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Abstract. In the previous paper in this volume we have studied thep-spin interaction model
just below the critical temperature, and we have rigorously proved several aspects of the phys-
icist’s prediction that this model exhibits “one level of symmetry breaking”. In the present
paper we show how to construct systems that exhibit an arbitrarily large, but finite number
of “levels of symmetry-breaking”. As the temperature decreases, such systems exhibit many
phase transitions, as the structure of the overlaps gains complexity. This phenomenon does
not seem to have been described previously, even in the physics literature.

1. Introduction

In the previous paper in this volume [T] we studied the p-spins interaction model,
that is the model with Hamiltonian

H(�) = −( p!

2Np−1

)1/2 ∑
1≤i1<···<ip≤N

gi1···ipσi1 · · · σip . (1.1)

There, the summation is over all possible choices of indices 1 ≤ i1 < · · · < ip ≤ N ,
and the gi1···ip are realizations of independent standard normal r.v. The spins σi are
Ising spins, σi ∈ {−1, 1}, � = (σi)i≤N ∈ N = {−1, 1}N . We will briefly repeat
those of the conclusions from [T] that are needed to understand our present purpose.
For more details about the (elementary) ideas of statistical mechanics we use, and
for references, the reader should consult [T]. Our results are better described in
terms of overlaps. The overlap of two configurations �, �′ is given by

R(�, �′) =: N−1
∑
i≤N

σiσ
′
i . (1.2)

The useful way to think about the overlap is as a function on the square of the con-
figuration space, provided with the probability G⊗G, where G is Gibbs’ measure
at a given temperature. In other words one fixes the temperature and the disorder
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(i.e. the variables gi1···ip ) and one tries to understand the behavior ofR as a function
of �, �′, weighted by their Gibbs’ weights.

For p large enough, the picture is as follows: There is a critical temperature βp
such that for β < βp “the overlap are essentially zero”. This means simply that

lim
N→∞

E〈|R(�, �′)|〉 = 0 (1.3)

where 〈 〉 denotes integration with respect to G ⊗ G, and E denotes average with
respect to disorder. On the other hand, for β > βp the overlaps are no longer zero,
and (1.3) fails. (This is our definition ofβp.) But, ifβ is not too large (β ≤ βp+1/L,
where L is a number) something remarkable happens: the overlaps are almost cer-
tainly either small or large. More precisely

E(G ⊗ G({�, �′; 1

10
≤ |R(�, �′)| ≤ 9

10
}) ≤ exp(−N/L) (1.4)

There is thus a phase transition concerning the behavior of the overlaps at β = βp.
The physicists predict that for β > βp, (but not too large) the overlaps take es-
sentially only two non random values, q0 = 0 and q1. The part q0 = 0 is proved
in [T] for β ≤ βp + 1/L. Such a situation is described in physics as a “one level
of symmetry breaking”, and is the predicted low-temperature behavior of many
systems. In contrast, the celebrated solution proposed by G. Parisi for the Sherring-
ton-Kirkpatrick model (that is, the case p = 2 of (1.1)) exhibits “infinitely many
levels of symmetry breaking” and is a much more complex situation, where the
overlaps are expected to range over entire intervals. It is thus natural to investi-
gate whether there are intermediate situations, with “a finite number of levels of
symmetry breaking”. This situation does not appear to have been described in the
physics literature (except in the uninteresting case of the “Generalized Random
Energy Models”, where the desired structure is built in from the start in the model).
Our purpose is to construct a “real” example of such a situation. We have not been
able to do this using Ising model, and we will use the spherical model, where the
configuration space is now

SN = {�;
∑
i≤N

σ 2
i = N}. (1.5)

The physicists believe that the spherical model is easier that the Ising model
because they think that the one level of symmetry breaking picture remains valid
at arbitrarily low temperature, while at very low temperatures for the Ising model
it has to be replaced by Parisi-type solutions. We should point out that up to this
point it seems harder to obtain mathematical results for spherical models. This is
because one does not know a priori that only the values of spins of order 1 are
relevant. (This difficulty will create considerable complications here). A technical
key reason however in our case for using the spherical model is that the critical
temperature goes to infinity with p (while it stays bounded for the Ising model). In
fact, we have the following estimate that deserves to be stated separately.
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Theorem 1.1. There exists a constant L such that the critical temperature βp of
the spherical p-spins interaction model satisfies

|βp − (2 log(p logp))1/2| ≤ L√
logp

. (1.6)

The critical temperature is defined as in the Ising case, that is the largest number
βp such that (1.3) holds for β < βp.

Before we formally state our main result, let us explain in words the properties
it has. At high temperature β < θ1, for a certain number θ1, the absolute value |R|
of the overlaps is small, it belongs to a small interval I0 around zero. As β increases
from θ1, to a certain number θ2 > θ1 the overlaps are no longer small; but |R| be-
longs to I0 ∪ I1 where I1, is disjoint from I0, and to its right. For some intermediate
value θ1 < θ ′

1 < θ2 we know that overlaps do appear in I1 if θ ′
1 < β < θ2; We are

in a situation similar to the Ising case as proved in [T]. As β increases from θ2 to
a certain number θ3 > θ2, we know that |R| remains in I0 ∪ I1 ∪ I2, where I2 is
disjoint from I1 and to its right at a certain intermediate value θ ′

2 we are guaranteed
that overlaps do appear in each of I0, I1, I2; we are (morally at least because we do
not know how to guarantee that the overlaps asymptotically take only 3 values) in
a situation with “two levels of symmetry breaking”’; and we can achieve this with
any prescribed number of levels.

If we denote by Hp(�) the left-hand side of (1.2), we will use Hamiltonians of
the type ∑

1≤�≤k
a�Hp�(�) (1.7)

where a� are numbers and p� integers. It is understood that all the Gaussian r.v.
involved in (1.7) are independent.

Theorem 1.2. For each integer k > 0, we can find for � ≤ k coefficients a�,
integers p�, numbers ε� > 0, we can find numbers

r0 = 0 < m0 < r1 < m1 < · · · < rk < mk < 1

and numbers

0 < θ1 < θ ′
1 < θ2 < θ ′

2 < · · · < θ ′
k−1 < θk (1.8)

such that if we set I� = [r�,m�], then for β < θr, 1 ≤ r ≤ k, we have

EG2(R �∈
⋃

0≤�≤r−1

I�) ≤ exp(−N/L) (1.9)

while if r ≤ k − 1 for θ ′
r < β < θk we have

lim inf
N→∞

EG2(|R| ∈ Ir ) ≥ εr . (1.10)
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Let us now comment on the methods and the organization of the paper. Half
of the proof of Theorem 1.1 is a pretty exercise on Gaussian processes, although
readers who have not spent years thinking about these might find it instructive. The
proof of Theorem 1.2 builds upon the ideas of [T], sections 2 and 3, and assumes
that the reader is familiar with this material. The high technicity of this proof could
disappoint some; but rather, I think we should look at the bright side; knowing (and
understanding) as little as we currently do about the topic studied here, it is quite
unexpected that a control as precise as what Theorem 1.2 provides can be achieved
at all. The main idea is simple. The sequence (pk) increases very fast. As β in-
creases, each term of the sum (1.7) successively goes through a high temperature
to low temperature behavior, creating a new phase transition. It is easy to control
the terms in the “high temperature” behavior. The difficulty is of course to control
the others.

2. Critical temperature for the spherical model

It will be useful to think to H(�) as a Gaussian process indexed by the sphere SN ,
given by (1.5). A look at the proof of the inequality βp ≤ 2

√
log 2 of [T], Theorem

1.1 reveals the general fact that

βp ≤ 2 lim inf
N→∞

1

N
E( sup

�∈SN
H(�)) (2.1)

and our upper bound for βp will rely upon the following.

Proposition 2.1. We have

E( sup
�∈SN

H(�)) ≤ N

[√
1

2
log(p logp) + L√

logp

]
. (2.2)

An expert on Gaussian processes might consider the proof of this inequality
as a somewhat standard exercise. The first step is to control the canonical distance
associated to the process.

Lemma 2.2. For �, � in SN we have

E(H(�) − H(�))2 ≤ p

2
‖� − �‖2. (2.3)

Proof. We have

E(H(�) − H(�))2 = u2
∑

i1<···<ip
(σi1 · · · σip − ρi1 · · · ρip )2

= 1

2Np−1

∑
i1,···,ip

(σi1 · · · σip − ρi1 · · · ρip )2

where the second summation is over all choices of i1, · · · , ip ≤ N , all different.
Let us set

cki1···ip = σi1 · · · σik−1(σik − ρik )ρik+1 · · · ρip
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so that

(σi1 · · · σip − ρi1 . . . ρip )
2 = (

∑
1≤k≤p

cki1···ip )
2

≤ p
∑

1≤k≤p
(cki1···ip )

2.

Now,

∑
i1,···,ip

c
p
i1···ip ≤

∑
(σi − ρi)

2
∑

σ 2
i1

· · · σ 2
ik−1

ρ2
ik+1

· · · ρ2
ip

(2.4)

where the last summation is over all possible choices of i1, · · · , ik−1, ik+1, · · · , ip.
The right hand side of (2.4) is at most

∑
i≤N(σi − ρi)

2Np−1. The result follows.
��

We now denote byB(�, r) the ball of �N of center � and radius r . The following
is standard.

Lemma 2.3. In �N , it is possible to cover B(�, 1) by at most (1 + 2/ε)N balls of
radius ε.

Lemma 2.4. We have, for each �, r

E sup
�∈B(�,r)

H(�) ≤ Lr
√
Np.

Proof. This is a consequence of the bound known as “Dudley’s entropy integral”

E sup
�∈B(�,r)∩SN

H(�) ≤ L

∫ ∞

0

√
logN(ε)dε (2.5)

where N(ε) is the minimum number of balls of radius ε, for the distance

d(�, �′)2 = (E(H(�) − H(�′))2)1/2

that are needed to cover B(�, r) ∩ SN . It follows from Lemmas 2.2 and 2.3 that

N(ε) ≤ (1 + r
√

2p

ε
)N

and that N(ε) = 1 for ε ≥ r
√

2p. Lemma 2.4 then follows from (2.5) by a routine
computation.

Lemma 2.5. For all t > 0,

P

(
sup

�∈B(�,r)∩SN
H(�) ≥ t + Lr

√
Np

)
≤ exp − t2

N
.
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Proof. This is the same general principle as in [T], Proposition 2.5, using that

∀ � ∈ SN,EH(�)2 ≤ N

2

and Lemma 2.4. ��

Proof of Proposition 2.1. In Lemma 2.5 we choose r = a
√
N where the parameter

a will be determined later. We cover SN by at most (1 + 2/a)N balls of the type
B(�, r), and we get from Lemma 2.5 that

P( sup
�∈SN

H(�) ≥ t + LaN
√
p) ≤ (1 + 2

a
)N exp(− t2

N
) (2.6)

so that, setting t0 = N
√

log(1 + 2/a)

E( sup
�∈SN

H(�)) ≤ LaN
√
p +

∫ ∞

0
min(1, (1 + 2

a
)N exp − t2

N
)dt

≤ LaN
√
p + t0 +

∫ ∞

t0

(1 + 2

a
)N exp − t2

N
dt.

Now,

∫ ∞

t0

exp − t2

N
dt ≤ 1

t0

∫ ∞

t0

t exp − t2

N
dt = N

2t0
exp − t20

N

and thus

E( sup
�∈SN

H(�)) ≤ N

[
La

√
p +

√
log(1 + 2

a
) + 1

2
√

log(1 + 2
a
)

]
.

Using log(1 + 2
a
) ≤ 1 + log 1

a
, we see that the choice a = 1/

√
p logp yields

(2.2). ��

Proposition 2.6. We have

β2
p ≥ inf

0<t<1
(1 + t−p) log

1

1 − t2
. (2.7)

The proof of this proposition requires only small modifications from the proof
of Proposition 2.6 of [T]. The main modification is the replacement of ϕ(t) by
− 1

2 log(1 − t2). ��
Proposition 2.7. We have

inf
0<t<1

−(1 + t−p) log(1 − t2) ≥ 2 log(p logp) − L.
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Proof. We set x = 1 − t2, q = p/2,

f (x) = (1 + (1 − x)−q) log(
1

x
)

so algebra shows that f ′(x0) = 0 where

qx0 log
1

x0
= 1 − x0 + (1 − x0)

q .

Thus

x0 log
1

x0
≤ 2

q

and, since we can assume q large enough, we have x0 ≤ 1/q, so that log 1/x0 ≥
log q, and x0 ≤ 2/q log q.

Now, (1 − x)−q ≥ 1, so

f (x0) ≥ 2 log
1

x0
≥ 2 log((q log q)/2) ≥ 2 logp logp − L. ��

Combining with Proposition 2.6, we have

βp ≥
√

2 log(p logp) − L√
logp

and together with Proposition 2.1 this finishes the proof of Theorem 1.1.

3. Multiple phase transitions

We will consider a sequence p1 ≤ p2 ≤ · · · ≤ pk of integers, and we set

H�(�) = Hp�(�) (3.1)

where

Hp(�) = −
(

p!

2Np−1

)1/2 ∑
i1<···<ip

gi1···ipσi1 · · · σip .

Each quantity Hk(�) represents a certain interaction between the spins. It will
clarify matters to step slightly outside the usual framework of statistical mechanics,
and to assume that to each H� corresponds an inverse temperature γ�. That is, we
define

ZN = ZN(�) =
∫

exp(−
∑
�≤k

γ�H�(�))dµN(�)

where � = (γ1, · · · , γk), and we define the corresponding Gibbs measure accord-
ingly. Once most of the work is done, we will revert to the traditional setting by
setting γ� = βx� for a suitable choice of x�.

The proof of Theorem 1.2 will build upon the ideas of [T], Sections 2 and 3.
In order to provide motivation for the main construction, we mention two of the
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principles we will use. We will consider FN(�) = logZN(�), so that, by Jensen’s
inequality

1

N
EFN(�) ≤

∑
�≤k

γ 2
�

4

and we set

-N(�) =
∑
�≤k

γ 2
�

4
− EFN(�)

N
(3.2)

Lemma 3.1. Assume that for all t > 0 we have

∑
�≤k

γ 2
�

tp�

1 + tp�
< log(1 − t2).

Then we have lim
N→∞

-N(�) = 0.

This is obtained by a rather direct adaptation of the arguments of [T],
Section 2.

A basic ingredient will be a principle that ensures that the overlap essentially
never belongs to certain sets.

Lemma 3.2. Assume that for a certain number -, and certain numbers θ� > 1,
we have, for 1 ≤ � ≤ k,

γ 2
� (θ� − 1)2/4 ≥ -. (3.3)

Then if -N(�) ≤ -, the set

U = {t;
∑
�≤k

f� ≤ − log(1 − t2) − 2- − 1},

satisfies

EG2(R ∈ U) ≤ exp −N

L
,

where

f� = f�(t, γ�) = γ 2
� t

p� for 1 + tp� < θ� (3.4)

f� = f�(t, γ�) = 2γ 2
� (θ� − 1) + γ 2

�

tp�

1 + tp�
for 1 + tp� ≥ θ�. (3.5)

The proof of this statement requires only rather straightforward modifications
to the proof of [T], Theorem 3.3, and these are left to the reader.

Lemma 3.2 has been stated in a way that should allow the interested reader
to figure out a proof; Formula (3.4) corresponds to the case where we do not use
truncation; and (3.5) to the case we do. It will always be used for θ� = 1+2

√
-/γ�,

which satisfies (3.3). The definition of f� then becomes

f� = f�(t, γ�,-) = γ 2
� t

p� if γ�t
p� < 2

√
- (3.6)

f� = f�(t, γ�,-) = 4
√
-γ� + γ 2

�

tp�

1 + tp�
if γ�t

p� ≥ 2
√
-. (3.7)
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These are the formulae that are going to be used in the rest of the section. The
discontinuity of f� at γ�tp� = 2

√
- should not disturb the reader. It has no special

meaning, and simply arises from the fact that our estimates were sharper when we
did not use truncation than when we did. It should be obvious that f�(t, γ�,-)
increases with γ�.

In Proposition 2.7 we have shown that for a certain number L1 we have, if
p ∈ � is large enough

0 < t < 1 ⇒ (2 log(p logp) − L1)
tp

1 + tp
≤ − log(1 − t2). (3.8)

We consider now a number L0 ≥ 31, L0 ≥ L1 that is fixed once and for all. We
consider

δ� = (2 + L0)
2(�−1) (3.9)

so that δ1 = 1 and
δ�+1 = (2 + L0)

2δ�. (3.10)

We set δ = δk+2. The reason for these choices will be apparent in due time. The
main part of the construction is to build the sequence of integers (p�)1≤�≤k . To
simplify notation, we set

β� =
√

2 log(p� logp�) (3.11)

b� = β� − L0
√
δ� (3.12)

c� = β� + L0 (3.13)

r� = 1 − 1

p�
; m� = 1 − 1

p3
�

(3.14)

Thus, all these quantities are in fact functions of p�. An important feature of
the construction of the integers p� is that the only requirement is that this sequence
increases fast enough; that is for certain functions ψ�

p�+1 ≥ ψ�(p1, . . . , p�). (3.15)

In particular we can require additional conditions of this type if we so wish.

Lemma 3.3. Consider a number k, and the sequence δ� given by (3.9), δ = δk+2.
Then we can construct a sequence (p�)1≤�≤k and m0 < r1 with the following
properties.

∀ 1 ≤ � ≤ k, t ∈ [m�−1, r�] ⇒
∑
m≤k

fm(t, cm, δ) ≤ − log(1 − t2) − 3δ (3.16)

∀ � ≤ k, t ∈ [r�,m�]

⇒
∑

m�=�,m≤k
fm(t, cm, δ�) + f�(t, b�, δ�) ≤ − log(1 − t2) − 3δ� (3.17)

Moreover, we can also assume that

0 < t ≤ m0 ⇒
∑
�≤k

c2
� t
p� < − log(1 − t2). (3.18)
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Proof. First, we choose m0 close enough to one that

t ≥ m0 ⇒ 5δ ≤ − log(1 − t2).

Next, if we choose p1 large enough, we will have m0 < r1, and (3.18) will hold
because for t < 1, c2

� t
p� → 0 as p� → ∞.

To simplify the construction, a first observation is that if we arrange that, for
each �,

t ≤ m� ⇒ ∀ x ≤ δ, f�+1(t, c�+1, x) ≤ 2−�−1, (3.19)

then to prove (3.16) it suffices to prove that

∀ 1 ≤ � ≤ k + 1, t ∈ [m�−1, r�]

⇒
∑
m≤�

fm(t, cm, δ) ≤ − log(1 − t2) − 4δ (3.20)

and to prove (3.17) it suffices to prove that

∀ � ≤ k, t ∈ [r�,m�]

⇒
∑
m<�

fm(t, cm, δ�) + f�(t, b�, δ�) ≤ − log(1 − t2) − 4δ�. (3.21)

Now, condition (3.19) is automatically satisfied if the sequence (p�) increases fast
enough. This is the case because, given t < 1, c2

� t
p� → 0 as p� → ∞.

Thus, we can turn our attention to (3.20), (3.21). Consider the quantity

d� =
∑
m≤�

4
√
δcm + c2

m

2
. (3.22)

The motivation for this definition is simply that

0 ≤ t < 1 ⇒ fm(t, cm, δ�) ≤ 4
√
δcm + c2

m

2
.

It will help during the construction to ensure that the following holds

t ≥ m� ⇒ d� ≤ − log(1 − t2) − 5δ. (C�)

Our choice of m0 ensures that (C0) holds.
To perform the construction, assuming that p1, . . . , p�−1 have been construct-

ed, and that (C�−1) holds, we show that if p� is large enough, then (C�) will hold,
as well as (3.20), (3.21) (for this value of �). This will complete the proof. First, to
prove (C�), we note that

t ≥ m� ⇒ t2 ≥ 1 − 2

p3
�

⇒ − log(1 − t2) ≥ 3 logp� − 2. (3.23)

Also, if p� is large enough,

c2
� ≤ 2.5 logp�. (3.24)
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Since 4
√
δc� + c2

�/2 ≤ 8δ + c2
� , we see that (C�) holds provided

d�−1 + 13δ + 2 <
1

2
logp�.

To prove (3.21), it suffices to show that

t ≥ r� ⇒ d�−1 + f�(t, b�, δ�) ≤ − log(1 − t2) − 4δ�. (3.25)

By (3.8) we have

b2
�

tp�

1 + tp�
+ (β2

� − L1 − b2
�)

tp�

1 + tp�
≤ − log(1 − t2). (3.26)

For t ≥ r�, we have tp� ≥ 1/3, so that (3.26) yields

b2
�

tp�

1 + tp�
+ 1

3
(β2

� − L1 − b2
�) ≤ − log(1 − t2). (3.27)

Thus, to ensure (3.25) it suffices that

d�−1 + 4
√
δ�b� + 4δ� ≤ 1

3
(β2

� − L1 − b2
�). (3.28)

Now, since b� ≤ β�, we have

β2
� − b2

� ≥ 2b�(β� − b�)

= 2L0b�
√
δ�.

Since δ�, β� ≥ 1 and L1 ≤ L0, (3.28) holds provided

d�−1 + 4
√
δ�b� + 4δ� ≤ 1

3
L0b�

√
δ�.

Since L0 ≥ 30, this holds provided

d�−1 + 4δ� ≤ b�
√
δ�

which is true for p� large enough.
To prove (3.20), we will prove the stronger condition

t ∈ [m�−1, r�] ⇒ d�−1 + f�(t, c�, δ) ≤ − log(1 − t2) − 4δ. (3.29)

Case 1. c2
� t
p� ≤ δ

In that case if p� is large, c�tp� ≤ 2
√
δ, so that f�(t, γ�, δ) = c2

� t
p� ≤ δ, and

(3.29) follows from (C�−1).



460 M. Talagrand

Case 2. c2
� t
p� ≥ δ, c�t

p� ≤ 24
√
δ

In that case
f�(t, c�, δ) ≤ 28

√
δc�

and all we need to show is that

tp� ≥ δ/c2
� ⇒ d�−1 + 28

√
δc� ≤ − log(1 − t2) − 4δ. (3.30)

But

(δ/c2
�)

1/p� � 1 − 1

p�
log(c2

�/δ)

so that for p� large,

− log(1 − (δ/c�)
2/p�) ≥ 1

2
logp�

while c� is of order
√

logp�. Thus (3.30) holds if p� is large enough.

Case 3. c�t
p� ≥ 24

√
δ, t ≤ r�.

The proof of Proposition 3.8 shows that

t ≤ r� ⇒ −(1 + t−p�) log(1 − t2) ≥ −(1 + r
−p�
� ) log(1 − r2

� )

so that

t ≤ r� ⇒ tp�

1 + tp�
V� ≤ − log(1 − t2) (3.31)

where
V� = −(1 + r

−p�
� ) log(1 − r2

� ) ≥ 3 logp�

for p� large. Thus (3.31) implies

t ≤ r� ⇒ 5

4
c2
�

tp�

1 + tp�
≤ − log(1 − t2) (3.32)

and (3.29) will hold provided

d�−1 + 2
√
δc� ≤ 1

8
c2
� t
p� . (3.33)

Since c�t
p� ≥ 24

√
δ, it suffices that d�−1 ≤ √

δc�, which is true if p� is large
enough. ��

In order to use Lemma 3.2, we need bounds for -N(�), and we turn to the task
of finding such bounds under the information of Lemma 3.3.

Lemma 3.4. If γ� ≤ b� for each � ≤ k, we have

lim
N→∞

-N(�) = 0.
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Proof. Since for x > 0 we have

b2
�

tp�

1 + tp�
≤ f�(t, b�, x)

it follows from (3.16) to (3.18) that

∀ t > 0,
∑
�≤k

b2
�

tp�

1 + tp�
< − log(1 − t2)

and the conclusion follows from Lemma 3.1. ��
Next, by induction over m ≤ k + 1 we show how to bound -N(�) under the

conditions
∀ � < m, γ� ≤ c�; ∀� ≥ m, γ� ≤ b�. (3.34)

We will prove the following.

Lemma 3.5. Under (3.34) we have

lim
N→∞

-N(�) ≤ δm+1. (3.35)

Proof. It is by induction over m ≥ 0. We have shown in Lemma 3.4 that (3.35)
holds when m = 0, for δ1 = 1.

For the induction from m − 1 to m, consider � as in (3.34). We set

�(t) = (γ1, · · · , γm−1, t, γm+1, · · · , γk).
Thus, by induction hypothesis, we have

∀t ≤ bm, lim
N→∞

-N(�(t)) ≤ δm.

In other words, if

a(t) = 1

4

( ∑
��=m

γ 2
� + t2

)

we have, for t ≤ bm,

lim
N→∞

1

N
EFN(�(t)) ≥ a(t) − δm. (3.36)

Now, we simply use convexity to write

1

N
EFN(�) ≥ 1

N
EFN(�

′) + (γm − bm)hN (3.37)

when �′ = �(bm), and hN is the derivative at t = bm of EFN(�(t)). Thus

-N(�) ≤ 1

4
(γ 2

m − b2
m) − (γm − bm)hN + -N(�

′). (3.38)

To avoid repetition, let us prove an elementary fact.
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Lemma 3.6. Consider a sequence of convex functions ϕN on I = [0, t0], such that

for t in I we have ϕN(t) ≤ t2

4 + a, and assume that for numbers a,- ≤ t0/
√

2 we
have

lim inf ϕN(t0) ≥ t20

4
+ a − -.

Then

lim inf ϕ′
N(t0) ≥ t0

2
−

√
2-.

Proof. We have, for t < t0

(t − t0)ϕ
′
N(t0) + ϕN(t0) ≤ ϕN(t) ≤ t2

4
+ a.

So

lim inf ϕ′
N(t0) ≥ lim inf

N

(
ϕN(t0) − t2

4 − a

t0 − t

)
≥ t0 + t

4
− -

t0 − t

and we take t = t0 − √
2-. ��

We go back to the proof of Lemma 3.5. There is nothing to prove for the induc-
tion step unless γm ≥ bm, so we can assume that this is the case. It follows from
Lemma 3.6 and induction hypothesis that lim inf hN ≥ 1

2bm − √
2δm and going

back to (3.38) show that

lim sup
N→∞

-N(γ ) ≤ δm +
√

2δm(γm − bm) + 1

4
(γm − bm)

2

≤ δm +
√

2δm(cm − bm) + 1

4
(cm − bm)

2.

Since cm − bm ≤ 2L0
√
δm, we get a bound

δm[1+2
√

2L0 +L2
0] ≤ δm(2 +L0)

2 = δm+1. ��
Remark. Lemma 3.5 holds for m = k + 1; that is, if γ� ≤ c� for � ≤ k, then
lim

N→∞
-N(�) ≤ δk+2 = δ.

If we combine Lemma 3.5 with Lemmas 3.2 and 3.3, we have shown the fol-
lowing.

Lemma 3.7. a) If for each � ≤ k we have γ� ≤ c� then for each 1 ≤ � ≤ k+ 1 we
have

E(G2(|R| ∈ [m�−1, r�])) ≤ K exp −N

L
.

b) If 0 ≤ s ≤ k − 1 and if for each � < s we have γ� ≤ c�, while for � ≥ s we
have γ� ≤ b�, then we have

E(G2(|R| ∈ [rs+1,ms+1])) ≤ K exp −N

L
.
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Now, we will show that if γ� is close to c�, the overlaps do take values in [r�,m�],
for � ≤ k − 1. (Although this is likely to hold also for � = k, we do not know how
to show this.) The proof relies upon the following.

Lemma 3.8. We have

1

N
E
∂FN

∂γ�
= γ�p�!

2Np�
E

( ∑
1≤i1<···<ip�≤N

< σ 2
i1

· · · σ 2
ip�

> − < σi1 · · · σip� >2
)
.

(3.39)

Proof. See [T], (2.30), (2.31) ��
In the case of the Ising model, we knew that σ 2

i = 1. Although it is likely to be
true, we do not know how to show that

lim
N→∞

p�!

Np�
E

( ∑
1≤i1<···<ip�≤N

< σ 2
i1

· · · σ 2
ip�

>

)
= 1 (3.40)

which makes it very difficult to use (3.39). In order to find a substitute for (3.40),
we will use a “trick” (i.e. a somewhat unnatural argument).

Let us define (keeping � implicit)

C(N, p) = E < σ 2
1 · · · σ 2

p > .

Our aim is to prove (3.44) below. It shows that C(N, p) is nearly 1. By symmetry
among the variables,

C(N, p) = E < σ 2
i1

· · · σ 2
ip
>

whenever i1 < · · · < ip. Thus

(N − p)C(N, p + 1) =
∑

p<�≤N
E < σ 1

1 · · · σ 2
pσ

2
� >

≤
∑

1≤�≤N
E < σ 2

1 · · · σ 2
pσ

2
� >

= E < σ 2
1 · · · σ 2

p(
∑
�≤N

σ 2
� ) >

= NC(N, p)

by the spherical constraint
∑

�≤N σ 2
� = N . Thus

C(N, p) ≥ (1 − p

N
)C(N, p + 1). (3.41)

This will allow us to control C(N, p�) from below if we control C(N, pk) from
below. To do this, we deduce from (3.39) for � = k,

1

N
E
∂FN

∂γk
≤ 1

2Npk
γkN(N − 1) · · · (N − pk)C(N, pk)
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so that

C(N, pk) ≥ 2

N

1

γk
E
∂FN

∂γk
. (3.42)

Let us now set �(t) = (γ1, . . . , γk−1, t). Thus, for t ≤ ck , using Lemma 3.5 for
m = k + 1, we have, for a(t) = (

∑
�≤k−1 γ

2
� + t2)/4

a(t) − δ ≤ lim inf
1

N
EFN(�(t)) ≤ a(t) (3.43)

and Lemma 3.6 shows that

lim inf
N→∞

1

N
E
∂FN

∂γk
≥ 1

2
γk −

√
2δ

so that (3.42) yields

C(N, pk) ≥ 1 − 3
√
δ

γk
.

Combining with (3.41) we see that for each �, if N is large enough

C(N, p�) ≥ 1 − 4
√
δ

γk
. (3.44)

We now show why controlling C(N, p�) from below helps to use (3.39).

Lemma 3.9. We have

1

N
E
∂FN

∂γ�
≤ γ�

2
(1 − E < R(�, �′)p� >) (3.45)

1

N
E
∂FN

∂γ�
≥ γ�

2
(1 − E<R(�, �′)p� >) − γ�(1 − C(N, p�)) − γ�K(p�)/N

(3.46)

Proof. To prove (3.45), it suffices to use the arguments of [T], Lemma 2.1, so we
prove (3.46). Using the notations

∑
d and

∑
nd of [T], Lemma 2.1 and writing p

for p�, we have

p!
∑

i1<···<ip
< σ 2

i1
· · · σ 2

ip
> =

∑
< σ 2

i1
· · · σ 2

ip
> −

∑
nd

< σ 2
i1

· · · σ 2
ip
>

= Np −
∑
nd

< σ 2
i1

· · · σ 2
ip
>

so that

N(N − 1) · · · (N − p)C(N, p) = Np − E(
∑
nd

< σ 2
i1

· · · σ 2
ip
>) (3.47)

and thus

E(
∑
nd

< σ 2
i1

· · · σ 2
ip
>) ≤ Np(1 − C(N, p)) + K(p)Np−1. (3.48)
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Next, as used in the proof of [T], Lemma 2.1,∑
d

< σi1 · · · σip >2 = <
∑
d

σi1σ
′
i1

· · · σipσ ′
ip
>

= Np < R(�, �′)p > − <
∑
nd

σi1σ
′
i1

· · · σipσ ′
ip
>

≤ Np < R(�, �′)p > + <
∑
nd

σ 2
i1

· · · σ 2
ip
>

Combining with (3.48)

E(
∑
d

< σi1 · · · σip >2) ≤ Np < R(�, �′)p > +Np(1−C(N, p))+K(p)Np−1.

The result follows from this and (3.39), (3.48). ��
Corollary 3.10. If γk ≥ ck/2, and N is large enough we have, for � ≤ k − 1

1

N
E
∂FN

∂γ�
≥ γ�

2
(1 − E < R(�, �′)p� >) − 10γ�

ck

√
δ (3.49)

Proof. Combine (3.44) with (3.46). ��
Lemma 3.11. Assume that the following conditions hold:

∀ � ≤ k,m
p�
�−1 ≤ 1

β�
(3.50)

∀ � ≤ k − 1,
24

√
δ

c�+1
≤ 1

β�
(3.51)

∀ � ≤ k − 1,
1

δ
L0

√
δ�

c�
≥ 20

√
δ

ck
(3.52)

Then, if for each m ≤ k, we have cm/2 ≤ γm ≤ cm, we have, for � < k − 1

γ� ≥ c� − 1 ⇒ lim inf
N→∞

EG2(|R| ∈ [r�,m�]) ≥ 1

β�
.

Proof. Using (2.2) we have

1

N
E
∂FN

∂γ�
≤ 1

N
E sup

�

H�(�) ≤ β�

2
+ L√

logp�
≤ β�

2
+ 1.

Assuming p1 large enough, we see from (3.49) that

E < R(�, �′)p� >≥ 1 − 2

γ�
[
β�

2
+ 1] − 20

ck

√
δ (3.53)

Now, for γ� ≥ c� − 1, we have γ� ≥ β� + 30 so that using (3.51) the right-hand
side of (3.51) is at least

1 − β� + 2

β� + 30
− 20

ck

√
δ ≥ 16

β�
. (3.54)
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Let us observe that

E < R(�, �′)p� > ≤ m
p�
�−1 + EG2(|R(�, �′)| ∈ [m�−1, r�+1])

+EG2(|R(�, �′)| ≥ r�+1) (3.55)

For t ≥ r�+1, we have tp�+1 ≥ 1
3 , so that

EG2(|R(�, �′)| ≥ r�+1) ≤ 3E < R(�, �′)p�+1 > . (3.56)

Now, from (3.45) we have

E < R(�, �′)p�+1 >≤ 1 − 2

γ�+1

1

N
E

∂FN

∂γ�+1
. (3.57)

Using Lemma 3.5 for m = k + 1, and Lemma 3.6, we see that for N large

E < R(�, �′)p�+1 >≤ 2
√

2δ

γ�+1
≤ 8

√
δ

c�+1

since γ�+1 ≥ c�+1/2. Going back to (3.55), and using (3.56), we see that for N
large

EG2(|R(�, �′)| ∈ [m�−1, r�+1]) ≥ E < (�, �′)p� > −m
p�
�−1 − 24

√
δ

c�+1
≥ 14

β�

by using (3.53), (3.54), (3.50), (3.51).
But by Lemma 3.7 a),

EG2(|R(�, �′)| ∈ [m�−1, r�] ∪ [m�, r�+1]) ≤ exp(−N

K
).

The Lemma is proved. ��

Proof of Theorem 1.2. We perform the previous construction, making sure that
(3.50) to (3.52) hold.

We consider the Hamiltonian

HN(�) =
∑
�≤k

c�H�(�).

We set θ� = β�/c�, θ
′
� = (c� − 1)/c�. If the sequence (p�) increases fast enough,

(1.8) holds. Condition (1.9) follows from Lemma 3.7, b; and (1.10) from Lemma
3.10. ��

Remark. It is possible to adapt the arguments of [T], Section 4 to show that the
configuration space exhibits a tree structure. The depth of this tree increases by one
as β increases from θ� to θ ′

�.
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