Lucian Beznea · Nicu Boboc

Excessive kernels and Revuz measures*

Received: 30 April 1997 / Revised version: 17 September 1999 / Published online: 11 April 2000

Abstract. We consider a proper submarkovian resolvent of kernels on a Lusin measurable space and a given excessive measure ξ . With every quasi bounded excessive function we associate an excessive kernel and the corresponding Revuz measure. Every finite measure charging no ξ -polar set is such a Revuz measure, provided the hypothesis (B) of Hunt holds. Under a weak duality hypothesis, we prove the Revuz formula and characterize the quasi boundedness and the regularity in terms of Revuz measures. We improve results of Azéma [2] and Getoor and Sharpe [20] for the natural additive functionals of a Borel right process.

1. Introduction

Let $\mathscr{U} = (U_{\alpha})_{\alpha>0}$ be a submarkovian resolvent of kernels on a Lusin measurable space (X, \mathscr{B}) . We suppose that \mathscr{U} is proper and that the set $\mathscr{E}_{\mathscr{U}}$ of all \mathscr{B} -measurable \mathscr{U} -excessive functions on X which are finite \mathscr{U} -almost everywhere contains the positive constant functions, is min–stable and generates \mathscr{B} . Note that the resolvent of a transient Borel right process verifies the above conditions.

The purpose of this paper is to give a new approach for the Revuz measures, improving results of Getoor and Sharpe [20] and Azéma [2].

If \mathscr{U} possesses a reference measure *m* then there exists a \mathscr{B} -measurable subset X_o of X such that $X \setminus X_o$ is semipolar and such that sufficiently many excessive functions *s* may be described as the *Green potentials* of measures v_s on X_o given by

$$v_s(t) = [t, s]$$

where *t* runs in the set of all coexcessive functions and [,] denotes the usual duality generated by *m*, between the excessive and coexcessive functions. In fact in this case (see [10]) there exists a Green function $(x, y) \mapsto G(x, y)$ on $X_o \times X_o$ such that

$$s = \int G(\cdot, y) d\nu_s(y) = V_s 1$$

L. Beznea: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-70700 Bucharest, Romania. e-mail: beznea@stoilow.imar.ro

N. Boboc: Faculty of Mathematics, University of Bucharest, str. Academiei 14, RO-70109 Bucharest, Romania

Mathematics Subject Classification: 60J40, 60J45, 31C15, 60J55, 31D05

^{*} Research supported by the Grant MCT No. 4073/1998 (1GR/1999) and Grant No. 92/1998 of the Romanian Academy.

where V_s is the *excessive kernel* on X_o defined by $V_s f = \int G(\cdot, y) f(y) dv_s(y)$. The above relation between *s* and v_s becomes the *Revuz formula*

$$[t, s] = [1, V_s t]$$

and v_s is the so called *Revuz measure of s*.

If \mathscr{U} does not possess a reference measure then for every \mathscr{U} -excessive measure ξ and each ξ -natural potential *s* (in the sense of [20]), the Revuz measure v_s^{ξ} is defined by

$$\nu_{s}^{\xi}(f) = \lim_{t \to 0} t^{-1} P^{\xi} [\int_{(0,t]} f(\mathsf{X}_{u-}) d\mathsf{A}_{u}]$$

or equivalently (cf. [24] and [11])

(*)
$$\nu_s^{\xi}(f) = L(\xi, V_s f)$$

where $V_s f(x) = P^x [\int_0^\infty f(X_{u-}) dA_u]$, $A = (A_t)_{t\geq 0}$ is the natural additive functional whose potential function is *s* and *L* is the energy functional (see [24], [20] and [2]). This construction demands that the process possesses left limits in *X*. We remark that *s* will be ξ -natural potential if and only if it is ξ -quasi bounded. For each natural additive functional (having the potential function *s*), V_s is the unique kernel on *X* with $V_s 1 = s$, Vf being \mathscr{U} -excessive if $f \ge 0$, and such that $B^G V_s(1_G) = V_s(1_G)$ for every Ray open subset *G* of *X* (cf. [23] and [11]). Also *s* will be ξ -regular if and only if the associated additive functional is continuous or equivalently $B^M V_s(1_M) = V_s(1_M)$ for all $M \in \mathscr{B}$.

In this paper we construct the Revuz measure v_s^{ξ} , without assuming the existence of the left limits for the process, using the above formula (*) where the excessive kernel V_s is obtained directly from s, by potential theoretic techniques on excessive functions. We show (Theorem 4.4) that if s is ξ -quasi bounded then v_s^{ξ} charges no ξ -polar set. Conversely, there exists a ξ -semipolar set H such that every finite measure on $X \setminus H$, charging no ξ -polar set is the Revuz measure of a ξ -quasi bounded excessive function. If the hypothesis (B) of Hunt holds then the exceptional set H disappears. This is an improvement of a result of Azéma [2], obtained under restrictive assumtions. Moreover, s will be ξ -regular if and only if its Revuz measure v_s^{ξ} charges no ξ -semipolar set and s is uniquely determined ξ -quasi everywere by v_s^{ξ} (Theorem 4.3). Note that every finite measure on X, charging no ξ -semipolar set is of the above form v_s^{ξ} with ξ -regular s. Such type of results have been previously obtained in [23], [2], [25], [15] and [16], in various contexts.

Under a weak duality hypothesis similar to that of Getoor and Sharpe [20], we are able to obtain (Theorem 4.5) the corresponding Revuz formula

$$L(t \cdot \xi, s) = L(\xi, V_s t)$$

for each coexcessive function t (see [25], [20] and [11]). We underline that we do not assume that X is sufficiently large to support the both direct and dual

processes. Using this formula we show (Theorem 4.7 and Theorem 4.9) that an excessive function is ξ -quasi bounded (resp. ξ -regular) if and only if its Revuz measure charges no ξ -copolar set (resp. ξ -cosemipolar set). Particularly we get that the ξ -cosemipolar sets are ξ -semipolar and if the hypothesis (B) of Hunt holds, then the ξ -copolar sets are ξ -polar; compare with [20].

2. Preliminaries

Throughout the paper, \mathcal{U} will be a resolvent as in Introduction.

Recall that the set X is called **semisaturated** with respect to \mathcal{U} if each \mathcal{U} excessive measure dominated by a potential is also a potential. This property is
equivalent with the existence of a Borel right process on X having \mathcal{U} as associated
resolvent. The **fine topology** is the topology on X generated by $\mathscr{E}_{\mathcal{U}}$. We denote by $Exc_{\mathcal{U}}$ the set of all \mathcal{U} -excessive measures on X (see e.g. [12]). Also, if $\xi \in Exc_{\mathcal{U}}$ then we denote by $\mathscr{E}_{\mathcal{U}}^{\xi}$ the set of all \mathscr{B} -measurable \mathscr{U} -excessive functions which
are finite ξ -almost everywhere (ξ -a.e.) and by Exc_{ξ} the set of those \mathscr{U} -excessive
measures which are absolutely continuous with respect to ξ .

If $M \subset X$ and s is a \mathscr{U} -excessive function on X (i.e. s is universally measurable and $\alpha U_{\alpha}s \nearrow s$ as $\alpha \nearrow \infty$) then the **réduite of** s **on** M is the function $\mathbb{R}^{M}s$ on X defined by

$$R^{M}s := \inf\{t/t \ \mathscr{U} - \text{excessive}, s \le t \text{ on } M\}$$

If moreover $M \in \mathcal{B}$ then $R^M s$ is universally measurable (cf. [4]) and we denote by $B^M s$ its \mathcal{U} -excessive regularization.

Let θ be a measure on X. We say that a set $M \in \mathcal{B}$ is θ -**polar** if $\theta(B^M 1) = 0$. An arbitrary subset of X is called θ -polar if it is a subset of a \mathcal{B} -measurable θ -polar set. A property is said to hold θ -**quasi everywhere** (θ -q.e.) if the set where it does not hold is θ -polar and θ -negligible.

Recall that a set $M \in \mathscr{B}$ is **thin** at a point $x \in X$ if there exists $s \in \mathscr{E}_{\mathscr{U}}$ such that $B^M s(x) < s(x)$. An arbitrary subset of X is called thin at x if it is a subset of a \mathscr{B} -measurable set which is thin at x. A subset of X is said to be **totally thin** if it is thin at each point of X. A **semipolar** set is a countable union of totally thin sets. A set $A \in \mathscr{B}$ is termed θ -semipolar if it is of the form $A = A_o \cup A_1$ where A_o , $A_1 \in \mathscr{B}$ with $A_o \theta$ -polar and A_1 semipolar.

Recall now some considerations concerning the Ray compactification. Since the initial kernel U of the resolvent $\mathscr{U} = (U_{\alpha})_{\alpha>0}$ is proper, there exists a bounded submarkovian resolvent $\mathscr{V} = (V_{\alpha})_{\alpha>0}$ on X such that $\mathscr{E}_{\mathscr{U}} = \mathscr{E}_{\mathscr{V}}$. A **Ray cone** will be a subcone \mathscr{R} of the bounded \mathscr{U} -excessive functions which is min–stable, separable in the uniform norm, generates the σ -algebra \mathscr{B} and moreover $1 \in \mathscr{R}$, $V((\mathscr{R} - \mathscr{R})_+) \subset \mathscr{R}, V_{\alpha}(\mathscr{R}) \subset \mathscr{R}, \alpha > 0$. A **Ray topology** is the topology on X generated by a Ray cone. We consider the **Ray compactification** Y of X with respect to \mathscr{R} . Since (X, \mathscr{B}) is a Lusin measurable space, it follows that X is a Borel subset of Y and $\mathscr{B}(Y)|_X = \mathscr{B}$, where $\mathscr{B}(Y)$ denotes the σ -algebra of all Borel subsets of Y. Let $u \in \mathscr{E}_{\mathscr{U}}$, u > 0, and $\xi \in Exc_{\mathscr{U}}$. A function $s \in \mathscr{E}_{\mathscr{U}}$ is called (u, ξ) -quasi **bounded** if there exists a sequence (s_n) in $\mathscr{E}_{\mathscr{U}}$ such that $s = \sum_n s_n \xi$ -q.e. and

 $s_n \leq u \xi$ -q.e. for all n.

A function $s \in \mathscr{E}_{\mathscr{U}}$ is called *u*-**quasi bounded** if there exists a sequence (s_n) in $\mathscr{E}_{\mathscr{U}}$ such that $s = \sum_n s_n$ and $s_n \leq u$ for all *n*. We say simply **quasi bounded**

instead of 1–quasi bounded. If we denote by $E^{\xi}(\mathscr{E}_{\mathscr{U}})$ the factor set of $\mathscr{E}^{\xi}_{\mathscr{U}}$ by the equivalence relation

$$s \sim t \iff (s = t \quad \xi - q.e.)$$

then $E^{\xi}(\mathscr{E}_{\mathscr{U}})$ becomes an *H*-cone with respect to the order relation

$$\widetilde{s} \leq \widetilde{t}$$
 iff $s \leq t \quad \xi-q.e.$

where \tilde{s} denotes the equivalence class of $s \in \mathscr{E}_{\mathscr{Y}}^{\xi}$.

From [3] and [6] it follows that a function $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ will be (u, ξ) -quasi bounded if and only if $\bigwedge_{n} R(s - nu) = 0 \xi$ -q.e. or equivalently $\bigwedge_{n} R(\tilde{s} - n\tilde{u}) = 0$. Also, $s \in \mathscr{E}_{\mathscr{U}}$ will be *u*-quasi bounded if and only if $\bigwedge_{n} R(s - nu) = 0$. Note that $s \in \mathscr{E}_{\mathscr{U}}$ will be (u, ξ) -quasi bounded, if and only if there exists $s' \in \mathscr{E}_{\mathscr{U}}$ such that $s' = s \xi$ -q.e. and s' is *u*-quasi bounded. Moreover s' may be chosen specifically dominated by s.

A function $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ is termed ξ -**quasi bounded** if it is (u, ξ) -quasi bounded for all $u \in \mathscr{E}_{\mathscr{U}}, u > 0$. We denote by $Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$ the set of all $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ which are ξ -quasi bounded and by $Q_{bd}(\mathscr{E}_{\mathscr{U}})$ the set of all $s \in \mathscr{E}_{\mathscr{U}}$ which are *u*-quasi bounded for all $u \in \mathscr{E}_{\mathscr{U}}, u > 0$. From the above consideration we get

$$Q_{bd}(\mathscr{E}_{\mathscr{U}}) = \bigcap_{\xi \in Exc_{\mathscr{U}}} Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi) \ .$$

We remark that if $u \in Q_{bd}(\mathscr{E}_{\mathscr{U}}), u > 0$, then $Q_{bd}(\mathscr{E}_{\mathscr{U}})$ coincides with the set of all functions $s \in \mathscr{E}_{\mathscr{U}}$ which are *u*-quasi bounded. Also $Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$ coincides with the set of all $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ which are (u, ξ) -quasi bounded.

Remark. Suppose that \mathscr{U} is the resolvent of a Borel right process on X. Recall that $s \in \mathscr{E}_{\mathscr{U}}$ is called ξ -**natural potential** (ξ is a given \mathscr{U} -excessive measure) if for every increasing sequence (T_n) of stopping times with $T_n \nearrow \zeta$ we have $P^x[s(X_{T_n})] \searrow 0 \xi$ -a.e. Let f_o be a \mathscr{B} -measurable functions on X, $0 < f_o \leq 1$, such that Uf_o is bounded. If we define the finely open set $D_n := [s < nUf_o]$ then the sequence of stopping times $(T_X \setminus D_n)$ has the property $T_X \setminus D_n \nearrow \zeta$. On the other hand it is easy to see that the function s will be ξ -quasi bounded if and only if

$$B^{X \setminus D_n} s \searrow 0 \quad \xi$$
-a.e.

By straightforward calculation it follows that Uf_o is ξ -natural potential for all ξ . From the above considerations we conclude that *s* will be ξ -natural potential if and only if it is ξ -quasi bounded. In particular we deduce that *s* will be ξ -natural potential if and only if for every increasing sequence (D_n) of \mathscr{B} -measurable finely open sets with $T_{X \setminus D_n} \nearrow \zeta$ we have $B^{X \setminus D_n} s \searrow 0 \xi$ -a.e. This result is a version of Theorem 3.3 in [20].

Let $\xi \in Exc_{\mathscr{U}}$. A function $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ is called ξ -**regular** if for every increasing sequence (s_n) in $\mathscr{E}_{\mathscr{U}}^{\xi}$ with $\sup_{s_n} s_n \ge s \xi$ -q.e. we have $\bigwedge R(s - s_n) = 0 \xi$ -q.e.

The function $s \in \mathscr{E}_{\mathscr{U}}$ is termed **regular** if it is ξ -regular for all $\xi \in Exc_{\mathscr{U}}$. We denote by $\mathscr{E}_{\mathscr{U}}^{\xi,r}$ the set of all ξ -regular functions from $\mathscr{E}_{\mathscr{U}}^{\xi}$ and by $\mathscr{E}_{\mathscr{U}}^{r}$ the set of all regular functions from $\mathscr{E}_{\mathscr{U}}$.

Obviously every ξ -regular function $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ belongs to $Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$. Particularly, each regular function $s \in \mathscr{E}_{\mathscr{U}}$ belongs to $Q_{bd}(\mathscr{E}_{\mathscr{U}})$.

Note that there exists $u \in \mathscr{E}_{\mathscr{U}}$, u > 0 which is regular. More precisely if f is a positive \mathscr{B} -measurable function on X such that $0 < f \leq 1$ and $Uf \in \mathscr{E}_{\mathscr{U}}$ then Uf is regular.

Proposition 2.1. For all $\xi \in Exc_{\mathcal{U}}$ and every ξ -regular \mathcal{U} -excessive function s there exists a sequence (s_n) of regular \mathcal{U} -excessive functions such that $\sum_n s_n \prec s$

and $s = \sum_{n} s_n \xi - q.e.$ (\prec denotes the specific order in the \mathcal{U} -excessive functions.)

Proof. Firstly suppose that $s \in \mathscr{E}_{\mathscr{U}}^{\xi,r} \cap Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$. We construct inductively the sequences $(s'_n)_{n\geq 0}$ and $(r_n)_{n\geq 0}$ in $\mathscr{E}_{\mathscr{U}}$ as follows:

$$s'_0 = s, r_0 = 0, r_{n+1} = \bigwedge_m R(s'_n - mU_m s'_n), s'_{n+1} = s'_n - r_{n+1}.$$

Since $r_{n+1} \prec s'_n$, we have indeed $s'_{n+1} \in \mathscr{E}_{\mathscr{U}}$ and $s = \sum_{k=0}^{\infty} r_k + s'$ where s' :=

 $\lambda \{s'_n \mid n \in \mathbb{N}\}$ (λ , Υ are the lattice operations with respect to the specific order in $\mathscr{E}_{\mathscr{U}}$). Because $s \in \mathscr{E}_{\mathscr{U}}^{\xi,r}$ we get $r_k = 0$ ξ -q.e. We show that s' is regular. This fact follows from $\bigwedge_m R(s' - mU_m s') \leq r_k$ for all k and consequently $\bigwedge_m R(s' - mU_m s') = 0$ By Proposition 2.1 in [7] we conclude that s' is regular

 $\bigwedge_{m} R(s' - mU_m s') = 0.$ By Proposition 2.1 in [7] we conclude that s' is regular.

Let now $s \in \mathscr{E}_{\mathscr{U}}^{\xi,r}$ be arbitrary and $u \in Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi), u > 0$.

If for all $n \ge 0$ we set $\rho_n = R(s - s \land nu)$ then $\rho_n \prec s$ and there exists $t_n \in \mathscr{E}_{\mathscr{U}}$ such that $s = t_n + \rho_n$ and $t_n \le s \land nu$. Since s is ξ -regular it follows that t_n is also ξ -regular and therefore, by the above considerations there exists $t'_n \in \mathscr{E}_{\mathscr{U}}^r$ such that $t'_n \prec t_n$ and $t_n = t'_n \xi$ -q.e. We put $s_0 = t'_0$ and $s_n = \Upsilon\{t'_k/0 \le k \le n\} - \Upsilon\{t'_k/0 \le k \le n - 1\}$ for $n \ge 1$. We have $s_n \in \mathscr{E}_{\mathscr{U}}^r$, $\sum_n s_n \prec s$ and from $\bigwedge_n \rho_n = 0 \xi$ -q.e. we get $s = \sum s_n \xi$ -q.e. **Proposition 2.2.** Suppose that X is semisaturated with respect to \mathcal{U} . If $\xi \in Exc_{\mathcal{U}}$ and $s \in \mathscr{E}_{\mathcal{U}}$ then the following assertions are equivalent:

i) The function s is ξ -regular.

ii) For every sequence (μ_n) of positive measures on X such that $\mu_n \circ U \searrow \mu \circ U$, $\inf_n \mu_n(s) < \infty$ and μ_n charging no ξ -polar set, we have $\inf_n \mu_n(s) = \mu(s)$.

"iii) For every increasing sequence (D_n) of finely open \mathcal{B} -measurable subsets of X we have $\inf_n B^{X \setminus D_n} s(x) = \mu_x(s) \xi$ -a.e. (in x) where for all $x \in X$, μ_x denotes the measure on X such that $\varepsilon_x \circ B^{X \setminus D_n} U \searrow \mu_x \circ U$.

iv) For each potential $\theta \circ U \in Exc_{\mathscr{U}}$ such that $\theta \circ U \ll \xi$, $\xi \ll \theta \circ U$, $\theta(s) < \infty$ and for every increasing sequence (D_n) of finely open \mathscr{B} -measurable subsets of X we have

$$\inf_{n} \theta(B^{X \setminus D_n} s) = \widetilde{\theta}(s)$$

where $\tilde{\theta}$ is the measure on X defined by $\tilde{\theta} = \int \mu_x d\theta(x)$.

Proof. The equivalence i \iff ii follows from [4] and [7]. The implications ii \implies iii and iii \implies iv are immediate.

 $iv) \Longrightarrow i$). Let (s_n) be an increasing sequence in $\mathscr{E}_{\mathscr{U}}$ such that $\sup s_n = s \notin -a.e.$ Let $r := \bigwedge_n R(s - s_n)$ and for all $\alpha > 1$ let $D_n := X \setminus \overline{[\alpha(s - s_n) - r > 0]}^f$,

where for a subset *M* of *X* we have denoted by \overline{M}^f its fine closure. As in the proof of Theorem 2.3 in [4] it follows that $B^{X \setminus D_n} r = r$ for all *n*. From

$$r(x) = B^{X \setminus D_n} r(x) \le \alpha B^{X \setminus D_n} (s - s_n)(x) \le \alpha [B^{X \setminus D_n} s(x) - \mu_x(s_n)]$$

we deduce $\theta(r) + \alpha \widetilde{\theta}(s) \leq \inf_{n} \theta(B^{X \setminus D_{n}}s), \theta(r) \leq 0, r = 0 \quad \xi$ -q.e., completing the proof.

Remark. Suppose that \mathcal{U} is the resolvent of a Borel right process. Then:

a) From the above equivalence *i*) \iff *ii*) and Proposition 2.5 in [17] it follows that $s \in \mathscr{E}_{\mathscr{U}}$, $s < \infty$, will be ξ -regular if and only if there exists a continuous additive functional whose associated potential is equal $s \xi$ -q.e.

b) The assertions iii) and iv) in Proposition 2.2 are versions of the characterization of the regularity in terms of hitting times (see (3.4) in [20]) instead of arbitrary stopping times.

The following two results are essentially well known (see e.g [9], ch. VI, (3.6)).

Lemma 2.3. Let \mathcal{N} be a set of \mathcal{B} -measurable subsets of X such that if $(M_n) \subset \mathcal{N}$ then $\bigcup M_n \in \mathcal{N}$. Then for every σ -finite measure μ on X there exists a unique

decomposition $\mu = \mu' + \mu''$ where μ' is carried by a set from \mathcal{N} and μ'' charges no set from \mathcal{N} .

Corollary 2.4. Let ξ be a \mathscr{U} -excessive measure and μ be a σ -finite measure on X. Then μ can be written uniquely in the form $\mu = \mu' + \mu''$ where μ' is carried by a ξ -semipolar (resp. ξ -polar) \mathscr{B} -measurable set and μ'' charges no ξ -semipolar (resp. ξ -polar) set.

Lemma 2.5. Let \mathscr{M} be a set of positive finite measures on (X, \mathscr{B}) such that if $v \in \mathscr{M}$ then $\theta \in \mathscr{M}$ for every positive measure θ with $\theta \leq v$. Let further μ be a finite positive measure on X such that if $F \in \mathscr{B}$ then v(F) = 0 for all $v \in \mathscr{M}$ if and only if $\mu(F) = 0$. Then there exists a sequence (μ_n) in \mathscr{M} such that $\mu = \sum_n \mu_n$.

Proof. We consider the set \mathscr{F}_{μ} of all \mathscr{B} -measurable functions $f : X \longrightarrow [0, 1]$ such that there exists a sequence (v_n) in \mathscr{M} with $f \cdot \mu = \sum_n v_n$. It is easy to see

that for every sequence (f_n) in \mathscr{F}_{μ} the function sup f_n belongs also to \mathscr{F}_{μ} . Hence

there exists $f_o \in \mathscr{F}_{\mu}$ such that $f_o \ge f \mu$ -a.e. for all $f \in \mathscr{F}_{\mu}$. On the other hand we have $0 \le f_o + \inf(1 - f_o, f_o) \le 1$, $f_o + \inf(1 - f_o, f_o) \in \mathscr{F}_{\mu}$. Consequently we get $\inf(1 - f_o, f_o) = 0 \mu$ -a.e. or equivalently there exists a set $F \in \mathscr{B}$ with $f_o = \mathbf{1}_F \mu$ -a.e. From $(\mathbf{1}_{X \setminus F} \cdot \mu) \land \nu = 0$ for all $\nu \in \mathscr{M}$ it follows that $\nu(X \setminus F) = 0$ for every $\nu \in \mathscr{M}$ and therefore $\mu(X \setminus F) = 0$ i.e. $f_o \cdot \mu = \mu$.

3. Excessive kernels

In this section we consider a fixed Ray cone \mathscr{R} and the Ray compactification *Y* of *X* with respect to \mathscr{R} .

Definition. If $s \in \mathscr{E}_{\mathscr{U}}$ we denote by **carr** s the set of all points $y \in Y$ such that $B^{X \setminus V}s \neq s$ for each open neighbourhood V of y.

It follows immediately that carr s is a closed subset of Y such that for all $s, t \in \mathscr{E}_{\mathscr{U}}$ we have carr $R(s-t) \subset \overline{[s>t]}$ and carr $s \subset \operatorname{carr} t$ whenever $s \prec t$.

Definition. We say that a function $s \in \mathscr{E}_{\mathscr{U}}$ is of potential type on Y if

 $t \in \mathscr{E}_{\mathscr{U}}, \quad t \prec s, \quad \operatorname{carr} t = \emptyset \Longrightarrow t = 0$.

We denote by $\mathscr{P}_{\mathscr{U}}(Y)$ the set of all functions which are of potential type on *Y*.

Theorem 3.1. Every bounded function $s \in \mathscr{E}_{\mathscr{U}}$ is of potential type on Y. The set $\mathscr{P}_{\mathscr{U}}(Y)$ is a convex subcone of $\mathscr{E}_{\mathscr{U}}$, solid in $\mathscr{E}_{\mathscr{U}}$ with respect to the specific order. If $s \in \mathscr{E}_{\mathscr{U}}$ is such that $s = \sum_{n} s_{n}$ where $(s_{n}) \subset \mathscr{E}_{\mathscr{U}}$ then $s \in \mathscr{P}_{\mathscr{U}}(Y)$ if and only if $s_{n} \in \mathscr{P}_{\mathscr{U}}(Y)$ for all n, in which case we have

carr
$$s = \overline{\bigcup_n \operatorname{carr} s_n}$$
.

Moreover for all $s \in \mathcal{P}_{\mathcal{U}}(Y)$, carr s is the smallest closed subset K of Y such that $B^{G \cap X}s = s$ for every open neighbourhood G of K.

Proof. The fact that each bounded $s \in \mathscr{E}_{\mathscr{U}}$ belongs to $\mathscr{P}_{\mathscr{U}}(Y)$ is a result of Wittmann (cf. [27]). The proof for the other assertions in the theorem is standard and similar with the case when $\mathscr{E}_{\mathscr{U}}$ is an *H* –cone of functions on the set *X* (see [10]).

Remark. Every quasi bounded function from $\mathscr{E}_{\mathscr{U}}$ is of potential type on *Y*.

Definition. A function $s \in \mathscr{E}_{\mathscr{U}}$ is called **of potential type on** X if

 $t \in \mathscr{E}_{\mathscr{U}}, \quad t \prec s, \quad \operatorname{carr} t \cap X = \emptyset \Longrightarrow t = 0$.

The set of all functions of potential type on X is denoted by $\mathscr{P}_{\mathscr{U}}(X)$. Obviously $\mathscr{P}_{\mathscr{U}}(X)$ is a σ -band in $\mathscr{E}_{\mathscr{U}}$ and we have $\mathscr{P}_{\mathscr{U}}(X) \subset \mathscr{P}_{\mathscr{U}}(Y)$. Also, it is easy to see that if $s \in \mathscr{P}_{\mathscr{U}}(Y)$ then $s \in \mathscr{P}_{\mathscr{U}}(X)$ if and only if carr $t = \operatorname{carr} t \cap X$ for all $t \prec s$.

Proposition 3.2. Let $s \in \mathcal{P}_{\mathcal{U}}(X)$. Then $s \in Q_{bd}(\mathcal{E}_{\mathcal{U}})$ if and only if s is quasi bounded.

Proof. Suppose that $s \leq 1$. We may assume also that $U((\mathscr{R} - \mathscr{R})_+) \subset \mathscr{R}$. If we set $r_n := R(s - nU1)$ then we have $r_n \prec s$ and $s_n := s - r_n \leq nU1$. Therefore $s_n \in Q_{bd}(\mathscr{E}_{\mathscr{U}})$. On the other hand carr $r_n \subset [s > nU1] \subset [1 \geq n\widetilde{U}1]$ (where $\widetilde{U1}$ denotes the continuous extension of the function $U1 \in \mathscr{R}$ to Y) and $s = \lambda\{r_n/n \in \mathbb{N}\} + \gamma\{s_n/n \in \mathbb{N}\}$. Since $\gamma\{s_n/n \in \mathbb{N}\} \in Q_{bd}(\mathscr{E}_{\mathscr{U}})$ and carr $r \cap X = \emptyset$ where $r := \lambda\{r_n/n \in \mathbb{N}\} \in \mathscr{P}_{\mathscr{U}}(X)$ then we get r = 0 and consequently $s = \gamma\{s_n/n \in \mathbb{N}\}$.

Definition. If $s \in \mathscr{E}_{\mathscr{H}}$ then we denote by $\operatorname{carr}_f s$ the set of all points $x \in X$ such that $B^{X \setminus V} s \neq s$ for each finely open neighbourhood V of $x, V \in \mathscr{B}$.

It is easy to see that $\operatorname{carr}_f s$ is finely closed and for all $s, t \in \mathscr{E}_{\mathscr{U}}$ we have $\operatorname{carr}_f R(s-t) \subset \overline{[s+t]}^f$. If $s \prec t$ then $\operatorname{carr}_f s \subset \operatorname{carr}_f t$. Obviously we have $\operatorname{carr}_f s \subset \operatorname{carr}_f t \cap X$.

We denote by $\mathscr{P}^{f}_{\mathscr{U}}(X)$ the set of all $s \in \mathscr{E}_{\mathscr{U}}$ such that

$$t \in \mathscr{E}_{\mathscr{U}}, \quad t \prec s, \quad \operatorname{carr}_{f} t = \emptyset \Longrightarrow t = 0$$
.

We have $\mathscr{P}_{\mathscr{U}}^f(X) \subset \mathscr{P}_{\mathscr{U}}(X)$.

The set X is called **nearly saturated** with respect to \mathcal{U} if every \mathcal{U} -excessive measure on X which is a quasi continuous element from Exc (see [4]) is a potential. Recall that an element $\xi \in Exc_{\mathcal{U}}$ is termed **quasi continuous** if for each sequence (ξ_n) in $Exc_{\mathcal{U}}$ with $\xi_n \nearrow \xi$ we have $R(\xi - \xi_n) \searrow 0$. It is known (cf. [4]) that if $\xi = \mu \circ U \in Pot$ then ξ will be quasi continuous if and only if μ charges no semipolar subset of X.

Remark. a) There exists a Lusin measurable space (X_1, \mathscr{B}_1) such that X is a \mathscr{B}_{1-} measurable subset of X_1 and a submarkovian resolvent $\mathscr{U}' = (U'_{\alpha})_{\alpha>0}$ on X_1 such that $X_1 \setminus X$ is \mathscr{U}' -negligible, $U'_{\alpha}f|_X = U_{\alpha}(f|_X)$ for all $\alpha > 0$ and every positive \mathscr{B}_1 -measurable function f on X_1 and such that every $\xi \in Exc_{\mathscr{U}'} = Exc_{\mathscr{U}}$ with $(\xi, 1) \leq 1$ is a potential on X_1 (see [5]). The set X_1 is uniquely determined and called the **saturation of** X. Particularly X_1 is semisaturated.

b) One can show that X is nearly saturated if and only if the set $X_1 \setminus X$ is semipolar (with respect to \mathcal{U}). Consequently if X is semisaturated then it is nearly saturated.

Theorem 3.3. Suppose that X is nearly saturated. Then every regular \mathcal{U} -excessive function belongs to $\mathcal{P}^{f}_{\mathcal{U}}(X)$. For all $s \in \mathcal{P}^{f}_{\mathcal{U}}(X)$ the set $\operatorname{carr}_{f}s$ is the smallest finely closed subset F of X such that $R^{F}s = s$. The set $\mathcal{P}^{f}_{\mathcal{U}}(X)$ is a σ -band in $\mathscr{E}_{\mathcal{U}}$ and for all $s \in \mathcal{P}^{f}_{\mathcal{U}}(X)$ and all $(s_{n}) \subset \mathscr{E}_{\mathcal{U}}$ such that $s = \sum_{n} s_{n}$ we have

$$carr_f s = \overline{\bigcup_n carr_f s_n}^f.$$

Proof. The first assertion follows from [7]. The rest of the proof is standard.

We denote by $\mathscr{F}(Y)$ (resp. $\mathscr{F}(X)$) the set of all positive numerical Borel measurable (resp. \mathscr{B} -measurable) functions on *Y* (resp. on *X*).

Definition. A kernel $V : \mathscr{F}(Y) \longrightarrow \mathscr{F}(X)$ is called *natural excessive* if

i) Vf is \mathcal{U} -excessive for every bounded function $f \in \mathcal{F}(Y)$.

ii) There exists $f_o \in \mathscr{F}(Y), 0 < f_o \leq 1$ such that $Vf_o \in \mathscr{E}_{\mathscr{U}}$ and $B^{G \cap X}V(f_o \mathbb{1}_G)$ = $V(f_o \mathbb{1}_G)$ for each open subset G of Y.

If $V : \mathscr{F}(Y) \longrightarrow \mathscr{F}(X)$ is a natural excessive kernel such that $V(\mathbf{1}_{Y\setminus X}) = 0$ then we say that *V* is a **natural excessive kernel on** *X*. Consequently, a natural excessive kernel on *X* is precisely a kernel on *X*, $V : \mathscr{F}(X) \longrightarrow \mathscr{F}(X)$, such that *Vf* is \mathscr{U} -excessive for every bounded function $f \in \mathscr{F}(X)$ and there exists $f_o \in \mathscr{F}(X), 0 < f_o \leq 1$ such that $Vf_o \in \mathscr{E}_{\mathscr{U}}$ and $B^G V(f_o \mathbf{1}_G) = V(f_o \mathbf{1}_G)$ for each Ray open subset *G* of *X*.

Remark. a) If *V* is a natural excessive kernel on *X* and $g \in \mathscr{F}(X)$ is finite then the kernel $g \cdot V$ on *X* defined by $(g \cdot V)(f) := V(gf)$, $f \in \mathscr{F}(X)$, is also a natural excessive kernel on *X*.

b) If (V_n) is a sequence of natural excessive kernels on X then $\sum_{n} V_n$ is also a natural excessive kernel on X provided that there exists $f_o \in \mathscr{F}(X)$, $0 < f_o \leq 1$ such that $\sum_{n} V_n f_o \in \mathscr{E}_{\mathscr{U}}$.

c) If \mathscr{U} is the resolvent of a special standard process on X (see e.g. [19] or [26]) and $A = (A_t)_{t\geq 0}$ is an additive functional then its potential kernel $U_A(U_A f(x)) := P^x [\int_0^\infty f \circ X_t dA_t]$, assumed to be proper) will be a natural excessive kernel (with respect to the Ray topology associated with the process) if and only if the discontinuities of A are disjoint from those of the process. Such a functional was termed **of class** (**U**) by Meyer [23] and **natural** by Blumenthal and Getoor [9]. If A is general then it was noted in [11] that the kernel U_A^- on X given by

$$U_{\mathsf{A}}^{-}f(x) := P^{x}[\int_{0}^{\infty} f \circ \mathsf{X}_{t-}d\mathsf{A}_{t}]$$

is a natural excessive kernel provided it is proper. (Obviously $U_A^- = U_A$ if A is natural.) Note that the natural excessive kernels have been considered also by Garcia

Alvarez [18], in connection with the problem of characterization of the potential kernels of the additive functionals.

Another method to obtain natural excessive kernels was given by Azéma in [1] and essentially, it will be used in the following theorem.

Theorem 3.4. For each $s \in \mathcal{P}_{\mathcal{U}}(Y)$ there exists a unique natural excessive kernel $V_s : \mathcal{F}(Y) \longrightarrow \mathcal{F}(X)$ such that $V_s 1 = s$. Moreover we have

$$V_s(\mathbf{1}_K) = \lambda \{ s \land B^{G \cap X} s \mid G \text{ open, } G \supset K \}$$

for every compact subset K of Y. V_s is a natural excessive kernel on X if and only if $s \in \mathcal{P}_{\mathcal{U}}(X)$.

Proof. For each compact subset *K* of *Y* we put $V_s(\mathbf{1}_K) := \bigwedge \{s \land B^{G \cap X} s / G \text{ open}, G \supset K\}$. The existence of $V_s(\mathbf{1}_K)$ follows from the fact that there exists a countable fundamental system of open neighbourhoods of *K*.

Following [1] one can show that for each two compact subsets K_1 , K_2 of Y we have

$$V_s(\mathbf{1}_{K_1\cup K_2}) + V_s(\mathbf{1}_{K_1\cap K_2}) = V_s(\mathbf{1}_{K_1}) + V_s(\mathbf{1}_{K_2})$$
.

By the definition, it follows that for all $x \in X$ with $s(x) < \infty$ and every sequence (K_n) such that $K_n \searrow K$ we have $V_s(\mathbf{1}_{K_n})(x) \searrow V_s(\mathbf{1}_K)(x)$. Therefore for each $x \in X$ with $s(x) < \infty$ there exists a measure φ_x on Y such that $\varphi_x(K) = V_s(\mathbf{1}_K)(x)$ for every compact subset K of Y. Using standard arguments of monotone class, it follows that for each $M \in \mathscr{B}(Y)$ there exists a unique excessive function $V_s(\mathbf{1}_M) \in \mathscr{E}_{\mathscr{U}}$ such that $V_s(\mathbf{1}_M)(x) = \varphi_x(M)$ for all $x \in [s < \infty]$. Obviously the map $M \longmapsto V_s(\mathbf{1}_M)(x)$ is a measure on Y for all $x \in X$ and $V_s \mathbf{1} = s$. If G is an open subset of Y and K is a compact subset of G then $V_s(\mathbf{1}_K) \prec B^{G \cap X}s$. Therefore $B^{G \cap X}V_s(\mathbf{1}_K) = V_s(\mathbf{1}_K)$ and consequently $B^{G \cap X}V_s(\mathbf{1}_G) = V_s(\mathbf{1}_G)$.

Let now $V : \mathscr{F}(Y) \longrightarrow \mathscr{F}(X)$ be a natural excessive kernel such that V1 = s. For each compact subset K of Y and every open neighbourhood G of K we have $V(1_K) \prec V(1_G)$. As a consequence, since $B^{G \cap X}V(1_G) = V(1_G)$, we get $B^{G \cap X}V(1_K) = V(1_K)$. From $V(1_K) \prec s$ it follows $V(1_K) \prec s \land B^{G \cap X}s$ and consequently $V(1_K) \prec V_s(1_K)$. Hence $V(1_M) \prec V_s(1_M)$ for all $M \in \mathscr{B}(Y)$. Since $V(1_M) + V(1_{Y \setminus M}) = V1 = s = V_s 1$ we obtain $V(1_M) = V_s(1_M)$ on $[s < \infty]$ and we conclude that $V(1_M) = V_s(1_M)$ for all $M \in \mathscr{B}(Y)$.

Suppose now that V_s is a natural excessive kernel on X and let $t \in \mathscr{E}_{\mathscr{U}}$ be such that $t \prec s$ and carr $t \cap X = \emptyset$. From $V_s(1_{\text{carr } t}) = 0$ it follows 0 = $\lambda \{s \land B^{G \cap X} s \mid G \text{ open }, G \supset \text{carr } t\}$. Since for each set $G, G \supset \text{carr } t$, we have $t = t \land B^{G \cap X} t \prec s \land B^{G \cap X} s$, we get t = 0. Hence $s \in \mathscr{P}_{\mathscr{U}}(X)$. Conversely, if $s \in \mathscr{P}_{\mathscr{U}}(X)$ and K is a compact subset of $Y \setminus X$ then carr $V_s(1_K) \subset K$ and $V_s(1_K) \prec s$. Therefore $V_s(1_K) = 0$ and consequently V_s is a natural excessive kernel on X.

Proposition 3.5. Let V be a natural excessive kernel on X. Then the following assertions are equivalent.

i) There exists $f_o \in \mathscr{F}(X)$, $0 < f_o \leq 1$, such that $V f_o$ is quasi bounded.

ii) If $f \in \mathscr{F}(X)$ is such that $Vf \in \mathscr{E}_{\mathscr{U}}$ then Vf is quasi bounded.

iii) There exists a sequence (s_n) of quasi bounded \mathcal{U} -excessive functions such that $V = \sum V_{s_n}$.

Definition. A natural excessive kernel V on X is called **quasi bounded excessive kernel** if it satisfies one of the equivalent conditions from Proposition 3.5. Note that every proper natural excessive kernel is a quasi bounded excessive kernel.

Proposition 3.6. The following assertions are equivalent for a natural excessive kernel V on X.

i) There exists $f_o \in \mathcal{F}(X)$, $0 < f_o \leq 1$, such that $V f_o$ is a regular \mathcal{U} -excessive function.

ii) For every $f \in \mathscr{F}(X)$ such that $Vf \in \mathscr{E}_{\mathscr{U}}$ it follows that Vf is regular. iii) There exists a sequence (s_n) of regular \mathscr{U} -excessive functions such that $V = \sum_n V_{s_n}$.

Definition. A natural excessive kernel V on X is called **regular excessive kernel** *if it satisfies one of the equivalent conditions from Proposition 3.6.*

Recall that a kernel V on X is termed **subordinated to** $\mathscr{E}_{\mathscr{U}}$ if for each $s \in \mathscr{E}_{\mathscr{U}}$ and $f, g \in \mathscr{F}(X)$ we have $Vf \leq Vg + s$ whenever $Vf \leq Vg + s$ on the set [f > 0].

Theorem 3.7. Let V be a natural excessive kernel on X. Then V is subordinated to $\mathscr{E}_{\mathscr{U}}$ if and only if it is a regular excessive kernel. Particulary $\mathscr{P}^{f}_{\mathscr{U}}(X)$ coincides with the set of all regular \mathscr{U} -excessive functions if and only if X is nearly saturated.

Proof. Let $f_o \in \mathscr{F}(X)$, $0 < f_o \leq 1$, be such that $Vf_o \in \mathscr{E}_{\mathscr{U}}$. If V is regular then Vf_o is regular and therefore (cf. [7]) there exists a natural excessive kernel W on X such that $W1 = Vf_o$ and such that W is subordinated to $\mathscr{E}_{\mathscr{U}}$. From the uniqueness of the natural excessive kernel W on X with $W1 \in \mathscr{P}_{\mathscr{U}}(X)$ we get $W = f_o \cdot V$ and consequently V is also subordinated to $\mathscr{E}_{\mathscr{U}}$. Conversely, suppose that V is subordinated to $\mathscr{E}_{\mathscr{U}}$. If $(s_n) \subset \mathscr{E}_{\mathscr{U}}, s_n \nearrow Vf_o$ and $M_n := [\varepsilon + s_n > Vf_o] \cap [Vf_o < \infty]$, then $V(f_o \mathbf{1}_{M_n}) \nearrow Vf_o$ and $R(Vf_o - s_n) \leq \varepsilon + V(f_o \mathbf{1}_{X \setminus M_n})$. Consequently we get $\bigwedge_n R(Vf_o - s_n) = 0$. If $s \in \mathscr{P}_{\mathscr{U}}^f(X)$ then the natural excessive kernel $V_s : \mathscr{F}(X) \longrightarrow \mathscr{F}(X)$ is subordinated to $\mathscr{E}_{\mathscr{U}}$ and therefore $s = V_s \mathbf{1}$ is regular.

Remark. Every regular excessive kernel is proper.

Lemma 3.8. Let $s \in \mathcal{P}_{\mathcal{U}}(Y)$, $t \in \mathscr{E}_{\mathcal{U}}$ and (s_n) be a sequence in $\mathcal{P}_{\mathcal{U}}(Y)$ with $s_n \leq t$ for all n, such that $s_n \longrightarrow s$. Then for each positive lower semicontinous function f on Y we have $V_s f(x) \leq \liminf_{n \to \infty} V_{s_n} f(x)$ in every point $x \in X$ with $t(x) < \infty$.

Proof. We take a compact subset *K* of *Y*, an open neighbourhood *G* of *K* and we show that $V_s(\mathbf{1}_K)(x) \leq \liminf_{n \to \infty} V_{s_n}(\mathbf{1}_G)(x)$ for all $x \in [t < \infty]$. If *x* is such a point then the set $\{s_n \mid n \in \mathbb{N}\}$ is relatively weakly compact in $S_{\varepsilon_x}^f$. Recall that (see [8]

and [13]) if θ is a finite measure on X then S_{θ}^{f} denotes the set of all θ -supermedian functionals which are finite on θ and \mathcal{M}_{θ}^{f} is the set of all positive mesures μ on Xsuch that $\mu \circ U \leq \alpha \theta \circ U$ for a suitable positive number α . If $F \in S_{\theta}^{f}$ then, arguing as in the proof of Theorem 10 in [13], it follows that the set $\{G \in S_{\theta}^{f} / G \leq F\}$ is sequentially compact with respect to the weak topology $\sigma(S_{\theta}^{f}, \mathcal{M}_{\theta}^{f})$. Hence there exists a subsequence (s_{k_n}) of (s_n) such that $(V_{s_{k_n}}(\mathbf{1}_G))$ and $(V_{s_{k_n}}(\mathbf{1}_{Y\setminus G}))$ are weakly convergent to t' and respectively t'' and

$$\liminf_{n\to\infty} V_{s_n}(\mathbf{1}_G)(x) = \lim_{n\to\infty} V_{s_{k_n}}(\mathbf{1}_G)(x) \ .$$

From $V_{s_{k_n}}(1_G) + V_{s_{k_n}}(1_{Y\setminus G}) = V_{s_{k_n}} 1 = s_{k_n}$ we get $t' + t'' = s \varepsilon_x$ -q.e. Let us denote by Γ an open subset of Y with $K \cap \overline{\Gamma} = \emptyset$ and $\Gamma \subset \overline{Y \setminus G}$. Since $B^{\Gamma \cap X} V_{s_{k_n}}(1_{Y\setminus G}) = V_{s_{k_n}}(1_{Y\setminus G})$ it follows that $B^{\Gamma \cap X} t'' = t'' \varepsilon_x$ -q.e. Hence $V_s(1_K) \prec t' + B^{\Gamma \cap X} t'' \varepsilon_x$ -q.e. Therefore, by [7] and from carr $u \subset K \cap \overline{\Gamma} = \emptyset$ where $u := V_s(1_K) \land B^{\Gamma \cap X} t'' \prec s$, we obtain $V_s(1_K) \prec t' \varepsilon_x$ -q.e. and consequently $V_s(1_K)(x) \le \liminf_{n \to \infty} V_{s_n}(1_G)(x)$.

Since for each open subset G of Y we have

 $V_s(\mathbf{1}_G)(x) = \sup\{V_s(\mathbf{1}_K)(x) \mid K \subset G, K \text{ compact}\}\$ we deduce that $V_s(\mathbf{1}_G)(x) \leq \liminf_{n \to \infty} V_{s_n}(\mathbf{1}_G)(x)$. If f is a positive lower semicontinuous function on Y and $x \in [t < \infty]$ then, using Fatou Lemma we conclude that

$$V_s f(x) = \int_0^\infty V_s(\mathbf{1}_{[f>\alpha]})(x) d\alpha \le \liminf_{n \to \infty} \int_0^\infty V_{s_n}(\mathbf{1}_{[f>\alpha]})(x) d\alpha$$
$$= \liminf_{n \to \infty} V_{s_n} f(x) .$$

Theorem 3.9. Let $s \in \mathscr{P}_{\mathscr{U}}(X)$, $t \in \mathscr{E}_{\mathscr{U}}$ and (s_n) be a sequence in $\mathscr{P}_{\mathscr{U}}(X)$ such that $s_n \leq t$ for all n and $s_n \longrightarrow s$. Then for each positive, bounded continuous function f on X and all $x \in X$ with $t(x) < \infty$ we have $V_s f(x) = \lim_{n \to \infty} V_{s_n} f(x)$.

Proof. Obviously we may suppose that $f \le 1$. We denote by \overline{f} the lower semicontinuous extension of f to Y. Since $V_s(\mathbf{1}_{Y\setminus X}) = 0$, $V_{s_n}(\mathbf{1}_{Y\setminus X}) = 0$, by Lemma 3.8 we have

$$V_s f(x) = V_s \overline{f}(x) \le \liminf_{n \to \infty} V_{s_n} \overline{f}(x) = \liminf_{n \to \infty} V_{s_n} f(x)$$

for all $x \in [t < \infty]$. We have also $V_s(1 - f)(x) \le \liminf_{n \to \infty} V_{s_n}(1 - f)(x)$. From $V_s f + V_s(1 - f) = V_s 1 = s$, $V_{s_n} f + V_{s_n}(1 - f) = V_{s_n} 1 = s_n$ we conclude that $V_s f(x) = \lim_{n \to \infty} V_{s_n} f(x)$ in all point $x \in [t < \infty]$, completing the proof.

Corollary 3.10. For all $s \in \mathcal{P}_{\mathcal{U}}(X)$, every sequence (g_n) of positive, bounded \mathcal{B} -measurable functions on X such that $Ug_n \nearrow s$ and each positive bounded real continuous function f on X we have $V_s f(x) = \lim_{n \to \infty} U(fg_n)(x)$ in all point $x \in X$ with $s(x) < \infty$.

Let \mathscr{T} be a topology on X such that (X, \mathscr{T}) is a Lusin topological space having \mathscr{B} as its σ -algebra of Borel sets. Let further ξ be a \mathscr{U} -excessive measure on X and $p_o \in Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi), p_o > 0$. A numerical function f on X is called ξ -**quasi** continuous (with respect to \mathscr{T} and $\mathscr{E}_{\mathscr{U}}$) if there exists a decreasing sequence (G_n) of \mathscr{T} -open subsets of X such that $f|_{X \setminus G_n}$ is \mathscr{T} -continuous for all n and such that $\inf_n B^{G_n} p_o = 0 \xi$ -a.e.

Remark. a) The ξ -quasi continuity does not depend on p_o . Indeed, if $q_o \in Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi), q_o > 0$, then it is sufficient to show that $\inf_n B^{G_n} q_o = 0 \xi$ -a.e. for each sequence (G_n) as above. Since q_o is ξ -quasi bounded we may find a sequence $(q_n)_{n\geq 1} \subset \mathscr{E}_{\mathscr{U}}$ such that $q_o = \sum_{n\geq 1} q_n \xi$ -q.e. and $q_n \leq p_o$. For all $k \in \mathbb{N}$ we get $B^{G_n} q_o \leq k B^{G_n} p_o + \sum_{n\geq 1} q_n \xi$ -a.e. and consequently $\inf_n B^{G_n} q_o \leq \sum_{n\geq 1} q_n$,

$$B^{G_n}q_o \le kB^{G_n}p_o + \sum_{n\ge k+1} q_n \xi$$
-a.e. and consequently $\inf_n B^{G_n}q_o \le \sum_{n\ge k+1} q_n$
 $\inf_n B^{G_n}q_o = 0 \xi$ -a.e.

b) If θ is a finite positive measure on X with $\theta(p_o) < \infty$ and such that the ξ -polar sets coincide with the sets which are θ -polar and θ -negligible (always such a measure exists), then an increasing sequence (G_n) of \mathcal{T} -open sets verifies the condition $\inf_n B^{G_n} p_o = 0$ ξ -a.e. if and only if $\inf_n c_{\theta}^{p_o}(G_n) = 0$ where $c_{\theta}^{p_o}$ is the 'capacity' on X given by $c_{\theta}^{p_o}(M) := \theta(R^M p_o)$ for all $M \in \mathcal{B}$.

c) In many cases, in the definition of ξ -quasi continuity, the constant function 1 is prefered as p_o even if it is not ξ -quasi bounded. The reason for is the following: If p_o is finite and \mathcal{T} -continuous and \mathcal{U}' is the resolvent of kernels on (X, \mathcal{B}) having the initial kernel U/p_o then $\mathscr{E}_{\mathcal{U}'} = \mathscr{E}_{\mathcal{U}}/p_o$ and $Exc_{\mathcal{U}'} = Exc_{\mathcal{U}}$. Since $p_o \in Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi)$ it follows that $1 \in Q_{bd}(\mathscr{E}_{\mathcal{U}'}, \xi)$. A numerical function f on X will be ξ -quasi continuous with respect to \mathcal{T} and $\mathscr{E}_{\mathcal{U}'}$.

Proposition 3.11. Let \mathcal{T} be a topology on X as above. We suppose in addition that:

- α) for each positive \mathscr{B} -measurable function f on X, Uf is ξ -quasi continuous with respect to \mathscr{T} and $\mathscr{E}_{\mathscr{U}}$, provided that $Uf \in \mathscr{E}_{\mathscr{U}}$;
- β) there exists an increasing sequence (K_n) of \mathcal{T} -compact subsets of X such that $\inf_n B^{X \setminus K_n} p_o = 0 \xi$ -a.e.

Then the ξ -quasi continuity with respect to \mathcal{T} and with respect to every Ray topology on X generated by a sequence $(Uf_n) \subset \mathscr{E}_{\mathscr{U}}$ are the same. Moreover for every such a Ray topology \mathcal{T}_o on X, the sequence (K_n) from condition β) may be chosen such that $\mathcal{T}_o|_{K_n} = \mathcal{T}|_{K_n}$ for all n.

Proof. Let $(Uf_n) \subset \mathscr{E}_{\mathscr{U}}$ (with \mathscr{B} -measurable $f_n, 0 \leq f_n \leq 1$) be a sequence which generates the topology \mathscr{T}_o . By hypothesis Uf_n is ξ -quasi continuous with respect to \mathscr{T} and therefore there exists an increasing sequence (L_n) of \mathscr{T} -compact subsets of X with $L_n \subset K_n$, inf $B^{X \setminus L_n} p_o = 0$ and such that $Uf_m|_{L_n}$ is \mathscr{T} -continuous for all m. We get $\mathscr{T}_o|_{L_n} \subset \mathscr{T}|_{L_n}$ and consequently $\mathscr{T}_o|_{L_n} = \mathscr{T}|_{L_n}$. Note that if (G_n)

is a decreasing sequence of either \mathcal{T} -open or \mathcal{T}_o -open sets then $(G_n \cup (X \setminus L_n))$ is a decreasing sequence in \mathcal{T} and \mathcal{T}_o . In addition we have $\inf_n B^{G_n} p_o = 0$ if and only if $\inf_n B^{G_n \cup (X \setminus L_n)} p_o = 0$. From the above considerations it is easy to see that the ξ -quasi continuity with respect to \mathcal{T} and \mathcal{T}_o are the same, completing the proof.

Corollary 3.12. Suppose that \mathcal{U} is the resolvent of a Borel right process on (X, \mathcal{T}) . If the topology \mathcal{T} satisfies the above two conditions α) and β) then the process is special ξ -standard; see [20]. (For the situation when the converse holds see [21] and [22]).

In the sequel, the topology \mathscr{T} on X will be a Ray topology and we say simply ' ξ -quasi continuous' instead of ' ξ -quasi continuous with respect to \mathscr{T} and $\mathscr{E}_{\mathscr{U}}$ '.

Note that each regular \mathscr{U} -excessive function is ξ -quasi continuous for all $\xi \in Exc_{\mathscr{U}}$ (see [8]). Particularly, if f is a positive \mathscr{B} -measurable function on X then Uf is ξ -quasi continuous whenever it is finite ξ -a.e.

Theorem 3.13. Let $s \in \mathscr{P}_{\mathscr{U}}(X)$, (s_n) be a sequence in $\mathscr{P}_{\mathscr{U}}(X)$ and $t \in \mathscr{E}_{\mathscr{U}}$ be a ξ -quasi bounded excessive function such that $s_n \leq t$ for all n and $s_n \longrightarrow s$. Then for every positive bounded ξ -quasi continuous function f on X we have

$$V_s f = \lim_{n \to \infty} V_{s_n} f \quad \xi - q.e.$$

Proof. Suppose that $f \leq 1$. Let (G_n) be a decreasing sequence of open subsets of X such that $f|_{X\setminus G_n}$ is continuous and such that $\inf_n B^{G_n} p_o = 0 \xi$ -q.e., where p_o is ξ -quasi bounded, $p_o > 0$. If we denote by f_n a positive continuous extension of $f|_{X\setminus G_n}$ to X such that $f_n \leq 1$ then, by Theorem 3.9 we have $V_s f_n = \lim_{m \to \infty} V_{s_m} f_n$ on $[t < \infty]$. Also

$$\begin{aligned} |V_s f - V_s f_n| &\le 2V_s (\mathbf{1}_{G_n}) \le 2B^{G_n} s \le 2B^{G_n} t, \\ |V_{s_m} f - V_{s_m} f_n| &\le 2V_{s_m} (\mathbf{1}_{G_n}) \le 2B^{G_n} t. \end{aligned}$$

Since $\inf_{n} B^{G_n} p_o = 0$ ξ -q.e. and t is (p_o, ξ) -quasi bounded we deduce that $\inf_{n} B^{G_n} t = 0$ ξ -q.e. and therefore $V_s f = \lim_{n \to \infty} V_{s_n} f \xi$ -q.e.

4. Revuz measures

In this section we fix a \mathscr{U} -excessive measure ξ .

Definition. Let V be a natural excessive kernel on X. The positive measure on X defined by

$$\nu_V^{\xi}(M) := L(\xi, V(\mathbf{1}_M)), \quad M \in \mathscr{B}$$

is called the **Revuz measure** of V (with respect to ξ). If $s \in \mathscr{P}_{\mathscr{U}}(X)$ then the Revuz measure $v_{V_s}^{\xi}$ is called the **Revuz measure** of s and will be denoted by v_s^{ξ} .

Remark. a) For each sequence (V_n) of natural excessive kernels on X such that $\sum_n V_n$ is a natural excessive kernel we have $v_{\sum_n V_n}^{\xi} = \sum_n v_{V_n}^{\xi}$.

b) If *V* is a natural excessive kernel on *X* and $f \in \mathscr{F}(X)$ is finite then $v_{fV}^{\xi} = f \cdot v_V^{\xi}$. c) If *V* is a natural excessive kernel on *X* and there exists $f_o \in \mathscr{F}(X), 0 < f_o \leq 1$, with $Vf_o \in \mathscr{P}_{\mathscr{U}}(X)$ then $v_V^{\xi} = \frac{1}{f_o} \cdot v_{Vf_o}^{\xi}$.

Proposition 4.1. If $s, t \in \mathcal{P}_{\mathcal{U}}(X)$ then $s = t \xi$ -q.e. if and only if $v_s^{\eta} = v_t^{\eta}$ for all $\eta \in Exc_{\xi}$. Moreover, if (s_n) and (t_n) are two sequences in $\mathcal{P}_{\mathcal{U}}(X)$ such that $\sum_n s_n \in \mathscr{E}_{\mathcal{U}}^{\xi}$ and $\sum_n s_n = \sum_n t_n \xi$ -q.e. then we have $\sum_n v_{s_n}^{\xi} = \sum_n v_{t_n}^{\xi}$.

Proof. We have $s = s \ t + s', t = s \ t + t'$, where $s', t' \in \mathscr{P}_{\mathscr{U}}(X)$ and s' = t' = 0 ξ -q.e. Since $v_{s'}^{\xi}(X) = L(\xi, s') = 0$ and analogously $v_{t'}^{\xi} = 0$, we get $v_s^{\xi} = v_{s \ t}^{\xi} + v_{s'}^{\xi} = v_{s \ t}^{\xi}$. From $\sum_n s_n = \sum_n t_n \ \xi$ -q.e. it follows that there exists a sequence (u_n) in $\mathscr{E}_{\mathscr{U}}^{\xi}$ such that $u_n = 0 \ \xi$ -q.e. and $\sum_{n \le k} s_n \prec \sum_n t_n + u_k$. Hence there exists a sequence (t'_n) in $\mathscr{P}_{\mathscr{U}}(X)$ such that $t'_n \prec t_n$ and a sequence $(u'_n) \subset \mathscr{E}_{\mathscr{U}} \cap \mathscr{P}_{\mathscr{U}}(X), u'_n = 0$ ξ -q.e. with $\sum_{n \le k} s_n = \sum_n t'_n + u'_k$. Therefore $\sum_{n \le k} v_{s_n}^{\xi} = v_{\sum_{n \le k}}^{\xi} s_n = \sum_n v_{t'_n}^{\xi} \le \sum_n v_{t_n}^{\xi}$.

Definition. We denote by $\mathscr{P}_{\mathscr{U},\xi}(X)$ the set of all $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ for which there exists a sequence (s_n) in $\mathscr{P}_{\mathscr{U}}(X)$ such that $s = \sum_n s_n \xi - q.e.$

By Proposition 4.1, for each $s \in \mathscr{P}_{\mathscr{U},\xi}(X)$ the measure $v_s^{\xi} := \sum_n v_{s_n}^{\xi}$ on X, where $s = \sum_n s_n \xi$ -q.e., $s_n \in \mathscr{P}_{\mathscr{U}}(X)$, is well defined and called the *Revuz measure* of s.

Remark. a) The set $\mathscr{P}_{\mathscr{U},\xi}(X)$ is a σ -band in $\mathscr{E}_{\mathscr{U}}^{\xi}$ and for every sequence (s_n) in $\mathscr{P}_{\mathscr{U},\xi}(X)$ such that $\sum_{n} s_n =: s \in \mathscr{P}_{\mathscr{U},\xi}(X)$ we have $v_s^{\xi} = \sum_{n} v_{s_n}^{\xi}$. b) If $\eta_1, \eta_2 \in Exc_{\xi}, s \in \mathscr{P}_{\mathscr{U},\xi}(X)$ and $\eta_1 \leq \eta_2$ (resp. $\eta_1 \ll \eta_2$) then $v_s^{\eta_1} \leq v_s^{\eta_2}$ (resp. $v_s^{\eta_1} \ll v_s^{\eta_2}$). c) For each $s \in \mathscr{P}_{\mathscr{U},\xi}(X)$ there exists $\eta \in Exc_{\xi}$ with $\eta \ll \xi, \xi \ll \eta$, such that v_s^{η} is finite . d) If $\eta_n \nearrow \eta$ in Exc_{ξ} then $v_s^{\eta_n} \nearrow v_s^{\eta}$. Particularly the Revuz measure v_s^{ξ} of each

 $s \in \mathscr{P}_{\mathcal{U},\xi}(X)$ is *s*-finite (i.e. a countable sum of finite measures).

Definition. A function $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ is called ξ -**potential** on X if for each increasing sequence (G_n) of Ray open subsets of X such that $\bigcup_n G_n = X$ we have

$$\inf_n B^{X \setminus G_n} s = 0 \, \xi - a.e.$$

It is easy to see that the set of all ξ -potentials on X is a σ -band in $\mathscr{E}^{\xi}_{\mathscr{U}}$ which is solid in $\mathscr{E}^{\xi}_{\mathscr{U}}$ with respect to the pointwise order relation.

Proposition 4.2. Every $s \in \mathcal{P}_{\mathcal{U}}(Y)$ dominated by $a \xi$ -potential belongs to $\mathcal{P}_{\mathcal{U},\xi}(X)$. Particularly, if there exists a ξ -potential on X which is strictly positive then $Q_{bd}(\mathscr{E}_{\mathcal{U}},\xi) \subset \mathcal{P}_{\mathcal{U},\xi}(X)$ and $\mathcal{P}_{\mathcal{U},\xi}(X)$ is solid in $\mathscr{E}_{\mathcal{U}}^{\xi}$ with respect to the pointwise order relation.

Proof. If V_s denotes the natural excessive kernel associated with *s* then it is sufficient to show that $V_s(\mathbf{1}_{Y\setminus X}) = 0$ ξ -q.e. Let *K* be a compact subset of $Y \setminus X$ and (F_n) be a decreasing sequence of closed neighbourhoods of *K* such that $K = \bigcap F_n$.

Since by hypothesis *s* is a ξ -potential on *X* and $X \setminus F_n \nearrow X$ we get $\inf_n B^{F_n \cap X} s = 0$

 ξ -q.e. From $V_s(\mathbf{1}_K) \prec B^{\overset{\circ}{\mathcal{F}}_n \cap X}s$ for all n, we conclude that $V_s(\mathbf{1}_K) = 0 \xi$ -q.e. Note that if $s \in \mathscr{E}_{\mathscr{U}}^{\xi}$ then there exist $s_o \in Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$ and $s_1 \in \mathscr{E}_{\mathscr{U}}^{\xi}$ such that $s = s_o + s_1$ ξ -q.e. and $\widetilde{s_1}$ is subtractible in $E^{\xi}(\mathscr{E}_{\mathscr{U}})$ (see [6]). If $s \leq t \in \mathscr{P}_{\mathscr{U},\xi}(X)$ then $\widetilde{s_1} \prec \widetilde{t}$ and therefore $s_1 \in \mathscr{P}_{\mathscr{U},\xi}(X)$.

Remark. If there exists a strictly positive ξ -potential on X then it is easy to see that the set $X_1 \setminus X$ is ξ -polar, where X_1 denotes the saturation of X.

Theorem 4.3. The following assertions hold.

i) A subset $M \in \mathscr{B}$ will be ξ -semipolar if and only if $v_s^{\xi}(M) = 0$ for all $s \in \mathscr{P}_{\mathscr{U},\xi}(X) \cap \mathscr{E}_{\mathscr{U}}^{\xi,r}$ (or only for all $s \in \mathscr{P}_{\mathscr{U}}(X) \cap \mathscr{E}_{\mathscr{U}}^{r}$).

ii) The Revuz measure v_s^{ξ} of each $s \in \mathscr{P}_{\mathcal{U},\xi}(X) \cap \mathscr{E}_{\mathcal{U}}^{\xi,r}$ is σ -finite. Moreover there exists an increasing sequence (G_n) of finely open \mathscr{B} -measurable subsets of X such that $v_s^{\xi}(G_n) < \infty$ and $R^{X \setminus G_n} p \searrow 0$ on $[s < \infty]$ (and therefore $\inf_n R^{X \setminus G_n} p = 0 \xi$ -q.e.) for all $p \in Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi)$.

iii) For every finite measure v on X, charging no ξ -semipolar set there exists a ξ -regular function $s \in \mathscr{P}_{\mathscr{U},\xi}(X)$ such that $v = v_s^{\xi}$. If $s, t \in \mathscr{P}_{\mathscr{U},\xi}(X) \cap \mathscr{E}_{\mathscr{U}}^{\xi,r}$ and $v_s^{\xi} = v_t^{\xi}$ then $s = t \xi$ -q.e.

Proof. i) Let $s \in \mathscr{P}_{\mathscr{U}}(X) \cap \mathscr{E}_{\mathscr{U}}^{r}$ and let $M \in \mathscr{B}$ be a ξ -semipolar set. Since by Theorem 3.7 the kernel V_{s} is subordinated to $\mathscr{E}_{\mathscr{U}}$, it follows that (cf. [7]) $V_{s}(\mathbf{1}_{M}) = 0$ ξ -q.e. and therefore $v_{s}^{\xi}(M) = 0$. Conversely, suppose that $M \in \mathscr{B}$ is such that $v_{s}^{\xi}(M) = 0$ for all $s \in \mathscr{P}_{\mathscr{U}}(X) \cap \mathscr{E}_{\mathscr{U}}^{r}$. If M is not ξ -semipolar then by [7] there exists $s \in \mathscr{E}_{\mathscr{U}}^{r}$ with carr $fs \subset M$ and $\xi(s) \neq 0$. Hence $s \in \mathscr{P}_{\mathscr{U}}(X) \cap \mathscr{E}_{\mathscr{U}}^{r}$ and we have $V_{s}(\mathbf{1}_{M}) = s$. Therefore $v_{s}^{\xi}(M) = L(\xi, s) = 0$ which is a contradiction.

ii) Let $s \in \mathscr{P}_{\mathcal{U},\xi}(X) \cap \mathscr{E}_{\mathcal{U}}^{\xi,r}$ and let $f_o \in \mathscr{F}(X), 0 < f_o \leq 1$ be such that Uf_o is bounded and $\xi(f_o) < \infty$. If we put $G_n = [s < nUf_o]$, since $s \in Q_{bd}(\mathscr{E}_{\mathcal{U}},\xi)$ we get $\bigwedge_n R(s - nUf_o) = 0$ ξ -q.e. Obviously G_n is finely open and we have $V(1, \varepsilon) \leq nUf_o = 0$ $\xi = 0$. We have also $R^{X \setminus G_n} Uf_o \leq 1$

 $V_s(\mathbf{1}_{G_n}) \leq nUf_o \text{ i.e. } \nu_s^{\xi}(G_n) \leq L(\xi, nUf_o) < \infty.$ We have also $R^{X \setminus G_n} Uf_o \leq \frac{1}{n}s$ for all n and consequently $\inf_n R^{X \setminus G_n} Uf_o = 0$ on $[s < \infty]$. Obviously the set $X \setminus \bigcup_n G_n$ is ξ -polar and ν_s^{ξ} -negligible and therefore the measure ν_s^{ξ} is σ -finite.

iii) Let ν be a finite measure on X charging no ξ -semipolar set. The existence of a ξ -regular function $s \in \mathcal{P}_{\mathcal{U},\xi}(X)$ such that $\nu = \nu_s^{\xi}$ follows from [2], Théorème 3.4 (1), and from the fact that the potential operator associated with a continuous additive functional is a regular excessive kernel. Note in addition that each \mathcal{U} -excessive function is equal ξ - a.e. with a \mathcal{B} -measurable \mathcal{U} -excessive function.

Let now V_1 , V_2 be two regular excessive kernels on X having the same Revuz measure. We show that for all $f \in \mathscr{F}(X)$ we have $V_1 f = V_2 f \xi$ -q.e. Let $f_o \in \mathscr{F}(X), 0 < f_o \leq 1$ be such that $V_1 f_o, V_2 f_o \in \mathscr{E}_{\mathscr{U}}$. Because V_1 and V_2 satisfy the complete maximum principle we may suppose that $V_1 f_o$ and $V_2 f_o$ are bounded functions. We define $u = V_1 f_o + V_2 f_o$ and let $W = V_u$. Since W is the initial kernel of a submarkovian resolvent \mathscr{W} on X such that each \mathscr{U} -excessive function is \mathscr{W} -supermedian, we deduce that there exists $f_1, f_2 \in \mathscr{F}(X), 0 \leq f_1, f_2 \leq 1$, such that $V_1 f_o = W f_1$ and $V_2 f_o = W f_2$. Consequently we get $f_1 \cdot W = f_0 \cdot V_1$ and $f_2 \cdot W = f_0 \cdot V_2$. If we set $g_1 = f_1 - f_1 \wedge f_2, g_2 = f_2 - f_1 \wedge f_2$ then $v_{f_1 \mathscr{W}}^{\xi} = v_{f_2 \mathscr{W}}^{\xi}$ and $v_{g_1 \mathscr{W}}^{\xi} = v_{g_2 \mathscr{W}}^{\xi}$. Therefore, since $g_1 g_2 = 0$, we obtain $v_{g_1 \mathscr{W}}^{\xi} = v_{g_2 \mathscr{W}}^{\xi} = 0, g_1 \cdot W(1) = g_2 \cdot W(1) = 0 \xi$ -q.e. Hence $f_o \cdot V_1(f) = f_1 \cdot W(f) = f_2 \cdot W(f) = f_o \cdot V_2(f) \xi$ -q.e. for all $f \in \mathscr{F}(X)$ and we conclude that $V_1 f = V_2 f \xi$ -q.e.

Remark. a) Assertion *ii*) in Theorem 4.3 has been proved also by Revuz [25] and Fitzsimmons and Getoor [16].

b) A σ -finite measure on X charges no ξ -semipolar set if and only if it is the Revuz measure of a regular excessive kernel on X. If V, W are two regular excessive kernels on X having the same Revuz measure then for all $f \in \mathscr{F}(X)$ we have $Vf = Wf \xi$ -q.e.

c) One can prove the assertion *iii*) from Theorem 4.3 by a different analytical method, using in addition the fact that each \mathscr{U} -excessive measure dominated by ξ possesses a "finely continuous" density (cf. [14] and [15]). These techniques will be developed in a forthcoming paper.

Recall that the **hypothesis** (**B**) of Hunt holds for the Ray topology on *X* if for each Ray open set *G* and every subset *M* of *G*, $M \in \mathcal{B}$, we have $B^G B^M s = B^M s$ for all $s \in \mathscr{E}_{\mathcal{U}}$.

Theorem 4.4. The following assertions hold.

i) If $s \in \mathcal{P}_{\mathcal{U},\xi}(X)$ is ξ -quasi bounded then its Revuz measure is s-finite and charges no ξ -polar set.

ii) Suppose that the hypothesis (B) of Hunt holds for the Ray topology. If $M \in \mathscr{B}$ is such that $v_s^{\xi}(M) = 0$ for all ξ -quasi bounded $s \in \mathscr{P}_{\mathcal{U},\xi}(X)$ with $v_s^{\xi}(X) < \infty$ then M is ξ -polar.

iii) If the hypothesis (B) of Hunt holds for the Ray topology then for each finite measure v on X, charging no ξ -polar set there exists a ξ -quasi bounded function $s \in \mathscr{P}_{\mathcal{U},\xi}(X)$ such that $v = v_s^{\xi}$.

Proof. i) Let $f_o \in \mathscr{F}(X)$, $0 < f_o \leq 1$, be such that $Uf_o \leq 1$ and $\xi(f_o)$ is finite. Since s is ξ -quasi bounded there exists a sequence (s_n) in $\mathscr{E}_{\mathscr{U}}$ such that

 $s_n \leq U f_o$ and $s = \sum_n s_n \xi$ -q.e. Consequently $v_s^{\xi} = \sum_n v_{s_n}^{\xi}$ and $v_{s_n}^{\xi} = L(\xi, s_n) \leq L(\xi, U f_o) < \infty$. If K is a ξ -polar compact subset of X then

$$V_{s_n}(\mathbf{1}_K) \le \bigwedge \{ B^G s_n / G \supset K, G \text{ open } \} \le \bigwedge \{ B^G \mathbf{1} / G \supset K, G \text{ open} \} = B^K \mathbf{1}_{K}$$

and therefore $v_{s_n}^{\xi}(K) = L(\xi, V_{s_n}(\mathbf{1}_K)) \le L(\xi, B^K \mathbf{1}) = 0$. Since the measure $v_{s_n}^{\xi}$ is finite, we deduce that $v_{s_n}^{\xi}(M) = 0$ for all *n* and each ξ -polar subset *M* of *X*. We conclude that $v_s^{\xi}(M) = 0$.

ii) Let $M \in \mathscr{B}$ be such that $v_s^{\xi}(M) = 0$ for all $s \in \mathscr{P}_{\mathscr{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$ with $v_s^{\xi}(X) < \infty$. We may suppose M is Ray compact and we consider $s_o = B^M p_o$ where $p_o \in Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$, $p_0 > 0$. Obviously $s_o \in Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$ and by the hypothesis (B) of Hunt for the Ray topology we have $V_{s_o}(1_M) = s_o$. On the other hand by hypothesis $V_{s_o}(1_M) = 0 \xi$ -q.e. and therefore M is ξ -polar.

iii) Let v be a finite measure on X charging no ξ -polar set. By Corollary 2.4, v may be written in the form v = v' + v'', where v' charges no ξ -semipolar set and v'' is carried by a ξ -semipolar set $A \in \mathcal{B}$. From assertion *iii*) in Theorem 4.3 there exists a ξ -regular function $s \in \mathcal{P}_{\mathcal{U},\xi}(X)$ such that $v' = v_s^{\xi}$. Further let us denote by μ the Dellacherie mesure associated with ξ and the ξ -semipolar set A, i.e. a subset of A will be ξ -polar if and only if it is μ negligible. From the above assertions *i*) and *ii*) it follows that a \mathcal{B} -measurable set M is ξ -polar if and only if $v_s^{\xi}(M) = 0$ for all $s \in \mathcal{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi)$ with $v_s^{\xi}(X) < \infty$. By Lemma 2.5 applied on the measurable space $(A, \mathcal{B}|_A)$ for the set $\mathcal{M} = \{\mathbf{1}_A \cdot v_s^{\xi}/s \in \mathcal{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi), v_s^{\xi}(X) < \infty\}$, and for the measure μ , there exists a sequnce $(s_n) \subset \mathcal{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi)$ such that $\mu = \sum_n v_{s_n}^{\xi}$. Since the measure

sure ν'' is absolutely continuous with respect to μ there exists a second sequnce $(t_n) \subset \mathscr{P}_{\mathscr{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$ such that $\nu'' = \sum_n \nu_{t_n}^{\xi}$. If we put $t = \sum_n t_n$ then

from $L(\xi, t) = \sum_{n} v_{t_n}^{\xi}(X) < \infty$ it follows that t is finite ξ -a.e. We conclude that $t \in \mathscr{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}},\xi)$ and $v'' = v_t^{\xi}$.

Remark. a) Assertion *ii*) in Theorem 4.4 has been proved by Revuz [25] for standard processes satisfying the hypothesis (L) of Meyer.

b) By a different approach, a result similar to assertion iii) in the above theorem has been obtained by Azéma [2] under more restrictive assumptions: \mathscr{U} being the resolvent of a Hunt process, satisfying also the hypotheses (L) of Meyer, (B) of Hunt and (CMF).

c) If the hypothesis (B) of Hunt holds then a σ -finite measure on X charges no ξ -polar set if and only if it is the Revuz measure of a proper natural (and therefore quasi bounded) excessive kernel on X.

d) In fact in Theorem 4.4, instead of the hypothesis (B) of Hunt we only need the following weaker **hypothesis** (B) of Hunt with respect to the measure ξ : for

every Ray open set *G* and each subset *M* of *G*, $M \in \mathcal{B}$, we have $B^G B^M s = B^M s$ ξ -q.e. for all $s \in \mathcal{E}_{\mathcal{U}}$.

e) Using Corollary 2.4 one can show that always there exists a ξ -semipolar set $H \in \mathscr{B}$ such that the hypothesis (B) of Hunt with respect to the measure ξ holds on $X \setminus H$ (i.e. for every Ray open set *G* and each subset *M* of $G \cap (X \setminus H), M \in \mathscr{B}$, we have $B^G B^M s = B^M s \xi$ -q.e. for all $s \in \mathscr{E}_{\mathscr{U}}$). Particularly assertion *iii*) in Theorem 4.4 holds for every finite measure carried by $X \setminus H$.

In the sequel we suppose that there exists a second proper submarkovian resolvent $\widehat{\mathcal{U}} = (\widehat{U}_{\alpha})_{\alpha>0}$ on (X, \mathcal{B}) which is in duality with the given resolvent \mathcal{U} with respect to the measure ξ (i.e. $\int gU_{\alpha} f d\xi = \int f\widehat{U}_{\alpha}gd\xi$ for all $\alpha > 0$ and $f, g \in \mathcal{F}(X)$) and such that the function $\widehat{U}f$ is ξ -quasi continuous (with respect to the given Ray topology on X), for all $f \in \mathcal{F}(X)$ with $\widehat{U}f$ bounded.

Remark. In the probabilistic approach it is usually supposed that \mathcal{U} and $\widehat{\mathcal{U}}$ come from two right processes on X.

Theorem 4.5. (Revuz) For all bounded $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$ and each ξ -quasi bounded \mathscr{U} -excessive function s on $X, s \in \mathscr{P}_{\mathscr{U}}(X)$, we have

$$L(t \cdot \xi, s) = L(\xi, V_s t)$$

Proof. Obviously it is sufficient to consider $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$ of the form $t = \widehat{U}f$ where $f \in \mathscr{F}(X)$. Also we may assume that $s \in Q_{bd}(\mathscr{E}_{\mathscr{U}})$. Since $\widehat{U}f$ is supposed to be ξ -quasi continuous and $s = \lim_{n \to \infty} nU_n s = \lim_{n \to \infty} U(n(s - nU_n s))$, by Theorem 3.13 we obtain

$$L(\xi, V_s \widehat{U} f) = \lim_{n \to \infty} L(\xi, U(n(s - nU_n s)\widehat{U} f)) = \lim_{n \to \infty} \xi(n(s - nU_n s)\widehat{U} f)$$
$$= \lim_{n \to \infty} \xi(f \cdot nU_n s) = \lim_{n \to \infty} L(\widehat{U} f \cdot \xi, nU_n s) = L(\widehat{U} f \cdot \xi, s) .$$

Remark. a) Using the Revuz formula stated by Theorem 4.5, one can prove that every σ -finite measure on *X* charging no ξ -polar set is the Revuz measure of a proper natural excessive kernel on *X*, which is uniquely determined ξ -q.e. Moreover, under the above duality hypothesis, each natural excessive kernel is equal ξ -q.e. with a regular excessive kernel.

b) One can show that the above Revuz formula holds for every regular \mathcal{U} -excessive function *s*, without assuming any duality hypothesis.

Corollary 4.6. If $s \in \mathcal{P}_{\mathcal{U},\xi}(X)$ is ξ -quasi bounded and $t \in \mathscr{E}_{\widehat{\mathcal{U}}}$ then $v_s^{\xi}(t) = L(t \cdot \xi, s)$.

In the sequel we suppose in addition that the resolvent $\widehat{\mathcal{U}}$ is such that $\mathscr{E}_{\widehat{\mathcal{U}}}$ is min-stable, generates \mathscr{B} and $1 \in \mathscr{E}_{\widehat{\mathcal{U}}}$. As usual, we mark with the prefix co the potential theoretical notions related to $\mathscr{E}_{\widehat{\mathcal{U}}}$, in order to distinguish them from the similar notions related to $\mathscr{E}_{\mathscr{U}}$.

Theorem 4.7. If $s \in \mathcal{P}_{\mathcal{U},\xi}(X)$ is ξ -quasi bounded then its Revuz measure v_s^{ξ} charges no ξ -copolar set and there exists $t \in \mathscr{E}_{\widehat{\mathcal{U}}}, t > 0 \xi$ -a.e. such that $v_s^{\xi}(t) < \infty$. Moreover, for every $s_1, s_2 \in \mathcal{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}}, \xi)$ we have $s_1 \leq s_2 \xi$ -q.e. if and only if $v_{s_1}^{\xi}(t) \leq v_{s_2}^{\xi}(t)$ for all $t \in \mathscr{E}_{\widehat{\mathcal{U}}}$.

Conversely, suppose that v is a positive measure on X which charges no ξ -copolar set and there exists $t \in \mathscr{E}_{\widehat{\mathcal{H}}}, t > 0$ ξ -a.e. such that $v(t) < \infty$. If there exists a ξ -potential on X which is strictly positive, then there exists $s \in \mathscr{P}_{\mathcal{H},\xi}(X)$ which is ξ -quasi bounded such that $v = v_s^{\xi}$.

Proof. Let $s \in \mathscr{P}_{\mathscr{U}}(X) \cap Q_{bd}(\mathscr{E}_{\mathscr{U}})$ be such that $L(\xi, s) < \infty$ and let $M \in \mathscr{B}$ be a ξ -copolar set. Then there exists a decreasing sequence (t_n) in $\mathscr{E}_{\widehat{\mathscr{U}}}, t_n \leq 1$ with $t_n \geq 1$ on M and $\inf_n t_n = 0$ ξ -a.e. It follows that $v_s^{\xi}(M) \leq \inf_n v_s^{\xi}(t_n) = \inf_n L(\xi, V_s t_n) = \inf_n L(t_n \cdot \xi, s)$. Since $s \in Q_{bd}(\mathscr{E}_{\mathscr{U}})$ and $L(t_n \cdot \xi, s) < \infty$ we deduce from [6] that $\inf_n L(t_n \cdot \xi, s) = 0$. Hence for all $s \in \mathscr{P}_{\mathscr{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$ we get $v_s^{\xi}(M) = 0$.

If $s_1, s_2 \in \mathscr{P}_{\mathscr{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathscr{U}},\xi)$ then we have $s_1 \leq s_2 \xi$ -q.e. if and only if $L(t \cdot \xi, s_1) \leq L(t \cdot \xi, s_2)$ for all $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$. Therefore, by Corollary 4.6, we have $s_1 \leq s_2 \xi$ -q.e. if and only if $v_{s_1}^{\xi}(t) \leq v_{s_2}^{\xi}(t)$ for all $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$.

Let now v be a positive measure on X which charges no ξ -copolar set and such that there exists $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$, t > 0 ξ -a.e. with $v(t) < \infty$. The functional $t \mapsto v(t)$ on $\mathscr{E}_{\widehat{\mathscr{U}}}$ is additive, increasing and continuous in order from below. Hence there exists $s \in \mathscr{E}_{\widehat{\mathscr{U}}}^{\xi}$ such that $v(t) = L(t \cdot \xi, s)$ for all $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$. Let (t_n) be a decreasing sequence in $\mathscr{E}_{\widehat{\mathscr{U}}}$ such that $\inf_n t_n = 0$ ξ -a.e. and such that $\inf_n L(t_n \cdot \xi, s) < \infty$. Since the set $[\inf_n t_n > 0]$ is ξ -copolar, we deduce that $0 = v(\inf_n t_n) = \inf_n L(t_n \cdot \xi, s)$ and therefore, by [6], we get that $s \in Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$. If there exists a ξ -potential which is strictly positive, then by Proposition 4.2 it follows that $s \in \mathscr{P}_{\mathscr{U},\xi}(X)$. From $v_s^{\xi}(t) = L(t \cdot \xi, s)$ we conclude that $v_s^{\xi}(t) = v(t)$, for all $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$ and consequently $v_s^{\xi} = v$.

Remark. The last assertion of Theorem 4.7 holds without assuming that there exists a strictly positive ξ -potential on *X*.

Corollary 4.8. Suppose that the hypothesis (B) of Hunt with respect to ξ holds. Then the ξ -copolar sets are ξ -polar.

Remark. By the remark following Theorem 4.5, in Corollary 4.8 it is not necessary to suppose explicitly that the hypothesis (B) of Hunt holds.

Theorem 4.9. Let $s \in \mathcal{P}_{\mathcal{U},\xi}(X) \cap Q_{bd}(\mathscr{E}_{\mathcal{U}},\xi)$. Then s is ξ -regular if and only if its Revuz measure charges no ξ -cosemipolar subset of X.

Proof. By Theorem 4.5, for all $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$ we have $L(t \cdot \xi, s) = L(\xi, V_s t) = v_s^{\xi}(t)$. From Theorem 2.3 in [4], *s* will be ξ -regular if and only if for each decreasing sequence (t_n) in $\mathscr{E}_{\widehat{\mathscr{U}}}$ and $t \in \mathscr{E}_{\widehat{\mathscr{U}}}$ such that $\bigwedge t_n = t \xi$ -a.e. and $\inf_n L(t_n \cdot \xi, s) < \infty$ we have $\inf_{n} L(t_{n} \cdot \xi, s) = L(t \cdot \xi, s)$ or equivalently $\inf_{n} v_{s}^{\xi}(t_{n}) = v_{s}^{\xi}(t)$. If v_{s}^{ξ} charges no ξ -cosemipolar set then, since the set $[\inf_{n} t_{n} > t]$ is ξ -cosemipolar, we have $\inf_{n} v_{s}^{\xi}(t_{n}) = v_{s}^{\xi}(t)$ and consequently s is ξ -regular. Conversely, suppose that s is ξ -regular and let $M \in \mathscr{B}$ be a ξ -cosemipolar set. We have $M = M_{o} \cup \bigcup_{k \ge 1} M_{k}$ where M_{o} is ξ -copolar and M_{k} is totally cothin for all $k \ge 1$. By Theorem 4.7 we deduce that $v_{s}^{\xi}(M_{o}) = 0$ (since each ξ -regular excessive function belongs to $Q_{bd}(\mathscr{E}_{\mathscr{U}}, \xi)$). On the other hand for all $k \ge 1$ there exists a decreasing sequence (t_{n}^{k}) in $\mathscr{E}_{\widehat{\mathscr{U}}}$ such that $M_{k} \subset [\inf_{n} t_{n}^{k} > \bigwedge_{n} t_{n}^{k}]$ and such that $L(t_{1}^{k} \cdot \xi, s) < \infty$. We conclude that $v_{s}^{\xi}(M_{k}) = 0$ for all $k \ge 1$ and therefore $v_{s}^{\xi}(M) = 0$.

Corollary 4.10. The ξ -cosemipolar sets are ξ -semipolar.

Remark. By the remark following Theorem 4.5, one can show that in fact the ξ -semipolar and the ξ -cosemipolar sets coincide.

References

- Azéma, J.: Noyau potentiel associé à une fonction excessive d'un processus de Markov, Ann. Inst. Fourier, Grenoble 19, 495–526 (1969)
- Azéma, J.: Théorie générale des processus et retournement du temps, Ann. Scient. Éc. Norm. Sup. 6, 459–519 (1973)
- Beznea, L., Boboc, N.: Duality and biduality for excessive measures, Rev. Roumaine Math. Pures Appl. 39, 419–438 (1994)
- Beznea, L., Boboc, N.: Excessive functions and excessive measures: Hunt's theorem on balayages, quasi-continuity, In: Classical and Modern Potential Theory and Appl., (NATO ASI Series C 430, pp. 77–92): Kluwer 1994
- Beznea, L., Boboc, N.: On the integral representation for excessive measures, Rev. Roumaine Math. Pures Appl. 40, 725–734 (1995)
- Beznea, L., Boboc, N.: Quasi-boundedness and subtractivity: applications to excessive measures, Potential Analysis 5, 467–485 (1996)
- Beznea, L., Boboc N.: Once more about the semipolar sets and regular excessive functions, In: Potential Theory–ICPT 94, pp. 255–274. Walter de Gruyter 1996
- Beznea, L., Boboc, N.: Feyel's technic on the supermedian functionals and strongly supermedian functions, Potential Analysis 10, 347–372 (1999)
- Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory, Academic Press 1968
- Boboc, N., Bucur, Gh., Cornea, A.: Order and Convexity in Potential Theory, *H*-cones. (Lecture Notes in Math. 853): Springer 1981
- Dellacherie, C., Maisonneuve, B., Meyer, P.A.: Probabilités et Potentiel, ch. XVII– XXIV. Paris: Hermann 1992
- 12. Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, ch. XII–XVI. Paris: Hermann 1987
- Feyel, D.: Représentation des fonctionnelles surmédianes, Z. Warsch. verw. Geb. 58, 183–198 (1981)
- Feyel, D.: Potentiels adjoints et potentiels directs. In: Sém de Th. du Potentiel, No. 7 (Lecture Notes in Math. 1061, pp. 109–121): Springer 1984
- 15. Fitzsimmons, P.J.: Homogeneous random measures and a weak order for the excessive measures of a Markov process, Trans. Amer. Math. Soc. **303**, 431–478 (1987)

- Fitzsimmons, P.J., Getoor, R.K.: Smooth measures and continuous additive functionals of right Markov processes, In: Itô's Stochastic Calculus and Probability Theory, pp. 31–49.: Springer 1996
- Fitzsimmons, P.J., Getoor, R.K., Sharpe, M.J.: The Blumenthal-Getoor-McKean theorem revisited, In: Seminar on Stochastic Processes 1989, pp. 35–57. Boston: Birkhäuser 1990
- Garcia Alvarez, M.A.: Représentation des noyaux excessifs, Ann. Inst. Henri Poincaré Section B 9, 277–283 (1973)
- Getoor, R.K.: Markov Processes: Ray Processes and Right Processes, (Lecture Notes in Math. 440): Springer 1975
- Getoor, R.K., Sharpe, M.J.: Naturality, Standardness and Weak Duality for Markov Processes, Z. Warsch. verw. Geb. 67, 1–62 (1984)
- Le Jan, Y.: Quasi-continuous functions and Hunt processes, J. Math. Soc., Japan 25, 37–42 (1983)
- Lyons, T.J., Röckner, M.: A note on tightness of capacities associated with Dirichlet forms, Bull. London Math. Soc. 24, 181–184 (1992)
- Meyer, P.A.: Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier, Grenoble 12, 125–230 (1962)
- Meyer, P.A.: Note sur l'interprétation des mesures d'équilibre, In: Sém. de Prob. VII, (Lecture Notes in Math. 381, pp. 191–211): Springer 1973
- Revuz, D.: Mesures associées aux fonctionelles additives de Markov I, Trans. Amer. Math. Soc. 148, 501–531 (1970)
- 26. Sharpe, M.: General Theory of Markov Processes, Academic Press 1988
- 27. Wittmann, R.: On the existence of Shilov boundaries, Proc. Amer. Math. Soc. **89**, 62–64 (1983)