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Abstract. We consider a proper submarkovian resolvent of kernels on a Lusin measurable
space and a given excessive measureξ . With every quasi bounded excessive function we
associate an excessive kernel and the corresponding Revuz measure. Every finite measure
charging noξ–polar set is such a Revuz measure, provided the hypothesis (B) of Hunt holds.
Under a weak duality hypothesis, we prove the Revuz formula and characterize the quasi
boundedness and the regularity in terms of Revuz measures. We improve results of Azéma
[2] and Getoor and Sharpe [20] for the natural additive functionals of a Borel right process.

1. Introduction

Let U = (Uα)α>0 be a submarkovian resolvent of kernels on a Lusin measurable
space(X,B). We suppose thatU is proper and that the setEU of allB–measurable
U–excessive functions onX which are finiteU–almost everywhere contains the
positive constant functions, is min–stable and generatesB. Note that the resolvent
of a transient Borel right process verifies the above conditions.

The purpose of this paper is to give a new approach for the Revuz measures,
improving results of Getoor and Sharpe [20] and Azéma [2].

If U possesses a reference measurem then there exists aB–measurable subset
Xo of X such thatX \ Xo is semipolar and such that sufficiently many excessive
functionss may be described as theGreen potentialsof measuresνs onXo given by

νs(t) = [t, s]

wheret runs in the set of all coexcessive functions and [, ] denotes the usual duality
generated bym, between the excessive and coexcessive functions. In fact in this
case (see [10]) there exists a Green function(x, y) 7→ G(x, y) onXo×Xo such that

s =
∫

G(·, y)dνs(y) = Vs1
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whereVs is theexcessive kernelon Xo defined byVsf =
∫

G(·, y)f (y)dνs(y).

The above relation betweens andνs becomes theRevuz formula

[t, s] = [1, Vst ]

andνs is the so calledRevuz measure ofs.
If U does not possess a reference measure then for everyU–excessive measure

ξ and eachξ–natural potentials (in the sense of [20]), the Revuz measureν
ξ
s is

defined by

νξ
s (f ) = lim

t→0
t−1P ξ [

∫
(0,t ]

f (Xu−)dAu]

or equivalently (cf. [24] and [11])

(∗) νξ
s (f ) = L(ξ, Vsf )

whereVsf (x) = P x [
∫ ∞

0
f (Xu−)dAu], A = (At )t≥0 is the natural additive func-

tional whose potential function iss andL is the energy functional (see [24], [20]
and [2]). This construction demands that the process possesses left limits inX.
We remark thats will be ξ–natural potential if and only if it isξ–quasi bounded.
For each natural additive functional (having the potential functions), Vs is the
unique kernel onX with Vs1 = s, Vf beingU–excessive iff ≥ 0, and such that
BGVs(1G) = Vs(1G) for every Ray open subsetG of X (cf. [23] and [11]). Alsos
will be ξ–regular if and only if the associated additive functional is continuous or
equivalentlyBMVs(1M) = Vs(1M) for all M ∈ B.

In this paper we construct the Revuz measureν
ξ
s , without assuming the ex-

istence of the left limits for the process, using the above formula(∗) where the
excessive kernelVs is obtained directly froms, by potential theoretic techniques
on excessive functions. We show (Theorem 4.4) that ifs is ξ–quasi bounded then
ν

ξ
s charges noξ–polar set. Conversely, there exists aξ–semipolar setH such that

every finite measure onX \ H , charging noξ–polar set is the Revuz measure of a
ξ–quasi bounded excessive function. If the hypothesis (B) of Hunt holds then the
exceptional setH disappears. This is an improvement of a result of Azéma [2],
obtained under restrictive assumtions. Moreover,s will be ξ–regular if and only
if its Revuz measureνξ

s charges noξ–semipolar set ands is uniquely determined
ξ–quasi everywere byνξ

s (Theorem 4.3). Note that every finite measure onX,
charging noξ–semipolar set is of the above formνξ

s with ξ–regulars. Such type
of results have been previously obtained in [23], [2], [25], [15] and [16], in various
contexts.

Under a weak duality hypothesis similar to that of Getoor and Sharpe [20], we
are able to obtain (Theorem 4.5) the corresponding Revuz formula

L(t ·ξ, s) = L(ξ, Vst)

for each coexcessive functiont (see [25], [20] and [11]). We underline that we
do not assume thatX is sufficiently large to support the both direct and dual
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processes. Using this formula we show (Theorem 4.7 and Theorem 4.9) that an
excessive function isξ–quasi bounded (resp.ξ–regular) if and only if its Revuz
measure charges noξ–copolar set (resp.ξ–cosemipolar set). Particularly we get
that theξ–cosemipolar sets areξ–semipolar and if the hypothesis (B) of Hunt holds,
then theξ–copolar sets areξ–polar; compare with [20].

2. Preliminaries

Throughout the paper,U will be a resolvent as in Introduction.
Recall that the setX is calledsemisaturatedwith respect toU if eachU–

excessive measure dominated by a potential is also a potential. This property is
equivalent with the existence of a Borel right process onX havingU as associated
resolvent. Thefine topology is the topology onX generated byEU. We denote by
ExcU the set of allU–excessive measures onX (see e.g. [12]). Also, ifξ ∈ ExcU

then we denote byEξ

U the set of allB–measurableU–excessive functions which
are finiteξ–almost everywhere (ξ–a.e.) and byExcξ the set of thoseU–excessive
measures which are absolutely continuous with respect toξ .

If M ⊂ X ands is aU–excessive function onX (i.e.s is universally measurable
andαUαs ↗ s asα ↗ ∞) then ther éduite of s on M is the functionRMs onX

defined by

RMs := inf {t/t U–excessive,s ≤ t onM} .

If moreoverM ∈ B thenRMs is universally measurable (cf. [4]) and we denote
by BMs its U–excessive regularization.

Let θ be a measure onX. We say that a setM ∈ B is θ–polar if θ(BM1) = 0.
An arbitrary subset ofX is calledθ–polar if it is a subset of aB–measurableθ–polar
set. A property is said to holdθ–quasi everywhere(θ–q.e.) if the set where it does
not hold isθ–polar andθ–negligible.

Recall that a setM ∈ B is thin at a pointx ∈ X if there existss ∈ EU such
thatBMs(x) < s(x). An arbitrary subset ofX is called thin atx if it is a subset of
aB–measurable set which is thin atx. A subset ofX is said to betotally thin if it
is thin at each point ofX. A semipolarset is a countable union of totally thin sets.
A setA ∈ B is termedθ–semipolar if it is of the form A = Ao ∪ A1 whereAo,
A1 ∈ B with Ao θ–polar andA1 semipolar.

Recall now some considerations concerning the Ray compactification. Since
the initial kernelU of the resolventU = (Uα)α>0 is proper, there exists a bounded
submarkovian resolventV = (Vα)α>0 on X such thatEU = EV. A Ray cone
will be a subconeR of the boundedU–excessive functions which is min–stable,
separable in the uniform norm, generates theσ–algebraB and moreover 1∈ R,
V ((R − R)+) ⊂ R, Vα(R) ⊂ R, α > 0. A Ray topology is the topology on
X generated by a Ray cone. We consider theRay compactification Y of X with
respect toR. Since(X,B) is a Lusin measurable space, it follows thatX is a Borel
subset ofY andB(Y )|X = B, whereB(Y ) denotes theσ–algebra of all Borel
subsets ofY .
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Let u ∈ EU, u > 0, andξ ∈ ExcU. A function s ∈ EU is called(u, ξ)–quasi
bounded if there exists a sequence(sn) in EU such thats =

∑
n

sn ξ–q.e. and

sn ≤ u ξ–q.e. for alln.
A function s ∈ EU is calledu–quasi boundedif there exists a sequence(sn)

in EU such thats =
∑
n

sn andsn ≤ u for all n. We say simplyquasi bounded

instead of 1–quasi bounded. If we denote byEξ(EU) the factor set ofEξ

U by the
equivalence relation

s ∼ t ⇐⇒ (s = t ξ–q.e.)

thenEξ(EU) becomes anH–cone with respect to the order relation

s̃ ≤ t̃ iff s ≤ t ξ–q.e.

wherẽs denotes the equivalence class ofs ∈ E
ξ

U.

From [3] and [6] it follows that a functions ∈ E
ξ

U will be (u, ξ)–quasi bounded

if and only if
∧
n

R(s − nu) = 0 ξ–q.e. or equivalently
∧
n

R(̃s − nũ) = 0. Also,

s ∈ EU will be u–quasi bounded if and only if
∧
n

R(s − nu) = 0. Note that

s ∈ EU will be (u, ξ)–quasi bounded, if and only if there existss′ ∈ EU such that
s′ = s ξ–q.e. ands′ is u–quasi bounded. Moreovers′ may be chosen specifically
dominated bys.

A function s ∈ E
ξ

U is termedξ–quasi boundedif it is (u, ξ)–quasi bounded

for all u ∈ EU, u > 0. We denote byQbd(EU, ξ) the set of alls ∈ E
ξ

U which are
ξ–quasi bounded and byQbd(EU) the set of alls ∈ EU which areu–quasi bounded
for all u ∈ EU, u > 0. From the above consideration we get

Qbd(EU) =
⋂

ξ∈ExcU

Qbd(EU, ξ) .

We remark that ifu ∈ Qbd(EU), u > 0, thenQbd(EU) coincides with the set of
all functionss ∈ EU which areu–quasi bounded. AlsoQbd(EU, ξ) coincides with
the set of alls ∈ E

ξ

U which are(u, ξ)–quasi bounded.

Remark.Suppose thatU is the resolvent of a Borel right process onX. Recall
that s ∈ EU is calledξ–natural potential (ξ is a givenU–excessive measure)
if for every increasing sequence(Tn) of stopping times withTn ↗ ζ we have
P x [s(XTn)] ↘ 0 ξ–a.e. Letfo be aB–measurable functions onX, 0 < fo ≤ 1,
such thatUfo is bounded. If we define the finely open setDn := [s < nUfo] then
the sequence of stopping times(TX\Dn) has the propertyTX\Dn ↗ ζ . On the other
hand it is easy to see that the functions will be ξ–quasi bounded if and only if

BX\Dns ↘ 0 ξ–a.e.

By straightforward calculation it follows thatUfo is ξ–natural potential for allξ .
From the above considerations we conclude thats will be ξ–natural potential if
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and only if it isξ–quasi bounded. In particular we deduce thats will be ξ–natural
potential if and only if for every increasing sequence(Dn) of B–measurable finely
open sets withTX\Dn ↗ ζ we haveBX\Dns ↘ 0 ξ–a.e. This result is a version of
Theorem 3.3 in [20].

Let ξ ∈ ExcU. A function s ∈ E
ξ

U is calledξ–regular if for every increasing

sequence(sn) in E
ξ

U with sup
n

sn ≥ s ξ–q.e. we have
∧
n

R(s − sn) = 0 ξ–q.e.

The functions ∈ EU is termedregular if it is ξ–regular for allξ ∈ ExcU. We
denote byEξ,r

U the set of allξ–regular functions fromEξ

U and byEr
U the set of all

regular functions fromEU.
Obviously everyξ–regular functions ∈ E

ξ

U belongs toQbd(EU, ξ). Particu-
larly, each regular functions ∈ EU belongs toQbd(EU).

Note that there existsu ∈ EU, u > 0 which is regular. More precisely iff is
a positiveB–measurable function onX such that 0< f ≤ 1 andUf ∈ EU then
Uf is regular.

Proposition 2.1. For all ξ ∈ ExcU and everyξ–regularU–excessive functions
there exists a sequence(sn) of regularU–excessive functions such that

∑
n

sn ≺ s

ands =
∑
n

sn ξ–q.e.(≺ denotes the specific order in theU–excessive functions.)

Proof. Firstly suppose thats ∈ E
ξ,r

U ∩ Qbd(EU, ξ). We construct inductively the
sequences(s′

n)n≥0 and(rn)n≥0 in EU as follows:

s′
0 = s, r0 = 0, rn+1 =

∧
m

R(s′
n − mUms′

n), s′
n+1 = s′

n − rn+1 .

Sincern+1 ≺ s′
n, we have indeeds′

n+1 ∈ EU ands =
∞∑

k=0

rk + s′ wheres′ :=

f{s′
n / n ∈ N} (f , g are the lattice operations with respect to the specific

order inEU). Becauses ∈ E
ξ,r

U we getrk = 0 ξ–q.e. We show thats′ is reg-

ular. This fact follows from
∧
m

R(s′ − mUms′) ≤ rk for all k and consequently∧
m

R(s′ − mUms′) = 0. By Proposition 2.1 in [7] we conclude thats′ is regular.

Let nows ∈ E
ξ,r

U be arbitrary andu ∈ Qbd(EU, ξ), u > 0.
If for all n ≥ 0 we setρn = R(s − s ∧nu) thenρn ≺ s and there existstn ∈ EU

such thats = tn + ρn andtn ≤ s ∧ nu. Sinces is ξ–regular it follows thattn is also
ξ–regular and therefore, by the above considerations there existst ′n ∈ Er

U such that
t ′n ≺ tn andtn = t ′n ξ–q.e. We puts0 = t ′0 andsn = g{t ′k/0 ≤ k ≤ n} − g{t ′k/0 ≤
k ≤ n − 1} for n ≥ 1. We havesn ∈ Er

U ,
∑
n

sn ≺ s and from
∧
n

ρn = 0 ξ–q.e.

we gets =
∑
n

sn ξ–q.e.
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Proposition 2.2. Suppose thatX is semisaturated with respect toU. If ξ ∈ ExcU
ands ∈ EU then the following assertions are equivalent:

i) The functions is ξ–regular.
ii ) For every sequence(µn)of positive measures onX such thatµn◦U ↘ µ◦U ,

inf
n

µn(s) < ∞ andµn charging noξ–polar set, we haveinf
n

µn(s) = µ(s).

iii ) For every increasing sequence(Dn) of finely openB–measurable subsets
ofX we haveinf

n
BX\Dns(x) = µx(s) ξ–a.e. (inx) where for allx ∈ X, µx denotes

the measure onX such thatεx ◦ BX\DnU ↘ µx ◦ U.

iv) For each potentialθ ◦ U ∈ ExcU such thatθ ◦ U � ξ , ξ � θ ◦ U ,
θ(s) < ∞ and for every increasing sequence(Dn) of finely openB–measurable
subsets ofX we have

inf
n

θ(BX\Dns) = θ̃ (s)

whereθ̃ is the measure onX defined bỹθ =
∫

µxdθ(x).

Proof. The equivalencei) ⇐⇒ ii) follows from [4] and [7]. The implications
ii) H⇒ iii) andiii) H⇒ iv) are immediate.
iv) H⇒ i). Let (sn) be an increasing sequence inEU such that sup

n
sn = s ξ–a.e.

Let r :=
∧
n

R(s − sn) and for allα > 1 let Dn := X \ [α(s − sn) − r > 0]
f

,

where for a subsetM of X we have denoted byM
f

its fine closure. As in the proof
of Theorem 2.3 in [4] it follows thatBX\Dnr = r for all n. From

r(x) = BX\Dnr(x) ≤ αBX\Dn(s − sn)(x) ≤ α[BX\Dns(x) − µx(sn)]

we deduceθ(r) + αθ̃(s) ≤ inf
n

θ(BX\Dns), θ(r) ≤ 0, r = 0 ξ–q.e., completing

the proof.

Remark.Suppose thatU is the resolvent of a Borel right process. Then:
a) From the above equivalencei) ⇐⇒ ii) and Proposition 2.5 in [17] it follows
that s ∈ EU, s < ∞, will be ξ–regular if and only if there exists a continuous
additive functional whose associated potential is equals ξ–q.e.
b) The assertionsiii) andiv) in Proposition 2.2 are versions of the characteriza-
tion of the regularity in terms of hitting times (see (3.4) in [20]) instead of arbitrary
stopping times.

The following two results are essentially well known (see e.g [9], ch. VI, (3.6)).

Lemma 2.3. LetN be a set ofB–measurable subsets ofX such that if(Mn) ⊂ N

then
⋃
n

Mn ∈ N. Then for everyσ–finite measureµ on X there exists a unique

decompositionµ = µ′ + µ′′ whereµ′ is carried by a set fromN andµ′′ charges
no set fromN.
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Corollary 2.4. Let ξ be aU–excessive measure andµ be aσ–finite measure on
X. Thenµ can be written uniquely in the formµ = µ′ +µ′′ whereµ′ is carried by
a ξ–semipolar (resp.ξ–polar)B–measurable set andµ′′ charges noξ–semipolar
(resp.ξ–polar) set.

Lemma 2.5. Let M be a set of positive finite measures on(X,B) such that if
ν ∈ M thenθ ∈ M for every positive measureθ with θ ≤ ν. Let furtherµ be a
finite positive measure onX such that ifF ∈ B thenν(F ) = 0 for all ν ∈ M if and
only if µ(F) = 0. Then there exists a sequence(µn) in M such thatµ =

∑
n

µn.

Proof. We consider the setFµ of all B-measurable functionsf : X −→ [0, 1]

such that there exists a sequence(νn) in M with f · µ =
∑
n

νn. It is easy to see

that for every sequence(fn) in Fµ the function sup
n

fn belongs also toFµ. Hence

there existsfo ∈ Fµ such thatfo ≥ f µ-a.e. for allf ∈ Fµ. On the other hand
we have 0≤ fo + inf (1− fo, fo) ≤ 1, fo + inf (1− fo, fo) ∈ Fµ. Consequently
we get inf(1 − fo, fo) = 0 µ-a.e. or equivalently there exists a setF ∈ B with
fo = 1F µ-a.e. From(1X\F ·µ)∧ν = 0 for allν ∈ M it follows thatν(X\F) = 0
for everyν ∈ M and thereforeµ(X \ F) = 0 i.e.fo · µ = µ.

3. Excessive kernels

In this section we consider a fixed Ray coneR and the Ray compactificationY of
X with respect toR.

Definition. If s ∈ EU we denote bycarr s the set of all pointsy ∈ Y such that
BX\V s 6= s for each open neighbourhoodV of y.

It follows immediately thatcarr s is a closed subset ofY such that for alls, t ∈ EU

we havecarr R(s − t) ⊂ [s > t ] andcarr s ⊂ carr t whenevers ≺ t .

Definition. We say that a functions ∈ EU is of potential type onY if

t ∈ EU, t ≺ s, carr t = ∅ H⇒ t = 0 .

We denote byPU(Y ) the set of all functions which are of potential type onY .

Theorem 3.1. Every bounded functions ∈ EU is of potential type onY . The set
PU(Y ) is a convex subcone ofEU, solid inEU with respect to the specific order.
If s ∈ EU is such thats =

∑
n

sn where(sn) ⊂ EU thens ∈ PU(Y ) if and only if

sn ∈ PU(Y ) for all n, in which case we have

carr s =
⋃
n

carr sn .

Moreover for alls ∈ PU(Y ), carr s is the smallest closed subsetK of Y such that
BG∩Xs = s for every open neighbourhoodG of K.
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Proof. The fact that each boundeds ∈ EU belongs toPU(Y ) is a result of Witt-
mann (cf. [27]). The proof for the other assertions in the theorem is standard and
similar with the case whenEU is anH –cone of functions on the setX (see [10]).

Remark.Every quasi bounded function fromEU is of potential type onY .

Definition. A functions ∈ EU is calledof potential type onX if

t ∈ EU, t ≺ s, carr t ∩ X = ∅ H⇒ t = 0 .

The set of all functions of potential type onX is denoted byPU(X). Obviously
PU(X) is aσ–band inEU and we havePU(X) ⊂ PU(Y ). Also, it is easy to see
that if s ∈ PU(Y ) thens ∈ PU(X) if and only if carr t = carr t ∩ X for all t ≺ s.

Proposition 3.2. Let s ∈ PU(X). Thens ∈ Qbd(EU) if and only if s is quasi
bounded.

Proof. Suppose thats ≤ 1. We may assume also thatU((R − R)+) ⊂ R. If we
setrn := R(s − nU1) then we havern ≺ s andsn := s − rn ≤ nU1. There-
fore sn ∈ Qbd(EU). On the other handcarr rn ⊂ [s > nU1] ⊂ [1 ≥ nŨ1]
(where Ũ1 denotes the continuous extension of the functionU1 ∈ R to Y )
and s = f{rn/n ∈ N} + g{sn/n ∈ N}. Sinceg{sn/n ∈ N} ∈ Qbd(EU)

andcarr r ∩ X = ∅ wherer := f{rn/n ∈ N} ∈ PU(X) then we getr = 0
and consequentlys = g{sn/n ∈ N}.
Definition. If s ∈ EU then we denote bycarrf s the set of all pointsx ∈ X such
thatBX\V s 6= s for each finely open neighbourhoodV of x, V ∈ B.

It is easy to see thatcarrf s is finely closed and for alls, t ∈ EU we have

carrf R(s − t) ⊂ [s > t ]
f
. If s ≺ t thencarrf s ⊂ carrf t. Obviously we have

carrf s ⊂ carr s ∩ X.

We denote byPf

U(X) the set of alls ∈ EU such that

t ∈ EU, t ≺ s, carrf t = ∅ H⇒ t = 0 .

We havePf

U(X) ⊂ PU(X).
The setX is callednearly saturated with respect toU if everyU–excessive

measure onX which is a quasi continuous element fromExc (see [4]) is a potential.
Recall that an elementξ ∈ ExcU is termedquasi continuousif for each sequence
(ξn) in ExcU with ξn ↗ ξ we haveR(ξ − ξn) ↘ 0. It is known (cf. [4]) that if
ξ = µ ◦ U ∈ Pot thenξ will be quasi continuous if and only ifµ charges no
semipolar subset ofX.

Remark.a) There exists a Lusin measurable space(X1,B1) such thatX is aB1–
measurable subset ofX1 and a submarkovian resolventU′ = (U ′

α)α>0 onX1 such
thatX1 \ X is U′–negligible,U ′

αf |X =Uα(f |X) for all α > 0 and every positive
B1–measurable functionf on X1 and such that everyξ ∈ ExcU′ =ExcU with
(ξ, 1) ≤ 1 is a potential onX1 (see [5]). The setX1 is uniquely determined and
called thesaturation of X. ParticularlyX1 is semisaturated.
b) One can show thatX is nearly saturated if and only if the setX1 \X is semipolar
(with respect toU′). Consequently ifX is semisaturated then it is nearly saturated.
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Theorem 3.3. Suppose thatX is nearly saturated. Then every regularU–exces-
sive function belongs toPf

U(X). For all s ∈ P
f

U(X) the setcarrf s is the smallest

finely closed subsetF of X such thatRF s = s. The setPf

U(X) is a σ–band in

EU and for all s ∈ P
f

U(X) and all (sn) ⊂ EU such thats =
∑
n

sn we have

carrf s =
⋃
n

carrf sn

f

.

Proof. The first assertion follows from [7]. The rest of the proof is standard.
We denote byF(Y ) (resp.F(X)) the set of all positive numerical Borel mea-

surable (resp.B–measurable) functions onY (resp. onX).

Definition. A kernelV : F(Y ) −→ F(X) is callednatural excessiveif
i) Vf is U–excessive for every bounded functionf ∈ F(Y ).

ii ) There existsfo ∈ F(Y ), 0 < fo ≤ 1such thatVfo ∈ EU andBG∩XV (fo1G)

= V (fo1G) for each open subsetG of Y.

If V : F(Y ) −→ F(X) is a natural excessive kernel such thatV (1Y\X) = 0
then we say thatV is a natural excessive kernel onX. Consequently, a natural
excessive kernel onX is precisely a kernel onX, V : F(X) −→ F(X), such
that Vf is U–excessive for every bounded functionf ∈ F(X) and there exists
fo ∈ F(X), 0 < fo ≤ 1 such thatVfo ∈ EU andBGV (fo1G) = V (fo1G) for
each Ray open subsetG of X.

Remark.a) If V is a natural excessive kernel onX andg ∈ F(X) is finite then
the kernelg·V onX defined by(g·V )(f ) := V (gf ), f ∈ F(X), is also a natural
excessive kernel onX.
b) If (Vn) is a sequence of natural excessive kernels onX then

∑
n

Vn is also a

natural excessive kernel onX provided that there existsfo ∈ F(X), 0 < fo ≤ 1
such that

∑
n

Vnfo ∈ EU.

c) If U is the resolvent of a special standard process onX (see e.g. [19] or [26])
andA = (At )t≥0 is an additive functional then its potential kernelUA (UAf (x) :=
P x [

∫ ∞

0
f ◦Xt dAt ], assumed to be proper) will be a natural excessive kernel (with

respect to the Ray topology associated with the process) if and only if the disconti-
nuities ofA are disjoint from those of the process. Such a functional was termedof
class (U)by Meyer [23] andnatural by Blumenthal and Getoor [9]. IfA is general
then it was noted in [11] that the kernelU−

A onX given by

U−
A f (x) := P x [

∫ ∞

0
f ◦ Xt−dAt ]

is a natural excessive kernel provided it is proper. (ObviouslyU−
A = UA if A is nat-

ural.) Note that the natural excessive kernels have been considered also by Garcia
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Alvarez [18], in connection with the problem of characterization of the potential
kernels of the additive functionals.

Another method to obtain natural excessive kernels was given by Azéma in [1]
and essentially, it will be used in the following theorem.

Theorem 3.4. For eachs ∈ PU(Y ) there exists a unique natural excessive kernel
Vs : F(Y ) −→ F(X) such thatVs1 = s. Moreover we have

Vs(1K) = f{sfBG∩Xs / G open, G ⊃ K}
for every compact subsetK of Y . Vs is a natural excessive kernel onX if and only
if s ∈ PU(X).

Proof. For each compact subsetK of Y we putVs(1K) := f{sfBG∩Xs /G open,
G ⊃ K}. The existence ofVs(1K) follows from the fact that there exists a countable
fundamental system of open neighbourhoods ofK.

Following [1] one can show that for each two compact subsetsK1, K2 of Y we
have

Vs(1K1∪K2) + Vs(1K1∩K2) = Vs(1K1) + Vs(1K2) .

By the definition, it follows that for allx ∈ X with s(x) < ∞ and every sequence
(Kn) such thatKn ↘ K we haveVs(1Kn)(x) ↘ Vs(1K)(x). Therefore for each
x ∈ X with s(x) < ∞ there exists a measureϕx onY such thatϕx(K) = Vs(1K)(x)

for every compact subsetK of Y . Using standard arguments of monotone class, it
follows that for eachM ∈ B(Y ) there exists a unique excessive functionVs(1M) ∈
EU such thatVs(1M)(x) = ϕx(M) for all x ∈ [s < ∞]. Obviously the map
M 7−→ Vs(1M)(x) is a measure onY for all x ∈ X andVs1 = s. If G is an open
subset ofY andK is a compact subset ofG thenVs(1K) ≺ BG∩Xs. Therefore
BG∩XVs(1K) =Vs(1K) and consequentlyBG∩XVs(1G) = Vs(1G).

Let nowV : F(Y ) −→ F(X) be a natural excessive kernel such thatV 1 =
s. For each compact subsetK of Y and every open neighbourhoodG of K we
haveV (1K) ≺ V (1G). As a consequence, sinceBG∩XV (1G) = V (1G), we get
BG∩XV (1K) = V (1K). FromV (1K) ≺ s it follows V (1K) ≺ sfBG∩Xs and con-
sequentlyV (1K) ≺ Vs(1K). HenceV (1M) ≺ Vs(1M) for all M ∈ B(Y ). Since
V (1M) + V (1Y\M) =V 1 =s =Vs1 we obtainV (1M) = Vs(1M) on [s < ∞] and
we conclude thatV (1M) = Vs(1M) for all M ∈ B(Y ).

Suppose now thatVs is a natural excessive kernel onX and lett ∈ EU be
such thatt ≺ s and carr t ∩ X = ∅. From Vs(1carr t ) = 0 it follows 0 =
f{sfBG∩Xs / G open, G ⊃ carr t}. Since for each setG, G ⊃ carr t , we have
t = tfBG∩Xt ≺sfBG∩Xs, we gett = 0. Hences ∈ PU(X). Conversely, if
s ∈ PU(X) andK is a compact subset ofY \ X then carr Vs(1K) ⊂ K and
Vs(1K) ≺ s. ThereforeVs(1K) = 0 and consequentlyVs is a natural excessive
kernel onX.

Proposition 3.5. Let V be a natural excessive kernel onX. Then the following
assertions are equivalent.

i) There existsfo ∈ F(X), 0 < fo ≤ 1, such thatVfo is quasi bounded.
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ii ) If f ∈ F(X) is such thatVf ∈ EU thenVf is quasi bounded.
iii ) There exists a sequence(sn) of quasi boundedU–excessive functions such

thatV =
∑
n

Vsn .

Definition. A natural excessive kernelV onX is calledquasi bounded excessive
kernel if it satisfies one of the equivalent conditions from Proposition 3.5. Note that
every proper natural excessive kernel is a quasi bounded excessive kernel.

Proposition 3.6. The following assertions are equivalent for a natural excessive
kernelV onX.

i) There existsfo ∈ F(X),0 < fo ≤ 1,such thatVfo is a regularU–excessive
function.

ii ) For everyf ∈ F(X) such thatVf ∈ EU it follows thatVf is regular.
iii ) There exists a sequence(sn) of regularU–excessive functions such that

V =
∑
n

Vsn .

Definition. A natural excessive kernelV onX is calledregular excessive kernel
if it satisfies one of the equivalent conditions from Proposition 3.6.

Recall that a kernelV onX is termedsubordinated toEU if for eachs ∈ EU

andf , g ∈ F(X) we haveVf ≤ Vg + s wheneverVf ≤ Vg + s on the set
[f > 0].

Theorem 3.7. LetV be a natural excessive kernel onX. ThenV is subordinated
to EU if and only if it is a regular excessive kernel. ParticularyPf

U(X) coincides
with the set of all regularU–excessive functions if and only ifX is nearly saturated.

Proof. Let fo ∈ F(X), 0 < fo ≤ 1, be such thatVfo ∈ EU. If V is regular then
Vfo is regular and therefore (cf. [7]) there exists a natural excessive kernelW onX

such thatW1 = Vfo and such thatW is subordinated toEU. From the uniqueness
of the natural excessive kernelW onX with W1 ∈ PU(X) we getW = fo ·V and
consequentlyV is also subordinated toEU. Conversely, suppose thatV is subor-
dinated toEU. If (sn) ⊂ EU, sn ↗ Vfo andMn := [ε + sn > Vfo] ∩ [Vfo < ∞],
then V (fo1Mn) ↗ Vfo and R(Vfo − sn) ≤ ε + V (fo1X\Mn). Consequently

we get
∧
n

R(Vfo − sn) = 0. If s ∈ P
f

U(X) then the natural excessive kernel

Vs : F(X) −→ F(X) is subordinated toEU and therefores = Vs1 is regular.

Remark.Every regular excessive kernel is proper.

Lemma 3.8. Lets ∈ PU(Y ), t ∈ EU and(sn) be a sequence inPU(Y ) with sn ≤ t

for all n, such thatsn −→ s. Then for each positive lower semicontinous function
f onY we haveVsf (x) ≤ lim inf

n→∞ Vsnf (x) in every pointx ∈ X with t (x) < ∞.

Proof. We take a compact subsetK of Y , an open neighbourhoodG of K and we
show thatVs(1K)(x) ≤ lim inf

n→∞ Vsn(1G)(x) for all x ∈ [t < ∞]. If x is such a point

then the set{sn / n ∈ N} is relatively weakly compact inSf
εx . Recall that (see [8]



278 L. Beznea, N. Boboc

and [13]) ifθ is a finite measure onX thenS
f
θ denotes the set of allθ -supermedian

functionals which are finite onθ andMf
θ is the set of all positive mesuresµ onX

such thatµ◦U ≤ αθ ◦U for a suitable positive numberα. If F ∈ S
f
θ then, arguing

as in the proof of Theorem 10 in [13], it follows that the set{G ∈ S
f
θ / G ≤ F } is

sequentially compact with respect to the weak topologyσ(S
f
θ ,M

f
θ ). Hence there

exists a subsequence(skn) of (sn) such that(Vskn
(1G)) and(Vskn

(1Y\G)) are weakly
convergent tot ′ and respectivelyt ′′ and

lim inf
n→∞ Vsn(1G)(x) = lim

n→∞ Vskn
(1G)(x) .

From Vskn
(1G) + Vskn

(1Y\G) = Vskn
1 = skn we get t ′ + t ′′ = s εx–q.e. Let

us denote by0 an open subset ofY with K ∩ 0 = ∅ and0 ⊂ Y \ G. Since
B0∩XVskn

(1Y\G) = Vskn
(1Y\G) it follows that B0∩Xt ′′ = t ′′ εx–q.e. Hence

Vs(1K) ≺ t ′ + B0∩Xt ′′ εx–q.e. Therefore, by [7] and fromcarr u ⊂ K ∩ 0 = ∅
whereu := Vs(1K)fB0∩Xt ′′ ≺ s, we obtainVs(1K) ≺ t ′εx–q.e. and consequent-
ly Vs(1K)(x) ≤ lim inf

n→∞ Vsn(1G)(x).

Since for each open subsetG of Y we have
Vs(1G)(x) = sup{Vs(1K)(x) / K ⊂ G, K compact}

we deduce thatVs(1G)(x) ≤ lim inf
n→∞ Vsn(1G)(x). If f is a positive lower semicon-

tinuous function onY andx ∈ [t < ∞] then, using Fatou Lemma we conclude
that

Vsf (x) =
∫ ∞

0
Vs(1[f >α])(x)dα ≤ lim inf

n→∞

∫ ∞

0
Vsn(1[f >α])(x)dα

= lim inf
n→∞ Vsnf (x) .

Theorem 3.9. Let s ∈ PU(X), t ∈ EU and (sn) be a sequence inPU(X) such
that sn ≤ t for all n and sn −→ s. Then for each positive, bounded continuous
functionf onX and allx ∈ X with t (x) < ∞ we haveVsf (x) = lim

n→∞ Vsnf (x).

Proof. Obviously we may suppose thatf ≤ 1 . We denote byf the lower semi-
continuous extension off to Y . SinceVs(1Y\X) = 0, Vsn(1Y\X) = 0, by Lemma
3.8 we have

Vsf (x) = Vsf (x) ≤ lim inf
n→∞ Vsnf (x) = lim inf

n→∞ Vsnf (x)

for all x ∈ [t < ∞]. We have alsoVs(1 − f )(x) ≤ lim inf
n→∞ Vsn(1 − f )(x). From

Vsf + Vs(1 − f ) = Vs1 = s, Vsnf + Vsn(1 − f ) = Vsn1 = sn we conclude that
Vsf (x) = lim

n→∞ Vsnf (x) in all pointx ∈ [t < ∞], completing the proof.

Corollary 3.10. For all s ∈ PU(X), every sequence(gn) of positive, bounded
B–measurable functions onX such thatUgn ↗ s and each positive bounded real
continuous functionf onX we haveVsf (x) = lim

n→∞ U(fgn)(x) in all pointx ∈ X

with s(x) < ∞.
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LetT be a topology onX such that(X,T) is a Lusin topological space having
B as itsσ–algebra of Borel sets. Let furtherξ be aU–excessive measure onX
andpo ∈ Qbd(EU, ξ), po > 0. A numerical functionf on X is calledξ–quasi
continuous(with respect toT andEU) if there exists a decreasing sequence(Gn)

of T–open subsets ofX such thatf |X\Gn isT–continuous for alln and such that
inf
n

BGnpo = 0 ξ–a.e.

Remark.a) The ξ–quasi continuity does not depend onpo. Indeed, if qo ∈
Qbd(EU, ξ), qo > 0, then it is sufficient to show that inf

n
BGnqo = 0 ξ–a.e. for

each sequence(Gn) as above. Sinceqo is ξ–quasi bounded we may find a sequence
(qn)n≥1 ⊂ EU such thatqo =

∑
n≥1

qn ξ–q.e. andqn ≤ po. For all k ∈ N we get

BGnqo ≤ kBGnpo +
∑

n≥k+1

qn ξ–a.e. and consequently inf
n

BGnqo ≤
∑

n≥k+1

qn,

inf
n

BGnqo = 0 ξ–a.e.

b) If θ is a finite positive measure onX with θ(po) < ∞ and such that the
ξ–polar sets coincide with the sets which areθ–polar andθ–negligible (always
such a measure exists), then an increasing sequence(Gn) of T–open sets verifies
the condition inf

n
BGnpo = 0 ξ–a.e. if and only if inf

n
c
po

θ (Gn)=0 wherecpo

θ is the

‘capacity’ onX given byc
po

θ (M) :=θ(RMpo) for all M ∈B.

c) In many cases, in the definition ofξ–quasi continuity, the constant function 1
is prefered aspo even if it is notξ–quasi bounded. The reason for is the follow-
ing: If po is finite andT–continuous andU′ is the resolvent of kernels on(X,B)

having the initial kernelU/po thenEU′= EU/po and ExcU′ = ExcU. Since
po ∈ Qbd(EU, ξ) it follows that 1∈ Qbd(EU′ , ξ). A numerical functionf on X

will be ξ–quasi continuous with respect toT andEU if and only if it is ξ–quasi
continuous with respect toT andEU′ .

Proposition 3.11. Let T be a topology onX as above. We suppose in addition
that:

α) for each positiveB–measurable functionf onX, Uf is ξ–quasi continuous
with respect toT andEU, provided thatUf ∈ EU;

β) there exists an increasing sequence(Kn) of T–compact subsets ofX such
that inf

n
BX\Knpo = 0 ξ–a.e.

Then theξ–quasi continuity with respect toT and with respect to every Ray
topology onX generated by a sequence(Ufn) ⊂ EU are the same. Moreover for
every such a Ray topologyTo onX, the sequence(Kn) from conditionβ) may be
chosen such thatTo|Kn = T|Kn for all n.

Proof. Let (Ufn) ⊂ EU (withB–measurablefn, 0 ≤ fn ≤ 1) be a sequence which
generates the topologyTo. By hypothesisUfn is ξ–quasi continuous with respect
toT and therefore there exists an increasing sequence(Ln) of T–compact subsets
of X with Ln ⊂ Kn, inf

n
BX\Lnpo = 0 and such thatUfm|Ln is T–continuous for

all m. We getTo|Ln ⊂ T|Ln and consequentlyTo|Ln = T|Ln . Note that if(Gn)
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is a decreasing sequence of eitherT–open orTo–open sets then(Gn ∪ (X \ Ln))

is a decreasing sequence inT andTo. In addition we have inf
n

BGnpo = 0 if and

only if inf
n

BGn∪(X\Ln)po = 0. From the above considerations it is easy to see that

the ξ–quasi continuity with respect toT andTo are the same, completing the
proof.

Corollary 3.12. Suppose thatU is the resolvent of a Borel right process on(X,T).
If the topologyT satisfies the above two conditionsα) andβ) then the process is
specialξ -standard; see [20].(For the situation when the converse holds see [21]
and [22]).

In the sequel, the topologyT onX will be a Ray topology and we say simply
‘ξ–quasi continuous’ instead of ‘ξ–quasi continous with respect toT andEU’.

Note that each regularU–excessive function isξ–quasi continuous for allξ ∈
ExcU (see [8]). Particularly, iff is a positiveB–measurable function onX then
Uf is ξ–quasi continuous whenever it is finiteξ–a.e.

Theorem 3.13. Let s ∈ PU(X), (sn) be a sequence inPU(X) and t ∈ EU be a
ξ–quasi bounded excessive function such thatsn ≤ t for all n andsn −→ s. Then
for every positive boundedξ–quasi continuous functionf onX we have

Vsf = lim
n→∞ Vsnf ξ–q.e.

Proof. Suppose thatf ≤ 1. Let(Gn) be a decreasing sequence of open subsets of
X such thatf |X\Gn is continuous and such that inf

n
BGnpo = 0 ξ–q.e., wherepo

is ξ–quasi bounded,po > 0. If we denote byfn a positive continuous extension of
f |X\Gn to X such thatfn ≤ 1 then, by Theorem 3.9 we haveVsfn = lim

m→∞ Vsmfn

on [t < ∞]. Also

|Vsf − Vsfn| ≤ 2Vs(1Gn) ≤ 2BGns ≤ 2BGnt,

|Vsmf − Vsmfn| ≤ 2Vsm(1Gn) ≤ 2BGnt .

Since inf
n

BGnpo = 0 ξ–q.e. andt is (po, ξ)–quasi bounded we deduce that

inf
n

BGnt = 0 ξ–q.e. and thereforeVsf = lim
n→∞ Vsnf ξ–q.e.

4. Revuz measures

In this section we fix aU–excessive measureξ .

Definition. LetV be a natural excessive kernel onX. The positive measure onX
defined by

ν
ξ
V (M) := L(ξ, V (1M)), M ∈ B

is called theRevuz measureof V (with respect toξ ). If s ∈ PU(X) then the Revuz
measureνξ

Vs
is called theRevuz measureof s and will be denoted byνξ

s .
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Remark.a) For each sequence(Vn) of natural excessive kernels onX such that∑
n

Vn is a natural excessive kernel we haveν
ξ∑
n

Vn
=

∑
n

ν
ξ
Vn

.

b) If V is a natural excessive kernel onX andf ∈ F(X) is finite thenνξ
f·V = f ·νξ

V .
c) If V is a natural excessive kernel onX and there existsfo ∈ F(X), 0 < fo ≤ 1,
with Vfo ∈ PU(X) thenν

ξ
V = 1

fo
·νξ

Vfo
.

Proposition 4.1. If s, t ∈ PU(X) thens = t ξ–q.e. if and only ifνη
s = ν

η
t for

all η ∈ Excξ . Moreover, if (sn) and (tn) are two sequences inPU(X) such that∑
n

sn ∈ E
ξ

U and
∑
n

sn =
∑
n

tn ξ–q.e. then we have
∑
n

νξ
sn

=
∑
n

ν
ξ
tn
.

Proof. We haves = sft + s′, t = sft + t ′, wheres′, t ′ ∈ PU(X) ands′ = t ′ = 0
ξ–q.e. Sinceνξ

s′(X) = L(ξ, s′) = 0 and analogouslyνξ

t ′ = 0, we getνξ
s = ν

ξ
sft +

ν
ξ

s′ = ν
ξ
sft = ν

ξ
t . From

∑
n

sn =
∑
n

tn ξ–q.e. it follows that there exists a sequence

(un) inE
ξ

U such thatun =0 ξ–q.e. and
∑
n≤k

sn ≺
∑
n

tn+uk. Hence there exists a se-

quence(t ′n) inPU(X)such thatt ′n ≺ tn and a sequence(u′
n) ⊂ EU∩PU(X),u′

n = 0

ξ–q.e. with
∑
n≤k

sn =
∑
n

t ′n + u′
k. Therefore

∑
n≤k

νξ
sn

= ν
ξ∑
n≤k

sn
=

∑
n

ν
ξ

t ′n
≤

∑
n

ν
ξ
tn
.

Definition. We denote byPU,ξ (X) the set of alls ∈ E
ξ

U for which there exists a

sequence(sn) in PU(X) such thats =
∑
n

sn ξ–q.e.

By Proposition 4.1, for eachs ∈ PU,ξ (X) the measureνξ
s :=

∑
n

νξ
sn

on X,

wheres =
∑
n

sn ξ–q.e.,sn ∈ PU(X), is well defined and called theRevuz measure

of s.

Remark.a) The setPU,ξ (X) is aσ–band inEξ

U and for every sequence(sn) in

PU,ξ (X) such that
∑
n

sn =: s ∈ PU,ξ (X) we haveνξ
s =

∑
n

νξ
sn

.

b) If η1, η2 ∈ Excξ , s ∈ PU,ξ (X) andη1 ≤ η2 (resp.η1 � η2) thenν
η1
s ≤ ν

η2
s

(resp.νη1
s � ν

η2
s ).

c) For eachs ∈ PU,ξ (X) there existsη ∈ Excξ with η � ξ , ξ � η, such thatνη
s

is finite .
d) If ηn ↗ η in Excξ thenν

ηn
s ↗ ν

η
s . Particularly the Revuz measureνξ

s of each
s ∈ PU,ξ (X) is s–finite (i.e. a countable sum of finite measures).

Definition. A functions ∈ E
ξ

U is called ξ–potential on X if for each increas-

ing sequence(Gn) of Ray open subsets ofX such that
⋃
n

Gn = X we have

inf
n

BX\Gns = 0 ξ–a.e.
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It is easy to see that the set of allξ–potentials onX is aσ–band inEξ

U which

is solid inEξ

U with respect to the pointwise order relation.

Proposition 4.2. Everys ∈ PU(Y )dominated by aξ–potential belongs toPU,ξ (X).
Particularly, if there exists aξ–potential onX which is strictly positive then
Qbd(EU, ξ) ⊂ PU,ξ (X) andPU,ξ (X) is solid inE

ξ

U with respect to the point-
wise order relation.

Proof. If Vs denotes the natural excessive kernel associated withs then it is suffi-
cient to show thatVs(1Y\X) = 0 ξ–q.e. LetK be a compact subset ofY \ X and
(Fn) be a decreasing sequence of closed neighbourhoods ofK such thatK = ⋂

n

Fn.

Since by hypothesiss is aξ–potential onX andX\Fn ↗ X we get inf
n

BFn∩Xs = 0

ξ–q.e. FromVs(1K) ≺ B
◦
Fn∩Xs for all n, we conclude thatVs(1K) = 0ξ–q.e. Note

that if s ∈ E
ξ

U then there existso ∈ Qbd(EU, ξ) ands1 ∈ E
ξ

U such thats = so + s1

ξ–q.e. and̃s1 is subtractible inEξ(EU) (see [6]). Ifs ≤ t ∈ PU,ξ (X) thens̃1 ≺ t̃

and therefores1 ∈ PU,ξ (X).

Remark.If there exists a strictly positiveξ–potential onX then it is easy to see
that the setX1 \ X is ξ–polar, whereX1 denotes the saturation ofX.

Theorem 4.3. The following assertions hold.
i) A subsetM ∈ B will be ξ–semipolar if and only ifνξ

s (M) = 0 for all
s ∈ PU,ξ (X) ∩ E

ξ,r

U (or only for all s ∈ PU(X) ∩ Er
U).

ii ) The Revuz measureνξ
s of eachs ∈ PU,ξ (X) ∩ E

ξ,r

U is σ–finite. Moreover
there exists an increasing sequence(Gn) of finely openB–measurable subsets
of X such thatνξ

s (Gn) < ∞ and RX\Gnp ↘ 0 on [s < ∞] (and therefore
inf
n

RX\Gnp = 0 ξ–q.e.) for all p ∈ Qbd(EU, ξ).

iii ) For every finite measureν onX, charging noξ–semipolar set there exists
a ξ–regular functions ∈ PU,ξ (X) such thatν = ν

ξ
s . If s, t ∈ PU,ξ (X) ∩E

ξ,r

U and

ν
ξ
s = ν

ξ
t thens = t ξ–q.e.

Proof. i) Let s ∈ PU(X)∩Er
U and letM ∈ B be aξ–semipolar set. Since by The-

orem 3.7 the kernelVs is subordinated toEU, it follows that (cf. [7])Vs(1M) = 0
ξ–q.e. and thereforeνξ

s (M) = 0. Conversely, suppose thatM ∈ B is such that
ν

ξ
s (M) = 0 for all s ∈ PU(X) ∩ Er

U. If M is not ξ–semipolar then by [7] there
existss ∈ Er

U with carrf s ⊂ M andξ(s) 6= 0. Hences ∈ PU(X) ∩ Er
U and we

haveVs(1M) = s. Thereforeνξ
s (M) = L(ξ, s) = 0 which is a contradiction.

ii) Let s ∈ PU,ξ (X) ∩ E
ξ,r

U and letfo ∈ F(X), 0 < fo ≤ 1 be such thatUfo

is bounded andξ(fo) < ∞. If we putGn = [s < nUfo], sinces ∈ Qbd(EU, ξ)

we get
∧
n

R(s − nUfo) = 0 ξ–q.e. ObviouslyGn is finely open and we have

Vs(1Gn) ≤ nUfo i.e.νξ
s (Gn) ≤ L(ξ, nUfo) < ∞. We have alsoRX\GnUfo ≤ 1

n
s

for all n and consequently inf
n

RX\GnUfo = 0 on [s < ∞]. Obviously the set

X \
⋃
n

Gn is ξ–polar andνξ
s –negligible and therefore the measureν

ξ
s is σ–finite.
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iii) Let ν be a finite measure onX charging noξ–semipolar set. The existence
of aξ–regular functions ∈ PU,ξ (X) such thatν = ν

ξ
s follows from [2], Th́eor̀eme

3.4 (1), and from the fact that the potential operator associated with a continu-
ous additive functional is a regular excessive kernel. Note in addition that each
U–excessive function is equalξ– a.e. with aB–measurableU–excessive function.

Let nowV1, V2 be two regular excessive kernels onX having the same Rev-
uz measure. We show that for allf ∈ F(X) we haveV1f = V2f ξ–q.e. Let
fo ∈ F(X), 0 < fo ≤ 1 be such thatV1fo, V2fo ∈ EU. BecauseV1 andV2 satisfy
the complete maximum principle we may suppose thatV1fo andV2fo are bounded
functions. We defineu = V1fo + V2fo and letW = Vu. SinceW is the initial
kernel of a submarkovian resolventW onX such that eachU–excessive function
is W–supermedian, we deduce that there existsf1, f2 ∈ F(X), 0 ≤ f1, f2 ≤ 1,
such thatV1fo = Wf1 andV2fo = Wf2. Consequently we getf1·W = f0·V1 and
f2·W = f0·V2. If we setg1 = f1 − f1 ∧ f2, g2 = f2 − f1 ∧ f2 thenν

ξ
f1·W =ν

ξ
f2·W

andν
ξ
g1·W =ν

ξ
g2·W . Therefore, sinceg1g2 = 0, we obtainνξ

g1·W =ν
ξ
g2·W = 0, g1 ·

W(1) =g2·W(1) = 0 ξ–q.e. Hencefo·V1(f ) = f1·W(f ) =f2·W(f ) =fo·V2(f )

ξ–q.e. for allf ∈ F(X) and we conclude thatV1f = V2f ξ–q.e.

Remark.a) Assertionii) in Theorem 4.3 has been proved also by Revuz [25] and
Fitzsimmons and Getoor [16].
b) A σ–finite measure onX charges noξ–semipolar set if and only if it is the Rev-
uz measure of a regular excessive kernel onX. If V , W are two regular excessive
kernels onX having the same Revuz measure then for allf ∈ F(X) we have
Vf = Wf ξ–q.e.
c) One can prove the assertioniii) from Theorem 4.3 by a different analytical
method, using in addition the fact that eachU-excessive measure dominated byξ

possesses a "finely continuous" density (cf. [14] and [15]). These techniques will
be developed in a forthcoming paper.

Recall that thehypothesis (B) of Huntholds for the Ray topology onX if for
each Ray open setG and every subsetM of G, M ∈ B, we haveBGBMs = BMs

for all s ∈ EU.

Theorem 4.4. The following assertions hold.
i) If s ∈ PU,ξ (X) is ξ–quasi bounded then its Revuz measure iss–finite and

charges noξ–polar set.
ii ) Suppose that the hypothesis(B) of Hunt holds for the Ray topology. IfM ∈ B

is such thatνξ
s (M) = 0 for all ξ–quasi boundeds ∈ PU,ξ (X) with ν

ξ
s (X) < ∞

thenM is ξ–polar.
iii ) If the hypothesis(B) of Hunt holds for the Ray topology then for each finite

measureν onX, charging noξ–polar set there exists aξ–quasi bounded function
s ∈ PU,ξ (X) such thatν = ν

ξ
s .

Proof. i) Let fo ∈ F(X), 0 < fo ≤ 1, be such thatUfo ≤ 1 andξ(fo) is
finite. Sinces is ξ–quasi bounded there exists a sequence(sn) in EU such that
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sn ≤ Ufo ands =
∑
n

sn ξ–q.e. Consequentlyνξ
s =

∑
n

νξ
sn

andν
ξ
sn =L(ξ, sn) ≤

L(ξ, Ufo) < ∞. If K is aξ–polar compact subset ofX then

Vsn(1K) ≤
∧

{BGsn/ G ⊃ K, G open} ≤
∧

{BG1/ G ⊃ K, G open} = BK1

and thereforeνξ
sn(K) = L(ξ, Vsn(1K)) ≤ L(ξ, BK1) = 0. Since the measureνξ

sn

is finite, we deduce thatνξ
sn(M) = 0 for all n and eachξ–polar subsetM of X. We

conclude thatνξ
s (M) = 0.

ii) Let M ∈ B be such thatνξ
s (M) = 0 for all s ∈ PU,ξ (X) ∩ Qbd(EU, ξ)

with ν
ξ
s (X) < ∞. We may supposeM is Ray compact and we considerso = BMpo

wherepo ∈ Qbd(EU, ξ), p0 > 0. Obviouslyso ∈ Qbd(EU, ξ) and by the hypoth-
esis (B) of Hunt for the Ray topology we haveVso(1M) = so. On the other hand
by hypothesisVso(1M) = 0 ξ–q.e. and thereforeM is ξ–polar.

iii) Let ν be a finite measure onX charging noξ–polar set. By Corollary 2.4,
ν may be written in the formν = ν′ + ν′′, whereν′ charges noξ–semipolar set
andν′′ is carried by aξ–semipolar setA ∈ B. From assertioniii) in Theorem
4.3 there exists aξ–regular functions ∈ PU,ξ (X) such thatν′ = ν

ξ
s . Further let

us denote byµ the Dellacherie mesure associated withξ and theξ–semipolar set
A, i.e. a subset ofA will be ξ–polar if and only if it isµ negligible. From the
above assertionsi) andii) it follows that aB–measurable setM is ξ–polar if and
only if ν

ξ
s (M) = 0 for all s ∈ PU,ξ (X) ∩ Qbd(EU, ξ) with ν

ξ
s (X) < ∞. By

Lemma 2.5 applied on the measurable space(A,B|A) for the setM = {1A · ν
ξ
s /

s ∈ PU,ξ (X) ∩ Qbd(EU, ξ), ν
ξ
s (X) < ∞}, and for the measureµ, there exists

a sequnce(sn) ⊂ PU,ξ (X) ∩ Qbd(EU, ξ) such thatµ =
∑
n

νξ
sn

. Since the mea-

sureν′′ is absolutely continuous with respect toµ there exists a second sequnce
(tn) ⊂ PU,ξ (X) ∩ Qbd(EU, ξ) such thatν′′ =

∑
n

ν
ξ
tn

. If we put t =
∑
n

tn then

from L(ξ, t) =
∑
n

ν
ξ
tn
(X) < ∞ it follows that t is finite ξ -a.e. We conclude that

t ∈ PU,ξ (X) ∩ Qbd(EU, ξ) andν′′ = ν
ξ
t .

Remark.a) Assertionii) in Theorem 4.4 has been proved by Revuz [25] for stan-
dard processes satisfying the hypothesis (L) of Meyer.
b) By a different approach, a result similar to assertioniii) in the above theorem
has been obtained by Azéma [2] under more restrictive assumptions:U being the
resolvent of a Hunt process, satisfying also the hypotheses (L) of Meyer, (B) of
Hunt and (CMF).
c) If the hypothesis (B) of Hunt holds then aσ–finite measure onX charges no
ξ–polar set if and only if it is the Revuz measure of a proper natural (and therefore
quasi bounded) excessive kernel onX.
d) In fact in Theorem 4.4, instead of the hypothesis (B) of Hunt we only need
the following weakerhypothesis (B) of Hunt with respect to the measureξ : for
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every Ray open setG and each subsetM of G, M ∈ B, we haveBGBMs = BMs

ξ–q.e. for alls ∈ EU.
e) Using Corollary 2.4 one can show that always there exists aξ–semipolar set
H ∈ B such that the hypothesis (B) of Hunt with respect to the measureξ holds on
X \ H (i.e. for every Ray open setG and each subsetM of G ∩ (X \ H), M ∈ B,
we haveBGBMs = BMs ξ–q.e. for alls ∈ EU). Particularly assertioniii) in
Theorem 4.4 holds for every finite measure carried byX \ H .

In the sequel we suppose that there exists a second proper submarkovian re-
solventÛ = (Ûα)α>0 on (X,B) which is in duality with the given resolventU

with respect to the measureξ (i.e.
∫

gUαf dξ =
∫

f Ûαgdξ for all α > 0 and

f, g ∈ F(X)) and such that the function̂Uf is ξ–quasi continuous (with respect
to the given Ray topology onX), for all f ∈ F(X) with Ûf bounded.

Remark.In the probabilistic approach it is usually supposed thatU andÛ come
from two right processes onX.

Theorem 4.5. (Revuz) For all boundedt ∈ EÛ and eachξ–quasi bounded
U–excessive functions onX, s ∈ PU(X), we have

L(t ·ξ, s) = L(ξ, Vst) .

Proof. Obviously it is sufficient to considert ∈ EÛ of the form t = Ûf where
f ∈ F(X). Also we may assume thats ∈ Qbd(EU). SinceÛf is supposed to be
ξ–quasi continuous ands = lim

n→∞ nUns = lim
n→∞ U(n(s−nUns)), by Theorem 3.13

we obtain

L(ξ, VsÛf ) = lim
n→∞ L(ξ, U(n(s − nUns)Ûf )) = lim

n→∞ ξ(n(s − nUns)Ûf )

= lim
n→∞ ξ(f ·nUns) = lim

n→∞ L(Ûf ·ξ, nUns) = L(Ûf ·ξ, s) .

Remark.a) Using the Revuz formula stated by Theorem 4.5, one can prove that
everyσ–finite measure onX charging noξ–polar set is the Revuz measure of a
proper natural excessive kernel onX, which is uniquely determinedξ–q.e. More-
over, under the above duality hypothesis, each natural excessive kernel is equal
ξ -q.e. with a regular excessive kernel.
b) One can show that the above Revuz formula holds for every regularU–excessive
functions, without assuming any duality hypothesis.

Corollary 4.6. If s ∈ PU,ξ (X) is ξ–quasi bounded andt ∈ EÛ thenν
ξ
s (t) =

L(t ·ξ, s).

In the sequel we suppose in addition that the resolventÛ is such thatEÛ is
min–stable, generatesB and 1 ∈ EÛ. As usual, we mark with the prefix co the
potential theoretical notions related toEÛ, in order to distinguish them from the
similar notions related toEU.
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Theorem 4.7. If s ∈ PU,ξ (X) is ξ–quasi bounded then its Revuz measureν
ξ
s

charges noξ–copolar set and there existst ∈ EÛ, t > 0ξ–a.e. such thatνξ
s (t) < ∞.

Moreover, for everys1, s2 ∈ PU,ξ (X) ∩ Qbd(EU, ξ) we haves1 ≤ s2 ξ–q.e. if and

only if νξ
s1(t) ≤ ν

ξ
s2(t) for all t ∈ EÛ.

Conversely, suppose thatν is a positive measure onX which charges noξ–co-
polar set and there existst ∈ EÛ, t > 0 ξ–a.e. such thatν(t) < ∞. If there exists
a ξ–potential onX which is strictly positive, then there existss ∈ PU,ξ (X) which

is ξ–quasi bounded such thatν = ν
ξ
s .

Proof. Let s ∈ PU(X) ∩ Qbd(EU) be such thatL(ξ, s) < ∞ and letM ∈ B
be aξ–copolar set. Then there exists a decreasing sequence(tn) in EÛ, tn ≤ 1

with tn ≥ 1 on M and inf
n

tn = 0 ξ–a.e. It follows thatνξ
s (M) ≤ inf

n
ν

ξ
s (tn) =

inf
n

L(ξ, Vstn) = inf
n

L(tn ·ξ, s). Sinces ∈ Qbd(EU) andL(tn ·ξ, s) < ∞ we de-

duce from [6] that inf
n

L(tn ·ξ, s) = 0. Hence for alls ∈ PU,ξ (X) ∩ Qbd(EU, ξ)

we getνξ
s (M) = 0.

If s1, s2 ∈ PU,ξ (X) ∩ Qbd(EU, ξ) then we haves1 ≤ s2 ξ–q.e. if and only if
L(t·ξ, s1) ≤ L(t·ξ, s2) for all t ∈ EÛ. Therefore, by Corollary 4.6, we haves1 ≤ s2

ξ–q.e. if and only ifνξ
s1(t) ≤ ν

ξ
s2(t) for all t ∈ EÛ.

Let nowν be a positive measure onX which charges noξ–copolar set and such
that there existst ∈ EÛ , t > 0 ξ–a.e. withν(t) < ∞. The functionalt 7−→ ν(t)

on EÛ is additive, increasing and continuous in order from below. Hence there

existss ∈ E
ξ

U such thatν(t) = L(t ·ξ, s) for all t ∈ EÛ. Let (tn) be a decreasing
sequence inEÛ such that inf

n
tn = 0 ξ–a.e. and such that inf

n
L(tn·ξ, s) < ∞. Since

the set [inf
n

tn > 0] is ξ–copolar, we deduce that 0= ν(inf
n

tn) = inf
n

L(tn·ξ, s) and

therefore, by [6], we get thats ∈ Qbd(EU, ξ). If there exists aξ–potential which
is strictly positive, then by Proposition 4.2 it follows thats ∈ PU,ξ (X). From

ν
ξ
s (t) = L(t ·ξ, s) we conclude thatνξ

s (t) = ν(t), for all t ∈ EÛ and consequently

ν
ξ
s = ν.

Remark.The last assertion of Theorem 4.7 holds without assuming that there exists
a strictly positiveξ–potential onX.

Corollary 4.8. Suppose that the hypothesis(B) of Hunt with respect toξ holds.
Then theξ–copolar sets areξ–polar.

Remark.By the remark following Theorem 4.5, in Corollary 4.8 it is not necessary
to suppose explicitly that the hypothesis (B) of Hunt holds.

Theorem 4.9. Let s ∈ PU,ξ (X) ∩ Qbd(EU, ξ). Thens is ξ–regular if and only if
its Revuz measure charges noξ–cosemipolar subset ofX.

Proof. By Theorem 4.5, for allt ∈ EÛ we haveL(t ·ξ, s) = L(ξ, Vst) = ν
ξ
s (t).

From Theorem 2.3 in [4],s will be ξ–regular if and only if for each decreasing
sequence(tn) in EÛ andt ∈ EÛ such that

∧
n

tn = t ξ–a.e. and inf
n

L(tn·ξ, s) < ∞
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we have inf
n

L(tn·ξ, s) = L(t·ξ, s) or equivalently inf
n

ν
ξ
s (tn) = ν

ξ
s (t). If ν

ξ
s charges

no ξ–cosemipolar set then, since the set [inf
n

tn > t ] is ξ–cosemipolar, we have

inf
n

ν
ξ
s (tn) = ν

ξ
s (t) and consequentlys is ξ–regular. Conversely, suppose thats is

ξ–regular and letM ∈ B be aξ–cosemipolar set. We haveM = Mo ∪⋃
k≥1

Mk where

Mo is ξ–copolar andMk is totally cothin for allk≥1. By Theorem 4.7 we deduce
thatνξ

s (Mo) = 0 (since eachξ–regular excessive function belongs toQbd(EU, ξ)).
On the other hand for allk ≥ 1 there exists a decreasing sequence(tkn) in EÛ

such thatMk ⊂ [inf
n

tkn >
∧
n

tkn ] and such thatL(tk1 ·ξ, s) < ∞. We conclude that

ν
ξ
s (Mk) = 0 for all k ≥ 1 and thereforeνξ

s (M) = 0.

Corollary 4.10. Theξ–cosemipolar sets areξ–semipolar.

Remark.By the remark following Theorem 4.5, one can show that in fact the
ξ–semipolar and theξ -cosemipolar sets coincide.
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2. Azéma, J.: Th́eorie ǵeńerale des processus et retournement du temps, Ann. Scient.Éc.
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