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Abstract. We introduce a stochastic point processSeupporting points and prove that
upon rescaling it converges to a Gaussian field. The notiGrsafpporting points specializes

(for adequately choses) to Pareto (or, more generally, cone) extremal points or to vertices

of convex hulls or to centers of generalized Voronoi tessellations in the models of large scale
structure of the Universe based on Burgers equation. The central limit theorems proven here
imply i.a. the asymptotic normality for the number of convex hull vertices in large Poisson
sample from a simple polyhedra or for the number of Pareto (vector extremal) points in
Poisson samples with independent coordinates.

0. Introduction

0.1. Imagine a sea bottom which someone attempts to measure using a measuring
rod. If the rod is thick, the measuring is not ideal, and not all points at the bottom
will be touched. In this paper we deal with the model in which the “bottom” is a
realization of some Poisson point process, homogeneous in the horizontal direction.
The points thaare touched form a certain new point process and its properties are
the subject of this paper. The Figure 1 illustrates the model. We will call the point
process loosely described abdtie supporting points process

This model seems to carry some aesthetic appeal by itself. Our interest in it, how-
ever, is motivated by its intimate connections with several much more attended
problems of applied and geometric probability theory.

0.2. In this paper we prove central limit theorems for the supporting point process
in the situation where the templaté modeling the measuring rod of the informal
description above is described as the superset of a function growing at least linearly
and at most polynomially at infinity, and the intensity rate of the underlying Poisson
point process is bounded by the exponent of the height and is essentially positive at
negative heights (exact formulations see in section 1, assumptions A and B). These
assumptions are not, of course, necessary, and can be relaxed in a variety of ways;
the form used in this paper is a result of efforts to minimize volume of the paper
while retaining the scope of applications of results.
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Fig. 1. The “measuring rod” process. Supporting points are filled. Temptaie depicted
as the dotted line.

0.3. The central limiting theorems we prove here, while apparently new, are not
very surprising. The main novelty of this paper are the applications of these results,
which include the investigations of the point processes of Pareto (vector) extremal
points in a sample with independent coordinates and the processes of the convex
hulls vertices for the standard Poisson sample from infinite orthant or from the
interior of the paraboloid. These latter processes are well-known to be the main
ingredients in the study of the asymptotic behavior of convex hulls of ladge
samples from uniform distribution in simple polyhedra or strictly convex bodies
with smooth boundary, respectively. We derive the central limit theorems for all
these processes and deduce, for example, the CLT for the number of Pareto extremal
points with independent coordinates, a long standing problem.

Yet another application is the CLT for some point processes associated with
asymptotic solutions of the Burgers’ equation

v/t +vidv/dx = €Av

in the inviscous limite — 0. These processes describe the spatial distribution of
matterless cells in some models of the large scale structure of the Universe.
There are certainly other models of applied probability theory which fitinto the gen-
eral scheme of supporting points processes, for example the crystal growth model
of Johnson-Mehl (see[M] for a thorough treatment). They will not be discussed
here to save place.

0.4. Plan of the paper. Section 1 contains the basic construction and main re-
sults, Theorems 1.8.1 and 1.9.2. The applications of these results to the problems
discussed above are given in Section 2. The proofs of all technical results are con-
tained in Section 3 and miscellaneous results and remarks in Section 4. The proofs
are rather elementary and use the moments method in the guise of B-mixing and
exponential clustering.
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1. Constructions and results

1.1. Basic notations.We consider point processes in Euclidesin= (n + 1)-
dimensional spac® = V x R,V = R", with generic point denoted as =
(x,h),x € V,h € R. The projections to corresponding factors will be denoted as
x(-) andh(-) correspondingly, that is(w) = x andh(w) = h for w = (x, h).
We will also imply thatV andR are embedded intd and will sometimes denote
(x, 0) simply asx and(0, z) simply ash when there can be no confusion.

It will be assumed throughout the paper, that in the Euclidean metri¢’ pthe
V-plane andi-axis are orthogonal. The metric & as well as the induced metrics
onV andh-axis is denoted as |.

The sums of set are understood always in Minkovski sense; the notatiewns A +
x,A+h for A C W arereserved foA + {w}, A+ {x}, A+ {h} correspondingly.

1.2. Assumption A. The role of the “measuring rod” of informal discussion in
the Introduction is played by a fixed subs&t ¢ W which we assume to be a
supergraph of a function,

S ={(x,h):h=¢x)} ,

where the functior is assumed to be continuous and to grow at least linearly and
at most polynomially at infinity:

ap + balx| < ¢(x) < Ap + Balx|™ (A)

for some positivéba, Ba andya > 1.
The interior of¥ we denote by?° = {(x, h) : h > ¢ (x)}, the boundary of/ as
0 ={(x,h): h =¢(x)}.

1.3. Poisson point processl et p be a locally integrable nonnegative function on
R. We consider the Poisson point procéssn W with the intensity measurg
given by the density (h)dhdx. We assume that the-content of the shifted set
& + his finite for all 1, and denote thig-content as

k(h) =/ p(h)dhdx .
S +h

By constructionu (¥ + w) = k(h(w)).
We will use the same notatignfor the random measure associated with discrete
point proces$ (that is the sum of deltas at points&f

1.4.1. Definition. A pointw is (¢, &)-supporting (or simplyé-supporting, or just
supporting when the context is unambiguous), if there exists a poistich that
§(°+w')=0and w € 0. + w'. Such a set” + w' is calledsupported set
andw’ its apex

The set of 7, &)-supporting points it will be denoted ags .

Forw’ = (x', 1), the “depth”h’ is exactly the first instant of hitting the “bottom”,
that is an element df, by a set in the family of vertical shift¥ + x’ + h, —co <

h < oo, conforming with the intuitive description from the Introduction.

The point proceséy is the central object of this paper.
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1.5. Assumption B. Throughout the paper we will assume that the intensity rate is
bounded by an exponential function of the negated height and is essentially positive
whenis — —oo, thatis

p(h) < Agexp(—Cgh)) everywherep(h) > ag >0 for h <0, (B)
whereAg, ag andCg are some positive constants.

1.6. Correlation functions. For a point process in W, the value of the correla-
tion functionr,? : WK — R at the tuple{ws, . .., wy} of pairwise distinct points
w; € W, w; # w; can be defined as

Eyn(wi +€1B) - - - n(wi + € B)
€1—0,...,e,—0 6]1_\/ ce- GliVVOKB)k

’

whereB is (say) the unit ball iV

In our situation the correlation functions can be calculated as follows. For a point
w e Wlet I(w,&) = 1 if w is &-supporting and 0 otherwise. Forkatuple

{w1, ..., wi} of pairwise distinct points i, let

Fe(wa, ... owe) = Ee [ [T(wi. &)

The functionr is the probability that all points in the tuple ayesupporting. The
correlation densities for the supporting point procgssre then equal to

o= [ | o(wi) dw; .

This follows from the standard properties of the Poisson point processes: indeed,
conditioned on{ws, ..., wx} C &, the point proces§ — {ws, ..., w} is again
Poisson with the same intensity measure.

1.7. Properties of¢ . Henceforth bothA andB are assumed.

The distribution of the point proces$s, is, apparently, invariant with respect to
shifts alongV ¢ W. Further, ags C &, its first moment measure has a density
r < p with respect to the Lebesgue measureWdr(one has: = r; as defined
above). The following Proposition says tl§at is essentially concentrated néar

1.7.1. Proposition. The correlation functions, of £, decrease exponentially with
|k

re(wy, ..., wi) < Ag exp(—Cr max|h;|)
l

for some positive constants, Cy.

Proof of this and the following Propositions will be given in Section 3.
The next important property of the correlation densitieis the exponential clus-
tering.

1.7.2. Proposition. For any natural k, | there exist positive constants;, C
such that
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Irer (Wi, ooy wi, W, . wy) — re(wa, . wdr (Wl L w))]
< Ag 1 eXp(—Cyd)

where d is the distance between seis, . .., wi} and {wj, ..., w;} (the smallest
of the pairwise distances between points in these finite. sets)

1.8. These two Propositions imply the main result on the asymptotics of the pro-
cesses of/-supporting points.

Letéy v = x(§s) be thex-projection ofés. The point processy v is homoge-
neous inV (as the distribution of » is invariant with respect to shifts alorig) and

has finite intensity density, dx with ry = jfooo r(0, h) dh (the integral converges

by 1.7.1). Consider the rescaled random measure givégrly, (A) = £».v (A A)

for Borel A C V, and normalize it

by — Ervi—EExvi)
A= ﬁ

The following result is our main tool in applications:

(1.8.1)

1.8.1. Theorem. Asymptotically, ag. — oo, £ v, (A)/A" converges t@ Vol(A)

in probability, andv, converges in law to a generalized Gaussian random field
with covariance kernel's (x — x'), C = (;, g2,v (0, y)dy +rv)¥2, whereg, v is

the second cumulant density foy v .

Proof. It follows more or less straightforward from the Propositions 1.7.1 and
1.7.2. Proposition 1.7.1 implies tha v has finite constant (a& is invariant
under shifts alond’) intensityry = ffooo r(h)dh. Further, Propositions 1.7.1 and
1.7.2 together imply thats v clusters exponentially. Indeed, denotehy, the

k-th correlation function foky . It is easily seen thaty v (x1, ..., x) is just
the integral ofk-th correlation function for the supporting point procégsalong
the fiber consisting of allwy, . . ., wy)’s projecting to the tuplégx, ..., x;},

”k,V(xL ) xk) = / rk(('xlv hl)v LI (xka hk))dhl o dhk 5
h1,...,hy

whence the estimate follows immediately.

The cumulant densitieg (x1, . . . , x¢) for £y are related to the correlation func-
tionsry v via logarithmic transformation (see, e.&U], Ch. 4.4, “algebraic meth-
od”), and it is standard that the exponential clustering,af is equivalent to the
exponential decreasing gf(x1, . . ., x¢) as a function of the differences — x; 1

at infinity ([Ru] again'). This latter property implies the BrillingerB-mixingfor
the point processy v [Bril:

/k l|611<()C1,-..,xk)ldxz~-~a’)w< < 0
Vi

for all k and, consequently, the central limit theoreméory (see, e.q.lf]). O

1Although in this reference just the equivalence of clustering ahd vanishing of; at
infinity is shown, the modification of the result to thgponentiadecreasing is immediate.
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1.9. As a corollary, one can deduce the central limit theorem foEtheontent
of reasonably behaving large open subsetd/ofThe condition we need is the
following. Let A C W be open and\y = A NV be its intersection wittv .

1.9.1. Definition. We say thatA is quasitransversalto V if the boundary of\y
is the intersection of the boundary afwith V.

1.9.2. Theorem. For any open bounded c W, let N(1) be the number of points
oféginAA,i.e. N(A) = E#(AA). If A is quasitransversal t& and has nonempty
intersection withV, then

a) both expectation and variance §f(1) grow as|Ay A" asi — oo:

EN(L) VN ()
— e
[Ay|At [Ay A"

— UV

for some positive constantsv (depending or”, p only), and
b) the distribution ofV (1) is asymptotically normal:

N — [Ay|ae

— 40,1
JIAVIY oD

in distribution

Proof. The claim of Theorem 1.9.2 apparently follows from Proposition 1.8.2 for
cylinders over an open baselih if A = x~1(x(A)), thents(A) = Erv(ANV).

To prove the claim for arbitrary open boundadc W, we make first some inter-
mediate estimate. Let be the symmetric difference betwednand the cylinder
overAy, A = (x"YAy) — AU (A —xL(Ay)).

1.9.3. Lemma. If A is quasitransversal t&, both the expectation and the variance
of £»-content ofA A are 0(A*) for A — oo.

Proof. This can be deduced as follows. Denote the volume of the intersection of
r-tube aroundV with A ash(r). Then-dimensional Lebesgue measureAf =
ANV = 3dAy vanishes (herd is the closure ofd), and the condition of quasi-
transversality implies that(r)/r — 0 asr — 0. The expectation of »-content

of LA is given byEéy (A A) = fM r(x)dx can be then estimated as (hergand

C, are the constants provided by Proposition 1.7.1)

/ r(x)dx < Al/ e~ Clh® gy — A1A'1+l/ e_Cl)”lh(Z)ldz
AA B AA A

oo
:A1An+lﬁ e—C]_)urdb(r) ,

which is QA"™) by Tauberian theorem for Laplace transforrRk [

Similarly, letba(r) be the volume ofA2 ¢ W2 within the distance to the V-di-
agonalAy = {(x,x),x € V} C W2 The measure oh,, = A>N Ay in VZis
zero, whence, by quasitransversality condition agaify"t2 — 0 asr — 0 (the
exponent: + 2 here is the codimension afy in W).
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The variance of«#(1A) is given by

/ q2(x, y)dx dy +/ r(x)dx .
(LA)2 LA

The second term is already known to b@"). The integral in the first term is
estimated in absolute value as (hetg1 andC1 1 are the constants implied by
Proposition 1.7.2)

A1 1/ e Cralr—ylgy dy = Ay 1)»2n+2/ e~ C1M gz gy
“Jaaz ' A2

o0
=A11 / e~ LM 24py(ry
0

which iso(A™) by Tauberian theorem again . O

Lemma 1.9.3. implies evidently the part a) of Theorem 1.9.2.

To prove the part b) it is enough to notice that the difference of (centéredpn-
tents ofAA andx~1(LAy), the cylinder over its intersection with, is majorized
by the (centeredj-content ofs A, which is of smaller order than any of them.

2. Applications

2.0. In this section we consider the applications of our main results, Theorems
1.8.1and 1.9.2.

2.1 Pareto extremal points.ConsiderN = n + 1-dimensional vector spad&

and a convex con& C W. This cone defines a partial (“vector”) order &n :

z > 77 & z—17 € K. The case we will be interested here is that of Pareto
cone, that is of positive orthakip = {z: z; > 0,i =1,..., N}.

Given a subseX c W, one defineK -extremal points inX (or Pareto extremal
for Kp) as follows: a point € X is K-extremal, if thereisne@’ € X, z # 7/, such
thaty’ >k z.

2.1.1. Pareto extremal points with independent coordinatesLet X be a finite
iid sample of sizen with independent coordinates without atgrasd P (m) is the
number of Pareto extremal pointsih What can be said abo#(m)?

The pioneering workB-NS] provides with the following information:

e The expected number of Pareto extremal points, explicitly given as “multidimen-
sional harmonic series”

EP(m)= ) 11;

1<iy < <ip<m

grows as lo§m/n!;
e In dimensionsV = 2, 3 the growth of variance is of the same order’lagas
that of expectation;
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e IndimensionV = 2, the distribution of? (m) is asymptotically normal (actually,
the generating function aP (m), closely connected with the symmetric group
paraphernalia, has been found explicitly).

The series representations for the variance 6f), also reminiscent of “multi-
dimensional harmonic” were found ihn[]. However, it is difficult to extract the
asymptotic behavior from them.

2.1.2. Pareto extremal points and supporting point processThe connection
between just described model and supporting point processes is rather immediate.
First, the monotone increasing continuous coordinate-wise changes (thatis changes
7z = (z1,...,2n) = (f1(z1), ..., fn(zn)) with functions f; strictly increasing

and continuous) do not change the Pareto partial order. Taking be the dis-
tribution function ofz;, we reduce the problem to the case wheis uniformly
distributed in the unit cube. For convenience, we shift the cule-iy. .., —1) to

arrive at the uniform distribution in the culfe= {-1 < w; <0},i =1,..., N.

The intuition suggests that the chances to find an extremal point somehow far from
the union of coordinate hyperplanes are slim, whence it is enough to concentrate on
the domain close to the coordinate hyperplanes. The restriction i tb@mpleX

of large sizen to this domain is nearly Poisson. It is intuitive, therefore, to consider,

as an approximation step, a variation of the initial problem, where the saxnple

is a realization of the Poisson point process with intensity demsify in I, or,
equivalently, with Lebesgue intensity measureiH™ 1.

One can extend the probability space so as to assumetigjust the intersec-

tion of m¥/N I with the standard Poisson point procéggwith Lebesgue intensity

measure) otW_ :={z:z; <0, i =1,..., N}. Moreover, it is clear that Pareto
extremal points ik N (mY/N 1) is just the Pareto extremal points&f which lie

im0 /N

inm 1.

Now we choose new coordinates 6n:
Vi =—-In(-z), i=1...,N . (2.1.1)

This change take®_ to RN = W and is again monotone and coordinate-wise,
thus Pareto order preserving. Let

The hyperplan& := {h = 0} has dimension. We choose some orthonormal co-
ordinates(x;),i = 1,...,n onV and take thé-axis to be spanned by, ..., 1).
This makesx;, ) an orthogonal coordinate system®n One expresses the func-
tionsy; in the new basisy; = h — [;(x),i = 1, ..., N, wherel; are some linear
functions onV (one hasy_; [; = 0).

The Pareto partial order o is given by the conditions

(x,h) >k (x', 1) < yi(x,h) > y(x',h)foralli=1,...,N ,

or, equivalently, thatx, z) € ¥° + (x/, #’) for & given by
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Fig. 2. Logarithmic transformation of the negative orthant.

S ={(x,h):h>1 fori=1,...,N}. (2.1.2)

In other words,¥ is defined as in assumption A with the functigr= max; /; on

V.

By definition, if w is Pareto extremal i, thenw+.°NX isempty andv € w+.%.

It follows thatw = (x, k) is Pareto extremal if and only if it is”-supporting for

£ =X.

It remains to find the intensity measure in the new coordinates: an immediate cal-
culation gives that its density with respect to Lebesgue measure'fs

2.1.3 Limit theorems for Pareto extremal points. Now we are in the position to
apply the results of the previous section. Indeed, the assumptions A and B can be
checked immediately. The supported set templatdefined by the function (2.1.2)
satisfies apparently the conditions of assumption A. That the intensity density of
the Poisson point process satisfies assumption B is clear as well.

Hence we arrive at the following result.

2.1.4 Proposition. Let & be the standard Poisson point processiih (with Le-
besgue intensity measure) afg be the process of Pareto extremal pointstin
Leté s be the image of p under transformation (2.1.1). Then the rescaled process
v;, defined as in (1.8) converges in distribution to a generalized Gaussian random
field supported by V and invariant with respect to shifts along ¥ as oo.

Proof. This is an immediate corollary of the Proposition 1.8.1. O

The transformation (2.1.1) sends the cub¥" I to the displaced positive orthant
Ay ={yi >—Xx,i=1,...,N},wherex = (1/N)Inm. As A, = LA1, and the
setA1 is clearly quasitransversal 9, we are in the situation of Theorem 1.9.2,
which implies the central limit theorem for the number of Pareto points in a Poisson
sample with independent coordinates:

2.1.5 Corollary. If X is the Poisson point process in the unit cube with intensity
density m dw. Then the number P(m) of Pareto extremal points in X is asymptotically
normal with both expectation and variance growingas m.

2.1.6. In fact, one can derive from 2.1.5 similar statements for the number of Pa-
reto extremal points in thied samples of fixed size: from the unit cubel. The
estimates for the growth order of the variance for the Poisson sample case can be
modifiedmutatis mutandiso the fixed sizen case implying the 10gm growth.
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The central limit theorem in this case is also rather straightforward. Indeed, consid-
er the subse§,, C I defined ass,, = {[[; |zi| < In2m/m}. One can show that the
probability to find justone Pareto extremal point outside this set (estimated from
above by the expected number of Pareto points there, which can be derived easily
e.g. from results ofB-NS]) tends to zero whem — oo. Analogous estimate is
valid for the Poisson sample fromwith intensity densityndw. Further, the stan-

dard arguments (e.g. results of Prokhorov on the total variation differences between
binomial and Poisson random values) show that one can find a coupliidgsife

m sample from/ and of the standard Poisson point process with intensity density
m dw on I which coincide onsS,, with probability converging to 1 aa — oo. It
follows that the centered normalized distributions for the number of Pareto points
in the samples of fixed size and in Poisson point processésonverge to the
same limit as the sample size increases indefinitely. Summarizing this sketch of a
proof, we claim

2.1.6 Corollary. The number of Pareto extremal points in an iid size m sample with
independent coordinates is asymptotically normal, with expectation and variance
both growing asn” m whenm — oo.

2.2. Convex hull vertices.Let P be a convex body itV-dimensional linear space

E andX be aniid sizem sample from uniform distribution i®. The distribution

of the number of vertices of convex hull & has been discussed in literature many
times. Detailed surveys of what is known can be foundSeoH or [Buc], and

here | just sketch the results relevant to our situation, restricting my attention to
asymptotics.

2.2.1. Asymptotics of the number of convex hull verticesLet X be the sizen
iid sample fromP andC (m) the number of vertices of the convex hull ¥f The
following is known about the asymptotics 6f(m) for m — oo:

e Let P be asimplepolyhedron, which means that near each veRdsz affinely
isomorphic to the positive orthant (or, equivalently, each vertex belongs to exact-
ly N faces). Then the expectation 6{m) grows asfo(P)cy InY 1 m, where
fo is the number of vertices af andcy is a constant depending only on the
dimension Pw].

e If P is strictly convex with smooth enough boundary, then the expectation of
N (m) grows agn™=D/(N+D (Raynaud, Wieacker, see references3not]).

e Let the dimensionv = 2 and P be either a polygon (all plane polygons are
simple) or strictly convex plane domain with smooth boundary. Then the growth
of the variance ofV (i) is of the same order as that of the expectation and the
central limit theorem hold<Gr].

The intuition behind these results is that, similarly to the case of vector extremal
points, the vertices of the convex hull of large sample concentrate near the boundary,
more specifically, in a neighborhood of the boundary where the “floating volume”
[Bi, BL] — the function which associates to a point the minimal volume of the
piece cut from the body by a hyperplane through the point — is small. As in the
extremal vertices case, this justifies the replacement of the large fixed size sample
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by the Poisson sample as a valid approximation for the convex hull. In this paper
we concentrate on this Poisson approximation.

2.2.2. Limit case: orthant. Here we deal withP a simple polyhedron. To localize
the vertices of the convex hull of the sample “close” to a verteR pive associate
to P its dualsimplicial fan Recall that this is the partition of the spadé&" of
linear functionals oV into the simplicial cones, one for each facetrofThe cone
corresponding to the facét consists of the linear functionals attaining maximum
at a (relative) interior point of". The cones of maximal dimensiavw correspond

to the vertices of? and their number is thereforg(P). We will denote byC), the
cone associated to the vertgyof P.

A point in a closed subset ¢ W is an extremal point of the convex hull af

if it maximizes a linear functional oX . If we restrict the linear functional whose
maxima onX we consider to a con€ C W*, we get a smaller subset of extremal
points which we denote as exttX) C X. If C = W* — {0}, extre(X) is again
just all the extremal points of the convex hull ¥f

Clearly, ext(X) = Nyeryp) EXtic, (X). Fix a vertexp of P (and denote”, just
asC to save on typing). The extremal points in exttX) flock aroundp and it is
convenient to study those subsets independently.

As the operation of forming the convex hull commutes with affine transformations,
one can assume thatis at the origin and that near the polyhedron coincides
with the negative orthariv_.

Now we focus on the Poisson samptefrom P with intensity densitym dw.
Equivalently, one can assume théts the intersection of:Y/V P with the standard
Poisson samplé from the negative orthari¥_, similarly to the construction of
2.1.2. Again, one can define tiieconvex hull of the whole (a.s. infinite) Poisson
point procesg. Unlike the Pareto case, however, the seCeéxtremal points of
the convex hull o N (mY/N P) is not equal the set of thé-extremal points of
the convex hull ot (intersected wittm /N P): the latter set is smaller in general.
One can show that the difference between these random sets is small enough, so
that the main contribution is just the part of theconvex hull of¢ falling within
mYN P. We will give the details elsewhere and refer to this result only to justify
the attention to the procegsconvex vertices of.

We notice that th&-convex hull of the standard Poisson sample fidm equals
almost surely the plain convex hull (recall that in our assumpt®@ns W., the
Pareto cone), and that the vertices of o@mare all Pareto extremal points §n
Somewhat more surprising is that the logarithmic transformation (2.1.1) takes the
process of convex hull vertices into ti&-supporting point process for an adequate
.

We preserve the notations of 2.1.2 (so thaare the coordinates ai andW_ =

{zi < 0,i = 1,..., N}). The condition thatv is a vertex of con) is equiv-
alent to the existence of a linear functiodal= > a;z;,a; > 0 whose maxi-
mum on¢ is attained atw: a = I[(w) > [(w’) for all w’ € &. Any hyperplane
H ={)_aizi =a, a <0, q; > 0} can be obtained from a fixed hyperplane,
say Hy = {3z = —1}, by coordinate-wise dilations; + «;z;,x; > 0,i =
1,...,N.
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In (x, h) coordinates the hyperplar, is given by

o =1 (2.2.1)

The equation (2.2.1) describesl the hypersurface bounding the set
S ={(. ) h=In () ity . (2.2.2)
The coordinate-wise dilations are just the lshifts by vectorgq, ..., Inky) in

y-coordinates. Summarizing, this shows that a point is a vertex of the convex hull
of the samplé if and only if it is an.¥’-supporting point fol’ given by (2.2.2) after

the transform (2.1.1). The assumption A is clearly satisfied. The intensity measure
is, as in 2.1.2¢~N" dhdx, implying B.

Therefore, we immediately obtain the following results.

2.2.3 Proposition. Let & be the standard Poisson point processiih (with Le-
besgue intensity measure) akd be the process of convex hull vertices §oLet

&4 be the image ofc under transformation (2.1.1). Then the rescaled procgss
defined as in (1.8) converges in distribution to a generalized Gaussian random field
supported by V and invariant with respect to shifts along M as oc.

Proof. Immediate. O

Analogously, we get the central limit theorem for the number of convex hull vertices
for £ within the inflated polyhedrom®™ P.

2.2.4 Corollary. The number of points ¢f within m/"N P is asymptotically nor-
mal with both expectation and variance growinglaém whenm — oo.

2.2.5 Convex hull of the fixed size sample i®?. The results obtained so far form

a compelling evidence that the central limit theorem for the number of vertices of
convex hull of large fixed size samples holds for any simple polyhedronhis

is indeed the case. The detailed proof will be presented elsewhere, because, while
no new ideas are involved, some rather tedious technical estimates should be done.
The lacking pieces are the following:

e One has to work out the size of the relevant neighborhood of the boundary of
P which contain almost all extremal points of the convex hull for both binomial
and Poisson samples and small enough to provide the coupling one needs;

e One has to estimate the difference between the sefsexftremal points of the
convex hull of the Poisson sample fromand the set of-extremal points of
convex hull of¢ falling into P. This difference can be shown to have both expec-
tation and variance of order'In' m so that its contribution is small compared
with that of extg (&) N P;

e One has to estimate the overcount of the convex hull vertices caused by the fact
that some of them ai€,-extremal for several verticgs Intersection of different
conesC, , = C, N C, is contained in a linear subspatec W* of positive
codimension and each point, that is a vertex which is ligthandC,, extremal
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in the convex hull ofX, is a vertex of the convex hull for projection &falong

the annulator of.. The number of such convex hull vertices in less dimensional
situation can be estimated and is of smaller order than the main contributions of
C,-convex hull vertices.

2.2.6. Limit case: paraboloid. Assume now that the convex body ¢ W has
smooth enough boundary and is strictly convex in the sense that the second fun-
damental form is positive definite everywhere. Repeating the mantra of previous
sections one is led to the standard Poisson sample with Lebesgue intensity measure
in the inflated body. P. Again, as the convex hulls formation commutes with the
affine transformations, one can always transfarmto a body P, of the same
volume with origin on the boundary, tangent plane at the origin coinciding with

V c W and with given second quadratic form at the origin (say, |2). The
smoothness of the boundary implies that at arbitrarily large vicinity of the origin,
P, is arbitrarily close to paraboloift = {h < — ) xl?} (we assume thdt; } form

a coordinate system owi, as in the setup of section 1). Hence the limiting point
process approximating the vertices of the convex hull of a strictly convex body
near a point is the process of convex hull vertices for the Poisson sample (with
Lebesgue intensity) fron®. A pointw € & belongs to the convex hull &fif and

only if there exists a hyperplane througtbounding a halfspacH; = {h > [(x)},

[ linear, without further points of.

The transformation

xr—)x;ht—>h+2xi2 (2.2.3)
takes the paraboloi# into the halfspacé¢:z < 0} and the family of halfspacef;
into the family of shifts of the set

S ={h=) xf).

Therefore, the transformation (2.2.3) takes the convex hull vertices intg tbigp-

porting points of its image. The assumption A is clearly satisfied. The Lebesgue
measure is preserved by (2.2.3), and the resulting sample is standard Poisson in the
halfspacgh < 0}, whence the assumption B is satisfied too.

2.2.7 Proposition Let& ¢ be the transformation of the convex hull vertices process
for the standard Poisson sample in the infinite paraboloid P gits rescaling de-
fined asin (1.8). Then, convergesto a generalized Gaussian process concentrated
onv.

2.3. Large-scale structure of the Universe Another area of applications of the

& -supporting points processes is related to the asymptotic solutions of the Burgers
model for turbulence with random initial data, which is used commonly as a work-
ing approximation for the evolution of the large-scale structure of the Universe. The
body of literature dedicated to this equation is enormous, and | mention here only
the book [5S9 and recent paperé&MS, MSW] as starting points and collections

of references.
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In the limit of vanishing viscosity, the solution of the Burgers equatidi’ifwith-
out external forces) and with potential initial velocity= 9Sp/9x, Sp : R" — R
is given by

v (x) = 38 /9x; S; = e/t

_ 2
fix) = Sup[fo(y) - u} . (2.3.1)

yev 2t

If Sois arandom function and oscillates strongly enough, then only its local maxima
matter. A standard simplifying assumption (valid, e.g. in the zero-range shot-noise
model) is that the positions and heights: of these local maxima form a Pois-
son proces§ in R” x R. Another situation where the Poisson process of maxima
realizes is the case of Gaussian random figldUnder some assumptions on the
correlation function forf, it is shown in MSW] that the process of relevant local
maxima ofo; f(x/L) (whereo; = L?In L is the standard scaling in the theory

of extremal values of Gaussian processes) converges in appropriate sense to the
Poisson point process with the intensity* dhdx.

Whenever the Poisson approximation for the local maxima process is valid, one can
apply the approach of this paper. The solutions of (2.3.1) are then just the bound-
ary of the union of alk-supporting sets, where the templateis the paraboloid

{h > |x|3}. The supporting points of this process correspond in the physical picture
to the matterless voids in the Universe.

The results of section 1 imply the central limit theorem for the number of such
areas, if the density df decreases rapidly enough. Details are straightforward and
are omitted.

3. Proofs

3.0. In this section the proofs of the technical results are given.

3.1. We will need some constructions first. L&y g be given by
Bap={(x,h):h=A+B|x""}C W,

with ya the exponent from the assumption A. One can chotsk large enough
ands > 0 small enough so that the sum#f, g with the horizontab-disk Ks =
{(x,0) :|x|] <38} C Viscontained in¥:

Bap+KsCS .

We fix theseA; B, § once and forever and deno#, g simply as%. Further, we
fix a latticeL in V such that thé-neighborhood of. in V is the whole ofV.

3.1.1 Lemma. For anyx € V there exists a lattice poirite L such that# +1 C
S +x.

Proof. The §-neighborhood ok contains a lattice poirit whenceZ + (I — x) C
B+ Ks C 7. |
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3.2. Proof of the Proposition 1.7.1.0ne has, obviously; (w1, ..., wy) < r1(w;)
for anyi.

3.2.1 Lemma. The functionr1(w) is bounded and decreases more rapidly than
any exponent of h(w) d@sw) — —oc:

r1(w) < A(C) exp(C min(h(w), 0)) ,
for any positiveC.

Proof. To estimate(w) we use the following discretization argumentulis sup-
porting and¥” + (x, h) is the supported set, then, by Lemma 3.1.1, there exists a
lattice point/ within §-distance toc, such that? + (I, h) € & + (x, h). Now

h = h(w) — ¢(x(w) — x)
< h(w) — ba — aalx(w) — x|
< (h(w) — ba +apd — anlx(w) — 1) ,

(assumption A and associated constants used). HenégYas w) = 0, theé&
content of + 1 + h(w) + h(l), whereh(l) = —bp +aad —aa|x(w) — 1|, vanishes
as well. If we denote as: (k) the u-content of4 + h, then the probability that
E(#B + h(w) + h) = 0is just exp—m (h(w) + h)). Forh, k' < hg < 0 one has
m(h+h") > m(h) —ah’ for a positive constant, whence the latter probability is at
mostce " hw) g=aanlx(w)=Il for g positivec. The sum of these probabilities over
all I € L majorates the probability that is supporting, which gives the estimate

[EI(w, %-) < efm(h(w)) Zefa/.\ulx(w)fl\ ,
leL

where the second multiplier obviously converges to some contindepsyiodic,
and, therefore, bounded function. Now) > C(Aa — h)1H"/v2 for a positiveC
andAp, ya from assumption A. This proves the Lemma. O

Proof of 1.7.1: Final The rest is simple. Indeed, i~ = min; (h(w;)), hy =
max; (h(w;)), thenr; < A(C) exp(C min(h_, 0)) (Lemma3.2.1), anfl]; p(w;) <
A’é exp(—kCgh.). The product of these two functions, f6r > 2Cg, is O(exp
(—Cgmax(thy, —h_))); maxthy, —h_) = max |h(w;)|, and the Proposition
1.7.1 follows. O

3.2.2Remark. Actually, the same reasonings prove thatforany 0, the function
rE(wa, ..., wp) [; p(w;) is bounded. This fact will be used later.

3.3 Next we prove that the apexes of the sets supported by a point, are localized
nearV.

3.3.1 Proposition The probabilityP (w, H) thata pointw supports a st +(x, h)
with 7 < H decreases exponentially whéh— —oo:

P(w, H) < Ah(w)" exp(CH)

for some positive A, C



178 Y. Baryshnikov

Proof. This follows essentially from the construction of Lemma 3.2.1. The probabil-
ity in question is majorised by the sum of probabilitit{g (% +1+[h(w)+h]) = 0}
taken over only such where thei (1) < H + |aa|8. The number of lattice points at
distance< R grows asRk”; the summand decreases as@xua R), and the sum-
mation starts at the distanéeof order(h(w) — H)/aa. An easy estimate implies
thatthe sumis bounded from above by a constant multiple@f) — H)" expla H),

whence the desired inequality follows. O
3.4 Proof of Proposition 1.7.2.Consider two tuples of points W, {w1, ..., wg}
and{w}, ..., w;} at the distancel (that is min ; w; — w}l = d). We want to

estimate the difference
Fer (W, ooy Wi, WY, oo, wp) — re(wa, . widr (W, L wp) (3.4.1)

We can assume that @&l{w; ), h(w’.) are at most.d in absolute value for a constant

a > 0 (unspecified for a while). Indeed, otherwise, by Proposition 1.7.1, all terms
in 3.4.1 are bounded by expsomethingx d and there is nothing to prove. For our
further estimates we will need

da/\1—4a2 < by . (3.4.2)

Clearly, fora small enough, this is satisfied.

Introduce the conek; = {(x, h) : h > [ap —3ad]+balx —x(w)|},i =1,...,k
and similarly K’; for w’.. The setK; contains all sets” + w havingw; on its
boundary and such tha(w) > —ad. Indeed, ifw = (x, ) is such a point, then
one hasi(w;)—h > ap +balx —x(w;)|. Usingh(w;) < ad, h > —ad one derives
balx — x(w;)| < 2ad — ap, whenceh > —ad > [ap — 3ad] + balx — x(w;)].
Denote the intersections of conks, K; with the halfspacéhr < ad} asU;, U’
correspondingly. Le§; = £ N U; is the intersection of the point processwit
U;. Analogously, defing’ = £ N U}. Consider the random valués) andf} (&)
defined as foIIowingf,-(g) = 1, if there exists a se¥ + w C K; supported
by w;, and 0 otherwise. The vaIu%‘(s) is defined analogously. Clearlg},(g-') <

I(wi, §), T;(§) < 1w/, §).

We willuse the shorthan®l " andI, I’ for [ [, I (w;, &), ]’[j I(wf/., g&and[[; 1; (&),
]_[j ij(s) correspondingly. Once agaih,< I, I' < I'.

Let & be the event that there are no pointstoih any of the set;, K} with
h-coordinate larger thamd; by & we denote the complement &

3.4.1 Lemma The probability of¢ is exponentially small with':
P& < Aexp(—C(ad)) ,

for some positive A, C independent{efy, . .., wi}, {w], ..., w;}.

Proof. The integral ofo over K; is of order

h + 3ad —
u)”dh ,

/ Ag exp(—CBh)( o

d
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and the total probability is majorated by the sum of these integrals oveérjall
whence the claim follows. O

We denote byl the indicator function o&'. Set
D=I1—1Is1;D =1 —I¢I' .

The random value®, D’ are, apparently0, 1}-valued, and the expectations of
both of them are exponentially small with Indeed,/ (w;, &) # Is[]; I; (&) if
eitherls = 0, or when for one of-s one had (w;, &) # I;(£), which implies that
w; is £-supporting for a se¥ 4+ w with A(w) < —ad. Both events have probabil-
ities which are exponentially small withuniformly in w;: the former by Lemma
3.4.1, and the latter by Proposition 3.3.1 (where we|luée)| < ad).

The key observation now is that, conditionedérthe random valuek: I 151’ are
independent. Indeed, the event thais &£-supporting, with a supporting set within
K; andwith no points ot in K; above{k = ad} depends only on the intersection
of & with the setU;, and the same is valid for)}s. Fora satisfying (3.4.2), the
setsU; andU]’.,i =1,...,k;j=1,...,1do notintersect. Indeed, otherwise one
would have pointw = (x,h) € U; U U’ which would implyba|x — x(w;)| <

h — h(w;); balx —x(u) ) < h —h(w );h < ad; h(w;), h(w ) < —ad and

e (wi) — x(W))]? + |h(w ) —h(w)? < d2 an incompatible system of inequali-
ties for our ch0|ce ofi. The restnctlons of Poisson point process to non-intersecting
parts of W are independent and the independence in question follows.

Hence, one has

E(Is] x Is1') = E(Is]) x E(I¢1") x P(&) . (3.4.3)
Now,
Frat(wi, ..., wi, wh, ..., w) = E[(Is] + D)(IsI' + D')] (3.4.4)
and
e, ..., wOR WY, ..., w) = E(Ig] + D)E(IsI' + D') . (3.4.5)

Expanding (3.4.4) and (3.4.5), subtracting and taking into account (3.4.3), we get
the expression

E(ID)+EDI)+E(DD")—EIEI'(1—Els)—EIED' —EDEI' —EDED’ (3.4.6)

for the differencey; — 7.

Notice, that for{0, 1}-valued random elements, B, C, ... one has, by Cauchy
inequality,E(AB) < (EAEB)Y/2 E(ABC) < (EAEB [EC)l/3 and so on. Recalling
that/ < 1,1’ < I’ and thereforeD = DI, D’ = D'I’, we deduce that (3.4.6) is
estimated in absolute value by the sum of the absolute values of the summands,

+EI(EI'ED)YY? + (EDENY?EI' + (EDENY2(ED'EI)Y? .
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The difference (3.4.1) is equal to (3.4.6) multiplied[dy o (w;) ]_[j ,o(w;-). By Re-

mark 3.2.2, the term&* [ [; p (w;) and(I")* ]_[j p(w}) are bounded forany > 0.
Hence, the difference (3.4.1) is a linear combination with bounded coefficients of
terms D%, (D)* and 1— Elg(a = 1/3 or 1/4), which uniformly exponentially
decrease witld. The Proposition 1.7.2 is proved. O

4. Concluding remarks

4.0. In this section some ramifications and unsettled questions are discussed.

4.1. Generalized Delaunay triangulations and Voronoi tessellationsThe pro-

cess of¥-supporting points defines implicitly a more rich structure, manifest in
the convex hulls, for example. Specifically, one can associate to (almost every
realization of) the point procegs, the structure of simplicial complex, joining
supporting points by a simplex if and only if there exists a common set they support.
If & is convex, then the resulting simplicial complex can be realized geometrically
as a triangulation (with vertices in the points&gf ) of the hyperpland’.

If the intensity measure df is concentrated o, and the set” is just the cone

{h > |x|}, then we get the standard Poisson Delaunay triangulations.

For the processes associated with the convex hulls of Poisson samples, we get just
the simplicial faces of resulting polyhedral surface.

Dually, one can define the generalizations of the Voronoi tessellations: for each
vertexw of £ consider theV/ -projection of the set formed by the apexes of sets
supported byw (the boundaries of cells of the tessellations by such sets presum-
ably describe the concentration of matter in the Burgers turbulence approach to the
large-scale structure of the Universe).

The central limit theorems of section 1 for the process of supporting points (that
is of O-simplices of the Delaunay triangulations) can be extended without much
difficulty to simplices of all dimensions, so that, for example, an analogue of the
Theorem 1.8.2 holds: the number of simplices of any dimerisafthe generalized
Delaunay triangulation within a large body\ (quasitransversal t¥) is asymp-
totically normal with expectation and variance growing.&sFor the expectations

and the convex hulls of large samples from convex bodies, a similar result — the
growth order of the expectation of the number of faces in all dimensions is the same
—was proved inBi].

4.2. Constants. The results of this paper all deal only with the orders of the as-
ymptotics. The question of constants is quite tricky and | do not know a general
approach. There are some special cases in which the exact densitids, can

be calculated (as certain multidimensional integrals) which will be discussed in a
separate publication.

4.3. Vector extremal points in generic polyhedra.The results on the asymptotics

of the number of vector extremal points discussed above dealt only with the case of
independent coordinates and Pareto a6ni line with tradition (the expectation

was calculated in many papers in a variety of contexts). | would like to empha-
size here that, their dissemination notwithstanding, the logarithmic asymptotics of
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P

Fig. 3. Facets near which extremal points concentrate are marked.

growths for the expectation (and the variance) of the number of Pareto extremal
points are far from universal or even generic.

Consider the following situation, where the genericity can be treated more or less
precisely. Assume that the points of the sample are uniformly distributed in a con-
vex polyhedrorP. The independent coordinates case correspondsto parallelepipeds
with facets parallel to the coordinate axes.

Itturns out that exactly this latter property is responsible for the logarithmic growth.
More precisely, if any linear subspace parallel to a face® @ transversal to the
coordinate subspaces, then both expectation and variance gref¢’aswherek

is the maximal dimension of a facet Bfbelonging to the”-convex hull ofP. The
logarithmic terms appear when this transversality condition fails.

The figure 3 illustrate this claim. On the left picture, the facet®dfing on the
boundary of itsC-convex hull are two 1-dimensional edges (facing north-east).
Hence the number of Pareto extremal points growa5$. On the right picture,

only the north-easternmost vertex Bflies on the boundary of it§'-convex hull.

In this case, the number of Pareto extremal points has bounded mean and variance
(actually, converges in distribution). In the intermediate case (middle picture), the
independent coordinate case, the logarithmic growth edges in.

One can argue that in natural families (for example, in the fal{lﬂly}geGL W))

of polyhedra, the condition of transversality formulated aboveisatisfied on a
(singular) hypersurface and is therefore not generic.

To finish, under the transversality condition, if the mean grows unboundedly with
m, the central limit theorem can be proved.

I will not give here any details, as these result use different methods than those
employed in the present work, referring 8\].
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