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Abstract. We introduce a stochastic point process ofS-supporting points and prove that
upon rescaling it converges to a Gaussian field. The notion ofS-supporting points specializes
(for adequately chosenS) to Pareto (or, more generally, cone) extremal points or to vertices
of convex hulls or to centers of generalized Voronoi tessellations in the models of large scale
structure of the Universe based on Burgers equation. The central limit theorems proven here
imply i.a. the asymptotic normality for the number of convex hull vertices in large Poisson
sample from a simple polyhedra or for the number of Pareto (vector extremal) points in
Poisson samples with independent coordinates.

0. Introduction

0.1. Imagine a sea bottom which someone attempts to measure using a measuring
rod. If the rod is thick, the measuring is not ideal, and not all points at the bottom
will be touched. In this paper we deal with the model in which the “bottom” is a
realization of some Poisson point process, homogeneous in the horizontal direction.
The points thatare touched form a certain new point process and its properties are
the subject of this paper. The Figure 1 illustrates the model. We will call the point
process loosely described abovethe supporting points process.
This model seems to carry some aesthetic appeal by itself. Our interest in it, how-
ever, is motivated by its intimate connections with several much more attended
problems of applied and geometric probability theory.

0.2. In this paper we prove central limit theorems for the supporting point process
in the situation where the templateS modeling the measuring rod of the informal
description above is described as the superset of a function growing at least linearly
and at most polynomially at infinity, and the intensity rate of the underlying Poisson
point process is bounded by the exponent of the height and is essentially positive at
negative heights (exact formulations see in section 1, assumptions A and B). These
assumptions are not, of course, necessary, and can be relaxed in a variety of ways;
the form used in this paper is a result of efforts to minimize volume of the paper
while retaining the scope of applications of results.

Y. Baryshnikov: EURANDOM, Eindhoven Institute of Technology, PB 513, 5600 MB
Eindhoven, The Netherlands. e-mail:baryshnikov@eurandom.tue.nl

Mathematics Subject Classification (1991): 60D05, 60G55, 52A22



164 Y. Baryshnikov

Fig. 1. The “measuring rod” process. Supporting points are filled. TemplateS is depicted
as the dotted line.

0.3. The central limiting theorems we prove here, while apparently new, are not
very surprising. The main novelty of this paper are the applications of these results,
which include the investigations of the point processes of Pareto (vector) extremal
points in a sample with independent coordinates and the processes of the convex
hulls vertices for the standard Poisson sample from infinite orthant or from the
interior of the paraboloid. These latter processes are well-known to be the main
ingredients in the study of the asymptotic behavior of convex hulls of largeiid
samples from uniform distribution in simple polyhedra or strictly convex bodies
with smooth boundary, respectively. We derive the central limit theorems for all
these processes and deduce, for example, the CLT for the number of Pareto extremal
points with independent coordinates, a long standing problem.
Yet another application is the CLT for some point processes associated with
asymptotic solutions of the Burgers’ equation

∂v/∂t + v∂v/∂x = ε1v

in the inviscous limit,ε → 0. These processes describe the spatial distribution of
matterless cells in some models of the large scale structure of the Universe.
There are certainly other models of applied probability theory which fit into the gen-
eral scheme of supporting points processes, for example the crystal growth model
of Johnson-Mehl (see[M] for a thorough treatment). They will not be discussed
here to save place.

0.4. Plan of the paper.Section 1 contains the basic construction and main re-
sults, Theorems 1.8.1 and 1.9.2. The applications of these results to the problems
discussed above are given in Section 2. The proofs of all technical results are con-
tained in Section 3 and miscellaneous results and remarks in Section 4. The proofs
are rather elementary and use the moments method in the guise of B-mixing and
exponential clustering.
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1. Constructions and results

1.1. Basic notations.We consider point processes in EuclideanN = (n + 1)-
dimensional spaceW = V × R, V ∼= Rn, with generic point denoted asw =
(x, h), x ∈ V, h ∈ R. The projections to corresponding factors will be denoted as
x(·) andh(·) correspondingly, that isx(w) = x andh(w) = h for w = (x, h).
We will also imply thatV andR are embedded intoW and will sometimes denote
(x, 0) simply asx and(0, h) simply ash when there can be no confusion.
It will be assumed throughout the paper, that in the Euclidean metric onW , the
V -plane andh-axis are orthogonal. The metric onW as well as the induced metrics
onV andh-axis is denoted as| · |.
The sums of set are understood always in Minkovski sense; the notationsA+w, A+
x, A+h for A ⊂ W are reserved forA+{w}, A+{x}, A+{h} correspondingly.

1.2. Assumption A. The role of the “measuring rod” of informal discussion in
the Introduction is played by a fixed subsetS ⊂ W which we assume to be a
supergraph of a function,

S = {(x, h) : h ≥ φ(x)} ,

where the functionφ is assumed to be continuous and to grow at least linearly and
at most polynomially at infinity:

aA + bA |x| ≤ φ(x) ≤ AA + BA |x|γA (A)

for some positivebA, BA andγA ≥ 1.
The interior ofS we denote bySo = {(x, h) : h > φ(x)}, the boundary ofS as
∂S = {(x, h) : h = φ(x)}.
1.3. Poisson point process.Let ρ be a locally integrable nonnegative function on
R. We consider the Poisson point processξ on W with the intensity measureµ
given by the densityρ(h)dhdx. We assume that theµ-content of the shifted set
S + h is finite for allh, and denote thisµ-content as

k(h) =
∫
S+h

ρ(h)dh dx .

By construction,µ(S + w) = k(h(w)).
We will use the same notationξ for the random measure associated with discrete
point processξ (that is the sum of deltas at points ofξ ).

1.4.1. Definition. A pointw is (S, ξ)-supporting (or simplyξ -supporting, or just
supporting when the context is unambiguous), if there exists a pointw′ such that
ξ(So + w′) = 0 and w ∈ ∂S + w′. Such a setS + w′ is calledsupported set,
andw′ its apex.
The set of(S, ξ)-supporting points inξ will be denoted asξS.
Forw′ = (x′, h′), the “depth”h′ is exactly the first instant of hitting the “bottom”,
that is an element ofξ , by a set in the family of vertical shiftsS+ x′ + h, −∞ <

h < ∞, conforming with the intuitive description from the Introduction.
The point processξS is the central object of this paper.
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1.5. Assumption B. Throughout the paper we will assume that the intensity rate is
bounded by an exponential function of the negated height and is essentially positive
whenh → −∞, that is

ρ(h) ≤ AB exp(−CBh)) everywhere;ρ(h) ≥ aB > 0 for h ≤ 0 , (B)

whereAB, aB andCB are some positive constants.

1.6. Correlation functions. For a point processη in W , the value of the correla-
tion functionr

η
k : Wk → R at the tuple{w1, . . . , wk} of pairwise distinct points

wi ∈ W, wi 6= wj can be defined as

lim
ε1→0,...,εk→0

Eηη(w1 + ε1B) · · · η(wk + εkB)

εN
1 · · · εN

k vol(B)k
,

whereB is (say) the unit ball inW .
In our situation the correlation functions can be calculated as follows. For a point
w ∈ W let I (w, ξ) = 1 if w is ξ -supporting and 0 otherwise. For ak-tuple
{w1, . . . , wk} of pairwise distinct points inW , let

r̄k(w1, . . . , wk) = Eξ

∏
i

I (wi, ξ) .

The functionr̄k is the probability that all points in the tuple areξ -supporting. The
correlation densities for the supporting point processξS are then equal to

rk = r̄k ·
∏
i

ρ(h(wi)) dwi .

This follows from the standard properties of the Poisson point processes: indeed,
conditioned on{w1, . . . , wk} ⊂ ξ , the point processξ − {w1, . . . , wk} is again
Poisson with the same intensity measure.

1.7. Properties ofnSS. Henceforth bothA andB are assumed.
The distribution of the point processξS is, apparently, invariant with respect to
shifts alongV ⊂ W . Further, asξS ⊂ ξ , its first moment measure has a density
r ≤ ρ with respect to the Lebesgue measure onW (one hasr = r1 as defined
above). The following Proposition says thatξS is essentially concentrated nearV :

1.7.1. Proposition. The correlation functionsrk of ξS decrease exponentially with
|h|:

rk(w1, . . . , wk) ≤ Ak exp(−Ck max
i

|hi |)

for some positive constantsAk, Ck.

Proof of this and the following Propositions will be given in Section 3.
The next important property of the correlation densitiesrk is the exponential clus-
tering.

1.7.2. Proposition. For any natural k, l there exist positive constantsAk,l, Ck,l

such that
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|rk+l (w1, . . . , wk, w
′
1, . . . , w

′
l ) − rk(w1, . . . , wk)rl(w

′
1, . . . , w

′
l )|

≤ Ak,l exp(−Ck,ld) ,

where d is the distance between sets{w1, . . . , wk} and {w′
1, . . . , w

′
l} (the smallest

of the pairwise distances between points in these finite sets).

1.8. These two Propositions imply the main result on the asymptotics of the pro-
cesses ofS-supporting points.
Let ξS,V = x(ξS) be thex-projection ofξS. The point processξS,V is homoge-
neous inV (as the distribution ofξS is invariant with respect to shifts alongV ) and
has finite intensity densityrV dx with rV = ∫ ∞

−∞ r(0, h) dh (the integral converges
by 1.7.1). Consider the rescaled random measure given byξS,V ,λ(A) = ξS,V (λA)

for BorelA ⊂ V , and normalize it

νλ = ξS,V ,λ − E(ξS,V ,λ)√
λn

. (1.8.1)

The following result is our main tool in applications:

1.8.1. Theorem.Asymptotically, asλ → ∞, ξS,V ,λ(A)/λn converges tor vol(A)

in probability, andνλ converges in law to a generalized Gaussian random field
with covariance kernelCδ(x − x′), C = (

∫
V

q2,V (0, y)dy + rV )1/2, whereq2,V is
the second cumulant density forξS,V .

Proof. It follows more or less straightforward from the Propositions 1.7.1 and
1.7.2. Proposition 1.7.1 implies thatξS,V has finite constant (asξS is invariant
under shifts alongV ) intensityrV = ∫ ∞

−∞ r(h)dh. Further, Propositions 1.7.1 and
1.7.2 together imply thatξS,V clusters exponentially. Indeed, denote byrk,V the
k-th correlation function forξS,V . It is easily seen thatrk,V (x1, . . . , xk) is just
the integral ofk-th correlation function for the supporting point processξS along
the fiber consisting of all(w1, . . . , wk)’s projecting to the tuple{x1, . . . , xk},

rk,V (x1, . . . , xk) =
∫

h1,...,hk

rk((x1, h1), . . . , (xk, hk))dh1 · · · dhk ,

whence the estimate follows immediately.
The cumulant densitiesqk(x1, . . . , xk) for ξS,V are related to the correlation func-
tionsrk,V via logarithmic transformation (see, e.g. [Ru], Ch. 4.4, “algebraic meth-
od”), and it is standard that the exponential clustering ofrk,V is equivalent to the
exponential decreasing ofqk(x1, . . . , xk) as a function of the differencesxi − xi+1
at infinity ([Ru] again1). This latter property implies the Brillinger’sB-mixingfor
the point processξS,V [Bri ]:∫

V k−1
|qk(x1, . . . , xk)|dx2 · · · dxk < ∞

for all k and, consequently, the central limit theorem forξS,V (see, e.g. [Iv ]). ut

1Although in this reference just the equivalence of clustering ofr and vanishing ofq at
infinity is shown, the modification of the result to theexponentialdecreasing is immediate.
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1.9. As a corollary, one can deduce the central limit theorem for theξS-content
of reasonably behaving large open subsets ofW . The condition we need is the
following. Let 3 ⊂ W be open and3V = 3 ∩ V be its intersection withV .

1.9.1. Definition. We say that3 is quasitransversalto V if the boundary of3V

is the intersection of the boundary of3 with V .

1.9.2. Theorem.For any open bounded3 ⊂ W , let N(λ) be the number of points
of ξS in λ3, i.e.N(λ) = ξS(λ3). If 3 is quasitransversal toV and has nonempty
intersection withV , then:
a) both expectation and variance ofN(λ) grow as|3V |λn asλ → ∞:

EN(λ)

|3V |λn
→ e; VN(λ)

|3V |λn
→ v

for some positive constantse, v (depending onS, ρ only), and
b) the distribution ofN(λ) is asymptotically normal:

N(λ) − |3V |λne√|3V |λnv
→ N(0, 1)

in distribution.

Proof. The claim of Theorem 1.9.2 apparently follows from Proposition 1.8.2 for
cylinders over an open base inV : if 3 = x−1(x(3)), thenξS(3) = ξS,V (3∩V ).
To prove the claim for arbitrary open bounded3 ⊂ W , we make first some inter-
mediate estimate. LetA be the symmetric difference between3 and the cylinder
over3V , A = (x−1(3V ) − 3) ∪ (3 − x−1(3V )).

1.9.3. Lemma. If 3 is quasitransversal toV , both the expectation and the variance
of ξS-content ofλA are0 (λn) for λ → ∞.

Proof. This can be deduced as follows. Denote the volume of the intersection of
r-tube aroundV with A asb(r). Then-dimensional Lebesgue measure ofĀV =
Ā ∩ V = ∂3V vanishes (herēA is the closure ofA), and the condition of quasi-
transversality implies thatb(r)/r → 0 asr → 0. The expectation ofξS-content
of λA is given byEξS(λA) = ∫

λA
r(x)dx can be then estimated as (hereA1 and

C1 are the constants provided by Proposition 1.7.1)

∫
λA

r(x)dx ≤ A1

∫
λA

e−C1|h(x)|dx = A1λ
n+1

∫
A

e−C1λ|h(z)|dz

= A1λ
n+1

∫ ∞

0
e−C1λrdb(r) ,

which is 0(λn) by Tauberian theorem for Laplace transforms [P].
Similarly, letb2(r) be the volume ofA2 ⊂ W2 within the distancer to theV -di-
agonal1V = {(x, x), x ∈ V } ⊂ W2. The measure ofA1V

= A2 ∩ 1V in V 2 is
zero, whence, by quasitransversality condition again,b2/r

n+2 → 0 asr → 0 (the
exponentn + 2 here is the codimension of1V in W ).
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The variance ofξS(λA) is given by
∫

(λA)2
q2(x, y)dx dy +

∫
λA

r(x)dx .

The second term is already known to beo(λn). The integral in the first term is
estimated in absolute value as (hereA1,1 andC1,1 are the constants implied by
Proposition 1.7.2)

A1,1

∫
(λA)2

e−C1,1|x−y|dx dy = A1,1λ
2n+2

∫
A2

e−C1,1λ|z−t |dz dt

= A1,1

∫ ∞

0
e−C1,1λr/2db2(r) ,

which iso(λn) by Tauberian theorem again . ut
Lemma 1.9.3. implies evidently the part a) of Theorem 1.9.2.
To prove the part b) it is enough to notice that the difference of (centered)ξS-con-
tents ofλ3 andx−1(λ3V ), the cylinder over its intersection withV , is majorized
by the (centered)ξS-content ofλA, which is of smaller order than any of them.ut

2. Applications

2.0. In this section we consider the applications of our main results, Theorems
1.8.1 and 1.9.2.

2.1 Pareto extremal points.ConsiderN = n + 1-dimensional vector spaceW
and a convex coneK ⊂ W . This cone defines a partial (“vector”) order onW :
z >K z′ ⇐⇒ z − z′ ∈ K. The case we will be interested here is that of Pareto
cone, that is of positive orthantKP = {z : zi > 0, i = 1, . . . , N}.
Given a subsetX ⊂ W , one definesK-extremal points inX (or Pareto extremal
for KP ) as follows: a pointz ∈ X is K-extremal, if there is noz′ ∈ X, z 6= z′, such
thatz′ >K z.

2.1.1. Pareto extremal points with independent coordinates.Let X be a finite
iid sample of sizem with independent coordinates without atoms, andP(m) is the
number of Pareto extremal points inX. What can be said aboutP(m)?
The pioneering work [B-NS] provides with the following information:

• The expected number of Pareto extremal points, explicitly given as “multidimen-
sional harmonic series”

EP(m) =
∑

1≤i1≤···≤in≤m

1

i1 · · · · · in
,

grows as logn m/n!;
• In dimensionsN = 2, 3 the growth of variance is of the same order logn m as

that of expectation;
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• In dimensionN = 2, the distribution ofP(m) is asymptotically normal (actually,
the generating function ofP(m), closely connected with the symmetric group
paraphernalia, has been found explicitly).

The series representations for the variance ofP(m), also reminiscent of “multi-
dimensional harmonic” were found in [In ]. However, it is difficult to extract the
asymptotic behavior from them.

2.1.2. Pareto extremal points and supporting point process.The connection
between just described model and supporting point processes is rather immediate.
First, the monotone increasing continuous coordinate-wise changes (that is changes
z = (z1, . . . , zN) 7→ (f1(z1), . . . , fN(zN)) with functionsfi strictly increasing
and continuous) do not change the Pareto partial order. Takingfi to be the dis-
tribution function ofzi , we reduce the problem to the case whenz is uniformly
distributed in the unit cube. For convenience, we shift the cube by(−1, . . . ,−1) to
arrive at the uniform distribution in the cubeI = {−1 ≤ wi ≤ 0}, i = 1, . . . , N .
The intuition suggests that the chances to find an extremal point somehow far from
the union of coordinate hyperplanes are slim, whence it is enough to concentrate on
the domain close to the coordinate hyperplanes. The restriction of theiid sampleX
of large sizem to this domain is nearly Poisson. It is intuitive, therefore, to consider,
as an approximation step, a variation of the initial problem, where the sampleX

is a realization of the Poisson point process with intensity densitym dw in I , or,
equivalently, with Lebesgue intensity measure inm1/NI .
One can extend the probability space so as to assume thatX is just the intersec-
tion of m1/NI with the standard Poisson point processξE (with Lebesgue intensity
measure) onW− := {z : zi ≤ 0, i = 1, . . . , N}. Moreover, it is clear that Pareto
extremal points inξE ∩ (m1/NI) is just the Pareto extremal points ofξE which lie
in m1/NI .
Now we choose new coordinates onE−:

yi = − ln(−zi), i = 1, . . . , N . (2.1.1)

This change takesW− to RN ∼= W and is again monotone and coordinate-wise,
thus Pareto order preserving. Let

h = 1

N

N∑
i=1

yi .

The hyperplaneV := {h = 0} has dimensionn. We choose some orthonormal co-
ordinates(xi), i = 1, . . . , n onV and take theh-axis to be spanned by(1, . . . , 1).
This makes(xi, h) an orthogonal coordinate system onW . One expresses the func-
tionsyi in the new basis,yi = h − li (x), i = 1, . . . , N , whereli are some linear
functions onV (one has

∑
i li = 0).

The Pareto partial order onW is given by the conditions

(x, h) >K (x′, h′) ⇐⇒ yi(x, h) > yi(x
′, h′) for all i = 1, . . . , N ,

or, equivalently, that(x, h) ∈ So + (x′, h′) for S given by
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Fig. 2.Logarithmic transformation of the negative orthant.

S = {(x, h) : h ≥ li for i = 1, . . . , N} . (2.1.2)

In other words,S is defined as in assumption A with the functionφ = maxi li on
V .
By definition, ifw is Pareto extremal inX, thenw+So∩X is empty andw ∈ w+S.
It follows thatw = (x, h) is Pareto extremal if and only if it isS-supporting for
ξ = X.
It remains to find the intensity measure in the new coordinates: an immediate cal-
culation gives that its density with respect to Lebesgue measure ise−Nh.

2.1.3 Limit theorems for Pareto extremal points. Now we are in the position to
apply the results of the previous section. Indeed, the assumptions A and B can be
checked immediately. The supported set templateS defined by the function (2.1.2)
satisfies apparently the conditions of assumption A. That the intensity density of
the Poisson point process satisfies assumption B is clear as well.
Hence we arrive at the following result.

2.1.4 Proposition. Let ξ be the standard Poisson point process inW− (with Le-
besgue intensity measure) andξP be the process of Pareto extremal points inξ .
LetξS be the image ofξP under transformation (2.1.1). Then the rescaled process
νλ defined as in (1.8) converges in distribution to a generalized Gaussian random
field supported by V and invariant with respect to shifts along V asλ → ∞.

Proof.This is an immediate corollary of the Proposition 1.8.1. ut
The transformation (2.1.1) sends the cubem1/NI to the displaced positive orthant
3λ = {yi ≥ −λ, i = 1, . . . , N}, whereλ = (1/N) ln m. As 3λ = λ31, and the
set31 is clearly quasitransversal toV , we are in the situation of Theorem 1.9.2,
which implies the central limit theorem for the number of Pareto points in a Poisson
sample with independent coordinates:

2.1.5 Corollary. If X is the Poisson point process in the unit cube with intensity
density m dw. Then the number P(m) of Pareto extremal points in X is asymptotically
normal with both expectation and variance growing aslnn m.

2.1.6. In fact, one can derive from 2.1.5 similar statements for the number of Pa-
reto extremal points in theiid samples of fixed sizem from the unit cubeI . The
estimates for the growth order of the variance for the Poisson sample case can be
modifiedmutatis mutandisto the fixed sizem case implying the logn m growth.
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The central limit theorem in this case is also rather straightforward. Indeed, consid-
er the subsetSm ⊂ I defined asSm = {∏i |zi | ≤ ln2 m/m}. One can show that the
probability to find justonePareto extremal point outside this set (estimated from
above by the expected number of Pareto points there, which can be derived easily
e.g. from results of [B-NS]) tends to zero whenm → ∞. Analogous estimate is
valid for the Poisson sample fromI with intensity densitymdw. Further, the stan-
dard arguments (e.g. results of Prokhorov on the total variation differences between
binomial and Poisson random values) show that one can find a coupling ofiid size
m sample fromI and of the standard Poisson point process with intensity density
m dw on I which coincide onSm with probability converging to 1 asm → ∞. It
follows that the centered normalized distributions for the number of Pareto points
in the samples of fixed size and in Poisson point processes inI converge to the
same limit as the sample size increases indefinitely. Summarizing this sketch of a
proof, we claim

2.1.6 Corollary. The number of Pareto extremal points in an iid size m sample with
independent coordinates is asymptotically normal, with expectation and variance
both growing aslnn m whenm → ∞.

2.2. Convex hull vertices.Let P be a convex body inN -dimensional linear space
E andX be aniid sizem sample from uniform distribution inP . The distribution
of the number of vertices of convex hull ofX has been discussed in literature many
times. Detailed surveys of what is known can be found in [Sch] or [Buc], and
here I just sketch the results relevant to our situation, restricting my attention to
asymptotics.

2.2.1. Asymptotics of the number of convex hull vertices.Let X be the sizem
iid sample fromP andC(m) the number of vertices of the convex hull ofX. The
following is known about the asymptotics ofC(m) for m → ∞:

• Let P be asimplepolyhedron, which means that near each vertexP is affinely
isomorphic to the positive orthant (or, equivalently, each vertex belongs to exact-
ly N faces). Then the expectation ofC(m) grows asf0(P )cN lnN−1 m, where
f0 is the number of vertices ofP andcN is a constant depending only on the
dimension [Dw].

• If P is strictly convex with smooth enough boundary, then the expectation of
N(m) grows asm(N−1)/(N+1) (Raynaud, Wieacker, see references in [Sch]).

• Let the dimensionN = 2 andP be either a polygon (all plane polygons are
simple) or strictly convex plane domain with smooth boundary. Then the growth
of the variance ofN(m) is of the same order as that of the expectation and the
central limit theorem holds [Gr ].

The intuition behind these results is that, similarly to the case of vector extremal
points, the vertices of the convex hull of large sample concentrate near the boundary,
more specifically, in a neighborhood of the boundary where the “floating volume”
[Bi, BL ] – the function which associates to a point the minimal volume of the
piece cut from the body by a hyperplane through the point – is small. As in the
extremal vertices case, this justifies the replacement of the large fixed size sample
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by the Poisson sample as a valid approximation for the convex hull. In this paper
we concentrate on this Poisson approximation.

2.2.2. Limit case: orthant. Here we deal withP a simple polyhedron. To localize
the vertices of the convex hull of the sample “close” to a vertex ofP , we associate
to P its dualsimplicial fan. Recall that this is the partition of the spaceW ∗ of
linear functionals onW into the simplicial cones, one for each facet ofP . The cone
corresponding to the facetF consists of the linear functionals attaining maximum
at a (relative) interior point ofF . The cones of maximal dimensionN correspond
to the vertices ofP and their number is thereforef0(P ). We will denote byCp the
cone associated to the vertexp of P .
A point in a closed subsetX ⊂ W is an extremal point of the convex hull ofX

if it maximizes a linear functional onX. If we restrict the linear functional whose
maxima onX we consider to a coneC ⊂ W ∗, we get a smaller subset of extremal
points which we denote as extrC(X) ⊂ X. If C = W ∗ − {0}, extrC(X) is again
just all the extremal points of the convex hull ofX.
Clearly, extr(X) = ∩p∈F0(P ) extrCp(X). Fix a vertexp of P (and denoteCp just
asC to save on typing). The extremal points in extrCp(X) flock aroundp and it is
convenient to study those subsets independently.
As the operation of forming the convex hull commutes with affine transformations,
one can assume thatp is at the origin and that nearp the polyhedron coincides
with the negative orthantW−.
Now we focus on the Poisson sampleX from P with intensity densitym dw.
Equivalently, one can assume thatX is the intersection ofm1/NP with the standard
Poisson sampleξ from the negative orthantW−, similarly to the construction of
2.1.2. Again, one can define theC-convex hull of the whole (a.s. infinite) Poisson
point processξ . Unlike the Pareto case, however, the set ofC-extremal points of
the convex hull ofξ ∩ (m1/NP ) is not equal the set of theC-extremal points of
the convex hull ofξ (intersected withm1/NP ): the latter set is smaller in general.
One can show that the difference between these random sets is small enough, so
that the main contribution is just the part of theC-convex hull ofξ falling within
m1/NP . We will give the details elsewhere and refer to this result only to justify
the attention to the processC-convex vertices ofξ .
We notice that theC-convex hull of the standard Poisson sample fromW− equals
almost surely the plain convex hull (recall that in our assumptionsC = W+, the
Pareto cone), and that the vertices of conv(ξ) are all Pareto extremal points inξ .
Somewhat more surprising is that the logarithmic transformation (2.1.1) takes the
process of convex hull vertices into theS-supporting point process for an adequate
S.
We preserve the notations of 2.1.2 (so thatzi are the coordinates onE andW− =
{zi ≤ 0, i = 1, . . . , N}). The condition thatw is a vertex of conv(ξ) is equiv-
alent to the existence of a linear functionall = ∑

aizi, ai ≥ 0 whose maxi-
mum onξ is attained atw: a = l(w) ≥ l(w′) for all w′ ∈ ξ . Any hyperplane
H = {∑ aizi = a, a < 0, ai > 0} can be obtained from a fixed hyperplane,
sayH0 = {∑ zi = −1}, by coordinate-wise dilationszi 7→ κizi, κi > 0, i =
1, . . . , N .
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In (x, h) coordinates the hyperplaneH0 is given by

∑
i

eh−li (x) = 1 , (2.2.1)

The equation (2.2.1) describes the hypersurface bounding the set

S = {(x, h) : h ≥ ln (
∑

i

eli (xi ))} . (2.2.2)

The coordinate-wise dilations are just the shifts by vectors(ln κ1, . . . , ln κN) in
y-coordinates. Summarizing, this shows that a point is a vertex of the convex hull
of the sampleξ if and only if it is anS-supporting point forS given by (2.2.2) after
the transform (2.1.1). The assumption A is clearly satisfied. The intensity measure
is, as in 2.1.2,e−Nh dhdx, implying B.
Therefore, we immediately obtain the following results.

2.2.3 Proposition. Let ξ be the standard Poisson point process inW− (with Le-
besgue intensity measure) andξC be the process of convex hull vertices forξ . Let
ξS be the image ofξC under transformation (2.1.1). Then the rescaled processνλ

defined as in (1.8) converges in distribution to a generalized Gaussian random field
supported by V and invariant with respect to shifts along V asλ → ∞.

Proof. Immediate. ut
Analogously, we get the central limit theorem for the number of convex hull vertices
for ξ within the inflated polyhedronm1/NP .

2.2.4 Corollary. The number of points ofξC within m1/NP is asymptotically nor-
mal with both expectation and variance growing aslnn m whenm → ∞.

2.2.5 Convex hull of the fixed size sample inP . The results obtained so far form
a compelling evidence that the central limit theorem for the number of vertices of
convex hull of large fixed size samples holds for any simple polyhedronP . This
is indeed the case. The detailed proof will be presented elsewhere, because, while
no new ideas are involved, some rather tedious technical estimates should be done.
The lacking pieces are the following:

• One has to work out the size of the relevant neighborhood of the boundary of
P which contain almost all extremal points of the convex hull for both binomial
and Poisson samples and small enough to provide the coupling one needs;

• One has to estimate the difference between the sets ofC-extremal points of the
convex hull of the Poisson sample fromP and the set ofC-extremal points of
convex hull ofξ falling intoP . This difference can be shown to have both expec-
tation and variance of order lnn−1 m so that its contribution is small compared
with that of extrC(ξ) ∩ P ;

• One has to estimate the overcount of the convex hull vertices caused by the fact
that some of them areCp-extremal for several verticesp. Intersection of different
conesCp,p′ = Cp ∩ Cp′ is contained in a linear subspaceL ⊂ W ∗ of positive
codimension and each point, that is a vertex which is bothCp- andCp′ extremal
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in the convex hull ofX, is a vertex of the convex hull for projection ofX along
the annulator ofL. The number of such convex hull vertices in less dimensional
situation can be estimated and is of smaller order than the main contributions of
Cp-convex hull vertices.

2.2.6. Limit case: paraboloid. Assume now that the convex bodyP ⊂ W has
smooth enough boundary and is strictly convex in the sense that the second fun-
damental form is positive definite everywhere. Repeating the mantra of previous
sections one is led to the standard Poisson sample with Lebesgue intensity measure
in the inflated bodyλP . Again, as the convex hulls formation commutes with the
affine transformations, one can always transformλP to a bodyPλ of the same
volume with origin on the boundary, tangent plane at the origin coinciding with
V ⊂ W and with given second quadratic form at the origin (say,−| · |2). The
smoothness of the boundary implies that at arbitrarily large vicinity of the origin,
Pλ is arbitrarily close to paraboloidP = {h ≤ − ∑

x2
i } (we assume that{xi} form

a coordinate system onV , as in the setup of section 1). Hence the limiting point
process approximating the vertices of the convex hull of a strictly convex body
near a point is the process of convex hull vertices for the Poisson sample (with
Lebesgue intensity) fromP . A point w ∈ ξ belongs to the convex hull ofξ if and
only if there exists a hyperplane throughw bounding a halfspaceHl = {h ≥ l(x)},
l linear, without further points ofξ .
The transformation

x 7→ x; h 7→ h +
∑

i

x2
i (2.2.3)

takes the paraboloidP into the halfspace{h ≤ 0} and the family of halfspacesHl

into the family of shifts of the set

S = {h ≥
∑

i

x2
i } .

Therefore, the transformation (2.2.3) takes the convex hull vertices into theS-sup-
porting points of its image. The assumption A is clearly satisfied. The Lebesgue
measure is preserved by (2.2.3), and the resulting sample is standard Poisson in the
halfspace{h ≤ 0}, whence the assumption B is satisfied too.

2.2.7 Proposition LetξS be the transformation of the convex hull vertices process
for the standard Poisson sample in the infinite paraboloid P andνλ its rescaling de-
fined as in (1.8). Thenνλ converges to a generalized Gaussian process concentrated
onV .

2.3. Large-scale structure of the Universe.Another area of applications of the
S-supporting points processes is related to the asymptotic solutions of the Burgers
model for turbulence with random initial data, which is used commonly as a work-
ing approximation for the evolution of the large-scale structure of the Universe. The
body of literature dedicated to this equation is enormous, and I mention here only
the book [GSS] and recent papers [AMS, MSW] as starting points and collections
of references.
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In the limit of vanishing viscosity, the solution of the Burgers equation inRn (with-
out external forces) and with potential initial velocityv = ∂S0/∂x, S0 : Rn → R

is given by

vt (x) = ∂St/∂x; St = eft (x)

ft (x) = sup
y∈V

[
f0(y) − (x − y)2

2t

]
. (2.3.1)

If S0 is a random function and oscillates strongly enough, then only its local maxima
matter. A standard simplifying assumption (valid, e.g. in the zero-range shot-noise
model) is that the positionsx and heightsh of these local maxima form a Pois-
son processξ in Rn × R. Another situation where the Poisson process of maxima
realizes is the case of Gaussian random fieldf0. Under some assumptions on the
correlation function forf , it is shown in [MSW] that the process of relevant local
maxima ofσLf (x/L) (whereσL = L2 ln L is the standard scaling in the theory
of extremal values of Gaussian processes) converges in appropriate sense to the
Poisson point process with the intensitye−h dhdx.
Whenever the Poisson approximation for the local maxima process is valid, one can
apply the approach of this paper. The solutions of (2.3.1) are then just the bound-
ary of the union of allξ -supporting sets, where the templateS is the paraboloid
{h ≥ |x|2}. The supporting points of this process correspond in the physical picture
to the matterless voids in the Universe.
The results of section 1 imply the central limit theorem for the number of such
areas, if the density ofh decreases rapidly enough. Details are straightforward and
are omitted.

3. Proofs

3.0. In this section the proofs of the technical results are given.

3.1. We will need some constructions first. LetBA,B be given by

BA,B = {(x, h) : h ≥ A + B|x|γA } ⊂ W ,

with γA the exponent from the assumption A. One can chooseA, B large enough
andδ > 0 small enough so that the sum ofBA,B with the horizontalδ-diskKδ =
{(x, 0) : |x| ≤ δ} ⊂ V is contained inS:

BA,B + Kδ ⊂ S .

We fix theseA; B, δ once and forever and denoteBA,B simply asB. Further, we
fix a latticeL in V such that theδ-neighborhood ofL in V is the whole ofV .

3.1.1 Lemma. For anyx ∈ V there exists a lattice pointl ∈ L such thatB + l ⊂
S + x.

Proof.Theδ-neighborhood ofx contains a lattice pointl, whenceB + (l − x) ⊂
B + Kδ ⊂ S. ut
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3.2. Proof of the Proposition 1.7.1.One has, obviously,̄rk(w1, . . . , wk) ≤ r̄1(wi)

for anyi.

3.2.1 Lemma. The functionr̄1(w) is bounded and decreases more rapidly than
any exponent of h(w) ash(w) → −∞:

r̄1(w) ≤ A(C) exp(C min(h(w), 0)) ,

for any positiveC.

Proof.To estimatēr(w) we use the following discretization argument. Ifw is sup-
porting andS + (x, h) is the supported set, then, by Lemma 3.1.1, there exists a
lattice pointl within δ-distance tox, such thatB + (l, h) ⊂ S + (x, h). Now

h = h(w) − φ(x(w) − x)

≤ h(w) − bA − aA |x(w) − x|
≤ (h(w) − bA + aAδ − aA |x(w) − l|) ,

(assumption A and associated constants used). Hence, asξ(S + w) = 0, theξ

content ofB+ l +h(w)+ h̃(l), whereh̃(l) = −bA +aAδ −aA |x(w)− l|, vanishes
as well. If we denote asm(h) the µ-content ofB + h, then the probability that
ξ(B + h(w) + h̃) = 0 is just exp(−m(h(w) + h̃)). For h, h′ ≤ h0 < 0 one has
m(h+h′) ≥ m(h)−ah′ for a positive constanta, whence the latter probability is at
mostce−m(h(w))e−aaA |x(w)−l| for a positivec. The sum of these probabilities over
all l ∈ L majorates the probability thatw is supporting, which gives the estimate

EI (w, ξ) ≤ e−m(h(w))
∑
l∈L

e−aAa|x(w)−l| ,

where the second multiplier obviously converges to some continuous,L-periodic,
and, therefore, bounded function. Now,m(h) ≥ C(AA −h)1+n/γA for a positiveC
andAA, γA from assumption A. This proves the Lemma. ut
Proof of 1.7.1: Final. The rest is simple. Indeed, ifh− = mini (h(wi)), h+ =
maxi (h(wi)), then r̄k ≤ A(C) exp(C min(h−, 0)) (Lemma 3.2.1), and

∏
i ρ(wi) ≤

Ak
B exp(−kCBh+). The product of these two functions, forC ≥ 2CB, is O(exp

(−CB max(h+, −h−))); max(h+, −h−) = maxi |h(wi)|, and the Proposition
1.7.1 follows. ut
3.2.2 Remark. Actually, the same reasonings prove that for anyα > 0, the function
r̄α
k (w1, . . . , wk)

∏
i ρ(wi) is bounded. This fact will be used later.

3.3 Next we prove that the apexes of the sets supported by a point, are localized
nearV .

3.3.1 Proposition The probabilityP(w, H) that a point w supports a setS+(x, h)

with h < H decreases exponentially whenH → −∞:

P(w, H) ≤ Ah(w)n exp(CH)

for some positive A, C.
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Proof.This follows essentially from the construction of Lemma 3.2.1. The probabil-
ity in question is majorised by the sum of probabilitiesP{ξ(B+l+[h(w)+h̃]) = 0}
taken over only suchl, where thẽh(l) ≤ H +|aA |δ. The number of lattice points at
distance≤ R grows asRn; the summand decreases as exp(−aaAR), and the sum-
mation starts at the distanceR of order(h(w) − H)/aA . An easy estimate implies
that the sum is bounded from above by a constant multiple of(h(w)−H)n exp(aH),
whence the desired inequality follows. ut
3.4 Proof of Proposition 1.7.2.Consider two tuples of points inW , {w1, . . . , wk}
and {w′

1, . . . , w
′
l} at the distanced (that is mini,j |wi − w′

j | = d). We want to
estimate the difference

rk+l (w1, . . . , wk, w
′
1, . . . , w

′
l ) − rk(w1, . . . , wk)rl(w

′
1, . . . , w

′
l ) . (3.4.1)

We can assume that allh(wi), h(w′
j ) are at mostad in absolute value for a constant

a > 0 (unspecified for a while). Indeed, otherwise, by Proposition 1.7.1, all terms
in 3.4.1 are bounded by exp−something× d and there is nothing to prove. For our
further estimates we will need

4a/
√

1 − 4a2 < bA . (3.4.2)

Clearly, fora small enough, this is satisfied.
Introduce the conesKi = {(x, h) : h ≥ [aA −3ad] +bA |x −x(wi)|}, i = 1, . . . , k

and similarlyK ′
j for w′

j . The setKi contains all setsS + w havingwi on its
boundary and such thath(w) ≥ −ad. Indeed, ifw = (x, h) is such a point, then
one hash(wi)−h ≥ aA +bA |x−x(wi)|. Usingh(wi) ≤ ad, h ≥ −ad one derives
bA |x − x(wi)| ≤ 2ad − aA , whenceh ≥ −ad ≥ [aA − 3ad] + bA |x − x(wi)|.
Denote the intersections of conesKi, K

′
j with the halfspace{h ≤ ad} asUi, U

′
j

correspondingly. Letξi = ξ ∩ Ui is the intersection of the point processξ with
Ui . Analogously, defineξ ′

j = ξ ∩ U ′
j . Consider the random valuesĨi (ξ) andĨ ′

j (ξ)

defined as following:Ĩi (ξ) = 1, if there exists a setS + w ⊂ Ki supported
by wi , and 0 otherwise. The valuẽI ′

j (ξ) is defined analogously. Clearly,Ĩi (ξ) ≤
I (wi, ξ), Ĩ ′

j (ξ) ≤ I (w′
j , ξ).

We will use the shorthandI, I ′ andĨ , Ĩ ′ for
∏

i I (wi, ξ),
∏

j I (w′
j , ξ)and

∏
i Ĩi (ξ),∏

j Ĩ ′
j (ξ) correspondingly. Once again,Ĩ ≤ I, Ĩ ′ ≤ I ′.

Let E be the event that there are no points ofξ in any of the setsKi, K
′
j with

h-coordinate larger thanad; by E we denote the complement toE.

3.4.1 Lemma The probability ofE is exponentially small withd:

PE ≤ A exp(−C(ad)) ,

for some positive A, C independent of{w1, . . . , wk}, {w′
1, . . . , w

′
l}.

Proof.The integral ofρ overKi is of order
∫ ∞

ad

AB exp(−CBh)
(h + 3ad − aA

bA

)n

dh ,
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and the total probability is majorated by the sum of these integrals over alli, j ,
whence the claim follows. ut
We denote byIE the indicator function ofE. Set

D = I − IEĨ ; D′ = I ′ − IEĨ ′ .

The random valuesD, D′ are, apparently,{0, 1}-valued, and the expectations of
both of them are exponentially small withd. Indeed,I (wi, ξi) 6= IE

∏
i Ĩi (ξ) if

eitherIE = 0, or when for one ofi-s one hasI (wi, ξ) 6= Ii(ξ), which implies that
wi is ξ -supporting for a setS+ w with h(w) < −ad. Both events have probabil-
ities which are exponentially small withd uniformly in wi : the former by Lemma
3.4.1, and the latter by Proposition 3.3.1 (where we use|h(w)| ≤ ad).
The key observation now is that, conditioned onE, the random valuesIEĨ IEĨ ′ are
independent. Indeed, the event thatwi is ξ -supporting, with a supporting set within
Ki andwith no points ofξ in Ki above{h = ad} depends only on the intersection
of ξ with the setUi , and the same is valid forw′

j s. Fora satisfying (3.4.2), the
setsUi andU ′

j , i = 1, . . . , k; j = 1, . . . , l do not intersect. Indeed, otherwise one
would have pointw = (x, h) ∈ Ui ∪ U ′

j , which would implybA |x − x(wi)| ≤
h − h(wi); bA |x − x(w′

j )| ≤ h − h(w′
j ); h ≤ ad; h(wi), h(w′

j ) ≤ −ad and

|x(wi) − x(w′
j )|2 + |h(wi) − h(w′

j )|2 ≤ d2, an incompatible system of inequali-
ties for our choice ofa. The restrictions of Poisson point process to non-intersecting
parts ofW are independent and the independence in question follows.
Hence, one has

E
(
IEĨ × IEĨ ′) = E

(
IEĨ

) × E
(
IEĨ ′) × P(E) . (3.4.3)

Now,

r̄k+l (w1, . . . , wk, w
′
1, . . . , w

′
l ) = E

[(
IEĨ + D

)(
IEĨ ′ + D′)] (3.4.4)

and

r̄k(w1, . . . , wk)r̄l(w
′
1, . . . , w

′
l ) = E

(
IEĨ + D

)
E
(
IEĨ ′ + D′) . (3.4.5)

Expanding (3.4.4) and (3.4.5), subtracting and taking into account (3.4.3), we get
the expression

E(ĨD′)+E(DĨ ′)+E(DD′)−EĨEĨ ′(1−EIE)−EĨED′−EDEĨ ′−EDED′ (3.4.6)

for the differencērk+l − r̄k r̄l .
Notice, that for{0, 1}-valued random elementsA, B, C, . . . one has, by Cauchy
inequality,E(AB) ≤ (EA EB)1/2, E(ABC) ≤ (EA EB EC)1/3 and so on. Recalling
that Ĩ ≤ I, Ĩ ′ ≤ I ′ and thereforeD = DI, D′ = D′I ′, we deduce that (3.4.6) is
estimated in absolute value by the sum of the absolute values of the summands,

(EIEI ′ED′)1/3 + (EIEI ′ED′)1/3 + (EIEI ′EDED′)1/4 + EIEI ′(1 − EIE)

+EI (EI ′ED′)1/2 + (EDEI )1/2EI ′ + (EDEI )1/2(ED′EI ′)1/2 .
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The difference (3.4.1) is equal to (3.4.6) multiplied by
∏

i ρ(wi)
∏

j ρ(w′
j ). By Re-

mark 3.2.2, the termsIα
∏

i ρ(wi) and(I ′)α
∏

j ρ(w′
j ) are bounded for anyα > 0.

Hence, the difference (3.4.1) is a linear combination with bounded coefficients of
termsDα, (D′)α and 1− EIE(α = 1/3 or 1/4), which uniformly exponentially
decrease withd. The Proposition 1.7.2 is proved. ut

4. Concluding remarks

4.0. In this section some ramifications and unsettled questions are discussed.

4.1. Generalized Delaunay triangulations and Voronoi tessellations.The pro-
cess ofS-supporting points defines implicitly a more rich structure, manifest in
the convex hulls, for example. Specifically, one can associate to (almost every
realization of) the point processξS the structure of simplicial complex, joiningk
supporting points by a simplex if and only if there exists a common set they support.
If S is convex, then the resulting simplicial complex can be realized geometrically
as a triangulation (with vertices in the points ofξS,V ) of the hyperplaneV .
If the intensity measure ofξ is concentrated onV , and the setS is just the cone
{h ≥ |x|}, then we get the standard Poisson Delaunay triangulations.
For the processes associated with the convex hulls of Poisson samples, we get just
the simplicial faces of resulting polyhedral surface.
Dually, one can define the generalizations of the Voronoi tessellations: for each
vertexw of ξS consider theV -projection of the set formed by the apexes of sets
supported byw (the boundaries of cells of the tessellations by such sets presum-
ably describe the concentration of matter in the Burgers turbulence approach to the
large-scale structure of the Universe).
The central limit theorems of section 1 for the process of supporting points (that
is of 0-simplices of the Delaunay triangulations) can be extended without much
difficulty to simplices of all dimensions, so that, for example, an analogue of the
Theorem 1.8.2 holds: the number of simplices of any dimensionk of the generalized
Delaunay triangulation within a large bodyλ3 (quasitransversal toV ) is asymp-
totically normal with expectation and variance growing asλn. For the expectations
and the convex hulls of large samples from convex bodies, a similar result – the
growth order of the expectation of the number of faces in all dimensions is the same
– was proved in [Bi].

4.2. Constants.The results of this paper all deal only with the orders of the as-
ymptotics. The question of constants is quite tricky and I do not know a general
approach. There are some special cases in which the exact densitiesr andr2 can
be calculated (as certain multidimensional integrals) which will be discussed in a
separate publication.

4.3. Vector extremal points in generic polyhedra.The results on the asymptotics
of the number of vector extremal points discussed above dealt only with the case of
independent coordinates and Pareto coneC, in line with tradition (the expectation
was calculated in many papers in a variety of contexts). I would like to empha-
size here that, their dissemination notwithstanding, the logarithmic asymptotics of
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Fig. 3.Facets near which extremal points concentrate are marked.

growths for the expectation (and the variance) of the number of Pareto extremal
points are far from universal or even generic.
Consider the following situation, where the genericity can be treated more or less
precisely. Assume that the points of the sample are uniformly distributed in a con-
vex polyhedronP . The independent coordinates case corresponds to parallelepipeds
with facets parallel to the coordinate axes.
It turns out that exactly this latter property is responsible for the logarithmic growth.
More precisely, if any linear subspace parallel to a facet ofP is transversal to the
coordinate subspaces, then both expectation and variance grow asmk/N , wherek

is the maximal dimension of a facet ofP belonging to theC-convex hull ofP . The
logarithmic terms appear when this transversality condition fails.
The figure 3 illustrate this claim. On the left picture, the facets ofP lying on the
boundary of itsC-convex hull are two 1-dimensional edges (facing north-east).
Hence the number of Pareto extremal points grows asm1/2. On the right picture,
only the north-easternmost vertex ofP lies on the boundary of itsC-convex hull.
In this case, the number of Pareto extremal points has bounded mean and variance
(actually, converges in distribution). In the intermediate case (middle picture), the
independent coordinate case, the logarithmic growth edges in.
One can argue that in natural families (for example, in the family{Pg}g∈GL(W))
of polyhedra, the condition of transversality formulated above isnotsatisfied on a
(singular) hypersurface and is therefore not generic.
To finish, under the transversality condition, if the mean grows unboundedly with
m, the central limit theorem can be proved.
I will not give here any details, as these result use different methods than those
employed in the present work, referring to [Bv].
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