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Abstract
We introduce a natural measure on bi-infinite random walk trajectories evolving in a
time-dependent environment driven by the Langevin dynamics associated to a gradient
Gibbs measure with convex potential. We derive an identity relating the occupation
times of the Poissonian cloud induced by this measure to the square of the corre-
sponding gradient field, which—generically—is not Gaussian. In the quadratic case,
we recover a well-known generalization of the second Ray–Knight theorem. We fur-
ther determine the scaling limits of the various objects involved in dimension 3, which
are seen to exhibit homogenization. In particular, we prove that the renormalized
square of the gradient field converges under appropriate rescaling to theWick-ordered
square of a Gaussian free field on R3 with suitable diffusion matrix, thus extending a
celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.

Mathematics Subject Classification 60G60 · 82B20 · 82B41

1 Introduction

Random-walk representations and isomorphism theorems have a long history in math-
ematical physics and probability theory, going back at least to works of Symanzik [68],
Ray [60] and Knight [45], among others; we refer to the monographs [35, 49, 54, 72]
and references therein for a more exhaustive overview. Recent developments, not cap-
tured by these references, include signed versions of some of these identities and their
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characterization through cluster capacity observables, see [30, 50, 52, 74], continuous
extensions in dimension two [3, 9], applications to percolation problems in higher
dimensions [29, 50], to cover times, see e.g. [1, 26, 27, 41], and generalizations to
different target spaces [10, 11, 42, 51], with ensuing relevance e.g. to the study of
reinforced processes.

In the present article, we investigate similar questions for a broader class of (generi-
cally) non-Gaussian scalar gradient models introduced by Brascamp et al. [18], which
have received considerable attention, see [8, 19, 36, 38, 58] and further references
below, in particular, Remark 5.2,(2). In a sense, our findings assess the “stability” of
such identities under gradient perturbations.

We now explain our main results, which appear in Theorems 4.3 and 5.1 below. We
consider the lattice Zd , for d ≥ 3, and for ϕ : Zd → R the (formal) Hamiltonian

H(ϕ)
def.= 1

2

∑

|x−y|=1
U (ϕx − ϕy), (1.1)

where the sum ranges over x, y ∈ Z
d and | · | denotes the Euclidean norm. We will

assume for simplicity (but see Remark 7.6,(3) below with regards to relaxing the
assumptions on U ) that

U is even, U ∈ C2,α(R), for someα > 0 and c1 ≤ U ′′ ≤ c2, (1.2)

for some c1, c2 ∈ (0,∞). We write E = R
Z
d
, endowed with the corresponding

product σ -algebra F and corresponding canonical coordinate maps ϕx : E → R for
x ∈ Z

d . We then consider, for finite � ⊂ Z
d and all ξ ∈ E , the probability measure

on (E,F) defined as

μ
ξ
�(dϕ) = (Z ξ

�)−1 exp{−H�(ϕ)}
∏

x∈�

dϕx

∏

x∈Zd\�
δξx (ϕx ), (1.3)

where H� is obtained from H by restricting the summation in (1.1) to (neighboring)
vertices x, y such that {x, y} ∩ � 
= ∅. The condition (1.2) guarantees in particular
that (1.3) is well-defined.

Associated to this setup is a Gibbs measure μ on (E,F), defined as the weak limit

μ
def.= lim

ε↓0 lim
N→∞μ

per
�N ,ε, (1.4)

where μ
per
�N ,ε refers to the analogue of the finite-volume measure in (1.3) with �N =

(Z/2NZ)d (periodic boundary conditions) and with H�(ϕ) replaced by the massive
Hamiltonian H�(ϕ) + ε

2

∑
x∈� ϕ2

x , ε > 0. Indeed combining the Brascamp–Lieb
inequality [17, 18] and the bounds of [23], one classically knows that the measures
μ
per
�N ,ε are tight in N and their subsequential limits tight in ε, hence the limits in (1.4)

exist, possibly upon possibly passing to appropriate subsequences. TheGibbs property
of μ is the fact that, for any finite set � ⊂ Z

d , with F� = σ(ϕx : x ∈ Z
d\�),
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μ( · |FZd\�)(ξ) = μ
ξ
�(·), μ(dξ)− a.s. (1.5)

The measure μ will be the main object of interest in this article. We use Eμ[·] to
denote expectation with respect to μ in the sequel. By construction, μ is translation-
invariant, ergodic with respect to the canonical lattice shifts τx : E → E , x ∈ Z

d , and
Eμ[ϕx ] = 0 for all x ∈ Z

d .
As will turn out, our scaling limit results require probing squares of the canonical

field ϕ under μ in a sequence of growing finite subsets exhausting Zd , thus leading to
generating functionals that involve tilting the measure μ by both linear and quadratic
functionals of the field. We now introduce these measures, which are parametrized
by a function h and a (typically) signed potential V , with corresponding Hamiltonian
(cf. (1.1))

Hh,V (ϕ)
def.= H(ϕ)−

∑

x

h(x)ϕx − 1

2

∑

x

V (x)ϕ2
x (1.6)

(the minus signs are a matter of convenience), where

h, V : Zd → R have finite support and ‖V+‖∞ · diam(supp(V+))2 < λ0. (1.7)

Here, λ0 = c(d, c1) ∈ (0,∞), where V+ = max{V , 0} is the positive part of V ,
supp(V ) = {x ∈ Z

d : V (x) 
= 0} and diam refers to the �∞-diameter of a set;
see Remark 2.4,(2) below regarding the choice of λ0. Under (1.7), we introduce the
probability measure μh,V on (E,F) defined by

dμh,V

dμ
= Z−1h,V exp

{
∑

x

h(x)ϕx + 1

2

∑

x

V (x)ϕ2
x

}
(1.8)

(note in particular that μ = μ0,0); we refer to Lemma 2.3 and Remark 2.4 for matters
relating to the tilt in (1.8) under condition (1.7), which, along with (1.2), we always
assume to be in force from here on. The measure μh,V is a Gibbs measure for the
specification (U , h, V ). In case h = 0, μ0,V is invariant under ϕ �→ −ϕ and has zero
mean. Moreover, if U (η) = 1

2η
2, then μh,V is the Gaussian free field on Z

d (with
‘mass’ V when V ≤ 0 and non-zero mean unless h ≡ 0).

We now introduce certain dynamics corresponding to the above setup, which will
play a central role in this article. One naturally associates to μh,V in (1.8) a diffusion
{ϕt : t ≥ 0} on E attached to the Dirichlet form

E1( f , f ) =
∫

E
‖∇ f ‖2dμh,V =

∫

E
f (−L1) f dμh,V , (1.9)

with domain in L2(μh,V ), which is the domain of the closed self-adjoint extension of
the second order elliptic operator L1 in L2(μh,V ), where

L1 f (ϕ) ≡ Lh,V
1 f (ϕ) = eH

h,V (ϕ)
∑

x

∂

∂ϕx

[
e−Hh,V (ϕ) ∂ f

∂ϕx

]
, (1.10)
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which acts on local (i.e. depending on finitely many coordinates) smooth bounded

functions f : E → R such both ∂ f
∂ϕx

and ∂2 f
∂ϕ2

x
are bounded. The Assumptions (1.2)

and (1.7) ensure that the construction of {ϕt : t ≥ 0} falls within the realm of standard
theory; indeed {ϕt : t ≥ 0} is obtained as a solution to the system of SDE’s

dϕt (x) =
⎧
⎨

⎩−
∑

y: |y−x |=1
U ′(ϕt (x)− ϕt (y))+ V (x)ϕt (x)+ h(x)

⎫
⎬

⎭ dt

+√2dWt (x), x ∈ Z
d (1.11)

with appropriate initial conditions in {ϕ ∈ E : ∑x |ϕx |2e−λ|x | < ∞ for some λ >

0}, where (Wt (x))x∈Zd is a family of independent standard Brownian motions. The
relevant drift terms in (1.11) are globally Lipschitz and guarantee the existence of a
unique solution for the associated martingale problem [65].

For a fixed realization of ϕ ∈ E , we then consider the symmetric weights a(ϕ) =
{a(x, y;ϕ) : x, y ∈ Z

d} given by

a(x, y;ϕ) = a(y, x;ϕ) = U ′′(ϕx − ϕy)1{|x−y|=1}. (1.12)

With this, we define the (quenched) Dirichlet form associated to the weights a(ϕ) as

Ea(ϕ)
2 ( f , f ) = 1

2

∑

x,y

a(x, y;ϕ)( f (x)− f (y))2 =
∑

x

f (x)(−La(ϕ)) f (x) (1.13)

for suitable f ∈ �2(Zd) (e.g. having finite support) and

La(ϕ)
2 f (x) =

∑

y

a(x, y;ϕ)( f (y)− f (x)), for x ∈ Z
d . (1.14)

The assumptions (1.7) ensure that theweights (1.12) are uniformly elliptic and the con-
struction of the corresponding Markov chain on Zd is standard. We will be interested
in the evolution of the process Xt = (Xt , ϕt ) on Zd × E generated by

L f (x, ϕ) ≡ Lh,V f (x, ϕ) = Lh,V
1 f (x, ·)(ϕ)+ La(ϕ)

2 f (·, ϕ)(x), (1.15)

for suitable f , and the corresponding Dirichlet form with domain D(E) in L2(ρh,V ),
where ρh,V = κ × μh,V , with κ counting measure on Z

d , given by

E( f , f ) =
∫

f (−L) f dρh,V

=
∑

x

E1( f (x, ·), f (x, ·))+
∫

E
Ea(ϕ)
2 ( f (·, ϕ), f (·, ϕ))μh,V (dϕ). (1.16)
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Note in particular that L is symmetric with respect to ρh,V , that is, for suitable f and
g,

∫
f (Lg) dρh,V =

∫
(L f )g dρh,V . (1.17)

In line with above notation, we abbreviate ρ = ρ0,0, whence ρ = κ × μ. We write
P(x,ϕ) for the canonical law of X · started at (x, ϕ). This is a probability measure on the

space W
+
of right-continous trajectories on Zd × E whose projection on Zd escapes

all finite sets in finite time. We use θt , t ≥ 0, to denote the corresponding time-shift
operators. It will often be convenient to write, for f = f (X ·) bounded and supported
on {X0 ∈ A}, for some finite A ⊂ Z

d ,

Eρh,V [ f ] =
∑

x

∫

E
μh,V (dϕ)E(x,ϕ)[ f ]

(
=
∫

ρh,V (dx, dϕ)E(x,ϕ)[ f ]
)

. (1.18)

The process X · is deeply linked to μh,V . Indeed, adapting the arguments of [24, 38],
one knows that for all functions F,G : E → R satisfying a suitable growth condition
at infinity, comprising in particular any polynomial expression of an arbitrary finite-
dimensional marginal of the field ϕ (which will be sufficient for our purposes),

covμh,V (F,G) =
∫ ∞

0
Eρh,V

[
∂F(X0)e

∫ t
0 V (Xs )ds∂G(Xt )

]
dt

=
∑

x

Eμh,V

[
∂F(x, ϕ)(−(L + V )−1∂G)(x, ϕ)

]
; (1.19)

here ∂F(x, ϕ) = ∂F(ϕ)/∂ϕx , for x ∈ Z
d and, with a slight abuse of notation, we

regardV as themultplication operatorV f (x, ϕ) = V (x) f (x, ϕ), for f : Zd×E → R.
We refer to [24], Prop. 2.2 and Remark 2.3 for a proof of (1.19); see also [39]. This
formula links covariances associated to the (in general non-Gaussian) random field, ϕ,
to a certain Markov process, X . It is thus natural to ask if one has identities resembling
the classical isomorphism theorems in the Gaussian case.

Our first result is that this is indeed the case: we derive one such identity in Theo-
rem 4.3 below, which can be regarded as a generalization of the second Ray–Knight
theorem. Namely, for a suitable measure P

V
u which we will introduce momentarily,

we prove in Theorem 4.3 that for all u > 0 and V : Zd → R as in (1.7), with μ as in
(1.4),

E
V
u

[∫
μ(dϕ) exp

{〈
V , L· + 1

2
ϕ2·
〉

�2(Zd )

}]

=
∫

μ(dϕ) exp

{〈
V ,

1

2
(ϕ· +

√
2u)2

〉

�2(Zd )

}
. (1.20)

The key here is the measure P
V
u governing the field L·, which we now describe in

some detail. In a nutshell, PV
u is a Poisson process of trajectories on Z

d × E modulo
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time-shift, whose total number is controlled by the scalar parameter u > 0: the larger
u is, the more trajectories enter the picture. The intensity measure νVu of this process,
constructed in Theorem 3.5 below (cf. also (4.10)), is roughly speaking the unique
natural measure on such trajectories whose forward part evolve like the process X
generated by L as given by (1.15), with a slight twist. Namely, L is not simply the
generator for the Langevin dynamics associated to μ = μ0,0. Instead, the potential
V in (1.20) manifests itself as a drift term in the system of SDE’s governing the
Langevin dynamics in (1.10), As it turns out, these dynamics are solutions to the
SDE’s (1.11) where V corresponds exactly to the test function in (1.20) and h is
appropriately chosen; see the discussion leading up to (4.2) and (4.10) in Sect. 4 for
precise definitions.

The field L· is then simply the cumulated occupation time of the spatial parts of
all trajectories in the soup. In case U in (1.6) is quadratic, the components of X
decouple, the projection of the process PV

u onto the first coordinate has the law of
random interlacements and (1.20) specializes to the isomorphism theorem of [71]; see
Remarks 3.6 and 4.2 below for details. In particular, the construction of the measure
P
V
u described above entails the interlacement process introduced in [70] as a special

case.
The derivation in Theorem 3.5 of the intensity measure lurking behind L· in

(1.20) involves a patching of several local ‘charts’ (much like the DLR-condition,
see Remark 3.4) and relies on elements of potential theory associated to the process
X , see Sect. 3. The two crucial inputs to do the patching are i) a suitable probabilistic
representation of the equilibriummeasure for space-like cylinders, and ii) reversibility
of X with respect to ρ, which together give rise to a desirable sweeping identity, see
Proposition 3.2. Once Theorem 3.5 is shown, the proof of (1.20) in Theorem 4.3 is
essentially obtained as a consequence of a suitable Feynman-Kac formula for a killed
version of the (big) process X (rather than just X ).

We refer to Remark 5.2 below for further comments around isomorphism theorems
in the present context of (1.1). We hope to return to applications of (1.20) and other
similar formulas, e.g. with regards to existence of mass gaps, elsewhere [25]. The
utility of identities like (1.20) for problems in statistical mechanics cannot be over-
emphasized, where it can for instance be used as a powerful dictionary between the
worlds of percolation and random walks in transient setups, see e.g. [61] for early
works in this direction, and more recently [28–30, 50, 74, 75]. We also refer to [5, 62]
for percolation and first-passage percolation in the context of ∇ϕ-models, as well as
the references at the beginning of this introduction for a host of other applications.

A version of our first result, Theorem 4.3, can also be proved on a finite graph with
suitable (wired) boundary conditions, see Remark 5.2,(1) below. In case U in (1.6) is
quadratic, (1.20) was proved in [34], and later extended to infinite volume in [71] in
transient dimensions. We further refer to [63] for a pinned version in dimension 2, to
[50, 59, 74] for a signed version, to [64] for an “inversion”, and to [10, 11, 20, 55] for
related findings in the context of certain hyperbolic target geometries. Finally, let us
mention that, similarly as in the Gaussian case, see [76] or [31, Chap. 3], the Poisson
process underlying L in (1.20) can likely be exhibited as the (annealed) local limit of
a random walk on the torus defined similarly as the spatial projection of X under Pρ

in (3.9); we will not pursue this further here.
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Similar in spirit to works of Le Jan [48] and Sznitman [73] in the Gaussian case, we
then investigate the existence of possible scaling limits for the various objects attached
to (1.20). Our starting point is the celebrated result of Naddaf–Spencer [58] regarding
the scaling limit of ϕ itself to a continuum free field �, see (5.5)–(5.6) and (5.13)
below (see also Remark 5.2,(2) for related findings among a vast body of work on this
topic), whose covariance function is the Green’s function of a Brownian motion with
homogenized diffusion matrix �, obtained as the scaling limit of the first coordinate
of X under diffusive scaling, cf. (5.4). Given this homogenization phenomenon for ϕ,
(1.20) may plausibly lie in the ‘domain of attraction’ of a limiting Gaussian identity
involving �.

Among other things, our second main result addresses this question. Indeed, we
prove in Theorem 5.1 below that, as a random distribution on R3, cf. Sect. 5 for exact
definitions, and with ϕN (z) = N 1/2ϕ�Nz�, z ∈ R

3,

( ϕN , : ϕ2
N : ) under μ converges in law to (�, : �2 : ) as N →∞, (1.21)

(see Theorem 5.1 below for the precise statement), where : ϕ2
N : (·) def.= ϕ2

N (·) −
Eμ[ϕ2

N (·)] and : �2 : stands for the Wick-ordered square of �, see (5.7). Thus, our
theorem can be understood as an extension of Naddaf and Spencer’s result [58] to the
simplest possible non-linear functional of the field, i.e. ϕ2, when d = 3.

The nonlinearity in (1.21) is by no means a small issue. The proof of results similar
to (1.21) are already delicate in the Gaussian case, see [48, 66, 73], and even more so
presently, due to the combined effects of (i) the absence of Gaussian tools, and (ii) the
need for renormalization.

Our approach also yields a new proof in the Gaussian case, which we believe
is more transparent. For instance, it avoids the use of determinantal formulas, such
as those typically used to express generating functionals like (1.22) below—in fact
our proof yields a different representation of such functionals, see (5.11)–(5.12) and
Remark 5.2,(3)). We now briefly outline our strategy and focus our discussion on the
marginal : ϕ2

N : alone in (1.21) for simplicity. We first prove tightness by controlling
generating functionals of gradient squares in Proposition 6.1, i.e. for V ∈ C∞0 (R3)

and |λ| small enough, we obtain uniform bounds of the form

sup
N≥1

Eμ

[
exp

{
λ

∫
: ϕ2

N (z) : V (z) dz
}]

<∞; (1.22)

cf. (6.3) below. This is facilitated through the use of a certain variance estimate, see
Lemma 2.3 (in particular (2.16)), which is of independent interest and can be viewed
as a consequence of the more classical Brascamp–Lieb estimate [17]. Once (1.22)
is shown, the task is to identify the limit in (1.21). To do so, we first replace ϕN by
a regularized version ϕε

N , corresponding at the discrete level to the presence of an
ultraviolet cut-off in the limit. The removal of the divergence at ε > 0 allows for an
application of [58], which together with tightness estimates akin to (1.22), is seen to
imply convergence of (ϕε

N )2.
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To remove the cut-off, the crucial control is the following L2-estimate, derived
in Sect. 6.2. Namely, we show in Proposition 6.7 that for all ε > 0, there exists
c(ε) ∈ (1,∞) such that

lim
ε↘0

sup
N≥c(ε)

∥∥∥∥
∫

V (z)
[ : (ϕN )2(z) : − : (ϕε

N )2(z) : ] dz
∥∥∥∥
L2(μ)

= 0, (d = 3).

(1.23)

The bound (1.23) is obtained as a consequence of the Brascamp-Lieb inequality alone;
no further random walk estimates on X are necessary. In particular, no gradient esti-
mates on its Green’s function are needed, as one might naively expect from the form
of (1.23) on account of (1.19).

The controls (1.23) are surprisingly strong. For instance, one does not need to tune
ε with N when taking limits in (1.21). Rather, one can in a somewhat loose sense first
let ε → 0 then N →∞ (cf. Lemmas 7.1–7.3 below for precise statements) and (1.23)
serves to determine the exact limits of the functionals in (1.22), thus completing the
proof.

Returning to the identity (1.20), the result (1.21) then enables us to directly identify
the limit of suitably rescaled occupation times LN of L when d = 3, and we deduce
in Corollary 7.5 below that LN converges in law to the occupation-time measure of
a Brownian interlacement with diffusivity �, cf. (7.14)–(7.15) for precise definitions.
As in the Gaussian case, the convergence of the associated occupation time measure
does not require counter-terms. In particular, the drift term implicit in PV

u generated by
the potential V , which breaks translation invariance, is thus seen to “disappear” in the
limit. Further, we immediately recover from this the limiting isomorphism proved in
[73] in the Gaussian case (albeit with non-trivial diffusivity� stemming from homog-
enization), see Corollary 7.7 and (7.23) below. In the parlance of renormalization
group theory, (7.23) is thus seen to be the “Gaussian fixed point” of the identity (1.20)
for any potential U satisfying (1.2).

We now describe how this article is organized. In Sect. 2 we gather various useful
preliminary results. To avoid disrupting the flow of reading, some proofs are deferred
to an appendix (this also applies to several bounds related to ε-smearing in Sects. 6
and 7). In Sect. 3, we develop some potential theory tools for the process X with
generator L , see (1.15), and introduce the intensity measure underlying PV

u in (1.20).
InSect. 4,we state andprove the isomorphism, seeTheorem4.3. Section5gives precise
meaning to our scaling limit result for the renormalized squares of ϕ. The statement
appears in Theorem 5.1 and is proved over the remaining two Sects. 6–7. Section6
contains some preparatory work: Sects. 6.1 and 6.2 respectively deal with matters
relating to tightness (cf. (1.22)) and the aforementioned L2-estimate (cf. (1.23)), see
also Propositions 6.1 and 6.7 below; Sect. 6.3 deals with convergence of the smeared
field at a suitable functional level. The actual proof of Theorem 5.1 then appears
in Sect. 7, along with its various corollaries, notably the scaling limits of rescaled
occupation times (Corollary 7.5) and the limiting isomorphism (Corollary 7.7).

Throughout, c, c′, . . . denote positive constants which can change from place to
place and may depend implicitly on the dimension d. Numbered constants are fixed
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upon first appearance in the text. The dependence on any quantity other than d will
appear explicitly in our notation.

2 Preliminaries and tilting

In this section we first gather several useful results for the discrete Green’s function
in a potential V . Lemma 2.1 yields useful comparison bounds for the corresponding
heat kernel in terms of the standard (i.e. with V = 0) one under suitable assumptions
on V . Lemma 2.2 deals with scaling limits of the associated Green’s function (and
its square). We then discuss key aspects of the ϕ-Gibbs measures μh,V introduced in
(1.8) (see also (1.4)) under the assumptions (1.2) and (1.7), including matters relating
to existence of μh,V , which involves exponential tilts with functionals of ϕ2; for
later purposes we actually consider general quadratic functionals of ϕ, see (2.12) and
conditions (2.13)–(2.14). Some care is needed because the scaling limits performed
below will require the tilt to be signed and have finite but arbitrarily large support.
We also collect a useful variance estimate, of independent interest, see Lemma 2.3
and in particular (2.16), see also Lemma 2.5 regarding higher moments, which can be
viewed as a consequence of the Brascamp–Lieb inequality.

Let (Zt )t≥0 denote the continuous-time simple random walk on Zd with generator
given by (1.14) with a ≡ 1 (amounting to the choice U (t) = 1

2 t
2 in (1.12)). We write

Px for its canonical law with Z0 = x and Ex for the corresponding expectation. For
V : Zd → R, we introduce the heat kernels

qVt (x, y) = Ex
[
e
∫ t
0 V (Zs )ds1{Zt=y}

]
, for x, y ∈ Z

d , t ≥ 0, (2.1)

and abbreviate qt = q0t . The corresponding Green’s function is defined as

gV (x, y) = ∫∞
0 qVt (x, y)dt, x, y ∈ Z

d (2.2)

(possibly +∞) with g0 = g. We now discuss conditions on V+ = max{V , 0} guar-
anteeing good control on these quantities, which will be useful on multiple occasions.

Lemma 2.1 (d ≥ 3) There exists ε > 0 such that, for any V : Zd → R with

{supx V+(x)}diam(supp(V+))2 < ε, (2.3)

and all x, y ∈ Z
d , one has:

Ex
[
e
∫∞
0 4V (Zt )dt

] ≤ c(<∞), (2.4)

qVt (x, y) ≤ c′qct (x, y), t ≥ 0. (2.5)

The proof of Lemma 2.1 is deferred to Appendix A. Now, for smooth, compactly
supported V : Rd → R and arbitrary integer N ≥ 1, consider its discretization (at
level N )
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VN (x) = N−2
∫

x
N +[0,1)d

V ( z
N )dz, x ∈ Z

d , (2.6)

and the rescaled Green’s function

gVN (z, z′) = 1
d N

d−2gVN (�Nz�, �Nz′�), z, z′ ∈ R
d (2.7)

with gVN referring to (2.2) with VN given by (2.6). In accordancewith the notation g =
g0, cf. below (2.2), we set gN = g0N , whence gN (z, z′) = 1

d N
d−2g(�Nz�, �Nz′�).

Associated to gVN (·, ·) in (2.7) is the rescaled potential operator GV
N with

GV
N f (z) =

∫
gVN (z, z′) f (z′)dz′, (2.8)

for any function f : Rd → R such that
∫
gVN (z, z′)k | f (z′)|dz′ < ∞. The operator

(GV
N )2 is defined similarly, with kernel gVN (z, z′)2 in place of gVN (z, z′) on the right-

hand side of (2.8). Finally, we introduce continuous analogues for (2.8). Let Wz ,
z ∈ R

d , denote the law of the standard d-dimensional Brownian motion (Bt )t≥0
starting at z and

GV f (z) =
∫ ∞

0
Wz

[
e
∫ t
0 V (Bs )ds f (Bt )

]
dt . (2.9)

for suitable f , V (to be specified shortly). Let 〈·, ·〉 refer to the standard inner product
on Rd .

Lemma 2.2 For all f , V ∈ C∞0 (Rd) with supp(V ) ⊂ BL for some L ≥ 1 and
‖V ‖∞ ≤ cL−2,

lim
N
〈 f ,GV

N f 〉 = 〈 f ,GV f 〉, (d ≥ 3) (2.10)

lim
N
〈 f , (GV

N )2 f 〉 = 〈 f , (GV )2 f 〉, (d = 3). (2.11)

In particular (2.10)–(2.11) implicitly entail that all expressions are well-defined and
finite, i.e. all of GV

N , G
V (and (GV

N )2 when d = 3) act on C∞0 (Rd) when the potential
V satisfies the above assumptions. The proof of Lemma 2.2 is given in Appendix A.

Next, we introduce suitable tilts of the measure μ defined in (1.4). The ensuing
variance estimates below are of independent interest. We state the following bounds
at a level of generality tailored to our later purposes. For real numbers Qλ(x, y),
x, y ∈ Z

d , indexed by λ > 0 (cf. (2.14) below regarding the role of λ) and vanishing
unless x, y belong to a finite set, let

Qλ(ϕ, ϕ) =
∑

x,y

Qλ(x, y)ϕxϕy . (2.12)
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and write dμQλ = Eμ[eQλ ]−1eQλdμ (with μ = μ0,0) whenever 0 < Eμ[eQλ ] <∞.
Recall g = g0 from (2.2) and abbreviate ∂x F = ∂F(ϕ)/∂ϕx below. The inequality
(2.15) below (in the special case where F is a linear combination of ϕx ’s) is due to
Brascamp–Lieb, see [17, 18].

Lemma 2.3 (d ≥ 3, (1.2) and (1.7)) If, for some 0 < λ < c3, x0 ∈ Z
d , R ≥ 1, with

B = B(x0, R),

Qλ(x, y) = 0 if x /∈ B or y /∈ B and (2.13)

Qλ(ϕ, ϕ) ≤ λR−2‖ϕ‖2
�2(B)

, for all ϕ ∈ R
B, (2.14)

then eQλ ∈ L1(μ) and the following hold: for F ∈ C1(E,R) depending on finitely
many coordinates such that F and ∂x F, x ∈ Z

d , are in L2(μQλ), one has

varμQλ
(F) ≤ c

∑

x,y

g(x, y)EμQλ
[∂x F ∂y F]. (2.15)

If moreover, F ∈ C2(E,R) and ∂x∂y F ∈ L2(μQλ) for all x, y ∈ Z
d , then

varμQλ
(F)

≤ c
∑

x,y

g(x, y)
(
EμQλ

[∂x F]EμQλ
[∂y F] + c

∑

x ′,y′
g(x ′, y′)EμQλ

[∂x ′∂x F ∂y′∂y F]
)
.

(2.16)

Remark 2.4 (1) By adapting classical arguments, see e.g. [24, Corollary 2.7], one
readily shows that the conclusions of Lemma 2.3 (and thus also of Lemma 2.5
below) continue to hold if one considers the measure μh,Qλ with exponential tilt
of the form Q(ϕ, ϕ)+∑

x h(x)ϕx , for arbitrary h as in (1.7).
(2) In particular, Lemma 2.3 applies with the choice

Qλ0(x, y) = V (x)1{x = y}, (2.17)

for V as in (1.7) with λ0 = c3. Indeed with the choice R = diam(supp(V )), one
readily finds x0 such that (2.13) is satisfied. Moreover, with B = B(x0, R), (2.17)
yields that

Qλ0(ϕ, ϕ) ≤ ‖V+‖∞ · ‖ϕ‖2�2(B)

( 1.7)≤ λ0R
−2‖ϕ‖2

�2(B)
,

i.e. (2.13) holds. Lemma 2.3 (along with the previous remark) thus implies that the
tilted measure μh,V introduced in (1.8) is well-defined and satisfies the estimates
(2.15) and (2.16) if λ0 < c3 in (1.7). In fact, in the specific case of (2.17), the same
conclusions could instead be derived by combining (1.19) with (2.18) below and
the heat kernel bound (2.5).
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Proof of Lemma 2.3 In view of (1.12), (1.14) and (1.15) and (1.7), observe that (with
L = L0,0 and notation we explain below)

− L ≥ −La(ϕ)
2 ≥ −c1� (2.18)

as symmetric positive-definite operators (restricted to Dom(−�), tacitly viewed as
a subset of RZ

d×E independent of ϕ ∈ E). Here, “A ≥ B” in (2.18) means that
〈 f , A f 〉 ≥ 〈 f , B f 〉 for f ∈ Dom(−�) where 〈·, ·〉 is the usual �2(Zd) inner product;
moreover� f (x) =∑

y∼x ( f (y)− f (x)), for suitable f : Zd → R (e.g. having finite

support), so that (−�)−11y(x) = 1
2d g(x, y) for all x, y ∈ Z

d with g = g0, cf. (2.2).
By assumption on H in (1.2), it follows that (see below (1.3) regarding H�) for all
� ⊃ B, and ϕ ∈ E

D2H�(ϕ)
(2.18)≥ c〈ϕ,−�ϕ〉�2(B) ≥ c4R

−2‖ϕ‖2
�2(B)

(2.19)

where D2H� refers to the Hessian of H� and the last bound follows by a discrete
Sobolev inequality in the box B, as follows e.g. from Lemma 2.1 in [15] and Hölder’s
inequality. Together with (2.14) and (2.19) implies that whenever λ < c4/2 = c3,

Hλ = H − Qλ

satisfies D2Hλ ≥ c′(−�), in the sense that the inequality holds for the restriction of
either side to �2(�) with a constant c′ uniform in �. This implies that the measure
ν

ξ
� ≡ μ

ξ
�,Qλ

defined as in (1.3) but with Hλ in place of H is log-concave and it yields,
together with the Brascamp–Lieb inequality, uniformly in � and ξ ,

var
ν

ξ
�

(F) ≤ E
ν

ξ
�

[〈∂·F, (D2Hλ)
−1
� ∂·F〉] ≤ cE

ν
ξ
�

[〈∂·F, (−�)−1� ∂·F〉] (2.20)

for suitable F (say depending on finitely many coordinates), where 〈·, ·〉 denotes the
�2(�) inner product. In particular, choosing F = ϕ0 andusing that 2d(−�)−11y(x)↗
g(x, y) < ∞ as � ↗ Z

d , one readily deduces from the resulting uniform bound in
(2.20) and the Gibbs property (1.5) that eQλ ∈ L1(μ), and (2.15) then follows upon
letting �↗ Z

d in (2.20).
To obtain (2.16), one starts with (2.15) and introduces (−�)−1/2 (defined e.g. by

spectral calculus) to rewrite the right-hand side of (2.15) up to an inconsequential
constant factor as

EμQλ
[〈∂·F, (−�)−1∂·F〉] =

∑

x

EμQλ
[((−�)−1/2∂·F)2(x)]

Writing the second moment on the right-hand side as a variance plus the square of its
first moment and applying (2.15) once again to bound varμQλ

(((−�)−1/2∂·F)(x)),
(2.16) follows. ��

By iterating (2.15), one also has controls on higher moments. In view of Remark 2.4
above, the following applies in particular to μh,V for any h, V as in (1.7).
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Lemma 2.5 Under the assumptions of Lemma 2.3, for any V : Zd → R with finite
support and all integers k ≥ 0,

EμQλ
[〈ϕ, V 〉2k

�2
] ≤ c(2k)〈V ,GV 〉k�2 . (2.21)

where 〈V ,GV 〉�2 =
∑

x,y V (x)g(x, y)V (y).

Proof Abbreviating M(k) = EμQλ
[〈ϕ, V 〉k

�2
], one has by (2.15),

M(2k) ≤ M(k)2 + c
∑

x,y

g(x, y)EμQλ

[
(∂x 〈ϕ, V 〉k

�2
) (∂y〈ϕ, V 〉k

�2
)
]

= M(k)2 + ck2〈V ,GV 〉�2M(2(k − 1)). (2.22)

Defining c(k) = 0 for odd k and observing that M(k) vanishes for such k, (2.21)
readily follows from (2.22) and a straightforward induction argument, with c(2k) =
c(k)2 + ck2c(2(k − 1)). ��

3 Elements of potential theory for X · and intensity measure

For the remainder of this article, we always tacitly assume that conditions (1.2) and
(1.7) are satisfied for the data (U , h, V ). In this section, we develop various tools
around the process X · with generator L given by (1.15). Among other things, these
will allow us to define a natural intensity measure νh,V on bi-infinite Zd × E-valued
trajectories, see Theorem 3.5 below. This measure is fundamental to the isomorphism
theorem derived in the next section.

We start by developing useful formulas for the equilibrium measure and capacity
of “cylindrical” sets. For K a finite subset of Zd , abbreviated K ⊂⊂ Z

d , we write
QK = K × E with E = R

Z
d
for the corresponding cylinder and abbreviate QN =

QBN , where BN = [−N , N ]d ∩ Z
d is the discrete box of radius N . We use ∂K to

denote the inner boundary of K in Zd and Kc = Z
d \ K . Recalling E(·, ·) from (1.16)

with domain D(E), we then define the capacity of QK , for arbitrary K ⊂⊂ Z
d , as

cap(QK ) = inf

{
E( f , f ) : f ∈ D(E), f (x, ·) ≥ 1 for all x ∈ K , lim|x |→∞ f (x, ·) = 0

}

(3.1)

(with inf ∅ = ∞). Note that cap ≡ caph,V , E ≡ Eh,V , cf. (1.16), along with various
potential-theoretic notions developed in the present section (e.g. eQK , hQk below),
all implicitly depend on the tilt (h, V ). In view of (1.16), restricting to the class of
functions f (x, ϕ) = f (x) satisfying the conditions in (3.1) but independent of ϕ,
and observing that Eμh,V [a(x, y, ϕ)] ≤ c2 for |x − y| = 1 due to (1.12) and (1.2), it
follows that

cap(QK ) ≤ c2 · capZd (K ) <∞ for all K ⊂⊂ Z
d , (3.2)
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where capZd (K ) refers to the usual capacity of the simple random walk on Z
d . Sim-

ilarly, neglecting the contribution from E1 and applying Fatou’s lemma, one obtains
that

cap(QK ) ≥ c1 · capZd (K ) for all K ⊂⊂ Z
d . (3.3)

We now derive a more explicit (probabilistic) representation of cap(QK ). Recalling
that Xt = (Xt , ϕt ) stands for the process associated to E (with generator L = Lh,V

given by (1.15) and canonical law P(x,ϕ), see below (1.17)), we introduce the stopping
times HQK = inf{t ≥ 0 : Xt ∈ QK }, let

hQK (x, ϕ) = P(x,ϕ)[HQK <∞], x ∈ Z
d , ϕ ∈ E, (3.4)

and introduce, for suitable f : Zd × E → R the potential operators

U f (x, ϕ) = E(x,ϕ)

[∫ ∞

0
dt f (Xt , ϕt )

]
. (3.5)

Lemma 3.1 ((h, V ) as in (1.7)) The variational problem (3.1) has a unique minimizer
given by f = hQK with hQK as in (3.4). Moreover, with

eQK (x, ϕ)
def.= (−LhQK )(x, ϕ), x ∈ Z

d , ϕ ∈ E, (3.6)

one has that

supp(eQK ) ⊂ ∂K × E (⊂ QK ), (3.7)

eQK ≥ 0, (3.8)

and

cap(QK ) =
∑

x∈K

∫

E
μh,V (dϕ)eQK (x, ϕ). (3.9)

Proof The property (3.7) follows by L-harmonicity of hQK in view of (3.6). To see
(3.8), denoting by (Pt )t≥0 the semigroup associated to X , one has for all z = (x, ϕ) ∈
QK , applying the Markov property at time t ,

lim
t↓0 t

−1(hQK (z)− (PthQK )(z)) = lim
t↓0 t

−1(1− Ez[PXt
[HQK <∞]])

= lim
t↓0 t

−1Pz[HQK ◦ θt = ∞]

which is plainly non-negative; to see that the limit on the right-hand side exists, denot-
ing by τ the first jump time of X ·, the spatial part of X ·, one notes that it equals

lim
t↓0 t

−1E(x,ϕ)

[
1{τ ≤ t}PXτ

[HQK = ∞]
]

(3.10)
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because X canonly escapeQK through its spatial part X and the contribution stemming
from two or more spatial jumps up to time t is O(t2) as t ↓ 0; similarly the expectation
in (3.10) is bounded by ct for t ≤ 1.

To obtain that hQK is a minimizer, first note that by definition, see (3.4), and by
transience, hQK satisfies the constraints in (3.1). For arbitrary f as in (3.1), one has

E( f , f ) = E( f − hQK , f − hQK )+ E(hQK , hQK )+ 2E( f − hQK , hQK )

(3.11)

The first term in (3.11) is non-negative. On account of (1.16) and due to (3.6),

E(hQK , hQK ) = 〈
hQK , (−LU )eQK

〉
L2(ρh,V )

= 〈
1, eQK

〉
L2(ρh,V )

, (3.12)

where the last step uses that hQK (·, ϕ) = 1 on K , which is the support of eQK (·, ϕ), see
(3.6). The last expression in (3.12) is exactly the right-hand side of (3.9). To conclude,
one observes that the third term in (3.11) can be recast using E( f − hQK , hQK ) =〈
f − hQK , eQK

〉
L2(ρh,V )

and the latter is non-negative because ( f − hQK )(·, ϕ) ≥ 0
on K by (3.1). ��

A key ingredient for the construction of the intensity measure ν below is the fol-
lowing result. We writeW

+
QK

below for the subset of trajectories inW
+
with starting

point in QK . Recall the definition of Pρ from (3.9) and abbreviate ρ = ρh,V for the
remainder of this section.

Proposition 3.2 (Sweeping identity)
With eQK as defined in (3.6), for all K ⊂ K ′ ⊂⊂ Z

d and bounded measurable

f : W +
QK
→ R,

Eρ

[
eQK ′ (X0)1{HQK <∞} f

(
X ◦ θHQK

)] = Eρ

[
eQK (X0) f (X)

]
(3.13)

To prove Proposition 3.2, we will use the following result. We tacitly identify E

with the weighted L2-space Er = {ϕ ∈ E : |ϕ|2r def.= ∑
x |ϕx |2e−r |x | < ∞} for

arbitrary (fixed) r > 0, which has full measure under μ, and continuity on E is meant
with respect to | · |2r in the sequel.
Lemma 3.3 (Switching identity) For all K ⊂⊂ Z

d and v,w ∈ Cb
c (Z

d × E) (contin-
uous bounded with compact support),

Eρ

[
w(X0)1{HQK <∞}Uv

(
XHQK

)] = Eρ

[
v(X0)1{HQK <∞}Uw

(
XHQK

)]
. (3.14)

Proof One writes

Eρ

[
w(X0)1{HQK <∞}Uv

(
XHQK

)] =
∫ ∞

0
dt Eρ

[
w(X0)1{HQK <∞}v

(
Xt+HQK

)]

=
∫ ∞

0
dsEρ

[
w(X0)1{HQK ≤s}v

(
Xs

)] =
∫ ∞

0
dsEρ

[
w(Xs)1{∃t∈[0,s]:Xs−t∈QK }v

(
X0

)]
,
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where the last step uses that X · and Xs−· have the same law under Pρ . The last integral
is readily seen to equal the expectation in second line of (3.13). ��
Proof of Proposition 3.2 For a given f as appearing in (3.13), consider the function v

defined such that, with U as in (3.5),

Uv = ξ, where

ξ(x, ϕ) = 1QK (x, ϕ)E(x,ϕ)

[
f (X)

]
, x ∈ Z

d , ϕ ∈ E .
(3.15)

(i.e. let v = −Lξ ). By (3.9) and the strong Markov property at time QK , one can
rewrite

Eρ

[
eQK ′ (X0)1{HQK <∞} f

(
X ◦ θHQK

)] = Eρ

[
eQK ′ (X0)1{HQK <∞}ξ

(
XHQK

)]

(3.16)

In view of (3.15) and (3.16), applying (3.14) with w = eQK ′ and v as in (3.15) yields
that the left-hand side of (3.13) equals

Eρ

[
v(X0)1{HQK <∞}UeQK ′

(
XHQK

)]
. (3.17)

Since K ⊆ K ′, (3.6) and (3.4) imply that, on the event {HQK <∞},UeQK ′
(
XHQK

) =
hK ′(XHQK

) = 1, whence (3.17) simplifies to

Eρ

[
v(X0)1{HQK <∞}

] (3.4)=
∫

E×Zd
ρ(dϕ, dx)v(x, ϕ)hQK (x, ϕ)

(3.15)= 〈−Lξ, hQK 〉L2(ρ)

(1.17)= 〈ξ,−LhQK 〉L2(ρ)

(3.6)= 〈ξ, eQK 〉L2(ρ)

(3.15)=
∑

x

∫

E
μ(dϕ)eQK (x, ϕ)E(x,ϕ)[ f ],

(3.18)

which yields (3.13). ��
Remark 3.4 The sweeping identity (3.13) corresponds to the classical Dobrushin–
Lanford–Ruelle-equations in equilibriumstatisticalmechanics, see e.g. [37,Def. p.28]:
for all K ⊂ K ′ ⊂ Z

d and f = 1{X0=z}, z ∈ K , explicating (3.13) gives

∑

x

∫

E
μ(dϕ)eQK ′ (x, ϕ)P(x,ϕ)

[
HQK <∞, XHQK

= z
] =

∫

E
μ(dϕ)eQK (z, ϕ).

(3.19)

We now introduce the intensity measure ν which will govern the relevant Poisson
processes. We write W for the space of bi-infinite right-continuous trajectories on
Z
d × E whose projection on Z

d escapes all finite sets in finite time. Its canonical
coordinates will be denoted by Xt = (Xt , ϕt ), t ∈ R, and we will abbreviate X± =
(X±t )t>0. We let W

∗ = W/ ∼ be the corresponding space modulo time-shift, i.e.
w ∼ w′ if (θtw) = w′ for some t ∈ R, and denote by π∗ : W → W

∗
the associated
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projection. We also write WQK ⊂ W for the set of trajectories entering QK , i.e.
w ∈ WQK if Xt (w) ∈ QK for some t ∈ R, andW

∗
QK
= π∗(WQK ). All above spaces

of trajectories are endowed with their corresponding canonical σ -algebra, denoted by
W , W∗

,WQK etc. We then first introduce a measure νQK on (W ,W) as follows:

νQK

[
X− ∈ A−, X0 ∈ A, X+ ∈ A+

]

def.=
∫

A
ρ(dx, dϕ)P(x,ϕ)

[
X ∈ A+

]× E(x,ϕ)

[
1{X∈A−}eQK (X0)

]
, (3.20)

with eQK as defined in (3.6), and where, with a slight abuse of notation, we identify
A± ∈ σ(X±) (part of W) with the corresponding events in W+. The latter is the σ -
algebra ofW+, the space of one-sided trajectories on which P(x,ϕ) is naturally defined.
Note that the ρ-integral in (3.20) is effectively over A ∩ {X0 ∈ K }, hence νQK is a
finite measure, and by (3.9),

νQK

(
W
) = νQK

(
WQK

) = cap(QK ), for K ⊂⊂ Z
d . (3.21)

The family of measures {νQK : K ⊂⊂ Z
d} can be patched up as follows.

Theorem 3.5 (d ≥ 3, h, V as in (1.7)) There exists a unique σ -finitemeasure ν = νh,V

on (W
∗
,W∗

) such that

ν|W ∗
QK
= π∗ ◦ νQK , for all K ⊂⊂ Z

d . (3.22)

Proof The uniqueness of ν follows immediately from (3.20), since for all A∗ ∈ W∗
,

with A = (π∗)−1(A), one has ν(A∗) = limn νQBn
(A ∩ WQBn

) by monotone conver-
gence. In order to prove existence, it is enough to argue that

for all K ⊂ K ′ ⊂⊂ Z
dand A∗ ∈W∗

QK
:

(π∗ ◦ νQK ′ )(A
∗) = (π∗ ◦ νQK )(A∗)

(3.23)

(note that the left-hand side is well-defined sinceW∗
QK
⊂W∗

Q′K ). Indeed, once (3.23)
is shown, one simply sets

ν(A∗) =
∑

n≥1
(π∗ ◦ νQBn

)
(
A∗ ∩ (W∗

QBn
\W∗

QBn−1
))

,

and (3.22) is readily seen to hold using (3.23). Moreover, due to (3.21) and (3.2),
ν
(
W
∗
QK

)
<∞, whence ν is σ -finite.

It remains to prove that the compatibility condition (3.23) holds. Writing W
0
QK
⊂

WQK for the set of trajectories entering QK at time 0, we first observe that νQK is

supported onW
0
QK

and similarly νQK ′ onW
0
QK ′ , see (3.20), and, recalling HQK from

around (3.4), that θHQK
: (W 0

QK ′ ∩WQK )→ W
0
QK

,w �→ θHQK
w is a bijection for all
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K ⊂ K ′. Hence, in order to obtain (3.23) it is sufficient to show that for all measurable
A0 ∈ 2K × E (where 2K denotes the set of subsets of K ) and A+ ∈ σ(X+),

νQK ′
(
HQK <∞,

{
X0 ∈ A0, X+ ∈ A+

} ◦ θHQK

) = νQK

(
X0 ∈ A0, X+ ∈ A+

)
.

(3.24)

To see why this implies (3.23), simply note that (3.24) corresponds to the choice
A∗ = π∗({X0 ∈ A0, X+ ∈ A+}) in (3.23) with A0, A+ as above, which generate
W∗

QK
. It now remains to argue that (3.24) holds. By (3.20), the left-hand side of (3.24)

can be recast as
∫

Zd×E
ρ(dx, dϕ)P(x,ϕ)

[
HQK <∞,

{
X0 ∈ A0, X+ ∈ A+

} ◦ θHQK

]
× eQK ′ (x, ϕ)

= Eρ

[
eQK ′ (X0)1{HQK <∞} ×

(
1{X0∈A0,X+∈A+}

)
◦ θHQK

]
, (3.25)

whereas the right-hand side of (3.24) equals

Eρ

[
eQK (X0)1{X0∈A0,X+∈A+}

]
. (3.26)

But by Proposition 3.2, the right-hand side of (3.25) and (3.26) coincide, and (3.24)
follows, which completes the proof. ��
Remark 3.6 Let � : W ∗ → W ∗ denote the projection onto the first (Zd -valued) com-
ponent of a trajectory, i.e.W is the space of bi-infiniteZd -valued transient trajectories.
In the Gaussian case U (η) = 1

2η
2, cf. (1.1), the projection

νG = � ◦ νh,V (3.27)

of the measure νh,V constructed in Theorem 3.5 is independent of V and h; indeed,
in view of (1.12) and (1.14) the generator of the spatial component of P(x,ϕ) is that of
a simple random walk. The measure νG obtained in this way is precisely (up to defin-
ing trajectories in continuous-time) the intensity measure of random interlacements
constructed in Theorem 1.1 of [70].

4 An isomorphism theorem

We now derive a “Ray–Knight” identity for convex gradient Gibbs measures, which is
given in Theorem 4.3 below. Recall that the measure ν = νh,V defined by Theorem 3.5
depends implicitly on the choice of (h, V ) appearing in (1.6), corresponding to the
Gibbs measure μh,V in (1.8).

In what follows, V will represent a (finite) region on which we seek to probe the
field ϕ2 sampled under μ = μh=0,V=0, cf. (1.4), corresponding to the observable
〈V , ϕ2〉�2(Zd ), and h will be carefully tuned with V in the relevant intensity measure,
cf. (4.1) and (4.10). We now introduce these measures. Recall that we assume (h, V )
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to satisfy (1.7). For such h, V and all u > 0, define the measure ν
h,V
u on (W

∗
,W∗

)

by

νh,V
u (A) =

∫ √
2u

0

∫ τ

0
νσh,V (A) dσdτ, for A ∈W∗

(4.1)

(the right-hand side of (4.1) can also be recast as
∫ √2u
0 (

√
2u − σ)νσh,V (A) dσ ).

On account of Theorem 3.5, νh,V
u given by (4.1) defines a σ -finite measure. We can

thus construct a Poisson point process ω onW
∗
having ν

h,V
u as intensity measure. We

denote its canonical law by Ph,V
u , a probability measure on the space of point measures

�W
∗ = {ω =∑

i≥0 δw∗i : w∗i ∈ W
∗
, i ≥ 0, and ω∗(W ∗

QK
) < ∞ for all K ⊂⊂ Z

d},
endowed with its canonical σ -algebra FW

∗ . The law P
h,V
u on (�W

∗ ,FW
∗) is com-

pletely characterized by the fact that for any non-negative, W∗
-measurable function

f ,

E
h,V
u

[
exp

{
−
∫

W
∗ f ω(dw∗)

}]
= exp

{
−
∫

W
∗(1− e− f )νh,V

u (dw∗)
}

. (4.2)

Of particular interest below is the corresponding field of (spatial) occupation times
(Lx )x∈Zd , defined as follows: for ω =∑

i≥0 δw∗i , let

Lx (ω) =
∑

i≥0

∫ ∞

−∞
1{Xt (wi ) = x}dt, for x ∈ Z

d , (4.3)

where wi ∈ W is any trajectory such that π∗(wi ) = w∗i and Xt (wi ) is the projection
onto the spatial coordinate of wi at time t . In what follows, we frequently identify
V (x, ϕ) = V (x), ϕ ∈ E , viewed either as such or tacitly as multiplication operator
(V f )(x, ϕ) = V (x, ϕ) f (x, ϕ), for suitable f . We first develop a representation of
Laplace functionals for the field L that will prove useful in the sequel.

Lemma 4.1 (u > 0, h, V as in 1.7)

logEh,V
u

[
e〈V ,L·〉�2 ]=−

∫ √
2u

0

∫ τ

0

〈
V ,

(
Lσh,V+V

)−1
V − 1

〉
L2(ρσh,V )

dσdτ. (4.4)

(Here, with hopefully obvious notation, 1 refers to the function of (x, ϕ) ∈ Z
d × E

which is identically one).

Before going any further, let us first relate the above setup and the formula (4.4) to
the (simpler) Gaussian case.

Remark 4.2 With�denoting the projection onto the spatial component (cf.Remark3.6
for its definition), consider the induced process

η = �(ω)
def.=

∑

i≥0
δ�(w∗i )
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when ω = ∑
i≥0 δw∗i . Classically, η is a Poisson process with intensity measure

� ◦ ν
h,V
u , and Lx (ω) = Lx (η), as can be plainly seen from (4.3). In the Gaussian

case, substituting (3.27) into (4.1) and performing the integrals over τ and σ (note

to this effect that
∫ √2u
0

∫ τ

0 dσdτ = u), one readily infers that η has intensity uνG,
i.e. the law P

G
u of η is that of the interlacement process at level u > 0, cf. [70]. The

field Lx = Lx (η) is then simply the associated field of occupation times (at level u).
In this case, the formula (4.4) simplifies because the test function V is spatial and the
dynamics generated by L1 and L2 decouple, see (1.10), (1.14) and (1.15). All in all
Lemma 4.1 thus yields, for all V satisfying (1.7) and u > 0,

− u−1 logEG
u

[
e〈V ,L·(η)〉

�2
] = 〈

V ,GV V − 1
〉
�2

, (4.5)

whereGV (= (−La≡1
2 −V )−1) refers to the convolution operator on �2(Zd)with kernel

gV given by (2.2). On the other hand, one knows, see e.g. (2.11) in [71] in case V ≤ 0,
that the left-hand side of (4.5) equals −〈V , (I − GV )−11〉�2 , G = GV≡0, whenever
‖GV ‖∞ < 1 (incidentally, note that (1.7) implies that ‖GV+‖∞ < 1). With a similar
calculation as that following (7.22) below, which is a continuous analogue, one can
show that this expression equals the right-hand side of (4.5) when ‖GV ‖∞ < 1.
Notice however that (4.5) holds under the more general condition (1.7) as a result of
Lemma 4.1, which places no constraint on V−.

Proof of Lemma 4.1 The starting point is formula (4.2). First, note that by definition
of the occupation times L· in (4.3), one can write 〈V , L〉�2 =

∫
W
∗ fV ω(dw∗), where

(recall that we tacitly identify V (x, ϕ) = V (x), ϕ ∈ E)

fV (w∗) =
∫ ∞

−∞
V (w(t)) dt, with w ∈ W such that π∗(w) = w∗. (4.6)

Hence, applying (4.2) and then substituting (4.1), (3.22) and (3.20) for the intensity
measure, one obtains, with K = supp(V ), in view of (4.6), that

logEh,V
u

[
e〈V ,L·〉�2 ] =

∫ √
2u

0

∫ τ

0
νσh,V

(
e fV − 1

)
dσdτ

=
∫ √

2u

0

∫ τ

0

〈
eQK (·, ·), E(·,·)

[
e
∫∞
0 V (Xs )ds − 1

]〉

L2(ρσh,V )
dσdτ ; (4.7)

strictly speaking, (4.2) does not immediately apply since V is signed but the necessary
small argument using dominated convergence is readily suppliedwith the help of (2.4).
It thus remains to be argued that the right-hand side of (4.7) equals that of (4.4). To
this end, consider the function

ut (x, ϕ)
def.= E(x,ϕ)

[
e
∫ t
0 V (Xs )ds

]
, for t ≥ 0,

which is bounded uniformly in t ≥ 0 on account of (2.4), and observe that, using
first the fundamental theorem of calculus and then the Feynman-Kac formula for the
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process X ,

E(x,ϕ)

[
e
∫∞
0 V (Xs )ds − 1

] =
∫ ∞

0
dt ∂t ut (x, ϕ)

=
∫ ∞

0
dt E(x,ϕ)

[
e
∫ t
0 V (Xs )dsV (Xt )

]
= −

((
Lσh,V + V

)−1
V
)
(x, ϕ). (4.8)

Dropping σh, V for ease of notation (i.e. writing L = Lσh,V , ρ = ρσh,V ), substituting
(4.8) into (4.7) and noting that L+V is symmetric with respect to 〈·, ·〉L2(ρ), cf. (1.17),
then yields that

〈
eQK (·, ·), E(·,·)

[
e
∫∞
0 V (Xs )ds − 1

]〉

L2(ρ)

(3.6)=
〈
−(L + V )hQK + VhQK ,− (L + V )−1 V

〉

L2(ρ)

= 〈
hQK , V

〉
L2(ρ)

−
〈
VhQK , (L + V )−1 V

〉

L2(ρ)
, (4.9)

and (4.4) follows from (4.7) and (4.9) since VhQK = V and
〈
hQK , V

〉
L2(ρ)

=
〈1, V 〉L2(ρ) on account of (3.4) (recall that K is the support of V ). ��

We now come to the main result of this section, which is the following theorem.
Let

νVu = νh≡V ,V
u (see(4.1)) (4.10)

and write PV
u ≡ P

h≡V ,V
u for the canonical law of the associated Poisson point process

onW
∗
. Recall thatμ = μh=0,V=0 refers to theGibbsmeasure (1.4) for theHamiltonian

(1.1). With hopefully obvious notation, ϕ· + a for scalar a ∈ R refers to the shifted
field (ϕx + a)x∈Zd below.

Theorem 4.3 (Isomorphism Theorem) For all u > 0 and V : Zd → R satisfying
(1.7), one has

E
V
u ⊗Eμ

[
e〈V ,L·+ 1

2ϕ2· 〉�2(Zd )
] = Eμ

[
e
1
2 〈V ,(ϕ·+

√
2u)2〉

�2(Zd )

]
. (4.11)

We first make several comments.

Remark 4.4 1. One way to interpret Theorem 4.3 is as follows: the equality (4.11)
holds trivially when u = 0. Thus, L· measures in a geometric way the effect of
the shift

√
2u on (squares of) the gradient field ϕ.

2. When U (η) = 1
2η

2 (cf. (1.1)), Theorem 4.3 immediately implies the identity
derived in Theorem 0.1 of [71], which is itself an infinite-volume analogue of
the generalized second Ray–Knight identity given by Theorem 1.1 of [34]. The
relevant Poissonian lawP

V
u ≡ Pu in the Gaussian case is the random interlacement

point process introduced in [70]. In the general (non-Gaussian) case, (4.11) does
not give rise to an immediate identity in law due to the dependence of PV

u on V .
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3. Our argument also yields a new proof in the Gaussian case U (η) = 1
2η

2. Indeed,
whereas our proof proceeds directly in infinite volume, the proof of Theorem 0.1 in
[71] exploits the generalized second Ray–Knight theorem, along with a certain
finite-volume approximation scheme. Although we will not pursue this here, one
could seek an argument along similar lines in the present context. In particular, this
entails deriving a similar identity as (4.11) on a general finite undirected weighted
graph with wired boundary conditions, thereby extending results of [34] (e.g. in
the form presented in Theorem 2.17 of [72]) to the present framework.

4. It is of course tempting to investigate possible extensions of various othersGaussian
isomorphism identities, see e.g. the monographs [49, 54, 72] for an overview, to
convex gradient measures. We will return to the case of [48] and applications
thereof elsewhere [25].

Proof Expanding the square on the right-hand side of (4.11) and rearranging terms,
we see that (4.11) follows at once if we can show that

E
V
u

[
e〈V ,L〉

�2
] = exp

{〈V , u1〉�2
}
EμV

[
e
√
2u〈V ,ϕ〉

�2
]
, (4.12)

whereμV ≡ μ0,V , cf. (1.8). The change of measure is well-defined given our assump-
tions (1.7) for V (·) on account of Lemma 2.3. We rewrite the exponential functional
appearing on the right-hand side of (4.12) as follows. Introducing the function

f (τ ) = log EμV

[
exp

{
τ 〈V , ϕ〉�2

}]
, τ ∈ [0,√2u],

one observes that (see (1.8) for notation)

f ′(τ ) = E
τV ,V [〈V , ϕ〉�2 ], f ′′(τ ) = varμτV ,V

(〈V , ϕ〉�2
)
, (4.13)

where varμτV ,V

(〈V , ϕ〉2
)
refers to the variance with respect to the tilted measureμh,V ,

h = τV . Noting that f (0) = f ′(0) = 0, expressing f (
√
2u) = f (

√
2u) − f (0) in

terms of its second derivative by interpolating linearly between τ = 0 and τ = √2u
and substituting (4.13), one obtains that

log EμV

[
e
√
2u〈V ,ϕ〉

�2
] = f (

√
2u) =

∫ √
2u

0

∫ τ

0
varμσV ,V

(〈V , ϕ〉�2
)
dσdτ. (4.14)

Now, applying the Hellfer–Sjöstrand formula (1.19) to compute covμσV ,V (ϕx , ϕy),
recalling that V (x, ϕ) = V (x), for all x ∈ Z

d , ϕ ∈ E , and abbreviating L = LσV ,V ,
it follows that
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varμσV ,V

(〈V , ϕ〉�2
)

=
∑

x,y

V (x)V (y)
∫

μσV ,V (dϕ)E(x,ϕ)

[∫ ∞

0
dt exp

{∫ t

0
V (Xs)ds

}
1{Xt = y}

]

=
∫

ρσV ,V (dx, dϕ)E(x,ϕ)

[
V (X0)

∫ ∞

0
dt exp

{∫ t

0
V (Xs)ds

}
V (Xt )

]

=
〈
V ,

(∫ ∞

0
dt et(L+V )V

)
(·, ·)

〉

L2(ρσV ,V )

= 〈
V ,− (L + V )−1 V

〉
L2(ρσV ,V )

.

(4.15)

Putting together (4.15) and (4.14), one sees that the right-hand side of (4.12) is precisely
the right-hand side of (4.4) for the choice h = V . Hence, the asserted equality in (4.12)
follows directly from Lemma 4.1 on account of (4.10). ��

5 Renormalization and scaling limits of squares

We now aim to determine possible scaling limits for the various objects attached to
Theorem4.3, startingwith linear and quadratic functionals ofϕ, as do appear e.g. when
expanding the square on the right-hand side of (4.11). Our main result to this effect is
Theorem 5.1 below, which will be proved over the course of the remaining sections.

With ϕ the canonical field under μ, we introduce for integer N ≥ 1 the rescaled
field

ϕN (z) = d−1/2Nd/2−1ϕ�Nz�, for z ∈ R
d , (5.1)

where �a� = max{k ∈ Z : k ≤ a} for a ∈ R denotes integer part (applied coordinate-
wise when the argument is in Rd , as above) and for V ∈ C∞0 (Rd), set

〈�k
N , V 〉 def.=

∫

Rd
V (z)ϕN (z)kdz, k = 1, 2. (5.2)

Moreover, writing : X2 := X2 − Eμ[X2] for any X ∈ L2(μ), let

〈: �2
N :, V 〉 def.= : 〈�2

N , V 〉 :
(
=
∫

Rd
V (z) : ϕN (z)2 : dz

)
. (5.3)

(with : ϕN (z)2 := ϕN (z)2− Eμ[ϕN (z)2] in the above notation). To avoid unnecessary
clutter, we regard �k

N , k = 1, 2 (as well as : �2
N :) as distributions on R

d , by which
we always mean an element of (C∞0 )′(Rd), the dual ofC∞0 (Rd), in the sequel. Indeed,
〈�k

N , ·〉 : C∞0 (Rd)→ R
d is a continuous linear map; the topology on C∞0 (Rd) is for

instance characterized as follows: fn → 0 if and only if supp( fn) ⊂ K for some
compact set K ⊂ R

d and fn and all its derivatives converge to 0 uniformly on K . We
endow the space of distributions with the weak-∗ topology, by which un : C∞0 (Rd)→
R
d converges to u : C∞0 (Rd)→ R

d if and only if un( f )→ u( f ) for all f ∈ C∞0 (Rd).
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Our main theorem addresses the (joint) limiting behavior of (�N , : �2
N :) as

N → ∞ when d = 3. Its statement requires a small amount of preparation. Recall
that the Gibbs measure μ from (1.4) for the Hamiltonian (1.1) is translation invariant
and ergodic. Hence, the environment at (·, ·) = a(·, ·;ϕt ) in (1.12) generated by the
ϕ-dynamics associated to μ (which solve (1.11) with V = h = 0) inherits these prop-
erties, and is uniformly elliptic on account of (1.2); that is, EμP(x,ϕ)[c1 ≤ at (0, e) ≤
c2] = 1 for all t ≥ 0 and |e| = 1. By following the classical approach of Kipnis
and Varadhan [44], see Proposition 4.1 in [38], one has the following homogenization
result for the walk X ·: with D = D([0,∞),Rd) denoting the Skorohod space (see
e.g. [14, Chap. 3]), there exists a non-degenerate (deterministic) covariance matrix
� ∈ R

d×d such that, as n→∞,

the law of t �→ n−1/2Xtn on D under EμP(x,ϕ)(·) tends
to the law of a Brownian motion B = {Bt : t ≥ 0}with
B0 = x, E(Bt ) = 0 and E((v · Bt )

2) = v ·�v, f or v ∈ R
d .

(5.4)

The invariance principle (5.4) defines thematrix�.WithG�(·, ·) denoting theGreen’s
function of B, we further introduce the bilinear form

E�(V ,W ) =
∫

V (x)G�(x, y)W (y) dx dy ≡ 〈V ,G�V 〉, (5.5)

for V ,W ∈ S(Rd), which is symmetric, positive definite and continuous (in the
Fréchet topology). Hence, see for instance Theorem I.10, pp. 21–22 in [66], there
exists a unique measure P� on S ′(Rd), characterized by the following fact: with �

denoting the canonical field (i.e. the identity map) on S ′(Rd),

underP�, for everyV ∈ S(Rd), the random variable〈�, V 〉
is a centered Gaussian variable with varianceE�(V , V ).

(5.6)

We write E�[·] for the expectation with respect to P� . The canonical field � is the
massless Euclidean Gaussian free field (with diffusivity �).

Of relevance for our purposes will be the second Wick power of �. Let H be the
(Gaussian) Hilbert space corresponding to �, i.e. the L2(P�)-closure of {〈�, V 〉 :
V ∈ S(Rd)}. For X ,Y ∈ H , one defines the first and second Wick products as
: X := X − E�[X ] = X and : XY := XY − E�[XY ]. For ρε,x (·) = ε−dρ( ·−x

ε
),

with ρ smooth, non-negative, compactly supported and such that
∫

ρ(z)dz = 1, let
�ε(x) = 〈�, ρε,x 〉. The field : �ε(x)2 : is thus well-defined. Now let d = 3. For
V ∈ S(R3), one can then define the L2(P�)-limits

〈: �2 :, V 〉 def.= lim
ε→0

∫
: �ε(x)2 : V (x) dx (5.7)

(elements of H ) and one verifies that the limit in (5.7) does not depend on the choice
of smoothing function ρ = ρ1,0. In what follows we often tacitly identify an element
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of S ′(R3) with its restriction to (C∞0 )′(R3). The following set of conditions for the
potential V will be relevant in the context of (5.3) and (5.7):

V ∈ C∞(Rd) and for some λ > 0,≥ 1, supp(V ) ⊂ BLand ‖V ‖∞ ≤ λL−2. (5.8)

For any value of λ < c5 (with a suitable choice of c5 > 0), one then obtains that
rVt (z, z′) ≤ crt (z, z′) for all t ≥ 0 and z, z′ ∈ R

d and all V satisfying (5.8), where rt
refers to the transition density of G� and rVt to that of its tilt by V (cf. (2.9) in case
� = Id), which follows by a straightforward adaptation of the arguments in the proof
of Lemma 2.1. In particular, this implies that for all W ∈ C∞0 (Rd),

‖GV
� |W |‖∞ ≤ c‖W‖∞, where GV

� = (− 1
2�� − V )−1, (5.9)

(so G� = G0
� , cf. above (5.5)) whenever V satisfies (5.8), i.e. GV

� acts (boundedly)
on C∞0 (Rd) for such V , which is all we will need in the sequel. Associated to GV

� in
(5.9) is the energy form EV

�(·, ·) defined similarly as in (5.5) with GV
�(·, ·) in place

of G�(·, ·), whence E�(·, ·) = E0
�(·, ·). We now have the means to state our second

main result, which identifies the scaling limit of �N , : �2
N : introduced in (5.2)–(5.3).

Theorem 5.1 (Scaling limits, d = 3) As N →∞,

the law of (�N , : �2
N :) underμ converges weakly to the law of (�, : �2 :)

under P�.
(5.10)

Moreover, for all V ,W ∈ C∞0 (R3) with V satisfying (5.8) with λ < c,

lim
N

Eμ

[
e
1
2 〈:�2

N :,V 〉+〈�N ,W 〉] = exp
{ 1
2

(
AV

�(V , V )+ EV
�(W ,W )

)}
, (5.11)

with EV
�(·, ·) as defined below (5.9) and AV

�(V , V ) = ∫∫
V (z)AV

�(z, z′)V (z′)dzdz′,
where

AV
�(z, z′) =

∫ 1

0

∫ τ

0
GσV

� (z, z′)2 dσdτ, z, z′ ∈ R
3. (5.12)

The proof of Theorem 5.1 is given in Sect. 7 and combines several ingredients
gathered in the next section.

Remark 5.2 1. The expressions on the right of (5.11) are well-defined, as follows
from (5.9), the fact that GσV

� (z, z′) ≤ cG�(z, z′) for all z, z′ ∈ R
d and that

G�(z, ·) ∈ L2
loc(R

3), which together yield that AV
�(·, ·) extends to a bilinear form

on (say) C∞0 (R3) (cf. Lemma 6.3 below). In particular, AV
�(V , V ) <∞ for V as

in (5.8) (and in fact supV AV
�(V , V ) ≤ c).

2. Specializing to the case V = 0, Theorem 5.1 immediately yields the following
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Corollary 5.3 For all W ∈ C∞0 (R3),

lim
N

Eμ

[
e〈�N ,W 〉] = e

1
2 E�(W ,W ), (5.13)

(cf. (5.5) for notation), i.e. �N under μ converges in law to � as N →∞.
Corollary 5.3 is a celebrated result of Naddaf and Spencer, see Theorem A in [58],

which has generated a lot of activity (see e.g. [2, 16, 21] for generalizations to certain
non-convex potentials, [38] for extensions to the full dynamics {ϕt : t ≥ 0}, and [56]
for a finite-volume version and [7, 22] for quantitative results; see also [43] regarding
similar findings for domino tilings in d = 2 and more recently [12, 13] for the integer-
valued free field in the rough phase; cf. also [32, 33] and refs. therein for height
functions associated to other combinatorial models. Thus, Theorem 5.1 extends the
main result of [58] for d = 3.

3. Together, (5.10) and (5.11) imply in particular that for all V satisfying (5.8),

E�
[
exp{ 12 〈: �2 :, V 〉}

]
= e

1
2 A

V
�(V ,V ); (5.14)

see also (7.24) below for a generalization of this formula to a non-zero scalar “tilt”
u. Explicit representations formoment-generating functionals ofGaussian squares
usually involve (ratios) of determinants, see e.g. (5.46) in [54] or Proposition 2.14
in [72]. We are not aware of any reference in the literature where (5.11) or (5.14)
appear.

4. To illustrate the usefulness of these formulas, notice for instance that (5.11) imme-
diately yields the following:

Corollary 5.4 (d = 3, V as in (5.8))

The law of �N under
μ
[ · e〈(�N )2,V 〉]

Eμ

[
e〈(�N )2,V 〉] converges weakly as N →∞

to a ‘massive’ free field with energy form EV
�(W ,W ) = 〈W ,GV

�W 〉. (5.15)

We refer to the proof of Corollary 7.5 below for another application of (5.11) in order
to identify the scaling limit of the occupation-time field L appearing in Theorem 4.3.

5. Theorem 5.1 has no (obvious) extension when d > 3. Indeed the existence of limits
of renormalized squares as in (5.7) crucially exploits the local square integrability
of the covariance kernel.

6. Althoughwewon’t pursue this here, by a slight extension of our arguments, one can
state a convergence result akin to (5.10) but viewing (�N , : �2

N :) as H−s(R3)×
H−s′(R3)-valued, for arbitrary s > 1

2 and s′ > 1. Here H−s(R3) denotes the
dual of the Sobolev space Hs(R3) = Ws,2(R3) endowed with the inner product
( f , g)s =

∫
R3 f (x)(1−�)sg(x)dx, with � denoting the usual Laplacian on R3.
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6 Some preparation

In this section, we prepare the ground for the proof of Theorem 5.1. We derive three
results, see Propositions 6.1, 6.7 and 6.9, organized in three separate subsections.
Section6.1, which contains Proposition 6.1, deals with exponential tightness of the
relevant functionals (5.2) (when k = 1) and (5.3) (when k = 2). In Sect. 6.2 (cf. Propo-
sition 6.7) we derive a key comparison estimate between quadratic functionals of �N

and those of a certain smoothed field �ε
N , to be introduced shortly, which is proved to

constitute a good L2(μ)-approximation of : �2
N : for a suitable range of parameters.

Finally, we show in Sect. 6.3 that the smoothed field behaves regularly, i.e. converges
towards its expected limit (which actually holds for all d ≥ 3). Combining these
ingredients, the proof of Theorem 5.1 is presented in the next section.

We now introduce the smooth approximation that will play a role in the sequel. Let
ρ = ρ1 be an arbitrary smooth, non-negative function with ‖ρ‖L1(Rd ) = 1 having
compact support contained in [−1, 1]d . For ε > 0 and x ∈ R

d , let ρε(·) = ε−dρ1( ·
ε
),

ρε,z(·) = ρε(z − ·). Define

ϕε
N (z) =

∫
ρε(z − w)ϕN (w)dw

(5.2)= 〈�N , ρε,z〉, z ∈ R
d (6.1)

and 〈(�ε
N )k, V 〉, k = 1, 2, and 〈: (�ε

N )2 :, V 〉 as in (5.2) and (5.3) but with ϕε
N in place

of ϕN . Note that z �→ ϕε
N (z) inherits the smoothness property of ρ. The regularized

field ϕε
N essentially reflects at the discrete level the presence of an (ultraviolet) cut-off

at scale ε in the limit.

6.1 Tightness

The main result of this section is Proposition 6.1, which implies in particular the
exponential tightness of {: �2

N :, N ≥ 1}, along with similar conclusions for its
regularized version : (�ε

N )2 :, see (6.1) and Remark 6.2,(1)). The following bounds
on Gaussian moments are interesting in their own right. We conclude this section by
exhibiting how these estimates improve to exact calculations in the Gaussian case. For
V ,W ∈ C∞0 (R3), let

�μ(χ)
def.= log Eμ

[
exp

{
1

2

∫
V (z) : χ(z)2 : dz +

∫
W (z)χ(z)dz

}]
(6.2)

(whenever the integrand is in L1(μ)) and recall ϕN from (5.1) and that : X : =
X − Eμ[X ] for X ∈ L2(μ). The proofs of the following estimates will rely on
Lemma 2.3.

Proposition 6.1 For all V ,W ∈ C∞0 (R3) with V satisfying (5.8) for λ < c6 and
supp(W ) ⊂ BM, ‖W‖∞ < τ for some τ > 0, one has

sup
N≥1

�μ(ϕN ) ≤ c(L)λ2 + c′(M)τ 2. (6.3)
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Similarly, for all ε ∈ (0, 1) there exists c7(ε) ∈ (1,∞) such that

sup
N≥c7(ε)

�μ(ϕε
N ) ≤ c(L, ρ)λ2 + c′(M, ρ)τ 2, (6.4)

for V ,W as above when λ < c(ρ). Moreover, (6.3) and (6.4) hold for all d ≥ 3 in
case λ = 0.

Remark 6.2 1. In particular, for any V ,W as above, the random variables 1
2

〈: �2
N :, V 〉+〈�N ,W 〉, N ≥ 1, cf. (5.2) and (5.3) for notation, are (exponentially)

tight by (6.3), and similarly for �ε
N instead of �N using (6.4). Indeed, to deduce

tightness observe for instance that by (6.3), Eμ[cosh{〈: �2
N :, V 〉 + 〈�N ,W 〉}]

is bounded uniformly in N , from which the claim follows using the inequality
e|x | ≤ cosh(x), valid for all x ∈ R.

2. The estimate (6.4) depends very mildly on the particular choice of mollifier ρ in
(6.1). For instance, inspection of the proof below reveals that the constants can be
chosen in a manner depending on ‖ρ‖∞ only; see (6.15) below.

Proof We first assume that W ≡ 0 in (6.2) and will deal with the presence of a linear
term separately at the end of the proof. Let ϕ0

N = ϕN , cf. (5.1) and (6.1), which will
allow us to treat (6.3) and (6.4) simultaneously, the former corresponding to the case
ε = 0 in what follows. The proof will make use of Lemma 2.3; we first explain how
its hypotheses (2.12)–(2.14) fit the present setup. Consider the functional

Fε
N (ϕ)

def.= 1

2

∫
V (z)ϕε

N (z)2dz, ε ∈ [0, 1], (6.5)

which, up to renormalization, corresponds to the exponential tilt defining �μ(ϕε
N ) in

(6.2) (when W = 0). For ε = 0, recalling (5.1), one writes for all N ≥ 1,

F0
N (ϕ) = 1

2

∑

x

VN (x)ϕ2
x , (6.6)

with VN as in (2.6), which is of the form (2.12) with Qλ = diag(VN ). By assumption
on V , cf. (5.8), supp(V ) ⊂ BL hence diam(VN ) ≤ NL . Moreover,

‖VN‖∞
(2.6)≤ N−2‖V ‖∞

(5.8)≤ λ(NL)−2,

that is, Qλ = diag(VN ) satisfies (2.13) and (2.14) with R = NL , whenever λ < c3,
whichwe tacitly assume henceforth. The case ε > 0 follows a similar pattern. Here one
obtains using (6.1) that (6.5) has the form (2.12) and (2.13) is readily seen to hold with
R = N (L+2). To deduce that (2.14) is satisfied, one appliesCauchy-Schwarz and uses
thatρε(·) ≤ ε−d‖ρ‖∞ and

∫
ρε(·−w)dw = 1,whence

∫
ρε(z−w)2dw ≤ ε−d‖ρ‖∞,

to obtain
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2Fε
N (ϕ)

(6.1)= Nd−2
∫

dzV (z)
( ∫

ρε(z − w)ϕ�Nw�dw
)2

≤ Nd−2
∫

dz|V (z)|ε−d‖ρ‖∞
∫

ϕ2�Nw�1|z−w|<εdw

= N−2‖ρ‖∞
∑

x

ϕ2
x

∫
dwNd · 1�Nw�=x

(
ε−d

∫

B(w,ε)

|V (z)|dz
)

(5.8)≤ λ(NL)−2‖ϕ‖2
�2(BR)

,

yielding (2.14). All in all, it follows that eF
ε
N ∈ L1(μ) for all ε ∈ [0, 1] on account

of Lemma 2.3, which is in force. In particular, together with Jensen’s inequality, this
implies that �μ(ϕε

N ), ε ∈ [0, 1], as appearing on the left of (6.3) and (6.4), is well-
defined and finite for all N ≥ 1.

For t ∈ [0, 1], define �μ(χ; t) as in (6.2), but with (tV , 0) instead of (V ,W ),
whence �μ(χ ; 0) = 0 and �μ(χ ; 1) = �μ(χ). Observing that

d

dt
�μ(ϕε

N ; t)
∣∣∣
t=0 =

1

2

∫
V (z)Eμ[ : ϕε

N (z)2 : ]dz = 0,

one finds, with a similar calculation as that leading to (4.14),

�μ(ϕε
N ) =

∫ 1

0

∫ s

0
varμε

t
(: Fε

N (ϕ) :) ds dt =
∫ 1

0

∫ s

0
varμε

t
(Fε

N (ϕ)) ds dt, (6.7)

where Fε
N is given by (6.5) and

dμε
t = �μ(ϕε

N ; t)−1e:t F
ε
N (ϕ):dμ = Eμ[et Fε

N (ϕ)]−1et Fε
N (ϕ)dμ. (6.8)

We now derive a uniform estimate (in N and t) for the variance appearing on the
right-hand side of (6.7). We will use (2.16) for this purpose. For z, z′ ∈ R

3 and ε ≥ 0,
let

ρε
N (z, z′) = N 3

∫

�Nz′�
N +[0, 1

N )3
ρε(z − w) dw (6.9)

and define ρ0
N (z, z′) = N 3 · 1�Nz�=�Nz′�. Abbreviating ∂x = ∂

∂ϕx
, one sees that for all

x ∈ Z
d

∂xϕ
ε
N (z) = N 1/2 · N−3ρε

N (z, x/N ), z ∈ R
d (6.10)
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(in particular, the right-hand side of (6.10) equals N 1/2 ·1{�Nz�=x} when ε = 0). Using
(6.10), one further obtains that

∂x∂y F
ε
N (ϕ) = ∂x

∫
dzV (z)∂yϕ

ε
N (z)2 = 2

∫
dzV (z)∂xϕ

ε
N (z)∂yϕ

ε
N (z)

= 2N
∫

dzV (z)N−3ρε
N (z, x/N ) · N−3ρε

N (z, y/N ). (6.11)

Now, one readily infers using (6.10) and the fact that ϕ is a centered field underμε
t that

Eμε
t
[∂x Fε

N (ϕ)] = 0. Recalling the rescaled Green’s function gN = g0N from (2.7),
applying (2.16) with the choice μ = με

t and F = Fε
N , observing that the first term on

the right-hand side vanishes and substituting for ∂x∂y Fε
N , one deduces that

varμε
t
(Fε

N ) ≤ c8N
6
∫∫

dvdw N−1gN (v,w)

×N 6
∫∫

dv′dw′ N−1gN (v′, w′)∂�Nv′�∂�Nv�F ∂�Nw′�∂�Nw�F

= 4c8

∫∫
V (z)gε

N (z, z′)2V (z′)dzdz′ (6.12)

where, for all ε ≥ 0, we have introduced

gε
N (z, z′) =

∫∫
ρε
N (z, v)gN (v,w)ρε

N (z′, w) dvdw, z, z′ ∈ R
d (6.13)

and we also used the fact that ρε
N (z, z′) = ρε

N (z, z′′) whenever �Nz′� = �Nz′′�,
as apparent from (6.9). Note that (6.12) is perfectly valid for ε = 0, in which case
g0N = gN as in (2.7) in view of (6.13) and the definition of ρ0

N below (6.9). To complete
the proof, it is thus enough to supply a suitable bound for the quantity in the last line
of (6.12). To this effect, let (Gε

N )k , k = 1, 2, (with (Gε
N )1 ≡ Gε

N ) denote the operator
with kernel gε

N (·, ·)k , i.e. (Gε
N )k f (z) = ∫

gε
N (z, z′)k f (z′)dz′, for any function f such

that
∫
gε
N (z, z′)k | f (z′)|dz′ <∞ for all z ∈ R

d . The following result is key.

Lemma 6.3 For all V ∈ C∞0 (Rd) with supp(V ) ⊂ BL and ε ∈ (0, 1),

sup
N≥c7(ε)

∥∥Gε
NV

∥∥∞ ≤ c(L, ‖ρ‖∞)‖V ‖∞ (d ≥ 3), (6.14)

sup
N≥c7(ε)

∥∥(Gε
N )2V

∥∥∞ ≤ c(L, ‖ρ‖∞)‖V ‖∞ (d = 3), (6.15)

and (6.14) and (6.15) hold for ε = 0 uniformly in N ≥ 1with a constant c independent
of ρ.

We postpone the proof of Lemma 6.3 for a few lines. Applying (6.15)–(6.12) and
recalling the assumptions on V specified in (5.8), which are in force, it readily follows
that varμ0

t
(F0

N ) ≤ c(L)λ2 for all N ≥ 1, t ∈ [0, 1] and varμε
t
(Fε

N ) ≤ c(L, ρ)λ2 for all
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N ≥ c7(ε), t ∈ [0, 1] and ε ∈ (0, 1]. Plugging these into (6.7), the asserted bounds
(6.3) and (6.4) follow for W = 0.

The caseW 
= 0 is dealt with by considering μ̃ε def.= με
t=1, the latter as in (6.8), and

introducing

dμ̃ε
t =

1

Eμ̃ε [et F̃ε
N (ϕ)]

et F̃
ε
N (ϕ)dμ̃ε, F̃ε

N (ϕ) =
∫

W (z)ϕε
N (z)dz

for t ∈ [0, 1] and ε ∈ [0, 1]. Then, one defines �̃μ(χ ; t) as in (6.2), but with (V , tW )

instead of (V ,W ) and repeats the calculation starting above (6.7) with �̃μ(χ ; t) in
place of �μ(χ ; t). The resulting variance of F̃ε

N can be bounded using (2.15) (or
(2.16) which boils down to the former since ∂x∂y F̃ε

N = 0) and (6.14). The bounds
(6.3) and (6.4) then follow as �̃μ(·; t = 1) = �μ(·). ��

Wenowsupply themissing proof ofLemma6.3,which, albeit simple, plays a pivotal
role (indeed, (6.15) is the sole place where the fact that d = 3 is being used). Before
doing so, we collect an important basic property of the (smeared) kernel gε

N (·, ·)
introduced in (6.13) that will be useful in various places. Recall that gε

N implicitly
depends on the choice of cut-off function ρ = ρ1 through ρε

N , cf. (6.9).

Lemma 6.4 (d ≥ 3) For all ε ∈ (0, 1) and N ≥ ε−1,

gε
N (z, z′) ≤ c‖ρ‖2∞(ε ∨ |z − z′|)2−d , z, z′ ∈ R

d . (6.16)

The proof of Lemma 6.4 is found in Appendix B. With Lemma 6.4 at hand, we give
the

Proof of Lemma 6.3 We show (6.15) first. By assumption on V , it is sufficient to argue
that

sup
z

∫

B(0,L)

gε
N (z, z′)2dz′ ≤ c‖ρ‖c9∞L, L ≥ 1, (6.17)

uniformly in N ≥ c(ε) (and for all N ≥ 1 with c9 = 0 when ε = 0), from which
(6.15) immediately follows. We first consider the case ε = 0, which is simpler. The
fact that d = 3 now crucially enters. Recalling gN = g0N from (2.7), splitting the
integral in (6.17) according to whether |z′| ≤ 1

N or not and arguing similarly as in the
proof of Lemma 6.4 (see below (B.3)), one sees that for all z ∈ R

d and N ≥ 1,

∫

B(0,L)

g0N (z, z′)2dz′ ≤ cN 2 vol(B(0, N−1))+ c′
∫

1
N ≤|z′|≤L

dz′

|z′ − z|2 ≤ c′′L,

where vol(·) refers to the Lebesgue measure and the last bound follows as

∫

|z′|≤L
dz′

|z′ − z|2 ≤ c
∫ |z|+L

0∨(|z|−L)

dr ≤ 2cL, for all z ∈ R
3. (6.18)
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This yields (6.17) for all N ≥ 1 when ε = 0. For ε > 0 and all N ≥ ε−1 one finds
using (6.16) that

∫

z′∈B(0,L),|z−z′|≤ε

gε
N (z, z′)2dz′ ≤ c‖ρ‖4∞ε−2 vol(B(0, ε)) ≤ c‖ρ‖4∞ε

and

∫

z′∈B(0,L),|z−z′|>ε

gε
N (z, z′)2dz′ ≤ c‖ρ‖4∞

∫

|z′|≤L
dz′

|z′ − z|2 ≤ c′‖ρ‖4∞L,

using (6.18) in the last step. Together, these bounds immediately yield (6.17).
The proof of (6.14) follows by adapting the previous argument, yielding that∫
B(0,L)

gε
N (z, z′)dz′ ≤ c‖ρ‖2∞ L2 uniformly in z ∈ R

d , L ≥ 1 and N ≥ c(ε),
along with a similar bound when ε = 0. ��
Remark 6.5 The case ε > 0 in (6.5) could also be handled via a suitable random walk
representation (with potential) when V ≥ 0. The latter is not a serious issue with
regards to producing estimates like (6.3) and (6.4) since �μ can be bounded a-priori
by replacing V by V+ in (6.2). Now, letting

Qε
N (x, y) = Nd−2

∫
V (z)

[ ∫
ρε(z − w)1�Nw�=xdw

∫
ρε(z − w′)1�Nw′�=ydw′

]
dz

one can rewrite

Fε
N (ϕ) =

∑

x,y

Qε
N (x, y)ϕxϕy = −1

2

∑

x 
=y

Qε
N (x, y)(ϕx − ϕy)

2 +
∑

x

V ε
N (x)ϕ2

x ,

where V ε
N (x) =∑

y Q
ε
N (x, y). Noting that Qε

N (x, y) ≥ 0 when V ≥ 0, this leads to
an effective randomwalk representationwithfinite-range (deterministic) conductances
Qε

N (x, y)which add to a(ϕ) in (1.12). In particular, the lower ellipticity only improves.
The potential V ε

N is then seen to exhibit the correct scaling (e.g. it satisfies (2.3)).

We conclude this section by refining the above arguments in the Gaussian case.
Indeed the proof of (6.3) (or (6.4)) can be strengthened in the quadratic case essentially
because the variance appearing in (6.7) can be computed exactly. This improvement
will later be used to yield the formula (5.11) in Theorem 5.1.

Thus consider a GaussianmeasureμG converging in law toψ in the sense of (5.13).
For concreteness, we defineμG to be the canonical law of the centeredGaussian fieldϕ

with covariance given by the Green’s function of the time-changed process Yt = Zσ 2t ,
t ≥ 0, where Z denotes the simple random walk, cf. above (2.1), and � = σ 2Id with
� the effective diffusivity from (5.4); see e.g. [56], Theorem 1.1 regarding the latter.
Incidentally, σ 2 is proportional to Eμ[U ′′(ϕ0 − ϕei )] for any 1 ≤ i ≤ d, which
is independent of i by invariance of μ under lattice rotations. The following is the
announced improvement over (6.3) for μG.
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Proposition 6.6 (d = 3) For all V ,W ∈ C∞0 (R3)with V satisfying (5.8) for λ < c10,

lim
N

�μG(ϕN ) = 1

2

(
AV

�(V , V )+ EV
�(W ,W )

)
(6.19)

(see below (5.9) and (5.12) for notation).

Proof Referring to μG
t as the measure in (6.8) with ε = 0 and μ = μG, it follows

using (6.7) that

�μG(ϕN ) =
∫ 1

0

∫ s

0
varμG

t
(F0

N (ϕ)) ds dt + log EμG
1

[
e
∫
W (z)ϕN (z)dz] (6.20)

with F0
N as defined in (6.5). We now compute the terms on the right-hand side of

(6.20) separately. To avoid unnecessary clutter, we assume that σ 2 ≡ 1. Using
(5.1) and Wick’s theorem, one finds that EμG

t
[ϕε

N (z)2ϕε
N (z′)2] = 2gtVN (z, z′)2 +

gtVN (z, z)gtVN (z′, z′), where gtVN refers to the rescaled Green’s function (2.7). Hence,

varμG
t
(F0

N (ϕ)) = 1

2

∫∫
V (z)gtVN (z, z′)2V (z′)dzdz′ = 〈V , (GtV

N )2V 〉

(see (2.8) for notation), where we used that EμG
t
[F0

N (ϕ)] = ∫
V (z)gtVN (z, z)dz. Sim-

ilarly,

2 log EμG
1

[
e
∫
W (z)ϕN (z)dz] = varμG

1

( ∫
W (z)ϕN (z)dz

) = 〈W ,GV
NW 〉.

Substituting these expressions into (6.20), the claim (6.19) follows by means of
Lemma 2.2. ��

6.2 L2-comparison

With tightness at hand, the task of proving Theorem 5.1 requires identifying the limit.
A key step is the following L2-comparison estimate, which implies in particular that
: ϕ2

N : and its regularized version : (ϕε
N )2 : introduced in (6.1) are suitably close.

More precisely, we have the following control. Recall that : X2 : = X2 − Eμ[X2] for
X ∈ L2(μ).

Proposition 6.7 (L2-estimate, ε ∈ (0, 1)) For all V ∈ C∞0 (R3) such that supp(V ) ⊂
BL, there exists c11 = c11(ε, L) ∈ (1,∞) such that

lim
ε↘0

sup
N≥c11

∥∥∥∥
∫

V (z)
[ : ϕN (z)2 : − : ϕε

N (z)2 : ]dz
∥∥∥∥
L2(μ)

= 0, (d = 3). (6.21)

Moreover, for such V ,

lim
ε↘0

sup
N≥c11

∥∥∥∥
∫

V (z)
[
ϕN (z)− ϕε

N (z)
]
dz

∥∥∥∥
L2(μ)

= 0, (d ≥ 3). (6.22)
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We start by collecting the following precise (i.e. pointwise) estimate for the kernel gε
N

defined in (6.13), at macroscopic distances, which can be seen to play a somewhat
similar role in the present context asLemma6.4 did to deduce tightnesswithin the proof
of Proposition 6.1. For purposes soon to become clear, we also consider (cf. (6.13))

g̃ε
N (z, z′) =

∫
gN (z, w)ρε

N (w, z′) dw. (6.23)

Let G(y− x) ≡ G(x, y) = d
2πd/2 �( d2 − 1)|x − y|2−d , for x, y ∈ R

d denote (d times)

the Green’s function of the standard Brownian motion in Rd , d ≥ 3.

Lemma 6.8 (d ≥ 3) For all ε > 0 and hε
N ∈ {gε

N , g̃ε
N },

lim
N

sup
|y−z|>3ε

∣∣hε
N (y, z)− G(y, z)

∣∣ = 0. (6.24)

The proof of Lemma 6.8 is deferred to Appendix B. We proceed with the

Proof of Proposition 6.7 Since F(ϕ) ≡ ∫
V (z)[: ϕN (z)2 : − : ϕε

N (z)2 :]dz is centered,
the square of its L2-norm is a variance. Applying (2.16) (see also (6.12)) and using
(6.11) yields

‖F‖2L2(μ)
≤ 4c8

∫∫
V (z)kε

N (z, z′)V (z′)dzdz′ (6.25)

for all ε > 0 and N ≥ 1, where

kε
N (z, z′) = gε

N (z, z′)2 − g̃ε
N (z, z′)2 + g0N (z, z′)2 − g̃ε

N (z, z′)2, z, z′ ∈ R
3,

(6.26)

with gε
N and g̃ε

N as in (6.13) and (6.23), respectively (hence the introduction of g̃ε
N ).

We will deal with the short- and long-distance contributions (i.e. |z − z′| � ε or
not) to (6.25) separately. Henceforth, we tacitly assume that N ≥ cε−1, which is no
loss of generality. We claim that for h ∈ {g0N , gε

N , g̃ε
N } (and N ≥ cε−1),

sup
z

∫

|z−z′|≤3ε
V (z′)h(z, z′)2dz′ ≤ c‖V ‖∞(‖ρ‖∞ ∨ 1)c

′
ε. (6.27)

Indeed, for h = g0N or gε
N , this is (6.17), and the case h = g̃ε

N is dealt with similarly
upon noticing that g̃ε

N (z, z′) ≤ c‖ρ‖∞ε−1 for |z − z′| ≤ 3ε. The latter is obtained in
much the same way as the argument following (B.3): the absence of a mollification
with ρε

N from the left, cf. (6.23) and (6.13), will effectively make the first supremum
on the right of (B.3) disappear; the rest of the argument is the same. Returning to
(6.25), restricting to the set |z − z′| ≤ 3ε, bounding the kernel in (6.26) by a sum of
positive kernels and applying (6.28) readily gives

sup
N≥cε−1

∫∫

|z−z′|≤3ε
V (z)kε

N (z, z′)2V (z′)dzdz′ ≤ c‖V ‖1‖V ‖∞(‖ρ‖∞ ∨ 1)c
′
ε. (6.28)

123



A Ray–Knight theorem for∇φ interface models…

(note that (6.28) is specific to d = 3; the rest of the proof isn’t).
We now consider the case |z − z′| > 3ε, which exploits cancellations in (6.26).

Adding and subtracting G (see above Lemma 6.8 for notation) in (6.26), using the
elementary estimate a2 − b2 ≤ (|a| + |b|)|a − b|, one sees that for all N ≥ 1 and
ε > 0,

∫∫

|z−z′|>3ε
V (z)kε

N (z, z′)2V (z′)dzdz′

≤ 8 sup
h,h′

∫∫

|z−z′|>3ε
|V |(z)h(z, z′)|h′(z, z′)− G(z, z′)| |V |(z′)dzdz′ (6.29)

where h, h′ ∈ {g0N , gε
N , g̃ε

N }. Now, using (6.14) and its analogue for g̃ε
N , one obtains

that

sup
N≥cε−1

(‖Gε
NV ‖∞ ∨ ‖G̃ε

NV ‖∞
) ≤ c(‖ρ‖∞ ∨ 1)c

′
L2‖V ‖∞ (6.30)

where, with hopefully obvious notation, G̃ε
N is the operator with kernel g̃ε

N ; cf. above
Lemma 6.3 for notation. Going back to (6.29), bounding |h′(z, z′) − G(z, z′)| by
its supremum over |z − z′| > 3ε and estimating the remaining integral over
|V |(z)h(z, z′)|V |(z′) using (B.8) and (6.30), one sees that the right-hand side of (6.29)
is bounded for N ≥ cε−1 by

c‖V ‖1‖V ‖∞(‖ρ‖∞ ∨ 1)c
′
sup
h

sup
|z−z′|>3ε

|h(z, z′)− G(z, z′)|,

where the sup is over h ∈ {g0N , gε
N , g̃ε

N }, which in particular tends to 0 as N → ∞
on account of (6.24). Together with (6.25) and (6.28), this readily yields (6.21), for
suitable choice of c11.

The proof of (6.22) is simpler. Proceeding as with (6.21), using (2.16) (or (2.15)),
one obtains a bound of the form (6.25) where kε

N = gε
N −g0N . The proof then proceeds

by adding and subtractingG, splitting the resulting integral and using (6.24) to control
the long-distance behavior. ��

6.3 Convergence of smooth approximation

As a last ingredient for the proof of Theorem 5.1, we gather here the convergence of the
smooth field ϕε

N introduced in (6.1). This convergence is not specific to dimension d =
3. In a sense, (6.32) below can be viewed (at the level of finite-dimensional marginals)
as a consequence of (5.13). Some care is needed to improve this convergence to a
suitable functional level, which requires controlling the modulus of continuity of ϕε

N .
This will bring into play Lemma 2.5.

Define the centered Gaussian field

�ε(z) = 〈�, ρε,z〉, z ∈ R
d (6.31)
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where ρ = ρ1 refers to the choice of mollifier above (6.1) and ψ is defined in (5.6).
In the sequel we regard both the law of ϕε

N = (ϕε
N (z))z∈Rd under μ and �ε =

(�ε(z))z∈Rd under P� as probability measures on C = C(Rd ,R) (which is all the
regularity we will need in the sequel), endowed with its canonical σ -algebra.

Proposition 6.9 (d ≥ 3, ε ∈ (0, 1))

The law ofϕε
N underμ converges weakly to the law of�ε under P� as N →∞.

(6.32)

The proof of (6.32) will follow readily from the next two lemmas. We first establish
convergence of finite-dimensional marginals and then deal with the regularity estimate
needed to deduce convergence in C .

Lemma 6.10 For K ⊂ R
d a finite set,

(ϕε
N (z) : z ∈ K )

d−→ (ψε(z) : z ∈ K ) as N →∞. (6.33)

Proof For λz ∈ R, letW (·) =∑
z∈K λzρ

ε,z(·) which is in C∞0 (Rd) by assumption on
ρ, cf. above (6.1). Then by (5.13)

2 log Eμ[e
∑

z∈K λzϕ
ε
N (z)] = 2 log Eμ[e〈W ,ϕN 〉] N−→ E�(W ,W )

=
∑

z,z′
λz E

�[�ε(z)�ε(z′)]λ′z

using (6.31) and (5.6) for the last equality. Thus (6.33) holds. ��
To establish the required regularity, we use Lemma 2.5 to control higher moments.

Lemma 6.11 (ε > 0, d ≥ 3) For all k ≥ 1, z, w ∈ R
d ,

sup
N

Eμ

[∣∣ϕε
N (0)|] ≤ c(ε), (6.34)

sup
N

Eμ

[∣∣ϕε
N (z)− ϕε

N (w)|2k] ≤ c(k, ε)|z − w|k, (6.35)

Proof Using (2.15) (or (2.21) with k = 1) one obtains that varμ(ϕε
N (0)) ≤ cgε

N (0, 0),
with gε

N as in (6.13). The uniform (in N ) bound (6.34) then follows from Lemma 6.4
and Cauchy–Schwarz.

Proceeding similarly, using (2.21) for k ≥ 1, one deduces (6.35) using the fact that

sup
N
|gε

N (x, z)− gε
N (x, w)| ≤ c(ε)|w − z|, x ∈ R

d ,

which is obtained by considering the cases |x − z| ≤ 3ε and > 3ε separately, using
e.g. (6.24) in the latter case and the uniform bound sup|z|≤3ε |∇zgε

N (0, z)| ≤ c(ε) in
the former case. ��
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Proof ofProposition 6.9 Let η > 0. Using (6.34) one finds a = a(η, ε) ∈ (0,∞) such
that

Pμ

[∣∣ϕε
N (0)| ≥ a

] ≤ η, for all N ≥ 1. (6.36)

Let wN (δ) = sup|z−w|≤δ |ϕε
N (z)− ϕε

N (w)| denote the modulus of continuity of z �→
ϕε
N (z). Using (6.35) with, say, k = d + 1, one classically deduces, see e.g. [67],

Cor. 2.1.4 for a similar argument when d = 1, see also [46], Lemma 1.2, for a multi-
dimensional version of Theorem 2.1.3 in [67], which is used to deduce Cor. 2.1.4,
that

lim
δ→0

lim sup
N→∞

Pμ

[
wN (δ) ≥ η

] = 0. (6.37)

Together, (6.36) and (6.37) imply tightness in C of the family of laws on the left of
(6.32), see [14] Thms. 7.3 and 15.1, and the asserted convergence in (6.32) follows
upon using (6.33) to identify the limit. ��

7 Denouement

With the results of the previous section at hand, notably Propositions 6.1, 6.7 and 6.32,
we have gathered the necessary tools to proceed to the

7.1 Proof of Theorem 5.1

Throughout this section, we assume that V ,W ∈ C∞0 (R3)with V satisfying (5.8) and

λ < 1
2c6 ∧ c10 (7.1)

(cf. Propositions 6.1 and 6.6). For such V ,W , we introduce the shorthand (recall ϕN

from (5.1))

ξN
def.= 1

2

∫
V (z)ϕ2

N (z)dz +
∫

W (z)ϕN (z)dz (7.2)

and ξε
N defined analogously with ϕε

N (see (6.1)) in place of ϕN everywhere. The proof
ofTheorem5.1 combines the following three claims,which correspond to three distinct
steps in taking the scaling limit. Of these three steps, only the first and last, cf. (7.3) and
(7.9) rely on the fact that d = 3. The first lemma asserts that the relevant generating
functionals of (ϕN , : ϕ2

N :) are well approximated by those of the ε-regularized field
ϕε
N when the mesh size 1

N is sufficiently large. This relies crucially on the L2-estimate
of Proposition 6.6, along with the tightness implied by Proposition 6.1.
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Lemma 7.1 (d = 3) For suitable c(ε) ∈ (1,∞),

γ (ε)
def.= sup

N≥c(ε)

∣∣Eμ[e:ξN :] − Eμ[e:ξε
N :]∣∣→ 0 as ε → 0. (7.3)

Proof For 0 < η ≤ 1 to be chosen shortly and ξN as in (7.2), consider the event

AN (η) = { ∣∣: ξN : − : ξε
N :

∣∣ > η
}
.

Looking at Eμ[e:ξN : − e:ξε
N :], distinguishing whether AN (η) occurs or not, applying

Cauchy–Schwarz in the former case while using in the latter case the elementary
estimate |ex − ey | ≤ cexη valid for all x, y ∈ R with |x − y| ≤ η(≤ 1), one finds that
for all ε > 0, N ≥ 1 and 0 < η ≤ 1,

∣∣Eμ[e:ξN :] − Eμ[e:ξε
N :]∣∣ ≤ cηEμ[e:ξN :] +

(
Eμ[e:2ξN :]1/2 + Eμ[e:2ξε

N :]1/2
)
Pμ[AN (η)].

(7.4)

Now, recalling L from condition (5.8), choosing L ′ large enough so that supp(W ) ⊂
BL ′ and letting c(ε) = c7(ε)∨c11(ε, L)∨c11(ε, L ′) in (7.3) (cf. Prop. 6.1 regarding c7
and Prop. 6.6 regarding c11), applying (6.3), (6.4) (cf. also (7.1) for the relevant choice
of λ) and using Chebyshev’s inequality, one obtains from (7.4) that for all ε > 0 and
0 < η ≤ 1,

γ (ε) ≤ c′η + c′′η−2 sup
N≥c(ε)

‖ : ξN : − : ξε
N : ‖L2(μ). (7.5)

Picking η ≡ η(ε) = 1 ∧ supN≥c(ε) ‖ : ξN : − : ξε
N : ‖1/3L2(μ)

and applying the bounds
(6.21) and (6.22) from Proposition 6.7, which is in force by choice of c(ε), one finds
that η(ε)→ 0 as ε → 0 and with (7.5) that γ (ε) ≤ cη(ε). Thus, (7.3) follows. ��

The second claim identifies the limit for the functionals of the smooth approximation
at fixed cut-off ε > 0, which is not specific to d = 3 since ε is fixed. The convergence
essentially follows from tightness and Proposition 6.9. Let ξε refer to the quantity in
(7.2) when ϕN is replaced by �ε, cf. (6.31). The following is tailored to our purposes.

Lemma 7.2 (d ≥ 3) For all ε ∈ (0, 1),

lim
N

Eμ[e:ξε
N :] = E�[e:ξε :]. (7.6)

Proof With L, L ′ such that supp(V ) ⊂ BL , supp(W ) ⊂ BL ′ , let K = BL∨L ′ ⊂ R
d .

Using (6.32) and (6.4) with λ = 0, one readily deduces that

Eμ[ξε
N ] → E�[ξε], as N →∞. (7.7)
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Then, as we now explain, using a similar argument involving (6.32) together with
(7.7), one further obtains, for all M ≥ 1,

Eμ[e:ξε
N : ∧ M] → E�[e:ξε : ∧ M] as N →∞;

to see this, one first bounds the normalization e−Eμ[ξε
N ] from above and below by

e−E� [ξε](1∓ε) for N ≥ C(ε) using (7.7). Then one lets first N →∞ while applying
(6.32), observing to this effect that a · eξε

N ∧ M is a bounded continuous function of
(ϕε

N (z) : z ∈ K ) for all a > 0 in view of (7.2), and lastly one sends ε ↓ 0. To conclude
(7.6), one bounds

Eμ[e:ξε
N :1{: ξε

N :> M}]2 ≤ Eμ[e:2ξε
N :]Pμ[: ξε

N :> M]

and notices upon letting M →∞ that the first term on the right hand side is bounded
uniformly in N by means of (6.4) (cf. also (7.1)), and the latter further yields that
limM supN≥c(ε) Pμ[: ξε

N :> M] = 0. This completes the proof of (7.6). ��
Finally, the third item yields that the right-hand side of (7.6) converges towards the

desired limit as the cut-off ε is removed. Recalling� from (5.6) and : �2 : from (5.7),
let

: ξ : = 1

2
〈: �2 :, V 〉 + 〈�,W 〉 ( ∈ L2(P�)

)
. (7.8)

Lemma 7.3 (d = 3)

lim
ε↓0 E

�[e:ξε :] = E�[e:ξ :]. (7.9)

Lemma 7.3 is a purely Gaussian claim. Its proof is given in Appendix C. Equipped
with Lemmas 7.1–7.3, we can give the short:

Proof of Theorem 5.1 We will show that for any V ,W ∈ C∞0 (R3) with with V as in
(5.8) and λ satisfying (7.1),

: ξN : (= ξN − Eμ[ξN ]) converges in law to : ξ : asN →∞, (7.10)

which implies (5.10). As we now explain, on account Proposition 6.1, in order to
obtain (7.10) it is enough to show that for any such V ,W (cf. (7.2)),

lim
N

Eμ[e:ξN :] = E�[e:ξ :]. (7.11)

Indeed, Eμ[e:ξN :] = �μ(ϕN ) in the notation (6.2) and so by (6.3) (see also
Remark 6.2,(1)) the sequence : ξN :, N ≥ 1, is tight and (7.11) implies that any
subsequential limit has the same law as : ξ :. The claim (7.10) then follows e.g. by the
corollary below Theorem 5.1 in [14], p.59.
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It remains to argue that (7.11) holds, which follows by combining Lemmas 7.1–7.3.
Let ε ∈ (0, 1). With γ ′(ε) = |E�[e:ξε :] − E�[e:ξ :]|, one has for arbitrary ε ∈ (0, 1)
that |Eμ[e:ξN :] − E�[e:ξ :]| is bounded for all N ≥ c(ε) by

∣∣Eμ[e:ξε
N :] − E�[e:ξε :]∣∣+ γ (ε)+ γ ′(ε).

Picking N ≥ c′(ε), one further ensures by means of (7.6) that the first term is, say,
at most ε, yielding overall a bound on |Eμ[e:ξN :] − E�[e:ξ :]| valid for all N ≥ c′(ε)
which is oε(1) as ε ↓ 0 on account of (7.3) and (7.9). Thus, (7.11) follows. ��

7.2 Scaling limit of occupation times and isomorphism theorem

We now return to Theorem 4.3, with the aim of identifying the limiting behavior of
the identity (4.11). As a consequence of Theorem 5.1, we first deduce the existence
of a limit for the occupation times L appearing in (4.11) under appropriate rescaling.

With L = (Lx )x∈Zd as defined in (4.3) and for N ≥ 1, we consider

LN (z) = Nd−2L�Nz�, z ∈ R
d (7.12)

and the associated random distribution, with values in S ′(Rd), defined by

〈LN , V 〉 =
∫

LN (z)V (z)dz, V ∈ S(Rd). (7.13)

We now introduce what will turn out to be the relevant continuous object. For u > 0,
we consider on a suitable space (�̂, F̂ , P̃�

u ) the S ′(Rd)-valued random variable L̃,
which is the occupation time measure at level u > 0 of a Brownian interlacement
with diffusivity matrix �. That is, one introduces under (�̂, F̂ , P̃�

u ) a Poisson point
process ω̂ on the space Ŵ ∗ of bi-infiniteRd -valued trajectories modulo time-shift with
(σ -finite) intensity measure

u(�� ◦ ν), (7.14)

where ν refers to the measure constructed in Theorem 2.2 of [73] and

�� : Ŵ ∗ → Ŵ ∗, ŵ∗ = [ŵ] �→ ��(ŵ∗) = [{�−1/2ŵ(t) : t ∈ R}]

(i.e. ŵ is a representant in the equivalence class ŵ∗). The process ω̂ induces the
occupation-time measure L̃ = L̃(ω̂) with

〈L̃(ω̂), V 〉 =∑
i

∫∞
−∞ V (ŵi (s))ds, for any V ∈ S(Rd), if ω̂ =∑

i δ[ŵi ].
(7.15)

A formula for Laplace functionals of the random measure L̃ is given in Prop. 2.6
of [73]. We derive here a somewhat different identity which is more suitable to our
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purposes, cf. in particular (7.21) below. Recall that (−��−V ) is invertible whenever
V satisfies (5.8) with λ < c5.

Lemma 7.4 (d ≥ 3, V as in (5.8), λ < c5)

Ẽ
�
u

[
exp

{〈L̃, V 〉}] = exp
{
u
〈
V , 1+ GV

�V
〉}

. (7.16)

Proof Applying the analogue of (4.2) for the Poisson measure P̃�
u , one finds using

(7.14) and (7.15) along with the explicit formula for the intensity measure ν in [73,
(2.3) and (2.7)], that

Ẽ
�
u

[
exp

{〈L̃, V 〉}] = exp
{
u
∫

deK (x)E�
x

[
e
∫∞
0 V (Xs )ds − 1

]}

= exp
{
u
∫

deK (x)
∫ ∞

0
dt E�

x

[
e
∫ t
0 V (Xs )dsV (Xt )

]}

= exp
{
u〈eK ,GV

�V 〉},

where K ⊃ supp(V ) is a closed ball of suitable radius (recall supp(V ) is compact), E�
x

denotes expectation for Brownianmotion onRd with diffusivity� (cf. (5.4)) started at
x ∈ R

d , eK (·) denotes its equilibrium measure on K (see e.g. in [69, Prop. 3.3] for its
definition in the present context) and GV

� = (−�� − V )−1, cf. (5.9). As G�eK = 1
on K = supp(V ) where G� = G0

� , one has 〈V , 1〉 = 〈eK ,G�V 〉 and (7.16) follows
upon noticing that (omitting superscripts �)

〈eK , (GV − G)V 〉 = 〈GeK , (−�)(GV − G)V 〉
= 〈GeK , (−�GV − 1)V 〉 = 〈GeK , VGV V 〉 = 〈V ,GV V 〉.

��
Now recall PV

u from (4.2). The following relates the fields LN and L̃ in (7.12) and
(7.15).

Corollary 7.5 (V as in (5.8), λ < c)
With uN = uN−(d−2) and VN as in (2.6), one has for d = 3 that

〈LN , V 〉 underPVN
uN converges in law to 〈L̃, V 〉 under P̃�

u as N →∞. (7.17)

Proof With VN as above and using (4.3) and (7.12)–(7.13), one readily checks that

〈LN , V 〉 =
∑

x

VN (x)Lx ≡ 〈L, VN 〉�2 (7.18)

For integer N ≥ 1, u ≥ 0, let ϕN ,u(z) = ϕN (z)+√2u with ϕN (z) as in (5.1) and set

〈: �2
N ,u :, V 〉 def.=

∫

R3
V (z) : ϕN ,u(z)

2 : dz, forV ∈ C∞0 (R3). (7.19)

123



J.-D. Deuschel, P.-F. Rodriguez

so that : �2
N ,0 : equals : �2

N : in view of (5.3). Similarly as in (6.6), one has that for
all u ≥ 0, with uN as defined above (7.17),

〈�2
N ,u, V 〉 =

∑

x

VN (x)(ϕx +
√
2uN )2. (7.20)

Together, (7.18), (7.20) and Theorem 4.3 then yield that for suitable V ,

E
VN
uN

[
e〈LN ,V 〉] (4.11)= Eμ[exp{ 12 〈�2

N ,u, V 〉}]
Eμ[exp{ 12 〈�2

N ,0, V 〉}]
= Eμ[exp{ 12 〈: �2

N ,u :, V 〉 + u〈1, V 〉}]
Eμ[exp{ 12 〈: �2

N ,0 :, V 〉}]
,

(7.21)

where the second equality follows using that Eμ[〈�2
N ,u, V 〉] = Eμ[〈�2

N ,0, V 〉] +
u
∫
V (z)dz. By Jensen’s inequality, which implies that Eμ[exp{ 12 〈: �2

N ,0 :, V 〉}] ≥ 1,
and on account of (6.3), it follows from (7.21) that the family {〈LN , V 〉 : N ≥ 1}
is tight. Moreover, taking limits and applying formula (5.11) separately to numerator
(with the choice W = √2uV ) and denominator (with W = 0) on the right-hand side
of (7.21), the terms proportional to 〈V , AV

�V 〉 cancel and one obtains that

lim
N

E
VN
uN

[
e〈LN ,V 〉] (5.11)= exp

{
EV

�(W ,W )
∣∣
W=√2uV + 〈u, V 〉} = exp

{
u〈V , 1+ GV

�V 〉}.
(7.22)

On account of (7.16), (7.22) yields (7.17). ��

Remark 7.6 1. As an immediate consequence of Theorems 4.3 and 5.1 and Corol-
lary 7.5, we recover the following isomorphism, derived in Corollary 5.3 of [73]
(for � = Id), and obtain along with it an explicit formula for the relevant gener-
ating functionals. Let : (� +√2u)2 : be defined as : �2 : +2√2u� (under P�),
cf. (5.7).

Corollary 7.7 (d = 3) Under P� ⊗ P̃�
u ,

1
2 : �2 : +L̃ law= 1

2 : (� +
√
2u)2 : . (7.23)

Moreover, for any V as in (5.8), λ < c,

E�
[
exp{ 12 〈: (� +

√
2u)2 :, V 〉}] = exp

{〈
V , ( 12 A

V + uGV )V
〉}

(7.24)

with GV ≡ GV
� , A

V ≡ AV
� as in (5.9) and (5.12).

Proof The isomorphism (7.23) follows from (5.10), (7.17) and the identity (4.11) (see
also (7.22)). The formula (7.24) is obtained from (5.11) with the choice W = √2uV .
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2. Let L0
N denote the occupation time measure defined as in (7.12)–(7.13) but for the

interlacement process with intensity measure uνV=0,h=0. Let P0
u denote its law.

Then one can in fact show that for all d ≥ 3, with uN as in Theorem (7.5),

L0
N under P

0
uN converges to L̃ under P̃�

u as N →∞ (7.25)

(as randommeasures onRd ). The limit (7.25) can be obtained by starting from the
analogue of (7.16) for L0

N by exploiting the invariance principle 5.4 directly and
e.g. the bounds of [23] to deduce convergence to the right-hand side of (7.16). We
omit the details.

3. It is instructive to note that the proof of Theorem 5.1 only relied on two ‘external’
ingredients, Lemma 2.3 (a consequence of (2.18)) and Theorem 5.3. Whereas the
lower ellipticity seems difficult to get by, the upper ellipticity assumption in (1.7)
can be reduced. For instance, using the results of [4, 6], it follows that Theorem 5.1
continues to hold if only

c ≤ V ′′ and Eμ[V ′′(∂ϕ(e))p] <∞, for all edges e ∈ {ei , 1 ≤ i ≤ d}
and large enough p > 1.

4. It would be interesting to obtain an analogue of Theorem5.1 in finite volume,much
in spirit like the extension by Miller [56] of the result of Naddaf–Spencer [58],
cf. Theorem 5.3. It would be equally valuable to seek such results for potentials
with lower ellipticity, such as those appearing in [15, 57]. Suitable extensions of
Brascamp–Lieb type concentration inequalities, such as those recently derived in
[53], may plausibly allow to extend the tightness and L2-estimates in Proposi-
tions 6.1 and 6.7 to setups without uniform convexity. ��

Acknowledgements This work was initiated while one of us (JDD) was visiting UCLA, while the other
(PFR) was still working there. We both thank Marek Biskup for being the great host he is. PFR thanks
TU Berlin for its hospitality on several occasions. We thank M. Slowik for stimulating discussions at the
final stages of this project. Part of this research was supported by the ERC grant CriBLaM. We thank two
anonymous referees for the quality of their reviews.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


J.-D. Deuschel, P.-F. Rodriguez

Appendix A: Heat kernel bounds with potential and scaling limits

We collect here the proofs of Lemmas 2.1 and 2.2, which concern estimates for the
tilted kernel qVt and the corresponding Green’s function gV introduced in (2.1) and
(2.2), along with scaling limits of the latter.

Proof of Lemma 2.1 Bymonotonicity, it is enough to consider the case V = V+, which
will be assumed from here on. We first explain how (2.4) implies (2.5). For all t ≥ 0
and x, y,∈ Z

d , using the inequality ab ≤ 1
2 (a

2 + b2), applying time-reversal and the
Markov property, one obtains

Ex
[
e
∫ t
0 2V (Zs )ds1{Xt=y}

] ≤ 1

2

(
Ex

[
e
∫ t/2
0 4V (Zs )ds1{Zt=y}

]+ Ex
[
e
∫ t
t/2 4V (Zs )ds1{Zt=y}

])

≤ sup
z,z′

Ez
[
e
∫ t/2
0 4V (Zs )ds1{Zt=z′}

] = sup
z,z′

Ez
[
e
∫ t/2
0 4V (Zs )dsq t

2
(Z t

2
, z′)

]
. (A.1)

By a standard on-diagonal estimate, it follows from (A.1) that

q2Vt (x, y) ≤ c(t ∨ 1)−d/2 sup
z

Ez
[
e
∫∞
0 4V (Zs )ds

] ≤ c′(t ∨ 1)−d/2, (A.2)

using (2.4) in the last step. To deduce (2.5), one applies the Cauchy-Schwarz inequality
and a well-known lower bound on qt to deduce, for all t ≥ 0 and x, y ∈ Z

d ,

qVt (x, y) ≤ q2Vt (x, y)1/2qt (x, y)
1/2 (A.2)≤ c(t ∨ 1)−d/2qt/2(x, y)

1/2 ≤ c′qt/2(x, y).

Wenow show (2.4). Let r = diam(supp(V ).By translation invariance, wemay assume
that supp(V ) ⊂ Br = ([−r , r ] ∩ Z)d . Assume that (2.3) for some ε > 0 to be
determined, which translates to V ≤ ε

r2
. Then, with TB = inf{t ≥ 0 : Zt /∈ B}

denoting the exit time from B ⊂ Z
d , for all x ∈ Z

d , one obtains

sup
α≥1

Ex
[
e
∫ TBαr
0 2V (Zt )dt

] ≤ sup
α≥1

Ex

[
e2ε

TBαr
r2

]
≤ c12 (A.3)

whenever ε ≤ c
α2 for some small enough c ∈ (0, 1), using that

supx,N≥1 Ex [ecN−2TBN ] ≤ c12 in the last step.
Now consider the sequence of successive return times to Br and departure times

from Bαr : i.e., R1 = HBr = inf{t ≥ 0 : Zt ∈ Br } and for each k ≥ 1, define
Dk = TBαr ◦ θRk + Rk (with the convention that Dk = ∞ whenever Rk = ∞) and
Rk+1 = R1 ◦ θDk + Dk (with a similar convention), where θs , s ≥ 0, denote the
canonical shifts for Z . Moreover, let

γ (α)
def.= sup

y∈Zd\Bαr

Py[R1 <∞]. (A.4)
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By transience, one has the partition of unity 1 = 1{R1 = ∞} +∑
k≥1 1{Rk < ∞ =

Rk+1}. Since supp(V ) ⊂ Br , no contribution to
∫∞
0 2V (Zt )dt arises on the event

{R1 = ∞}.
Hence, applying the strong Markov property successively at times Rk and Dk−1, it

follows that

Ex
[
e
∫∞
0 2V (Zt )dt

] ≤ 1+
∑

k≥1
Ex

[ ∏

1≤n≤k
exp

{ ∫ Dn

Rn

2V (Zt )dt
}
1{Rk<∞}

]

≤ 1+
∑

k≥1
Ex

[ ∏

1≤n<k

exp
{ ∫ Dn

Rn

2V (Zt )dt
}
1{Rk<∞}EXRk

[
e
∫ TBαr
0 2V (Zt )dt

]]

(A.4), (A.3)≤ 1+
∑

k≥1
Ex

[ ∏

1≤n<k

exp
{ ∫ Dn

Rn

2V (Zt )dt
}
1{Rk−1<∞}

]
· γ (α) · c12

≤ 1+
∑

k≥1
(γ (α)c12)

k,

where the last step follows by a straightforward induction argument. In view of (A.4),
γ (α)→ 0 as α →∞. Thus, picking α such that γ (α) ≤ 1

2c12
, (2.4) follows with the

choice ε = c
α2 , cf. below (A.3). ��

Next, we prove Lemma 2.2, which is employed within the proof of Proposition 6.6
for the computation of the limiting generating functionals in the Gaussian case.

Proof of Lemma 2.2 Let L ′ be such that supp( f ) ⊂ [−L ′, L ′]d . CombiningLemma6.3
in case ε = 0 with the bound (2.5) (note to this effect that the condition (2.3) applies
with the choice V = VN uniformly in N ≥ 1 whenever V satisfies (5.8)), it follows
that

∥∥GV
N f

∥∥∞ ≤ c(L, L ′)‖ f ‖∞ uniformly in N for all d ≥ 3, along with a similar
bound for (GV

N )2 when d = 3. The same conclusions apply to GV , (GV )2.
We now show (2.10). Recalling (2.7), rescaling time by N−2 and using translation

invariance of Px , one rewrites for arbitrary T > 0 and all N ≥ 1, with ZN
t = 1

N ZN2t
the diffusively rescaled simple random walk (cf. above (2.1) for notation),

〈 f ,GV
N f 〉 = aN (T )+ bN (T ), (A.5)

where

aN (T ) = N−d
∫

[0,1)d×[0,1)d
dz1dz2

∑

x∈Zd

f ( x
N + z1

N )

E0

[ ∫ T

0
dt e

∫ t
0 V (ZN

s )ds f ( x
N + z2

N + ZN
t )

]

and bN (T ) is the corresponding expression with integral over t ranging from [T ,∞)

instead. Note that by assumption on f , the sum over x is effectively finite and restricted
to x satisfying |x |∞ ≤ NL ′. Using the fact that the functions f ( x

N + z
N + ·) for
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|x |∞ ≤ NL ′, z ∈ [0, 1)d , are equicontinuous and uniformly bounded and applying
the invariance principle for Z together with a straightforward Riemann sum argument,
one concludes that for all T > 0,

aN (T )
N−→

∫
dz f (z)

∫ T

0
Wz

[
e
∫ t
0 V (Bs )ds f (Bt )

]
dt . (A.6)

To deal with bN (T ) one applies the heat kernel estimate (2.5) (to V = VN ), thus

effectively removing the tilt e
∫ t
0 V (ZN

s )ds and uses the on-diagonal estimate P0[Zt =
x] ≤ ct−d/2 to obtain

sup
N

bN (T ) ≤ c(L ′)‖ f ‖2∞T−
d−2
2 , T > 1. (A.7)

As the right-hand side of (A.7) tends to 0 as T →∞, (A.6) and (A.7) yield (2.10).
To obtain (2.11) (now assuming d = 3), with GV (z, w) denoting the kernel of the

potential operator GV in (2.9), one argues separately that

∫
f (z)gVN (z, z′)

(
gVN (z, z′)− GV (z, z′)

)
f (w)dzdz′ N−→ 0, (A.8)

∫
f (z)G(z, z)

(
gVN (z, z′)− GV (z, z′)

)
f (w)dzdz′ N−→ 0, (A.9)

from which (2.11) readily follows. We only show (A.8); the case of (A.9) is handled
similarly. Let cN refer to the absolute value of the restriction of the integral on the
left-hand side of (A.8) to |z − z′| < 1

N . Bounding the difference of Green’s functions
crudely by a sum, applying (2.5) along with its continuous counterpart and arguing
similarly as in the display above (6.18), one deduces that cN ≤ cN−1 for all N ≥ 1,
whence cN → 0 as N →∞.

Writing c′N for the corresponding quantity when |z − z′| ≥ 1
N , one simply bounds

gVN (z, z′) ≤ c in this regime (using again (2.5) to remove V ; cf. also (2.7) and note that
g(x, y) ≤ c|x − y|−1 for all x, y ∈ Z

3). Then the argument yielding (2.10) implies
that c′N → 0 as N →∞, and (A.8) follows. ��

Appendix B: Properties of the kernel g"
N(·, ·)

We supply here various proofs which were omitted in the main body dealing with gε
N

defined in (6.13). We first give the proof of Lemma 6.4.

Proof of Lemma 6.4 Since ρε(·) is supported on the ball of radius ε, (6.9) implies that

for all ≥ ε−1, ρε
N (z, z′) = 0unlessz − z′| ≤ 2ε. (B.1)
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In particular, combining (B.1) and the pointwise estimate ρε
N (z, z′) ≤ ε−d‖ρ‖∞,

which is readily obtained from (6.9), one deduces that for all N ≥ ε−1 and z ∈ R
d ,

‖ρε
N (z, ·)‖∞ =

∫
ρε
N (z, z′)dz′ ≤ ε−d‖ρ‖∞vol(B(z, 2ε)) ≤ c‖ρ‖∞. (B.2)

Turning to (6.16), we first suppose that |z − z′| ≥ 10ε. Going back to the definition
of gε

N (z, z′), it follows using (B.1) that the double integral on the right-hand side
of (6.13) has support contained in the set Sε comprising all (v,w) ∈ R

2d such that∣∣|v−w|−|z−z′|∣∣ ≤ 4ε. Thus, for z, z′ as considered here, one has that any (v,w) ∈ Sε

satisfies |v−w|
|z−z′| ≥ c and moreover |v − w| > 5ε. The latter yields in particular that

|�Nv� − �Nw�| ≥ N |v − w| − 2 > 1 for all N ≥ ε−1. In view of (2.7) and using
the classical estimate g(x, y) ≤ c

|x−y|d−2∨1 valid for all x, y ∈ Z
d , see for instance

Theorem 1.5.4 in [47], one readily infers from this that

gN (v,w) ≤ c|z − z′|−(d−2), for all x, y ∈ Sε and N ≥ ε−1.

Substituting this bound into (6.13) and applying (B.2) (twice) then gives (6.16).
We now assume that |z− z′| ≤ 10ε. In that case (B.1) implies that the relevant v,w

in (6.13) satisfy |v − w| ≤ c13ε for some c13 > 1 whenever N ≥ ε−1. For such N ,
using the pointwise bound on ρε

N (see above (B.2)), one estimates the expression in
(6.13) as

gε
N (z, z′) ≤ (

sup
z
‖ρε

N (z, ·)‖∞
) · ε−d‖ρ‖∞ · sup

v

∫

B(v,c13ε)
gN (v,w)dw. (B.3)

The last integral is bounded by considering the cases |v−w| ≤ 1
N and 1

N ≤ |v−w| ≤
c13ε separately (note that this is well-defined as 1

N ≤ ε) and bounding gN (·, ·) ≤ cN

in the former case while using that gN (v,w) ≤ c′
|v−w|d−2 in the latter, thus yielding

for all v ∈ R
d ,

∫

B(v,c13ε)
gN (v,w)dw ≤ c

∫

|z|≤ 1
N

Ndz + c′
∫

|z|≤c13ε
dz

|z|d−2 ≤ c′′(N 1−d + ε2).

Upon being multiplied by ε−d and uniformly in N ≥ ε−1 the first of these terms
is of order ε−1 while the second one is of order ε2−d , which is larger as d ≥ 3.
Feeding the resulting bound into (B.3) and using (B.2) is then seen to imply that
gε
N (z, z′) ≤ c′‖ρ‖2∞ε2−d for N ≥ cε−1, as desired. ��
We continue with the

Proof of Lemma 6.8 We consider the case hε
N = gε

N first and discuss how to adapt the
following arguments to the case of g̃ε

N at the end of the proof. Let Gε = ρε ∗ G ∗ ρε

where ∗ denotes convolution on Rd , i.e. ( f ∗ g)(x) = ∫
f (x − y)g(y)dy for suitable

f , g (note thatGε is well-defined sinceG acts as a convolution operator onC∞0 (Rd) %
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ρε ∗ ρε). The function y �→ G(x, y) being harmonic for all y ∈ R
d \ {x}, one readily

deduces using the mean-value property and the fact that ρε(·) is supported on B(0, ε)
that

Gε(y, z) = G(y, z) for all |y − z| > 2ε. (B.4)

Hence it suffices to show (6.24) with Gε in place of G. We introduce the intermediate
kernels (gε

N )′, (gε
N )′′, respectively defined by replacing one or both occurrences of ρε

N
in (6.13) by ρε. With these definitions, one has

∣∣(gε
N )′′(y, z)− Gε(y, z)

∣∣ ≤
∫∫

ρε(y − y′)|gN (y′, z′)− G(y′, z′)|ρε(z − z′)dy′dz′

(B.5)

In view of (2.7) and by Theorem 1.5.4 in [47], one knows that

sup
|y′−z′|>ε

|gN (y′, z′)− G(y′, z′)| N−→ 0.

Thus, returning to (B.5), observing that |z − y| > 3ε and z − z′, y − y′ ∈ supp(ρε)

imply that |y′ − z′| > ε, one readily deduces that

lim
N

sup
|y−z|>3ε

∣∣(gε
N )′′(y, z)− Gε(y, z)

∣∣ = 0. (B.6)

Next, observe that

∣∣(gε
N )′(y, z)− (gε

N )′′(y, z)
∣∣ ≤

∫ ( ∫
ρε(y − y′)gN (y′, z′)dy′

)∣∣ρε
N (z, z′)− ρε(z − z′)

∣∣dz′

(B.7)

By (6.9) the integrand in (B.7) (as a function of z′ alone) tends to 0 pointwise as
N →∞ for all z′. Moreover for any f ∈ C∞0 (Rd)with supp( f ) ⊂ B(0, R), denoting
by GN the convolution operator with kernel gN , one has that

sup
N≥1

‖GNV ‖∞ ≤ c(R)‖V ‖∞, (for alld ≥ 3) (B.8)

as

|GNV |(x) ≤
∫

gN (x, y)|V (y)|dy ≤ c‖V ‖∞N 1−d

+
∫

|y|> 1
N

gN (x, y)|V (y)|dy ≤ cR2‖V ‖∞.

Going back to (B.7) and using (B.8), letting R = diam(supp(ρε)), the integrand on
the right-hand side is thus bounded uniformly in N (and z) by

c(R)‖ρε‖∞ max
v∈B(z′,1)

ρε(z − v) ∈ L1(dz′)
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and it follows by dominated convergence that

lim
N

sup
|y−z|>3ε

∣∣(gε
N )′(y, z)− hε

N (y, z)
∣∣ = 0 (B.9)

for hε
N = (gε

N )′′. The conclusion (B.9) continues to hold if one chooses hε
N = gε

N
instead, for then ρε(y − y′) on the right-hand side of (B.7) must be replaced by
ρε
N (y, y′) and the rest of the argument still applies since supN≥1,y∈Rd ‖ρε

N (y, ·)‖∞ <

∞, as required to obtain a uniform upper bound in (B.8). Together, (B.9), (B.6) and
(B.4) yield (6.24) for hε

N = gε
N .

To deal with hε
N = g̃ε

N , one considers G̃
ε = G∗ρε instead ofGε (in particular (B.4)

continues to hold) and introduces (g̃ε
N )′′ as in (6.23) but with ρε in place of (the sole

occurrence of) ρε
N . One then separately bounds |(g̃ε

N )′′ − G̃ε| and |(g̃ε
N )′′ − g̃ε

N |much
as in (B.5) and (B.7), respectively, but the details are simpler due to the absence of the
integral over dy′. This completes the proof. ��

Appendix C: Some Gaussian results

In this section we prove Lemma 7.3, which is a purely Gaussian claim used in the
course of proving Theorem 5.1. We start with a preparatory result. For δ > 0 and
z ∈ R

3, define zδ to be the unique element x ∈ δZ3 such that z ∈ x + [0, 1
δ
)3.

Recalling �ε from (6.31), let �ε
δ be the Gaussian field defined by �ε

δ (z) = �ε(zδ),
z ∈ R

3. The following is tailored to our purposes.

Lemma C.1 For all ε > 0, V ∈ C∞0 (R3) and k = 1, 2,

〈: (�ε
δ )k :, V 〉 L2(P�)−→ 〈: (�ε)k :, V 〉 asδ ↓ 0. (C.1)

Proof We only show (C.1) for k = 2. The case k = 1 is simpler. By Theorem 3.50 in
[40], it is enough to show convergence in L1. By Cauchy-Schwarz,

∥∥〈: (�ε
δ )2 :, V 〉 − 〈: (�ε)2 :, V 〉∥∥L1(P�)

≤
∫
|V (z)|E�

[
(: (�ε)2(zδ)− (�ε)2(z) :)2] 1

2 dz.

(C.2)

By [40], Theorem 3.9, p.26, one knows that for all V ,W ∈ C∞0 (R3),

E�[: 〈ψ, V 〉2 :: 〈ψ,W 〉2 :] = 2
( ∫∫

V (z)G�(z, z′)W (z′)dzdz′
)2

. (C.3)

Using this fact and recalling that �ε(z) = 〈�, ρε,z〉 for any z ∈ R
3, it follows upon

expanding the square that

E�
[
(: (�ε)2(zδ)− (�ε)2(z) :)2] = 4

(
Gε

�(0)2 − Gε
�(z − zδ)

2)

≤ cε−1(Gε
�(0)− Gε

�(z − zδ)
)
, (C.4)
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where Gε
�(z−w) = 〈ρε,z,G�ρε〉 (= E�[�ε(z)�ε(w)]) for z, w ∈ R

3. One readily
argues using the regularity assumption on ρ thatGε

�(·) is smooth onR3. Going back to
(C.4), it follows that supz E

�
[
(: (�ε)2(zδ)− (�ε)2(z) :)2]→ 0 as δ → 0. Together

with (C.2) and since V has compact support, this yields (C.1). ��

We conclude with the

Proof of Lemma 7.3 Note that for all δ ∈ (0, 1), the random variable : ξε
δ := 〈: (�ε

δ )2 :
, V 〉 + 〈�ε

δ ,W 〉 is a polynomial of degree 2 in the variables {�ε(z) : z ∈ Kδ} where
Kδ = δZd ∩ ((supp(V ) ∪ supp(W )) + [−1, 1]d), a finite set. That is, : ξε

δ : is an
element of P2(H) with H = L2(P�) in the notation of [40], Chap.II, p.17. Thus,
(C.1) implies that : ξε :∈ P2(H), its closure in H (the chaos of order 2 in H ).
This in turn yields together with (5.7) that : ξ :∈ P2(H). It then follows from [40],
Thm. 6.7, p.82 that the family {E�[e:χ :] : χ ∈ {ξ, ξε, ε ∈ (0, 1)}} is uniformly
bounded. Combining this fact, (5.7) and an argument similar to (7.4) and (7.5) but for
the quantity |E�[e:ξε :] − E�[e:ξ :]|, (7.9) follows. ��
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