
n
inf BG»t = 0&—q.e. and therefor®; f = lim V, f &é-q.e.
n n—oo

4. Revuz measures

In this section we fix &/—excessive measuge

Definition. LetV be a natural excessive kernel & The positive measure on
defined by

V5 (M) =L, V(Ly), MeR

is called theRevuz measuref V (with respect t&). If s € 24(X) then the Revuz

measure;f,r is called theRevuz measuref s and will be denoted byf.
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Remark.a) For each sequenad’,) of natural excessive kernels ah such that
>V, is a natural excessive kernel we h&% Z vy, .
n

b) If V is a natural excessive kernel &mand f € ,/(X) is finite thenvgﬁv = f-vf,.

c) If V is a natural excessive kernel anand there existg, € 7 (X),0< f, <1,

with Vf, € 24/(X) them§, = %-vf,fo.
Proposition 4.1. If 5, t € 24(X) thens = t £—q.e. if and only ifvy = v/ for

all n € Exce. Moreover if (s,) and(z,) are two sequences 'tﬁbz,(X) such that

an €&, andan —Ztn —q.e. then we havZ § —Z v .

Proof. We haves = s At +s',t = sit+1t/,wheres’,t' € 2y (X)ands' =t =0
£—q.e. Since)f (X) =L(,s"y=0and analogouslyf, =0, we getvf = vfM +

v = v, = Frost,, _Z 1, £—q.e. it follows that there exists a sequence

(u,) in &5, such thate, _Os—q.e. andz sn < Y_ ta+ui. Hence there exists a se-
n<k n

quencet,) in ?4(X) suchthat, < t, and asequende,, ) C EuNPy(X),u), =

£-g.e. with) s, = Zt + up. Therefore) " vf = ”Zs thé < Zv

n<k n<k n<k

Definition. We denote by’ ¢ (X) the set of alls € (EEZZ for which there exists a
sequences,) in ?4(X) such thats = Zs,, &—q.e.
n

By Proposition 4.1, for each € 24 ¢(X) the measureg = Z v, onX,

wheres = Z sp §—q.e.s, € P (X),iswell defined and called tk@evuz measure

n

of s.

Remark.a) The set?4 ¢(X) is ac—band ing and for every sequengg,) in
P (X) suchthaty s, =: s € Py ¢ (X) we havevA = Zv

n
b) If nl, 172 € Excg, s € Py ¢(X) andny < n2 (resp.m << n2) thenv* < v?
(resp.* < v?).
c) For eachs € Z4 ¢(X) there exists) € Exce with n < £, <« 5, such that,
is finite .
d) If n, /' nin Exce thenv!" 7 v Particularly the Revuz measuvé of each
s € P4 £(X) is sfinite (i.e. a countable sum of finite measures).

Definition. A functions € é‘;{ is called é—potential on X if for each increas-
ing sequence&G,) of Ray open subsets &f such thatU G, = X we have

n

inf BX\Gng = 0 £-a.e.
n



282 L. Beznea, N. Boboc

Itis easy to see that the set of altpotentials onX is ac—band mé’,,/ which
is solid in é/,/ with respect to the pointwise order relation.

Proposition 4.2. Everys € 24(Y)dominated by §—potential belongst#4 ¢ (X).
Particularly, if there exists at—potential onX which is strictly positive then
Opd(Eu, &) C Pue(X) and Py ¢(X) is solid in é’%, with respect to the point-
wise order relation.

Proof. If V; denotes the natural excessive kernel associatedsvifitn it is suffi-
cient to show tha¥;(1y\x) = 0£—q.e. LetK be a compact subset &f\ X and
(F,) be adecreasing sequence of closed neighbourhoddsioth thak = (1) F,.

Since by hypothesisis at—potential onX andX \ F, /' X we getinfB " Xg =0
n

&—q.e. Fromv (1x) < BF""Xsforall n, we conclude that; (1x) = 0£—q.e. Note
thatifs e é‘y,/ then there exist, € Qpq (&%, &) andsy € éa?,/ such that = s, + 51
£—q.e. andy is subtractible inE¢ () (see [6]). Ifs <t € Py £(X) thensy <7

and therefore, € 24 £(X).

Remark.If there exists a strictly positive—potential onX then it is easy to see
that the sef; \ X is &—polar, whereX; denotes the saturation af.

Theorem 4.3. The following assertions hold.

i) A subsetM € % will be é&—semipolar if and only ifvf (M) = 0 for all
s € Pys(X)N é@%’ (oronly for alls € 24(X) N &7,).

i) The Revuz measuné of eachs € 24 £(X) N éﬂ is o—finite. Moreover
there exists an mcreasmg sequengg,) of finely open/}—measurable subsets
of X such thatvi (G,) < oo and R¥\Grp \, 0on[s < oc] (and therefore
inf RX\Cnp = 0&—q.e) forall p € Qpa(Eu, ).

! iii) For every finite measure on X, charging no§—semipolar set there exists
a&—regular functions € 24 ¢(X) such that = vf. Ifs, t € Pue(X)N é’%,’ and

Vi = vf thens =t £—q.e.

Proof. i) Lets € Z4(X)Né7, andletM e % be a&—semipolar set. Since by The-
orem 3.7 the kernéV, |s subordmated t&’y, it follows that (cf. [7]) Vi (1y) =0
g —g.e. and therefores (M) = 0. Conversely, suppose th&f € % is such that
vA (M) =0foralls € 24(X) N &7, If M is noté—semipolar then by [7] there
existss € &7, with carrps ¢ M and.f;(s) # 0. Hences € Z4(X) N &7}, and we
haveV,(1y) = s. Therefora)Y (M) = L(&,s) =0whichisa contradlctlon.

ii) Lets € Py £(X)N 5 and letf, € #(X),0< f, < 1besuchthat/f,
is bounded ang(f,) < oc. If we putG, = [s < nUf,], sinces € Qpg(Ex, &)
we get/\ R(s — nUf,) = 0&—qg.e. ObviouslyG, is finely open and we have

n
Vi(1g,) < nUf,i..vi(Gy) < L(§,nUf,) < co.We have als®*X\CUf, < L
for all n and consequently iIR*\¢»Uf, = 0 on [y < oo]. Obviously the set
n

X\ U G, is&—polar and)f—negligible and therefore the measufeis o—finite.

n
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iii) Letv be afinite measure aXi charging ng—semipolar set. The existence
of ag—regular function € 24 ¢(X) such thav = vf follows from [2], Theoeme
3.4 (1), and from the fact that the potential operator associated with a continu-
ous additive functional is a regular excessive kernel. Note in addition that each
J—excessive function is equadt a.e. with a#—measurablé/—excessive function.

Let now V1, Vo be two regular excessive kernels &nhhaving the same Rev-
uz measure. We show that for gl € #(X) we haveVif = Vof £—q.e. Let
fo € 7(X),0< f, <1besuchthavyf,, Vof, € &4.Becausé/; andV, satisfy
the complete maximum principle we may suppose tat, andV» f,, are bounded
functions. We definee = V1 f, + Vof, and letW = V,. SinceW is the initial
kernel of a submarkovian resolvert on X such that each’—excessive function
is # —supermedian, we deduce that there exfsisfo € #(X),0< f1, fo <1,
such thatVy f, = W1 andVa f, = W f2. Consequently we get-W = fo-V1 and
f2W = foVa. lfwesetgr = fi— fin f2,g2= fa— f1A fathenv, =15,
and "iW =v§2W. Therefore, sincg1g2 = 0, we obtainugl_w =v§2W =0, g
W(1) =g2-W(1) = 0&—q.e. Hencel,- Vi(f) = f1-W(f) =f2W([f) =fo-Va(f)
&—qg.e. forallf € #(X) and we conclude that; f = Vo f £—q.e.

Remark.a) Assertionii) in Theorem 4.3 has been proved also by Revuz [25] and
Fitzsimmons and Getoor [16].

b) A o—finite measure o charges ng—semipolar set if and only if it is the Rev-

uz measure of a regular excessive kerneKoif V, W are two regular excessive
kernels onX having the same Revuz measure then forfale & (X) we have
Vf=Wfé&-q.e.

¢) One can prove the assertioin’)) from Theorem 4.3 by a different analytical
method, using in addition the fact that eazkexcessive measure dominatedgy
possesses a "finely continuous" density (cf. [14] and [15]). These techniques will
be developed in a forthcoming paper.

Recall that thénypothesis (B) of Huntholds for the Ray topology oX if for
each Ray open sét and every subsef of G, M € %, we haveB® BMs = BMj
foralls € 4.

Theorem 4.4. The following assertions hold.

i) If s € 24 ¢(X) is £—quasi bounded then its Revuz measure-fsite and
charges n&—polar set.

i) Suppose thatthe hypothe@ of Hunt holds for the Ray topologyM € %
is such thatvf(M) = 0 for all £—quasi bounded € 2y ¢ (X) with vﬁ(X) < 00
thenM is é—polar.

iii) If the hypothesigB) of Hunt holds for the Ray topology then for each finite
measurer on X, charging noé—polar set there exists &quasi bounded function

s € Py ¢ (X) such that = vf.

Proof. i) Let f, € #(X), 0 < f, < 1, be such thaUf, < 1 and&(f,) is
finite. Sinces is é—quasi bounded there exists a sequefdge in &4 such that
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s, < Uf, ands = an £—q.e. Consequentlyl = Z Vi andvi =L(&, s,) <

LEUS,) < oo If Ig is aé—polar compact subset é?fthen
V,(1x) < /\{B%sx/ G D K.G open} < \(B®1/ G > K., G oper} = B¥1

and therefore;fn (K) = L(&,V,,(1k)) < L(§, BX1) = 0. Since the measung’i
is finite, we deduce thaxfn (M) = 0O for alln and eaclt§—polar subseM of X. We

conclude that;f(M) =0.
ii) Let M € % be such thats (M) = Oforalls € 24 .:(X) N Qpa(Eu. €)

with vf (X) < oo. We may suppos# is Ray compact and we considgr= BY p,
wherep, € Qpa(Ex, £), po > 0. Obviouslys, € Qpq(E%, &) and by the hypoth-
esis (B) of Hunt for the Ray topology we haV¥g (1) = s,. On the other hand
by hypothesid/;, (1)) = 0£—q.e. and thereforgf is £—polar.

iii) Letv be afinite measure oK charging na&—polar set. By Corollary 2.4,
v may be written in the formv = v/ + v”, wherev’ charges ng—semipolar set
andv” is carried by a&-semipolar sed € #. From assertioriii) in Theorem
4.3 there exists §—regular functions € 24 ¢(X) such that’ = vf. Further let
us denote by the Dellacherie mesure associated witand thet —semipolar set
A, i.e. a subset ofA will be é—polar if and only if it isu negligible. From the
above assertiong andii) it follows that az—measurable séif is é—polar if and
only if vi(M) = 0 forall s € 2y£(X) N Qpa(Enr &) With v (X) < oco. By
Lemma 2.5 applied on the measurable spatceZ|,) for the set# = {14 - vf/
s € PyeX)N Qpa(Eu, &), vf(X) < oo}, and for the measure, there exists

a sequncés,) C P.:(X) N Qpa(Ex, &) such thaiu =Z vf Since the mea-

n
surev” is absolutely continuous with respectothere exists a second sequnce
(t) C Pus(X) N Qpa(Ex, £) such that” =Z v,i. If we puts = Zt,, then
n

n
from L, 1) = Z v,i (X) < oo it follows thatr is finite £-a.e. We conclude that
n

t € Pue(X)N Qpa(Ex. €) andy” = vf .

Remark.a) Assertionii) in Theorem 4.4 has been proved by Revuz [25] for stan-
dard processes satisfying the hypothesis (L) of Meyer.

b) By a different approach, a result similar to assertian in the above theorem
has been obtained by Ama [2] under more restrictive assumptiofsbeing the
resolvent of a Hunt process, satisfying also the hypotheses (L) of Meyer, (B) of
Hunt and (CMF).

¢) If the hypothesis (B) of Hunt holds thenda-finite measure oX charges no
&—polar set if and only if it is the Revuz measure of a proper natural (and therefore
quasi bounded) excessive kernelXn

d) In fact in Theorem 4.4, instead of the hypothesis (B) of Hunt we only need
the following weakehypothesis (B) of Hunt with respect to the measuré: for
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every Ray open s&F and each subsét of G, M € %, we haveB® BMs = BM
&—q.e.foralls € &4.

e) Using Corollary 2.4 one can show that always there exigtssemipolar set
H e % such that the hypothesis (B) of Hunt with respect to the medshoéds on
X\ H (i.e. for every Ray open sét and each subséf of GN (X \ H), M € %,
we haveBY BMs = BMs £—q.e. for alls € &). Particularly assertionii) in
Theorem 4.4 holds for every finite measure carriedkby H.

In the sequel we suppose that there exists a second proper submarkovian re-
solventZ = (U )a>0 ON (X, %) which is in duality with the given resolvefit

with respect to the measuge(l.e./gUafdg = /fUagdg forall « > 0and

f» g € # (X)) and such that the functioﬁf is §—quasi continuous (with respect
to the given Ray topology aXi), for all f € % (X) with U f bounded.

Remark.In the probabilistic approach it is usually supposed thatnd % come
from two right processes oK.

Theorem 4.5. (Revuz) For all bounded: € &7 and eaché—quasi bounded
d—excessive functianon X, s € 24(X), we have

Proof. Obviously it is sufficient to consider € &7 of the forms = Uf where
f € Z(X). Also we may assume thate Qpq(&%). SmceUf is supposed to be
&—quasicontinuous and= lim nU,s = I|m U(n(s—nU,s)), by Theorem 3.13

n—oo
we obtain

LGE VUf) = lim LGE U —nUn)U ) = im &n(s —nUus)U f)

= im_&(f-nUps) = lim L(Uf-§ nUps) = LU f-&.5) .

Remark.a) Using the Revuz formula stated by Theorem 4.5, one can prove that
everyo—finite measure oiX charging not—polar set is the Revuz measure of a
proper natural excessive kernel &nwhich is uniquely determineg-q.e. More-

over, under the above duality hypothesis, each natural excessive kernel is equal
£-q.e. with a regular excessive kernel.

b) One can show that the above Revuz formula holds for every regulaxcessive
functions, without assuming any duality hypothesis.

Corollary 4.6. If s € 29.£(X) is é—quasi bounded and € &7 then vf (t) =
L(t-&,s).

In the sequel we suppose in addition that the resolveis such thatg;; is
min-stable generates” and1 € &. As usual, we mark with the prefix co the
potential theoretical notions related dg;, in order to distinguish them from the
similar notions related t& .
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Theorem 4.7.1f s € P4 ¢(X) is £—quasi bounded then its Revuz measrzfre

charges ng—copolar setandthere exists £, > 0£—a.e.such thatf () < oo.
Moreover, for everyy, s2 € Py £ (X) N Qpa (S, &) We havesy < s2 £—q.e. if and
only if ufl(t) < ufz(t) forall r € &.

Converselysuppose that is a positive measure aki which charges ng—co-
polar set and there existse &7, t > 0£—a.e. such that () < oo. If there exists
a&—potential onX which is strictly positivethen there exists € 24 ¢ (X) which

is é—quasi bounded such that= V.

Proof. Lets € 24(X) N Qpa(&7) be such thalL(&,s) < oo and letM € #
be a¢—copolar set. Then there exists a decreasing sequence &, 1, < 1

with 7, > 1 onM and inf;, = 0 &é-a.e. It follows thatvf(M) < inf vf(t,,) =
inf L(&, Vst,) = inf L(t,-&,5). Sinces € Qpq(Ey) andL(t,-&,s) < oo we de-
duce from [6] that infL(z,-&,s) = 0. Hence for alls € 2y £(X) N Qpa(Eu, &)
we getvf(M) =0.

If 51,52 € P e(X) N Qpa(Ex, §) then we have; < sp £—q.e. if and only if
L(t-&,51) < L(t:§,sp) forallz € &7. Therefore, by Corollary 4.6, we haye < s
&—qg.e. if and only ifvfl(t) < vfz(t) forallr € 6.

Let nowv be a positive measure aghwhich charges né—copolar set and such
that there exists € 6 , t > 0£—a.e. withv(¢) < oo. The functionak — v(r)
on &7, is additive, increasing and continuous in order from below. Hence there

existss € 64, such thaw () = L(t-£,s) forall € 7. Let (¢,) be a decreasing
sequence i@’ such that mfzn = 0&-a.e.and such that iif(z,-€, s) < oco. Since
the set [mft,, > 0]is&— copolar we deduce that0 v(rnf 1) = mf L(t,-€,s) and

therefore by [6], we get thate Qpi(Eu, &). If there exrsts a} potentral which
is strictly positive, then by Proposition 4.2 it follows thate 24 ¢(X). From
vf (t) = L(t-&, s) we conclude thatzf (t) =v(@), forallt € &7 and consequently

vf:v.

Remark.The last assertion of Theorem 4.7 holds without assuming that there exists
a strictly positives—potential onX.

Corollary 4.8. Suppose that the hypothe¢i®) of Hunt with respect tg holds.
Then thet—copolar sets aré—polar.

Remark.By the remark following Theorem 4.5, in Corollary 4.8 it is not necessary
to suppose explicitly that the hypothesis (B) of Hunt holds.

Theorem 4.9. Lets € 2 £(X) N Qpa(E#, §). Thens is E—regular if and only if
its Revuz measure charges fiecosemipolar subset of.

Proof. By Theorem 4.5, for alt € &7 we haveL(t-£,s) = L(&, Vit) = vs ).
From Theorem 2.3 in [4]s will be &— regular if and only if for each decreasing

sequencgr,) in &5 andr € 67 such that/\ t, =t&—a.e.andinfL(s,-€,5) < 0
v n

n
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we have infL(t,-£, s) = L(t-£, s) or equivalently infvf (ty) = vf ). If vf charges
n n
no £—cosemipolar set then, since the set finf- ¢] is &—cosemipolar, we have
n

inf v‘f (th) = uf (t) and consequently is é&—regular. Conversely, suppose thas
n
&—regular and leM € % be at—cosemipolar set. We hawé = M, U | ] My where

k>1

M, is é—copolar andV;, is totally cothin for allk > 1. By Theorem 4.7 we deduce
thatvf(Mo) = 0 (since eacl—regular excessive function belongQe, (&, &)).
On the other hand for at > 1 there exists a decreasing sequeafe in &5

such thatM; C [inf t,’f > /\t,’f] and such thaL(t’l‘-s, s) < oo. We conclude that
n

n

vf(Mk) =0forallk > 1and thereforeyf(M) =0.

Corollary 4.10. Theé—cosemipolar sets afg-semipolar.

Remark.By the remark following Theorem 4.5, one can show that in fact the
&—semipolar and thé-cosemipolar sets coincide.
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