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Abstract. We consider a stationary version of a renewal reward process, i.e., a renewal
process where a random variable called a reward is associated with each renewal. The re-
wards are nonnegative and I.I.D., but each reward may depend on the distance to the next
renewal. We give an explicit bound for the total variation distance between the distribution
of the accumulated reward over the interval(0, L] and a compound Poisson distribution.
The bound depends in its simplest form only on the first two joint moments ofT andY (or
I {Y > 0}), whereT is the distance between successive renewals andY is the reward. IfT
andY are independent, andLE(Y ) (or LP(Y > 0)) is bounded orY binary valued, then
the bound is O(E(Y )) asE(Y ) → 0 (or O(P(Y > 0)) asP(Y > 0) → 0). To prove our
result we generalize a Poisson approximation theorem for point processes by Barbour and
Brown, derived using Stein’s method and Palm theory, to the case of compound Poisson
approximation, and combine this theorem with suitable couplings.

1. Introduction

In this paper we are concerned with some properties ofrenewal rewardprocesses.
By a renewal process (more exactly: a Palm version of a renewal process) we mean
a simple point processξ onR or Z such thatP(ξ({0}) = 1) = 1 and such that the
distances between successiverenewals(i.e., points ofξ ) are I.I.D. A renewal reward
process is constructed by associating with each renewal a random variable, called
a reward. We here assume that the rewards are nonnegative and I.I.D., and that
each reward may depend on the distance to the next renewal. We also assume that
the distances between successive renewals have finite means, so that there exists a
stationary version of the renewal reward process.

Renewal reward processes are interesting for their connections with thinned
point processes and with regenerative processes. Clearly, a renewal reward pro-
cess with binary valued rewards can be regarded as a dependently thinned re-
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newal process. A regenerative process by definition contains an embedded renew-
al process, and it may in many situations be convenient to associate with each
renewal a reward, which depends only on the cycle immediately following that
renewal.

The quantity which is studied in this paper is theaccumulated rewardof a
stationary renewal reward process over a bounded interval. More precisely, we
derive Poisson or compound Poisson approximations with explicit total variation
distance error bounds for the distribution of this quantity in the case whenE(Y ) or
P(Y > 0) is small, whereY is the reward. Such results are relevant in particular
when we are dealing with occurrences of a “rare” event in a stationary regenerative
process. E.g., we could be interested in a Poisson approximation for the number of
cycles where the “rare” event occurs, a compound Poisson approximation for the
total number of occurrences, or an exponential approximation for the time until the
first occurrence.

Needless to say, a number of limit theorems in this field are today well-known.
The first important result was obtained by Rényi (1956) for the case of independent
thinning (i.e., binary valued rewards which are independent of the renewal pro-
cess): the independently thinned renewal process converges weakly to a Poisson
point process asE(Y ) → 0 after a change of time scale. This has subsequently
been generalized to a larger class of point processes; see Kallenberg (1975). For
dependent thinnings, some results can be deduced from theorems relating weak
convergence of point processes to weak convergence of point process compensa-
tors; see e.g. Brown (1983).

Concerning total variation distance bounds, a number of so-calledcompensator
bounds have been derived for the total variation distance between the distributions
of point processes. These depend on how close (in some sense) the compensators
of the point processes are to each other; see e.g. Brown (1983) or Kabanov and
Liptser (1983). In Barbour and Brown (1992a),Stein’s methodis used to construct
a different kind of bound (Theorem 3.1) for the total variation distance between
the distribution of the number of points of a point process in a relatively compact
set and a Poisson distribution. For this bound it is required that suitable couplings
can be found between the point process and the corresponding Palm processes. In
the same paper Stein’s method is also used to derive a compensator bound, while
in Barbour and Brown (1992b) it is used to produce bounds for the total variation
distance between the distribution of a point process and that of a Poisson point
process, which do not depend on compensators.

The main results in the present paper are the following. The total variation
distance between the distribution of the accumulated reward of a stationary re-
newal reward process over the interval(0, L], and a suitable compound Poisson
distribution, is, if rewards are integer valued, bounded byC(E(T Y )/E(T ) +
E(T 2)E(Y )/E(T )2), whereT is the distance between successive renewals and
C is an explicit constant which is bounded if the quantityLE(Y ) is bounded. If
LE(Y ) is large thenC is also large, unless an additional condition is satisfied.
If rewards are binary valued, then the approximating distribution is Poisson with
meanLE(Y ), andC ≤ 3 regardless ofLE(Y ). If rewards are not integer valued,
the bound isC(E(T I {Y > 0})/E(T ) + E(T 2)P (Y > 0)/E(T )2), whereC is
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an explicit constant which is bounded if the quantityLP(Y > 0) is bounded, but
large if this quantity is large. To prove our results, we first generalize Theorem 3.1
in Barbour and Brown (1992a) to the case of compound Poisson approximation.
This generalization is of some interest in its own right. We then apply this result
to renewal reward processes, using couplings which generalize those used in the
proof of Theorem 4.3 in Erhardsson (1999).

The paper is organized as follows. Section 2 contains some notation, as well
as some definitions and relevant properties of point processes. In Section 3 the
above mentioned generalization of the theorem by Barbour and Brown is given. In
Section 4 renewal reward processes are defined, and some lemmas (not all new)
about expectation measures and Palm kernels for such processes are collected. In
Section 5 the main results are stated and proven. Finally, in Section 6 we consider
some examples: independent rewards, rewards indicating a long distance to the
next renewal, and the time spent in a “rare” set by a finite state Markov process in
discrete or continuous time.

2. Preliminaries

We here give some notational conventions, definitions and well-known properties
of point processes which will be used below. For more details, see Sections 1.1–2,
2.1, 10.1 and 15.7 in Kallenberg (1983) and Section 3.1 in Rolski (1981).

Spaces and functions. Let S be a topological space. As a measure space, we
always assumeS to be equipped with the Borelσ -algebra, denoted byBS . For any
random elementX in S we denote byL(X) the distribution ofX. We denote by
Bb

S the sets inBS which are relatively compact, byFS the space of measurable
functionsS → R, and byF+

S the space of measurable functionsS → R+. We use
the following notation for sets of numbers:R = the real numbers,Z = the integers,
R+ = [0, ∞), R′+ = (0, ∞), R− = (−∞, 0], R′− = (−∞, 0), Z+ = {0, 1, 2, ...},
Z′+ = {1, 2, ...}, Z− = {..., −2, −1, 0} andZ′− = {..., −2, −1}. We denote bySZ

the space of all functionsf : Z → S. If S is a complete separable metric space,
then so isSZ. A random element inSZ is called an (S-valued)random sequence.

The spaceN(S). Let S be a locally compact second countable Hausdorff to-
pological space. We denote byN(S) the space ofcounting measures(i.e., integer
valued Radon measures) onS. N(S) is a complete separable metric space in the
vague topology. A random elementξ in N(S) is called apoint process(onS). The
expectation measureof ξ ∈ N(S) is the measureE(ξ(·)). If ξ ∈ N(S) has aσ -fi-
nite expectation measureµ, then there exists a probability kernelQ : S → N(S)

called thePalm kernelwith the following defining property:

E

(∫
S

f (x)dξ(x)I {ξ ∈ A}
)

=
∫

S

Q(x, A)f (x)dµ(x) ∀A ∈ BN(S), f ∈ F+
S .

A point processξx satisfyingP(ξx ∈ ·) = Q(x, ·) for somex ∈ S is called aPalm
processatx for ξ . A counting measureν satisfyingν({x}) ≤ 1 ∀x ∈ S is called a
simple counting measure, and a point processξ such thatP(ξ({x}) ≤ 1∀x ∈ S) = 1
is called asimple point process.
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The spacesN(R × K) andN(Z × K). Let K be a locally compact second
countable Hausdorff topological space. A random elementξ in N(R × K) such
thatP(ξ(A × K) < ∞ ∀A ∈ Bb

R) = 1 andP(ξ({x} × K) ≤ 1 ∀x ∈ R) = 1
we call amarked simple point process(on R × K). For eachR × K-valued ran-
dom sequence(X, Y ) such thatP(... < X−1 < X0 ≤ 0 < X1 < ...) = 1 and
P(card{i ∈ Z; (Xi, Yi) ∈ A × K} < ∞ ∀A ∈ Bb

S) = 1, there exists on the same
probability space as(X, Y ) a marked simple point processξ on R × K such that
P(ξ(·) = card{i ∈ Z; (Xi, Yi) ∈ ·}) = 1. We callξ the marked simple point
processgenerated by(X, Y ). Conversely, for each marked simple point processξ

onR ×K such thatP(ξ(R+ ×K) = ∞) = P(ξ(R− ×K) = ∞) = 1 there exists
on the same probability space asξ anR ×K-valued random sequence(X, Y ) such
thatP(... < X−1 < X0 ≤ 0 < X1 < ...) = 1 andP(ξ(·) = card{i ∈ Z; (Xi, Yi)

∈ ·}) = 1. We call(X, Y ) thecoordinates of the points ofξ . We define the shift
operatorθ : R × N(R × K) → N(R × K) by θt (ν)(·) := ν({(x + t, y); (x, y)

∈ ·}) ∀t ∈ R, ν ∈ N(R × K). θ is measurable and, for eacht ∈ R, a bijection
from N(R × K) onto itself. Analogous properties hold for marked simple point
processes onZ × K.

Total variation distance. For any two probability measuresν1 andν2 on any mea-
surable space(S,F) we define thetotal variation distancedT V (ν1, ν2) by:

dT V (ν1, ν2) := sup
A∈F

|ν1(A) − ν2(A)|.

Coupling.A pair of random variables(X, Y ) defined on the same probability space
is called acouplingof two probability distributionsν1 andν2 if L(X) = ν1 and
L(Y ) = ν2.

3. A total variation distance bound

Definition 3.1. (Cf. Section A.19 in Aldous (1989).) A nonnegative random vari-
ableW is said to have acompound Poissondistribution POIS(ν), whereν is a
measure onR′+ such that

∫∞
0 (1 ∧ x)dν(x) < ∞, if the Laplace transform of

W is E(e−sW ) = exp(− ∫
R′+

(1 − e−sx)dν(x)) ∀s ∈ R′+. If ν is finite, then

POIS(ν) = L(
∑M

i=1 Ti), where the variables{Ti; i ∈ Z′+} andM are indepen-
dent,L(Ti) = ν/ν(R′+) ∀i ∈ Z′+, andM ∼ Po(ν(R′+)). Here,L(T1) is called
thecompoundingdistribution.

Theorem 3.1. LetS be a locally compact second countable Hausdorff topological
space, and letξ be a point process onS ×R+ with σ -finite expectation measureµ.
For each(x, y) ∈ S × R+, let ξ (x,y) be a Palm process at(x, y) for ξ , and assume
that ξ (x,y) is defined on the same probability space asξ . LetA ∈ Bb

S , and define
µA(·) := µ(A × ·) andµ′

A(·) := µA(· ∩ R′+). Assume thatµ′
A is finite. Define

φA : N(S × R+) → R+ by φA(ν) := ∫
A×R′+

ydν(x, y) ∀ν ∈ N(S × R+). If

supp(µ′
A) = {1}, then:
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dT V

(
L(φA(ξ)), Po(µA(1))

)
≤ 1 − e−µA(1)

µA(1)

∫
A×{1}

E
(|φA(ξ) − φA(ξ (x,y)) + y|)dµ(x, y). (3.1)

If supp(µ′
A) ⊂ Z′+, then:

dT V

(
L(φA(ξ)), POIS(µ′

A)
)

≤ H(µ′
A)

∫
A×Z′+

yE
(|φA(ξ) − φA(ξ (x,y)) + y|)dµ(x, y), (3.2)

whereH(µ′
A) := (µA(1)−1∧1) exp(µA(Z′+)), unless{kµA(k); k ∈ Z′+} is mono-

tonically decreasing towards 0, in which case

H(µ′
A) : = 1

µA(1) − 2µA(2)

×
(

1

4(µA(1) − 2µA(2))
+ log+ 2(µA(1) − 2µA(2))

)
∧ 1.

If supp(µ′
A) ⊂ R′+ (the general case), then:

dT V

(
L(φA(ξ)), POIS(µ′

A)
)

≤ exp(µA(R′
+))

∫
A×R′+

P
(|φA(ξ) − φA(ξ (x,y)) + y| > 0

)
dµ(x, y). (3.3)

Proof. This theorem generalizes both Theorem 3.1 in Barbour and Brown (1992a)
and Theorem 4.1 in Erhardsson (1999). Consider for eachB ∈ BR+ the following
so-calledStein equation:

xfB(x) −
∫

R′+
yfB(x + y)dµ′

A(y) = IB(x) − P(W ∈ B) ∀ x ∈ R+,

whereW ∼ POIS(µ′
A). According to Theorem 1 in Barbour, Chen and Loh (1992)

there exists a unique solutionfB ∈ FR′+ of this equation satisfying the con-
dition supx∈R′+ |xfB(x)| < ∞; fB(0) can be chosen arbitrarily. Hence, if we

can find a bound for|E(φA(ξ)fB(φA(ξ)) − ∫
R′+

yfB(φA(ξ) + y)dµ′
A(y))| for

eachB ∈ BR+ , then we will also get a bound for the total variation distance
dT V (L(φA(ξ)), POIS(µ′

A)), an idea which is known asStein’s method. To do this
we imitate the proof of Theorem 3.1 in Barbour and Brown (1992a). We have:

E
(
φA(ξ)fB(φA(ξ))

) = E

(∫
A×R′+

yfB(φA(ξ))dξ(x, y)

)

= E

(∫
A×R′+

yfB(φA(ξ − δ(x,y)) + y)dξ(x, y)

)

=
∫

A×R′+
yE
(
fB(φA(ξ (x,y) − δ(x,y)) + y)

)
dµ(x, y),
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where the last equality follows from Lemma 10.2 in Kallenberg (1983). Hence,∣∣∣∣∣E
(

φA(ξ)fB(φA(ξ)) −
∫

R′+
yfB(φA(ξ) + y)dµ′

A(y)

)∣∣∣∣∣
= |

∫
A×R′+

yE
(
fB(φA(ξ (x,y) − δ(x,y)) + y) − fB(φA(ξ) + y)

)
dµ(x, y)|

≤
∫

A×R′+
yE
(|fB(φA(ξ (x,y) − δ(x,y)) + y) − fB(φA(ξ) + y)|)dµ(x, y).

(3.1) now follows from the fact that if supp(µ′
A) = {1}, then from Lemma 1.1.1 in

Barbour, Holst and Janson (1992),

sup
B⊂Z+

sup
k∈Z′+

|fB(k + 1) − fB(k)| ≤ 1 − e−µA(1)

µA(1)
.

Similarly, (3.2) follows since if supp(µ′
A) ⊂ Z′+, then from Theorem 5 in Barbour,

Chen and Loh (1992),

sup
B⊂Z+

sup
k∈Z′+

|fB(k + 1) − fB(k)| ≤ H(µ′
A).

Finally, (3.3) follows since if supp(µ′
A) ⊂ R′+, then from Theorem 2 in Barbour,

Chen and Loh (1992),

sup
B∈BR+

sup
u≥v≥0

v|fB(u) − fB(v)| ≤ exp(µA(R′
+)). ut

Remark 3.1. Finding better bounds for the quantity supB⊂Z+ supk∈Z′+ |fB(k +
1) − fB(k)| thanH(µ′

A) in the case when supp(µ′
A) ⊂ Z′+ is currently a very

active research area. Some results in this direction are given in Barbour and Utev
(1999), but in order to apply these in the present context the preceding proof must be
somewhat modified. If attention is restricted to bounding theKolmogorov distance
dK(L(φA(ξ)), POIS(µ′

A)), this can be done in a manner similar to the proof of
Theorem 3.1 if a bound for the quantity supB∈{[r,∞);r∈Z+} supk∈Z′+ |fB(k + 1) −
fB(k)| is available. Some results can be found in Barbour and Utev (1998).

4. Renewal reward processes

Definition 4.1. By a stationary renewal reward processin continuous or discrete
time, we mean a marked simple point processξ on R × R+ or Z × R+ respec-
tively, defined in the following way. Let(T o, Y o) be an I.I.D. random sequence,
R′+ × R+-valued orZ′+ × R+-valued respectively, for whichE(T o

0 ) < ∞. Define
the random sequenceXo by:

Xo
t :=



∑t−1

i=0 T o
i , if t ≥ 1;

0, if t = 0;
−∑t

i=−1 T o
i , if t ≤ −1 .
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Letξo be the marked simple point process generated by(Xo, Y o). We callξo a Palm
version of a renewal reward process (with respect to marks fromR+). The distribu-
tion of ξ is now given by thePalm inversion formula(a part ofRyll-Nardzewski’s,
akaSlivnyak’s, theorem). In the continuous time case:

E(g(ξ)) =
E
(∫ T o

0
0 g(θt (ξ

o))dt
)

E(T o
0 )

∀g ∈ F+
N(R×R+), (4.1)

and in the discrete time case:

E(g(ξ)) =
E
(∑T o

0 −1
i=0 g(θi(ξ

o))
)

E(T o
0 )

∀ g ∈ F+
N(Z×R+). (4.2)

In what follows, in the context of a particular stationary renewal reward processξ ,
(T o, Y o) andXo will always refer to the random sequences defined above.(X, Y )

will refer to the coordinates of the points ofξ ; cf. Section 2.

In the remainder of this section we give three lemmas which will be used below.
We do not doubt that at least the first two of them can be found in the literature, but
since we do not know the exact locations, we provide proofs.

Lemma 4.1. Letξ be a stationary renewal reward process onR ×R+ or Z ×R+.
Thenξ has expectation measureµ = E(T o

0 )−1` × µY , where` is the Lebesgue
measure or the counting measure respectively, andµY = L(Y o

0 ).

Proof. We consider only the continuous time case.µ is locally finite, since the sta-
tionarity of ξ implies thatE(ξ([−x, x] × R+)) = 2xE(T o

0 )−1 < ∞ ∀x ∈ R. The
fact thatµ = E(T o

0 )−1` × µY for some locally finite measureµY on R+ follows
from Proposition 10.5.I in Daley and Vere-Jones (1988), and thatµY = L(Y o

0 ) can
be seen as follows. Clearly,µY ([0, y]) = E(ξ((−δ, 0] × [0, y]))E(T o

0 )/δ ∀y ∈
R+, δ ∈ R′+, and (4.1) implies that

E
(
(T o

0 ∧ δ)I {Y o
0 ≤ y})

E(T o
0 )

≤ E
(
ξ((−δ, 0] × [0, y])

)
≤ δE

(
I {Y o

0 ≤ y} + ξo((−δ, 0) × [0, y])
)

E(T o
0 )

∀y ∈ R+, δ ∈ R′
+.

Now let δ → 0 and use dominated convergence. ut
Lemma 4.2. Letξ be a stationary renewal reward process onR×R+ with expecta-
tion measureµ = E(T o

0 )−1`×µY . For eachy ∈ R+, define the random sequence

(X(0,y), Y (0,y)) as follows: let(X(0,y)

i+1 − X
(0,y)
i , Y

(0,y)
i ) := (T o

i , Y o
i ) ∀i ∈ Z \ {0},

let (X
(0,y)

0 , Y
(0,y)

0 ) := (0, y), and letX(0,y)

1 be independent of(T o, Y o) such that

P(X
(0,y)

1 ∈ ·) is a version of the regular conditional distribution ofT o
0 given
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Y o
0 = y. For each(x, y) ∈ R × R+, let ξ (0,y) be the marked simple point pro-

cess generated by(X(0,y), Y (0,y)), and defineξ (x,y) := θ−x(ξ
(0,y)). Then the Palm

kernel ofξ can be chosen asQ′, whereQ′((x, y), ·) := P(ξ(x,y) ∈ ·) for each
(x, y) ∈ R × R+. The analogous result holds for a stationary renewal reward
process onZ × R+.

Proof. We consider only the continuous time case. As mentioned in Section 2, the
Palm kernelQ : R × R+ → N(R × R+) is a probability kernel which satisfies
the identity

E

(∫
R×R+

f (x, y)dξ(x, y)I {ξ ∈ A}
)

=
∫

R×R+
Q((x, y), A)f (x, y)dµ(x, y)

(4.3)

for eachA ∈ BN(R×R+) andf ∈ F+
R×R+ . We will show thatQ′ is a probability

kernel which satisfies (4.3) for eachA ∈ BN(R×R+) and eachf in the class of
indicator functions{IB×C(·); B ∈ BR, C ∈ BR+}. Dynkin’s π -λ-theorem and
monotone convergence then imply thatQ′ satisfies (4.3) for eachA ∈ BN(R×R+)

andf ∈ F+
R×R+ .

It is clear from the definition ofξ (x,y) thatQ′((x, y), ·) is a probability measure
onN(R×R+) for each(x, y) ∈ R×R+. We must show thatQ′(·, A) is a measur-
able function onR × R+ for eachA ∈ BN(R×R+). From Dynkin’sπ -λ-theorem
it follows that we need only consider setsA in theπ -systemH generated by sets
of the type{ν ∈ N(R × R+); ν(B) = k}, whereB ∈ BR×R+ andk ∈ Z+. If
A := ∩n

i=1{ν ∈ N(R × R+); ν(Bi) = ki} ∈ H, then{ξ (x,y) ∈ A} can be written
as a countable disjoint union in the following way:

{ξ (x,y) ∈ A} = ∪D∈0 ∩n
i=1

(∩j∈Di
{(x + X

(0,y)
j , Y

(0,y)
j ) ∈ Bi}

∩ ∩j /∈Di
{(x + X

(0,y)
j , Y

(0,y)
j ) /∈ Bi}

)
= ∪D∈0 ∩j∈Z {(x + X

(0,y)
j , Y

(0,y)
j ) ∈ CD

j },

where0 = 01 × ... × 0n, 0i is the set of allki-tuples of distinct integers for each
i ∈ {1, ..., n}, and the sets{CD

j ∈ BR×R+; j ∈ Z} depend only onD andA. Con-

sider for eachj ∈ Z the functionFD
j : R ×R+ ×R′+ × (R′+ ×R+)Z\{0} → {0, 1},

defined by:

FD
j (x, y, z, (u, v)) :=




I
{(

x +∑j

i=−1 ui, vj

)
∈ CD

j

}
, if j ≤ −1;

I {(x, y) ∈ CD
j }, if j = 0;

I
{(

x + z +∑j−1
i=1 ui, vj

)
∈ CD

j

}
, if j ≥ 1 .

ClearlyFD
j is measurable, implying that alsoF := ∑

D∈0

∏
j∈Z FD

j is measur-
able. Since it holds that

I {ξ (x,y) ∈ A} = F(x, y, X
(0,y)

1 , (T o, Y o)),
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we get, using also thatX(0,y)

1 and(T o, Y o) are independent,

P(ξ(x,y) ∈ A)

= E(F(x, y, X
(0,y)

1 , (T o, Y o)))

= E(E(F(x, y, X
(0,y)

1 , (T o, Y o))|x, y, X
(0,y)

1 ))

=
∫

R×R+×R′+
E(F(x′, y′, z′, (T o, Y o)))d(δx × δy × ν

(0,y)
X1

)(x′, y′, z′),

whereν(0,y)
X1

= L(X
(0,y)

1 ). But it is easily shown using theπ -λ-theorem and mono-
tone convergence that the right-hand side of this expression defines a measurable
function onR × R+.

We next show thatQ′ satisfies (4.3) for eachA ∈ BN(R×R+) and eachf ∈
{IB×C(·); B ∈ BR, C ∈ BR+}. Fix A ∈ BN(R×R+), B ∈ BR, andC ∈ BR+
such thatµY (C) > 0 (if µY (C) = 0 thenQ′ satisfies (4.3) trivially). Calculations
similar to those in the first part of this proof give:∫

R×R+
Q′((x, y), A)IB×C(x, y)dµ(x, y)

= E(T o
0 )−1

∫
R×R+

P(ξ(x,y) ∈ A)IB(x)IC(y)d(` × µY )(x, y)

= E(T o
0 )−1

∫
R×R+

P(θ−x(ξ
(0,y)) ∈ A)IB(x)IC(y)d(` × µY )(x, y)

= E(T o
0 )−1

∫
R

IB(x)P (θ−x(ξ
o) ∈ A, Y o

0 ∈ C)dx

= E(T o
0 )−1µY (C)

∫
R

IB(x)P (θ−x(ξ
o) ∈ A|Y o

0 ∈ C)dx.

Proposition 3.7 in Rolski (1981) tells us that the distributionP(ξo ∈ ·|Y o
0 ∈ C) is

a Palm distribution with respect to marks fromC. We can therefore applyMecke’s
theorem, see Proposition 3.5 in Rolski (1981), which gives:

E(T o
0 )−1µY (C)

∫
R

IB(x)P (θ−x(ξ
o) ∈ A|Y o

0 ∈ C)dx = E(ξ(B × C)I {ξ ∈ A}).

ut
Lemma 4.3. If ξ is a stationary renewal reward process onR×R+, then, for each
z, b ∈ R′+ such thatz < b,

E

(∫
[0,z)×R′+

vdξo(u, v)

)
≤ z

E(Y o
0 )

E(T o
0 )

+ E((T o
0 )2)E(Y o

0 )

E(T o
0 )2

;

E

(∫
(−z,0)×R′+

vdξo(u, v)

)
≤ z

E(Y o
0 )

E(T o
0 )

+ E((T o
0 )2)E(Y o

0 )

E(T o
0 )2

;

E

(∫
(−b,−b+z]×R′+

vdξo(u, v)

)
≤ z

E(Y o
0 )

E(T o
0 )

+ E((T o
0 )2)E(Y o

0 )

E(T o
0 )2

+ α
E(T o

0 Y o
0 )

E(T o
0 )

,
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whereα = 1, unless the rewards are independent of the renewal process, in which
caseα = 0. If ξ is a stationary renewal reward process onZ × R+, then, for each
z, b ∈ Z′+ such thatz < b, the same assertions hold withE((T o

0 )2) replaced by
E(T o

0 (T o
0 − 1)); furthermore, for eachb ∈ Z andz ∈ Z′+,

E

(∫
(b,b+z]×R′+

vdξo(u, v)

)
≤ zE(Y o

0 ).

Proof. In both continuous and discrete time, it holds that

E

(∫
[0,z)×R′+

vdξo(u, v)

)
=

∞∑
j=0

E
(
Y o

j I {Xo
j < z})

= E(Y o
0 )

∞∑
j=0

P(Xo
j < z)

= E(Y o
0 )E

(
ξo([0, z) × R+)

)
.

Hence, an application of Lorden’s renewal inequality, see Corollary 1 in Lorden
(1970), proves the first assertion. Moreover,

E

(∫
(−z,0)×R′+

vdξo(u, v)

)
=

∞∑
j=1

E
(
Y o

−j I {Xo
−j > −z})

≤ E(Y o
0 )

∞∑
j=1

P(Xo
−j+1 > −z)

= E(Y o
0 )E

(
ξo((−z, 0] × R+)

)
,

which together with Lorden’s renewal inequality proves the second assertion. Also,

(b − z)
E(Y o

0 )

E(T o
0 )

= E

(∫
(−b+z,0)×R′+

vdξ(u, v)

)
≤

∞∑
j=1

E
(
Y−j I {X−j > −b + z})

+E(Y0)

=
∞∑

j=1

E
(
Y−j I {X−j − X0 > −b + z + |X0|}

)+ E(Y0)

≤ E

(∫
(−b+z,0)×R′+

vdξo(u, v)

)
+ E(Y0),

which together with (4.1) or (4.2) and the second assertion proves the third
assertion. The case when the rewards are independent of the renewal process again
follows from Lorden’s renewal inequality. The last assertion in the discrete time
case is an immediate consequence of Lemma 4.1, (4.2), and Theorem 2.1 in Rolski
(1981), which says thatP(ξo ∈ ·) = P(ξ ∈ ·|ξ({0} × R+) = 1). ut
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5. Poisson and compound Poisson approximation

Theorem 5.1. Let ξ be a stationary renewal reward process onR × R+ with
expectation measureµ = E(T o

0 )−1` × µY , where` is Lebesgue measure and
µY := L(Y o

0 ), and defineµ′
Y (·) := µY (· ∩ R′+). LetL ∈ R′+. If supp(µ′

Y ) = {1},
then:

dT V

(
L

(∫
(0,L]×{1}

dξ(x, y)

)
, Po

(
L

E(Y o
0 )

E(T o
0 )

))

≤
(

1 − exp

(
−L

E(Y o
0 )

E(T o
0 )

))(
C1

E(T o
0 Y o

0 )

E(T o
0 )

+ C2
E((T o

0 )2)E(Y o
0 )

E(T o
0 )2

)
. (5.1)

If supp
(
µ′

Y ) ⊂ Z′+, then:

dT V

(
L

(∫
(0,L]×Z′+

ydξ(x, y)

)
, POIS

(
L

µ′
Y

E(T o
0 )

))

≤ H

(
L

µ′
Y

E(T o
0 )

)
L

E(Y o
0 )

E(T o
0 )

(
C1

E(T o
0 Y o

0 )

E(T o
0 )

+ C2
E((T o

0 )2)E(Y o
0 )

E(T o
0 )2

)
, (5.2)

whereH(E(T o
0 )−1Lµ′

Y ) := ((E(T o
0 )−1LµY (1))−1∧1) exp(E(T o

0 )−1LµY (Z′+)),
unless{kµY (k); k ∈ Z′+} is monotonically decreasing towards 0, in which case

H

(
L

µ+

E(T o
0 )

)
:= 1

1Y (1)

(
1

41Y (1)
+ log+ 21Y (1)

)
∧ 1,

where1Y (1) := E(T o
0 )−1L(µY (1) − 2µY (2)). If supp

(
µ′

Y ) ⊂ R′+, then:

dT V

(
L

(∫
(0,L]×R′+

ydξ(x, y)

)
, POIS

(
L

µ′
Y

E(T o
0 )

))

≤ exp

(
L

µY (R′+)

E(T o
0 )

)
L

µY (R′+)

E(T o
0 )

×
(

C1
E(T o

0 I {Y o
0 > 0})

E(T o
0 )

+ C2
E((T o

0 )2)µY (R′+)

E(T o
0 )2

)
. (5.3)

Throughout,C1 = C2 = 3 unless the rewards are independent of the renewal pro-
cess, in which caseC1 = 2 andC2 = 3. If ξ is a stationary renewal reward process
onZ × R+, and ifL ∈ Z′+, then the same assertions hold withE((T o

0 )2) replaced
byE(T o

0 (T o
0 − 1)), but in this case we may also takeC1 = 2 andC2 = E(T o

0 ).

Proof. We consider the continuous time case, pointing out the modifications need-
ed in the discrete time case. In order to apply Theorem 3.1, we need to find suitable
couplings ofL(ξ) andL(ξ (x,y)) for µ-a.e.(x, y) ∈ R × R+. We shall construct
couplings which generalize those used in the proof of Theorem 4.3 in Erhardsson
(1999). Let(�,G, P ) be a probability space which contains the stationary renewal
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reward processξ , and hence the random sequence(X, Y ) (the coordinates of the
points ofξ ). Let the probability space also contain a collection of random variables
{X(0,y)

1 ; y ∈ R+} which are independent ofξ and for whichP(X
(0,y)

1 ∈ ·) is a
version of the regular conditional distribution ofT o

0 given Y o
0 = y. Define the

R × R+-valued random sequence(X(0,y), Y (0,y)) in the following way:

(
X

(0,y)
i , Y

(0,y)
i

)
:=




(
X

(0,y)

1 + Xi − X1, Yi

)
, if i ≥ 1 andX0 < 0;(

X
(0,y)

1 + Xi−1 − X0, Yi−1

)
, if i ≥ 1 andX0 = 0;

(0, y), if i = 0;
(Xi − X0, Yi), if i ≤ −1 .

(Of course,P(X0 = 0) = 0 in the continuous time case, but not in the dis-
crete time case.) Letξ (0,y) denote the marked simple point process generated by
(X(0,y), Y (0,y)). From Lemma 4.2 it follows thatξ (x,y) := θ−x(ξ

(0,y)) can be cho-
sen as the Palm process at(x, y) for each(x, y) ∈ R × R+. We want to find a
bound for the quantity within the expectation on the right-hand side of (3.1) and
(3.2), forµ-a.e.(x, y) ∈ (0, L] ×R+. We note that the stationarity ofξ implies that
L(θ−x(ξ)) = L(ξ) ∀x ∈ R, and examining the proof of Theorem 3.1 we see that
we can replaceξ with θ−x(ξ) within the expectation. Furthermore, the definition
of the shift operator implies that:

|φ(0,L](θ−x(ξ)) − φ(0,L](θ−x(ξ
(0,y))) + y|

= |φ(−x,L−x](ξ) − φ(−x,L−x](ξ
(0,y)) + y| ∀(x, y) ∈ (0, L] × R+.

Bounding in a suitable way the sum of those rewards which do not cancel out in
the difference, we get:

|φ(−x,L−x](ξ) − φ(−x,L−x](ξ
(0,y)) + y|

≤ Y0 +
∫

(L−x−X
(0,y)
1 ,L−x]×R′+

vdξ(u, v) +
∫

(R′−∩(−x,−x+|X0|])×R′+
vdξ(0,y)(u, v)

+
∫

(R′+∩(L−x−X1I {X0<0},L−x])×R′+
vdξ(0,y)(u, v). (5.4)

We calculate the expectations of the terms in 5.4 one by one, using (4.1). For the
first term, we get:

E(Y0) = E(T o
0 Y o

0 )

E(T o
0 )

.

For the second term, Lemma 4.1 and the fact thatξ is independent ofX(0,y)

1 gives:

E

(
E

(∫
(L−x−X

(0,y)
1 ,L−x]×R′+

vdξ(u, v)|X(0,y)

1

))
= E(X

(0,y)

1 )
E(Y o

0 )

E(T o
0 )

,

and: ∫
(0,L]×R′+

yE(X
(0,y)

1 )dµ(x, y) = L
E(T o

0 Y o
0 )

E(T o
0 )

.
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For the third term, the fact thatξ (0,y) is independent ofX0 gives:

E

(
E

(∫
(R′−∩(−x,−x+|X0|])×R′+

vdξ(0,y)(u, v)|X0

))

=
∫

R′+
E

(∫
(R′−∩(−x,−x+z])×R′+

vdξ(0,y)(u, v)

)
dν0(z),

whereν0 := L(|X0|). Here, in the continuous time case we get from Lemma 4.3
for eachz ∈ R′+:

E

(∫
(R′−∩(−x,−x+z])×R′+

vdξ(0,y)(u, v)

)
≤ z

E(Y o
0 )

E(T o
0 )

+ E((T o
0 )2)E(Y o

0 )

E(T o
0 )2

+α
E(T o

0 Y o
0 )

E(T o
0 )

,

implying that:

E

(∫
(R′−∩(−x,−x+|X0|])×R′+

vdξ(0,y)(u, v)

)
≤ 3E((T o

0 )2)E(Y o
0 )

2E(T o
0 )2

+ α
E(T o

0 Y o
0 )

E(T o
0 )

.

In discrete time the same result holds withE((T o
0 )2) replaced byE(T o

0 (T o
0 − 1)),

but in this case it also holds that

E

(∫
(R′−∩(−x,−x+|X0|])×R′+

vdξ(0,y)(u, v)

)
≤ E(T o

0 (T o
0 − 1))E(Y o

0 )

2E(T o
0 )

.

For the fourth term, the fact thatξ (0,y) is independent ofX1I {X0 < 0} gives:

E

(
E

(∫
(R′+∩(L−x−X1I {X0<0},L−x])×R′+

vdξ(0,y)(u, v)|X1I {X0 < 0}
))

=
∫

R′+
E

(∫
(R′+∩(L−x−z,L−x])×R′+

vdξ(0,y)(u, v)

)
dν1(z),

whereν1 := L(X1I {X0 < 0}). Here, in the continuous time case we get from
Lemma 4.3 for eachz ∈ R′+:

E

(∫
(R′+∩(L−x−z,L−x])×R′+

vdξ(0,y)(u, v)

)
≤ z

E(Y o
0 )

E(T o
0 )

+ E((T o
0 )2)E(Y o

0 )

E(T o
0 )2

,

implying that:

E

(∫
(R′+∩(L−x−X1I {X0<0},L−x])×R′+

vdξ(0,y)(u, v)

)
≤ 3E((T o

0 )2)E(Y o
0 )

2E(T o
0 )2

.
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In discrete time the same result holds withE((T o
0 )2) replaced byE(T o

0 (T o
0 − 1)),

but it also holds that

E

(∫
(R′+∩(L−x−X1I {X0<0},L−x])×R′+

vdξ(0,y)(u, v)
) ≤ E(T o

0 (T o
0 − 1))E(Y o

0 )

2E(T o
0 )

.

It remains to find a bound for the probability on the right-hand side of (3.3), for
µ-a.e.(x, y) ∈ (0, L] × R+. As before, we can replaceξ with θ−x(ξ) within the
probability, and we get:

I {|φ(−x,L−x](ξ) − φ(−x,L−x](ξ
(0,y)) + y| > 0}

≤ I {Y0 > 0} +
∫

(L−x−X
(0,y)
1 ,L−x]×R′+

dξ(u, v)

+
∫

(R′−∩(−x,−x+|X0|])×R′+
dξ(0,y)(u, v)

+
∫

(R′+∩(L−x−X1I {X0<0},L−x])×R′+
dξ(0,y)(u, v). (5.5)

However, it is easy to see that the marked simple point process generated by the ran-
dom sequence(X, I {Y > 0}) is also a stationary renewal reward process, and that
(5.5) is the quantity corresponding to (5.4) for this process. Hence, the calculations
for (5.4) can be repeated for (5.5) to give the desired result. ut

6. Examples

We here rather briefly indicate how the error bounds given in Theorem 5.1 can be
applied to specific examples: independent binary valued rewards, rewards indicat-
ing a long distance to the next renewal, the number of visits to a “rare” set by a
stationary Markov chain on a finite state space, and the Lebesgue measure of the
total time spent in a “rare” set by a Markov jump process on a finite state space.

Independent rewards.For a stationary renewal reward processξ in continuous time
such that supp(L(Y o

0 )) = {0, 1}, for which the rewards are independent of the
renewal process, 5.1 takes on the following appearance:

dT V

(
L

(∫
(0,L]×{1}

dξ(x, y)

)
, Po

(
L

E(Y o
0 )

E(T o
0 )

))

≤
(

1 − exp

(
−L

E(Y o
0 )

E(T o
0 )

))(
2 + 3E((T o

0 )2)

E(T o
0 )2

)
E(Y o

0 ).

Rewards indicating a long distance to the next renewal.For a stationary renewal
reward processξ in continuous time with the rewardY o

0 = I {T o
0 ≥ z}, where

z ∈ R′+, 5.1 becomes:

dT V

(
L

(∫
(0,L]×{1}

dξ(x, y)

)
, Po

(
L

P(T o
0 ≥ z)

E(T o
0 )

))
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≤
(

1 − exp

(
−L

P(T o
0 ≥ z)

E(T o
0 )

))

×
(

3E(T o
0 I {T o

0 ≥ z})
E(T o

0 )
+ 3E((T o

0 )2)

E(T o
0 )2

P(T o
0 ≥ z)

)
.

For example ifT o
0 ∼ exp(m), thenE(T o

0 ) = m, E((T o
0 )2) = 2m2, P(T o

0 ≥ z) =
e−z/m, andE(T o

0 I {T o
0 ≥ z}) = (z + m)e−z/m, so the error bound reduces to

(1 − exp(−(L/m)e−z/m))(3z/m + 9)e−z/m.

Number of visits to a “rare” set by a Markov chain.(See Erhardsson (1999) for a
more detailed, but also more restricted, account.) Let8 be a stationary discrete time
Markov chain on a finite state spaceS. Let ξ be the embedded stationary renewal
reward process for which the renewals are the times when the Markov chain visits a
certain singletonA, and the rewards are the number of visits by8 to a certain “rare”
setB before the next visit toA. In order to find the compound Poisson approx-
imation error bound of Theorem 5.1, we need to calculate the quantitiesE(T o

0 ),
E(Y o

0 ),E(T o
0 (T o

0 −1)) andE(T o
0 Y o

0 ). To find the generating function of the approx-

imating compound Poisson distribution, we must calculateE(sY o
0 ) ∀s ∈ (0, 1).

It is well-known, and follows from the Palm inversion formula for regenerative
random sequences, thatE(T o

0 ) = 1/µ(A) andE(Y o
0 ) = µ(B)/µ(A), whereµ is

the stationary distribution of the Markov chain. It likewise follows from the Palm
inversion formula that

E(T o
0 (T o

0 − 1))

2E(T o
0 )

=
∫

Ac

E(τA|80 = x)dµ(x),

whereτC := min{t ∈ Z′+; 8t ∈ C} ∀C ⊂ S, and that

E(T o
0 Y o

0 )

E(T o
0 )

=
∫

B

E(τA|80 = x)dµ(x) +
∫

B

E(τ rev
A |80 = x)dµ(x),

whereτ rev
C := min{t ∈ Z′+; 8−t ∈ C} ∀C ⊂ S. Hence, the quantities needed can

be calculated simply by solving linear equation systems (to findµ, E(τA|φ0 = ·)
andE(τ rev

A |φ0 = ·)) with dimension less than or equal to card(S). Similarly, the
generating functionE(sY o

0 ) ∀s ∈ (0, 1) can be obtained by solving a linear equation
system for eachs ∈ (0, 1).

Lebesgue measure of total time spent in a “rare” set by a Markov jump process.
Let 8 be a stationary continuous time Markov jump process on a finite state space
S; for the exact definition of such a process, see Asmussen (1987). Letξ be the
embedded stationary renewal reward process for which the renewals are the times
when the Markov jump processentersa certain singletonA, and the rewards give
the Lebesgue measure of the time spent by8 in a certain “rare” setB before the
next time it entersA. To find the compound Poisson approximation error bound of
Theorem 5.1, we need to calculate the quantitiesE(T o

0 ), P(Y o
0 > 0), E((T o

0 )2) and
E(T o

0 I {Y o
0 > 0}). To find the Laplace transform of the approximating compound

Poisson distribution, we must calculateE(e−sY o
0 ) ∀s ∈ R′+. It is well-known that
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E(T o
0 ) = E(τAc |80 ∈ A)/µ(A), whereµ is the stationary distribution of8 and

τC := min{t ∈ R′+; 8t ∈ C} ∀C ⊂ S, and also that

P(Y o
0 > 0) =

∫
Ac

P (τB < τA|80 = x)dνA(x),

whereνA(·) := P(8τAc ∈ ·|80 ∈ A). The Palm inversion formula gives:

E((T o
0 )2)

2E(T o
0 )

=
∫

Ac

E(τA|80 = x)dµ(x)

+µ(A)

(
E(τAc |80 ∈ A) +

∫
Ac

E(τA|80 = x)dνA(x)

)
,

and:

E(T o
0 I {Y o

0 > 0})
E(T o

0 )
≤
∫

Ac

P (τB < τA|80 = x)dµ(x)

+
∫

Ac

P (τ rev
B < τ rev

A |80 = x)dµ(x)

+µ(A)

∫
Ac

P (τB < τA|80 = x)dνA(x),

whereτ rev
C := min{t ∈ R′+; 8−t ∈ C} ∀C ⊂ S. Again, the quantities needed can

be calculated by solving linear equation systems with dimension less than or equal
to card(S). The Laplace transformE(e−sY o

0 ) ∀s ∈ R′+ can be obtained by solving
a linear equation system for eachs ∈ R′+.

References

1. Aldous, D.: Probability approximations via the Poisson clumping heuristic, Springer,
New York, 1989

2. Asmussen, S.: Applied probability and queues, Wiley, Chichester, 1987
3. Barbour, A.D., Brown, T.C.: The Stein-Chen method, point processes and compensators,

Ann. Probab.20, 1504–1527 (1992a)
4. Barbour, A.D., Brown, T.C.: Stein’s method and point process approximation, Stochastic

Process. Appl.43, 9–31 (1992b)
5. Barbour, A.D., Chen, L.H.Y., Loh, W.-L.: Compound Poisson approximation for non-

negative random variables via Stein’s method, Ann. Probab.20, 1843–1866 (1992)
6. Barbour, A.D., Holst, L., Janson, S.: Poisson approximation, Oxford University Press,

1992
7. Barbour, A.D., Utev, S.: Solving the Stein equation in compound Poisson approxima-

tion, Adv. in Appl. Probab.30, 449–475 (1998)
8. Barbour, A.D., Utev, S.: Compound Poisson approximation in total variation, Stochastic

Process. Appl.82, 89–125 (1999)
9. Brown, T.C.: Some Poisson approximations using compensators, Ann. Probab.11, 726–

744 (1983)
10. Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes, Springer,

New York, 1988
11. Erhardsson, T.: Compound Poisson approximation for Markov chains using Stein’s

method, Ann. Probab.27, 565–596 (1999)



Stationary renewal reward processes 161

12. Kabanov, Yu.M., Liptser, R.Sh.: On convergence in variation of the distributions of
multivariate point processes, Z. Wahrsch. Verw. Gebiete31, 235–253 (1983)

13. Kallenberg, O.: Limits of compound and thinned point processes, J. Appl. Probab.8,
269–278 (1975)

14. Kallenberg, O.: Random measures, 3rd ed. Akademie-Verlag, Berlin, 1983
15. Lorden, G.: On excess over the boundary, Ann. Math. Statist.41, 520–527 (1970)
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