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Abstract. We consider a stationary version of a renewal reward process, i.e., a renewal
process where a random variable called a reward is associated with each renewal. The re-
wards are nonnegative and I.1.D., but each reward may depend on the distance to the next
renewal. We give an explicit bound for the total variation distance between the distribution
of the accumulated reward over the inter¢@l L] and a compound Poisson distribution.

The bound depends in its simplest form only on the first two joint momeritsafdY (or

I{Y > 0}), whereT is the distance between successive renewalsaisdhe reward. IfT

andY are independent, anblE(Y) (or LP(Y > 0)) is bounded ot binary valued, then

the bound is OE(Y)) asE(Y) — 0 (or O(P(Y > 0)) asP(Y > 0) — 0). To prove our

result we generalize a Poisson approximation theorem for point processes by Barbour and
Brown, derived using Stein’s method and Palm theory, to the case of compound Poisson
approximation, and combine this theorem with suitable couplings.

1. Introduction

In this paper we are concerned with some propertiesregwal rewardprocesses.
By arenewal process (more exactly: a Palm version of a renewal process) we mean
a simple point processon R or Z such thatP (£({0}) = 1) = 1 and such that the
distances between successmeewalq(i.e., points ot) are I.1.D. Arenewal reward
process is constructed by associating with each renewal a random variable, called
areward We here assume that the rewards are nonnegative and 1.1.D., and that
each reward may depend on the distance to the next renewal. We also assume that
the distances between successive renewals have finite means, so that there exists a
stationary version of the renewal reward process.

Renewal reward processes are interesting for their connections with thinned
point processes and with regenerative processes. Clearly, a renewal reward pro-
cess with binary valued rewards can be regarded as a dependently thinned re-
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newal process. A regenerative process by definition contains an embedded renew-
al process, and it may in many situations be convenient to associate with each
renewal a reward, which depends only on the cycle immediately following that
renewal.

The quantity which is studied in this paper is taecumulated rewarcf a
stationary renewal reward process over a bounded interval. More precisely, we
derive Poisson or compound Poisson approximations with explicit total variation
distance error bounds for the distribution of this quantity in the case & or
P(Y > 0) is small, whereY is the reward. Such results are relevant in particular
when we are dealing with occurrences of a “rare” event in a stationary regenerative
process. E.g., we could be interested in a Poisson approximation for the number of
cycles where the “rare” event occurs, a compound Poisson approximation for the
total number of occurrences, or an exponential approximation for the time until the
first occurrence.

Needless to say, a number of limit theorems in this field are today well-known.
The firstimportant result was obtained bgiiyi (1956) for the case of independent
thinning (i.e., binary valued rewards which are independent of the renewal pro-
cess): the independently thinned renewal process converges weakly to a Poisson
point process a&(Y) — 0 after a change of time scale. This has subsequently
been generalized to a larger class of point processes; see Kallenberg (1975). For
dependent thinnings, some results can be deduced from theorems relating weak
convergence of point processes to weak convergence of point process compensa-
tors; see e.g. Brown (1983).

Concerning total variation distance bounds, a number of so-aadiegensator
bounds have been derived for the total variation distance between the distributions
of point processes. These depend on how close (in some sense) the compensators
of the point processes are to each other; see e.g. Brown (1983) or Kabanov and
Liptser (1983). In Barbour and Brown (19928}ein’s methodks used to construct
a different kind of bound (Theorem 3.1) for the total variation distance between
the distribution of the number of points of a point process in a relatively compact
set and a Poisson distribution. For this bound it is required that suitable couplings
can be found between the point process and the corresponding Palm processes. In
the same paper Stein’s method is also used to derive a compensator bound, while
in Barbour and Brown (1992b) it is used to produce bounds for the total variation
distance between the distribution of a point process and that of a Poisson point
process, which do not depend on compensators.

The main results in the present paper are the following. The total variation
distance between the distribution of the accumulated reward of a stationary re-
newal reward process over the inter¢@l L], and a suitable compound Poisson
distribution, is, if rewards are integer valued, bounded\E(TY)/E(T) +
E(T®E(Y)/E(T)?), whereT is the distance between successive renewals and
C is an explicit constant which is bounded if the quantiti (Y) is bounded. If
LE(Y) is large thenC is also large, unless an additional condition is satisfied.

If rewards are binary valued, then the approximating distribution is Poisson with
meanLE(Y), andC < 3 regardless oL E(Y). If rewards are not integer valued,
the bound isC(E(TI{Y > O})/E(T) + E(T?)P(Y > 0)/E(T)?), whereC is
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an explicit constant which is bounded if the quantity (Y > 0) is bounded, but

large if this quantity is large. To prove our results, we first generalize Theorem 3.1
in Barbour and Brown (1992a) to the case of compound Poisson approximation.
This generalization is of some interest in its own right. We then apply this result
to renewal reward processes, using couplings which generalize those used in the
proof of Theorem 4.3 in Erhardsson (1999).

The paper is organized as follows. Section 2 contains some notation, as well
as some definitions and relevant properties of point processes. In Section 3 the
above mentioned generalization of the theorem by Barbour and Brown is given. In
Section 4 renewal reward processes are defined, and some lemmas (not all new)
about expectation measures and Palm kernels for such processes are collected. In
Section 5 the main results are stated and proven. Finally, in Section 6 we consider
some examples: independent rewards, rewards indicating a long distance to the
next renewal, and the time spent in a “rare” set by a finite state Markov process in
discrete or continuous time.

2. Preliminaries

We here give some notational conventions, definitions and well-known properties
of point processes which will be used below. For more details, see Sections 1.1-2,
2.1,10.1 and 15.7 in Kallenberg (1983) and Section 3.1 in Rolski (1981).

Spaces and functiontet S be a topological space. As a measure space, we
always assums to be equipped with the Borel-algebra, denoted b¥. For any
random elemenk in S we denote by¥ (X) the distribution ofX. We denote by
,%’2 the sets i4s which are relatively compact, by s the space of measurable
functionsS — R, and byﬁf’;r the space of measurable functighs> R . We use
the following notation for sets of numbe®:= the real numbers/ = the integers,

Ry =10,00), R, = (0,00), R- = (—00,0],R_ = (—-00,0),Z, ={0,1,2,...},
Z,={1,2.},Z_={.,-2,-10andZ_ = {..., -2, —1}. We denote bys*

the space of all functiong : Z — S. If S is a complete separable metric space,
then so isS“. A random element i5Z is called an §-valued)random sequence

The space/’(S). Let S be a locally compact second countable Hausdorff to-
pological space. We denote by (S) the space ofounting measure@.e., integer
valued Radon measures) 6n.4"(S) is a complete separable metric space in the
vague topology. A random elemenin .47(S) is called gooint procesgon S). The
expectation measur & € /7(S) is the measur& (£(-)). If & € A(S) has as-fi-
nite expectation measurg then there exists a probability kern@l: S — A7(S)
called thePalm kernebith the following defining property:

E (/S f)ds(x)1{§ € A}> =/SQ(x, A)f(X)du(x) YA€ By, feTy.

A point procesg~* satisfyingP (§* € -) = Q(x, -) for somex € S is called @Palm
processat x for &. A counting measure satisfyingv({x}) <1 Vx € Sis called a
simple counting measurand a pointprocegssuchthat (6({x}) <1vx e S) =1
is called asimple point process
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The spacest’(R x K) and ./ (Z x K). Let K be a locally compact second
countable Hausdorff topological space. A random elergant./" (R x K) such
that P(5(A x K) < oo YA € #%) = 1landP(£({x} x K) <1Vx e R) =1
we call amarked simple point proceg¢sn R x K). For eachR x K-valued ran-
dom sequencéX, Y) such thatP(... < X_1 < X0 <0< X1 <..)=1and
Pcardi € Z; (X;,Y;)) e Ax K} < 0o VA € %2) = 1, there exists on the same
probability space aéX, Y) a marked simple point proce§son R x K such that
PE(Q) =cardi € Z; (X;,Y;) € -}) = 1. We call¢ the marked simple point
procesgenerated byX, Y). Conversely, for each marked simple point process
onR x K suchthatP(§(R; x K) = 0c0) = P(§(R- x K) = co) = 1 there exists
on the same probability spacefanR x K-valued random sequenck, Y) such
thatP(... < X1 < Xo<0< X1 <..)=1landPE() =cardi € Z; (X;, Y;)
€ -h) = 1. We call(X, Y) the coordinates of the points gf. We define the shift
operato® : R x /(R x K) - N(R x K) by6,(v)(-) :=v({(x + ¢, y); (x,y)
€ -HVt e R,ve /(R x K).O is measurable and, for eache R, a bijection
from 4"(R x K) onto itself. Analogous properties hold for marked simple point
processes o x K.

Total variation distanceFor any two probability measureg andv, on any mea-
surable spaceS, ) we define theotal variation distancelry (v1, v2) by:

dry(v1, v2) = SUp |v1(A) —v2(A)].

AeF

Coupling.A pair of random variableg€X, Y) defined on the same probability space
is called acouplingof two probability distributions); andv; if ¥ (X) = vy and
LX) = vo.

3. Atotal variation distance bound

Definition 3.1. (Cf. Section A.19 in Aldous (1989).) A nonnegative random vari-
able W is said to have @ompound Poissodistribution POISY), wherev is a
measure ok’ such thatf(;’o(l A x)dv(x) < oo, if the Laplace transform of
Wis E(e™*") = exp(— fR;(l — e )dv(x)) Vs € R/.. If v is finite, then

POISv) = 3(2?11 T;), where the variable§T;; i € Z', } and M are indepen-
dent, #(T;) = v/v(R)) Vi € Z!,, andM ~ Po(v(R/,)). Here, #(T) is called
the compoundinglistribution.

Theorem 3.1. Let S be alocally compact second countable Hausdorff topological
space, and leg be a point process ofi x R, with o -finite expectation measure

For each(x, y) € S x R, lete™-Y) be a Palm process &k, y) for &, and assume
that £ *-Y) is defined on the same probability spacetasetA € %%, and define
pua() = (A x ) andu/y () :== na(- N RY). Assume that', is finite. Define
¢a P N(S X Ry) = Ry byoa(v) = foR; ydv(x,y) Yv € /(S x Ry). If
suppi’y) = {1}, then:
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drv(Z(9a(8)), Para(1)))

1— e #a ,
Sl [ E(0a®) — 94 ) )t . B
na(l) Ax{1)

If suppu’y) C Z/, then:
drv (< (@4 (§)). POIS()y))
< H(uy) /A , VE(94®) = 04 G +y)dpnx.y).  (32)
XLy

whereH (u/y) = (ua(D)~TAD) exp(ua(Z)), unlessku (k); k € Z!,} is mono-
tonically decreasing towards 0, in which case

1
ma(D) —2ua(2)

1
log™ 2(ua (1) — 2124 (2 1
) <4(uA(l) —2u4(2) + 109" 2(1a (1) — 21a( ))) A

If suppu’y) C R/, (the general case), then:
dry (L (@a(&)), POISy))
< explua(R})) fA o P(94®) =9aE™ ™) 431 > 0)dutx, y). (33)
xRy

H(uly) : =

Proof. This theorem generalizes both Theorem 3.1 in Barbour and Brown (1992a)
and Theorem 4.1 in Erhardsson (1999). Consider for @aet%r . the following
so-calledStein equation

xfp(x) — /R/ yfp(x +y)dpy(y) = Ig(x) = P(W € B) ¥ux € Ry,
+

whereW ~ POIS(i,). According to Theorem 1 in Barbour, Chen and Loh (1992)
there exists a unique solutiofi € ?R; of this equation satisfying the con-
dition S lxfe(x)] < oo; fg(0) can be chosen arbitrarily. Hence, if we
can find a bound fotE (¢a(€) f8(¢a(€) — [r, ¥/8(®a&) + y)du,(y)] for
eachB € %, then we will also get a bound for the total variation distance
dry(Z(pa(§)), POIS/,)), an idea which is known &tein’s methodTo do this

we imitate the proof of Theorem 3.1 in Barbour and Brown (1992a). We have:

E(0a®) f5(¢a©)) = E ( /

AXR

2IB(@a())dE(x, y))
L

= (/A / YIB@a(E — 8x.y)) + y)dE(x, y))

Ry

= / YE(f5(@aE™Y — 8y +3))dulx, y),
AXR/,
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where the last equality follows from Lemma 10.2 in Kallenberg (1983). Hence,

E (m ©1s@a©) = [ fs0a©)+ y)d//A(y))

+

= | YE(f5(@aEXY = 8y) + ) — fe(a®) + y))dp(x, y)|

AxR/,

< /A CYE(If3@aGSY =80y + ) = fB(@a ) + V)dnix, y).

xRy

(3.1) now follows from the fact that if sugp’,) = {1}, then from Lemma 1.1.1in
Barbour, Holst and Janson (1992),

1— e—#a@
sup sup |fpk+1) — fe(k)| <
BCZy keZl, na(l

Similarly, (3.2) follows since if sup@/,) C Z!,, then from Theorem 5 in Barbour,
Chen and Loh (1992),

sup sup|fp(k+1) — fp(k)| < H(uly).
BCZy keZ!,

Finally, (3.3) follows since if sup@.’,) C R/, then from Theorem 2 in Barbour,
Chen and Loh (1992),

sup  sup v|fp() — fp(v)| < expua(R))). o

BE.%RJr u>v>0

Remark 3.1. Finding better bounds for the quantity i, SUR.cz, | fBk +

1) — fp(k)| than H(u')) in the case when supp’,) C Z/_is currently a very
active research area. Some results in this direction are given in Barbour and Utev
(1999), butin order to apply these in the present context the preceding proof must be
somewhat modified. If attention is restricted to boundingdbknogorov distance

dg (Z(¢a(&)), POIS,)), this can be done in a manner similar to the proof of
Theorem 3.1 if a bound for the quantity S4;,. o). ez, SURcz, |fB(k+1) —

fs(k)| is available. Some results can be found in Barbour and Utev (1998).

4. Renewal reward processes

Definition 4.1. By astationary renewal reward procegs continuous or discrete
time, we mean a marked simple point procéssn R x R; or Z x R, respec-
tively, defined in the following way. Let7°, Y°) be an I.1.D. random sequence,
R/, x Ry-valued orZ/_ x R, -valued respectively, for which (7)) < oco. Define
the random sequence® by:

YISTS, if £ > 1;
XP:=10, if t =0;
=i TP ifr<-1.
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Let&£° be the marked simple point process generatedily Y °). We calls® a Palm
version of arenewal reward process (with respect to marks RonThe distribu-
tion of & is now given by thé®alm inversion formulda part ofRyll-Nardzewski's
akaSlivnyak’s theorem). In the continuous time case:

E(f3® s@.conar) X
E(g$)) = E(TQ) Ve €T\ rury): 4.1)
and in the discrete time case:
E (X" g0 .
E(g(§)) = E(T9) Vge ’9;~4/”'(Z><R+)' (4.2)

In what follows, in the context of a particular stationary renewal reward prggess
(T°, Y°) and X° will always refer to the random sequences defined akggey)
will refer to the coordinates of the points &f cf. Section 2.

In the remainder of this section we give three lemmas which will be used below.
We do not doubt that at least the first two of them can be found in the literature, but
since we do not know the exact locations, we provide proofs.

Lemma 4.1. Let& be a stationary renewal reward processBrx R, or Z x Ry.
Thené has expectation measure = E(Té’)‘lé x uy, wheret is the Lebesgue
measure or the counting measure respectively,and= £ (Yg).

Proof. We consider only the continuous time cagés locally finite, since the sta-
tionarity of £ implies thatE (§([—x, x] x R})) = 2 E(T®)~1 < co Vx € R. The
fact thaty = E(Té’)—le x wuy for some locally finite measurey on R, follows
from Proposition 10.5.1in Daley and Vere-Jones (1988), andithat % (Yg) can
be seen as follows. Clearlyy ([0, y]) = E(§((=6,0] x [0, y])E(T5)/8 Vy €
R.,8 € R/, and (4.1) implies that

E((TQ AS)I{YS < y))
E(T)
< E(§((—5,0] x [0, y])

_ SE(IYS = ¥} +£°((=6,0) x [0, 3]))
- E(TD)

Vy e Ri,8€R].

Now leté — 0 and use dominated convergence. O

Lemma 4.2. Leté be a stationary renewal reward processBix R, with expecta-
tion measurgr = E(Té’)‘lﬁ x uy. Foreachy € Ry, define the random sequence

(X y©Ox) asfollows: let(X %y — x O, y®) .= (12, v?) Vi € 2\ {0},
let (Xéo’y), Yéo’y)) = (0, y), and IetXiO’y) be independent aff’®, Y°) such that
P(X&O’y) € ) is a version of the regular conditional distribution @f given
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Y® = y. For each(x,y) € R x Ry, let£©) be the marked simple point pro-
cess generated by (©Y)| YOy and defing &) := 6_, (6(®»)). Then the Palm
kernel of¢ can be chosen a@’, where Q' ((x, y), -) := P(E®Y) e .) for each
(x,y) € R x Ry. The analogous result holds for a stationary renewal reward
process orZ x R..

Proof. We consider only the continuous time case. As mentioned in Section 2, the
Palm kernelQ : R x R, — A" (R x R.) is a probability kernel which satisfies
the identity

E </ S, y)dé(x, y)I{§ € A}) =/ O((x,y), A) f(x, y)du(x,y)
RxRy RxRy

(4.3)
foreachA € %y (rxr,) and f e ﬁ}xR . We will show thatQ’ is a probability
kernel which satisfies (4.3) for each € % (rxr,) and eachf in the class of
indicator functions{/p»c(:); B € #r, C € #g,}. Dynkin's r-1-theorem and
monotone convergence then imply ti@tsatisfies (4.3) for eachA € % 1 (rxr,)
andf € g g, -

Itis clear from the definition of *-Y) thatQ’((x, y), -) is a probability measure
on./"(R x Ry) foreach(x, y) € R x R;.. We must show thap’(-, A) is a measur-
able function onR x R, for eachA € % (rxr,).- From Dynkin'sz-A-theorem
it follows that we need only consider setsin the 7-systems# generated by sets
of the type{v € A (R x Ry); v(B) = k}, whereB € #Brxpr, andk € Z . If
A=0"{ve /(R x Ry); v(B;) = ki} € A, then{e™Y) e A} can be written
as a countable disjoint union in the following way:

) 0,y 0,
(ECY) € A} = Uper N'_y (mjeD,-{(x +X; ))7 Y/( y)) € B;)
0,y 0,
NNj¢p; {(x—i—Xﬁ }),Yg y))¢Bi})
0,y 0,
= Uper Njez {(x + X7, ¥ %) e Py,

wherel’ =T'1 x ... x I'y;, T; is the set of alk;-tuples of distinct integers for each
i €{1,...,n},andthe setstD € #Brxr,; J € Z} depend only orD andA. Con-

sider for eacly € Z the functionF]D ! R x Ry x R, x (R, x RPNV — {0, 1},
defined by:

1{(x+2{=_1u,~,vj>ecjp}, if j <—1;
FP(x,y 2, (u,0) = { I{(x,y) € CP}, if j=0;
I{<x~|—z+2ij;11ui,vj)eCjD}, if j>1.

Clearly F is measurable, implying that algo := >, [1;c F} is measur-
able. Since it holds that

]{%—(X,y) I= A} = F(X, Yy, X;_OVy), (To, YO))$
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we get, using also thatio’” and(7°, Y°) are independent,
P(&-(x,y) € A)
= E(F(x,y, X", (T°, Y°)))
= E(E(F(x, y, X7, (T YO))lx, y, X))

-/ E(FG, ¥, 2, (T YOG, x 8y x vO)(, v, 2),
RXR{ xR/,

whereug)l’” = Q(Xio’y)). But it is easily shown using the-A-theorem and mono-

tone convergence that the right-hand side of this expression defines a measurable
function onR x Ry.

We next show thaD’ satisfies (4.3) for each € %, (rxr,) and eachf e
{Ipxc(:); B € #r,C € ,@R+}. Fix A € ,@V,V(RXRJF), B € %R, andC € BR.,
such thaiuy (C) > 0 (if uy (C) = 0 thenQ’ satisfies (4.3) trivially). Calculations
similar to those in the first part of this proof give:

/ 0'((x,y), Algxc(x, y)du(x,y)
RxRy

=ETH fR . PE™Y € A)Ig()Ic(y)d (€ x puy)(x, y)
X[y

=ETH /R . PO (EOY) € A)Ip(x)Ic(0dE x py)(x, )
X Iy
= E(TOO)_1/ Ig(x)P(O—x(£°) € A, Y§ € C)dx
R

= E(T) Ly (C) /R I5(0) PO, (6°) € AIYS € C)dx.

Proposition 3.7 in Rolski (1981) tells us that the distributioe® € -|Y§ € C) is
a Palm distribution with respect to marks fra@mWe can therefore appMecke’s
theorem, see Proposition 3.5 in Rolski (1981), which gives:

E(TOO)AMY(C)/ Ip(x)P(6-x(5°) € A|Yg € C)dx = E(§(B x O)I{£ € A)).
R

]

Lemma 4.3. If £ is a stationary renewal reward process &8nx R, then, for each
z,b € R such that < b,

o E(Y)) EWTDIHEX
E(/[o,m;e;”dg (”’”)) =Ry T Ea@?

o E(Y)) EWTDIHEXY
E</<z,o>x;e;”d‘f (”’”))SZE(Tg’)+ E(I)?

§ 0)2 o oy 0
E </ vdso(u,v)) < ZE(YO) n E((TP)EY) +er(T°YO)7
(—=b,—b+z]x R/,

T E(T)) E(Tg)? E(Tp)
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wherea = 1, unless the rewards are independent of the renewal process, in which
casex = 0. If ¢ is a stationary renewal reward process @nx R, then, for each

z,b € Z such thatz < b, the same assertions hold wiﬂ"((TOO)Z) replaced by
E(Ty(Ty — 1)); furthermore, for eacth € Z andz € Z/,,

E / vd&%(u, v) | < ZE(YQ).
(b,b+z] xR/,

Proof. In both continuous and discrete time, it holds that

E (f vdE°(u, v)) =Y E(Y?I{X9 < z))
[0.2)x R,

Jj=0

=EX) Y P(X%<2)
j=0

= E(YD)E(£°([0, 2) x Ry)).

Hence, an application of Lorden’s renewal inequality, see Corollary 1 in Lorden
(1970), proves the first assertion. Moreover,

E (/ vdE°(u, v)) =Y E(Y°,I{X°; > —z})
(=z,0)x R} =1

o0
<EXY) Y P(X°,, > —2)
j=1

= E(YQ)E(§°((=z, 0] x Ry)),

which together with Lorden’s renewal inequality proves the second assertion. Also,

b—oEX0) _ g f vdE@u, v) | < iE(Y I{(X_; > —b+7})
E(Tg) (—b+2,0x R, )T e

j=1
+E(Yo)

o0

=S E(Y_;I{X_j — Xo > —b +z + |Xol}) + E(Yo)
=1

~

IA

E < / vdE%u, v)) + E(Yo),
(=b+2,00x R/,

which together with (4.1) or (4.2) and the second assertion proves the third
assertion. The case when the rewards are independent of the renewal process again
follows from Lorden’s renewal inequality. The last assertion in the discrete time
case is an immediate consequence of Lemma 4.1, (4.2), and Theorem 2.1 in Rolski
(1981), which says tha® (% € -) = P(£ € -|€({0} x Ry) = 1). O
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5. Poisson and compound Poisson approximation

Theorem 5.1. Let & be a stationary renewal reward process énx R, with
expectation measurg = E(TOO)‘1£ x py, wheret is Lebesgue measure and
py == Z(Y§), and defing, (1) :== uy (- N R). LetL € R/.. If suppuy) = {1},
then:

i (2 ([ 2500 P2 )
v ©,L]x{1} ' ’ E(Tg)

o EDD E(TSY)) . EW(TDIHEG)
= (1-en(- ) (ClTT&)”zT&)? O

If supp(iy) C Z,, then:

Iy
d & dé(x, ,POIS| L
T < (/(O,L]xz;y s y)) < E(Té))))

/ (o) Oy 0 0,2 o)
3 H<L 1y ))LE(YO) (ClE(To Y§ +C2E((TO) )E(YO))’ 52)

E(T)) " ETQ) E(TD) E(TQ)?

whereH (E(Tg) "' Liy) == (E(T§) "Ly (D) 7' A L) exp(E(Tg) " Luy (Z)))),
unless{kuy (k); k € Z!, } is monotonically decreasing towards 0, in which case

H(L ’ﬁ)-— 1 ( 1 logt2a (l))/\l
ET)) T Ay \aay@ 09 0 ’

whereAy (1) := E(Tg’)*lL(My(l) —2uy(2)). If supp(uy) C R/, then:

My
d &L d&(x, ,POIS| L
v ( (/(O,L]xR;y stx y)) ( E(T(?)))

py (RN |y (RY)
= eXp<L E(TY) ) E(TQ)
0 0 0\2 /
§ E(TOI{YOO =0) |, BT )ﬁwZ(RJr) 5:3)
E(Ty) E(TS)

ThroughoutC1 = C2 = 3 unless the rewards are independent of the renewal pro-
cess, inwhich cas€é; = 2andC;, = 3. If ¢ is a stationary renewal reward process
onZ x Ry,andifL € Z/, then the same assertions hold WEIQ(T(?)Z) replaced

by E(TQ(Tg — 1)), but in this case we may also takg = 2andC2 = E(Ty).

Proof. We consider the continuous time case, pointing out the modifications need-
ed in the discrete time case. In order to apply Theorem 3.1, we need to find suitable
couplings ofZ(¢) and £ (¢ *-) for u-a.e.(x, y) € R x R. We shall construct
couplings which generalize those used in the proof of Theorem 4.3 in Erhardsson
(1999). Let(2, ¢, P) be a probability space which contains the stationary renewal
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reward proces§, and hence the random sequeli&e Y) (the coordinates of the
points of¢). Let the probability space also contain a collection of random variables
{X(lo‘y); y € R.} which are independent df and for WhiChP(Xg_o’y) €-)isa
version of the regular conditional distribution @f given Y = y. Define the

R x R.-valued random sequencg @) vy @) in the following way:

(Xio’y) + X — Xy, Y,-) , if i > 1andXg < O:
(Xl.(o’y), Yl.(o’y)) = (Xio‘y) + Xi—1 — Xo, Yi—l) , ifi>=1andXo=0;

©, y), ifi =0;

(X; — Xo, Yp), ifi <-1.

(Of course,P(Xg = 0) = 0 in the continuous time case, but not in the dis-
crete time case.) Let(®) denote the marked simple point process generated by
(X©) | y©) From Lemma 4.2 it follows that™*?) := 6_, (6(®») can be cho-

sen as the Palm process(at y) for each(x, y) € R x R,. We want to find a
bound for the quantity within the expectation on the right-hand side of (3.1) and
(3.2), foru-a.e.(x, y) € (0, L] x Ry.. We note that the stationarity 6fimplies that
LO_ (&) = L) Vx € R, and examining the proof of Theorem 3.1 we see that
we can replacé with 6_,(¢) within the expectation. Furthermore, the definition
of the shift operator implies that:

160.) (O—x (8)) — (0,17 (O—x (E 7)) + y]
= | 121 €) — P, -] EP) + ¥ V(x,y) € (0, L] x Ry.

Bounding in a suitable way the sum of those rewards which do not cancel out in
the difference, we get:

P, 121 (E) — Pr,1—x)(EOY) + y]

<Yo+ / vd§(u, v) + / vd& OV (u, v)
(L—x—X"Y L—x]xR, (R_N(—x,—x+|Xo[)x R},

+ / vd€©Y (u, v). (5.4)
(RyN(L—x—X11{Xo<O},L—x])x R/,

We calculate the expectations of the terms in 5.4 one by one, using (4.1). For the
first term, we get:
E(TOY®)
E(Yp) = —200.
E(T})

For the second term, Lemma 4.1 and the fact¢hatindependent of(io’y) gives:

E(Y?
E(E / vde@u, )| X)) = Ex ) (%),
(L—x—x"V L—x]xR, E(Ty)

and:

E(TYS

©,y)
YE(Xy " dp(x, y) = L— 3.
fm,uxR; ! E(Tg)
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For the third term, the fact thgf®>) is independent ok gives:

E(E / vdE®Y (u, )| Xo
(R_N(—x,—x+|XolDx R/,

:/ E / vdé(o’y)(u,v) dvo(2),
R/ (R_N(—x,—x+z])x R/,

'
wherevg := £ (| Xp|). Here, in the continuous time case we get from Lemma 4.3
foreachs € R/,

EYY EWTDHHEXD)
E d ©,y) , 0 + 0 0
(/(R/_n(—x,—x+z])xRLr vagT v)) = ZE(T(?) E(Tg)?

E(TOY®)
TET)

implying that:

. 3E(TO)?E(YQ E(TOY?
E / vde OV, v) | < (7o) )02( 0) +a (Tg 00).
(RN (—x,—x+|Xo[) x R, 2E(Ty) E(Ty)

In discrete time the same result holds WEK](T(?)Z) replaced byE (T(T9 — 1)),
but in this case it also holds that

E(TY(TP — 1)E(Y?
E / 0de@) vy | < ET0To O)) (o)
(R_N(=x,—x+|Xo[) xR, 2E(Ty)

For the fourth term, the fact that® is independent ok 1/{Xo < 0} gives:
E|E / vd& OV (u, v)| X11{Xo < 0}
(R\.N(L—x—X11{Xo<0},L—x])x R/,

_ / E / v (u, v) | dva(2),
R (R\.N(L—x—z,L—x])x R/,

wherev, (= Z(X11{Xo < 0}). Here, in the continuous time case we get from
Lemma 4.3 for each € R/, :

EY) EW(TOIHEXS
E / vde @V (u,v) | <z ( %) L, EWo) )02( o)
(RyN(L—x—z,L—x])x R/, E(Ty) E(Ty)

implying that:

BE(TQ)?E(Y]
£ / WdEO) ) | < ((Tp) 232( 0)
(R\, (L—x—X11{X0<0},L—x]) xR, 2E(Ty)
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In discrete time the same result holds WEIQ(TC?)Z) replaced byE (T5(T9 — 1)),
but it also holds that

_ E(TQ(19 — L)E(Y§)

vdg’_-(O,y)(u’ U)) < 2B TD)
0

e(f
( (R\.N(L—x—X11{Xo<0},L—x])x R,

It remains to find a bound for the probability on the right-hand side of (3.3), for
u-a.e.(x,y) € (0, L] x Ry. As before, we can replagewith 6_, (¢) within the
probability, and we get:

. 1-x] (&) — bex.L—x]EC) 4+ y| > 0}
§I{Yo>0}+/ d&é(u, v)

(L—x—XY L—x]xR,

+ f dg Y (u, v)
(R’J\(—x,—x+\Xo|])><RLr

+ / dgOY (u, v). (5.5)
(Rl N(L—x—X11{Xo<0},L—x])x R,

However, itis easy to see that the marked simple point process generated by the ran-
dom sequenceX, I{Y > 0}) is also a stationary renewal reward process, and that
(5.5) is the quantity corresponding to (5.4) for this process. Hence, the calculations
for (5.4) can be repeated for (5.5) to give the desired result. O

6. Examples

We here rather briefly indicate how the error bounds given in Theorem 5.1 can be
applied to specific examples: independent binary valued rewards, rewards indicat-
ing a long distance to the next renewal, the number of visits to a “rare” set by a
stationary Markov chain on a finite state space, and the Lebesgue measure of the
total time spent in a “rare” set by a Markov jump process on a finite state space.

Independent reward§.or a stationary renewal reward procéss continuous time
such that sup(DS,”(Yg)) = {0, 1}, for which the rewards are independent of the
renewal process, 5.1 takes on the following appearance:

irv (2 ([ g 500) P75 )
‘x9 9
v (0,L]x{1} Y E(TY)
E(Y®) BE((T§)?) o
< (1—exp(—LE(T§)>> <2+ W E(Yy).

Rewards indicating a long distance to the next reneWal. a stationary renewal
reward proces§ in continuous time with the rewartly = I{Ty > z}, where
z € R/,, 5.1 becomes:

i (o 00 oo 22)
x? 9 T 0~
v (©,L]x{1} Y E(TY)
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P(TQ > 2)
(-5 )

BE(TSITY > z))  BE((TD)?)
E(Tg) E(Tg)?

P(Ty > z)) .

For example iff® ~ exp(m), thenE(T§) = m, E(T®)?) = 2m?, P(T{ > z) =
e#/m and E(TQH{TY > z}) = (z + m)e~*/™, so the error bound reduces to
(1 — exp(—(L/m)e=/™))(3z/m + Qe /™,

Number of visits to a “rare” set by a Markov chai(See Erhardsson (1999) for a
more detailed, but also more restricted, account.}ii bé a stationary discrete time
Markov chain on a finite state spaelLet & be the embedded stationary renewal
reward process for which the renewals are the times when the Markov chain visits a
certain singletor, and the rewards are the number of visitslbio a certain “rare”
set B before the next visit taA. In order to find the compound Poisson approx-
imation error bound of Theorem 5.1, we need to calculate the quanﬂﬁﬁs),
E(YD), E(Tg(Ty—1)) andE(TyYg). To find the generating function of the approx-
imating compound Poisson distribution, we must calcuEl(@Yg) Vs € (0,1).

It is well-known, and follows from the Palm inversion formula for regenerative
random sequences, that7y) = 1/u(A) andE(Yg) = u(B)/u(A), wherep is
the stationary distribution of the Markov chain. It likewise follows from the Palm
inversion formula that

E(TY(TP? — 1))

—;’E(OT(?) = / E(ta|®0 = )du(x),

wherete :=min{t € Z',; ®; € C} VC C S, and that

Oyo
Se = [ Eaivo = ndut + [ E00 = v
E(Ty) B B

Whererée" i=min{r € Z'; ®_, € C} YC C S. Hence, the quantities needed can
be calculated simply by solving linear equation systems (todind (z4|¢o = -)
and E (t®V|¢o = -)) with dimension less than or equal to cesgl Similarly, the
generating functio (s Yf?) Vs € (0, 1) can be obtained by solving a linear equation
system for each < (0, 1).

Lebesgue measure of total time spentin a “rare” set by a Markov jump process.
Let ® be a stationary continuous time Markov jump process on a finite state space
S; for the exact definition of such a process, see Asmussen (19873. lhetthe
embedded stationary renewal reward process for which the renewals are the times
when the Markov jump procegstersa certain singletor, and the rewards give
the Lebesgue measure of the time spentbbiyn a certain “rare” seB before the
next time it entersi. To find the compound Poisson approximation error bound of
Theorem 5.1, we need to calculate the quantii€g;), P (Yg > 0), E((Té’)z) and
E(T$1{Yg > 0}). To find the Laplace transform of the approximating compound

Poisson distribution, we must calculﬁee‘”g) Vs € R/, Itis well-known that
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E(T(;J) = E(tac|®g € A)/uu(A), whereu is the stationary distribution b and
Tc :=min{t € R,; ®, € C} VYC C S, and also that

P(Yg > 0) :/ P(tp < 14| Po = x)dvs(x),
AC

wherevy (1) := P(P,,, € -|Pg € A). The Palm inversion formula gives:

E(T9)?)
Sy /A E(talo = 1)dpu(x)

) (E(mcbo c )+ [ Eealoo- x)dvA<x)>,

and:
%ﬁg;% < [ P < mai®o = 0duc)
+fc Pt < IV ®p = x)du(x)
+u(A) " P(tp < 14|®Po = x)dva(x),
wheret/8V := min{t € R),; ®_, € C} VC C S. Again, the quantities needed can

be calculated by solving linear equationosystems with dimension less than or equal
to card ). The Laplace transformi (e *¥0) Vs € R’_ can be obtained by solving
a linear equation system for eaclke R/, .
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