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Abstract
Thiswork is concernedwith the existence ofmild solutions to nonlinear Fokker–Planck
equations with fractional Laplace operator (−�)s for s ∈ ( 1

2 , 1
)
. The uniqueness

of Schwartz distributional solutions is also proved under suitable assumptions on
diffusion and drift terms. As applications, weak existence and uniqueness of solutions
to McKean–Vlasov equations with Lévy noise, as well as the Markov property for
their laws are proved.
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1 Introduction

We consider here the nonlinear Fokker–Planck equation (NFPE)

ut + (−�)sβ(u) + div(Db(u)u) = 0, in (0,∞) × R
d ,

u(0, x) = u0(x), x ∈ R
d ,

(1.1)
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where β : R → R, D : Rd → R
d , d ≥ 2, and b : R → R are given functions to

be made precise later on, while (−�)s , 0 < s < 1, is the fractional Laplace operator
defined as follows. Let S′ := S′(Rd) be the dual of the Schwartz test function space
S := S(Rd). Define

Ds := {u ∈ S′; F(u) ∈ L1
loc(R

d), | · |2sF(u) ∈ S′} (⊃ L1(Rd))

and
F((−�)su)(ξ) = |ξ |2sF(u)(ξ), ξ ∈ R

d , u ∈ Ds, (1.2)

where F stands for the Fourier transform in R
d , that is,

F(u)(ξ) = (2π)−d/2
∫

Rd
eix ·ξu(x)dx, ξ ∈ R

d , u ∈ L1(Rd). (1.3)

(F extends from S′ to itself.)
NFPE (1.1) is used for modelling the dynamics of anomalous diffusion of particles

in disordered media. The solution u may be viewed as the transition density corre-
sponding to a distribution dependent stochastic differential equation with Lévy forcing
term.

Hypotheses

(i) β ∈ C1(R) ∩ Lip(R), β(0) = 0, β ′(r) > 0, ∀ r ∈ R.

(ii) D ∈ L∞(Rd ;Rd) ∩ C1(Rd;Rd), div D ∈ L2
loc(R

d), b ∈ Cb(R) ∩ C1(R),
b ≥ 0.

(iii) (div D)− ∈ L∞.

Here, we shall study the existence of a mild solution to Eq. (1.1)
(see Definition 1.1 below) and also the uniqueness of distributional solutions. As
regards the existence, we shall follow the semigroup methods used in [6–9] in the spe-
cial case s = 1. Namely, we shall represent (1.1) as an abstract differential equation
in L1(Rd) of the form

du

dt
+ A(u) = 0, t ≥ 0,

u(0) = u0,
(1.4)

where A is a suitable realization in L1(Rd) of the operator

A0(u) = (−�)sβ(u) + div(Db(u)u), u ∈ D(A0),

D(A0) = {
u ∈ L1(Rd); (−�)sβ(u) + div(Db(u)u) ∈ L1(Rd)

}
,

(1.5)

where div is taken in the sense of Schwartz distributions on R
d .

Definition 1.1 A function u ∈ C([0,∞); L1 := L1(Rd)) is said to be a mild solution
to (1.1) if, for each 0 < T < ∞,

u(t) = lim
h→0

uh(t) in L1(Rd), t ∈ [0, T ], (1.6)
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where, for j = 0, 1, . . . , Nh = [ T
h

]
,

uh(t) = u j
h, ∀ t ∈ [ jh, ( j + 1)h), (1.7)

u j+1
h + hA0(u

j+1
h ) = u j

h, (1.8)

u j
h ∈ D(A0), u0h = u0. (1.9)

Of course, Definition 1.1 makes sense only if the range R(I + hA0) of the operator
I + hA0 is all of L1(Rd). We note that, if u is a mild solution to (1.1), then it is also
a Schwartz distributional solution, that is,

∫ ∞

0

∫

Rd
(u(t, x)ϕt (t, x) − (−�)sϕ(t, x)β(u(t, x))

+b(u(t, x))u(t, x)D(x) · ∇ϕ(t, x))dtdx

+
∫

Rd
ϕ(0, x)u0(dx) = 0, ∀ϕ ∈ C∞

0 ([0,∞) × R
d),

(1.10)

whereu0 is ameasure of finite variation onRd andu0(dx) = u(0, x), ifu0 is absolutely
continuous with respect to the Lebesguemeasure dx . Themain existence result for Eq.
(1.1) is given by Theorem 2.3 below, which amounts to saying that under Hypotheses
(i)–(iii) there is a mild solution u represented as u(t) = S(t)u0, t ≥ 0, where S(t) is
a continuous semigroup of nonlinear contractions in L1. In Sect. 3, the uniqueness of
distributional solutions to (1.1), (1.10) respectively, in the class (L1 ∩ L∞)((0, T ) ×
R
d) ∩ L∞(0, T ; L2) will be proved for s ∈ ( 1

2 , 1
)
and β ′(r) > 0, ∀ r ∈ R and β ′ ≥ 0

if D ≡ 0. In the special case of porous media equations with fractional Laplacian, that
is, D ≡ 0, β(u) ≡ |u|m−1u, m > (d − 2s)+/d, the existence of a strong solution was
proved in [16, 17, 29] (see also [15] for some earlier abstract results, which applies to
this case as well).

Like in the present work, the results obtained in [16] are based on the Crandall &
Liggett generation theorem of nonlinear contraction semigroups in L1(Rd). However,
the approach used in [16] cannot be adapted to copewithEq. (1.1). In fact, the existence
and uniqueness of amild solution to (1.1) reduces to prove them-accretivity in L1(Rd)

of the operator A0, that is, (I +λA0)
−1 must be nonexpansive in L1(Rd) for all λ > 0.

If D ≡ 0 and β(u) = |u|m−1u, m > (d − 2s)+/d, this follows as shown in [16] (see,
e.g., Theorem 7.1) by regularity u ∈ L1(Rd) ∩ Lm+1(Rd), |u|m−1u ∈ Ḣ s(Rd) of
solutions to the resolvent equation u + λ(−�)sβ(u) = f for f ∈ L1(Rd). However,
such a property might not be true in our case. For instance, if s = 1, this happens if
|b′(r)r +b(r)| ≤ αβ ′(r), ∀r ∈ R, b ≥ 0, β ′ > 0 onR\{0}, and D sufficiently regular
([9, Theorem 2.2]). To circumvent this situation, following [6] (see Sect. 2) we have
constructed here an m-accretive restriction A of A0 and derive so via the Crandall &
Liggett theorem a semigroup of contractions S(t) such that u(t) = S(t)u0 is a mild
solution to (1.1). In general, that is if A = A0, this is not the unique mild solution
to (1.1). However, as shown in Theorem 3.1 below, under Hypotheses (j) (resp. (j)′),
(jj), (jjj) (see Sect. 3), for initial conditions in L1 ∩ L∞ it is the unique bounded,
distributional solution to (1.1). For initial conditions in L1, the uniqueness of mild
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solutions to (1.1) as happens for s = 1 ([9]) or for D ≡ 0, s ∈ (0, 1), as shown in [16],
in the case of the present paper remains open. One may suspect, however, that one
has in this case as for s = 1 (see [12, 14]) the existence of an entropy, resp. kinetic,
solution to (1.1) for u0 ∈ L1 ∩ L∞. But this remains to be done. Let us mention that
there is a huge literature on the well-posedness of Eq. (1.1) for the case s = 1, in
particular when D ≡ 0. We refer the reader e.g. to [3, 9, 11, 12, 14, 15, 23] and the
references therein. In Sect. 4, we apply our results to the following McKean–Vlasov
SDE on Rd

dXt = D(Xt )b(u(t, Xt ))dt +
(

β(u(t, Xt−))

u(t, Xt−)

) 1
2s

dLt ,

LXt (dx) := P ◦ X−1
t (dx) = u(t, x)dx, t ∈ [0, T ],

(1.11)

where L is a d-dimensional isotropic 2s-stable process with Lévy measure dz/|z|d+2s

(see (4.7) below). We prove that provided u(0, ·) is a probability density in L∞, by
our Theorem 2.3 and the superposition principle for non-local Kolmogorov operators
(see [25, Theorem 1.5], which is an extension of the local case in [18, 28]) it follows
that (1.11) has a weak solution (see Theorem 4.1 below). Furthermore, we prove that
our Theorem 3.1 implies that we have weak uniqueness for (1.11) among all solutions
satisfying

(
(t, x) �→ dLXt

dx
(x)

)
∈ L∞((0, T ) × R

d),

(see Theorem 4.2). As a consequence, their laws form a nonlinear Markov process
in the sense of McKean [22], thus realizing his vision formulated in that paper (see
Remark 4.3). We stress that for the latter two results β is allowed to be degenerate, if
D ≡ 0. We refer to Sect. 4 for details.

McKean–Vlasov SDEs for which (Lt ) in (1.11) is replaced by a Wiener process
(Wt ) have been studied very intensively following the two fundamental papers [22,
30]. We refer to [19, 27] and the monograph [13] as well as the references therein.
We stress that (1.11) is of Nemytskii type, i.e. distribution density dependent, also
called singularMcKean–Vlasov SDEs, so there is no weak continuity in the measure
dependence of the coefficients, as usually assumed in the literature. This (also in case
of Wiener noise) is a technically more difficult situation. Therefore, the literature on
weak existence and uniqueness for (1.11) with Lévy noise is much smaller. In fact,
since the diffusion coefficient is allowed to depend (nonlinearly) on the distribution
density, except for [25], where weak existence (but not uniqueness) is proved for
(1.11), if D ≡ 0 and β(r) := |r |m−1r , m > (d − 2σ)+/d, we are not aware of any
other paper adressing weak well-posedness in our case. If in (1.11) the Lévy process
(Lt ) is replaced by a Wiener process (Wt ), we refer to [3–6] for weak existence and
to [7–9] for weak uniqueness, as well as the references therein.

Notation. L p(Rd) = L p, p ∈ [1,∞] is the standard space of Lebesgue p-integrable
functions on R

d . We denote by L p
loc the corresponding local space and by | · |p the

norm of L p. The inner product in L2 is denoted by (·, ·)2. Denote by Hσ (Rd) =
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Hσ , 0 < σ < ∞, the standard Sobolev spaces on R
d in L2 and by H−σ its dual

space. By Cb(R) denote the space of continuous and bounded functions on R and
by C1(R) the space of differentiable functions on R. For any T > 0 and a Banach
spaceX ,C([0, T ];X ) is the space ofX -valued continuous functions on [0, T ] and by
L p(0, T ;X ) the space of X -valued L p-Bochner integrable functions on (0, T ). We
denote also by C∞

0 (O), O ⊂ R
d , the space of infinitely differentiable functions with

compact support inO and byD′(O) its dual, that is, the space of Schwartz distributions
onO. By C∞

0 ([0,∞)×R
d) we denote the space of infinitely differentiable functions

on [0,∞) × R
d with compact in [0,∞) × R

d . By S′(Rd) we denote the space of
tempered distributions on R

d .

2 Existence of a mild solution

To begin with, let us construct the operator A : D(A) ⊂ L1 → L1 mentioned in (1.4).
To this purpose, we shall first prove the following lemma.

Lemma 2.1 Assume that 1
2 < s < 1. Then, under Hypotheses (i)–(iii) there exists

λ̃0 > 0 and a family of operators {Jλ : L1 → L1; λ ∈ (0, λ̃0)}, such that for all
λ ∈ (0, λ̃0),

(I + λA0)(Jλ( f )) = f , ∀ f ∈ L1, (2.1)

|Jλ( f1) − Jλ( f2)|1 ≤ | f1 − f2|1, ∀ f1, f2 ∈ L1, (2.2)

Jλ2( f ) = Jλ1

(
λ1

λ2
f +

(
1 − λ1

λ2

)
Jλ2( f )

)
, ∀ f ∈ L1, λ1, λ2 > 0, (2.3)

∫

Rd
Jλ( f )dx =

∫

Rd
f dx, ∀ f ∈ L1, (2.4)

Jλ( f ) ≥ 0, a.e. on R
d , if f ≥ 0, a.e. on R

d , (2.5)

|Jλ( f )|∞ ≤ (1 + ||D| + (div D)−|
1
2∞)| f |∞, ∀ f ∈ L1 ∩ L∞, (2.6)

β(Jλ( f )) ∈ Hs ∩ L1 ∩ L∞, ∀ f ∈ L1 ∩ L∞. (2.7)

Furthermore, Jλ( f ) is the unique solution in D(A0) to the equation in (2.1), if f ∈
L1 ∩ L∞.

Proof of Lemma 2.1. We shall first prove the existence of a solution y = yλ ∈ D(A0)

to the equation
y + λA0(y) = f in S′, (2.8)

for f ∈ L1. To this end, for ε ∈ (0, 1] we consider the approximating equation

y + λ(ε I − �)s(βε(y)) + λ div(Dεbε(y)y) = f in S′, (2.9)

where, for r ∈ R, βε(r) := β(r) + εr and Dε := ηεD, where

ηε(x) = ϕ(ε2|x |2), ϕ ∈ C2([0,∞)), 0 ≤ ϕ ≤ 1,
ϕ(r) = 1, ∀r ∈ [0, 1], ϕ(r) = 0, ∀r ≥ 3, |ϕ′| ≤ 1.

123



V. Barbu, M. Röckner

Clearly, we have

|Dε| ∈ L2 ∩ L∞, |Dε| ≤ |D|, lim
ε→0

Dε(x) = D(x), a.e. x ∈ R
d ,

div Dε ∈ L2, (div Dε)
− ≤ (div D)−+1[

|x |> 1
ε

]|D|. (2.10)

As regards bε, it is of the form

bε(r) ≡ (b ∗ ϕε)(r)

1 + ε|r | , ∀ r ∈ R,

where ϕε(r) = 1
ε

ϕ
( r

ε

)
is a standard mollifier. We also set b∗

ε (r) := bε(r)r , r ∈ R.

Now, let us assume that f ∈ L2 and consider the approximating equation

Fε,λ(y) = f in S′, (2.11)

where Fε,λ : L2 → S′ is defined by

Fε,λ(y) := y + λ(ε I − �)sβε(y) + λ div(Dεb
∗
ε (y)), y ∈ L2,

where (ε I −�)s : S → S is defined as usual by Fourier transform and then it extends
by duality to an operator (ε I − �)s : S′ → S′ (which is consistent with (1.2)).

We recall that the Bessel space of order s ∈ R is defined as

Hs := {u ∈ S′; (1 + | · |2) s
2F(u) ∈ L2}

and the Riesz space as

Ḣ s := {u ∈ S′; F(u) ∈ L1
loc and | · |2F(u) ∈ L2}

with respective norms

|u|2Hs :=
∫

Rd
(1 + |ξ |2)s |F(u)|2(ξ)dξ =

∫

Rd
|(I − �)

s
2 u(x)|2dx,

and

|u|2
Ḣ s :=

∫

Rd
|ξ |2s |F(u)|2(ξ)dξ =

∫

Rd
|(−�)

s
2 u(x)|2dx .

Hs is a Hilbert space for all s ∈ R, whereas Ḣ s is only a Hilbert space if s < d
2 (see,

e.g., [1, Proposition 1.34]).
Claim 1. There exists λε > 0 such that Eq. (2.11) has a unique solution yε := yε(λ) ∈
L2, ∀λ ∈ (0, λε).

To prove this, we rewrite (2.11) as

(ε I − �)−s Fε,λ(y) = (ε I − �)−s f (∈ H2s),
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i.e.,

(ε I − �)−s y + λβε(y) + λ(ε I − �)−sdiv(Dεb
∗
ε (y)) = (ε I − �)−s f . (2.12)

Clearly, since Dεb∗
ε (y) ∈ L2, hence div(Dεb∗

ε (y)) ∈ H−1, we have

(ε I − �)−s Fε,λ(y) ∈ L2, ∀y ∈ L2,

because s > 1
2 . Now, it is easy to see that (2.12) has a unique solution, yε ∈ L2,

because, as the following chain of inequalities shows, (ε I − �)−s Fε,λ : L2 → L2 is
strictly monotone. By (2.12) we have, for y1, y2 ∈ L2,

((ε I − �)−s(Fε,λ(y2) − Fε,λ(y1)), y2 − y1)2
= ((ε I − �)−s(y2 − y1), y2 − y1)2 + λ(βε(y2) − βε(y1), y2 − y1)2

−λ H−1
〈
div(Dε(b∗

ε (y2) − b∗
ε (y1))), (ε I − �)−s(y2 − y1)

〉
H1

≥ |y2 − y1|2H−s + λε|y2 − y1|22
−λc1|Dε(b∗

ε (y2) − b∗
ε (y1))|2|(ε I − �)

1
2−s(y2 − y1)|2

≥ |y2 − y1|2H−s + λε|y2 − y1|22 − λcε|D|∞Lip(b∗
ε )|y2 − y1|2|y2 − y1|H1−2s ,

(2.13)

where cε ∈ (0,∞) is independent of λ, y1, y2 and Lip(b∗
ε ) denotes the Lipschitz norm

of b∗
ε . Since −s < 1 − 2s < 0, by interpolation we have for θ := 2s−1

s that

|y2 − y1|H1−2s ≤ |y2 − y1|1−θ
2 |y2 − y1|θH−s

(see [1, Proposition 1.52]). So, by Young’s inequality we find that the left hand side
of (2.13) dominates

λ(ε − λcε)|y2 − y1|22 + 1

2
|y2 − y1|2H−s

for some cε ∈ (0,∞) independent of λ, y1 and y2. Hence, for some λε ∈ (0,∞), we
conclude that (ε I − �)−s Fε,λ is strictly monotone on L2 for λ ∈ (0, λε).

It follows from (2.12) that its solution yε belongs to H2s−1, hence b∗
ε (yε) ∈ H2s−1.

Since s > 1
2 and D ∈ C1(Rd ;Rd), by simple bootstrapping (2.12) implies

yε ∈ H1, (2.14)

hence, by (2.12) we get βε(yε) ∈ H2s . Furthermore, for f ∈ L2 and λ ∈ (0, λε), yε
is the unique solution of (2.9) in L2 and Claim 1 is proved.
Claim 2. Assume now that λ ∈ (0, λε) and f ≥ 0, a.e. on R

d . Then, we have

yε ≥ 0, a.e. on R
d . (2.15)
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Here is the argument. For δ > 0, consider the function

ηδ(r) =

⎧
⎪⎨

⎪⎩

−1 for r ≤ −δ,
r

δ
r ∈ (−δ, 0),

0 for r ≥ 0.

(2.16)

If we multiply Eq. (2.9), where y = yε, by ηδ(βε(yε)) (∈ H1) and integrate over Rd ,
we get, since βε(yε) ∈ H2s , so (ε I − �)sβε(yε) ∈ L2,

∫

Rd
yεηδ(βε(yε))dx + λ

∫

Rd
(ε I − �)s(βε(yε))ηδ(βε(yε))dx

=
∫

Rd
f ηδ(βε(yε))dx + λ

∫

Rd
Dεb

∗
ε (yε)η

′
δ(βε(yε)) · ∇βε(yε)dx .

(2.17)

By Lemma 5.2 in [16] we have (Stroock–Varopoulos inequality)

∫

Rd
(ε I − �)su�(u)dx ≥

∫

Rd
|(ε I − �)

s
2 �̃(u)|2dx, u ∈ H2s(Rd), (2.18)

for any pair of functions �, �̃ ∈ Lip(R) such that � ′(r) ≡ (�̃ ′(r))2, r ∈ R. This
yields

∫

Rd
(ε I − �)sβε(yε)ηδ(βε(yε))dx ≥

∫

Rd
|(ε I − �)

s
2 �̃(βε(yε))|2dx ≥ 0, (2.19)

where �̃(r) = ∫ r
0

√
η′

δ(s) ds. Taking into account that yε ∈ H1 and that |βε(yε)| ≥
ε|yε|, we have

∣∣∣∣

∫

Rd
Dεbε(yε)yεη

′
δ(βε(yε))∇βε(yε)dx

∣∣∣∣

≤ 1

δ
|b|∞

∫

Ẽδ
ε

|yε| |∇βε(yε)| |Dε|dx

≤ 1

ε
|b|∞‖Dε‖L2

(∫

Ẽδ
ε

|∇βε(yε)|2dx
) 1

2

→ 0 as δ → 0.

(2.20)

Here Ẽδ
ε = {−δ < βε(yε) ≤ 0} and we used that ∇βε(yε) = 0, a.e. on {βε(yε) = 0}.

Taking into account that sign βε(r) ≡ sign r , by (2.17)–(2.20) we get, for δ → 0,
that y−

ε = 0, a.e. on R
d and so (2.15) holds.

Ifλ ∈ (0, λε) and yε = yε(λ, f ) is the solution to (2.9),wehave for f1, f2 ∈ L1∩L2

yε(λ, f1) − yε(λ, f2) + λ(ε I − �)s(βε(yε(λ, f1)) − βε(yε(λ, f2)))
+λ div Dε(b∗

ε (yε(λ, f1)) − b∗
ε (yε(λ, f2))) = f1 − f2.

(2.21)
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Now, for δ > 0 consider the function

Xδ(r) =

⎧
⎪⎨

⎪⎩

1 for r ≥ δ,
r

δ
for |r | < δ,

−1 for r < −δ.

If we multiply (2.21) byXδ(βε(yε(λ, f1))−βε(yε(λ, f2))) (∈ H1) and integrate over
R
d , we get

∫

Rd
(yε(λ, f1) − yε(λ, f2))Xδ(βε(yε(λ, f1)) − βε(yε(λ, f2)))dx

≤λ
1

δ

∫

Eδ
ε

|b∗
ε (yε(λ, f1))−b∗

ε (yε(λ, f2))| |Dε||∇(βε(yε(λ, f1))−βε(yε(λ, f2)))|dx
+| f1 − f2|1,

because, by (2.18), we have

∫

Rd
(ε I − �)s(βε(yε, f1) − βε(yε, f2))Xδ(βε(yε, f1) − βε(yε, f2))dx ≥ 0.

Set Eδ
ε = {|βε(yε(λ, f1)) − βε(yε(λ, f2))| ≤ δ}.

Since |βε(r1) − βε(r2)| ≥ ε|r1 − r2|, Dε ∈ L2(Rd ;Rd) and b∗
ε ∈ Lip(R), we get

that

lim
δ→0

1

δ

∫

Eδ
ε

|b∗
ε (yε(λ, f1))−b∗

ε (yε(λ, f2))||Dε||∇(βε(yε(λ, f1))−βε(yε(λ, f2)))|dx = 0,

because yε(λ, fi ) ∈ H1, i = 1, 2, and ∇(βε(yε(λ, f1)) − βε(yε(λ, f2))) = 0, a.e.
on {βε(yε(λ, f1)) − βε(yε(λ, f2)) = 0}. This yields

|yε(λ, f1) − yε(λ, f2)|1 ≤ | f1 − f2|1, ∀λ ∈ (0, λε). (2.22)

In particular, it follows that

|yε(λ, f )|1 ≤ | f |1, ∀ f ∈ L1 ∩ L2, λ ∈ (0, λε). (2.23)

Now let us remove the restriction on λ to be in (0, λε). To this end define the operator
Aε : D0(Aε) → L1 by

Aε(y):= (ε I − �)s(βε(y)) + div(Dεb∗
ε (y)),

D0(Aε):= {y ∈ L1; (ε I − �)sβε(y) + div(Dεb∗
ε (y)) ∈ L1},

and for λ ∈ (0, λε)

J ε
λ ( f ) := yε(λ, f ), f ∈ L1 ∩ L2.
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Then
J ε
λ ( f ) ∈ D0(Aε) ∩ H1, β(J ε

λ ( f )) ∈ (ε I − �)−s L2,

∀ f ∈ L1 ∩ L2, λ ∈ (0, λε),
(2.24)

and by (2.22) it extends by continuity to an operator J ε
λ : L1 → L1. We note that the

operator (Aε, D0(Aε)) is closed as an operator on L1. Hence (2.22) implies that

J ε
λ (L1) ⊂ D0(Aε) (2.25)

and that J ε
λ ( f ) solves (2.11) for all f ∈ L1.

Now define
D(Aε) := J ε

λ (L1) (2.26)

and restrict Aε to D(Aε). Then (I + λAε) : D(Aε) → L1 is a bijection and J ε
λ =

(I + λAε)
−1. For λ ∈ (0, λε) and f ∈ L1 ∩ L2, Claim 1 implies that J ε

λ ( f ) is the
unique solution to (2.11). Hence it easily follows that

J ε
λ2

( f ) = J ε
λ1

(
λ1

λ2
f +

(
1 − λ1

λ2

)
J ε
λ2

( f )

)
, ∀ f ∈ L1, (2.27)

for λ1, λ2 ∈ (0, λε), which in turn entails that D(Aε) is independent of λ ∈ (0, λε).
Now let 0 < λ1 < λε. Then, for λ ≥ λε, the equation

y + λAε(y) = f (∈ L1), y ∈ D(Aε), (2.28)

can be rewritten as

y + λ1Aε(y) =
(
1 − λ1

λ

)
y + λ1

λ
f .

Equivalently,

y = J ε
λ1

((
1 − λ1

λ

)
y + λ1

λ
f

)
. (2.29)

Taking into account that, by (2.22), |J ε
λ1

( f1) − J ε
λ1

( f2)|1 ≤ | f1 − f2|1, it follows
that (2.29) has a unique solution yε ∈ D(Aε). Let J ε

λ ( f ) := yε, λ > 0, f ∈ L1,
denote this solution to (2.28). By (2.29) we see that (2.22), (2.23) extend to all λ > 0,
f ∈ L1.

Claim 3. Let f ∈ L1 ∩ L2. Then

J ε
λ ( f ) ∈ H1 for all λ > 0. (2.30)

Proof Fix λ1 ∈ [λε/2, λε) and set λ := 2λ1. Define T : L1 ∩ L2 → L1 ∩ H1 by

T (y) := J ε
λ1

(
1

2
y + 1

2
f

)
, y ∈ L1 ∩ L2.
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By (2.22), the map T is contractive in L1 so that, for any f0 ∈ L1 ∩ L2 fixed

lim
n→∞ T n( f0) = J ε

λ ( f ) in L1. (2.31)

It suffices to prove
J ε
λ ( f ) ∈ L2, (2.32)

because then J ε
λ ( f ) = J ε

λ1
(g) with g := 1

2 J ε
λ ( f ) + 1

2 f ∈ L1 ∩ L2, and so the claim
follows by (2.14) which holds with yε := J ε

λ1
(g), because λ1 ∈ (0, λε).

To prove (2.32) we note that we have, for n ∈ N,

(I + λ1Aε)T
n( f0) = 1

2
T n−1( f0) + 1

2
f

with T n( f0) ∈ H1 and βε(T n f0) ∈ (ε I − �)−s L2 by (2.24). Hence, applying

H−1〈·, T n( f0)〉H1 to this equation, we find

|T n f0|22 + λ1 H−1〈(ε I − �)sβε(T n( f0)), T n( f0)〉H1

= λ1

∫

Rd
(Dεb

∗
ε (T

n( f0))) · ∇(T n( f0))dξ+
(
1

2
T n−1( f0) + 1

2
f , T n( f0)

)

2
.
(2.33)

Setting

ψε(r) :=
∫ r

0
b∗
ε (τ )dτ, r ∈ R, (2.34)

by Hypothesis (iii) we have

0 ≤ ψε(r) ≤ |b∗
ε |∞r , r ∈ R,

and hence the right hand side of (2.33) is equal to

−λ1(div Dε, ψε(T
n( f0)))2 +

(
1

2
(T n−1( f0) + f ), T n( f0)

)

2
,

where we recall that div Dε ∈ L2 by (2.10). By (2.19) we thus obtain

|T n( f0)|22 ≤λ1|b∗
ε |∞|(div Dε)

−|2|T n( f0)|2 + 1

2
|T n( f0)|22

+1

4
(|T n−1( f0)|22 + | f |22),

therefore,

|T n( f0)|22 ≤ Cε + 2

3
|T n−1( f0)|22,
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where

Cε := 16

3
λ21|b∗

ε |2∞|(div Dε)
−|22 + 2

3
| f |22.

Iterating, we find

|T n( f0)|22 ≤ Cε

n∑

k=0

(
2

3

)k

+
(
2

3

)n

| f0|22, n ∈ N.

Hence, by Fatou’s lemma and (2.31),

|J ε
λ ( f )|22 ≤ lim inf

n→∞ |T n( f0)|22 ≤ 3Cε < ∞,

and (2.30) holds for λ = 2λ1. Proceeding this way, we get (2.30) for all λ > 0. ��
Set

λ0 :=
(∣∣(div D)− + |D|∣∣ 12∞ |b|∞

)−1

, (2.35)

where we set 1
0 := ∞. Then, for f ∈ L1 ∩ L∞ and yε := J ε

λ ( f ), λ > 0, we have

|yε|∞ ≤ (1 + ∣∣|D| + (div D)−
∣∣
1
2∞)| f |∞, ∀λ ∈ (0, λ0). (2.36)

Indeed, if we set Mε = |(div Dε)
−|

1
2∞| f |∞, we get by (2.9) that

(yε − | f |∞ − Mε) + λ(ε I − �)s(βε(yε) − βε(| f |∞ + Mε)) + λεs(βε(| f |∞ + Mε))

+λ div(Dε(b∗
ε (yε) − b∗

ε (| f |∞ + Mε))) ≤ 0.

Here we used that

1 ∈ {u ∈ S′; (ε + |ξ |2)sF(u) ∈ S′}

and that (ε I −�)s1 = εs, sinceF(1) = (2π)
d
2 δ0 (= Dirac measure in 0 ∈ R

d ). Then,
taking the scalar product in L2 with Xδ((βε(yε) − βε(| f |∞ + Mε))

+), letting δ → 0
and using (2.18), we get by (2.10)

yε ≤ (1 + ||D| + (div D)−|
1
2∞)| f |∞, a.e. in Rd ,

and, similarly, for −yε which yields (2.36) for λ ∈ (0, λ0).
In particular, it follows that

|J ε
λ ( f )|1 + |J ε

λ ( f )|∞ ≤ c1, ∀ε > 0, λ ∈ (0, λ0), (2.37)

where c1 = c1(| f |1, | f |∞) is independent of ε and λ.
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Now, fix λ ∈ (0, λ0) and f ∈ L1 ∩ L∞. For ε ∈ (0, 1] set

yε := J ε
λ ( f ).

Then, since βε(yε) ∈ H1, by (2.9) and (2.24) we get

(yε, βε(yε))2 + λ ((ε I − �)sβε(yε), βε(yε))2
= −λ(div(Dεb∗

ε (yε)), βε(yε))2 + ( f , βε(yε))2

= λ

∫

Rd
(Dεb

∗
ε (yε)) · ∇βε(yε)dx + ( f , βε(yε))2.

(2.38)

Setting

ψ̃ε(r) :=
∫ r

0
b∗
ε (τ )β ′

ε(τ )dτ, r ∈ R, (2.39)

by Hypothesis (iii), we have

0 ≤ ψ̃ε(r) ≤ 1

2
|b|∞(|β ′|∞ + 1)r2, ∀r ∈ R,

and hence, since yε ∈ H1, the right hand side of (2.38) is equal to

−λ

∫

Rd
div Dεψ̃ε(yε)dx + ( f , βε(yε))2,

which, because (yε, βε(yε))2 ≥ 0 and H1 ⊂ Hs , by (2.10) and Hypothesis (iii)
implies that

λ|(ε I − �)
s
2 βε(yε)|22 ≤ 1

2
(λ|b|∞(|β ′|∞ + 1)|(div D)− + |D||∞)|yε|22

+1

2
|βε(yε)|22 + 1

2
| f |22.

Since |βε(r)| ≤ (Lip(β) + 1)|r |, r ∈ R, by (2.23), (2.37) we obtain

sup
ε∈(0,1]

|(ε I − �)
s
2 βε(yε)|22 ≤ C < ∞, (2.40)

where

C := λ(|b|∞ + 1)(|(div D)− + |D|∞| + 2)2(Lip(β) + 1)2| f |∞| f |1.

Since obviously for all u ∈ Hs (⊂ Ḣ s), ε ∈ (0, 1],

|(−�)
s
2 u|22 ≤ |(ε I − �)

s
2 u|22 ≤ |(−�)

s
2 u|22+εs |u|22≤ 2|(ε I−�)

s
2 u|22, (2.41)

and since βε(yε) ∈ H1 ⊂ Hs , we conclude from (2.40) and the first inequality in
(2.41) that βε(yε), ε ∈ (0, 1], is bounded in Ḣ s . But, since |βε(r)| ≤ (1+Lip(β))|r |,
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weconclude from (2.37) thatβε(yε), ε ∈ (0, 1], is bounded in L2.Hence, by the second
inequality in (2.40) applied with ε = 1, we altogether have that βε(yε), ε ∈ [0, 1], is
bounded in Hs . Therefore, (along a subsequence) as ε → 0

βε(yε) → z weakly in Hs,

(ε I − �)sβε(yε) → (−�)s z in S′,
yε → y weakly inL2and weakly∗ in L∞,

where the second statement follows, because

(ε I − �)sϕ → (−�)sϕ in L2 for all ϕ ∈ S.

By [1, Theorem 1.69], it follows that as ε → 0

βε(yε) → z in L2
loc(R

d),

so (selecting another subsequence, if necesary) β(yε) → z, a.e. in Rd .

Since β−1 (the inverse function of β) is continuous, it follows that as ε → 0

yε → β−1(z) = y, a.e. on Rd .

This yields
z = β(y) (2.42)

and b∗
ε (yε) → b∗(y) weakly in L2. Recalling that yε solves (2.9), we can let ε → 0

in (2.9) to find that

y + λ(−�)sβ(y) + λ div(Db∗(y)) = f in S′. (2.43)

Since β ∈ Lip(R), the operator (A0, D(A0)) defined in (1.5) is obviously closed as
an operator on L1. Again defining for y as in (2.43)

Jλ( f ) := y ∈ D(A0), λ ∈ (0, λ0),

it follows by (2.22) and Fatou’s lemma that for f1, f2 ∈ L1 ∩ L∞

|Jλ( f1) − Jλ( f2)|1 ≤ | f1 − f2|1. (2.44)

Hence Jλ extends continuously to all of L1, still satisfying (2.44) for all f1, f2 ∈ L1.
Then it follows by the closedness of (A0, D(A0)) on L1 that Jλ( f ) ∈ D(A0) and that
it solves (2.43) for all f ∈ L1.

Hence, Lemma 2.1 is proved except for (2.3) and (2.4). To prove (2.3), we need the
following
Claim 4. There exists λ̃0 ∈ (0, λ0) such that, for f ∈ L1 ∩ L∞, λ ∈ (0, λ̃0), the above
constructed Jλ( f ) is the unique solution of (2.43).
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Since the proof of this claim uses similar arguments as those in Sect. 3, we postpone
it to Appendix 2 below (see Lemma A). Now, let λ1, λ2 ∈ (0, λ̃0) and f ∈ L1 ∩ L2.
Then, we have

(I + λ1A0)Jλ2( f ) = λ1

λ2
f +

(
1 − λ1

λ2

)
Jλ2( f ) =: g ∈ L1 ∩ L∞.

But

(I + λ1A0)Jλ1(g) = g.

Since Jλ2( f ), Jλ1(g) ∈ L1 ∩ L∞, by Claim 4 it follows that Jλ2( f ) = Jλ1(g), i.e.
(2.3) holds for all f ∈ L1 ∩ L∞, hence for all f ∈ L1, by (2.44), since L1 ∩ L∞ is
dense in L1.

Now let us prove (2.4). Wemay assume, for every f ∈ L1∩L∞, that f ∈ L1∩L∞
and set y := Jλ( f ). Let Xn ∈ C∞

0 (Rd), Xn ↑ 1, lim
n→∞ ∇Xn = 0 on R

d , as n → ∞,

with sup
n

|∇Xn|∞ < ∞. Define

ϕn := (I + (−�)s)−1Xn = gs1 ∗ Xn, n ∈ N,

where gs1 is as in the Appendix. Then, clearly,

ϕn ↑ 1 and ∇ϕn → 0 on R
d , as n → ∞,

sup
n

(|ϕn|∞ + |∇ϕn|∞) < ∞,

ϕn ∈ L1 ∩ H2s, n ∈ N,

(2.45)

where the last statement follows from (2.41). Furthermore,

(−�)sϕn = Xn − (I + (−�)s)−1Xn ∈ L1 ∩ L∞,

are bounded in L∞ and, as n → ∞,

(−�)sϕn → 0 dx − a.e.,

hence, because β(y) ∈ L1 ∩ L∞ and {(−�)sϕn} is bounded in L∞, we have

lim
n→∞

∫

Rd
(−�)sϕn β(y)dx = 0. (2.46)
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Consequently, since β(y) ∈ Hs , y ∈ D(A) with A0y ∈ L1,

∫

Rd
A0y dx = lim

n→∞

∫

Rd
ϕn A0y dx

= −
∫

Rd
β(y)dx + lim

n→∞ H2s
〈
ϕn, (I + (−�)s)β(y) + div(Db∗(y))

〉
H−2s

= −
∫

Rd
β(y)dx+ lim

n→∞ Hs− 1
2

〈
ϕn, (I+(−�)s)β(y)

〉
H−s+ 1

2

+ lim
n→∞

∫

Rd
∇ϕn · Db∗(y)dx,

which by (2.45) and (2.46) is equal to zero. Hence, integrating the equation

y + λA0y = f

over Rd , (2.4) follows, which concludes the proof of Lemma 2.1. �
Now, for λ ∈ (0, λ̃0), define

D(A) := Jλ(L1) (⊂ D(A0)),

A(y) := A0(y), y ∈ D(A).
(2.47)

Then, Jλ = (I + λA)−1, λ ∈ (0, λ̃0), and (2.3) implies that Jλ(L1) is independent of
λ ∈ (0, λ̃0). Therefore, we have

Lemma 2.2 UnderHypotheses (i)–(iii), the operator A defined by (2.47) ism-accretive
in L1 and (I + λA)−1 = Jλ, λ ∈ (0, λ̃0). Moreover, if β ∈ C∞(R), then D(A) = L1.

Here, D(A) is the closure of D(A) in L1.
We note that, by (1.3), if β ∈ C∞(R), it follows that

A0(ϕ) = (−�)sβ(ϕ) + div(Db(ϕ)ϕ) ∈ L1, ∀ϕ ∈ C∞
0 (Rd),

and so D(A) = L1, as claimed.
Then, by the Crandall & Liggett theorem (see, e.g., [2], p. 131), we have that the

Cauchy problem (1.4), that is,

du

dt
+ A(u) = 0, t ≥ 0,

u(0) = u0,

for each u0 ∈ D(A), has a unique mild solution u = u(t, u0) ∈ C([0,∞); L1) and
S(t)u0 = u(t, u0) is a C0-semigroup of contractions on L1, that is,

|S(t)u0 − S(t)ū0|1 ≤ |u0 − ū0|1, ∀u0, ū0 ∈ D(A),

S(t + τ)u0 = S(t, S(τ )u0), ∀t, τ > 0; u0 ∈ D(A),

lim
t→0

S(t)u0 = u0 in L1(Rd).
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Moreover, by (2.5) and the exponential formula

S(t)u0 = lim
n→∞

(
I + t

n
A

)−n

u0, ∀ t ≥ 0,

it follows that S(t)u0 ∈ L∞((0, T ) × R
d), T > 0, if u0 ∈ L1 ∩ L∞.

Let us show now that u = S(t)u0 is a Schwartz distributional solution, that is,
(1.10) holds.

By (1.6)–(1.9), we have

∫ ∞

0
dt

(∫

Rd
ϕ(t, x)(uh(t, x) − uh(t − h, x)

)
dx

+
∫

Rd
(ϕ(t, x)(−�)sβ(uh(t, x)) − ∇xϕ(t, x) · D(x)b∗(uh((x)))dx) = 0,

∀ϕ ∈ C∞
0 ([0,∞) × R

d).

This yields

1

h

∫ ∞

0
dt

(∫

Rd
uh(t, x)(ϕ(t + h, x) − ϕ(t, x))

)
dx

+
∫

Rd
(β(uh(t, x))(−�)sϕ(t, x) − ∇xϕ(t, x) · D(x)b∗(uh(t, x))dx)

+1

h

∫ h

0
dt

∫

Rd
u0(x)ϕ(t, x)dx = 0, ∀ϕ ∈ C∞

0 ([0,∞) × R
d).

Taking into account that, by (1.6) and (i)–(iii), β(uh) → β(u), b∗(uh) → b∗(u) in
C([0, T ]; L1) as h → 0 for each t > 0, we get that (1.10) holds.

This implies the following existence result for Eq. (1.1).

Theorem 2.3 Assume that s ∈ ( 1
2 , 1

)
and Hypotheses (i)–(iii) hold. Then, there is a

C0-semigroup of contractions S(t) : L1 → L1, t ≥ 0, such that for each u0 ∈ D(A),
which is L1 if β ∈ C∞(R), u(t, u0) = S(t)u0 is a mild solution to (1.1). Moreover, if
u0 ≥ 0, a.e. on Rd ,

u(t, u0) ≥ 0, a.e. on R
d , ∀ t ≥ 0, (2.48)

and ∫

Rd
u(t, u0)(x)dx =

∫

Rd
u0(x)dx, ∀ t ≥ 0. (2.49)

Moreover, u is a distributional solution to (1.1) on [0,∞) × R
d . Finally, if u0 ∈

L1∩L∞, then all above assertions remain true, if we drop the assumption β ∈ Lip(R)

from Hypothesis (i), and additionally we have that u ∈ L∞((0, T ) × R
d), T > 0.

Remark 2.4 It should be emphasized that, in general, the mild solution u given by The-
orem 2.3 is not unique because the operator A constructed in Lemma 2.2 is dependent
of the approximating operator Aε y ≡ (ε I + (−�)s)βε(y) + div(Dεbε(y)y) and so
u = S(t)u0 may be viewed as a viscosity-mild solution to (1.1). However, as seen in
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the next section, this mild solution—which is also a distributional solution to (1.1)—
is, under appropriate assumptions on β, D and b, unique in the class of solutions
u∈ L∞((0, T )×R

d), T > 0.

3 The uniqueness of distributional solutions

In this section, we shall prove the uniqueness of distributional solutions to (1.1), where
s ∈ ( 1

2 , 1
)
, under the following Hypotheses:

(j) β ∈ C1(R), β ′(r) > 0, ∀ r ∈ R, β(0) = 0.
(jj) D ∈ L∞(Rd;Rd).

(jjj) b ∈ C1(R).

Theorem 3.1 Let d ≥ 2, s ∈ ( 1
2 , 1

)
, T > 0, and let y1, y2 ∈ L∞((0, T )×R

d) be
two distributional solutions to (1.1) on (0, T ) ×R

d (in the sense of (1.10)) such that
y1 − y2 ∈ L1((0, T ) × R

d) ∩ L∞(0, T ; L2) and

lim
t→0

ess sup
s∈(0,t)

|(y1(s) − y2(s), ϕ)2| = 0, ∀ϕ ∈ C∞
0 (Rd). (3.1)

Then y1 ≡ y2. If D ≡ 0, then Hypothesis (j) can be relaxed to

(j)′ β ∈ C1(R), β ′(r) ≥ 0, ∀ r ∈ R, β(0) = 0.

Proof (The idea of proof is borrowed from Theorem 3.2 in [9], but has to be adapted
substantially.) Replacing, if necessary, the functions β and b by

βN (r) =
⎧
⎨

⎩

β(r) if |r | ≤ N ,

β ′(N )(r − N ) + β(N ) if r > N ,

β ′(−N )(r + N ) + β(−N ) if r < −N ,

and

bN (r) =
⎧
⎨

⎩

b(r) if |r | ≤ N ,

b′(N )(r − N ) + b(N ) if r > N ,

b′(−N )(r + N ) + b(−N ) if r < −N ,

where N ≥ max{|y1|∞, |y2|∞}, by (j) we may assume that

β ′, b′ ∈ Cb(R), β ′ > α2 ∈ (0,∞) (3.2)

and, therefore, we have

α1|β(r) − β(r̄)| ≥ |b∗(r) − b∗(r̄)|, ∀ r , r̄ ∈ R, (3.3)

(β(r) − β(r̄))(r − r̄) ≥ α3|β(r) − β(r̄)|2, ∀ r , r̄ ∈ R, (3.4)
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where b∗(r) = b(r)r , α1 > 0 and α3 = |β ′|−1∞ . We set

�ε(y) = (ε I + (−�)s)−1y, ∀ y ∈ L2,

z = y1 − y2, w = β(y1) − β(y2), b∗(yi ) ≡ b(yi )yi , i = 1, 2.
(3.5)

It is well known that �ε : L p → L p, ∀p ∈ [1,∞] and

ε|�ε(y)|p ≤ |y|p, ∀y ∈ L p, ε > 0. (3.6)

Moreover, �ε(y) ∈ Cb(R
d) if y ∈ L1 ∩ L∞. We have

zt + (−�)sw + div D(b∗(y1) − b∗(y2)) = 0 in D′((0, T ) × R
d).

We set

zε = z ∗ θε, wε = w ∗ θε, ζε = (D(b∗(y1) − b∗(y2))) ∗ θε,

where θ ∈ C∞
0 (Rd), θε(x) ≡ ε−dθ

( x
ε

)
is a standard mollifier. We note that

zε, wε, ζε, (−�)swε, div ζε ∈ L2(0, T ; L2) and we have

(zε)t + (−�)swε + div ζε = 0 in D′(0, T ; L2). (3.7)

This yields �ε(zε),�ε(wε), div�ε(ζε) ∈ L2(0, T ; L2) and

(�ε(zε))t = −(−�)s�ε(wε) − div�ε(ζε) = 0 in D′(0, T ; L2). (3.8)

By (3.7) and (3.8) it follows that (zε)t = d
dt zε, (�ε(z))t = d

dt �ε(zε) ∈ L2(0, T ; L2),
where d

dt is taken in the sense of L2-valued vectorial distributions on (0, T ). This
implies that zε,�ε(zε) ∈ H1(0, T ; L2) and both [0, T ] � t �→ zε(t) ∈ L2 and
[0, T ] � t → �ε(zε(t)) ∈ L2 are absolutely continuous. As a matter of fact, it
follows by (3.6) and (3.8) that

�ε(zε),�ε(wε) ∈ L2(0, T ;Cb(R
d) ∩ L2). (3.9)

We set hε(t) = (�ε(zε(t)), zε(t))2 and get, therefore,

h′
ε(t) =2(zε(t), (�ε(zε(t)))t )2

=2(ε�ε(wε(t))−wε(t)−div�ε(ζε(t)), zε(t))2
=2ε(�ε(zε(t)), wε(t))2+2(∇�ε(zε(t)), ζε(t))2

−2(zε(t), wε(t))2, a.e. t ∈ (0, T ), (3.10)

where, (·, ·)2 is the scalar product in L2. By (3.8)–(3.10) it follows that t → hε(t) has
an absolutely continuous dt-version on [0, T ] which we shall consider from now on.
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Since, by (3.4), we have

(zε(t), wε(t))2 ≥ α3|w(t)|22 + γε(t), (3.11)

where
γε(t) := (zε(t), wε(t))2 − (z(t), w(t))2, (3.12)

we get, therefore, by (3.3) and (3.10),

0≤ hε(t) ≤ hε(0+)+2ε
∫ t

0
(�ε(zε(s)), wε(s))2ds−2α3

∫ t

0
|w(s)|22ds

+2α1|D|∞
∫ t

0
|∇�ε(zε(s))|2|w(s)|2ds + 2

∫ t

0
|γε(s)|ds, ∀t ∈ [0, T ].

(3.13)

Moreover, since z ∈ L∞((0, T ) × R
d) and by (3.6) we obtain

ε|�ε(zε(t))|∞ ≤ |zε(t)|∞ ≤ |z(t)|∞, a.e. t ∈ (0, T ). (3.14)

Taking into account that t → �ε(zε(t)) has an L2 continuous version on [0, T ], there
exists f ∈ L2 such that

lim
t→0

�ε(zε(t)) = f in L2.

Furthermore, for every ϕ ∈ C∞
0 (Rd), s ∈ (0, T ),

0 ≤ hε(s) ≤ |�ε(zε(s)) − f |2|zε(s)|2 + | f − ϕ|2|zε(s)|2 + |(ϕ ∗ θε, z(s))2|.

Hence, by (3.1),

0 ≤ hε(0+)= lim
t↓0 hε(t) = lim

t→0
ess sup
s∈(0,t)

hε(s)

≤
(
lim
t→0

|�ε(zε(t)) − f |2 + | f − ϕ|2
)

|zε|L∞(0,T ;L2)

+ lim
t→0

ess sup
s∈(0,t)

|(ϕ ∗ θε, z(s))2| = | f − ϕ|2|zε|L∞(0,T ;L2).

Since C∞
0 (Rd) is dense in L2(Rd), we find

hε(0+) = 0. (3.15)

On the other hand, taking into account that, for a.e. t ∈ (0, T ),

ε�ε(zε(t)) + (−�)s�ε(zε(t)) = zε(t), (3.16)
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we get that

ε|�ε(zε(t))|22 + |(−�)
s
2 �ε(zε(t))|22 = (zε(t),�ε(zε(t)))2 = hε(t),

for a.e. t ∈ (0, T ).
(3.17)

We note that by (3.16) and Parseval’s formula we have

|∇�(zε(t))|22 =
∫

Rd

|F(zε(t))(ξ)|2|ξ |2
(ε + |ξ |2s)2 dξ, ∀t ∈ (0, T ),

and

hε(t) =
∫

Rd

|F(zε(t))(ξ)|2
ε + |ξ |2s dξ, ∀t ∈ (0, T ).

This yields

|∇�ε(zε(t))|22 ≤ R2(1−s)
∫

[|ξ |≤R]
|F(zε(t))(ξ)|2

ε + |ξ |2s dξ

+
∫

[|ξ |≥R]
|F(zε(t))(ξ)|2|ξ |2(1−2s)dξ

≤ R2(1−s)hε(t) + R2(1−2s)|zε(t)|22, ∀t ∈ (0, T ), R > 0,

(3.18)

because 2s ≥ 1.
We shall prove now that

lim
ε→0

ε(�ε(zε(t)), wε(t))2 = 0, a.e. t ∈ (0, T ). (3.19)

Since by (3.14)

ε|(�ε(zε(t)), wε(t))2| ≤ |zε(t)|∞|wε(t)|1 ≤ |z(t)|∞|w(t)|1, (3.20)

it suffices to show that

lim
ε→0

ε|�ε(zε(t))|∞ = 0, a.e. t ∈ (0, T ). (3.21)

To prove (3.21) we proceed similarly as in the proof of [11, Lemma 1]. By (A.6) in
the Appendix we have for a.e. t ∈ (0, T )

ε�ε(zε(t))(x) = ε
d
2s

∫

Rd
gs1(ε

1
2s (x − ξ))zε(t)(ξ)dξ for a.e. x ∈ R

d .
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This yields for a.e. x ∈ R
d

|ε�ε(zε(t))(x)| ≤ Crε
d/2s |z(t)|1 + εd/2s |z(t)|∞

∫

[ε1/2s |x−ξ |≤r ]
gs1(ε

1/2s(x − ξ))dξ,

where Cr := sup{gs1(x); |x | ≥ r} (< ∞, since gs1 ∈ L∞(Br (0)C ) by (A.7)). There-
fore, for a.e. x ∈ R

d ,

|ε�ε(zε(t))(x)| ≤ Crε
d/2s |z(t)|1 + |z(t)|∞

∫

[|ξ |≤r ]
gs1(ξ)dξ.

Since gs1 ∈ L1 by (A.4), letting first ε → 0 and then r → 0, (3.21) follows, as claimed.
By (3.20), (3.21) and the dominated convergence theorem, it follows that

lim
ε→0

ε

∫ t

0
(�ε(zε(s)), wε(s))2ds = 0, t ∈ [0, T ]. (3.22)

Next, by (3.13), (3.15) and (3.18), we have

0 ≤ hε(t)≤ 2ε
∫ t

0
|(�ε(zε(s)), wε(s))2|ds − 2α3

∫ t

0
|w(s)|22ds

+2α1|D|∞
∫ t

0
|∇�ε(zε(t))|2|w(s)|2ds + 2

∫ t

0
|γε(s)|ds

≤ ηε(t) + 2α1|D|∞
∫ t

0

(
R1−sh

1
2
ε (r) + R1−2s |zε(r)|2

)
|w(r)|2dr

−2α3

∫ t

0
|w(s)|22ds, ∀ t ∈ [0, T ], R > 0,

where

ηε(t) := 2ε
∫ t

0
|(�ε(zε(s)), wε(s))2|ds + 2

∫ t

0
|γε(s)|ds.

This yields

0 ≤ hε(t) ≤ ηε(t) + 2α1|D|∞
(
R2(1−s)λ

∫ t

0
hε(s)ds +

∫ t

0

(
R1−2s |zε(r)|22

+
( 1

4λ
+ R1−2s

)
|w(r)|22

)
dr

)
− 2α3

∫ t

0
|w(s)|22ds, ∀λ > 0, R > 0.

Taking into account that, by (3.2),

|zε(t)|2 ≤ |z(t)|2 ≤ α−1
2 |w(t)|2, ∀t ∈ (0, T ), (3.23)
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we get, for λ, R > 0, suitably chosen,

0 ≤ hε(t) ≤ ηε(t) + C
∫ t

0
hε(s)ds, for t ∈ [0, T ], (3.24)

where C > 0 is independent of ε and lim
ε→0

ηε(t) = 0 for all t ∈ [0, T ].
In particular, by (3.24), it follows that

0 ≤ hε(t) ≤ ηε(t) exp(Ct), ∀ t ∈ [0, T ]. (3.25)

This implies that hε(t) → 0 as ε → 0 for every t ∈ [0, T ], hence by (3.17) the left
hand side of (3.16) converges to zero in S′. Thus, 0 = lim

ε→0
zε(t) = z(t) in S′ for a.e.

t ∈ (0, T ), which implies y1 ≡ y2. If D ≡ 0, we see by (3.13), (3.15) and (3.19) that
0 ≤ hε(t) ≤ ηε(t), ∀ t ∈ (0, T ), and so the conclusion follows without invoking that
β ′ > 0, which was only used to have (3.23). �

Linearized uniqueness. In particular, the linearized uniqueness for Eq. (1.10) follows
by Theorem 3.1. More precisely,

Theorem 3.2 Under assumptions of Theorem 3.1, let T > 0, u ∈ L∞((0, T ) × R
d)

and let y1, y2 ∈ L∞((0, T ) × R
d) with y1 − y2 ∈ L1((0, T ) × R

d) ∩ L∞(0, T ; L2)

be two distributional solutions to the equation

yt + (−�)s
(

β(u)

u
y

)
+ div(yDb(u)) = 0 on ((0, T ) × R

d),

y(0) = u0,
(3.26)

where u0 is a measure of finite variation on Rd and β(0)
0 := β ′(0). If (3.1) holds, then

y1 ≡ y2.

Proof We note first that

β(u)

u
, b(u) ∈ L∞((0, T ) × R

d),

|Db(u)|∞ ≤ C1

∣∣
∣∣
β(u)

u

∣∣
∣∣∞

≤ C2.

If z = y1 − y2, w = β(u)
u (y1 − y2), we see that

wz ≥
∣∣∣β(u)

u

∣∣∣∞ + |w|2, a.e. on (0, T ) × R
d ,

|Db(u)z| ≤ C2|w|, a.e. on (0, T ) × R
d .

Then, we have

zt + (−�)sw + div(Db(u)z) = 0,
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and so, arguing as in the proof of Theorem 3.1, we get that y1 ≡ y2. The details are
omitted. �

4 Applications toMcKean–Vlasov equations with Lévy noise

4.1 Weak existence

To prove weak existence for (1.11), we use the recent results in [25] and Theorem 2.3.

Theorem 4.1 Assume that Hypotheses (i)–(iii) from Sect. 1 hold and let u0 ∈ L1.

Assume that u0 ∈ D(A) (= L1, if β ∈ C∞(R), see Theorem 2.3) and let u
be the solution of (1.1) from Theorem 2.3. Then, there exist a stochastic basis
B := (�,F , (Ft )t≥0,P) and a d-dimensional isotropic 2s-stable process L with
Lévy measure dz

|z|d+2s as well as an (Ft )-adapted càdlàg process (Xt ) on � such that,
for

LXt (x) := d(P ◦ X−1
t )

dx
(x), t ≥ 0, (4.1)

we have

dXt = D(Xt )b(LXt (Xt ))dt +
(

β(LXt (Xt−))

LXt (Xt−)

) 1
2s

dLt ,

LX0 = u0.

(4.2)

Furthermore,
LXt = u(t, ·), t ≥ 0, (4.3)

in particular, ((t, x) �→ LXt (x)) ∈ L∞([0, T ] × R
d) for every T > 0.

Proof By the well known formula that

(−�)s f (x) = −cd,sP.V. −
∫

Rd
( f (x + z) − f (x))

dz

|z|d+2s (4.4)

with cd,s ∈ (0,∞) (see [26, Section 13]), and since, as an easy calculation shows,

∫

A

β(u(t, x))

u(t, x)

dz

|z|d+2s =
∫

Rd
1A

((
β(u(t,x))
u(t,x)

) 1
2s
z

)
dz

|z|d+2s ,

A ∈ B(Rd \ {0}),
(4.5)

we have

β(u(t, x))

u(t, x)
(−�)s f (x)

= −cd,sP.V.

∫

Rd

(

f

(

x +
(

β(u(t, x))

u(t, x)

) 1
2s

z

)

− f (x)

)
dz

|z|d+2s .

(4.6)
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As is easily checked, Hypotheses (i)–(iii) imply that condition (1.18) in [25] holds.
Furthermore, it follows by Theorem 2.3 that

μt (dx) := u(t, x)(dx), t ≥ 0,

solves the Fokker–Planck Eq. (1.10) with u0(dx) := u0(x)dx . Hence, by [25, Theo-
rem 1.5], (4.5), (4.6) and [20, Theorem 2.26, p. 157], there exists a stochastic basis B
and (Xt )t≥0 as in the assertion of the theorem, as well as a Poisson random measure
N on Rd ×[0,∞) with intensity |z|−d−2sdz dt on the stochastic basis B such that for

Lt :=
∫ t

0

∫

|z|≤1
z Ñ (dz ds) +

∫ t

0

∫

|z|>1
z N (dz ds), (4.7)

(4.1), (4.2) and (4.3) hold. Here,

Ñ (dz dt) := N (dz dt) − |z|−d−2sdz dt .

��

4.2 Weak uniqueness

Theorem 4.2 Assume that Hypotheses (j)–(jjj), resp. (j)′, (jj), (jjj) if D ≡ 0, from Sect.
3 hold and let T > 0. Let (Xt ) and (X̃t ) be two càdlàg processes on two (possibly
different) stochastic basesB, B̃ that areweak solutions to (4.2)with (possibly different)
L and L̃ defined as in (4.7). Assume that

(
(t, x) �→ LXt (x)

)
,
(
(t, x) �→ LX̃t

(x)
) ∈ L∞((0, T ) × R

d). (4.8)

Then X and X̃ have the same laws, i.e.,

P ◦ X−1 = P̃ ◦ X̃−1.

Proof Clearly, by Dynkin’s formula both

μt (dx) := LXt (x)dx and μ̃t (dx) := LX̃t
(x)dx

solve theFokker–PlanckEq. (1.10)with the same initial conditionu0(dx) := u0(x)dx ,
hence satisfy (3.1) with y1(t) := LXt and y2(t) := LX̃t

. Hence, by Theorem 3.1,

LXt = LX̃t
for all t ≥ 0,

since t �→ LXt (x)dx and t �→ LX̃t
(x)dx are both narrowly continuous and are

probabilitymeasures for all t ≥ 0, so both are in L∞(0, T ; L1∩L∞) ⊂ L∞(0, T ; L2).
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Now, consider the linear Fokker–Planck equation

vt + (−�)s
β(LXt )

LXt
v + div(Db(LXt )v) = 0,

v(0, x) = u0(x),
(4.9)

again in the weak (distributional) sense analogous to (1.10). Then, by Theorem 3.2 we
conclude that LXt , t ∈ [0, T ], is the unique solution to (4.9) in L∞(0, T ; L1 ∩ L∞).
Both P ◦ X−1 and P̃ ◦ X̃−1 also solve the martingale problem with initial condition
u0(dx) := u0(x)dx for the linear Kolmogorov operator

KLXt
:= −β(LXt )

LXt

(−�)s + b(LXt )D · ∇. (4.10)

Since the above is true for all u0 ∈ L1 ∩ L∞, and also holds when we consider (1.1)
and (4.9) with start in any s0 > 0 instead of zero, it follows by exactly the same
arguments as in the proof of Lemma 2.12 in [28] that

P ◦ X−1 = P̃ ◦ X̃−1.

��
Remark 4.3 Let for s ∈ [0,∞) and Z := {ζ ≡ ζ(x)dx | ζ ∈ L1 ∩ L∞, ζ ≥ 0,
|ζ |1 = 1}

P(s,ζ ) := P ◦ X−1(s, ζ ),

where (Xt (s, ζ ))t≥0 on a stochastic basis B denotes the solution of (1.11) with initial
condition ζ at s. Then, by Theorems 3.1, 3.2 and 4.2, exactly the sameway asCorollary
4.6 in [24], one proves that P(s,ζ ), (s, ζ ) ∈ [0,∞) × Z, form a nonlinear Markov
process in the sense of McKean (see [22]).

Remark 4.4 (4.3) in Theorem 4.1 says that our solution u of (1.1) from Theorem 2.3
is the one dimnensional time marginal law density of a càdlàg process solving (4.2)
or resp. by Remark 4.3 above that it is the law density of a nonlinear Markov process.
This realizes McKean’s vision formulated in [22] for solutions to nonlinear parabolic
PDE. So, our results show that this is also possible for nonlocal PDE of type (1.1).

Remark 4.5 In a forthcoming paper [10], we achieve similar results as in this paper in
the case where (−�)s is replaced by ψ(−�), where ψ is a Bernstein function (see
[26]).
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Appendix

1. Representation and properties of the integral kernel of ("I+ (−1)s)−1

Let s ∈ (0, 1) and let F : S′(Rd) → S′(Rd) be the Fourier transform, as defined in
(1.3).

It is well known (see, e.g., [21, Chap. II, Sect. 4c]) that for t > 0 the integral kernel
pst of the operator T

s
t := exp(−t(−�)s) is related to the kernel pt of exp(t�) by the

following subordination formula

pst (x) =
∫ ∞

0
pr (x)η

s
t (dr), x ∈ R

d , (A.1)

where (ηst )t>0 is the one-sided stable semigroup of order s ∈ (0, 1), which is defined
through its Laplace transform by

∫ ∞

0
e−λrηst (dr) = e−tλs , λ > 0. (A.2)

Furthermore, since (ε I + (−�)s)−1 is the Laplace transform of the semigroup T (s)
t ,

t ≥ 0, it follows that

gsε(x) =
∫ ∞

0
e−εt

∫ ∞

0
pr (x)η

s
t (dr)dt, x ∈ R

d , (A.3)

is the integral kernel of (ε I + (−�)s)−1. Obviously, since each ηst is a probability
measure, we have

ε

∫

Rd
gsε(x)dx = 1. (A.4)

Since

pr (x) = 1

(4πr)d/2 e− 1
4r |x |2 = (2π)−d

∫

Rd
ei〈x,y〉e−r |y|2dy, x ∈ R

d , (A.5)
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plugging the first equality in (A.5) into (A.3), we obtain

gsε(x) =
∫ ∞

0
e−εt

∫ ∞

0

1

(4πr)d/2 e− 1
4r |x |2ηst (dr)dt .

It is well known and trivial to check from the definition that for γ ∈ (0,∞) the image
measure of ηst under the map r �→ γ r is equal to ηsγ s t . Hence, by an elementary
computation we find

gsε(x) = |x |−d+2s
∫ ∞

0

∫ ∞

0
e−ε|x |2s t 1

(4πr t1/s)d/2 e
− 1

4r t1/s dt ηs1(dr), (A.6)

which, since s < d
2 and ηs1 is a probability measure, in turn implies

gsε(x) ∼ |x |−d+2s as |x | → 0

and

gsε ∈ L∞(Rd \ BR(0)), ∀R > 0. (A.7)

Plugging the second equality in (A.5) into (A.3), it follows by (A.2) that

gsε(x)= (2π)−d
∫ ∞

0
e−εt

∫

Rd
ei〈x,y〉e−t |y|2s dy dt

= (2π)−d/2
∫ ∞

0
F

(
e−t(ε+| · |2s )) (x)dt, x ∈ R

d .

(A.8)

Hence

gsε = (2π)−d/2F
(

1

ε + | · |2s
)

in S′(Rd). (A.9)

Finally, from (A.8) it follows that

gsε(x) = ε
d−2s
2s gs1

(
ε

1
2s x

)
, x ∈ R

d . (A.10)

2. The uniqueness for equation (2.43)

Lemma 1 Let d ≥ 2, s ∈ ( 1
2 , 1

)
and let y1(λ), y2(λ) ∈ L1 ∩ L∞ be two distributional

solutions to (2.43). Then, if Hypotheses (i)–(iii) hold, there exists λ̃0 ∈ (0, λ0) such
that, for all λ ∈ (0, λ̃0), we have y1(λ) = y2(λ).

Proof The proof is the same as that of Theorem 3.1 and so it will be sketched only.
So, let y1(λ), y2(λ) ∈ L1 ∩ L∞ solving (2.43) in S′ and z := y1(λ) − y2(λ). If
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�ε is defined by (3.5), z, w are given by (3.5), and zε, wε, ζε are the corresponding
convolutions with the mollifier θε, we have for λ ∈ (0, λ0)

zε + λ(−�)swε + λ div ζε = 0 in L2.

Then, if hε = (�ε(zε), zε)2, we have

hε = ελ(�ε(zε), wε)2 + λ(∇�ε(zε), ζε)2 − λ(zε, wε).

(This time hε, zε, wε, ζε are independent of t .) This yields (see (3.13))

0 ≤ hε≤ ελ(�ε(zε), w)2 − α3λ|w|2
+ λα1|D|∞|∇�ε(zε)|2|w|2 + λ|γε|2.

As in the proof of (2.21), it follows that lim
ε→0

ε|�ε(zε)|∞ = 0 and this yields

0 ≤ hε≤ ηε + λα1|D|∞
(
R2(1−s)νhε + R1−2s |zε|22 +

(
1

4ν
+ R1−2s

)
|w|22

)

−λα3|w|22, ∀ν > 0, R > 0.

Hence (see (3.24)),

0 ≤ hε ≤ ηε + Cλhε,

whereC is independent of ε and y1(λ), y2(λ), while ηε → 0, as ε → 0. For λ ∈ (0, λ̃),
λ̃ = 1

C , this implies that hε → 0, as ε → 0. Then, by (3.17) with zε replacing zε(t),

it follows that (−�)
s
2 �ε(zε) → 0 in L2 as ε → 0. This and (3.16) imply that

y1(λ) − y2(λ) = z ≡ 0, as claimed. �
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