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Abstract
The Gaussian elimination with partial pivoting (GEPP) is a classical algorithm for
solving systems of linear equations. Although in specific cases the loss of precision
in GEPP due to roundoff errors can be very significant, empirical evidence strongly
suggests that for a typical square coefficient matrix, GEPP is numerically stable. We
obtain a (partial) theoretical justification of this phenomenon by showing that, given
the random n × n standard Gaussian coefficient matrix A, the growth factor of the
Gaussian elimination with partial pivoting is at most polynomially large in n with
probability close to one. This implies that with probability close to one the number
of bits of precision sufficient to solve Ax = b to m bits of accuracy using GEPP
is m + O(log n), which improves an earlier estimate m + O(log2 n) of Sankar, and
which we conjecture to be optimal by the order of magnitude. We further provide tail
estimates of the growth factor which can be used to support the empirical observation
that GEPP is more stable than the Gaussian Elimination with no pivoting.
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1 Introduction

The Gaussian Elimination is a classical algorithm for solving systems of linear
equations [6, Chapter 3], [7, Chapter 9]. The simplest form of the algorithm—the
Gaussian Elimination with no pivoting—solves a linear system (SLE) Ax = b
with a square coefficient matrix A by performing the LU–factorization: A is rep-
resented as the product LU where L and U are lower and upper triangular matrix,
respectively, and x is obtained by a combination of forward and back substitutions
y := L−1b, x := U−1y. A possible algorithmic representation of this well known
process is given below in Algorithm 1. The procedure produces a sequence of matrices
A(0) := A, A(1), . . . , A(n−1) =: U , where for every k ≤ n − 1, the k × k top left
submatrix of A(k−1) is upper triangular. The elimination process with no pivoting fails
if at any step k = 1, . . . , n − 1, the k–th diagonal element of A(k−1) is zero.

The computation of A(k) from A(k−1) can be represented in matrix form as

A(k) := (Idn − τ (k)e�k )A(k−1),

where

τ (k) :=
n∑

j=k+1

τ
(k)
j e j ,

and where e1, . . . , en are standard unit basis vectors inRn . We also note that with this
notation

L = Idn +
n−1∑

k=1

τ (k)e�k .

The matrices Idn − τ (k)e�k , k = 1, . . . , n − 1, are called the Gauss transformations.
When considering an implementation using the floating point arithmetic, a well

known issue of the Gaussian Elimination is its numerical instability. Recall that the
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Algorithm 1 LU-factorization

Input: An n × n matrix A
Output: LU–factorization A = LU if the algorithm succeeds, or Error if the algo-

rithm fails
1: A(0) := A
2: for k = 1, . . . , n − 1 do
3: if A(k−1)

k,k �= 0
4: then
5: Initialize A(k) as zero matrix
6: for i = k + 1, . . . , n do
7: τ

(k)
i := A(k−1)

i,k /A(k−1)
k,k

8: for j = k + 1, . . . , n do
9: A(k)

i, j := A(k−1)
i, j − A(k−1)

k, j τ
(k)
i

10: end for
11: end for
12: else
13: Output Error
14: end if
15: end for
16: U := A(n−1)

17: Set L to be the unit lower triangular matrix with

Li,k := τ
(k)
i , i = k + 1, . . . , n, k = 1, . . . , n − 1.

condition number κ(A) of a square matrix A defined as the ratio of the largest and
smallest singular value of A. Even for some well-conditioned matrices (i.e having a
small condition number), solving SLE with help of the Gaussian Elimination with no
pivoting results in large relative errors of the computed solution vectors [6, Section 3.3].

Several modifications of the elimination procedure are commonly used in matrix
computations to address the instability issue [6,Chapter 3], [7,Chapter 9]. In particular,
the Gaussian Elimination with Partial Pivoting (GEPP) looks for a representation
PA = LU (called PLU–factorization), where, as before, L and U are lower and
upper triangular matrices, while P is a specially constructed permutation matrix. The
solution of a corresponding SLE can then be obtained by a combination of forward and
back substitutions, and a permutation of vector’s components (see Algorithm 2; for
better readability, we represent the formula for L in matrix rather than entry-wise form
there). The GEPP succeeds in exact arithmetic whenever A is non-singular (although
it may fail in floating point arithmetic).

A seminal result of Wilkinson [21] gives an upper bound on the backward error
during the Gaussian Elimination when the floating point computations are performed.
Define the unit roundoff

u := 1

2

(
the gap between 1 and the next floating point number

)
,
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Algorithm 2 PLU-factorization

Input: An n × n matrix A
Output: Matrices P, L,U satisfying PA = LU , or Error if the algorithm fails
1: A(0) := A
2: for k = 1, . . . , n − 1 do
3: Set yk to be an index in {k, . . . , n} corresponding to the largest (by the absolute

value) element among A(k−1)
k,k , A(k−1)

k+1,k, . . . , A
(k−1)
n,k � We can assume any tie-breaking

rule here

4: if A(k−1)
yk ,k

= 0
5: then
6: Output Error
7: else
8: Set P(k) to be the permutation matrix that swaps k–th and yk–th components:

P(k)
k,yk

= P(k)
yk ,k

:= 1, P(k)
j, j := 1, j ∈ [n] \ {yk, k}

9: Initialize A(k) as zero matrix
10: for i = k + 1, . . . , n do
11: τ

(k)
i := (P(k)A(k−1))i,k/(P(k)A(k−1))k,k

12: for j = k + 1, . . . , n do
13: A(k)

i, j := (P(k)A(k−1))i, j − (P(k)A(k−1))k, j τ
(k)
i

14: end for
15: end for � In matrix form, A(k) := (Idn − τ (k)e�k )P(k)A(k−1), where τ (k) := ∑n

j=k+1 τ
(k)
j e j

16: end if
17: end for
18: U := A(n−1)

19: P := ∏n−1
k=1 P

(k)

20: L := ∏n−1
k=1

(
Idn + (

P(n−1) . . . P(k+1)τ (k)
)
e�k

) = Idn + ∑n−1
k=1

(
P(n−1)

. . . P(k+1)τ (k)
)
e�k

so that for every real number x , its floating point representation fl(x) satisfies |x −
fl(x)| ≤ u|x | as long as no underflow or overflow exception arise [6, Section 2.7]. Let
A be an invertible n × n matrix, assume that GEPP in floating point arithmetic with
no underflow and overflow exceptions is performed on the matrix fl(A), and assume
that no error occurs during the computation (i.e no zero pivots are encountered).
Let P̂, L̂, Û be the computed matrices from the floating point GEPP of fl(A), with
Ûn,n �= 0, and let P, L,U be the PLU–factorization of A in exact arithmetic. Assume
that P̂ = P . Further, let x̂ denote the computed solution corresponding to the exact
solution of the SLE Ax = b. Then

PA = L̂Û + H , (A + E)x̂ = b (equalities hold in exact arithmetic),
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where

‖H‖ = O
(
n2 u (‖A‖ + n‖Û‖)),

and

‖E‖ = O
(
n2 u (‖A‖ + n‖Û‖))

(see, in particular, [6, Theorem 3.3.1 and Theorem 3.3.2]). Define the growth factor
gGEPP as

gGEPP(A) := maxk,i, j∈[n] | Â(k−1)
i, j |

maxi, j∈[n] |Ai, j | , (1)

where Â(1), . . . , Â(n−1) denote the computed (in the floating point arithmetic)matrices
A(1), . . . , A(n−1). Then, under the above assumptions, the backward error estimate can
be written as

‖E‖ = O
(
n4 u gGEPP(A) max

i, j∈[n] |Ai, j |
)
,

implying, under the additional assumption smin(A) ≥ 2‖E‖, the forward error bound
for the computed solution

‖x̂ − x‖2
‖x̂‖2 = O

(
n4 u κ(A) gGEPP(A)

)
, (2)

where κ(A) = ‖A‖ ‖A−1‖ is the condition number of A. Similar error bounds are
available for other versions of the Gaussian Elimination (with no pivoting, with com-
plete or with rook pivoting). We refer, in particular, to Wilkinson’s paper [21] and to
modern accounts of the backward error analysis of the different forms of the Gaussian
Elimination in [6, Chapter 3], [7, Chapter 9], as well as [8].

It can be checked that gGEPP(A) = O(2n) for any n × n invertible matrix A,
and that this bound is attained. Thus, (2) provides a satisfactory worst-case estimate
only under the assumption u 	 2−n , i.e when the unit roundoff is exponentially
small in the matrix dimension. At the same time, the accumulated empirical evidence
suggests that for a “typical” coefficient matrix the loss of precision is much smaller
than the worst-case prediction. Let us quote [6, p. 131]: “Although there is still more
to understand about [the growth factor], the consensus is that serious element growth
in Gaussian Elimination with Partial Pivoting is extremely rare. The method can be
used with confidence.”

In [18] Trefethen and Schreiber carried out an empirical study of theGaussian Elim-
inationwith Partial andwithComplete Pivoting in the settingwhen the input coefficient
matrix A is random, having i.i.d standard Gaussian entries. Their experiments showed
that with high probability the growth factor in GEPP is only polynomially large in n.
Further numerical studies by Edelman suggest that gGEPP(A) of an n × n standard
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Gaussian matrix A is of order O(n1/2+o(1))with probability close to one (see a remark
in [5, p. 182]).

An important step in improving theoretical understanding of numerical stability
of the Gaussian Elimination was made by Yeung and Chan [22]. Their result implies
(although that is not explicitly stated in the paper) that for the Gaussian Elimination
with no pivoting applied to the standard n × n Gaussian matrix, the relative error of
the solution vector can be bounded above by u nO(1) with probability close to one.
A vast generalization of their estimate was obtained by Sankar ET AL. [15] in the
context of the smoothed analysis of algorithms. Let M be any non-random n × n
matrix, and let G be an n × n matrix with i.i.d N (0, σ 2) Gaussian entries. The main
result of [15] asserts that the expected number of bits of precision sufficient to solve
(M+G)x = b tom bits of accuracy using Gaussian elimination without pivoting is at
mostm+O

(
log

(
n+ ‖M‖

σ

))
. This provides a theoretical justification for the observed

performance of the GE with no pivoting for structured dense coefficient matrices.
The no-pivoting strategy is crucial for the proofs in [22] or [15]. With partial piv-

oting, the permutations of the rows after each elimination step introduce complex
dependencies to the model which require other arguments to handle. In the PhD thesis
[14], Sankar carried out smoothed analysis of GEPP based on certain recursive matrix
formula (to be discussed in some detail in the next section). Let A = M + G, where
G is the Gaussian random matrix with i.i.d N (0, σ 2) entries, and M is a deterministic
matrix of spectral norm at most one. One of main results of [14] states that, with the
above notation,

P

{maxk,i, j∈[n] |A(k−1)
i, j |

maxi, j∈[n] |Ai, j | ≥ t

}
≤

(
O
(
nσ−1 + n3/2

))12 log n

t (log n)/21
, t > 0,

so that in the mean zero setting M = 0, with high probability
maxk,i, j∈[n] |A(k−1)

i, j |
maxi, j∈[n] |Ai, j | =

nO(log n). Note that the quantity considered in [14] is not a growth factor as was defined
above but its “exact arithmetic” counterpart. The relation betweenmatrices A(k−1) and
the corresponding computed matrices Â(k−1) is not trivial and will be discussed later;

at this point we note that assuming that the magnitudes of the ratio
maxk,i, j∈[n] |A(k−1)

i, j |
maxi, j∈[n] |Ai, j |

and the growth factor gGEPP(A) match and in view of (2), the result of Sankar implies
that with high probability GEPP results in at most O(log2 n) lost bits of precision in
the obtained solution vector. This bound is worse than the O(log n) estimate for GE
with no pivoting implied by [22].

To summarize, whereas strong results on average-case stability of GE with no
pivoting has been obtained in the literature, the Gaussian Elimination with Partial Piv-
oting lacked matching theoretical guarantees, let alone justifying the common belief
that GEPP tends to be more stable than GE with no pivoting. In this work, we make
progress on this problem. To avoid any ambiguity, we recall all the imposed assump-
tions and notation:

Theorem A There are universal constants C, C̃ > 1 and a function ñ : [1,∞) → N

with the following property. Let p ≥ 1, and let n ≥ ñ(p).
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• Assume that the floating point computationswith no underflow and overflow excep-
tions and with a unit roundoff u are being performed.

• Let A be the random n × n matrix with i.i.d standard Gaussian entries, (the real
Ginibre Ensemble). Assume that the floating point GEPP is performed on the
matrix fl(A).

Thenwith probability at least 1−u1/8 nC̃ , theGEPP forfl(A) succeeds in floating point
arithmetic and the computed permutation matrix P̂ agrees with the matrix P from the

PLU–factorization of A in exact arithmetic. Furthermore, assuming u1/8 nC̃ ≤ 1/2,

P
{
gGEPP(A) ≥ nt

∣∣ GEPP succeeds in f.p. arithmetic and P̂ = P
} ≤ 40p n−pt ,

t ≥ Cp2.

We do not attempt to compute the constant C in the above theorem explicitly and
leave the problem of finding an optimal (up to non(1) multiple) estimate of the growth
factor gGEPP(A) for future research (see Sect. 8). Further, we expect a much stronger
bound on the probability that GEPP succeeds in the floating point arithmetic and that
P̂ = P .

In view of the aforementioned work of Wilkinson and well known estimates for
the condition number of the Gaussian matrix [4, 17], the theorem implies that with
probability close to one the number of bits of precision sufficient to solve Ax = b tom
bits of accuracy using GEPP ism+O(log n). We conjecture that this bound is optimal
in the sense that in the same setting m+�(log n) bits of precision are necessary with
probability close to one.

Let us further apply Theorem A to compare numerical stability of GEPP with that
of GE with no pivoting. As we mentioned at the beginning of the introduction, the
Gaussian Elimination with no pivoting can produce arbitrarily large relative error in
the floating point arithmetic even for well-conditioned coefficient matrices. As an
illustration, consider a 2× 2 standard Gaussian matrix in floating point arithmetic,

M =
(
fl(g11) fl(g12)
fl(g21) fl(g22)

)
.

The Gaussian Elimination with no pivoting yields the computed LU–factorization of
M ,

L̂ =
(

1 0
fl
(
fl(g21)/fl(g11)

)
1

)
; Û =

(
fl(g11) fl(g12)

0 fl
(
fl(g22) − fl(g12) · fl(g21)/fl(g11)

)
)

.

It can be checked that for every ε ∈ (u, 1), with probability �(ε) all of the following
holds:

• The matrix M is well-conditioned, say, κ(M) ≤ 100;
• |fl(g11)| ≤ ε, |fl(g12)|, |fl(g21)|, |fl(g22)| ∈ [1/2, 2];
• ∣∣fl

(
fl(g22) − fl(g12) · fl(g21)/fl(g11)

) − (
fl(g22) − fl(g12) · fl(g21)/fl(g11)

)∣∣ ≥
�(u)

(
fl(g22) − fl(g12) · fl(g21)/fl(g11)

)
.
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With the above conditions, the bottom right element of the product L̂Û differs from
fl(g22) by a quantity of order �(u)

(
fl(g22) − fl(g12) · fl(g21)/fl(g11)

)
, that is, the

normwise backward error satisfies

P
{‖L̂Û − M‖ > cu ‖M‖/ε ∣∣ κ(M) ≤ 100

} ≥ cε, ε ∈ (u, 1),

for some universal constant c > 0 (one may safely take c = 1/100, say).
In sharp contrast with the above observation, in the case of GEPP the probability of

large deviations for the backward error is much smaller as Theorem A shows. Indeed,
with the notation from the theorem and in view ofWilkinson’s bound, arbitrary p ≥ 1
and assuming n is sufficiently large, we have

P
{‖L̂Û − P̂ A‖ > C ′u n4‖A‖/ε} ≤ 40pε p + u nC , ε ∈ (0, n−Cp2 ],

for a universal constant C ′ > 0. Thus, the tail of the distribution of the backward error
of GEPP decays superpolynomially. Informally, the “proportion” of well-conditioned
coefficient matrices yielding large backward errors is much smaller for GEPP than
for the Gaussian Elimination with no pivoting.

We provide a detailed outline of the argument, as well as a comparison of our
techniques with the earlier approach of Sankar, in the next section.

The following notation will be used throughout the paper:
For positive integers m ≤ n,

[n] is the set {1, 2, 3, . . . , n}
[m, n] is the set {m,m + 1, . . . , n}
For a n × m matrix M , indices i ∈ [n], j ∈ [m], and non-empty subsets I ⊂ [n]

and J ⊂ [m],
MI ,J is the submatrix of M formed by taking rows indexed over I and columns

indexed over J . When I = {i} or J = { j}, we will use lighter notations Mi,J

and MI , j in place of M{i},J and MI ,{ j}
Mi, j is the (i, j)th entry of M

s j (M) is the j th largest singular value of M
R

I The |I |-dimensional Euclidean space with components indexed over I
dist(·, ·) The Euclidean distance

2 Outline of the proof

Let A be an n × n standard Gaussian matrix, let A(0) := A, A(1), . . . , A(n−1) be
the sequence of matrices generated by GEPP process, and let P(1), . . . , P(n−1) be
the corresponding permutation matrices (see Algorithm 2). It turns out that in our
probabilisticmodel, estimating the growth factor gGEPP(A) can be reduced to bounding
the exact arithmetic counterpart of the quantity,

maxk,i, j∈[n] |A(k−1)
i, j |

maxi, j∈[n] |Ai, j | .
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Our main focus is to derive Proposition 6.13, which is the exact arithmetic counterpart
of the main theorem, and then reduce the setting of floating-point arithmetic to exact
arithmetic. We provide a rigorous account of the reduction procedure in Sect. 7, and
prefer to avoid discussing this technical matter here. We only note that comparison
of the matrices A(k−1) and Â(k−1), 1 ≤ k ≤ n − 1, is based on a well established
inductive argument somewhat similar to the one used to prove Wilkinson’s backward
error bound. From now on and till Sect. 7 we work in exact arithmetic unless explicitly
stated otherwise.

Define “unpermuted” matrices M(k) obtained at the kth elimination step, i.e
M(0) := A and

M(k) = (
P(1))−1(

P(2))−1 · · · (P(k))−1
A(k), 1 ≤ k ≤ n − 1. (3)

Let I0 := ∅, and for each 1 ≤ k ≤ n − 1 let Ik = Ik(A) be the (random) subset of
[n] of row indices of A corresponding to the pivot elements used in the first k steps
of the “permutation-free” elimination process. Notice that within the kth column of
M(k), the components except those in Ik−1 and the kth pivot element, are all zeros.
Therefore, the set Ik can be defined as

Ik := Ik−1 ∪
{
i ∈ [n]\Ik−1 : M(k)

ik �= 0
}
, 1 ≤ k ≤ n − 1,

where
{
i ∈ [n]\Ik−1 : M(k)

ik �= 0
}
is a singleton. We will further denote by

ik = ik(A), 1 ≤ k ≤ n − 1, the elements in the singletons Ik\Ik−1, so that
Ik = {i1, i2, . . . , ik}, 1 ≤ k ≤ n − 1.

For 1 ≤ k ≤ n − 1 and t ∈ [k], the first t − 1 components of rowit (M(k)) are

zeros, and M(k)
[n]\Ik ,[k] is the zero matrix; more specifically, for each 1 ≤ k ≤ n − 1,

and j ∈ [n]\Ik ,

row j
(M(k)

[n],[k]
) = 0 and

row j
(M(k)

[n],[k+1,n]
) = row j

(
A[n],[k+1,n]

)− row j (A[n],[k])
(
AIk ,[k]

)−1
AIk ,[k+1,n]

(4)

(see, in particular, [15, Formula 4.1] for GE with no pivoting, which can be adapted to
our setting). Thus, for 0 ≤ k < n−1, the index ik+1 is defined as the one corresponding
to the largest number among

A j,k+1 − A j,[k]
(
AIk ,[k]

)−1
AIk ,k+1, j ∈ [n]\Ik .

Due to strong concentration of Gaussian variables, the operator norms of matrices
AI ,J , I , J ⊂ [n], can be uniformly bounded from above by a polynomial in n. Thus,
the principal difficulty in obtaining satisfactory upper bounds on the growth factor
gGEPP(A) is in estimating the norm of vectors row j (A[n],[k])

(
AIk ,[k]

)−1, j ∈ [n]\Ik .
The sets Ik are random and depend on A in a rather complicated way. At the same
time, the trivial upper bound
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max
j∈[n]\Ik

∥∥row j (A[n],[k])
(
AIk ,[k]

)−1∥∥
2 ≤ max

J⊂[n], |J |=k; j∈[n]\J
∥∥row j (A[n],[k])

(
AJ ,[k]

)−1∥∥
2

which completely eliminates the randomness of Ik from consideration, is vastly sub-
optimal.1

The first part of this section is devoted to the argument of Sankar from [14] which
yields a bound gGEPP(A) = O(nC log n) with high probability using certain recursive
matrix formula. In the second part, we discuss our approach.

2.1 Sankar’s argument

Consider a block matrix

[
B
X

]
=

⎡

⎣
Bu
B�

X

⎤

⎦ =
⎡

⎣
Bu� Bur
B�� B�r
X� Xr

⎤

⎦ ,

where Bu� and B�r are square non-singular matrices and X is a row vector. Then,
denoting B ′ := B�r − B��B

−1
u� Bur and X ′ := Xr − X�B

−1
u� Bur,

[−XB−1 1
] = [−X ′(B ′)−1 1

] ·
[
−

[
B�

X

]
· B†

u Id

]
, (5)

where B†
u is the right pseudoinverse of Bu (see [14, Chapter 3]).

The above formula is applied in [14] in a recursive manner. Assume for simplicity
of exposition that we are interested in bounding the Euclidean norm of the vector
A j,[n/2](AIn/2,[n/2])−1 for some j ∈ [n]\In/2 (recall that, in view of (4) and standard
concentration estimates for the spectral norm of Gaussian matrices, this would imme-
diately imply an estimate on the components ofM(n/2)

j,[n/2+1,n]). Fix for a moment any

0 ≤ v < m < n/2, and let B := M(v)
In/2\Iv,[v+1,n/2] and X := M(v)

j,[v+1,n/2]. We write

[
B
X

]
=

⎡

⎣
Bu
B�

X

⎤

⎦ =
⎡

⎣
Bu� Bur
B�� B�r
X� Xr

⎤

⎦ =
⎡

⎢⎣
M(v)

Im\Iv,[v+1,m] M(v)
Im\Iv,[m+1,n/2]

M(v)
In/2\Im ,[v+1,m] M(v)

In/2\Im ,[m+1,n/2]
M(v)

j,[v+1,m] M(v)
j,[m+1,n/2]

⎤

⎥⎦ .

1 It can be checked, for example, that with a constant probability

max
J⊂[n], |J |=n/2; j∈[n]\J

∥∥row j (A[n],[n/2])
(
AJ ,[n/2]

)−1∥∥
2

is greater than any predefined constant power of n. We expect that a much stronger lower bound can be
established.
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It can be checked that with the above notation, B ′ = M(m)
In/2\Im ,[m+1,n/2] and X ′ =

M(m)
j,[m+1,n/2] [14]. Relation (5) then implies

∥∥∥
[
M(v)

j,[v+1,n/2](M(v)
In/2\Iv,[v+1,n/2])−1 1

]∥∥∥

≤
∥∥∥
[
M(m)

j,[m+1,n/2](M(m)
In/2\Im ,[m+1,n/2])−1 1

]∥∥∥ ·
·
∥∥∥
[
M(v)

(In/2\Im )∪{ j},[v+1,n/2]
(M(v)

Im\Iv,[v+1,n/2]
)† Idn/2−m+1

]∥∥∥ .

Now, assume that we have constructed a sequence of indices 0 = k0 < k1 < k2 <

· · · ks < n/2, with ks = n/2− 1 and k1 ≥ n/4. Applying the last relation recursively
s times, we obtain

∥∥[A j,[n/2](AIn/2,[n/2])−1 1
]∥∥

≤
∥∥∥
[
M(n/2−1)

j,n/2 (M(n/2−1)
in/2,n/2 )−1 1

]∥∥∥ ·

·
s−1∏

�=0

∥∥∥
[
M(k�)

(In/2\Ik�+1 )∪{ j},[k�+1,n/2]
(M(k�)

Ik�+1\Ik� ,[k�+1,n/2]
)† Idn/2−k�+1+1

]∥∥∥ , (6)

where by the definition of the partial pivoting,
∣∣M(n/2−1)

j,n/2 (M(n/2−1)
in/2,n/2 )−1

∣∣ ≤ 1. There-
fore, the problem reduces to estimating the spectral norms of matrices

M(k�)
(In/2\Ik�+1 )∪{ j},[k�+1,n/2]

(M(k�)
Ik�+1\Ik� ,[k�+1,n/2]

)†
, 0 ≤ � < s. (7)

Sankar shows that as long as n/2 − k� (� = s, s − 1, . . . , 0) grow as a geometric
sequence (in which case s should be of order logarithmic in n), the norm of eachmatrix
can be bounded by a constant power of n with a large probability. We only sketch this
part of the argument. Fix any 0 ≤ � < s, and define Z := (AIk� ,[k�+1,n/2])†AIk� ,[k�],
so that Z Z† = Id, and

M(k�)
(In/2\Ik�+1 )∪{ j},[k�+1,n/2]

(M(k�)
Ik�+1\Ik� ,[k�+1,n/2]

)†

= M(k�)
(In/2\Ik�+1 )∪{ j},[k�+1,n/2] Z

(M(k�)
Ik�+1\Ik� ,[k�+1,n/2]Z

)†
,

where, in view of (4),

M(k�)
(In/2\Ik�+1 )∪{ j},[k�+1,n/2] Z

= A(In/2\Ik�+1 )∪{ j},[k�+1,n/2] (AIk� ,[k�+1,n/2])† AIk� ,[k�] − A(In/2\Ik�+1 )∪{ j},[k�] Z†Z .

Since Z†Z is a projection and has unit norm, an upper bound on
∥∥(AIk� ,[k�+1,n/2])†

∥∥

would provide a bound on
∥∥M(k�)

(In/2\Ik�+1 )∪{ j},[k�+1,n/2]Z
∥∥. The key observation here
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is that AIk� ,[k�+1,n/2] is equidistributed with the standard k� × (n/2 − k�) Gaussian
matrix, so that a satisfactory estimate on the norm of the pseudoinverse follows.

Bounding the operator norm of
(M(k�)

Ik�+1\Ik� ,[k�+1,n/2]Z
)† is more involved. Note

that, equivalently, it is sufficient to provide a good lower bound on the smallest singular
value of the matrix

(M(k�)
Ik�+1\Ik� ,[k�+1,n/2]Z

)�
.

We have

smin
((M(k�)

Ik�+1\Ik� ,[k�+1,n/2]Z
)�) ≥ min

J⊂[n]\Ik� ,|J |=k�+1−k�

smin
(
(M(k�)

J ,[k�+1,n/2]Z)�
)
,

(8)

where, again in view of (4), for each admissible J ,

(M(k�)
J ,[k�+1,n/2]Z)� = Z�(AJ ,[k�+1,n/2])� − Z†Z(AJ ,[k�])�, (9)

and where Z†Z is a k� × k� orthogonal projection matrix of rank n/2− k�. Although
(AJ ,[k�])� is dependent on Z , it can be shown that Z†Z(AJ ,[k�])� behaves “almost”
like Z†Z applied to an independent tall rectangular k� × (k�+1 − k�) Gaussian matrix
(see [14, Section 3.7]). This allows to obtain probabilistic estimates on the smallest
singular value of the matrix in (9) which, under the assumption that the sequence
n/2− k� (� = s, s − 1, . . . , 0) does not grow too fast, turn out to be strong enough to
survive the union bound in (8).

To summarize, the above argument gives a polynomial in n estimate for matrices in
(7),where s is logarithmic in n. Thus, (6) implies a bound ‖M(n/2)

j,[n/2+1,n]‖2 = nO(log n),

j ∈ [n]\In/2, with high probability. An extension of this argument to all M(k), 1 ≤
k ≤ n− 1, yields gGEPP(A) = nO(log n). As Sankar notes in [14], a different choice of
s and of the sequence k0, k1, . . . , ks , and a refined analysis for the operator norms of
matrices (7) may improve the upper estimate on the growth factor, but cannot achieve
a polynomial bound.

2.2 High-level structure of the proof of themain theorem

Returning to relation (4), a polynomial bound on the growth factor gGEPP(A) will
follow as long as the norm (AIr ,[r ])−1 is bounded by nO(1) for every 1 ≤ r ≤ n−1with
high probability. We obtain this estimate via analysis of the entire singular spectrum
of AIr ,[r ] rather than attempting to directly bound the smallest singular value of the
matrix.

The strategy of the proof can be itemized as follows:
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Average-case analysis of the Gaussian elimination…

• Obtaining estimates on the singular values of partially random block matrices.
More specifically, we consider matrices of the form

B =
[
F M
W Q

]
, (10)

where F is a fixed square matrix with prescribed singular spectrum, and M,W , Q
are independent Gaussian random matrices of compatible dimensions. Our goal
here is to derive lower bounds on the intermediate singular values of B in terms
of singular values of F .

• Applying the estimates on the intermediate singular values of partially random
blockmatrices in a recursivemanner together with a union bound argument, derive
lower bounds on the “smallish” singular values of matrices AIr ,[r ]. Our argument
at this step only allows to bound first to (r −C)th singular value of the matrix for
some large constant C .

• Use the bound on sr−C (AIr ,[r ]) together with the information on the Euclidean
distances from rowi� (AIr ,[r ]) to span {rowi j (AIr ,[r ]), 1 ≤ j < �}, � = 1, . . . , r
that can be extracted from the partial pivoting rule, to obtain polynomial in n lower
bounds on smin(AIr ,[r ]).

Below, we discuss each component in more detail.
Singular spectrum of partially random block matrices The partially random block

matrices are treated in Sect. 3 of the paper. Consider a block matrix B of type (10),
where F is a fixed r×r matrix, M is r×x ,W is x×r , Q is x×x (with x ≤ r ), and the
entries of M ,W , Q are mutually independent standard Gaussian variables. In view of
rotational invariance of the Gaussian distribution, we can “replace” F with a diagonal
matrix D with the same singular spectrum, and with its singular values on the main
diagonal arranged in a non-decreasing order. We fix a small positive parameter ε̃ > 0
and an integer i ≥ 1 such that ε̃(1 + ε̃)−i r ≥ 2. Our goal at this point is to estimate
from below the singular value

s�(1−(1+ε̃)−i−1)(r+x)�(B).

Having chosen a certain small threshold τ > 0 (which is defined as a function of
i, r , ε̃, the singular spectrum of D, and some other parameters which we are not
discussing here), our estimation strategy splits into two cases depending on whether
the number �′i+1 of the singular values of D less than τ is “small” or “large”. In the
former case, the matrix D has a well controlled singular spectrum, and our goal is to
show that attaching to it x rows and columns of standard Gaussians cannot deteriorate
the singular values estimates. In the latter case, we show that by adding the Gaussian
rows and columns we actually improve the control of the singular values, using that
the top left �′i+1 × �′i+1 corner of B is essentially a zero matrix. The main result of
Sect. 3—Proposition 3.3—provides a probability estimate on the event that the ratio

s�(1−(1+ε̃)−i−1)(r+x)�(B)

τ
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is small assuming certain additional relations between the parameters x, r , ε̃.
A recursive argument to bound sr−C (AIr ,[r ]) The treatment of the partially non-

random block matrices allows us to solve the principal problem with estimating the
singular spectrum of AIr ,[r ], namely, the complicated dependencies between A and the
index set Ir . As we mentioned before, simply bounding the kth smallest singular value
of AIr ,[r ] by min

I⊂[n], |I |=r
sr−k(AIr ,[r ]) produces an unsatisfactory estimate for small k.

On the other hand, in view of strong concentration of intermediate singular values,
already for k � √

n polylog(n) (see Proposition 3.2) this straightforward union bound
argument doeswork. In order to boost the union bound argument to smaller k, we avoid
taking the union bound over all I ⊂ [n], |I | = r and instead condition on a realization
of Ir ′ for certain r ′ < r , so that the union bound over all Ir ′ ⊂ I ⊂ [n] of cardinality r
runs over only

(n−r ′
r−r ′

)
admissible subsets rather than

(n
r

)
subsets. The two main issues

with this approach are

• first, we must have estimates for the singular spectrum of AIr ′ ,[r ′] in order to apply
the results of Sect. 3 to obtain bounds for the singular values of AIr ,[r ], and,

• second, conditioning on a realization of Ir ′ inevitably destroys Gaussianity and
mutual independence of the entries of A[n]\Ir ′ ,[r ′].

The first issue is resolved through the inductive argument, when estimates on the
spectrum of AIr ′ ,[r ′] obtained at the last induction step are used to control the singular
spectrum of AIr ,[r ] at the next step. Of course, in this argument we must make sure
that the total error accumulated throughout the induction process stays bounded by a
constant power of n.

The second issue with probabilistic dependencies is resolved by observing that
the partial pivoting “cuts” a not too large set of admissible values for the elements
in A[n]\Ir ′ ,[r ′] i.e we can continue treating them as independent Gaussians up to a
manageable loss in the resulting probability estimate after conditioning on a certain
event of not-too-small probability. This problem is formally treated by studying the
random polytopes Kr ′(A) ⊂ R

n defined in Sect. 4 as

Kr ′(A) := {
x ∈ R

n : ∀s ∈ [r ′], |〈vs(A), x〉| ≤ |〈vs(A), (Ais ,[n])�〉|
}
,

where

vs(A) :=
⎛

⎜⎝((AIs−1,[s−1])−1AIs−1,s)
�, 1, 0, . . . , 0︸ ︷︷ ︸

n−s components

⎞

⎟⎠

�

, s = 1, 2, . . . , r ′.

By the nature of the partial pivoting process, any row of the submatrix A[n]\I ′r ,[n]
necessarily lies within the polytope Kr ′(A), and its distribution is a restriction of the
standard Gaussian measure in R

n to Kr ′(A) (see Sect. 4 for a rigorous description).
After showing that the Gaussian measure of Kr ′(A) is typically “not very small”, we
can work with the rows of A[n]\I ′r ,[n] as if they were standard Gaussian vectors, up to
conditioning on an event of a not very small probability. We remark here that Sankar’s
work [14] uses random polytopes related to our construction.
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Average-case analysis of the Gaussian elimination…

Estimating the smallest singular value of AIr ,[r ] To simplify the discussion, we
will only describe the idea of showing that with a “sufficiently high” probabil-
ity,

(
smin(AIr ,[r ])

)−1 = nO(1), without considering computation of the moments of
(
smin(AIr ,[r ])

)−1. As a corollary of the lower bound on sr ′−C (AIr ′ ,[r ′]) obtained via the
recursive argument, we get that with high probability, the inverse of the smallest singu-
lar value of the rectangularmatrix AIr ′ ,[r ′+2C̃] satisfies

(
smin(AIr ′ ,[r ′+2C̃])

)−1 = nO(1),

r ′ ∈ [C̃+1, n−2C̃], for some integer constant C̃ > 0 (see Corollary 5.3). This corol-
lary is a quantitative version of a rather general observation that, by adding at least
�+ 1 independent Gaussian rows to a fixed square matrix with at most � zero singular
values, we get a rectangular matrix with a strictly positive smin almost surely.

Once a satisfactory bound on smin(AIr ′ ,[r ′+2C̃]), r ′ ∈ [C̃ + 1, n − 2C̃], is obtained,
we rely on the simple deterministic relation between the smallest singular value and
distances to rowspaces: for every m × k matrix Q,

min
i∈[m] dist(Hi (Q), Qi,[m]) ≥ smin(Q

�) ≥ m−1/2 min
i∈[m] dist(Hi (Q), Qi,[m])

where Hi (Q) denotes the subspace spanned by row vectors Q j,[m] for j �= i . In our
context, a strong probabilistic lower bound on dist(span {Ait ,[r ], 1 ≤ t < s}, Ais ,[r ])
(s ≤ r ) guaranteed by the partial pivoting strategy, implies that with high probability
for every t ∈ [r − 2C̃],

dist
(
span {Ais ,[r ], s ∈ [r − 2C̃]\{t}}, Ait ,[r ]

)

≤ nO(1)dist
(
span {Ais ,[r ], s ∈ [r ]\{t}}, Ait ,[r ]

)

(see proof of Proposition 6.9), and via the above deterministic relation to the singular
values,

smin(AIr−2C̃ ,[r ]) ≤ nO(1)dist
(
span {Ais ,[r ], s ∈ [r ]\{t}}, Ait ,[r ]

)
.

This, combined with some auxiliary arguments, implies the lower bound on
smin(AIr ,[r ]).

3 Intermediate singular values of partially random blockmatrices

We start with a preparatory material to deal with norms and intermediate singular
values of random matrices. We first consider a standard deviation estimates for the
Hilbert–Schmidt norm of a Gaussian random matrix; see, for example, [1]:

Theorem 3.1 Let G be an u × t random matrix with i.i.d standard Gaussian entries.
Then

P
{‖G‖HS ≥

√
ut + s

} ≤ 2 exp(−cs2), s > 0,

where c > 0 is a universal constant.
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The next proposition was proved in the special case of square random Gaussian
matrices by Szarek [17]. In a much more general setting, similar results were obtained
earlier by Nguyen [12]; his argument was later reused in [9] to get sharp small ball
probability estimates for the condition number of a random square matrix.

Proposition 3.2 (Singular values of random matrices with continuous distributions)
Let M be an u× t (t ≥ u) random matrix with i.i.d. standard Gaussian entries. Then

P

{
su−i (M) ≤ c′i s√

u

}
≤ ui/2 si

2/32, 4 ≤ i ≤ u − 1, s ∈ (0, 1],

where c′ ∈ (0, 1] is a universal constant.
We provide a proof of the above proposition in the “Appendix”.
This section dealswith a large number of parameters satisfyingmultiple constraints;

we group those constraints into blocks for better readability. We have four “section-
wide” scalar parameters:

r ∈ N, ε̃ ∈ (0, 1], i ∈ N, such that ε̃(1+ ε̃)−i r ≥ 2; x ∈ N. (11)

The objective of the section is to study singular values of a block matrix of the form

B =
[
F M
W Q

]
,

where F is a fixed r×r matrix with prescribed singular values, M is r× x ,W is x×r ,
Q is x × x , and the entries of M ,W , Q are mutually independent standard Gaussians.
Let

	 j := �(1− (1+ ε̃)− j )r�, j = 0, 1, . . . , i .

Observe that the relation ε̃(1+ ε̃)−i r ≥ 2 from (11) yields, for j ∈ [0, i − 1],

	 j+1 − 	 j >(1− (1+ ε̃)− j−1)r − 1− (1− (1+ ε̃)− j )r = ε̃(1+ ε̃)− j−1r − 1 > 0,
(12)

which in turn implies that the sequence (	 j )
i
j=0 is strictly increasing.

Next, let g(·) : (r j ) j∈[i] → (0,∞) be a strictly positive growth function satisfying

g(	 j ) ≥ 16 g(	 j+1), j = 1, 2, . . . , i − 1;
g(	i ) ≤ √

x .
(13)

Now, we assume the matrix F satisfies

s	 j (F) ≥ g
(
	 j

)
, j ∈ [i]. (14)
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In this section, we deal with an arbitrary growth function satisfying the conditions; a
specific choice of g(·) will be made later in Sect. 5.

Our objective in this section is to derive the following proposition.

Proposition 3.3 There are universal constants c ∈ (0, 1], C̃ ≥ 1 with the following
property. Let

B =
[
F M
W Q

]
,

where F is a fixed r × r matrix, M is r × x, W is x × r , Q is x × x, and the entries
of M, W, Q are mutually independent standard Gaussians. Assume that parameters
ε̃ ∈ (0, 1], h ∈ (0, 1], r , x, and i ∈ N satisfy

r − 	i ≤ x ≤ r , ε̃x ≥ 4, h ≤ 2−11(c′)2ε̃,
3(1+ ε̃)−i−1r − (1+ ε̃)−i r ≥ x + 1+ 11ε̃x, ε̃(1+ ε̃)−i r ≥ 2,

where c′ ∈ (0, 1] is the constant from Proposition 3.2. Further, assume (14) for the
singular values of F, for a positive function g(·) satisfying (13). Then with probability
at least

1− 2x ε̃x/2 h(ε̃x)2/64 − 4 exp
(− cx2 ε̃/h2

)− C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)

we have

s�(1−(1+ε̃)−i−1)(r+x)�(B) ≥ c′ε̃h5 g
(
	i
)

32
.

Note that if F = UDV is a singular values decomposition of F then, in view of
rotational invariance of the Gaussian distribution,

B =
[
UDV M
W Q

]
=

[
U 0
0 Idx

] [
D U−1M

WV−1 Q

] [
V 0
0 Idx

]
,

where U−1M , WV−1, and Q have mutually independent standard Gaussian entries,
and where the singular spectrum of B coincides with that of

B ′ :=
[

D U−1M
WV−1 Q

]
.

We can assume without loss of generality that the diagonal elements (the singular
values) of D are arranged in the non-decreasing order when moving from top left to
bottom right corner. We will work with the singular spectrum of B ′ as it will allow to
somewhat simplify the computations.

The specific goal is to estimate from below the singular value

s�(1−(1+ε̃)−i−1)(r+x)�(B) = s�(1−(1+ε̃)−i−1)(r+x)�(B ′)
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in terms of g(	i ). To have a better control on probability estimates, we introduce one
more scalar parameter h ∈ (0, 1] which will allow us to balance the precision of the
estimate and the probability with which the estimate holds (the smaller h is, the less
precise the estimate is and the stronger are probability bounds). We set

τ := h4 · g(	i ), (15)

and let

�′i+1 = the number of singular values of F strictly less than τ ; �′′i+1 := r − 	i − �′i+1.

(16)

Let us remark that �′i+1 ≤ r−	i since, by the intermediate singular values assumption
(14) on F , we have s	i (F) ≥ τ .

Set

I := [r ]\[�′i+1]. (17)

Our argument to control s�(1−(1+ε̃)−i−1)(r+x)�(B) splits into two parts depending on
whether �′i+1 is “small” or “large”. In the former case (see Lemma 3.4), the matrix F
(or D) has a well controlled singular spectrum, and our goal is to show that attaching
to it x rows and columns of standard Gaussians cannot deteriorate the singular values
estimates. In this setting, we completely ignore the first �′i+1 rows of B ′, and work
with the matrix B ′

I×[r+x]. In the latter case (see Lemma 3.5), we show that by adding
the Gaussian rows and columns we actually improve the control of the singular values.
The fact that the top right �′i+1 × x corner of B ′ is a standard Gaussian matrix, plays
a crucial role in this setting. The proof of Proposition 3.3 follows from Lemmas 3.4
and 3.5.

The high-level proof strategy for both Lemmas 3.4 and 3.5 is similar. We construct
a (random) subspace H of Rr+x of dimension at least (1 − (1 + ε̃)−i−1)(r + x),
designed in such a way that, under appropriate assumptions on the singular spectra of
certain submatrices of U−1M , WV−1, and Q, ‖B ′v‖2 is large for every unit vector
v ∈ H . By the minimax formula for singular values,

s�(1−(1+ε̃)−i−1)(r+x)�(B ′) ≥ inf
v∈H , ‖v‖2=1

‖B ′v‖2.

The “appropriate assumptions” on the singular spectra are encapsulated in a good
event Egood which, as we show, has a very large probability. In what follows, it will
be convenient to use notation

� j := 	 j − 	 j−1, j ∈ [i], �i+1 := r − 	i . (18)

We remark that for every j = 1, 2, . . . , i , by the same derivation as shown in (12),

� j ∈ [ε̃(1+ ε̃)− j r − 1, ε̃(1+ ε̃)− j r + 1]. (19)
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Lemma 3.4 There exist universal constants c ∈ (0, 1], C̃ ≥ 1 with the following
property. Assume that i ∈ N, ε̃ ∈ (0, 1], h ∈ (0, 1], r , and x satisfy the assumptions
of Proposition 3.3, and assume additionally that

�′i+1 ≤ (1+ ε̃)−i−1(r + x) − 3ε̃x,

where �′i+1 is defined in (16). Denote

β := c′ε̃hτ

32
,

where c′ ∈ (0, 1] is the constant from Proposition 3.2 and where τ is defined by (15).
Then with probability at least

1− 2x ε̃x/2 h(ε̃x)2/64 − 4 exp
(− cx2 ε̃/h2

)− C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)

we have

s�(1−(1+ε̃)−i−1)(r+x)�(B) ≥ β.

Proof Construction of subspace H Denote by X1, X2, . . . , Xr+x ∈ R
r+x an orthonor-

mal basis of the right singular vectors of the matrix B ′
I×[r+x], measurable w.r.t the

σ–field σ(B ′
I×[r+x]), where X j corresponds to s j (B ′

I×[r+x]), 1 ≤ j ≤ r + x , and
where I is defined by (17). Note that by interlacing properties of the singular values
(see, for example [3]), we have

s j (B
′
I×[r+x]) ≥ s j (D{�′i+1+1,...,r}×{�′i+1+1,...,r}), 1 ≤ j ≤ r − �′i+1;

in particular, sr−�′i+1
(B ′

I×[r+x]) ≥ τ everywhere on the probability space.

Observe that, conditioned on σ(B ′[r ]×[r+x]), the x × �′′i+1 matrix

Y (i+1) := [
WV−1 Q

] [
Xr+1−�i+1 . . . Xr−�′i+1

]
= [

WV−1 Q
] [

X	i+1 . . . Xr−�′i+1

]

has mutually independent standard Gaussian entries. Denote by e(i+1)
q , 1 ≤ q ≤

min(�ε̃x�, �′′i+1), a random orthonormal system of right singular vectors of Y (i+1)

corresponding to min(�ε̃x�, �′′i+1) largest singular values of Y
(i+1), and let E (i+1) ⊂

R
�′′i+1 be the subspace

span
{
e(i+1)
q , 1 ≤ q ≤ min(�ε̃x�, �′′i+1)

}⊥
.

Similarly, for every 1 ≤ j ≤ i and for � j given by (18), we define the x×� j matrix

Y ( j) := [
WV−1 Q

] [
Xr+1−∑i+1

d= j �d
. . . Xr−∑i+1

d= j+1 �d

]
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= [
WV−1 Q

] [
X	 j−1+1 . . . X	 j

]

(again, conditioned on σ(B ′[r ]×[r+x]), Y ( j) has mutually independent standard normal

entries). Denote by e( j)
q , 1 ≤ q ≤ min(�2 j−i−1ε̃x�, � j ), a randomorthonormal system

of right singular vectors ofY ( j) corresponding tomin(�2 j−i−1ε̃x�, � j ) largest singular
values of Y ( j), and let E ( j) ⊂ R

� j be the subspace

span
{
e( j)
q , 1 ≤ q ≤ min(�2 j−i−1ε̃x�, � j )

}⊥
.

Consider the random x × (�′i+1 + x) matrix

Ŷ := [
WV−1 Q

] [
Xr+1−�′i+1

. . . Xr+x

]
.

Let ê1, ê2, . . . , êx−�ε̃x� be a random orthonormal set of right singular vectors of Ŷ

corresponding to x − �ε̃x� largest singular values of Ŷ , and let Ẽ ⊂ R
�′i+1+x be the

random subspace of dimension x − �ε̃x� defined as

Ẽ := span {ê1, ê2, . . . , êx−�ε̃x�}.

Now, we construct the (random) subspace H ⊂ R
r+x as

H := span
{ [

Xr+1−�′i+1
. . . Xr+x

]
(Ẽ),

[
Xr+1−�i+1 . . . Xr−�′i+1

]
(E (i+1));

[
X	 j−1+1 . . . X	 j

]
(E ( j)), 1 ≤ j ≤ i

}
.

Let us check that the constructed subspace satisfies the required lower bound on
dimension, that is, dim H ≥ (1− (1+ ε̃)−i−1)(r + x). In view of the assumptions on
�′i+1, we have

dim H ≥ x − �ε̃x� + �′′i+1 − �ε̃x� +
i∑

j=1

(
� j − �2 j−i−1ε̃x�)

≥ r + x − �′i+1 − 3ε̃x

≥ r + x − (1+ ε̃)−i−1(r + x).

Defining a good event Denote by Ẽ the event

{∥∥ [
WV−1 Q

]
v
∥∥
2 ≥

c′�ε̃x� h√
x

for every unit vector v ∈
( [

Xr+1−�′i+1
. . . Xr+x

]
(Ẽ)

)}
,
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where the constant c′ is taken from Proposition 3.2. According to our definition of the
subspace Ẽ , for every unit vector v as above we have

∥∥ [
WV−1 Q

]
v
∥∥
2 ≥ sx−�ε̃x�(Ŷ ),

where the matrix Ŷ is x × (x + �′i+1) standard Gaussian, in view of the independence
of

[
WV−1 Q

]
from the σ–field σ(B ′[r ]×[r+x]).

Hence, by Proposition 3.2 applied to Ŷ , we get

P(Ẽ) ≥ 1− x�ε̃x�/2 h�ε̃x�2/32.

Further, let

E (i+1) := {
s�ε̃x�+1(Y

(i+1)) ≤ √
x/h

}
,

and for every 1 ≤ j ≤ i , let

E ( j) := {
s�2−i−1+ j ε̃x�+1(Y

( j)) ≤ 2i+1− j
√

� j/h
}
.

Since, by our assumptions,
√

ε̃x/h ≥ 2
√

�′′i+1, we have, according to Proposition 3.1,

P
((E (i+1))c) ≤ P

{‖Y (i+1)‖HS ≥ √
x · √ε̃x/h

} ≤ 2 exp
(− cx2 ε̃/h2

)
,

for a universal constant c > 0. Similarly, since for every j = 1, 2, . . . , i ,√
2i+1− j ε̃x/h ≥ √

ε̃x/h ≥ 2
√
x , we have

P
((E ( j))c) ≤ P

{‖Y ( j)‖HS ≥ 2i+1− j
√

� j ·
√
2−i−1+ j ε̃x/h

}

≤ 2 exp
(− c 2i+1− j� j x ε̃/h2

)
.

We define

Egood := Ẽ ∩
i+1⋂

j=1

E ( j).

In view of the above,

P
(Egood

) ≥ 1− 2x�ε̃x�/2 h�ε̃x�2/32 − 4 exp
(− cx2 ε̃/h2

)

− 2
i∑

j=1

exp
(− c 2i+1− j� j x ε̃/h2

)

≥ 1− 2x ε̃x/2 h(ε̃x)2/64 − 4 exp
(− cx2 ε̃/h2

)

− C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)
,
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for a universal constant C̃ > 0.
Checking that H satisfies the required property conditioned on Egood Assuming

the conditioning, pick any unit vector v ∈ H . We represent v in terms of the basis
X1, . . . , Xr+x as

v =
r+x∑

q=1

aq Xq ,

for some coefficients a1, . . . , ar+x with
∑r+x

q=1 a
2
q = 1. Note that

‖B ′
I×[r+x]v‖22 =

r+x∑

q=1

a2q sq(B
′
I×[r+x])2.

If the last expression is greater than β2 then we are done. Otherwise, we have

r+x∑

q=1

a2q sq(B
′
I×[r+x])2 ≤ β2,

and hence, in particular,

r−�′i+1∑

q=r+1−�i+1

a2q ≤ β2

τ 2
≤ h2

162
, (20)

and for every j = 1, 2, . . . , i ,

	 j∑

q=	 j−1+1

a2q ≤ β2

g
(
	 j

)2 ≤ h2

162
· 16 j−i . (21)

Observe that the last conditions yield

r+x∑

q=r+1−�′i+1

a2q ≥ 1

4
.

In view of conditioning on Ẽ , this immediately implies

∥∥∥
[
W Q

] r+x∑

q=r+1−�′i+1

aq Xq

∥∥∥
2
≥ c′�ε̃x�

4
√
x

.
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Further, in view of conditioning on events E (1), . . . , E (i+1),

∥∥∥
[
W Q

] r−�′i+1∑

q=r+1−�i+1

aq Xq

∥∥∥
2
≤ β

τ
·
√
x

h
,

and for every j = 1, 2, . . . , i ,

∥∥∥∥
[
W Q

] 	 j∑

q=	 j−1+1

aq Xq

∥∥∥∥
2
≤ β

g
(
	 j

) · 2
i+1− j

√
� j

h
.

Thus, by the triangle inequality,

∥∥ [
W Q

]
v
∥∥
2 ≥

c′�ε̃x�
4
√
x

− β

τ
·
√
x

h
−

i∑

j=1

β

g
(
	 j

) · 2
i+1− j

√
� j

h

≥ c′ε̃
√
x

8
− β

τ
·
√
x

h
− 8β

g
(
	i
) ·

√
ε̃(1+ ε̃)−i r

h
,

where the last relation follows from our assumptions on parameters (19) and (13). The
assumption on β then implies the result. ��
Lemma 3.5 There are universal constants c ∈ (0, 1], C̃ ≥ 1 with the following prop-
erty. Assume that i ∈ N, ε̃ ∈ (0, 1], h ∈ (0, 1], r , and x satisfy the assumptions of
Proposition 3.3, and assume additionally that

�′i+1 > (1+ ε̃)−i−1(r + x) − 3ε̃x,

where �′i+1 is given in (16). Then with probability at least

1− 2x ε̃x/2 h(ε̃x)2/64 − C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)− 2 exp
(− c x2 ε̃/h2

)

we have

s�(1−(1+ε̃)−i−1)(r+x)�(B) ≥ τ,

where τ is defined by (15).

Proof Construction of subspace H Consider a refinement of the block representation
of B ′:

B ′ =

⎡

⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎢⎣

D′
i+1 0 0 . . . 0
0 D′′

i+1 0 . . . 0
0 0 Di . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . D1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

M ′
i+1

M ′′
i+1
Mi

. . .

M1

⎤

⎥⎥⎥⎥⎦

[
W ′

i+1 W ′′
i+1 Wi . . . W1

]
Q

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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where

U−1M =

⎡

⎢⎢⎢⎢⎣

M ′
i+1

M ′′
i+1
Mi

. . .

M1

⎤

⎥⎥⎥⎥⎦
; WV−1 = [

W ′
i+1 W ′′

i+1 Wi . . . W1
] ;

D =

⎡

⎢⎢⎢⎢⎣

D′
i+1 0 0 . . . 0
0 D′′

i+1 0 . . . 0
0 0 Di . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . D1

⎤

⎥⎥⎥⎥⎦
.

In particular, for every 1 ≤ j ≤ i , the matrix Dj above is � j × � j , Mj is � j × x ,
and Wj is x × � j , where � j ’s are given by (18). Further, D′

i+1 is �′i+1 × �′i+1, M
′
i+1

is �′i+1 × x , and W ′
i+1 is x × �′i+1; the dimensions of D′′

i+1, M
′′
i+1 and W ′′

i+1 are

defined accordingly. In this proof, we denote by P ′
i+1 : Rr+x → R

�′i+1 the coordinate
projection onto first �′i+1 coordinates, by Px : Rr+x → R

x the coordinate projection
onto last x coordinates, and, for every 1 ≤ j ≤ i , denote by Pj : Rr+x → R

� j the
coordinate projection onto � j components starting from 1+∑i+1

d= j+1 �d .

Denote by e(i+1)′
q , 1 ≤ q ≤ �′i+1 − �ε̃x�, a random orthonormal system of right

singular vectors ofW ′
i+1 corresponding to �′i+1−�ε̃x� largest singular values ofW ′

i+1,

and let Ẽ ⊂ R
�′i+1 be the subspace

span
{
e(i+1)′
q , 1 ≤ q ≤ �′i+1 − �ε̃x�}.

For every 1 ≤ j ≤ i , denote by e( j)
q , 1 ≤ q ≤ min(�2 j−i−1ε̃x�, � j ),

a random orthonormal system of right singular vectors of Wj corresponding to
min(�2 j−i−1ε̃x�, � j ) largest singular values of Wj , and let E ( j) ⊂ R

� j be the sub-
space

span
{
e( j)
q , 1 ≤ q ≤ min(�2 j−i−1ε̃x�, � j )

}⊥
.

Finally, we construct a random subspace Ê ⊂ R
x as follows. Denote by e(Q)

q , 1 ≤
q ≤ �ε̃x�, a random orthonormal system of right singular vectors of Q corresponding
to �ε̃x� largest singular values of Q, and let E (Q) ⊂ R

x be the subspace

span
{
e(Q)
q , 1 ≤ q ≤ �ε̃x�}⊥.

Further, let e
(M ′

i+1)
q , 1 ≤ q ≤ �′i+1 − �ε̃x�, be a random orthonormal system of right

singular vectors ofM ′
i+1 corresponding to �′i+1−�ε̃x� largest singular values ofM ′

i+1,
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and let

E (M ′
i+1) := span

{
e
(M ′

i+1)
q , 1 ≤ q ≤ �′i+1 − �ε̃x�}.

For every 1 ≤ j ≤ i , let e
(Mj )
q , 1 ≤ q ≤ �2 j−i−1ε̃x�, be a random orthonormal

system of right singular vectors of Mj corresponding to �2 j−i−1ε̃x� largest singular
values of Mj , and let

E (Mj ) := span
{
e
(Mj )
q , 1 ≤ q ≤ �2 j−i−1ε̃x�}⊥ ⊂ R

x .

We then set

Ê := E (M ′
i+1) ∩

i⋂

j=1

E (Mj ).

The subspace H is now defined as

H := {
v ∈ Rr+x : P ′

i+1v ∈ Ẽ; P ′′
i+1v = 0; Pjv ∈ E ( j), 1 ≤ j ≤ i; Pxv ∈ Ê

}
.

Let us check that H satisfies the required assumptions on the dimension. We have

dim H = �′i+1 − �ε̃x� +
i∑

j=1

(
� j −min(�2 j−i−1ε̃x�, � j )

)+ dim Ê

≥ r − �′′i+1 − 2ε̃x + x − ε̃x − (x − �′i+1 + �ε̃x�) −
i∑

j=1

�2 j−i−1ε̃x�

≥ r + 2�′i+1 − �i+1 − 5ε̃x .

Next, we use the assumption on �′i+1 and the assumptions on parameters to obtain

r + 2�′i+1 − �i+1 − 5ε̃x ≥ r + 2(1+ ε̃)−i−1(r + x) − 11ε̃x − (1+ ε̃)−i r − 1

≥ (1− (1+ ε̃)−i−1)(r + x).

Defining a good event Denote by Ẽ the event

{∥∥W ′
i+1v

∥∥
2 ≥

c′�ε̃x� h√
x

for every unit vector v ∈ Ẽ

}
,

where the constant c′ is taken from Proposition 3.2. According to our definition of the
subspace Ẽ , for every unit vector v as above we have

∥∥W ′
i+1v

∥∥
2 ≥ s�′i+1−�ε̃x�(W ′

i+1).
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Hence, by Proposition 3.2 applied to W ′
i+1, we get

P(Ẽ) ≥ 1− x�ε̃x�/2 h�ε̃x�2/32.

Further, for every 1 ≤ j ≤ i , let

E ( j) := {
s�2−i−1+ j ε̃x�+1(Wj ) ≤ 2i+1− j

√
� j/h

}
.

Note that conditioned on E ( j), we have

∥∥Wjv
∥∥
2 ≤ 2i+1− j

√
� j/h for every unit vector v ∈ E ( j).

Since for every j = 1, 2, . . . , i ,
√
2i+1− j ε̃x/h ≥ √

ε̃x/h ≥ 2
√
x , we have

P
((E ( j))c) ≤ P

{‖Wj‖HS ≥ 2i+1− j
√

� j ·
√
2−i−1+ j ε̃x/h

}

≤ 2 exp
(− c 2i+1− j� j x ε̃/h2

)
.

Finally, we define events corresponding to a “good” realization of Ê . Let EM ′
i+1

be
the event

{∥∥M ′
i+1v

∥∥
2 ≥

c′�ε̃x� h√
x

for every unit vector v ∈ E (M ′
i+1)

}
.

Repeating the argument for Ẽ , we get

P(EM ′
i+1

) ≥ 1− x�ε̃x�/2 h�ε̃x�2/32.

Similarly, adjusting the argument for E ( j) accordingly, we get that for every 1 ≤ j ≤ i ,
the event

EMj :=
{
s�2−i−1+ j ε̃x�+1(Mj ) ≤ 2i+1− j

√
� j/h

}

has probability at least 1− 2 exp
(− c 2i+1− j� j x ε̃/h2

)
, and that the event

EQ := {
s�ε̃x�+1(Q) ≤ √

x/h
}

has probability at least

1− 2 exp
(− c x2 ε̃/h2

)
.

We define

Egood := Ẽ ∩
i⋂

j=1

E ( j) ∩ EM ′
i+1

∩ EQ ∩
i⋂

j=1

EMj .
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In view of the above,

P(Egood) ≥ 1− 2x ε̃x/2 h(ε̃x)2/64 − 4
i∑

j=1

exp
(− c 2i+1− j� j x ε̃/h2

)

− 2 exp
(− c x2 ε̃/h2

)

≥ 1− 2x ε̃x/2 h(ε̃x)2/64 − C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)

− 2 exp
(− c x2 ε̃/h2

)
,

for a universal constant C̃ ≥ 1.
Checking that H satisfies the required property conditioned on Egood Assuming the

conditioning, pick any unit vector v ∈ H . First, we observe that

‖D′
i+1P

′
i+1v‖2 ≤ ‖D′

i+1‖ ≤ τ,

whereas, by the definition of Ê and the conditioning,

‖M ′
i+1Pxv‖2 ≥

c′�ε̃x� h√
x

‖Pxv‖2.

Thus, if ‖Pxv‖2 ≥ 2
√
xτ

c′�ε̃x� h then ‖B ′v‖2 ≥ ‖M ′
i+1Pxv‖2 − ‖D′

i+1P
′
i+1v‖2 ≥ τ , and

we are done.
Otherwise, if

‖Pxv‖2 <
2
√
xτ

c′�ε̃x� h ≤ 4τ

c′ε̃
√
x h

, (22)

then, in view of the conditioning (see the definition of EMj ),

‖Mj Pxv‖2 ≤ 2i+1− j
√

� j

h

2
√
xτ

c′�ε̃x� h ≤ 2i+3− j
√

� j/x τ

c′ε̃h2
, 1 ≤ j ≤ i .

On the other hand, by our assumptions

‖Dj Pjv‖2 ≥ g
(
	 j

) ‖Pjv‖2, 1 ≤ j ≤ i .

Thus, unless ‖B ′[r ]×[r+x]v‖2 ≥ τ , we must have

g
(
	 j

) ‖Pjv‖2 − 2i+3− j
√

� j/x τ

c′ε̃h2
≤ ‖Dj Pjv‖2 − ‖Mj Pxv‖2 ≤ τ, 1 ≤ j ≤ i,

implying

‖Pjv‖2 ≤ 2i+4− j
√

� j/x τ

c′ε̃h2 g
(
	 j

) , 1 ≤ j ≤ i . (23)
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As a final step of the proof, we will show that for any unit vector v ∈ H satisfying
conditions (22) and (23), one has ‖B ′{r+1,...,r+x}×[r+x]v‖2 ≥ τ . First, note that (22)
and (23) imply that

‖P ′
i+1v‖2 ≥ 1− 4τ

c′ε̃
√
x h

−
i∑

j=1

2i+4− j
√

� j/x τ

c′ε̃h2 g
(
	 j

)

≥ 1− 4h2 − h
i∑

j=1

2i+4− j
√
2ε̃(1+ ε̃)i− j

4i− j

> 1− 1− 4h2 − 64h ≥ 1/2,

whence, in view of conditioning on Ẽ ,

‖W ′
i+1P

′
i+1v‖2 ≥

c′ε̃
√
x h

4
≥ c′ε̃

√
(1+ ε̃)−i r h

4
.

Now, for every 1 ≤ j ≤ i , by the above and in view of conditioning on E ( j),

‖Wj Pjv‖2 ≤ 2i+1− j
√

� j

h

2i+4− j
√

� j/x τ

c′ε̃h2 g
(
	 j

)

≤ 22i+6−2 j (1+ ε̃)− j r τ/
√

(1+ ε̃)−i r

c′16i− j h2 g
(
	i
) ,

whence

i∑

j=1

‖Wj Pjv‖2 ≤ 27
√

(1+ ε̃)−i r τ

c′h2 g
(
	i
) ≤ c′ε̃

√
(1+ ε̃)−i r h

16
.

Similarly, in view of conditioning on EQ , we get

‖QPxv‖2 ≤ 4τ

c′ε̃
√
x h

√
x

h
≤ 4h4

√
x

c′ε̃h2
<

c′ε̃
√

(1+ ε̃)−i r h

16
.

Thus,

‖B ′{r+1,...,r+x}×[r+x]v‖2 ≥ ‖W ′
i+1P

′
i+1v‖2 −

i∑

j=1

‖Wj Pjv‖2 − ‖QPxv‖2

≥ c′ε̃
√

(1+ ε̃)−i r h

8
≥ τ,

and the proof is complete. ��
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4 Random polytopes, and distances to pivot rows

Let B be an n × m matrix with m ≥ n, and assume that every square submatrix of
B is invertible. We define recursively the sequence of indices {ir (B)}r∈[n], vectors
{vr (B)}r∈[n] in Rm , and polytopes {Kr (B)}r∈[n] in Rm as follows.

Set v1(B) := e1 and I0(B) := ∅. For r from 1 to n,

ir (B) := argmaxi∈[n]\Ir−1(B)|〈vr (B), (Bi,[m])�〉|,
Ir (B) := {is(B)}s∈[r ],

vr (B) :=
⎛

⎜⎝−((BIr−1,[r−1])−1BIr−1,r )
�, 1, 0, . . . , 0︸ ︷︷ ︸

m−r components

⎞

⎟⎠

�

,

Kr (B) := {
x ∈ R

m : ∀s ∈ [r ], |〈vs(B), x〉| ≤ |〈vs(B), (Bis (B),[m])�〉|
}
. (24)

Observe that vr (B) is a null vector of BIr−1,[r ] such that vr (B) = 1, and that ir (B)

can be viewed as the index of the r -th pivot row in the Gaussian Elimination with
Partial Pivoting with the [rectangular] input matrix B. Note also that our definition
of the sets Ir (B) is consistent with that of the sets Ir (A) discussed earlier. The above
construction does not provide any tie-breaking rules for the choice of the indices ir (B)

in case when respective expressions havemultiple maximizers. In our setting, however
(when B is Gaussian), each pivot is unique with probability one, and hence the choice
of a tie-breaking rule is irrelevant. We have an immediate relation

Kr (B) = Kr (B[n],[r ]) × R
m−r and σm(Kr (B)) = σr (Kr (B[n],[r ])), r ∈ [m − 1],

(25)

where σk is the standard Gaussian measure for the corresponding dimension.
Suppose we have performed r steps of the GEPP algorithm on the n × n Gaussian

matrix A. Let I ⊂ [n] have size r , and condition on a realization of Ir = I and AI ,[r ],
which determines Kr (A). Then, for every j ∈ [n]\I , the j th row of A is a Gaussian
vector conditioned to stay within the polytope Kr (A). Formally, for every I ⊂ [n] of
size r , every j ∈ [n]\I , and every Borel subset B of Rn ,

P
{
(A j,[n])� ∈ B | AI ,[r ]

}

= σn(B ∩ Kr (A))

σn(Kr (A))
almost everywhere on the event {Ir (A) = I }.

We will not directly use the above description of the conditional distribution of
(A j,[n])� given AI ,[r ]; instead, wewill apply a simple decoupling based on Lemma 4.1
which essentially establishes the same property. We provided the above formula only
to clarify our argument.

Lemma 4.1 Suppose B is an n × m random matrix such that its entries are i.i.d and
have continuous distribution. Then, for r ∈ [n] and I ⊂ [n] with |I | = r , almost
surely the following assertions are equivalent:
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1. Ir (B) = I ,
2. ∀s ∈ [r ], is(B) = is(BI ,[m]), vs(B) = vs(BI ,[m]), and Ks(B) = Ks(BI ,[m]),
3. ∀ j ∈ [n]\I , (Bj,[m])� ∈ Kr (BI ,[m]).

Proof We can assume without loss of generality that everywhere on the probability
space, all square submatrices of B are invertible, and for all 1 ≤ s ≤ n−1 and I ′ ⊂ [n]
of size s, the expression

|Bi,s+1 − Bi,[s](BI ′,[s])−1BI ′,s+1|

attains its maximum on i ∈ [n]\I ′ at a unique point. These conditions ensure that
the above algorithm for generating {ir (B)}r∈[n], {vr (B)}r∈[n], {Kr (B)}r∈[n] have a
uniquely determined output i.e no ambiguity in the choice of the indices ir (B) occurs.

Notice that the implication 2 ⇒ 3 is straightforward by the above definitions. We
will check the implications 1 ⇒ 2 and 3 ⇒ 1 below.

Implication 1 ⇒ 2. Condition on the event {Ir (B) = I }. We have v1(B) =
v1(BI ) = e1 and

i1(BI ,[m]) = argmaxi∈I |〈v1(B), (Bi,[m])�〉| = argmaxi∈[n]|〈v1(B), (Bi,[m])�〉| = i1(B).

Further, assume that k < r is such that ∀s ∈ [k], is(B) = is(BI ,[m]). Since Ik(B) =
Ik(BI ,[m]), we also have vk+1(B) = vk+1(BI ,[m]), and thus,

ik+1(BI ,[m]) = argmaxi∈I\Ik (BI ,[m])|〈vk+1(BI ,[m]), B�
i,[m]〉|

= argmaxi∈[n]\Ik (B)|〈vk+1(B), B�
i,[m]〉| = ik+1(B).

Thus, by induction, is(B) = is(BI ,[m]) for all s ∈ [r ], whence vs(B) = vs(BI ,[m]),
Ks(B) = Ks(BI ,[m]), and Is(B) = Is(BI ,[m]) for all s ∈ [r ].

Implication 3 ⇒ 1. The argument is based on induction just as above. We assume
that ∀ j ∈ [n]\I , (Bj,[m])� ∈ Kr (BI ,[m]). First, v1(B) = v1(BI ,[m]) = e1, and since

Kr (BI ,[m]) ⊂
{
x ∈ R

m : |〈v1(BI ,[m]), x〉| ≤ |〈v1(BI ,[m]), (Bi1(BI ,[m]),[m])�〉|
}
,

we have

argmax j∈[n]\I |〈e1, B�
j,[m]〉| ≤ |〈e1, (Bi1(BI ,[m]),[m])�〉|.

On the other hand, by the definition of i1(BI ,[m]),

|〈e1, (Bi1(BI ,[m]),[m])�〉| = argmaxi∈I |〈e1, (Bi,[m])�〉|.

As a consequence, i1(B) = i1(BI ,[m]) ∈ I , completing the base step of the induction.
Now, let k < r be an integer such that ∀s ∈ [k], is(B) = is(BI ,[m]). Since vk+1(B) =
vk+1(BI ,[m]) by our construction, and since

Kr (BI ,[m]) ⊂
{
x ∈ R

m : |〈vk+1(BI ,[m]), x〉| ≤ |〈vk+1(BI ,[m]), (Bik+1(BI ,[m]),[m])�〉|
}
,

123



Average-case analysis of the Gaussian elimination…

we get

argmax j∈[n]\I |〈vk+1(B), (Bj,[m])�〉| ≤ |〈vk+1(BI ,[m]), (Bik+1(BI ,[m]),[m])�〉|
= argmaxi∈I\Ik (B)|〈e1, (Bi,[m])�〉|,

which implies that ik+1(B) = ik+1(BI ,[m]) ∈ I . Thus, we conclude by induction that
is(B) = is(BI ,[m]) ∈ I for all s ∈ [r ], and the result follows. ��

As the first main result of the section, we have a probability estimate for the event
that the Gaussian measure of the polytope Kr (A) is below a given threshold:

Proposition 4.2 (Gaussian measure of Kr (A)) Let A be an n × n Gaussian matrix.
Then for any r ∈ [n − 1] and any t ≥ 2,

P{σn(Kr (A)) ≤ n−t } ≤ n−t(n−r)/2.

Proof We start by writing

P{σn(Kr (A)) ≤ n−t } =
∑

I⊂[n], |I |=r

P
{
Ir (A) = I and σn(Kr (A)) ≤ n−t}.

For each summand, we apply Lemma 4.1 to get

P
{
Ir (A) = I and σn(Kr (A)) ≤ n−t}

= P
{
Ir (A) = I and σn(Kr (AI ,[n])) ≤ n−t}

= P

{
σn(Kr (AI ,[n])) ≤ n−t and ∀i ∈ [n]\I , (Ai,[n])� ∈ Kr (AI ,[n])

}
. (26)

Since Kr (AI ,[n]) and (Ai,[n])� for i ∈ [n]\I are independent, we get

(26) ≤ P
{
σn(Kr (AI ,[n])) ≤ n−t}

· P
{
∀i ∈ [n]\I , (Ai,[n])� ∈ Kr (AI ,[n])

∣∣ σn(Kr (AI ,[n])) ≤ n−t
}

≤ 1 · (n−t )n−r .

Finally, in view of the standard bound
( n
n−r

) ≤ nn−r for the number of subsets I ⊂ [n]
of size r , and by the union bound argument, the result follows. ��
Lemma 4.3 Let A be an n × n Gaussian matrix, and let r ∈ [n] and τ ∈ (0, 1) be
parameters. Then, conditioned on the event

{
σn(Kr (A)) ≥ τ

}
,

dist(H , (Air ,[r ])�) ≥
√

π

2
τ,

where H is the subspace of Rr spanned by vectors (Ais ,[r ])�, s ∈ [r − 1].
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Proof Let v := vr (A)/‖vr (A)‖2 and let P : Rn → R
r be the orthogonal projection

onto the span of {es}s∈[r ]. From the definition of v, we have that Pv is a unit normal
to the hyperplane H in Rr . Then

dist(H , (Air ,[r ])�) = |〈Pv, (Air ,[r ])�〉| = |〈v, (Air ,[n])�〉| := s.

It remains to note that, by the definition of Kr (A), on the event
{
σn(Kr (A)) ≥ τ

}
we

have

τ ≤ σn(Kr (A)) ≤ σn
({x ∈ R

n : |〈vr (A), x〉| ≤ |〈vr (A), (Air ,[n])�〉|}
)

= σn
({x ∈ R

n : |〈v, x〉| ≤ s}) =
∫ s

−s

1√
2π

exp(−t2/2)dt ≤ 2s√
2π

.

��
As a corollary, we obtain the following probabilistic bound on the distance between

(Air ,[r ])� and the span of “previous” rows (selected at previous steps of the GEPP
process) (Ais ,[r ])�, s ∈ [r − 1]:
Corollary 4.4 Let A be an n × n Gaussian matrix. For t ≥ 2 and r ∈ [n − 1], with
probability at least 1− n−t(n−r)/2 we have

dist(H , (Air ,[r ])�) ≥
√

π

2
n−t ,

where H is the random subspace of Rr spanned by vectors (Ais ,[r ])�, s ∈ [r − 1].
Proof In view of Lemma 4.3, the statement would follow as long as P

{
σn(Kr (A)) ≥

n−t
} ≥ 1− n−t(n−r)/2. The latter is verified in Proposition 4.2. ��

5 A recursive argument

The goal of this section is to bound from below the intermediate singular values
sr−k(AIr ,[r ]) for every r greater than some absolute constant and for k of a constant
order. We will start with bounding the intermediate singular values in the bulk of the
singular spectrum first and then will recursively apply Proposition 3.3 to provide lower
bounds for smaller and smaller intermediate singular values.

As we mentioned in the overview of the proof, the intermediate singular values
sr−k(AIr , [r ]) for k � r1/2 polylog(n) can be easily estimated from below with high
probability by taking the union bound over the estimates of sr−k(AI ,[r ]) (see Propo-
sition 3.2) for I ⊂ [n] with |I | = r . To bound sr−k(AIr ,[r ]) from below for smaller
values of k we apply the following strategy. We choose an appropriate positive integer
r ′ < r , condition on a realization of Ir ′ and AIr ′ ,[r ′], and, for any I with Ir ′ ⊂ I ⊂ [n]
and |I | = r , apply Proposition 3.3 with B := AI ,[r ] and F := AIr ′ ,[r ′]. This way,
sr−k(AI ,[r ]) is bounded below with high probability conditioned on an event that
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the intermediate singular values sr−k′(AIr ′ ,[r ′]) are well bounded for every k
′ slightly

bigger than k.

Definition 5.1 For an integer k ∈ [n] and parameters p, β ≥ 1, let Eis(p, k, β) be the
event that

∀r ∈ [k + 1, n], sr−k(AIr ,[r ]) ≥ n−β/(50p).

and Erec(p, k, β) be the event that

∀r ∈ [k + 1, n − 2k], smin
(
(AIr ,[r+2k])�

) ≥ n−β/(20p).

Note that although n is not mentioned explicitly in the list of parameters for
Eis(p, k, β), it clearly depends on the underlying matrix dimension.

The next proposition is the main result of this section:

Proposition 5.2 There is a universal constant C > 0 with the following property. Let
p ≥ 1. Then there exist positive integers n0 := n0(p), 120p ≤ k0 := k0(p) ≤ Cp,
and a positive real number 300p ≤ β0 := β0(p) ≤ Cp, so that for any n ≥ n0 and
β ≥ β0,

P
(Eis(p, k0(p), β)c

) ≤ n−2β+on(1).

We remark that the lower bounds on k0(p) and β0(p) in the assumptions of the
proposition are not required in the proof but will be needed later. As a corollary of the
proposition (proved in the end of this section), we have

Corollary 5.3 For any p ≥ 1, β ≥ β0(p),

P
(Erec(p, k0(p), β)c

) = n−2β+on(1). (27)

Now, we present a technical version of the above proposition. We introduce several
“section-level” parameters. Let ε̃ > 0 be a small constant and L be a large integer
to be determined later. The parameter ε̃ will play the same role as in Proposition 3.3.
Next, let

m0 := �L/ε̃5�

and let s1 be the smallest integer such that 2s1m0 ≥ n. Then we define the finite
sequence m1, . . . ,ms1+1, where

∀s ∈ [s1 − 1], ms := 2sm0 and ms1+1 := n.

The main technical result in this section is the following
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Lemma 5.4 Fix ε̃ ∈ (0, 1/100] and L ≥ 1/ε̃. Then there exists a positive integer n0
(depending on ε̃ and L) such that for any n ≥ n0 and s ∈ [0, s1 − 1], we have for
every α ≥ 4:

P
{∃r ∈ [ms+1,ms+2] s.t. sr−�9L/ε̃�(AIr ,[r ]) ≤ n−C(ε̃)α

} ≤ n−c(ε̃)αL , (28)

where c(ε̃) and C(ε̃) are positive constants which depend on c, C̃ from Proposition
3.3 and on ε̃.

Proof of Proposition 5.2 Let ε̃ := 1/100. We can safely assume that the constants c(ε̃)
and C(ε̃) from Lemma 5.4 satisfy c(ε̃) ∈ (0, 1] and C(ε̃) ≥ 1. Choose

L := max

(
1

ε̃
, 80p

C(ε̃)

c(ε̃)

)
.

Let β0 := max{4c(ε̃)L, 300p}, k0(p) := max{�9 L/ε̃�, 120p}, and let β ≥ β0.
Applying Lemma 5.4 with α ≥ 4 satisfying β/(40p) = C(ε̃)α, we get

P
{∃ r ≥ m1 s.t. sr−�9L/ε̃�(AIr ,[r ]) ≤ n−β/(40p)} ≤ (s1 + 1)n−c(ε̃)αL ≤ (s1 + 1)n−2β,

implying the result for large enough n. ��
For the rest of the section, we fix s ∈ [0, s1 − 1].

5.1 Choice of parameters and the growth function

Definition 5.5 (Definition of ith, imax, fi , ri ) For a given positive integer L and for
ε̃ ∈ (0, 1/4], let ith be the integer such that

(1+ ε̃)−ithms ≥ ε̃ms/10 > (1+ ε̃)−ith−1ms .

and let imax be the integer such that

(1+ ε̃)−imaxms ≥ L/ε̃ > (1+ ε̃)−imax−1ms . (29)

Note that ε̃ms/10 ≥ L/ε̃, and hence ith ≤ imax.
For every i ∈ [ith, imax], we define a non-decreasing function

fi (r) :=
⌊ r

1+ (1+ ε̃)−i

⌋
, r ∈ N. (30)

Further, we define a collection of integers {ri }i∈[imax+1] inductively as follows. When-
ever i ∈ [ith], we set ri := ms . Further, assuming that ri has been defined for some
i ∈ [ith, imax], we let ri+1 be the smallest integer such that fi (ri+1) ≥ ri . Note that
ms = r1 ≤ r2 ≤ · · · ≤ rimax+1.
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We recall our strategy: to bound the singular value s�(1−(1+ε̃)−i−1)r�(AIr ,[r ]) from
below, we will select an appropriate integer r ′ < r and apply Proposition 3.3 with
B := AI ,[r ] and F := AIr ′ ,[r ′], taking the union bound over all subsets I ⊂ [n] with
Ir ′ ⊂ I and |I | = r . The function fi defined above, determines the choice of r ′,
namely, we choose

r ′ := fi (r),

for ri ≤ r ≤ ms+2. The indices ith and imax defined above, determine the range of
application for the inductive strategy; namely, imax marks the largest index i for which
our induction argument can be applied, and ith indicates a threshold value belowwhich
the corresponding singular values s�(1−(1+ε̃)−i )r�(AIr ,[r ]) concentrate very strongly and
can bounded directly with help of Proposition 3.2 and a simple union bound argument.

The goal of this subsection is to verify certain relations between the introduced
parameters, that need to be satisfied in order to apply the results on the singular values
established earlier. Since the results here are of purely computational nature,wepresent
the proofs in the Appendix.

Lemma 5.6 (Inequalities for imax) Let ε̃ ∈ (0, 1/4) and L ≥ 1/ε̃. For r ∈ [ms,ms+2],

r − �(1− (1+ ε̃)−imax−1)r� ≤ 9L/ε̃. (31)

Further,

imax ≤ 2 log(ms)/ε̃. (32)

Lemma 5.7 (Assumptions in Proposition 3.3) Let ε̃ ∈ (0, 1
28 ) and L ≥ 4. Fix i ∈

[ith, imax] and assume that r̃ satisfies ri+1 ≤ r̃ ≤ ms+2. Let r := fi (r̃) and x := r̃−r .
Then,

(1+ ε̃)−i r ≤ x ≤ 21

20
(1+ ε̃)−i r . (33)

Moreover, i, r , x, and ε̃ satisfy the assumptions in Proposition 3.3, specifically,

r − �(1− (1+ ε̃)−i )r� ≤ x ≤ r , ε̃x ≥ 4,

3(1+ ε̃)−i−1r − (1+ ε̃)−i r ≥ x + 1+ 11ε̃x, ε̃(1+ ε̃)−i r ≥ 2.

For a given i ∈ [ith, imax], the number r̃ satisfying the assumptions of the above
lemma can only be chosen if ri+1 ≤ ms+2. In the next statement, we show that the
inequality is satisfied for every admissible i (and in fact verify a slightly stronger
bound):

Lemma 5.8 (Anupper boundon rimax+1) Let ε̃ ∈ (0, 1/28)and L ≥ 4. Then, rimax+1 ≤
2ms = ms+1.

123



H. Huang, K. Tikhomirov

To construct the growth function g(·) from (13), we first define an auxiliary positive
function gs(·), and then set

g
(�(1− (1+ ε̃)− j )r�) := gs( j)

for all admissible j . The formal definition of gs(·) is given below.

Definition 5.9 Let α ≥ 1 be a parameter. For i ∈ [ith], we set

gs(i) := c′

2
√
ms

16−imsn
−α, (34)

where c′ is the constant from Proposition 3.2.
For i ∈ [ith, imax], we apply a recursive definition:

gs(i + 1) := c′ε̃
32

hs(i)
5gs(i),

where hs(i) is given by

hs(i) := exp
(
−max

{ 128α log n

ε̃2(1+ ε̃)−ims
, Ch

})
, (35)

and where Ch ≥ − log
(
2−11(c′)2ε̃

)
is a constant depending only c, C̃ (from Proposi-

tion 3.3) and c′, and which we shall determine in Lemma 5.10.

The function hs(i) corresponds to the parameter h in Proposition 3.3, and is con-
structed in such a way that certain union bound argument that we are going to apply
further works. The next lemma clarifies the choice of the constant Ch from the above
definition:

Lemma 5.10 The constant Ch can be chosen so that the following holds. For i ∈
[ith, imax] and r̃ ∈ [ri+1,ms+2], let r := fi (r̃) and x := r̃ − r . Then,

2x ε̃x/2 hs(i)
(ε̃x)2/64 + 4 exp

(− cx2 ε̃/hs(i)
2)+ C̃ exp

(− cε̃2(1+ ε̃)−i r x/hs(i)
2)

≤ exp
(− α log(n)x

)
. (36)

In the next lemma we verify the crucial bound on the growth function which will
ultimately guarantee a polynomial in n bound on the intermediate singular values:

Lemma 5.11 There exists C(ε̃) > 1 which depends on c′, C̃ from Proposition 3.3, on
Ch, and on ε̃, such that

∀α ≥ 1, gs(imax + 1) ≥ n−C(ε̃)α. (37)
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5.2 Good events, and probability estimates

Definition 5.12 For i ∈ [imax + 1] and r ∈ [ri , n], let E(r , i) be the event that

s�(1−(1+ε̃)−i )r�(AIr ,[r ]) ≥ gs(i),

where gs(·) is given inDefinition 5.9 and ri , imax are taken fromDefinition 5.5. Further,
we denote E(r , [i]) := ⋂

j∈[i] E(r , j).

Lemma 5.13 For ε̃ ∈ (0, 1/100], L ≥ 4 and α ≥ 4,

P

( ⋃

r∈[ms ,ms+2]
E(r , [ith])c

)
≤ exp

(− αL log n
)
. (38)

Proof Fix i ∈ [ith] and r ∈ [ms,ms+2]. Let q := r − �(1− (1+ ε̃)−i )r�. Then

q ≥ (1+ ε̃)−i r ≥ (1+ ε̃)−ims ≥ 16−ims . (39)

We recall that in view of the definition of ms and ith , necessarily q < r ; furthermore,

q ≥ (1+ ε̃)−ims ≥ (1+ ε̃)−ithms ≥ ε̃ms/10 ≥ ε̃m0/10 ≥ L/ε̃4 ≥ 32. (40)

For each I ⊂ [n] with |I | = r ,

P
{
sr−q(AI ,[r ]) < gs(i)

} = P

{
sr−q(AI ,[r ]) <

c′

2
√
ms

16−i ms n
−α

}

≤ P

{
sr−q(AI ,[r ]) <

c′√
r
qn−α

}

(by (39) and the definition of ms,ms+2)

≤ exp
(
log(r)q/2− log(n)αq2/32

)
(by Proposition 3.2).

Applying (40), we conclude that

P
{
sr−q(AI ,[r ]) < gs(i)

} ≤ exp
(
log(n)q2/64− log(n)αq2/32

)

≤ exp
(
− log(n)α

( ε̃ms

10

)2
/64

)
.

We complete the proof with the union bound argument. There are
(n
r

) ≤ (en/r)r ≤
exp(r log n) subsets I ⊂ [n] with |I | = r . As r ≤ ms+2 ≤ 4ms , and in view of the
definition of ms and our choice of ε̃,

P
{
sr−q(AIr ,[r ]) < gs(i)

} ≤ P
{∃I ⊂ [n] with |I | = r such that sr−q(AI ,[r ]) < gs(i)

}

≤ exp
(
− log(n)α

( ε̃ms

10

)2
/128

)
,
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By applying the union bound argument again over all i ∈ [ith] and all r ∈ [ms,ms+2],
the statement of the lemma follows. ��
Lemma 5.14 Assume ε̃ ∈ (0, 1/100], L ≥ 4 and α ≥ 4. For i ∈ [ith, imax] and
r̃ ∈ [ri+1,ms+2], set r := fi (r̃) and x := r̃ − r . Then

P

(
E(r̃ , i + 1)c ∩ E(r , [i]) ∩ {σn(Kr (A)) ≥ n−α/2}

)
≤ exp

(
− 1

4
α log(n)x

)

≤ exp
(
− 1

4
α log(n)

L

ε̃

)
,

where the random polytope Kr (A) ⊂ R
n was defined in (24), and where σn is the

standard Gaussian measure in R
n.

Proof We start by noting that the last inequality in the statement of the lemma follows
from the estimate x ≥ (1 + ε̃)−imaxms ≥ L/ε̃ (see Lemma 5.7 and the definition of
imax).

We further partition the event in question so that

P

(
E(r̃ , i + 1)c ∩ E(r , [i]) ∩ {σ(Kr (A)) ≥ n−α/2}

)

=
∑

I⊂[n],|I |=r

P

(
E(r̃ , i + 1)c ∩ E(r , [i]) ∩ {σn(Kr (A)) ≥ n−α/2} ∩ {Ir (A) = I }

)
.

(41)

For each I ⊂ [n] with |I | = r , we define E(I ) to be the event

∀ j ∈ [i], s�(1−(1+ε̃)− j )r�(AI ,[r ]) ≥ gs( j),

and note that for each admissible I , E(r , [i]) ∩ {Ir (A) = I } ⊂ E(I ).
For I ⊂ [n]with |I | = r and J ⊂ [n]\I with |J | = x , let E(I , J ) be the event that

s�(1−(1+ε̃)−i−1)(r̃)�(AI∪J ,[r̃ ]) ≥ gs(i + 1).

Denote K (I ) := Kr (AI ,[r ]) ⊂ R
r . Then each term in (41) can be bounded as

P

(
E(r̃ , i + 1)c ∩ E(r , [i]) ∩ {σn(Kr (A)) ≥ n−α/2} ∩ {Ir (A) = I }

)

≤
∑

J⊂[n]\I , |J |=x

P

(
E(I , J )c ∩ E(I ) ∩ {σn(K (I )) ≥ n−α/2} ∩ {Ir (A) = I }

)
.

(42)

Now, assume that for every I ⊂ [n] and J ⊂ [n]\I with |I | = r and |J | = x ,

P

(
E(I , J )c ∩ E(I )

∣∣∣ {σn(K (I )) ≥ n−α/2} ∩ {Ir (A) = I }
)
≤ exp

(
− 1

2
α log(n)x

)
.

(43)
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Clearly, for each I ⊂ [n] with |I | = r ,

|{J ⊂ [n]\I : |J | = x}| =
(
n − r

x

)
≤

(en
x

)x ≤ exp(log(n)x) ≤ exp
(1
4
α log(n)x

)
.

Together with (42) and (43), this gives

(41) ≤
∑

I⊂[n],|I |=r

exp
(1
4
α log(n)x

)
exp

(
− 1

2
α log(n)x

)
P{Ir (A) = I }

= exp
(
− 1

4
α log(n)x

)
,

and the result follows.
Thus, it remains to show (43). By Lemma 4.1, almost everywhere on the probability

space we have

1{Ir (A)=I } = 1{∀ j∈[n]\I , (A j,[n])�∈Kr (AI ,[n])} = 1{∀ j∈[n]\I , (A j,[r ])�∈K (I )}.

Hence,

P

(
E(I , J )c ∩ E(I )

∣∣∣ {σr (K (I )) ≥ n−α/2} ∩ {Ir (A) = I }
)

≤
P

(
E(I , J )c ∩ E(I ) ∩ {σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

})

P

(
{σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\I , (A j,[r ])� ∈ K (I )

}) .

(44)

In view of the joint independence of the entries of A, we obtain

P

(
E(I , J )c ∩ E(I ) ∩ {σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

})

= EAI ,[r ]
[
1E(I )∩{σr (K (I ))≥n−α/2} · P

{E(I , J )c
∣∣ AI ,[r ]

}

· P{∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )
∣∣ AI ,[r ]

}]
, (45)

where the outer expectation is with respect to AI ,[r ].
For each realization of AI ,[r ] such that the event E(I ) holds, we apply Proposition

3.3 with

[
F M
W Q

]
:=

[
AI ,[r ] AI ,[r+1,r+x]
AJ ,[r ] AJ ,[r+1,r+x]

]

to bound P(E(I , J )c | AI ,[r ]). Let g(·) be a growth function satisfying

∀ j ∈ [i], g(�(1− (1+ ε̃)− j )r�) = gs( j),
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where gs(·) is given in Definition 5.9. Since 16 gs( j + 1) ≤ gs( j) for j ∈ [i − 1] and
gs( j) ≤ 1 for j ∈ [i], the function g(·) defined this way satisfies (13). Recall that on
the event E(I ) we have

s�(1−(1+ε̃)− j )r�(AI ,[r ]) ≥ g(�(1− (1+ ε̃)− j )r�), j ∈ [i].

We apply Proposition 3.3 with g(t) and with h := hs(i) (see Definition 5.9) so that

c′ε̃h5 g
(�(1− (1+ ε̃)−i )r�)

32
= gs(i + 1)

(observe that our parameters r , x satisfy the assumption of the proposition due to
Lemma 5.7, and that h satisfies the assumption h ≤ 2−11(c′)2ε̃ in view of the assump-
tions on the constant Ch in Definition 5.9). We get

P
(E(I , J )

∣∣ AI ,[r ]
) = P

(
s�(1−(1+ε̃)−i−1)(r+x)�(AI∪J ,[r̃ ]) ≥ gs(i + 1)

∣∣ AI ,[r ]
)

≥ 1− 2x ε̃x/2 h(ε̃x)2/64 − 4 exp
(− cx2 ε̃/h2

)

− C̃ exp
(− cε̃2(1+ ε̃)−i r x/h2

)
.

In view of Lemma 5.10, this implies

P
(E(I , J )c

∣∣ AI ,[r ]
) ≤ exp

(− α log(n)x
)
.

Combining the last inequality with (45), we obtain

P

(
E(I , J )c ∩ E(I ) ∩ {σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

})

≤ exp
(− α log(n)x

)

· P
(
{σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

})
. (46)

Next, we will treat the denominator in the estimate (44). By Fubini’s theorem,

P

(
{σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\I , (A j,[r ])� ∈ K (I )

})

= EAI ,[r ]
[
1{σr (K (I ))≥n−α/2} · P

(∀ j ∈ J , (A j,[r ])� ∈ K (I )
∣∣ AI ,[r ]

)·
· P(∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

∣∣ AI ,[r ]
)]

.

Almost everywhere on the event {σr (K (I )) ≥ n−α/2} we have

P
(∀ j ∈ J , (A j,[r ])� ∈ K (I )

∣∣ AI ,[r ]
) ≥ n−αx/2,

whence

P

(
{σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\I , (A j,[r ])� ∈ K (I )

})
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≥ n−αx/2
P

(
{σr (K (I )) ≥ n−α/2} ∩ {∀ j ∈ [n]\(I ∪ J ), (A j,[r ])� ∈ K (I )

})
.

Together with (46) and (44), this yields

P

(
E(I , J )c ∩ E(I )

∣∣∣ {σr (K (I )) ≥ n−α/2} ∩ {Ir (A) = I }
)
≤ exp

(
− 1

2
α log(n)x

)
,

and the proof of (43) is complete. ��
At this point, we are ready to prove the main lemma in this section.

Proof of Lemma 5.4 First, recall that in view of Lemma 5.8, rimax+1 ≤ ms+1, and that
in view of (31) we have r − �9/ε̃� ≤ �(1− (1+ ε̃)−imax+1)r�, whence

⋃

r∈[ms+1,ms+2]

{
sr−�9/ε̃�(AIr ,[r ]) < gs(imax + 1)

}

⊂
⋃

r∈[rimax+1,ms+2]

{
s�(1−(1+ε̃)−imax+1)r�(AIr ,[r ]) < gs(imax + 1)

}

=
⋃

r∈[rimax+1,ms+2]
Ec(r , imax + 1),

where we used the definition of the events E(r , i) (Definition 5.12). To estimate the
probability of the union of the events in the last line, we shall embed it into a specially
structured collection.

Let r ′ := fimax(ms+2), where f·(·) was defined in (30). We have

⋃

r∈[rimax+1,ms+2]
Ec(r , imax + 1) ⊂

⋃

r∈[ms ,r ′]
{σn(Kr (A)) < n−α/2}

∪
⋃

r∈[rimax+1,ms+2]

(
Ec(r , imax + 1) ∩

( ⋂

r∈[ms ,r ′]
{σn(Kr (A)) ≥ n−α/2}

))
.

To be able to apply a recursive bound from the last lemma, we use the bounds ri ≤
fi (r̃) ≤ ms+2, r̃ ∈ [ri+1,ms+2], i ∈ [ith + 1, imax], to write

⋃

r∈[rimax+1,ms+2]

(
Ec(r , imax + 1) ∩

( ⋂

r∈[ms ,r ′]
{σn(Kr (A)) ≥ n−α/2}

))

⊂
⋃

i∈[ith ]

⋃

r∈[ms ,ms+2]
Ec(r , i)

∪
⋃

i∈[ith ,imax]

⋃

r̃∈[ri+1,ms+2]

(
Ec(r̃ , i + 1) ∩ E( fi (r̃), [i])

∩
( ⋂

r∈[ms ,r ′]
{σn(Kr (A)) ≥ n−α/2}

))
.
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Thus, using that fi (r̃) ≤ r ′ for i ∈ [ith + 1, imax] and that ms+2 − r ′ ≥ L , we get

P

( ⋃

r∈[rimax+1,ms+2]
Ec(r , imax + 1)

)

≤
∑

r∈[ms ,r ′]
P{σn(Kr (A)) < n−α/2} +

∑

i∈[ith ]

∑

r∈[ms ,ms+2]
P(Ec(r , i))

+
∑

i∈[ith ,imax]

∑

r̃∈[ri+1,ms+2]
P

(
Ec(r̃ , i + 1) ∩ E( fi (r̃), [i]) ∩ {σ(K fi (r̃)) ≥ n−α/2}

)

≤ n · n−αL/4
︸ ︷︷ ︸

by Proposition 4.2

+ n2 exp
(− αL log(n)

)
︸ ︷︷ ︸

by Lemma 5.13

+ n2 exp
(
− 1

4
α log(n)

L

ε̃

)

︸ ︷︷ ︸
by Lemma 5.14

≤ n−c(ε̃)αL (47)

for some c(ε̃) > 0. It remains to note that in view of Lemma 5.11, gs(imax + 1) ≥
n−C(ε̃)α for some C(ε̃). ��
Proof of Corollary 5.3 For brevity, we denote k0 := k0(p). We fix r ∈ [k0+1, n−2k0]
and let Fr ⊂ R

Ir be the right singular subspace of the matrix (AIr ,[r ])� corresponding
to k0 smallest singular values of (AIr ,[r ])� (since almost everywhere on the probability
space Ir is unambiguously determined, and the singular values of (AI ,[r ])� are distinct
for every I ⊂ [n] with |I | = r , Fr is uniquely defined). Now, let us define the event
Ẽr (β) that

smin
(
(AIr ,[r+1,r+2k0])�

∣∣
Fr

) ≥ n−β/(40p) and
∥∥(AIr ,[r+1,r+2k0])�

∣∣
F⊥
r

∥∥ ≤ 3
√

βn,

(48)

where (AIr ,[r+1,r+2k0])�
∣∣
Fr
and (AIr ,[r+1,r+2k0])�

∣∣
F⊥
r
are linear operators obtained by

restricting the domain of (AIr ,[r+1,2k0])� to Fr and F⊥
r , respectively. Then, conditioned

on the intersection Ẽr (β) ∩ Eis(p, k0, β), for any v ∈ R
Ir \{0},

∥∥(AIr ,[r+2k0])� v
∥∥
2 =

∥∥∥∥

(
(AIr ,[r ])�v

(AIr ,[r+1,r+2k0])�v

)∥∥∥∥
2

≥ max
{
n−β/(50p)

∥∥PF⊥
r

v
∥∥
2, n

−β/(40p)
∥∥PFr v

∥∥
2 − 3

√
βn

∥∥PF⊥
r

v
∥∥
2

}
,

where PFr and PF⊥
r
are orthogonal projections onto Fr and F⊥

r , respectively. Consider
two cases.

• Suppose ‖PF⊥
r

v‖2 ≥ 1
4
n−β/(40p)

3
√

βn
‖PFr v‖2. Then,

‖v‖2 =
√
‖PF⊥

r
v‖22 + ‖PFr v‖22 ≤ ‖PF⊥

r
v‖2

√

12 +
(1
4

n−β/(40p)

3
√

βn

)−2

123



Average-case analysis of the Gaussian elimination…

≤ O(
√

β) nβ/(40p)+ 1
2 ‖PF⊥

r
v‖2,

which implies

n−β/(50p)‖PF⊥
r

v‖2 ≥ O(β−1/2) n−β/(50p)−β/(40p)− 1
2 ‖PF⊥

r
v‖2 ≥ n−β/(20p)‖v‖2,

where the last inequality holds because β ≥ β0(p) ≥ 300p and since n is suffi-
ciently large depending on p.

• In the case ‖PF⊥
r

v‖2 < 1
4
n−β/(40p)

3
√

βn
‖PFr v‖2, we have

n−β/(40p)
∥∥PFr v‖2 − 3

√
βn

∥∥PF⊥
r

v
∥∥
2 ≥

3

4
n−β/(40p)‖PFr v‖2 ≥ n−β/(20p)‖v‖2.

Since the above estimate holds for all v ∈ R
Ir \{0}, we conclude that everywhere on

the intersection Ẽr (β) ∩ Eis(p, k0, β),

smin
(
(AIr ,[r+2k0])�

) ≥ n−β/(20p).

Therefore, for p ≥ 1 and β ≥ β0(p),

Eis(p, k0, β) ∩
( ⋂

r∈[k0+1,n−2k0]
Ẽr (β)

)
⊂ Erec(p, k0, β),

and thus

P
(Erec(p, k0, β)c

) ≤ P
(Eis(p, k0, β)c

)+
∑

r∈[k0+1,n−2k0]
P(Ẽr (β)c).

Since in view of Proposition 5.2, P
(Eis(p, k0, β)c

) ≤ n−2β+on(1), the corollary will

follow if we show that P(Ẽr (β)c) ≤ n−2β−1+on(1).
From now on, we fix r ∈ [k0+1, n−2k0] and condition on a realization of A[n],[r ]

such that the set Ir and the space Fr are uniquely determined. We will write P̃ and Ẽ

to denote the corresponding conditional probability and conditional expectation.
The independenceof the entries of thematrix A implies thatQ := (AIr ,[r+1,r+2k0])�

∣∣
Fr

and W := (AIr ,[r+1,r+2k0])�
∣∣
F⊥
r
are (standard) Gaussian linear operators from Fr to

R
2k0 and from F⊥

r to R
2k0 , respectively. For the purpose of estimating the operator

norm and least singular values, we can view W and Q as matrices with i.i.d N (0, 1)
entries of dimensions 2k0× (r − k0) and 2k0× k0, respectively; more specifically, we
can define standard Gaussian matrices W̃ and Q̃ of dimensions 2k0 × (r − k0) and
2k0 × k0 such that everywhere on the probability space the singular spectrum of W
and W̃ , and of Q and Q̃, agree.

It is well known that the expected operator norm of any standard Gaussian matrix
is no more than the sum of square roots of its dimensions (see, for example, [20,
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Section 7.3]). Hence,

Ẽ ‖W‖ = Ẽ ‖W̃‖ ≤ √
2k0 +

√
r − k0 ≤

√
2n.

Since the spectral norm is 1-Lipschitz, the standard Gaussian concentration inequality
(see, for example, [20, Section 5.2]) implies

P̃
{‖W‖ ≥ 3

√
βn

} ≤ P̃
{‖W‖ ≥ Ẽ ‖W‖ +√

βn
} ≤ 2 exp

(
− (

√
βn)2

2

)

= 2 exp(−βn/2). (49)

Next, we derive an estimate for smin(Q) = smin(Q̃). For i ∈ [k0], let Pi : Rk0 → R
k0

be the orthogonal projection to the subspacewhich is orthogonal to the columns vectors
Q̃[2k0], j for j ∈ [k0]\{i}. Then,

smin(Q) = min
v∈Sk0−1

‖Q̃v‖ ≥ min
v∈Sk0−1

max
i∈[k0]

‖Pi Q̃v‖2 = min
v∈Sk0−1

max
i∈[k0]

‖Pi (Q̃[2k0],i )‖2|vi |

≥ min j∈[k0] ‖Pj (Q̃[2k0], j )‖2√
k0

.

Since Pj and Q̃[2k0], j are independent, the norm ‖Pj (Q̃[2k0], j )‖2 is equidistributed
with that of a 2k0− (k0−1) = (k0+1)–dimensional standard Gaussian vector. Since
the probability density function of a (k0+1)–dimensional Gaussian vector is bounded
above by (2π)−(k0+1)/2, we obtain

P̃
{‖Pj (Q̃[2k0], j )‖2 ≤ t

} ≤
( t√

2π

)k0+1|Bk0+1
2 |, t > 0,

where |Bk0+1
2 | is the Lebesgue measure of the unit Euclidean ball Bk0+1

2 in R
k0+1.

Therefore, in view of the previous computations,

P̃
{
smin(Q) ≤ t

} ≤ k0
( t
√
k0√
2π

)k0+1|Bk0+1
2 |, t > 0.

Applying the bound (|Bk0+1
2 |)1/(k0+1) = O(k−1/2

0 ), we get that there exists a universal
constant Cb ≥ 1 so that

P̃
{
smin(Q) ≤ t

} ≤ (Cb t)
k0 , t > 0.

Now, setting t := n−β/(40p), we get

P̃

{
smin(Q) ≤ n−β/(40p)

}
≤ n−(1−on(1))βk0/(40p) ≤ n−2β−1+on(1), (50)

where the last inequality holds since k0 = k0(p) ≥ 120p.
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As a final step of the proof, rewriting (49) and (50) on the entire probability space,
we get

P
{‖W‖ ≥ 3

√
βn

∣∣ A[n],[r ]
} ≤ 2 exp(−βn/2) a.s;

P

{
smin(Q) ≤ n−β/(40p)

∣∣ A[n],[r ]
}
≤ n−2β−1+on(1) a.s.

We conclude that P(Er (β)c) ≤ n−2β−1+on(1), and the result follows. ��

6 The smallest singular value and the growth factor in exact
arithmetic

6.1 Distance to subspaces

Recall that by it = it (A), 1 ≤ t ≤ n, we denote the indices of the pivot rows in the
GEPP process (see Sect. 4).

Definition 6.1 (Subspaces generated by row vectors of submatrices of A) For x, r ∈
[n] with 1 ≤ x ≤ r , let

Hr ,x ⊂ R
r be the random subspace spanned by (Ait ,[r ])� for t ∈ [x],

and let Hr ,0 := {0}. Additionally, for s ∈ [x], let

Hr ,x,s ⊂ R
r be the random subspace spanned by (Ait ,[r ])� for t ∈ [x]\{s},

where we set Hr ,1,1 := {0}.
Definition 6.2 For β > 0, let Erow(r , β) be the event that

dist
(
(Air ,[r ])�, Hr ,r−1

) ≥ √
2/π n−4(1+β/(n−r)) and ‖Air ,[n]‖2 ≤

√
n + 3

√
β log(n) (51)

and set

Erow(β) :=
⋂

r∈[n−1]
Erow(r , β).

Further, let Edist(β) be the event that

∀ r , k, s ∈ [n − 1] with s ≤ r − k ≤ r ,

dist
(
(Ais ,[r ])�, Hr ,r−k,s

) ≤ exp
(
6k

(
1+ β

n − r

)
log n

)
dist

(
(Ais ,[r ])�, Hr ,r ,s

)
.

The goal in this section is to prove
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Proposition 6.3 There exists β6.3 ≥ 2 so that the following holds. For β ≥ β6.3, we
have Edist(β) ⊃ Erow(β), and

P(Edist(β)c) ≤ P(Erow(β)c) ≤ n−β.

The statement is obtained as a combination of Lemmas 6.6 and 6.7 below. First,
we consider two simple facts from Euclidean geometry.

Lemma 6.4 Let u ∈ R
r and let H ⊂ R

r be a subspace. Then for any orthogonal
projection P in Rr , we have

dist(u, H) ≥ dist(Pu, PH).

Proof The statement follows immediately by observing that P is a contraction. ��
Lemma 6.5 Let F be a subspace of Rk , and let v1, v2 ∈ R

k be vectors such that

dim span (F, v1, v2) = dim(F) + 2.

For i ∈ [2], let Fi be the linear span of F and vi . Then,

dist(v1, F) ≤ dist(v1, F2) ‖v2‖2
dist(v2, F1)

.

Proof For any subspace E , we let PE be the orthogonal projection onto E . Let ui :=
PF⊥vi

‖PF⊥vi‖2 . Observe that,

dist(v2, F1) = ‖PF⊥
1

v2‖2 = ‖PF⊥v2 − 〈PF⊥v2, u1〉u1‖2
= ‖PF⊥v2‖2 ‖u2 − 〈u2, u1〉u1‖2,

whence

‖u2 − 〈u2, u1〉u1‖2 = dist(v2, F1)

‖PF⊥v2‖ ≥ dist(v2, F1)

‖v2‖2 .

On the other hand,

‖u2 − 〈u2, u1〉u1‖2 =
√
1− 〈u2, u1〉2 = ‖u1 − 〈u1, u2〉u2‖2,

and therefore

dist(v1, F) = ‖PF⊥v1‖2 = ‖PF⊥v1‖2 ‖u1 − 〈u1, u2〉u2‖2
‖u1 − 〈u1, u2〉u2‖2 = dist(v1, F2)

‖u1 − 〈u1, u2〉u2‖2
≤ dist(v1, F2) ‖v2‖2

dist(v2, F1)
.

��

123



Average-case analysis of the Gaussian elimination…

Lemma 6.6 Let s, k, r ∈ [n − 1] such that s ≤ r − k < r . Fix a realization of A such
that the event Erow(β) holds. Then,

dist
(
(Ais ,[r ])�, Hr ,r−k,s

) ≤ exp
(
6k

(
1+ β

n − r

)
log(n)

)
dist

(
(Ais ,[r ])�, Hr ,r ,s

)
.

Thus, Edist(β) ⊃ Erow(β).

Proof First, we note that for every t ∈ [2, r ],

Ht,t−1 = Pt (Hr ,t−1)

where Pt : Rr "→ R
t is the coordinate projection onto the first t components. Applying

Lemma 6.4 for every 2 ≤ t ≤ r , we obtain

dist
(
(Ait ,[r ])�, Hr ,t−1

) ≥ dist
(
(Ait ,[t])�, Ht,t−1

) ≥ √
2/π n−4(1+β/(n−t)),

where in the last inequality we used the definition of Erow(β). Further, for t ∈ [r −
k + 1, r ], we will apply Lemma 6.5 with

F := Hr ,t−1,s, v1 := (Ais ,[r ])�, and v2 := (Ait ,[r ])�,

so that F1 = Hr ,t−1 and F2 = Hr ,t,s , and from the previous inequality and the
definition of Erow(β) we have

dist(v2, F1) ≥
√
2/π n−4(1+β/(n−r)) and ‖v2‖2 ≤ ‖Ait ,[n]‖2 ≤

√
n + 3

√
β log n.

Lemma 6.5 implies

dist((Ais ,[r ])�, Hr ,t−1,s) ≤
√

π/2 n4(1+β/(n−t))(
√
n + 3

√
β log n) dist((Ais ,[r ])�, Hr ,t,s)

(it is easy to see that in the case dim span {F, v1, v2} < dim(F)+ 2 when the lemma
cannot be applied, the above inequality holds as well). Together with the inequality√
n + 3

√
β log n ≤ 2n1+β/(n−t) for β > 0,

dist
(
Hr ,t−1,s, (Ais ,[r ])�

) ≤ exp

((
1+ β

n − t

)
6 log n

)
dist

(
Hr ,t,s, (Ais ,[r ])�

)
,

t ∈ [r − k + 1, r ].

Finally, applying the above inequality inductively for t from r − k + 1 to r we obtain

dist
(
Hr ,r−k,s, (Ais ,[r ])�

) ≤ exp

(
6k

(
1+ β

n − r

)
log n

)
dist

(
Hr ,r ,s, (Ais ,[r ])�

)
.

��
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Lemma 6.7 For β ≥ 2 and 1 ≤ r ≤ n, the following probability estimate holds:

P(Erow(r , β)c) ≤ (1+ on(1))n
−2β

and

P(Erow(β)c) ≤ n−β.

Proof First, in view of Corollary 4.4, we have

P

{
dist

(
(Air ,[r ])�, Hr ,r−1

) ≤
√

π

2
n−4(1+β/(n−r))

}
≤ n−2(1+β/(n−r))(n−r)

= n−2(n−r+β) ≤ n−2β.

Next, for each i ∈ [n], applying the standard concentration inequality for Lipschitz
functions of Gaussian variables,

P
{‖Ai,[n]‖2 ≥ E ‖Ai,[n]‖2 + t

} ≤ 2 exp(−t2/2), t > 0.

With E‖Ai,[n]‖2 ≤ (E‖Ai,[n]‖22)1/2 ≤
√
n, by taking t := 3

√
β log n we have

P
{‖Ai,[n]‖2 ≥

√
n + 3

√
β log n

} ≤ 2 n−9β/2.

Taking the union bound over i ∈ [n] and taking into account the condition β ≥ 2, we
get the first assertion of the lemma.

The second assertion follows from another application of the union bound. ��

6.2 The smallest singular value of AIr,[r]

Definition 6.8 For k ∈ [n], β, p ≥ 1, let Esq(p, k, β) be the event that

∀r ∈ [k, n − k], sr (AIr ,[r ]) ≥ n−β/(6p).

Proposition 6.9 There is a universal constant C > 0 with the following property. For
any p ≥ 1, there exist n0(p), k1(p) ≤ Cp2 and β6.3 ≤ β1(p) ≤ Cp2 such that for
n ≥ n0(p), β ≥ β1(p), and k1(p) we have

Esq(p, k1(p), β) ⊃ Erow(β) ∩ Erec(p, k0(p), β),

where k0(p) is taken from Proposition 5.2, β6.3 is defined in Proposition 6.3, and Erec(·)
is taken from Definition 5.1. Moreover,

P(Esq(p, k1(p), β)c) ≤ 2n−β.
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Proof Note that if the events’ inclusion above holds then the second assertion of the
proposition follows immediately by combining the bounds P(Erec(p, k0(p), β)c) ≤
n−2β+on(1) from Corollary 5.3 and P(Erow(β)c) ≤ n−β from Lemma 6.7. Thus, we
can focus on proving the first assertion.

Let k1(p) = β1(p) ≥ 400k0(p) p where k0(p) is taken from Proposition 5.2.
Consider an argument by contradiction. Fix any realization of A such that both

Erow(β) and Erec(p, k0(p), β) hold, and such that for some r ∈ [k1(p), n − k1(p)],
sr (AIr ,[r ]) ≤ n−β/(6p), that is, there exists a unit vector u ∈ R

Ir such that

‖(AIr ,[r ])�u‖2 ≤ n−β/(6p)

(we assume here that the column of the matrix (AIr ,[r ])� are indexed over the set Ir ).
Since ‖u‖2 = 1, there is an index s ∈ [r ] such that |uis | ≥ r−1/2 ≥ n−1/2, whence

‖(AIr ,[r ])�u‖2 =
∥∥∥
∑

t∈[r ]
(A{it },[r ])�uit

∥∥∥
2
≥ n−1/2 dist

(
(Ais ,[r ])�, Hr ,r ,s

)
.

Thus, our realization of A and our choice of s satisfy

dist
(
(Ais ,[r ])�, Hr ,r ,s

) ≤ exp(−β log(n)/(6p) + log(n)/2). (52)

Set k := min{2 k0(p), r − s}.
Assume first that s < r , i.e k > 0. In view of the inclusion Erow(β) ⊂ Edist(β) (see

Proposition 6.3), we get

dist((Ais ,[r ])�, Hr ,r−k,s) ≤ exp
(
− β log n/(6p) + log(n)/2+ 6k

(
1+ β

n − r

)
log n

)
.

Since n − r ≥ k1(p) and β ≥ β1(p) = k1(p) ≥ 400k0(p) p ≥ 200kp, we have

1

2
+ 6k

(
1+ β

n − r

)
≤ 7k

(
1+ β

n − r

)
≤ 7 · k1(p)

200p

(
1+ β

n − r

)

≤ 7 · k1(p)
200p

+ 7 · β

200p
≤ β

12p
,

whence

dist
(
(Ais ,[r ])�, Hr ,r−k,s

) ≤ n−β/(12p). (53)

Further, in the situation when k = 0, the inequality (53) is still true as can be
immediately seen from (52).

Next, we will show that (53) leads to contradiction. The argument depends on
whether k = r − s or not.

Case 1 k = r − s. By the definition of the event Erow(β), we have

dist
(
(Ais ,[r ])�, Hr ,s,s

) ≥ dist
(
(Ais ,[s])�, Hs,s,s

) = dist
(
(Ais ,[s])�, Hs,s−1

)
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≥ √
2/π n−4(1+ β

n−s )

≥ √
2/π n−4−β/(50k0(p)p),

where we used that n − s ≥ n − r ≥ k1(p) ≥ 200k0(p) p. In view of the condition
β ≥ 200k0(p) p ≥ 400p,

√
2/π n−4−β/(50k0(p)p) ≥ n−5−β/(50p) ≥ n−β/(25p) > n−β/(12p),

which contradicts (53).
Case 2 k = 2k0(p) < r−s. In this case, (Ais ,[r ])� is a column vector of (AIr−k ,[r ])�

and Hr ,r−k,s is the span of every other column vector (Ais′ ,[r ])
� for s′ ∈ [r − k]\{s}.

Hence, in view of (53),

smin
(
(AIr−k ,[r ])�

) ≤ dist
(
(Ais ,[r ])�, Hr ,r−k,s

) ≤ n−β/12p.

However, this contradicts the definition of the event Esq(p, k0(p), β):

∀r ′ ∈ [k0(p) + 1, n − 2k0], smin
(
(AIr ′ ,[r ′+2k0])�

) ≥ n−β/(20p).

The result follows. ��
The next simple lemma will be used to show that with high probability indices of

the pivot rows obtained in exact arithmetic coincide with the results of the floating
point computations.

Lemma 6.10 There is a universal constant C > 0 and a number n0 ∈ N such that,
assuming n ≥ n0,

P
{
smin(AIr ,[r ]) ≤ t n−C for some 1 ≤ r ≤ n − 1

} ≤ t, t > 0.

Proof In view of Proposition 6.9 (say, applied with p = 1), there are constants
C1, n0 > 0 such that, assuming n ≥ n0,

P
{
smin(AIr ,[r ]) ≤ t n−C for some k1(1) ≤ r ≤ n − k1(1)

} ≤ t, t > 0.

For indices r < k1(1), we use the trivial union bound:

P
{
smin(AIr ,[r ]) ≤ t for some 1 ≤ r < k1(1)

}

≤
∑

I⊂[n], 1≤|I |<k1(1)

P
{
smin(AI ,[|I |]) ≤ t

} ≤ nk1(1) t, t > 0,

where in the last line we used the standard bound on the smallest singular value of a
square Gaussian random matrix [4, 17]. Similarly, we get

P
{
smin(AIr ,[r ]) ≤ t for some n − k1(1) < r ≤ n − 1

} ≤ nk1(1) t, t > 0.

Combining the three estimates above, we get the result. ��
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6.3 Estimating the growth factor in exact arithmetic

Definition 6.11 For β > 1, let Ecol(β) be the event that

∀ j ∈ [n], ‖A[n], j‖2 ≤ √
n + 3

√
β log(n) (54)

and for τ > 1, let Eentry(τ ) be the event that

max
i, j∈[n] |Ai, j | ≥ n−τ . (55)

Lemma 6.12 For any β ≥ 2, we have

P(Ecol(β)c) ≤ n−β;

furthermore, for every τ ≥ 1,

P(Eentry(τ )c) ≤ n−τ n2 .

Proof The upper bound on P(Ecol(β)c) can be derived exactly the same way as in the
argument for Erow(β) (see the proof of Lemma 6.7), so we skip the discussion.

To estimate the complement of Eentry(τ ), we write

P(Eentry(τ )c) ≤ P
{|Ai, j | < n−τ for all i, j

} ≤ n−τ n2 ,

where in the last inequalitywe used that the probability density function of the standard
Gaussian random variable is bounded by 1√

2π
. ��

At this point, we are ready to prove the “exact arithmetic” counterpart of the main
statement of the paper:

Proposition 6.13 There is a universal constant C > 1 and a function ñ : [1,∞) → N

with the following property. Let p ≥ 1, and let n ≥ ñ(p). Then

P

{maxi, j,� |A(�)
i, j |

maxi, j |Ai, j | ≥ nt
}
≤ 5n−pt , t ≥ Cp2.

Proof Recall that the parameter k1(p) = O(p2) was defined in Proposition 6.9. We
can take a universal constant C1 > 0 large enough so that C1 p3 ≥ 600p k1(p) for all
p ≥ 1. Fix β ≥ C1 p3, set τ := β/(100p), and assume n ≥ √

100p. In view of the
assertions of Lemma 6.7, Proposition 6.9, and Lemma 6.12, in order to show that

P

{maxi, j,� |A(�)
i, j |

maxi, j |Ai, j | > nβ/(3p)
}
≤ 5n−β
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(which would imply the statement), it is sufficient to verify that everywhere on the
intersection

Eentry(τ ) ∩ Erow(β) ∩ Ecol(β) ∩ Esq(p, k1(p), β),

we have

maxi, j,� |A(�)
i, j |

maxi, j |Ai, j | ≤ nβ/(3p).

Inwhat follows,we use the notation introduced at the beginning of Sect. 2; in particular,
we work with matrices M(�), 0 ≤ � ≤ n − 1, defined in (3).

Recall that

∀r ∈ [n], maxi, j |M(r)
i, j |

maxi, j |M(r−1)
i, j |

≤ 2. (56)

For r ∈ [k1(p)], we simply use the bound above to get

maxi, j |M(r)
i, j |

maxi, j |Ai, j | ≤ 2k1(p), r ∈ [k1(p)].

Further, for r ∈ (k1(p), n − k1(p)], we write

maxi, j |M(r)
i, j |

maxi, j |Ai, j | = max

⎛

⎜⎝
max

s∈[r ], j≥s |M
(s−1)
is , j

|
maxi, j |Ai, j | ,

max
i∈[n]\Ir , j>r

|M(r)
i, j |

maxi, j |Ai, j |

⎞

⎟⎠ .

In view of formula (4) and our conditioning on the event Esq(p, k1(p), β), for s ∈
[k1(p), n − k1(p)], i ∈ [n]\Is and j > s, we have

|M(s)
i, j | ≤ |Ai, j | + ‖Ai,[s]‖2 1

smin(AIs ,[s])
‖A[s], j‖2

≤ √
n + 3

√
β log n + (

√
n + 3

√
β log n)nβ/(6p)(

√
n + 3

√
β log n)

< 2nβ/(6p)(
√
n + 3

√
β log n)2,

and thus

max
i∈[n]\Ir , j>r

|M(r)
i, j |

maxi, j |Ai, j | ≤ 2nβ/(6p)+β/(100p)(
√
n + 3

√
β log n)2,
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and for every s ∈ [r ] with s > k1(p),

max
j≥s |M

(s−1)
is , j

|
maxi, j |Ai, j | ≤ 2nβ/(6p)+β/(100p)(

√
n + 3

√
β log n)2.

By our earlier observation,

max
s∈[k1(p)], j≥s

|M(s−1)
is , j

|
maxi, j |Ai, j | ≤ 2k1(p).

Combining the estimates together, we conclude that for all r ∈ [n − k1(p)],

maxi, j |M(r)
i, j |

maxi, j |Ai, j | ≤ max
(
2k1(p), 2nβ/(6p)+β/(100p)(

√
n + 3

√
β log n)2

)
.

For the “last” k1(p) admissible values of r , we rely on (56) again to get

∀r ∈ (n − k1(p), n],
maxi, j |M(r)

i, j |
maxi, j |Ai, j | ≤ maxi, j |M(n−k1(p))

i, j |
maxi, j |Ai, j | 2k1(p).

In the end, we make use of our bound β/(6p) ≥ 100k1(p) to conclude that for all
large n,

maxi, j,� |A(�)
i, j |

maxi, j |Ai, j | = maxr ,i, j |M(r)
i, j |

maxi, j |Ai, j | ≤ n
β
3p .

This completes the proof. ��

7 GEPP in floating point arithmetic

In this section we transfer the statement of Proposition 6.13 into the proper context
of the floating point arithmetic. We expect a part of the argument in this section
(specifically, in the proof of Lemma 7.2) to be rather standard for experts in numerical
analysis. Still, we prefer to provide all the details to make the paper self-contained.

Lemma 7.1 Let A be an n×n Gaussian matrix and A = M(0),M(1), . . . ,M(n−1) be
the sequence of matrices generated by the GEPP in exact arithmetic (see (3)). Then,
for every 1 ≤ k ≤ n − 1,

∀δ ≥ 0, P
{
(1− δ)|M(k−1)

ik ,k
| < max

i /∈Ik
|M(k−1)

i,k |} ≤ δ(n − k + 1).
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Proof Fix any 1 ≤ k ∈ n−1.With the vector vk(A) defined at the beginning of Sect. 4
and in view of (4), for every i /∈ Ik−1(A) we have

|M(k−1)
i,k | = |〈vk(A), (Mi,[n])�〉|.

Fix any subset I ⊂ [n] of cardinality k − 1 and any (k − 1) × k matrix M , and
condition on the realizations Ik−1(A) = I and AIk−1,[k] = M . In what follows, we
denote the conditional probability measure by P̃. Under this conditioning, vk(A) and
the polytope K := Kk−1(A) (see Sect. 4; here we adopt the convention K0(A) := R

n)
are fixed. For i /∈ I , let

Xi := |〈vk(A), (Ai,[n])�〉|.

By Lemma 4.1, under the conditioning the vectors Ai,[n] for i /∈ I are i.i.d., with the
probability density function

ρ(y) = 1K (y)
exp(−‖y‖22/2)∫

K exp(−‖y′‖22/2) dy′
, y ∈ R

n,

which is symmetric and log-concave (i.e y "→ log(ρ(y)) is a concave func-
tion). Since log-concavity is preserved under taking marginals, the random variable
〈 vk (A)
‖vk (A)‖2 , (Ai,[n])�〉 is also log-concave and symmetric under the conditioning. This
implies, in particular, that the probability density function ρX of Xi ’s (i /∈ I ) is non-
increasing on the positive semi-axis.

Now, since Xik = maxi /∈I Xi , we have

P̃
{
(1− δ)Xik ≥ max

i /∈Ik
Xi

} = (n − k + 1)

∞∫

0

( ∫ (1−δ)r

0
ρX (t) dt

)n−k
ρX (r) dr ,

whereas

(n − k + 1)

∞∫

0

( ∫ r

0
ρX (t) dt

)n−k
ρX (r) dr = 1.

Combining the two identities and using the monotonicity of ρX , we get

P̃
{
(1− δ)Xik ≥ max

i /∈Ik
Xi

} =
(

∞∫

0

( ∫ (1−δ)r
0 ρX (t) dt

)n−k
ρX (r) dr

∞∫

0

( ∫ r
0 ρX (t) dt

)n−k
ρX (r) dr

)

≥ (1− δ)n−k ≥ 1− δ(n − k + 1).

The result follows by applying Fubini’s theorem. ��
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Lemma 7.2 Let M an n × n invertible matrix and M̂ := fl(M). Let PM = LU
be the PLU-factorization of M in exact arithmetic, assume that P = Idn, and let
M = M (0), M (1), . . . , M (n−1) = U be the sequence of matrices obtained during the
elimination process. Let δ ∈ (u, 1/3) be a parameter and assume that the matrix M
and the unit roundoff u satisfy

8n2 u max
i, j,�

|M (�)
i, j | ≤

1

12

smin(M[k],[k])3

‖M‖2
δ

3
, k = 1, . . . , n − 1,

and

∀k ∈ [n − 1], maxi∈[k+1,n] |M (k−1)
i,k |

|M (k−1)
k,k |

≤ 1− δ. (57)

Then GEPP in floating point arithmetic succeeds for M̂; the computed permutation
matrix P̂ = Idn, and, denoting by M̂ = M̂ (0), M̂ (1), . . . , M̂ (n−1) the sequence of
matrices obtained during the elimination process, for every k = 0, 1, . . . , n − 1,

max
i, j

|M̂ (k)
i, j | ≤ 2 max

i, j,�
|M (�)

i, j |.

Proof We will prove the statement by induction. Fix any k ∈ [n− 1]. Assume that all
of the following holds

(a) The computed matrix M̂ (k−1) has been produced by taking indices of the first k−1
pivot rows to be 1, 2, . . . , k − 1, and |M̂ (k−1)

k,k | > maxi∈[k+1,n] |M̂ (k−1)
i,k |, so that

the index of the k-th computed pivot row is k.
(b) M̂ (k−1) = Gk−1 · · ·G1(M + Ẽ (k−1)), where Gi is the Gauss transformation to

eliminate i-th row of M̂ (i−1), 1 ≤ i ≤ k − 1, and where the error matrix Ẽ (k−1)

satisfies

‖Ẽ (k−1)‖ ≤ 8kn u max
i, j,�

|M (�)
i, j |.

(c) max
i, j

|M̂ (v)
i, j | ≤ 2 max

i, j,�
|M (�)

i, j | for all 0 ≤ v ≤ k − 1.

Note that, by the assumptions on the matrix M , the induction hypothesis for the base
case k − 1 = 0 is satisfied.

Let Gk = Idn − τ̃ (k) e�k be the Gauss transformation which eliminates entries

M̂ (k−1)
i,k , i = k + 1, . . . , n, so that in exact arithmetic we have

τ̃
(k)
i = M̂ (k−1)

i,k

M̂ (k−1)
k,k

, (Gk M̂
(k−1))i,k = 0, i = k + 1, . . . , n.
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The computed matrix M̂ (k) can be explicitly written as

M̂ (k)
i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i ∈ [k + 1, n] and j = k,

fl
(
M̂ (k−1)

i, j − fl
(
fl
(
M̂(k−1)

i,k

M̂(k−1)
k,k

)
M̂ (k−1)

k, j

))
, if i, j ∈ [k + 1, n],

M̂ (k−1)
i, j , otherwise

(note that we “force” M̂ (k)
i,k to be 0 for i ∈ [k + 1, n] whereas the f.p. expression

fl
(
fl
( M̂(k−1)

i,k

M̂(k−1)
k,k

)
M̂ (k−1)

k,k

)
is not necessarily equal to M̂ (k−1)

i,k ). Denote

E (k) := M̂ (k) − Gk M̂
(k−1).

Since the first k rows of E (k) are 0, for every i ∈ [k] we have Gi E (k) = E (k), so M̂ (k)

can be expressed in the form

M̂ (k) = Gk
(
M̂ (k−1) + Gk−1 · · ·G1E

(k)).

Applying the above equality together with the induction hypothesis, we obtain

M̂ (k) = GkGk−1 · · ·G1(M + Ẽ (k)), (58)

where Ẽ (k) := Ẽ (k−1) + E (k). Note that non-zero entries of E (k) are all contained
within the bottom right (n−k)×(n−k) submatrix of E (k), and for every i, j ∈ [k+1, n]
we have

|E (k)
i, j | =

∣∣∣∣fl
(
M̂ (k−1)

i, j − fl
(
fl
( M̂ (k−1)

i,k

M̂ (k−1)
k,k

)
M̂ (k−1)

k, j

))
−

(
M̂ (k−1)

i, j − M̂ (k−1)
i,k

M̂ (k−1)
k,k

M̂ (k−1)
k, j

)∣∣∣∣

≤ 3(u+ O(u2))max

{
|M̂ (k−1)

i, j |,
∣∣∣∣
M̂ (k−1)

i,k

M̂ (k−1)
k,k

M̂ (k−1)
k, j

∣∣∣∣

}

≤ 4umax
{|M̂ (k−1)

i, j |, |M̂ (k−1)
k, j |}

≤ 4umax
i ′, j ′

|M̂ (k−1)
i ′, j ′ | ≤ 8u max

i ′, j ′,�
|M (�)

i ′, j ′ |,

since there are 3 floating point operations and
|M̂(k−1)

i,k |
|M̂(k−1)

k,k | ≤ 1, and where in the last

inequality we used the induction assumption (c). Thus,

‖Ẽ (k)‖ ≤ ‖Ẽ (k−1)‖ + ‖E (k)‖ ≤ 8knumax
i, j,�

|M (�)
i, j | + nmax

i, j
|E (k)

i, j |

≤ 8(k + 1)numax
i, j,�

|M (�)
i, j |,
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confirming condition (b) on the kth step. Moreover, in view of the assumptions on M
we then have

‖Ẽ (k)‖ ≤ 8n2umax
i, j,�

|M (�)
i, j | ≤

1

12

min1≤v≤n−1 smin(M[v],[v])3

‖M‖2
δ

3
. (59)

Further, by the assumptions on smin(M[k],[k]) and in view of the bound on the norm
of E (k), the matrix (M+ Ẽ (k))[k],[k] is invertible. Hence, for every i ∈ [k+1, n] there
is a unique linear combination Li of the first k rows of M + Ẽ (k) such that the vector
rowi (M+ Ẽ (k))− Li has first k components equal zero. We conclude that necessarily
the matrices G1,G2, . . . ,Gk are Gauss transformations for M + Ẽ (k), whence for
every j ∈ [k + 1, n] we have

M̂ (k)
j,[k+1,n] = (M + Ẽ (k)) j,[k+1,n] − (M + Ẽ (k)) j,[k]

(
(M + Ẽ (k))[k],[k]

)−1

(M + Ẽ (k))[k],[k+1,n], (60)

whereas

M (k)
j,[k+1,n] = Mj,[k+1,n] − Mj,[k]

(
M[k],[k]

)−1
M[k],[k+1,n]. (61)

We will rely on formulas (60) and (61) to show that M̂ (k) and M (k) are sufficiently
close entry-wise.

In view of (60) and (61), for every j ∈ [k + 1, n] we have

‖M̂ (k)
j,[k+1,n] − M (k)

j,[k+1,n]‖ ≤ ‖Ẽ (k)
j,[k+1,n]‖ + 2‖Ẽ (k)‖ ‖M‖ ∥∥((M + Ẽ (k))[k],[k]

)−1∥∥

+ ∥∥Ẽ (k)‖2 ‖((M + Ẽ (k))[k],[k]
)−1∥∥

+ ‖M‖2 ∥∥((M + Ẽ (k))[k],[k]
)−1 − (

M[k],[k]
)−1∥∥.

Note that

(
(M + Ẽ (k))[k],[k]

)−1 − (
M[k],[k]

)−1 = −(
M[k],[k]

)−1
Ẽ (k)
[k],[k]

(
(M + Ẽ (k))[k],[k]

)−1
,

and that the bound 2‖Ẽ (k)‖ ≤ smin(M[k],[k]) implies

‖((M + Ẽ (k))[k],[k]
)−1∥∥ ≤ 2

∥∥(M[k],[k])−1
∥∥.

Thus, applying (59), for every i = k + 1, . . . , n we get

‖M̂ (k)
i,[k+1,n] − M (k)

i,[k+1,n]‖
≤ ‖Ẽ (k)

i,[k+1,n]‖ + 6‖Ẽ (k)‖ ‖M‖ ∥∥(M[k],[k])−1
∥∥+ 2‖M‖2 ∥∥(M[k],[k]

)−1∥∥2 ‖Ẽ (k)‖

≤ 1

12

min1≤v≤n−1 smin(M[v],[v])3

‖M‖2
δ

3

(
1+ 6‖M‖

smin(M[k],[k])
+ 2‖M‖2

smin(M[k],[k])2

)
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≤ (δ/3) min
1≤v≤n−1

smin(M[v],[v]). (62)

Immediately we have

max
i, j∈[k+1,n] |M̂

(k)
i, j | ≤ max

i, j∈[k+1,n] |M
(k)
i, j | + smin(M[k],[k]) ≤ 2max

i, j,�
|M (�)

i, j |.

By the nature of the Gaussian Elimination process, the first k rows of M̂ (k) coincide
with those of M̂ (k−1), and the bottom left (n − k)× k submatrix of M̂ (k) is zero. And
thus

max
i, j

|M̂ (k)
i, j | ≤ 2max

i, j,�
|M (�)

i, j |,

confirming the condition (c) for the kth step.
It remains to check the condition (a). Note that we only need to consider the case

k ≤ n − 2. Using the definition of vectors vk(·) from the beginning of Sect. 4, we can
write

|M (k)
k+1,k+1| = Mk+1,k+1 − Mk+1,[k]M−1

[k],[k]M[k],k+1

= |〈vk(M), M�
k+1,[k+1]〉|

= ‖vk(M)‖2 · dist(H , M�
k+1,[k+1]) ≥ 1 · smin(M[k+1],[k+1]),

where H ⊂ R
k+1 is the subspace spanned by the first k rows ofM[k+1],[k+1]. Applying

(62) and (57), we conclude that

|M̂ (k)
k+1,k+1| ≥ (1− δ/3)|M (k)

k+1,k+1| > max
i∈[k+1,n] |M

(k)
i,k+1| + (δ/3)|M (k)

k+1,k+1|

≥ max
i∈[k+1,n] |M

(k)
i,k+1| + (δ/3)smin(M[k+1],[k+1]) ≥ max

i∈[k+1,n] |M̂
(k)
i,k+1|,

and the result follows. ��

Proof of TheoremA In view of Lemma 6.10, there are C ′, n0 > 0 such that, assuming
n ≥ n0,

P
{
smin(AIr ,[r ]) ≤ t n−C ′

for some 1 ≤ r ≤ n − 1
} ≤ t, t > 0.

On the other hand, standard concentration estimates for the spectral norm of Gaussian
matrices (see, for example, [20, Chapter 4]) implies that, assuming n is sufficiently
large,

P
{‖A‖ ≥ C ′′√n

} ≤ 2−n .
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Let δ ∈ (u, 1/3) be a parameter to be chosen later, and define the events

E1(δ) :=
{
8n2 u1/2 ≤ 1

12

smin(AIk ,[k])3

‖A‖3
δ

3
, k = 1, . . . , n − 1

}
,

E2(δ) :=
{max

i, j,�
|A(�)

i, j |
‖A‖ ≤ u−1/2

}
,

E3(δ) :=
{
maxi /∈Ik |M(k−1)

i,k |
|M(k−1)

ik ,k
|

≤ 1− δ, k = 1, . . . , n − 1

}
.

The above observations on the spectral norm and the smallest singular values imply

P(E1(δ)) ≥ 1− 2−n − nC
′ · (7C ′′n7/6u1/6δ−1/3).

Further, Proposition 6.13 (applied, say, with p = 2) yields for all sufficiently large n,

P(E2(δ)) ≥ 1− nC
′′′
u

for some universal constant C ′′′ > 0. Finally, in view of Lemma 7.1, we have

P(E3(δ)) ≥ 1− δ n2.

Thus, the intersection of the events E1(δ) ∩ E2(δ) ∩ E3(δ) has probability at least

1− 2−n − nC
′ · (7C ′′n7/6u1/6δ−1/3)− nC

′′′
u− δ n2.

Taking δ := u1/8, we get that for any large enough n,

P
(E1(u1/8) ∩ E2(u1/8) ∩ E3(u1/8)

) ≥ 1− nC̃u1/8,

where C̃ > 0 is a universal constant. It remains to note that, in view of Lemma 7.2,
everywhere on the intersection E1(u1/8) ∩ E2(u1/8) ∩ E3(u1/8) the GEPP in float-
ing point arithmetic succeeds for Â(0) = fl(A); the computed permutation matrix P̂
coincides with the matrix P from the PLU–factorization of A in exact arithmetic,
and

gGEPP(A) ≤
4 max

i, j,�
|A(�)

i, j |
max
i, j

|Ai, j | .

A second application of Proposition 6.13, now to bound gGEPP(A) conditioned on the
intersection E1(u1/8) ∩ E2(u1/8) ∩ E3(u1/8), completes the proof. ��

123



H. Huang, K. Tikhomirov

8 Further questions

In this section, we mention some open questions related to the probabilistic analysis
of the Gaussian Elimination with Partial Pivoting.

Sharp estimate of the growth factor Our main result shows that with probability
close to one, the growth factor of GEPP is at most polynomial in the matrix dimension,
gGEPP(A) ≤ nC . Our analysis leaves the constant C > 0 unspecified, and it would
be of interest to obtain an estimate with a reasonable (single digit) explicit constant.
Furthermore, as we mentioned in the introduction, it was suggested in [5] based on
numerical simulations that for large n, gGEPP(A) = O(n1/2+on(1)) with probability
close to one. The problem of finding the optimal constant power of n in the growth
factor estimate seems to require essential new ideas. At the same time, it is natural to
expect that recurrent estimates of the singular spectrum of submatrices obtained in the
GEPP process should remain a key element of the future refinements of our result.

The probability that the Gaussian Elimination with Partial Pivoting succeeds in
the floating point arithmetic Our main result states that, under the assumption that the
dimension n is sufficiently large, with probability at least 1−u1/8 nC̃ the GEPP in f.p.
arithmetic succeeds for fl(A), and the computed permutation matrix agrees with that
obtained in exact arithmetic. We expect the probability estimate to be much stronger,
perhaps of the form 1− u1−on(1) nC̃ , and leave this as an open problem.

Smoothed analysis of the growth factor Our proof does not extend to the smoothed
analysis settingwithout incurring significant losses in the upper estimate for the growth
factor. In fact, our treatment of the partially random blockmatrices B in Sect. 3 heavily
relies on the assumption that the norm of a submatrix within the “random part” of B
is typically of the same order as the square root of that submatrix’ larger dimension.
Establishing a polynomial upper bound on the growth factor in the presence of a
non-random shift (of polynomial operator norm) is an interesting and challenging
problem.

A Proof of Proposition 3.2

In this section, we provide a proof of Proposition 3.2 which is based on the restricted
invertibility argument of Nguyen [12].

The classical restricted invertibility theorem was derived by Bourgain–Tzafriri [2];
see, in particular, [11, 16, 19] for extensions and a comprehensive discussion. In what
follows, we will use the estimate from paper [16]:

Theorem A.1 [16] Let B be an u × t (t ≥ u) matrix. Then for any ε ∈ (0, 1) with
ε2‖B‖2HS
‖B‖2 ≥ 1 there exists a subset J ⊂ [t] such that

|J | ≥
⌊

ε2‖B‖2HS

‖B‖2
⌋

and s|J |(B[u]×J ) ≥ (1− ε)‖B‖HS√
t

.
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Further, we recall an anti-concentration estimate for orthogonal projections of ran-
dom vectors with independent components of bounded density, obtained in [13] (see
also [10] for improved constants).

Theorem A.2 [13] Let X be a random vector in R
� with independent components

having the distribution densities uniformly bounded by ρ > 0. Then for every d ≤ �

and every d-dimensional subspace H ⊂ R
�, the distribution density of the orthogonal

projection of X onto H is bounded above by (Cρ)d , where C > 0 is a universal
constant.

Now, we are ready to prove Proposition 3.2. Although the proof essentially repeats
the one in [12], we provide the full argument for completeness. The argumentworks for
matrices M with i.i.d entries with continuous distribution density uniformly bounded
above by ρ > 0.

Proof of Proposition 3.2 In view of the interlacing properties of singular values (see,
for example, [3, Theorem 1.4]), we can assume without loss of generality that t = u.
We fix an index 1 ≤ i ≤ u − 1, and s ∈ (0, 1]. Denote by E the event

{
su−i (M) ≤ ci s√

u

}
,

where c = c(ρ) > 0 will be chosen later. Let Z� be the u × i random orthogonal
matrix measurable w.r.t σ(M) and such that ‖Mcol j (Z�)‖2 ≤ ci s√

u
, 1 ≤ j ≤ i ,

everywhere on E (one may take Z� as the matrix whose columns are the normalized
right singular vectors of M corresponding to i smallest singular values of M).

In view of Theorem A.1, there is a (random) subset J ⊂ [u] such that

|J | = �i/2⌋ and s|J |(Z[i]×J ) ≥
(
1− 2−1/2)√i/u

everywhere on the probability space.
In particular, since s|J |(Z[i]×J ) > 0, there exists an i × |J | matrix Y such that

(Z[i]×J )
�Y = Ii and hence ‖Y‖ ≤ (

1− 2−1/2
)−1√

u/i everywhere.
Define a subspace

HJ := span {col j (M)} j∈J c ,

and let P be the orthogonal projection onto H⊥
J . We then have

PMZ� = P
(
M[u]×J (Z[i]×J )

� + M[u]×J c (Z[i]×J c )
�) = PM[u]×J (Z[i]×J )

�,

whence on the event E ,

i

(
ci s√
u

)2

· (1− 2−1/2)−2 u

i
≥ ‖MZ�Y‖2HS

≥ ‖PMZ�Y‖2HS
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= ‖PM[u]×J‖2HS

=
∑

j∈J
dist2(col j (M), HJ ).

So, we can write

P(E) ≤
∑

I⊂[u]: |I |=�i/2
⌋
P

{∑

j∈I
dist2(col j (M), HI ) ≤

(
ci s

)2 · (1− 2−1/2)−2
}

≤
∑

I⊂[u]: |I |=�i/2
⌋

∑

I ′⊂I , |I ′|≥|I |/2
P

{
dist2(col j (M), HI ) ≤ 2

|I |
(
ci s

)2 · (1− 2−1/2)−2
, j ∈ I ′

}
.

To estimate the probabilities on the right hand side of the inequality, we apply Theo-
rem A.2. Observe that, in view of Theorem A.2,

P
{
dist(col j (M), HI ) ≤

√
8
(
c
√
i s

) · (1− 2−1/2)−1} ≤ (C ′cρs)|I |,

for some universal constant C ′ > 0. Thus,

P(E) ≤ (2u)�i/2�(C ′cρs)(�i/2�)2/2.

The result follows by choosing a sufficiently small c = c(ρ). ��

B Proofs of the auxiliary results in Sect. 5.1

Proof of Lemma 5.6 As a verification of (31), we have

r − �(1− (1+ ε̃)−imax−1)r� ≤ (1+ ε̃)−imax−1r + 1

≤ (1+ ε̃)−imax−1 · 4ms + 1 <︸︷︷︸
by (29)

9L

ε̃
.

For the upper bound of imax, we have

(1+ ε̃)−imaxms ≥ ε̃(1+ ε̃)−imaxms ≥ L ≥ 1,

which implies

imax log(1+ ε̃) ≤ log(ms) ⇒ imax ≤ 2 log(ms)

ε̃
,

where we used that log(1+ t) ≥ t
2 for 0 ≤ t ≤ 1

4 . ��
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Proof of Lemma 5.7 First, from the definition of fi and since r = fi (r̃) we have

r ≤ r̃/
(
1+ (1+ ε̃)−i

) ≤ r + 1
⇒ (

1+ (1+ ε̃)−i
)
r ≤ r̃ ≤ (

1+ (1+ ε̃)−i
)
r + 2

⇔ (1+ ε̃)−i r ≤ x ≤ (1+ ε̃)−i r + 2
. (63)

Thus, the lower bound for x in (33) is obtained. Further, in view of the definition of
imax, and since r ≥ ri ≥ ms ,

2 ≤ L ≤ ε̃(1+ ε̃)−imaxms ≤ 1

20
(1+ ε̃)−ims ≤ 1

20
(1+ ε̃)−i ri ≤ 1

20
(1+ ε̃)−i r .

Combining this with the last inequality in (63), we obtain

x ≤ (1+ ε̃)−i r + 2 ≤ 21

20
(1+ ε̃)−i r .

Next, we will verify the conditions on the parameters which appear in Proposi-
tion 3.3. For convenience, we itemize the rest of the proof according to the inequalities
we wish to check:

1. r − �(1 − (1 + ε̃)−i)r� ≤ x ≤ r. First, the inequality (1 + ε̃)−i r ≤ x together
with x is an integer implies x ≥ �(1+ ε̃)−i r�. Since

∀t ∈ [0, r ], �r − t� + �t� = r ,

we have

r − �(1− (1+ ε̃)−i )r� = �(1+ ε̃)−i r� ≤ x .

For the upper bound on x , by the definition of ith we have (1+ ε̃)−ithms ≤ ms/8,
which implies

x ≤ 21

20
(1+ ε̃)−i r ≤ 21

20
(1+ ε̃)−ith · 4ms ≤ ms ≤ r .

2. ε̃x ≥ 4 and ε̃(1+ ε̃)−ir ≥ 2. This follows immediately as

ε̃x ≥ ε̃(1+ ε̃)−i r ≥ ε̃(1+ ε̃)−imaxms ≥ L ≥ 4.

3. 3(1+ ε̃)−i−1r − (1+ ε̃)−ir ≥ x + 1+ 11ε̃x. Since ε̃ ≤ 1
28 , we have, in view of

the above,

3(1+ ε̃)−i−1r − (1+ ε̃)−i r ≥ 3

2
(1+ ε̃)−i r ≥ 10

7
x,

whereas x + 1+ 11ε̃x ≤ x + 12ε̃x ≤ 10
7 x . ��
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Proof of Lemma 5.8 First, by the definition of ri ’s we have ri = ms for i ∈ [ith].
Next, assume that the statement is true for all indices in an interval [i], for some
i ∈ [ith, imax]. We will show it holds for i + 1. Fix for a moment any i ′ ∈ [ith, i]. By
(33) (applied with x = ri ′+1 − ri ′ = ri ′+1 − fi ′(ri ′+1)) we have

ri ′+1 − ri ′ ≤21

20
(1+ ε̃)−i ′ri ′ ≤ 21

20
(1+ ε̃)−ith · 2ms .

The definition of ith and the conditions on ε̃ imply 21
20 (1 + ε̃)−ith · 2ms ≤ ε̃

2ms , and
we obtain

ri ′+1 − ri ′ ≤ ε̃ms

2
(1+ ε̃)−(i ′−ith).

Finally, summing up over all i ′ ∈ [ith, i], we obtain

ri+1 − rith =
∑

i ′∈[ith ,i]

(
ri ′+1 − ri ′

) ≤
∑

i ′∈[ith ,i]

ε̃ms

2
(1+ ε̃)−(i ′−ith) ≤ ms .

The result follows. ��
Proof of Lemma 5.10 For the first summand, from the definition of hs(i) and since
x ≥ (1+ ε̃)−i r ≥ (1+ ε̃)−ims (see Lemma 5.7), we get

x hs(i)
ε̃x/64 ≤ x exp

(
− 128 log n

ε̃2(1+ ε̃)−ims

ε̃x

64

)
≤ x exp(−2 log n) = n−1, (64)

where the last inequality follows as x ≤ r̃ ≤ ms+2 ≤ n. Thus,

2x ε̃x/2hs(i)
(ε̃x)2/64 = 2

(
xhs(i)

ε̃x/32)ε̃x/2 ≤︸︷︷︸
by (64)

2n−ε̃x/2hs(i)
(ε̃x)2/128. (65)

As ε̃x/2 ≥ 2 (see Lemma 5.7), for n ≥ 2 we have

2x ε̃x/2hs(i)
(ε̃x)2/64 ≤ 1

2
hs(i)

(ε̃x)2/128.

For the second and third summands, since (1+ ε̃)−i r ≥ 20
21 x , we obtain

4 exp
(− cx2 ε̃/hs(i)

2)+ C̃ exp
(− cε̃2(1+ ε̃)−i r x/hs(i)

2)

≤ (4+ C̃) exp
(
− 20

21

c

hs(i)2
(ε̃x)2

)
. (66)

Now, we impose first constraint on hs(i):

4+ C̃ ≤ 1

2
exp

( c

hs(i)2

)
,
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which can be achieved by taking Ch large enough depending only on C̃ and c. Then,
since ε̃x ≥ 4,

(4+ C̃) exp
(
− 20

21

c

hs(i)2
(ε̃x)2

)
≤ 1

2
exp

(( 1

16
− 20

21

) c

hs(i)2
(ε̃x)2

)

≤ 1

2
exp

(
− c

2hs(i)2
(ε̃x)2

)
.

Next, as the function t "→ t2 log(1/t) converges to 0 when t ↘ 0, we can suppose by
taking Ch large enough that

hs(i)
2 log(1/hs(i)) ≤ 64c,

which implies

1

2
exp

(
− c

2hs(i)2
(ε̃x)2

)
≤ 1

2

(
− log(1/hs(i))

128
(ε̃x)2

)
= 1

2
(hs(i))

(ε̃x)2/128.

Finally, combining the last estimate with (65), we obtain

2x ε̃x/2 hs(i)
(ε̃x)2/64 + 4 exp

(− cx2 ε̃/hs(i)
2)+ C̃ exp

(− cε̃2(1+ ε̃)−i r x/hs(i)
2)

≤ hs(i)
(ε̃x)2/128,

and the lemma follows since hs(i) ≤ exp
( − 128α log n

ε̃2(1+ε̃)−i ms

)
and x ≥ (1 + ε̃)−i r ≥

(1+ ε̃)−ims . ��
Proof of Lemma 5.11 First, as ith ≤ 2 log(ms)/ε̃ ≤ 2 log(n)/ε̃ (see (32)) and in view
of the definition of gs(i), we have

gs(ith) = c′

2
√
ms

16−ithmsn
−α ≥ c′

2
n−1/2n−2 log(16)/ε̃n−α ≥ c′

2
n−7/ε̃−α. (67)

To estimate gs(imax + 1), we write

gs(imax + 1)

gs(ith)
=

imax∏

i=ith

gs(i + 1)

gs(i)
≥

imax∏

i=ith

(c′ε̃
32

hs(i)
5
)
. (68)

By the definition of hs(i),

∀i ∈ [ith, imax], hs(i) ≥ exp
(
− 128α log n

ε̃2(1+ ε̃)−ims
− Ch

)
. (69)

Returning to (68), we obtain

gs(imax + 1)

gs(ith)
≥
(c′ε̃
32

e−5Ch
)imax

exp
(
− 5 · 128α log n

ε̃ · ε̃(1+ ε̃)−imaxms

∞∑

j=0

(1+ ε̃)− j
)
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≥
(c′ε̃
32

e−5Ch
)2 log(n)/ε̃

exp
(
− 5 · 128α log n

ε̃

1+ ε̃

ε̃

)
,

where we used imax ≤ 2 log(ms)/ε̃ ≤ 2 log(n)/ε̃, ε̃(1 + ε̃)−imaxms ≥ L ≥ 1, and∑∞
j=0(1 + ε̃)− j = 1+ε̃

ε̃
. Together with (67) and since α ≥ 1, we can simplify the

bound to have the form

gs(imax + 1) ≥ n−C(ε̃)α.

��

Funding Open Access funding provided by Carnegie Mellon University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford University Press, Oxford
(2013)

2. Bourgain, J., Tzafriri, L.: Invertibility of “large” submatrices with applications to the geometry of
Banach spaces and harmonic analysis. Israel J. Math. 57(2), 137–224 (1987)

3. Chafaï, D.: Singular values of random matrices (2009)
4. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl.

9(4), 543–560 (1988)
5. Edelman, A., Mascarenhas, W.: On the complete pivoting conjecture for a Hadamard matrix of order

12. Linear Multilinear Algebra 38(3), 181–187 (1995)
6. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-

ences, 4th edn. Johns Hopkins University Press, Baltimore (2013)
7. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia (2002)
8. Higham, N.J.: How accurate is Gaussian Elimination? Technical report (1989)
9. Litvak, A.E., Tikhomirov, K., Tomczak-Jaegermann, N.: Small ball probability for the condition num-

ber of random matrices. In: Geometric Aspects of Functional Analysis. Vol. II, pp. 125–137, Lecture
Notes in Math., 2266. Springer, Cham

10. Livshyts, G., Paouris, G., Pivovarov, P.: On sharp bounds for marginal densities of product measures.
Israel J. Math. 216(2), 877–889 (2016)

11. Naor, A., Youssef, P.: Restricted invertibility revisited. In: A Journey Through Discrete Mathematics,
pp. 657–691. Springer, Cham (2017)

12. Nguyen, H.H.: Random matrices: overcrowding estimates for the spectrum. J. Funct. Anal. 275(8),
2197–2224 (2018)

13. Rudelson, M., Vershynin, R.: Small ball probabilities for linear images of high-dimensional distribu-
tions. Int. Math. Res. Not. IMRN 2015(19), 9594–9617 (2015)

14. Sankar, A.: Smoothed Analysis of Gaussian Elimination. Ph.D. thesis. MIT (2004)

123

http://creativecommons.org/licenses/by/4.0/


Average-case analysis of the Gaussian elimination…

15. Sankar, A., Spielman, D.A., Teng, S.-H.: Smoothed analysis of the condition numbers and growth
factors of matrices. SIAM J. Matrix Anal. Appl. 28(2), 446–476 (2006)

16. Spielman, D.A., Srivastava, N.: An elementary proof of the restricted invertibility theorem. Israel J.
Math. 190, 83–91 (2012)

17. Szarek, S.J.: Condition numbers of random matrices. J. Complex. 7(2), 131–149 (1991)
18. Trefethen, L.N., Schreiber, R.S.: Average-case stability of Gaussian elimination. SIAM J.Matrix Anal.

Appl. 11(3), 335–360 (1990)
19. Vershynin, R.: John’s decompositions: selecting a large part. Israel J. Math. 122, 253–277 (2001)
20. Vershynin, R.: High-Dimensional Probability. Cambridge Series in Statistical and Probabilistic Math-

ematics, vol. 47. Cambridge University Press, Cambridge (2018)
21. Wilkinson, J.H.: Error analysis of direct methods of matrix inversion. J. Assoc. Comput. Mach. 8,

281–330 (1961)
22. Yeung, M.-C., Chan, T.F.: Probabilistic analysis of Gaussian elimination without pivoting. SIAM J.

Matrix Anal. Appl. 18(2), 499–517 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Average-case analysis of the Gaussian elimination  with partial pivoting
	Abstract
	1 Introduction
	2 Outline of the proof
	2.1 Sankar's argument
	2.2 High-level structure of the proof of the main theorem

	3 Intermediate singular values of partially random block matrices
	4 Random polytopes, and distances to pivot rows
	5 A recursive argument
	5.1 Choice of parameters and the growth function
	5.2 Good events, and probability estimates

	6 The smallest singular value and the growth factor in exact arithmetic
	6.1 Distance to subspaces
	6.2 The smallest singular value of AIr,[r]
	6.3 Estimating the growth factor in exact arithmetic

	7 GEPP in floating point arithmetic
	8 Further questions
	A Proof of Proposition 3.2
	B Proofs of the auxiliary results in Sect.5.1
	References



