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Abstract. Intheprevious paper inthisvolumewe have studied the p-spininteraction model
just below thecritical temperature, and we haverigorously proved several aspectsof the phys-
icist’s prediction that this model exhibits “one level of symmetry breaking”. In the present
paper we show how to construct systems that exhibit an arbitrarily large, but finite number
of “levels of symmetry-breaking”. Asthe temperature decreases, such systems exhibit many
phase transitions, as the structure of the overlaps gains complexity. This phenomenon does
not seem to have been described previously, even in the physics literature.

1. Introduction

In the previous paper in thisvolume [T] we studied the p-spinsinteraction model,
that is the model with Hamiltonian

p' 12
H(O‘) = _(2Np_1) / Z gil...ip()'l'l s O'ip. (11)

I<ij<--<ip<N

There, thesummationisover all possiblechoicesof indicesl <i; < --- <i, <N,
andtheg;,...; , are realizations of independent standard normal r.v. The spinso; are
Ising spins, o; € {—1,1},6 = (0;)i<ny € =y = {—1, 1}¥. We will briefly repeat
those of the conclusionsfrom [T] that are needed to understand our present purpose.
For more details about the (elementary) ideas of statistical mechanics we use, and
for references, the reader should consult [T]. Our results are better described in
terms of overlaps. The overlap of two configurations e, ¢’ is given by

R(s,6) = N~* Z oio]. 1.2
i<N

The useful way to think about the overlap is as afunction on the square of the con-
figuration space, provided with the probability G ® G, where G is Gibbs measure
at a given temperature. In other words one fixes the temperature and the disorder
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(i.e.thevariables g;, ..;,) and onetriesto understand the behavior of R asafunction
of @, ¢/, weighted by their Gibbs' weights.

For p large enough, the pictureis asfollows: Thereisacritical temperature g,
such that for g < B, “the overlap are essentially zero”. This means simply that

Jim E(R(a, d))) =0 (1.3)

where ( ) denotes integration with respect to G ® G, and E denotes average with
respect to disorder. On the other hand, for 8 > 8, the overlaps are no longer zero,
and (1.3) fails. (Thisisour definitionof 8,,.) But,if g isnottoolarge (8 < B,+1/L,
where L isanumber) something remarkable happens: the overlaps are almost cer-
tainly either small or large. More precisely

E(G® G({s, 0'; % <|R(e,0")| < %}) <exp(—N/L) (1.4

Thereisthus a phase transition concerning the behavior of the overlapsat 8 = B,.
The physicists predict that for 8 > 8, (but not too large) the overlaps take es-
sentialy only two non random values, go = 0 and ¢1. The part go = 0 is proved
in[T] for B < B, + 1/L. Such asituation is described in physics as a “one level
of symmetry breaking”, and is the predicted low-temperature behavior of many
systems. In contrast, the celebrated solution proposed by G. Parisi for the Sherring-
ton-Kirkpatrick model (that is, the case p = 2 of (1.1)) exhibits “infinitely many
levels of symmetry breaking” and is a much more complex situation, where the
overlaps are expected to range over entire intervals. It is thus natural to investi-
gate whether there are intermediate situations, with “a finite number of levels of
symmetry breaking”. This situation does not appear to have been described in the
physics literature (except in the uninteresting case of the “Generalized Random
Energy Models’, wherethe desired structureis built in from the start in the model).
Our purposeisto construct a“real” example of such asituation. We have not been
able to do this using I1sing model, and we will use the spherical model, where the
configuration space is now

Sy ={6; Y _of =N). (1.5)

i<N

The physicists believe that the spherical model is easier that the Ising model
because they think that the one level of symmetry breaking picture remains valid
at arbitrarily low temperature, while at very low temperatures for the Ising model
it has to be replaced by Parisi-type solutions. We should point out that up to this
point it seems harder to obtain mathematical results for spherical models. Thisis
because one does not know a priori that only the values of spins of order 1 are
relevant. (This difficulty will create considerable complications here). A technical
key reason however in our case for using the spherical model is that the critical
temperature goesto infinity with p (whileit stays bounded for the Ising model). In
fact, we have the following estimate that deserves to be stated separately.



Multiple levels of symmetry breaking 451

Theorem 1.1. There exists a constant L such that the critical temperature g, of
the spherical p-spinsinteraction model satisfies

L
1B, — (2log(plog p)M?| < (16)

~ Jlogp

Thecritical temperatureisdefined asin thelsing case, that isthe largest number
Bp such that (1.3) holdsfor g < 8,.

Before we formally state our main result, let us explain in words the properties
it has. At high temperature 8 < 61, for acertain number 6, the absolute value | R|
of the overlapsissmall, it belongsto asmall interval Ip around zero. As 8 increases
from 61, to a certain number 6> > 6 the overlaps are no longer small; but | R| be-
longsto IoU I3 where I1, isdigoint from Ip, and to itsright. For someintermediate
value 61 < 0; < 62 we know that overlaps do appear in I3 if 6] < B < 62; Weare
in a situation similar to the Ising case as proved in [T]. As 8 increases from 6, to
acertain number 03 > 6, we know that |R| remainsin Io U I1 U I», where I> is
digoint from /; and to itsright at a certain intermediate value 6, we are guaranteed
that overlaps do appear in each of Iy, 11, I2; we are (morally at least because we do
not know how to guarantee that the overlaps asymptotically take only 3 values) in
asituation with “two levels of symmetry breaking”’; and we can achieve this with
any prescribed number of levels.

If we denote by H),(¢) the left-hand side of (1.2), we will use Hamiltonians of
the type

> acHy, (o) (17)

1<i<k

where a; are numbers and p, integers. It is understood that all the Gaussian r.v.
involved in (1.7) are independent.

Theorem 1.2. For each integer k > 0, we can find for ¢ < k coefficients ay,
integers py, numberse, > 0, we can find numbers

ro=0<mo<ri<mi<---<rp<mp<1l1

and numbers
0<O1 <0 <bp<0y<---<O_1<6b 1.8)

such that if we set Iy = [r¢, m¢], thenfor B < 6,,1 < r < k, we have

EG*R¢ |J I <ep(=N/L) (19
O<t<r-1

whileif r <k — 1for 6/ < B < 6; we have

liminf EG?(|R| € I,)) > ¢,. (1.10)
N—o0
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Let us now comment on the methods and the organization of the paper. Half
of the proof of Theorem 1.1 is a pretty exercise on Gaussian processes, athough
readers who have not spent years thinking about these might find it instructive. The
proof of Theorem 1.2 builds upon the ideas of [T], sections 2 and 3, and assumes
that the reader isfamiliar with this material. The high technicity of this proof could
disappoint some; but rather, | think we should ook at the bright side; knowing (and
understanding) as little as we currently do about the topic studied here, it is quite
unexpected that a control as precise aswhat Theorem 1.2 provides can be achieved
at al. The main idea is simple. The sequence (py) increases very fast. As 8 in-
creases, each term of the sum (1.7) successively goes through a high temperature
to low temperature behavior, creating a new phase transition. It is easy to control
the terms in the “high temperature” behavior. The difficulty is of course to control
the others.

2. Critical temperaturefor the spherical model

It will be useful to think to H (¢) as a Gaussian process indexed by the sphere Sy,
given by (1.5). A look at the proof of theinequality g, < 2,/log2 of [T], Theorem
1.1 revedsthe general fact that

P |
Bp < 2I}an|£‘ NE(US;%R H (o)) (2.1
and our upper bound for 8, will rely upon the following.

Proposition 2.1. We have

1 L
E H(s)) < N|,/=| | + } 2.2
(aséusr; (0)) < [ > og(plog p) Jiogp (22

An expert on Gaussian processes might consider the proof of this inequality
as asomewhat standard exercise. Thefirst step isto control the canonical distance
associated to the process.

Lemma2.2. For g, pin Sy we have
E(H(@) = H(p)? = Ll = pl”. (2.3)
Proof. We have

E(H(o) - H(p)? =u® Y (0101, = piy--+ pi,)°

i1<--<ip
1 2
~ N1 Z (0iy *++ 0i,, = Piy - Piy)
i1,0p

where the second summation is over all choices of i1, ---,i, < N, dl different.
Let us set

k — o . . Y .
cil"'ip =0jy O'lk,]_(o'lk - pzk)PlkJrl e /01,,
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so that
(0iy *+ - 0i, — iy - ~~,0ip)2 =( Z cf.‘l,__[.p)z
1<k=p
=p Z (Cll‘{l...,'p)z
1<k<p
Now,
2
Z Ciy-. dp = Z(U’ pi) Zoll lk l’olk+l 'in (2'4)
i1,,0p

wherethe last summation is over all possible choicesof iy, - - -, ix_1, ixt1, - -+, ip-
The right hand side of (2.4) isat most )", _y (i — p;)?N?~1. The resuit follows.
O

Wenow denoteby B(e, r) theball of RV of center o and radiusr. Thefollowing
is standard.

Lemma23. InRY, itispossibleto cover B(s, 1) by at most (1 + 2/¢)V balls of
radiuse.

Lemma 2.4. We have, for each p, r

E sup H(e) <LrNp.

o€B(p.r)

Proof. Thisisaconsequence of the bound known as “Dudley’s entropy integral”

E sup H() < L/oo,/logN(e)de (2.5
0

o€B(p.r) NSy

where N (¢) is the minimum number of balls of radius ¢, for the distance
d(s,6')* = (E(H(0) — H(s)*)"?
that are needed to cover B(p, r) N Sy. It follows from Lemmas 2.2 and 2.3 that

N(e) < 1+ =2 */_

andthat N(¢) = 1fore > r/2p. Lemma 2.4 then follows from (2.5) by aroutine
computation.

Lemma?25. Forall r > 0O,

2

P( sup H(a)zt—i—Lr,/Np)gexp—tN.

ecB(p,r)NSy
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Proof. Thisisthe same general principle asin [T], Proposition 2.5, using that
2 N
Vo € Sy, EH(o) 55
and Lemma2.4. O

Proof of Proposition 2.1. In Lemma 2.5 we choose r = a+/N where the parameter
a will be determined later. We cover Sy by at most (1 + 2/a)" balls of the type
B(p, r), and we get from Lemma 2.5 that

P(sup H(6) > t+ LaN./p) < (1+ = )N exp(——) (2.6)

oeSN

so that, setting 1o = N, /log(1 + 2/a)

0 2
E(sup H(s)) = LaNf+/ min(1, (14 S)N exp_tﬁ)dt

ceSN

[ee) 2 12
§LaNﬁ+to+/ (1+—)Nexp——dt.
fo a N
Now,

2
/ exp——dt < —/ teXp——dt p——
10

and thus

2 1
E(sup H(e)) < N[Laﬁ—i— Jlog+ %) + —}
oeSi @ 2/logl+ 2

Using log(1 + 2) < 1+ log 2, we see that the choice a = 1/,/plogp yields
(2.2). O

Proposition 2.6. We have

2> inf 1++P)lo .
'Bp_0<t<1( + ) gl—tz

2.7)

The proof of this proposition requires only small modifications from the proof
of Proposition 2.6 of [T]. The main modification is the replacement of ¢(z) by
—Zlog(1 — ). m

Proposition 2.7. e have

Jinf —(1+ 1Py log(1 — %) > 2log(plog p) —
<t<
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Proof. Wesetx =1—12,q = p/2,

1
fO=L+A-x"9 |09()—C)
so algebrashowsthat f/(xo) = 0 where
1
gxolog— =1—x0+ (1 —x0)?.
X0
Thus

1 2
xolog— < —
X0 q

and, since we can assume ¢ large enough, we have xg < 1/¢, sothat log1/xg >
logq, and xo < 2/¢logq.
Now, (1—x)"7 > 1,s0

1
f(x0) > 2log — > 2log((q logq)/2) > 2log plogp — L. 0
X0

Combining with Proposition 2.6, we have

L
Bp = v2log(plogp) — ——=
! V9ogp

and together with Proposition 2.1 this finishes the proof of Theorem 1.1.
3. Multiple phasetransitions

We will consider asequence p1 < p2 < --- < pi of integers, and we set
Hy(e) = H), (o) (31)

where

1/2
p!
Hy(o) = _<2NP—1) Z 8iy-ipOiy *** Oipe

i1<--<ip

Each quantity Hy (¢) represents a certain interaction between the spins. It will
clarify mattersto step dlightly outside the usual framework of statistical mechanics,
and to assume that to each H, corresponds an inverse temperature y,. That is, we
define

Zn = ZnGy) = f exp(— Y yeHy(0))d 1y (6)

<k

wherey = (y1, - - -, ¥x), and we define the corresponding Gibbs measure accord-
ingly. Once most of the work is done, we will revert to the traditional setting by
setting y, = Bx, for asuitable choice of xy.

The proof of Theorem 1.2 will build upon the ideas of [T], Sections 2 and 3.
In order to provide motivation for the main construction, we mention two of the
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principles we will use. We will consider Fy (y) = log Zy (y), so that, by Jensen’s
inequality

1EF ) < Z v
N ~ 4
and we set
2 EF
AN(Y)ZZ)% — ]1;(”) (3.2)

<k

Lemma 3.1. Assume that for all # > 0 we have

o 1P 2
> v T < log(1 — £2).
1<k

Thenwehave lim Ay(y) =0.
N—o0

This is obtained by a rather direct adaptation of the arguments of [T],
Section 2.

A basic ingredient will be a principle that ensures that the overlap essentially
never belongsto certain sets.

Lemma 3.2. Assume that for a certain number A, and certain numbers 9, > 1,
we have, for 1 < ¢ < k,
260 — D?/4 > A. (33)

Thenif Ay(y) < A, the set

U={t:)_ fr=—logl—r%) —2A - 1),
<k

satisfies
2 N
EG*(R e U) <ep——,
where
fo = folt, ye) = y2rPefor 1417 < 6, (3.4)

fo = folt,ve) = 2v26 — 1) + ¥2

13 for 1+ 7t > 6,. (35

The proof of this statement requires only rather straightforward modifications
to the proof of [T], Theorem 3.3, and these are left to the reader.

Lemma 3.2 has been stated in a way that should allow the interested reader
to figure out a proof; Formula (3.4) corresponds to the case where we do not use
truncation; and (3.5) to the casewedo. It will alwaysbeused for 6, = 1+2v/A/y,
which satisfies (3.3). The definition of f; then becomes

fo = fo(t, ye, D) = y2ePe if ytP < 2V/A (3.6)

tPe
if yptPe > 24/A. 3.7
T yetPt > 2J/A (3.7)

fo = fot, ye, A) = & Ay + y?
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These are the formulae that are going to be used in the rest of the section. The
discontinuity of f; at y,P¢ = 2+/A should not disturb the reader. It has no special
meaning, and simply arises from the fact that our estimates were sharper when we
did not use truncation than when we did. It should be obvious that f;(z, y¢, A)
increases with y,.

In Proposition 2.7 we have shown that for a certain number L, we have, if
p € Nislarge enough

T o 1—1?) (3.9)
1+t ~ g ) '

We consider now anumber Lo > 31, Lo > L1 that isfixed once and for all. We
consider

O<t<1= (2log(plogp) — L1)

8¢ = (2+ Loy~ P (3.9
so that §; = 1 and

841 = (2+ Lo)?5,. (3.10)
We set § = ;2. The reason for these choices will be apparent in due time. The
main part of the construction is to build the sequence of integers (p¢)1<¢<k. TO
simplify notation, we set

Be = v/2109(p, log pe) (3.11)

be = Br — Lov/d¢ (3.12)

ce =Pe+ Lo (3.13)
1 1

re=1——; mg:l——3 (3.14)
De Dp

Thus, al these quantities are in fact functions of p,. An important feature of
the construction of the integers p, isthat the only requirement isthat this sequence
increases fast enough; that isfor certain functions v,

Pe+1 = Ye(p1, - pe)- (3.15)

In particular we can require additional conditions of thistype if we so wish.

Lemma 3.3. Consider a number &, and the sequence 8, given by (3.9), § = 8x+2.
Then we can construct a sequence (p¢)i1<e<k and mg < r1 with the following
properties.

Vi<t<ktelmesrd =) fult.cn.8) <—logll—r*)—35 (3.16)
m<k

Ve <k, telr,md]

= Y fult,cm, 80) + fe(t, by, 8p) < —log(L — 1?) — 38 (3.17)
m#L,m=<k

Moreover, we can also assume that

O<t<mo= Y cit?’ <—logl—r). (3.18)
<k
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Proof. First, we choose mq close enough to one that
t>mp= 55 < —log(l—t?).

Next, if we choose p; large enough, we will have mg < r1, and (3.18) will hold
becausefor t < 1, c2tP* — 0as py — oo.
To simplify the construction, afirst observation is that if we arrange that, for
each ¢,
t<mg=VYx <8, fraalt, cop1,x) <2771 (319)

then to prove (3.16) it suffices to prove that

Vi<{e<k+1¢te€[mp1,re]
= D fult,cm, 8) < —log(l —1%) — 48 (3.20)
m<{
and to prove (3.17) it suffices to prove that
Ve<k,te [r[, m(]
= > fultscm, 80) + folt, be, 8¢) < —log(L — 1%) — 48, (3.21)

m<t

Now, condition (3.19) is automatically satisfied if the sequence (p) increases fast
enough. Thisisthe case because, givent < 1, c%tl’f — Qas py — oo.
Thus, we can turn our attention to (3.20), (3.21). Consider the quantity

2
de = &ocw + %’” (3.22)

m<{
The motivation for this definition is simply that
2

0<t<1= fult.cm 80) < 4/3cm + %"

It will help during the construction to ensure that the following holds

t>my = dy < —log(l—t?) — 5. (Co)

Our choice of mg ensuresthat (Cg) holds.

To perform the construction, assuming that p1, ..., p¢—1 have been construct-
ed, and that (C;_1) holds, we show that if p, islarge enough, then (C,) will hold,
aswell as (3.20), (3.21) (for thisvalue of £). Thiswill complete the proof. First, to
prove (C¢), we note that

2
t=mp=1*>1- = = —log(1—r*) > 3log p; — 2. (3.23)
Py

Also, if p, islarge enough,

¢ < 25log py. (3.24)
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Since 4v/5¢cy + ¢2/2 < 88 + 2, we see that (C,) holds provided

1
de1+ 135+ 2 < E log pe.

To prove (3.21), it suffices to show that

t > rg = de_1+ fo(t, be, 8¢) < —log(1—1?) — 45,. (3.25)
By (3.8) we have
tPe 1Pt | )
bngm + (B — be)1+ - < —log(1—1%). (3.26)

Fort > rg, wehave Pt > 1/3, so that (3.26) yields

1 (/3 — L1 —b?) < —log(l— 1) (3.27)
Cl4 ‘ o ‘ '

Thus, to ensure (3.25) it suffices that
1
di—1+ 4y/3cby + 480 < S(BF — L1 = b)). (3.28)

Now, since by < B¢, we have

ﬁcg - beg > 2be(Be — by)

= 2Lobe+/5¢.

Sincedy, By > 1and L1 < Lo, (3.28) holds provided

1
de-+4y/8cbe + 450 < ZLobe/b:.
Since Lo > 30, this holds provided

do_14 450 < by/8¢

which istruefor p, large enough.
To prove (3.20), we will prove the stronger condition

t € [me_1,ri] = do—1+ folt, ce,8) < —log(l — t?) — 46. (3.29)

Casel. c?tPt <6
Inthat case if p, islarge, cit?t < 24/5, sothat fo(t, ye, 8) = cgﬂ”'Z < 4§, and
(3.29) follows from (Cy_1).
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Case2. 2Pt > 8, cot? < 245
In that case
fe(t,ce, ) < 285cq

and all we need to show is that
Pt > 8/c2 = dp_1 + 28V8cp < —log(l — 1) — 48. (3.30)
But
1
(8/cHYPe ~ 1 — —log(c?/s)
Pt

so that for p, large,
2/ 1
—log(1 — (8/ce)?t) > > log pe

while ¢, isof order \/log p,. Thus (3.30) holdsif p, islarge enough.

Case3. cptPt > 245,t < ry.
The proof of Proposition 3.8 shows that

t<re=—A+1r7)logl—1?) > —(1+r, ") logd - r?)
so that
1Pt

V, < —log(l — 2 3.31
T 0( ) (3.31)

t<ry=

where
Ve=—1+r,")log(l - r?) > 3log p

for py large. Thus (3.31) implies

5 1Pt
t<ry= chm < - |Og(1— tz) (332)
and (3.29) will hold provided
1
do—1+ 2V8ce < écgﬂ'«. (3.33)

Since ¢ Pt > 244/8, it suffices that dy_1 < ~/Sc¢, which is true if py is large
enough. O

In order to use Lemma 3.2, we need bounds for A y (y), and we turn to the task
of finding such bounds under the information of Lemma 3.3.

Lemma3.4. If y, < b, for each ¢ < k, we have

lim Ay(y) =0.
N—o0
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Proof. Sincefor x > 0 we have

Pe
14 tpe
it follows from (3.16) to (3.18) that

b? < fo(t, by, x)

2 1™ 2
Vt>0, szm<—log(1—t)
=<k

and the conclusion follows from Lemma 3.1. O

Next, by induction over m < k + 1 we show how to bound A y (y) under the
conditions
Ve<m, yi<ce; VL>m, Yy <by. (3.34)

We will prove the following.

Lemma 3.5. Under (3.34) we have
im An(y) < dmi1- (3.39)
N—o00

Proof. It is by induction over m > 0. We have shown in Lemma 3.4 that (3.35)
holdswhenm = 0, for §1 = 1.
For the induction fromm — 1to m, consider y asin (3.34). We set

’Y(t) = (Vlv o Ym—1, t, Ym+1, " Vk)
Thus, by induction hypothesis, we have

Vt < bp, Nlim An (1)) < ém-
—> 00

In other words, if

a(t) = %(Z Vez+t2)

L#m
we have, for t < b,

NILmOO %E Fy(y(0) = a(t) — bp. (3.36)

Now, we simply use convexity to write

1

1
NEFN()’) > NEFN('Y/) + (Ym — bn)hy (3.37)

wheny’ = y(b,,), and hy isthe derivative at t = b, of E Fy(y(¢)). Thus

1
ANG) < Z08 = ba) = (rm = by + AN (). (338)

To avoid repetition, let us prove an elementary fact.
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Lemma 3.6. Consider a sequence of convex functionsgy on I = [0, rp], such that

forzinI wehaveoy(t) < §+a, and assume that for numbersa, A < to/ﬁwe

have
2

t
liminf gy (10) > % +a—A.

Then .
liminf ¢}, (t0) > EO — V2.

Proof. We have, fort < 1g

2
(t — 10)py (t0) + ¢ (10) < o (1) < tz +a.

2
<p1v(to)—’z—a> o+t A

liminf ¢/ (to) > liminf
¢N(O)_ N < 4 fo—t
and wetaker = g — +/2A. o

We go back to the proof of Lemma3.5. There is nothing to prove for the induc-
tion step unless y,, > b,,, SO we can assume that thisis the case. It follows from
Lemma 3.6 and induction hypothesis that liminf iy > 3b, — /25, and going
back to (3.38) show that

. 1
IImSUpAN(V) <ém+ \/E(Vm - bm) + Z(Vm - bm)z
N—o00

1
<én+ Y 28m(6m —by) + Z(Cm - bm)zo
Since ¢, — by, < 2LoA/8m, We get abound

Sm[14+2v2Lo + L8] < 6,24 L0)? = 8 s1. o

Remark. Lemma 3.5 holds for m = k + 1; that is, if y, < ¢¢ for £ < k, then
lim An(y) < éry2=396.
N—o0

If we combine Lemma 3.5 with Lemmeas 3.2 and 3.3, we have shown the fol-
lowing.

Lemma3.7. a)Iffor each¢ < k wehavey, < ¢y thenforeachl < ¢ <k +1we
have

2 N
E(G“(IR| € [m¢-1,7¢])) < Kexp——.

b)If0<s <k —1andif for each¢ < s wehave y, < c¢¢, whilefor £ > s we
have y, < by, then we have

2 N
E(G“(IR| € [rs+1, mga1])) = K &xp—7-
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Now, wewill show that if 3, isclosetoc,, theoverlapsdotakevaluesin|[rg, my],
for ¢ < k — 1. (Although thisislikely to hold also for £ = k, we do not know how
to show this.) The proof relies upon the following.

Lemma 3.8. We have

1 _0Fn  yepi! 2 2 2
NEa_WZZNI’ZE Z <Gi1"'ai11e>_<6i1"'aipz> )

1§i1<~--<i1,( <N
(3.39)

Proof. See[T], (2.30), (2.31) O

In the case of the Ising model, we knew that Giz = 1. Although itislikely to be
true, we do not know how to show that

|
lim ”"E( > <Ui21...02>):1 (3.40)

N—oo NPt . ; tpe
1<iy<--<ip,<N

which makes it very difficult to use (3.39). In order to find a substitute for (3.40),
wewill usea“trick” (i.e. asomewhat unnatural argument).
Let us define (keeping y implicit)

C(N,p)=E<012~-~0§>.

Our aimisto prove (3.44) below. It showsthat C(N, p) isnearly 1. By symmetry
among the variables,

C(N,p)=E<o,§...a.i>

whenever iy < --- < i,. Thus

(N=p)C(N,p+1) = Z E<all-~-a,§a(2>
p<t€<N

< Z E <O’f°”0’§0’32>
1<¢<N

=E<612---6§(ZU[2)>

(=N
=NC(N, p)
by the spherical constraint ",y o2 = N. Thus
CN.p) = A= TICN. p+1). (3.41)

This will allow us to control C(N, p¢) from below if we control C(N, py) from
below. To do this, we deduce from (3.39) for £ = k,

1 0Fy
—F— <
N oy ~ 2Nm

ViN(N = 1) (N = pr)C(N, px)
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so that

21 0F
C(N, pr) > = —E=X, (3.42)
Nye Oy
Letusnow sety(t) = (y1, ..., Yk—1,1). Thus, fort < ¢, using Lemma3.5 for

m =k +1,wehave fora(t) = (1 v +12/4

a(®) — 8 < liminf %EFN())(I)) <al(t) (3.43)
and Lemma 3.6 shows that

.1 aFy 1
liminf —E—— > -y — V26
N—oo N oy — Zyk

so that (3.42) yields
3Vé
e pz1- 30
Vi
Combining with (3.41) we see that for each ¢, if N islarge enough
48
cv.pz1- Y (3.44)
Yk

We now show why controlling C (N, p¢) from below helpsto use (3.39).

Lemma 3.9. We have
1 9F
—glN

Ve ’
<21-E<R pe 4
NE o = 2( < R(o,6)?Pt >) (3.45)

1 OF,
SES = 21— E<R(6.6)" >) — (1= C(N. p)) — viK (po)/N
ye ~ 2
(3.46)

Proof. To prove (3.45), it suffices to use the arguments of [T], Lemma 2.1, so we
prove (3.46). Using the notations )", and ), ; of [T], Lemma 2.1 and writing p
for p¢, we have

[ 2 .42 :Z 2,452 _Z 2 .52
p! Z <oj -0 > <oj 0 > <oj - 0f >

i1<--<ip nd

_ NP _ 2 .52
=N Z<Ui1 oj, >
nd

so that

N(N—-1)---(N — p)C(N, p) = NP — E(Z <o?- ~-al-i >) (3.47)
nd

and thus

EQ) <oh .ai >) < N’(L— C(N, p)) + K(p)NP~L. (3.48)
nd
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Next, as used in the proof of [T], Lemma 2.1,
Z < 0jy - Uil, >2 =< Zailo’i/l e O'ipo’i/p >
d d

=N’ <R(s,0')" > — < Z‘Tiiai/l T 'Uipai/h =
nd
< NP <R(6,0)’ > + < Zo‘ii..~o'ii >
nd
Combining with (3.48)

EQ) <oy -0, >%) < N” < R(6.6")" > +NP(1—C(N, p))+ K(p)N"~ L.
d

The result follows from this and (3.39), (3.48). O
Corollary 3.10. If y; > cx/2, and N islarge enough we have, for £ < k — 1
1 0F 10
ZEEN S Y _E < Re, 6" ) — =25 (3.49)
N Oy 2 Ck
Proof. Combine (3.44) with (3.46). O
Lemma 3.11. Assume that the following conditions hold:
1
Ve<kmy, <— (3.50)
Be
24/6 1
Ve<k-—1, V8 < — (3.51)
Ce41 Be
1 ) 1)
ve<k -1 oY o ppY? (352)
1) cy Ck

Then, if for eachm < k, wehavec,,/2 < ¥, < cu, Wehave, for £ <k — 1
. ) 1
ve > c¢ — L= liminf EG*(|R| € [r¢, m¢]) = —.
N—oo Be

Proof. Using (2.2) we have

Assuming p1 large enough, we see from (3.49) that

2 20
E < R(6,6' )Pt >>1— —[& +1) - =8 (3.53)
Ye 2 Ck
Now, for y; > ¢, — 1, we have y; > B¢ + 30 so that using (3.51) the right-hand
sideof (3.51) isat least

put2 20 16
— §> —.
Be+30 o T Be

(3.54)
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Let us observe that
E < R(a,6)P > <ml* | + EG?(|R(6,6")| € [me—1, re+1])
+EG?(|R(6,6)| > res1) (3.55)

Fort > re11, wehavetPe+t > 1, so that

EG?(|R(6,6')| = res1) < 3E < R(o,6')Pt+1 > . (3.56)
Now, from (3.45) we have
2 1 OF
E <R, )t ><1- 2 —p 27N (3.57)

Yert N 0yep1
Using Lemma3.5 for m = k + 1, and Lemma 3.6, we see that for N large

225 8V
< < —

E < R(o,6)P1 >

YVe+l ~ Cetl

since yp+1 > ce+1/2. Going back to (3.55), and using (3.56), we see that for N
large

245 14
>

EG?(R(s,0)| € [me—1,r¢41]) = E < (6,67 > —mP* | — >
Cet1 Be

by using (3.53), (3.54), (3.50), (3.51).
But by Lemma 3.7 a),

N
EG?(|R(a,6")| € [mo—1, re] Umg, re41]) < &XP(— -

The Lemmais proved. O

Proof of Theorem 1.2. We perform the previous construction, making sure that
(3.50) to (3.52) hold.
We consider the Hamiltonian

Hy(e) =) ctHi(o).
<k

Weset 0, = By/ce. 8, = (ce — 1)/ce. I the sequence (p,) increases fast enough,
(1.8) holds. Condition (1.9) follows from Lemma 3.7, b; and (1.10) from Lemma
3.10. O

Remark. It is possible to adapt the arguments of [T], Section 4 to show that the
configuration space exhibits atree structure. The depth of thistreeincreases by one
as f increases from 6, t0 6;.
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