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Abstract
It is a classical observation that lacunary function systems exhibit many properties
which are typical for systems of independent randomvariables.However, it had already
been observed by Erdős and Fortet in the 1950s that probability theory’s limit theorems
may fail for lacunary sums

∑
f (nkx) if the sequence (nk)k≥1 has a strong arithmetic

“structure”. The presence of such structure can be assessed in terms of the number of
solutions k, � of two-term linear Diophantine equations ank − bn� = c. As the first
author proved with Berkes in 2010, saving an (arbitrarily small) unbounded factor
for the number of solutions of such equations compared to the trivial upper bound,
rules out pathological situations as in the Erdős–Fortet example, and guarantees that∑

f (nkx) satisfies the central limit theorem (CLT) in a form which is in accordance
with true independence. In contrast, as shown by the first author, for the law of the
iterated logarithm (LIL) the Diophantine condition which suffices to ensure “truly
independent” behavior requires saving this factor of logarithmic order. In the present
paper we show that, rather surprisingly, saving such a logarithmic factor is actually
the optimal condition in the LIL case. This result reveals the remarkable fact that
the arithmetic condition required of (nk)k≥1 to ensure that

∑
f (nkx) shows “truly
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random” behavior is a different one at the level of the CLT than it is at the level of the
LIL: the LIL requires a stronger arithmetic condition than the CLT does.

Keywords Lacunary trigonometric sums · Law of the iterated logarithm ·
Diophantine equations

Mathematics Subject Classification Primary 42A55 · 60F15; Secondary 11D04 ·
11D45

1 Introduction andmain result

The classical Hartman–Wintner law of the iterated logarithm (LIL) was proved by
Hartman andWinter [18] and quantifies the typical fluctuation of sums of independent
and identically distributed (i.i.d.) random variables on the scale between the central
limit theorem (CLT) and the law of large numbers (LLN). More precisely, the LIL
states that for a sequence X1, X2, . . . of i.i.d. random variables of zero mean and finite
variance σ 2 ∈ (0,∞),

lim sup
N→∞

∣
∣
∣
∑N

k=1 Xk

∣
∣
∣

√
2N log log N

= σ almost everywhere (a.e.). (1)

Today it is a well-known fact in analysis and probabilistic number theory that the
asymptotic behavior of sums of i.i.d. random variables is echoed in many ways by
lacunary trigonometric sums

∑N
k=1 cos(2πnkx) under the so-called Hadamard gap

condition nk+1

nk
≥ q > 1, k ∈ N, (2)

for a sequence (nk)k≥1 of natural numbers; this must be seen in consideration of the
fact that the random variables Xk(x) := cos(2πnkx) on the probability space [0, 1]
with Borel σ -algebra endowed with Lebesgue measure λ are identically distributed
and uncorrelated (if all nk , k ∈ N, are distinct), but not stochastically independent.
Here and in all that follows, the statements remain true if cosine is replaced by sine.

It was shown by Erdős and Gál [9] that under the gap condition (2),

lim sup
N→∞

∣
∣
∣
∑N

k=1 cos(2πnkx)
∣
∣
∣

√
2N log log N

= 1√
2

a.e., (3)

i.e., lacunary trigonometric sums satisfy a Hartman–Wintner LIL under the Hadamard
gap condition. Note that the variance of cos(2πnk ·) is 1

2 , so (3) is in perfect accordance
with (1). Regarding normal fluctuations, Salem and Zygmund proved in [24, 25] that
under the Hadamard gap condition (2), for every t ∈ R, lacunary trigonometric sums
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satisfy the CLT

lim
N→∞ λ

({

x ∈ [0, 1] :
∑N

k=1 cos(2πnkx)√
N/2

≤ t

})

= 1√
2π

∫ t

−∞
e−y2/2 dy =: �(t);

again this is in perfect accordance with the CLT for truly independent systems. The
analogy between lacunary trigonometric sums and truly random systems goes much
further, as the almost sure invariance principles ofBerkes [5] andPhilipp andStout [22]
show. Concerning large deviation principles, it was shown only recently [4, 10] that
while under the large gap condition nk+1/nk → ∞ the behavior of lacunary trigono-
metric sums is in perfect accordance with the truly independent case, under the mere
Hadamard gap condition (2) surprising phenomena occur which reflect the particular
arithmetic structure of the sequence (nk)k≥1. Accordingly, while the CLT and LIL (and
other results in a regime close to normal deviations) hold for lacunary trigonometric
sums in a universal form, the large deviation behavior of lacunary trigonometric sums
is very sensitive to fine arithmetic properties of the sequence (nk)k≥1. This is a very
interesting effect, which is currently not well understood. On which deviation scale
do fine arithmetic phenomena start to play a crucial role for the probabilistic theory
of lacunary trigonometric sums? A first step towards a resolution of this question has
been taken very recently by the last author together with Strzelecka [23], who studied
moderate deviations principles (MDPs) for lacunary trigonometric sums; recall that
MDPs cover the deviation range between the CLT and a large deviations principle.

The results discussed so far all concern the case of “pure” trigonometric sums∑
cos(2πnkx) or

∑
sin(2πnkx). It turns out that for more general lacunary sums∑

f (nkx) with a 1-periodic function f the heuristics that “lacunary sums mimic
the behavior of sums of independent random variables” remains largely intact, but the
situation becomesmuchmore delicate.We assume that (nk)k≥1 satisfies theHadamard
gap condition, and that f : R → R is a function satisfying

f (x + 1) = f (x),
∫ 1

0
f (x) dx = 0, Var[0,1] f < ∞, (4)

where Var[0,1] denotes the total variation of f on the interval [0, 1] (note that bounded
variation implies integrability). A crucial observation in this setup is the Erdős–Fortet
example (see, e.g., [20, p. 646]) of the sequence nk = 2k − 1, k ∈ N, and the periodic
function f (x) = cos(2πx)+cos(4πx), forwhich the classicalCLT for

∑
f (nkx) fails

to hold (and the distribution of the normalized sums instead converges to a “variance
mixture” Gaussian distribution), and for which a “non-standard” LIL holds in the form

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

=
∣
∣
∣
√
2 cos(πx)

∣
∣
∣ a.e. (5)

with a (non-constant) function on the right-hand side. Thus, for
∑

f (nkx) the LIL
can fail to hold in its truly independent form, and instead as a general result we only
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have an upper-bound LIL

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

≤ c f ,q a.e.,

with a constant c f ,q ∈ (0,∞) depending on f and the growth factor q of (nk)k≥1;
see Takahashi [28] for this result, and Philipp [21] for a generalization to the so-called
Chung–Smirnov type LIL. The interaction of analytic, arithmetic and probabilistic
effects that underpins this theory has led to a wealth of research, leading from famous
classical papers such as those of Kac [19] and Gaposhkin [15] to recent work such as
that of Berkes, Philipp and Tichy [6], Bobkov and Götze [7], Conze and Le Borgne
[8], and in particular Fukuyama [11–14].

An interesting observation is that in the general framework, the fine probabilistic
behavior of lacunary sums

∑
f (nkx) is intimately related to the number of solutions

of certain linear Diophantine equations, such as the two-variable equation

ank − bn� = c. (6)

Here a, b ∈ N and c ∈ Z≥0 are fixed, and one has to consider the number of solutions
(k, �) of the equation with the size of the indices k, � being bounded above by some
threshold value. The appearance of Diophantine equations in this problem is related to
the computation of moments of the sum

∑
f (nkx). After multiplying out one needs to

study products of trigonometric functions, which by standard trigonometric identities
can be rewritten as trigonometric functionswhose arguments are sums or differences of
the original arguments; by the orthogonality of the trigonometric systems, calculating
integrals of such trigonometric functions can then be expressed in terms of counting
the number of solutions of certain Diophantine equations. However, it is not immedi-
ately obvious which special role the (inhomogeneous) two-variable Eq. (6) play here,
since by multiplying out and calculating a p-th moment of

∑
f (nkx) one initially

encounters a p-variable homogeneous equation. We refer the reader to [3] for a more
detailed survey.

If N ∈ N, we shall write

L(N , a, b, c) := # {1 ≤ k, � ≤ N : ank − bn� = c} . (7)

We restrict ourselves to non-negative integers c, since we can always switch to this
case by exchanging the roles of the parameters k and � and that of a and b, respectively.
Note that trivially L(N , a, b, c) ≤ N for any a, b, c with (a, b, c) �= (0, 0, 0) and any
N ∈ N, as long as (nk)k≥1 is a sequence of distinct integers. In [2] it was proved
that

∑
f (nkx) satisfies the CLT under the assumption that the number of solutions to

Diophantine equations of the form (6) is asymptotically less than the trivial estimate.
More precisely, it was shown in [2, Theorem 1.1] that for any function as in (4) and
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any lacunary sequence (nk)k≥1, and any t ∈ R,

λ

({

x ∈ [0, 1] : σ−1
N

N∑

k=1

f (nkx) ≤ t

})

→ �(t) as N → ∞,

with

σ 2
N :=

∫ 1

0

(
N∑

k=1

f (nkx)

)2

dx,

provided that the following two conditions are satisfied:

(i) The limiting variance is not degenerate, i.e., σ 2
N ≥ CN for some suitable constant

C > 0.
(ii) For all positive integers a, b with a �= b, the number of solutions to the Diophan-

tine equation satisfies1

L(N , a, b, c) = o(N ) uniformly in c ∈ Z\{0}.

Let us remark that the condition (i) on the non-degeneracy of the variance already
appeared in the work of Gaposhkin [15] and is indeed necessary, as shown by
examples leading to telescoping sums such as f (x) = cos(2πx) − cos(4πx) and
nk = 2k, k ≥ 1, for which no non-trivial limiting distribution exists. As proved in [2],
the Diophantine condition L(N , a, b, c) = o(N ) is optimal and cannot be replaced
by L(N , a, b, c) ≤ εN for a fixed ε > 0. If additionally to (ii) the sequence (nk)k≥1
satisfies L(N , a, b, 0) = o(N ) for all a �= b, that is, if the number of solutions of (6)
with c = 0 on the right-hand side is also small, then (i) is not necessary since in that
case one has σN = ‖ f ‖2

√
N as N → ∞, and the CLT holds with exactly the same

normalizing factor as in the truly independent case (see [2, Theorem 1.2.]). Note that
this discussion also explains why the CLT fails to hold for the Erdős–Fortet example:
for the sequence nk = 2k − 1, k ≥ 1, there are too many solutions to the equation

nk − 2n� = 1,

namely all N −1 pairs (k, �) of the form k = �+1 (cf. Eq. (35) below, which explains
how the function 2 cos(πx) on the right-hand side of (5) arises).

As explained in the previous paragraph, the results in [2] provide optimal Diophan-
tine conditions guaranteeing the CLT for

∑
f (nkx). Thus, the relation between sums

of dilated functions and arithmetic information in form of the number of solutions of
Diophantine equations is completely understood at the level of the CLT. In contrast,

1 The case a = b is not relevant for our paper, since when a = b and (nk )k≥1 is lacunary then by Lemma
4 below we always have L(N , a, a, c) = O(1) uniformly in c for c �= 0, and consequently the number of
solutions is small enough to be negligible. For a = b and c = 0 we trivially always have L(N , a, a, 0) = N
(these solutions are the “diagonal terms” and cannot be avoided).
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the situation in the case of the LIL is much less satisfactory. It was proved in [1,
Theorem 1.3] that for f as in (4) and (nk)k≥1 as in (2),

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

= ‖ f ‖2 a.e., (8)

provided that for all fixed positive integers a, b with a �= b,

L(N , a, b, c) = O
(

N

(log N )1+ε

)

, uniformly in c ∈ Z≥0, (9)

for some constant ε > 0. Equation (8) is in perfect accordance with truly independent
behavior. However, unlike in the CLT case, it was unclear whether the Diophantine
condition (9) for the LIL case was optimal. There were good reasons to believe that
the factor (log N )1+ε in the stronger Diophantine condition (9) is an artifact coming
from the particular proof strategy in [1], which as a key ingredient evokes a classical
almost sure invariance principle (ASIP) of Strassen [26]. Roughly speaking, Strassen’s
ASIP for martingale differences requires the almost sure convergence of conditional
second moments, which can essentially be established from (9) using Chebyshev’s
inequality. Such an argument seems rather wasteful, and hence some effort was put
into trying to relax the Diophantine condition for the LIL down to the one which is
known to be sufficient in the CLT case. However, in the present paper we prove the
rather surprising result that the Diophantine condition (9) is actually optimal (up to
lower-order terms) to ensure the LIL for

∑
f (nkx), even when f is restricted to be a

trigonometric polynomial. Our main result is the following.

Theorem 1 Let ε ∈ (0, 1). Then, for every constant K ∈ (0,∞), there exist a trigono-
metric polynomial f with mean zero and a lacunary sequence (nk)k≥1 such that for
all a, b ∈ N with a �= b, we have

sup
c∈Z≥0

L(N , a, b, c) = O
(

N

(log N )1−ε

)

, as N → ∞, (10)

and such that

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

≥ K‖ f ‖2 a.e.

One might wonder whether for f and (nk)k≥1 from the theorem above a limit
distribution of N−1/2∑N

k=1 f (nkx) exists, and whether

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

(11)
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is degenerate or still is constant almost everywhere (as in the LIL for the independent
case, but just with a larger value for the constant). The following corollary shows the
interesting property that (11) is in fact constant almost everywhere.

Corollary 2 For the function f and the lacunary sequence (nk)k∈N which are con-
structed for the proof of Theorem 1 there exists a constant σ̄ ∈ (0,∞), depending on
f and (nk)k≥1, such that

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

= σ̄ a.e.

Theorem 1 is remarkable as it shows that to guarantee the validity of a probabilistic
limit theorem for lacunary sums of dilated functions on the LIL scale, one needs
stronger arithmetic assumptions than one does on the CLT scale. We consider this to
be a very interesting phenomenon. The necessary savings factor of order roughly log N
in the Diophantine condition for the LIL seems to arise essentially as e(

√
2 log log N )2/2

from the order of the tail of the normal distribution, and thus to be directly connected
with the fact that theLIL is concernedwith deviations exceeding theCLTnormalization√
N by an additional factor

√
2 log log N . One cannot help but wonder if a similar

direct connection between the necessary arithmetic (Diophantine) condition and the
size of the deviation that one is interested in persists throughout other scales; note that
such a direct link would have to become meaningless at least for additional factors
of order exceeding

√
2 log N , which would correspond to the requirement of saving

a factor of more than e(
√
2 log N )2/2 = N in the Diophantine condition, thus asking

for less than one solution in (7), which is absurd.2 If so, then the arithmetic theory
underpinning the behavior of lacunary sums at small-scale deviations near

√
N would

be substantially different from the corresponding theory for deviations at large scales
beyond

√
2N log N . One possible explanation for such a dichotomy could be that two-

term Diophantine equations can only control the distribution of normalized lacunary
sums at small deviation scales, and that at larger scales a different effect sets in which
is only expressible in terms of Diophantine equations in more than 2 variables.

Comparing the Diophantine condition in Theorem 1 to (8), it is natural to ask what
happens in the critical case ε = 0, i.e., when assuming that

sup
c∈Z≥0

L(N , a, b, c) = O

(
N

log N

)

.

This remains open.

2 Possibly it is no coincidence that martingale methods based on conditional second moments also seem
to reach a critical point at deviations of order

√
2 log N , see for example [17].
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2 Construction of the sequence and solutions to Diophantine
equations

We now present a completely explicit construction of a Hadamard gap sequence
(nk)k≥1 satisfying the claim of Theorem 1, and we show that it indeed satisfies the
bound (10) for the number of solutions of the two-variable linear Diophantine equa-
tions in (6).

Step 1 Let ε ∈ (0, 1) and K ∈ (0,∞) be given. Choose d ∈ N such that

1

2

(
d
√

ε

6
− 2

)

>
K

√
d√
2

; (12)

note that this condition can be satisfied by choosing d sufficiently large (with the
necessary size of d depending on the parameters ε and K ). The number d will later be
the degree of the trigonometric polynomial f , which we construct in order to prove
Theorem 1. Further, let R := R(ε) ∈ N such that

R >
8

ε
. (13)

The parameter R will serve as decomposition parameter; we split the set of positive
integers N into consecutive blocks �1,�2, . . . such that #�i = Ri , i.e., the sizes of
the blocks are rapidly increasing. More precisely, we define

�i :=
{
Ri − R

R − 1
+ 1, . . . ,

Ri+1 − R

R − 1

}

, i ∈ N. (14)

From this construction it follows that for each i ∈ N,

i−1∑

h=1

#�h ≤ 1

R − 1
#�i ,

i.e., the block �i is even much larger than the collection of all previous i − 1 blocks
taken together. To put it more illustratively, the partial sum

∑
k∈�1∪···∪�i

f (nkx) will
be dominated by the terms with k ∈ �i , while the terms with k ∈ �1 ∪ · · · ∪ �i−1
will be essentially negligible, so that the lower bound in Theorem 1 only has to be
established for sums

∑
k∈�i

f (nkx) as i → ∞.
Step 2 We shall now split up each block �i , i ∈ N, into disjoint subsets, where

the number of subsets depends on the parameter i . More precisely, we decompose �i

into3

�
(m)
i , 1 ≤ m ≤ M(i) := �i1−ε�,

3 Throughout the paper �x� denotes the smallest integer which is at least as large as x .
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such that �
(1)
i < �

(2)
i < · · · < �

(M(i))
i holds element-wise with �i = ∪M(i)

m=1�
(m)
i ,

and such that all sets�
(m)
i , 1 ≤ m ≤ M(i), have essentially the same cardinality, i.e.,

∣
∣
∣
∣#�

(m)
i − Ri

�i1−ε�
∣
∣
∣
∣ ≤ 1, 1 ≤ m ≤ M(i). (15)

Heuristically, this construction is made in such a way that if we write �1 ∪ · · ·∪�i =
{1, . . . , N } for some suitable N ∈ N, then

#�(m)
i = O

(
N

(log N )1−ε

)

for all m ∈ {1, . . . , M(i)}, (16)

which reflects our bound (10) on the number of solutions of Diophantine equations;
note that the implied constant in the O-term depends on the parameter R.

Illustration of the construction described above
Step 3 We shall now construct (nk)k≥1. For given i ∈ N, m ∈ {1, . . . , M(i)} and

for k ∈ �
(m)
i , we define

nk := 22
i4
(
2k + m

)
, (17)

where the first factor is to be understood as 2(2(i4)).
The heuristic behind this construction is the following. First, the elements of our

sequencewith indices in different blocks�i1 and�i2 are of very different size (because
of the dominating prefactor), so that f (nkx) and f (n�x) for k ∈ �i1, � ∈ �i2 , i1 �= i2,
are “essentially independent”. Such pairs k and � also do not play a relevant role for
counting the number of solutions of the Diophantine equations, see Lemma 3 (ii)
below. Similarly, pairs k and � which are contained in the same block �i , but in
different sub-blocks �

(m1)
i resp. �

(m2)
i , will not play a significant role for counting

the number of solutions of the Diophantine equations either, see Lemma 3 (iii). What
will contribute significantly are only pairs k, � from the same sub-block �

(m)
i , where

there will be many solutions of equations such as

2nk − n� = 22
i4

m,

namely whenever � = k + 1 (note that the number m on the right-hand side of the
Diophantine equation above is the same as in the superscript of the sub-block �

(m)
i ;

different sub-blocks correspond to different Diophantine equations that have “many”
solutions). In the Erdős–Fortet example there are no different blocks whatsoever, so
that there are many solutions of the particular equation 2nk − nk+1 = 1, which leads
to L(N , 2, 1, 1) being as large as ≈ N . We need L(N , a, b, c) to be smaller in order
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to satisfy (10), and by grouping k, � into approximately (log N )1−ε many different
blocks, instead of one equation with ≈ N solutions, we obtain (log N )1−ε different
equations with approximately N

(log N )1−ε many solutions each, which is in accordance
with (16). This explains why the sequence constructed in such a way will satisfy the
Diophantine condition (10). It is a different story (and will be shown in Sect. 4) that
the sequence constructed in this very particular way indeed leads to a large value on
the right-hand side of the LIL, as claimed by Theorem 1 (and the presence of the

factor 22
i4

in the definition of nk will also only become clear later). We will explain
the heuristics behind this part of Theorem 1 later on, after defining the trigonometric
polynomial f .

Note: Throughout the rest of this section, implied constants are allowed to depend
on ε and K (and consequently also on d and R), as well as on a and b, but not allowed
to depend on anything else. In particular, all implied constants are independent of c,
i , m and N .

The next lemma provides estimates on the number of solutions of Diophantine
equations arising in our setup. As we shall see shortly, from this we can deduce that
the sequence (nk)k≥1 constructed above indeed satisfies the Diophantine condition
(10) of Theorem 1.

Lemma 3 For the sequence (nk)k≥1 constructed in the paragraph above, we have the
following estimates.

(i) For all a, b ∈ N with a �= b, and with a
b �= 2r for all r ∈ Z, we have

#{k, � ≥ 1 : ank − bn� = c} = O(1),

uniformly in c ∈ Z≥0.
(ii) For all a, b ∈ N such that a

b = 2r for some r ∈ Z\{0}, we have
∞∑

i1=1

∞∑

i2=1
︸ ︷︷ ︸
i1 �=i2

#
{
k ∈ �i1 , � ∈ �i2 : ank − bn� = c

} = O(1),

uniformly in c ∈ Z≥0.
(iii) For all a, b ∈ N such that a

b = 2r for some r ∈ Z\{0}, and for all i ∈ N:

(a) If c = 22
i4

bm(2r − 1) for some m ∈ {1, . . . , M(i)}, then

#{k, � ∈ �i : ank − bn� = c} = Ri

�i1−ε� − |r | + O(i2).

(b) If c ≥ 0 is not of the form 22
i4

bm(2r − 1) for some m ∈ {1, . . . , M(i)}, then

#{k, � ∈ �i : ank − bn� = c} = O(i2).
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Before proving Lemma 3, we recall a general result about differences of elements
of lacunary sequences.

Lemma 4 [29, p.203] Let (mk)k≥1 be a positive sequence of integers satisfying (2)
for some q > 1. Then for all c ∈ Z≥0,

# {1 ≤ k, � ≤ N , k �= � : mk − m� = c} = O(1),

where the implied constant depends only on the growth factor q.

Proof of Lemma 3 Recalling the definition of L(N , a, b, c) in Eq. (7), we assume that
a, b ∈ N with a �= b, and that c ∈ Z≥0.

(i) Assume a
b is not of the form 2r for any r ∈ Z. Note that the number m in the

definition in line (17) is much smaller than 2k (for large k). Thus, we have (under
slight abuse of the limit notation) that, as k → ∞,

nk+1

nk
→ 2 on those k and k + 1belonging to the same block �i , (18)

and

nk+1

nk
→ ∞ on those k and k + 1belonging to different blocks �i and �i+1.

(19)
Since a

b is not a power of 2 by assumption, this shows that

# {k, � ≥ 1 : ank − bn� = 0} (20)

is finite. To see this, we assume there are infinitely many pairs k, � ∈ N such that
ank − bn� = 0, i.e., nk

n�
= a

b . Recall that a and b are assumed to be fixed. Thus,
by (19) there can only be finitely many solutions of this equation for which k
and � belong to different blocks. Assume that a

b > 1, which means that nk
n�

= a
b

is only possible if k > � (the case a
b < 1 can be treated similarly; the case

a
b = 1 is impossible since a

b is not an integer power of 2 by assumption). Since
a
b is not an integer power of 2 by assumption, there exists a δ > 0 such that
a
b /∈ ⋃

j≥1

[
(2 − δ) j , (2 + δ) j

]
. However, on the other hand, by (18) for all

sufficiently large k and � with k > � which belong to the same block, we have

(2 − δ)k−� ≤ nk
n�

≤ (2 + δ)k−�.

Thus, nk
n�

= a
b is possible for only finitely many pairs (k, �) which belong to the

same block. As noted above, there are also only finitely many solutions (k, �)
which belong to different blocks. Overall, the cardinality of the set in (20) is
O(1).

123



C. Aistleitner et al.

We now form the set-theoretic union

A =
⋃

k≥1

{ank, bnk},

and write the elements of A as a sequence (mk)k≥1 (sorted in increasing order).
Because of (18) and (19), we have lim infk→∞ mk+1

mk
> 1 so that the sequence

(mk)k≥1 is a lacunary sequence with some suitable growth factor (which depends
on a and b, but these are assumed to be fixed). Thus, by Lemma 4, we have

# {k, � ≥ 1 : ank − bn� = c} ≤ # {k, � ≥ 1, k �= � : mk − m� = c} = O(1),

where the implied constant in the O-term is independent of c; note that the first
estimate is trivial since on the right-hand side we have twice as many equations
(and thus potential solutions). Summarizing our results, in case (i) of the Lemma
we have

# {k, � ≥ 1 : ank − bn� = c} = O(1), (21)

uniformly in c ≥ 0.
(ii) Now assume a

b = 2r for some r ∈ Z\{0}. We first show that there are not
many solutions where k and � come from different blocks. Assume that k ∈ �i1

and � ∈ �i2 such that i1 < i2. Then, whenever i2 is so large that 2r+1 ≤ 22
i2

(which excludes only finitely many values of i1 and i2), using the trivial estimate
i1 ≤ k ≤ 2k together with 2i2 + 2(i2−1)4 < 2i

4
2 , we have

ank ≤ b2r22
i41
(
2k + i1

)

≤ b2r+122
i41 2k

< b22
i2 22

(i2−1)4

2�

≤ b22
i42 2�

≤ bn�.

Consequently,

ank − bn� = c

is not possible for any non-negative c when i2 is sufficiently large. Assume again
that k ∈ �i1 and � ∈ �i2 , but now such that i1 > i2. Then similar to the previous

calculation, assuming that i1 is sufficiently large so that 2−r+1 ≤ 22
i1 , and now

using that 2i
4
1 − 2i1 − 2(i1−1)4 ≥ 2i

3
1 holds for all i1 ∈ N≥2 (we indeed have

i1 ≥ 2, since i1 > i2 ≥ 1), we have (recall that a
b = 2r and trivially i2 ≤ � ≤ 2�)

ank
bn�

≥ 22
i41 2k

2−r+122
i42 2�

≥ 22
i41

22i1 22(i1−1)4
≥ 2i

3
1 .
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Thus, whenever i1 is sufficiently large, then

ank
(
1 − 2−i31

)
= ank − ank

2i
3
3

≤ ank − bn� ≤ ank .

Consequently, since i1 ≥ 2, the equality ank − bn� = c requires that

nk ∈
[
c

a
,
c

a

(
1 − 2−8

)−1
]

. (22)

We claim that, uniformly in c ∈ Z≥0, there are only finitely many k ∈ N such that
(22) holds; more precisely, if k is sufficiently large, then (22) uniquely determines
k. Indeed, by (18) and (19) we have nk

nk−1
≥ 3

2 for all sufficiently large k. Thus
whenever we have (22), then

nk−1 ≤ 2

3

c

a

(
1 − 2−8

)−1
/∈
[
c

a
,
c

a

(
1 − 2−8

)−1
]

as well as

nk+1 ≥ 3

2

c

a
/∈
[
c

a
,
c

a

(
1 − 2−8

)−1
]

,

with the possible exception of finitely many indices. Thus, overall we have shown
that in the case a

b = 2r for some r ∈ Z\{0}, we have

∞∑

i1=1

∞∑

i2=1
︸ ︷︷ ︸
i1 �=i2

#
{
k ∈ �i1 , � ∈ �i2 : ank − bn� = c

} = O(1), (23)

with an implied constant that is independent of c ≥ 0. This settles case (ii) of the
lemma.

(iii) Now we are in the situation where k, � are contained in the same block �i for
some i ∈ N. We establish a few general estimates which we shall use in the proof
of both (iii) (a) and (iii) (b).

Recall that we are in the case where there exists an r ∈ Z\{0} with a
b = 2r and let

k, � ∈ �i with k + r > �. Then, for suitable m1,m2 ∈ {1, . . . , M(i)}, we have

ank − bn� = 2r bnk − bn�

= 22
i4

b(2r2k + 2rm1 − 2� − m2)

= 22
i4

b(2k+r + 2rm1 − 2� − m2).
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Thus, ank − bn� = c can only hold when

2k+r − 2� = 22
i4

b(m2 − 2rm1) + c

22i
4
b

,

and for given b, c, r ,m1,m2 (whence the right-hand side of this equation is fixed) there
is at most one pair (k, �) with k + r > � for which this can hold (this is essentially the
uniqueness of the dyadic representation of integers). There are O(M(i)2) = O(i2)
many possible values form1,m2, so the total number of solutions (k, �) of ank−bn� =
cwith k+r > � and k, � ∈ �i is atmostO(i2), uniformly in c ≥ 0. The same argument
can be applied to the case k + r < �. Thus, we have established

sup
c∈Z≥0

# {k, � ∈ �i : k + r �= �, ank − bn� = c} = O(i2). (24)

When i ∈ N is large enough, the number of pairs of indices k and � with k + r = �,
which are contained in different sub-blocks k ∈ �

(m1)
i and � ∈ �

(m2)
i for m1 �= m2,

is O(M(i)) = O(i). Thus, by (24) we have

# {k, � ∈ �i : ank − bn� = c}

=
M(i)∑

m′=1

#{k, � ∈ �
(m′)
i : k + r = �, ank − bn� = c} + O(i) + O(i2)

=
M(i)∑

m′=1

#{k, � ∈ �
(m′)
i : k + r = �, ank − bn� = c} + O(i2). (25)

In the following, we only consider the case where r > 0 (the case r < 0 can be treated
in an analogous way). We need to count the number of k and � such that k + r = �

and k, � ∈ �
(m′)
i for some m′ ∈ {1, . . . , M(i)}, where we have

ank − bn� = 2r bnk − bn�

= b
(
2r nk − n�

)

= 22
i4

b(2r (2k + m′) − (2� + m′))

= 22
i4

b(2r+k − 2�

︸ ︷︷ ︸
=0

+2rm′ − m′))

= 22
i4

bm′(2r − 1).

(26)

Nowwe prove (iii) (a), wherewe assumed that c is of the special form c = 22
i4

bm(2r−
1) for some m ∈ {1, . . . , M(i)}. By (26), the equation ank − bn� = c is satisfied if
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and only if m = m′ and thus

M(i)∑

m′=1

#
{
k, � ∈ �

(m′)
i : k + r = �, ank − bn� = c

}
= #{k, � ∈ �

(m)
i : k + r = �}

= #�(m)
i − |r |.

(27)
Combining (15), (25) and (27), we get in case (iii) (a)

# {k, � ∈ �i : ank − bn� = c} = Ri

�i1−ε� − |r | + O(i2),

as desired.
Now assume that we are in case (iii) (b), i.e., c is not of the form 22

i4

bm(2r − 1)
for any m ∈ {1, . . . , M(i)}. Then (26) yields

M(i)∑

m′=1

#
{
k, � ∈ �

(m′)
i : k + r = �, ank − bn� = c

}
= 0

and from (25), we obtain

# {k, � ∈ �i : ank − bn� = c} = O(i2),

as claimed. ��
We can now prove that our gap sequence (nk)k≥1 satisfies the desired Diophantine

condition.

Corollary 5 The sequence (nk)k≥1 constructed in this section satisfies the Diophantine
condition (10) of Theorem 1.

Proof Let a, b ∈ N be fixed. Let N ∈ N be given, and let I ∈ N be such that N ∈ �I .

We observe the following (note that
( i+1

i

)1−ε ≤ 2 for all i ∈ N)

I∑

i=1

Ri

i1−ε
= RI

I 1−ε
+

I−1∑

i=1

Ri

i1−ε

≤ RI

I 1−ε
+ 2

R

I∑

i=1

Ri

i1−ε
.

Rearranging the terms and using the fact that there exists a constant c > 0 (depending
on R) such that c log N ≤ I and RI ≤ RN yields

I∑

i=1

Ri

i1−ε
≤
(

1 − 2

R

)−1 RI

I 1−ε
= O

(
N

(log N )1−ε

)

.
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Combining all the worst-case estimates fromLemma 3, the previous calculation shows
that

#{k, � ≤ N : ank − bn� = c} = O
(

I∑

i=1

Ri

i1−ε

)

= O
(

N

(log N )1−ε

)

,

uniformly in c ∈ Z≥0, as claimed. ��

3 Further ingredients: Gaposhkin’s Berry–Esseen result

We will need a Berry–Esseen type quantitative central limit theorem for the particu-
lar lacunary trigonometric sum

∑N
k=1 cos(2π2

k x). As in the introduction, λ denotes
Lebesgue measure and � denotes the standard normal distribution function.

Lemma 6 (Gaposhkin [16]) Let λ1, . . . , λN be non-negative real numbers such that

N∑

k=1

λ2k = 1.

Set 
N = max1≤k≤N λk . Then

sup
t∈R

∣
∣
∣
∣
∣
λ

({

x ∈ (0, 1) : √
2

N∑

k=1

λk cos(2π2
k x) < t

})

− �(t)

∣
∣
∣
∣
∣
= O

(



1/4
N

)
,

where the implied constant is absolute.

4 The law of the iterated logarithm

Let ε ∈ (0, 1) and K ∈ (0,∞). We now define our trigonometric polynomial

f (x) =
d−1∑

j=0

cos(2π2 j x),

where d satisfies (12), i.e., 1
2

(
d
√

ε

6 − 2
)

≥ K
√
d√
2
. We will prove that for this trigono-

metric polynomial f , and for the gap sequence (nk)k≥1 we constructed in Sect. 2, the
conclusion of Theorem 1 is indeed satisfied.

Clearly, since our cosine functions are uncorrelated,

‖ f ‖2 =
√
d√
2
. (28)
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Applying the Erdős–Gál law of the iterated logarithm (see Eq. (3)) together with the
triangle inequality gives

lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

≤ d√
2

a.e. (29)

Recall that #�i = Ri . We will show that

lim sup
i→∞

∣
∣
∣
∑

k∈�i
f (nkx)

∣
∣
∣

√
2Ri log log Ri

≥ d
√

ε

2
− 2 a.e. (30)

Assuming this to be true, then with the notation N (i) := Ri+1−R
R−1 and upon noting that

{1, . . . , N (i)} = �1 ∪ · · · ∪ �i = {1, . . . , N (i − 1)} ∪ �i , for almost all x ∈ [0, 1],
we will obtain

lim sup
i→∞

∣
∣
∣
∑N (i)

k=1 f (nkx)
∣
∣
∣

√
2N (i) log log N (i)

≥ lim sup
i→∞

∣
∣
∣
∑

k∈�i
f (nkx)

∣
∣
∣

√
2N (i) log log N (i)

− lim sup
i→∞

∣
∣
∣
∑N (i−1)

k=1 f (nkx)
∣
∣
∣

√
2N (i) log log N (i)

≥ lim sup
i→∞

∣
∣
∣
∑

k∈�i
f (nkx)

∣
∣
∣

√
2Ri log log Ri

︸ ︷︷ ︸

≥ d
√

ε
2 −2 by (30)

√
2Ri log log Ri

√
2N (i) log log N (i)

︸ ︷︷ ︸

−→
√

R−1
R as i→∞

− lim sup
i→∞

∣
∣
∣
∑N (i−1)

k=1 f (nkx)
∣
∣
∣

√
2N (i − 1) log log N (i − 1)

︸ ︷︷ ︸
≤ d√

2
by (29)

lim
i→∞

√
2N (i − 1) log log N (i − 1)
√
2N (i) log log N (i)

︸ ︷︷ ︸

= 1√
R

≤
√

ε√
8
by (13)

≥
(
d
√

ε

2
− 2

)√
R − 1

R
− d

√
ε

4

≥
(
d
√

ε

6
− 2

)√
R − 1

R
,

where the estimate in the last line holds, since R ≥ 2. By (12) and (28), we have

(
d
√

ε

6
− 2

)√
R − 1

R
> K‖ f ‖2.

Thus, it remains to establish (30). We note in passing that this chain of calculations
actually gives a quantitative form of Theorem 1, where the dependence between the
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factor K , the size of ε from the savings in the Diophantine condition, and the degree d
of the trigonometric polynomial are brought into relation. The conclusion of Theorem
1 is non-trivial when the right-hand side exceeds ‖ f ‖2. One can check that for K = 1,
the inequality (12) holds for d = 21ε−1, so that for given ε from the Diophantine con-
dition, we can construct a counterexample to the LIL in its “truly independent” form
by considering a trigonometric polynomial of degree �21ε−1�. As ε in the Diophantine
condition approaches 0, we need to increase the degree of the trigonometric polyno-
mial to get a result which doesn’t match with the “truly independent” form of the LIL.
Themain result of this paper is that theDiophantine condition (9) is essentially optimal
when trigonometric polynomials of arbitrary degree are considered; however, we do
emphatically not claim that this condition is also optimal in the case of trigonometric
polynomials whose degree is bounded. For degree 1 (the Erdős–Gál case), no Dio-
phantine condition at all is necessary. For trigonometric polynomials of degree 2, we

believe that a condition of order roughly L(N , a, b, c) = O
(

N
(log N )1/2

)
should be opti-

mal, and for degree at most d, a condition of the form L(N , a, b, c) = O
(

N
(log N )c(d)

)

should be optimal, with some suitable constants c(d) for which c(d) ↗ 1 as d → ∞.
The relation between d and ε was not in our main focus when writing this paper, but
this seems to be an interesting topic for further research.

It remains to prove (30). For i ∈ N, let Fi be the sigma-field generated by the
collection of intervals

[
a − 1

22(i+1)4
,

a

22(i+1)4

)

, a = 1, 2, . . . , 22
(i+1)4

.

We set

Yi (x) :=
∑

k∈�i

f (nkx), x ∈ [0, 1],

as well as

Zi := E

(
Yi
∣
∣
∣Fi

)
, i ≥ 1,

which, as we shall see in a moment, is a good approximation of the random variable
Yi ; in probabilistic parlance, the system (Fi )i≥1 forms a filtration of the unit interval.
Using that

‖ f ′‖∞ ≤
d−1∑

j=0

2π2 j ≤ 2π2d ,
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and setting I ia :=
[

a−1

22(i+1)4
, a

22(i+1)4

)

for a ∈
{

1, . . . , 22
(i+1)4

}

=: Si , where i ∈ N,

we see that by using the standard estimate | f (x) − f (y)| ≤ ‖ f ′‖∞|x − y|,

‖Zi − Yi‖∞ = sup
x∈[0,1]

|Zi (x) − Yi (x)|

= sup
x∈[0,1]

∣
∣
∣
∣
∣
∣

∑

a∈Si

∑

k∈�i

(

22
(i+1)4

∫

I ia

f (nkt)dt − f (nkx)

)

1I ia
(x)

∣
∣
∣
∣
∣
∣

≤ max
a∈Si

sup
x∈I ia

∑

k∈�i

∣
∣
∣
∣
∣
22

(i+1)4
∫

I ia

( f (nkt) − f (nkx)) dt

∣
∣
∣
∣
∣

≤ max
a∈Si

sup
x∈I ia

∑

k∈�i

|| f ′||∞nk

22(i+1)4

=
∑

k∈�i

2π2dnk

22(i+1)4

≤
Ri2π2d22

i4
(
2R

i+1 + i
)

22(i+1)4
,

which goes rapidly to zero as i → ∞ (recall that R and d are fixed). Thus, we have

lim sup
i→∞

|Yi |
√
2Ri log log Ri

≥ d
√

ε

2
− 2 a.e.,

(which is just another way of writing (30)) if and only if

lim sup
i→∞

|Zi |
√
2Ri log log Ri

≥ d
√

ε

2
− 2 a.e., (31)

and our aim thus becomes to establish (31). For this purpose, we define the sets

Ai :=
{

x ∈ [0, 1] : |Zi | ≥
(
d
√

ε

2
− 2

)√
2Ri log log Ri − 2d2i − 3

}

, i ∈ N,

where the termswhich are subtracted on the right-hand sidewill allowus to incorporate
errors which will appear later on in the computations. By construction, Ai is Fi -
measurable for all i ≥ 1. We claim that Ai is independent of Fi−1 (and hence also
independent of Fi−2,Fi−3, . . .). This follows from the fact that all numbers nk with

k ∈ �i are integer multiples of 22
i4

and hence the functions Yi and Zi are periodic

with period-length 1

22i
4 . From that we infer, again writing I i−1

a =
[
a−1

22i
4 , a

22i
4

)

for

a ∈ Si−1 = {1, . . . , 22i4 }, that λ(Ai ∩ I i−1
a ) has the same value for all a ∈ Si−1. Thus,
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for all x ∈ [0, 1], we obtain

E
[
1Ai |Fi−1

]
(x) =

∑

a∈Si−1

22
i4

λ
(
Ai ∩ I i−1

a

)
1I i−1

a
(x)

= 22
i4

λ
(
Ai ∩ I i−1

1

)

=
∑

a∈Si−1

λ
(
Ai ∩ I i−1

a

)

= λ(Ai ),

which proves our claim.Hence, the sets A1, A2, A3, . . . are stochastically independent

—this was the purpose of the factor 22
i4

in the definition of (nk)k≥1 in (17) for all k
from the same block �i , and for switching from Yi to the discretized approximations
Zi .4

It remains to establish that

∞∑

i=1

λ(Ai ) = +∞. (32)

Then, by an application of the second Borel–Cantelli lemma (using the independence
of the sets A1, A2, . . . ), we can conclude that almost all x ∈ [0, 1] are contained in
infinitely many sets Ai , which implies (31) and (30).

As observed before, we have ‖Yi − Zi‖∞ ≤ 1 for all sufficiently large i ∈ N. Thus,
by the triangle inequality

Ai ⊇
{

x ∈ [0, 1] : |Yi | ≥
(
d
√

ε

2
− 2

)√
2Ri log log Ri − 2d2i − 2

}

(33)

for all sufficiently large i ∈ N. As noted, Yi is periodic with period 22
i4

. We now
define a new sequence (νk)k≥1 via

νk := nk

22i
4 , k ∈ �i , i ∈ N,

or, equivalently, via

νk = 2k + m, k ∈ �
(m)
i , m ∈ {1, . . . , M(i)}, i ∈ N.

4 Our aim is to prove that for all i the lacunary sum
∑

k∈�i
f (nk x) is large for a sufficiently large set of

values of x , which yields the desired LIL by an application of the divergence Borel–Cantelli lemma.Without

the factor 22
i4

in the definition of nk for all k from the same block�i wewould lack the necessary stochastic
independence of these set, which is a necessary prerequisite for an application of the divergence Borel–
Cantelli lemma. More specifically, in what follows we will decompose

∑
k∈�i

f (nk x) into the product
of a “local variance function”, multiplied with a pure trigonometric sum (whose distribution is close to
Gaussian), and we have to make sure that the local variance function is not large at the same locations of x ,
for different values of i .
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Then Yi has the same distribution as
∑

k∈�i
f (νk x) so that

λ

({

x ∈ [0, 1] : |Yi | ≥
(
d
√

ε

2
− 2

)√
2Ri log log Ri − 2d2i − 2

})

= λ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 1] :

∣
∣
∣
∣
∣
∣

∑

k∈�i

f (νk x)

∣
∣
∣
∣
∣
∣
≥
(
d
√

ε

2
− 2

)√
2Ri log log Ri − 2d2i − 2

⎫
⎬

⎭

⎞

⎠ .

(34)

Now we will relate the particular choice of our function f with our particu-
lar construction of the sequence (nk)k≥1, somewhat in the spirit of the Erdős–
Fortet example. The key point of the Erdős–Fortet example is that in the sum∑(

cos(2π(2k − 1)x) + cos(4π(2k − 1)x)
)
, the termcos(4π(2k−1)x) = cos(2π(2k+1−

2)x) (from frequency 4π and index k) and the term cos(2π
(2k+1 − 1)x) (from frequency 2π and index k + 1) can be combined, so that by

the standard trigonometric identity cos(α) + cos(β) = 2 cos
(

α+β
2

)
cos
(

α−β
2

)
, we

have

N∑

k=1

(
cos(2π(2k − 1)x) + cos(4π(2k − 1)x)

)

=
N∑

k=1

(
cos(2π(2k − 1)x) + cos(2π(2k − 2)x)

)

+ cos(2π(2N+1 − 2)x) − 1

≈
N∑

k=1

(
cos(2π(2k − 1)x) + cos(2π(2k − 2)x)

)

= 2 cos(πx)
N∑

k=1

cos(2π(2k − 3/2)x), (35)

i.e., the generalized lacunary sum essentially decomposes into the product of the fixed
function 2 cos(πx) and a purely trigonometric lacunary sum (this explains why the
factor

√
2 cos(πx) appears on the right-hand side of (5)). Our sum

∑
k∈�i

f (νk x)
will split in a somewhat similar way into a (slowly fluctuating) function gi (x), multi-
plied with a purely trigonometric lacunary sum (to which we can apply Gaposhkin’s
quantitative CLT of Lemma 6). However, while in Erdős–Fortet’s construction the
contribution of only two subsequent summation indices can be combined (leading to
a factor 2 cos(πx) which is bounded by 2), in our construction the contribution of d
subsequent summation indices can be combined, leading to a function gi (x) which
becomes as large as d for some values of x . We will continue to comment on the
heuristics after some further steps of calculations.
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For i ≥ 1 and m ∈ {1, . . . , M(i)}, we have

∑

k∈�
(m)
i

f (νk x) =
∑

k∈�
(m)
i

d−1∑

j=0

cos
(
2π2 j (2k + m)x

)

=
∑

k∈�
(m)
i

d−1∑

j=0

cos
(
2π
(
2k+ j + 2 jm

)
x
)
. (36)

The sequence (nk)k≥1 (and so (νk)k≥1) and the trigonometric polynomial f were
constructed in such a way that in the representation (36) there are many terms that can
be combined. More precisely, when understanding k + j = � as a new summation
index in (36), then there are d many different pairs (k, j) for which k + j adds up to
�. Thus, the sum in (36) can be rewritten as

∑

k∈�
(m)
i

d−1∑

j=0

cos
(
2π
(
2k+ j + 2 jm

)
x
) =

∑

�∈�
(m)
i

d−1∑

j=0

cos
(
2π
(
2� + 2 jm

)
x
)+ Ei,m(x),

(37)
where Ei,m(x) is an error term consisting of sums of cosines which comes from a)
the d smallest indices � ∈ �

(m)
i , for which there do not exist d many pairs (k, j) with

k ∈ �
(m)
i and j ∈ {0, . . . , d−1} such that k+ j = �, and b) from the d largest indices

k in �
(m)
i for which k + j exceeds all elements � ∈ �

(m)
i .5 Hence, Ei,m is a sum of at

most d2 many cosine functions, and thus

∣
∣
∣
∣Ei,m

∣
∣
∣
∣∞ ≤ d2

as well as (recall M(i) = �i1−ε� ≤ i)

∥
∥
∥
∥
∥
∥

M(i)∑

m=1

Ei,m

∥
∥
∥
∥
∥
∥∞

≤ d2i . (38)

5 Let

{

k1, . . . , k#�(m)
i

}

denote the elements of �
(m)
i in increasing order. Then k1 has exactly one repre-

sentation of the form � + j for � ∈ �
(m)
i and j ∈ {0, . . . , d − 1}, namely k1 = k1 + 0. k2 has two such

representations, namely k2 = k2 + 0 and k2 = k1 + 1. So, the first d − 1 elements of �
(m)
i have less than

d possible representations of the form � + j . This gives us precisely d(d−1)
2 many cosine functions which

form one part of Ei,m . On the other hand, if � is one of the d − 1 largest elements in �
(m)
i , then we have

strictly less than d choices for j ∈ {0, . . . , d − 1} such that � + j ∈ �
(m)
i . This leads to another d(d−1)

2
summands in Ei,m . In total Ei,m consists of d(d − 1) ≤ d2 many cosine functions.
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Let w ∈ N. Then, applying the trigonometric identity cos(x + y) = cos x cos y −
sin x sin y, we have

d−1∑

j=0

cos(2π(w + 2 jm)x) = cos(2πwx)
d−1∑

j=0

cos(2π2 jmx)

− sin(2πwx)
d−1∑

j=0

sin(2π2 jmx).

Applying this to the sum in (37), together with (36) and the trigonometric identity
cos(2π y) = 1 − 2(sin(π y))2, y ∈ R, after summing over m = 1, . . . , M(i), we
arrive at

∑

k∈�i

f (νk x)

=
M(i)∑

m=1

⎛

⎜
⎝

d−1∑

j=0

cos(2π2 jmx)
∑

k∈�
(m)
i

cos(2π2k x)

−
d−1∑

j=0

sin(2π2 jmx)
∑

k∈�
(m)
i

sin(2π2k x) + Ei,m(x)

⎞

⎟
⎠

= d
∑

k∈�i

cos(2π2k x)

−
M(i)∑

m=1

d−1∑

j=0

(sin(π2 jmx))2
∑

k∈�
(m)
i

cos(2π2k x) (39)

−
M(i)∑

m=1

d−1∑

j=0

sin(2π2 jmx)
∑

k∈�
(m)
i

sin(2π2k x) (40)

+
M(i)∑

m=1

Ei,m(x). (41)

We comment one last time on the heuristics behind our construction of the function
f and the sequence (nk)k≥1. They were carefully adapted to each other so that (after
removing the extra periodicity by changing from nk to νk), we can essentially write

∑

k∈�i

f (νk x) = gi (x)
∑

k∈�i

cos(2π2k x) + (errors),

where gi (x) is a function which becomes as large as d when x is small (we ignore here
the fact that in the equations above, one lacunary sum is a sine sum, not a cosine sum).
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Heuristically (ignoring that gi (x) also depends on m), we essentially have gi (x) =
d − g(1)

i (x) − g(2)
i (x), where g(1)

i and g(2)
i are the slowly fluctuating functions in

the double sums in lines (39) and (40), respectively. We can ensure that g(1)
i and

g(2)
i are small when x is smaller than 1/M(i) ≈ i−1+ε by some factor. The sum
R−i/2∑

k∈�i
cos(2π2k x) is a classical normalized lacunary sum and behaves like a

Gaussian N (0, 1/2) random variable (see, e.g., [19, Theorem 1]). Thus, for x near
0, the sum R−i/2∑

k∈�i
f (νk x) essentially behaves like R−i/2d

∑
k∈�i

cos(2π2k x)
and thus like a N (0, d2/2) random variable (locally for x near 0 we have gained a
factor d for the variance in comparison with ‖ f ‖22, this is the key point!), and we can
factorize

Prob

⎛

⎝x ∈ [0, 1] :
∣
∣
∣
∣
∣
∣

∑

k∈�i

f (νk x)

∣
∣
∣
∣
∣
∣
is “large”

⎞

⎠

≥ Prob
(
x is “close enough” to 0 so thatgi (x) ≈ d

)

×Prob
(
aN (0, d2/2) r.v. is “large”

)
.

The size of the set of values of x which are close enough to 0 is around i−1+ε,
see above, while the probability of a N (0, d2/2) r.v. exceeding something around
d
√

ε

2

√
2 log log Ri is roughly e− ε

2 log log Ri ≈ i−ε/2. Overall this gives a probability of

i−1+ε/2 that
∣
∣
∣
∑

k∈�i
f (νk x)

∣
∣
∣ is “large”, which allows an application of the divergence

Borel–Cantelli lemma.
Now we make this heuristic precise. Let i ∈ N and hi ∈ N such that

1

20d2dM(i)
≤ 2−hi ≤ 1

10d2dM(i)
,

which implies that

2−hi ≥ 1

20d2d�i1−ε� ≥ i−1+5ε/6

for sufficiently large i . If i is sufficiently large, then for all k ∈ �i we have k ≥
Ri−1 ≥ i ≥ hi , so that by periodicity, for all t > 0, we have (recall that #�i = Ri )

λ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 2−hi ] :

∑

k∈�i

cos(2π2k x) ≥ t

⎫
⎬

⎭

⎞

⎠

= 2−hi
2hi −1∑

a=0

λ

⎛

⎝

⎧
⎨

⎩
x ∈

[
a

2hi
,
a + 1

2hi

]

:
Ri
∑

k=1

cos(2π2k x) ≥ t

⎫
⎬

⎭

⎞

⎠

= 2−hi λ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 1] :

Ri
∑

k=1

cos(2π2k x) ≥ t

⎫
⎬

⎭

⎞

⎠ .
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Applying Gaposhkin’s Berry–Esseen type estimate (see Lemma 6) with all weights
being equal, we obtain using 1 − �(y) ≥ 1/(4yey

2/2) for y ≥ 4 (see, e.g., [27,
Proposition 3]), that

2−hi λ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 1] :

Ri
∑

k=1

cos(2π2k x) ≥
√

ε

2

√
2Ri log log Ri

⎫
⎬

⎭

⎞

⎠

≥ 2−hiλ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 1] :

Ri
∑

k=1

√
2 cos(2π2k x) ≥

√
εRi log log Ri

⎫
⎬

⎭

⎞

⎠

≥ 2−hi

(

1 − �

(√
εRi log log Ri

)

− O(R−i/4)

)

≥ 2−hi
︸︷︷︸

≥i−1+5ε/6 for sufficiently large i

(
e−ε log log Ri

4
√

ε log log Ri
− O(R−i/4)

)

︸ ︷︷ ︸
≥i−2ε/3 for sufficiently large i

≥ 1

i1−ε/6 (42)

for sufficiently large i ∈ N.
We need to show that the terms in (39), (40) and (41) do not make a relevant

contribution when x ∈ [0, 2−hi ]. Recall that by construction the smallest index k in
�i is of size at least Ri−1, and that for sufficiently large i ∈ N, we have Ri−1 ≥ hi .

We will work on short intervals of the form
[

a
2Ri−1 , a+1

2Ri−1

]
⊂ [0, 2−hi ] for some small

integer a. Within such an interval, the function
∑d−1

j=0(sin(π2
jmx))2 is essentially

constant. More precisely, writing

sa,m,i :=
d−1∑

j=0

(

sin

(

π2 jm
a

2Ri−1

))2
,

by considering derivatives, we obtain the Lipschitz estimate

∣
∣
∣
∣
∣
∣

d−1∑

j=0

(sin(π2 jmx))2 − sa,m,i

∣
∣
∣
∣
∣
∣
≤ 2d+1πm

2Ri−1 for all x ∈
[

a

2Ri−1 ,
a + 1

2Ri−1

]

. (43)

Furthermore, since we assumed that a
2Ri−1 ∈ [0, 2−hi ], we have

sa,m,i ≤
d−1∑

j=0

(
sin
(
π2 jm2−hi

))2
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≤
d−1∑

j=0

(
π2 jm2−hi

)2

≤
d−1∑

j=0

(
π2 jm

10d2dM(i)

)2

≤ π2

100d

≤ 1

10d
, (44)

uniformly in a and m. For i ∈ N, we set

Sa,i :=
⎛

⎜
⎝

M(i)∑

m=1

∑

k∈�
(m)
i

s2a,m,i

⎞

⎟
⎠

1/2

,

and define

λk := sa,m,i

Sa,i
, for k ∈ �

(m)
i .

Then, we clearly have

∑

k∈�i

λ2k = 1,

and by (44) it holds that

Sa,i ≤ Ri/2

10d
.

Note that, using the estimates Sa,i ≥
√
#�(m)

i s2a,m,i and #�(m)
i ≥ Ri

�i1−ε� − 1 for all
m ∈ {1, . . . , M(i)} by (15), we have

max
k∈�i

λk = max
1≤m≤M(i)

sa,m,i

Sa,i
≤ max

1≤m≤M(i)

sa,m,i
√
#�(m)

i s2a,m,i

≤
√

�i1−ε�
Ri − �i1−ε� ≤ R−i/3

(45)
for sufficiently large i ∈ N.

Thus, by periodicity, using Lemma 6 with the weights λk as specified above, and
using (45), we have

2R
i−1

λ

⎛

⎜
⎝

⎧
⎪⎨

⎪⎩
x ∈

[
a

2Ri−1 ,
a + 1

2Ri−1

]

:

∣
∣
∣
∣
∣
∣
∣

M(i)∑

m=1

∑

k∈�
(m)
i

sa,m,i cos(2π2
k x)

∣
∣
∣
∣
∣
∣
∣
>

√

2Ri log log Ri

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠
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= 2R
i−1

λ

⎛

⎝

⎧
⎨

⎩
x ∈

[
a

2Ri−1 ,
a + 1

2Ri−1

]

:
∣
∣
∣
∣
∣
∣

∑

k∈�i

λk cos(2π2
k x)

∣
∣
∣
∣
∣
∣
> S−1

a,i

√

2Ri log log Ri

⎫
⎬

⎭

⎞

⎠

≤ 2R
i−1

λ

⎛

⎝

⎧
⎨

⎩
x ∈

[
a

2Ri−1 ,
a + 1

2Ri−1

]

:
∣
∣
∣
∣
∣
∣

√
2
∑

k∈�i

λk cos(2π2
k x)

∣
∣
∣
∣
∣
∣
>

√

400d2 log log Ri

⎫
⎬

⎭

⎞

⎠

≤ 1 − �(

√

400d2 log log Ri ) + cR−i/12

≤ i−2

uniformly in a for sufficiently large i ∈ N (the last estimate is very coarse, but the
point is that our estimate leads to a convergent series), where c > 0 is an absolute
constant. Note that (43) implies

∣
∣
∣
∣
∣
∣
∣

M(i)∑

m=1

d−1∑

j=0

(sin(π2 jmx))2
∑

k∈�
(m)
i

cos(2π2k x) −
M(i)∑

m=1

sa,m,i

∑

k∈�
(m)
i

cos(2π2k x)

∣
∣
∣
∣
∣
∣
∣

≤ Ri 2
d+1πm

2Ri−1 ≤ 1

for sufficiently large i ∈ N. After summing over all a such that
[

a
2Ri−1 , a+1

2Ri−1

]
⊂

[0, 2−hi ], using the previous estimate and the triangle inequality, we finally arrive at

λ

⎛

⎜
⎝

⎧
⎪⎨

⎪⎩
x ∈

[
0, 2−hi

]
:

∣
∣
∣
∣
∣
∣
∣

M(i)∑

m=1

d−1∑

j=0

(sin(π2 jmx))2
∑

k∈�
(m)
i

cos(2π2k x)

∣
∣
∣
∣
∣
∣
∣

>

√
2Ri log log Ri + 1

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

≤ 2−hi i−2 ≤ i−2

for sufficiently large i ∈ N, as a bound for the contribution of the term in line (39).
An analogous argument for the contribution of the term in line (40) yields

λ

⎛

⎜
⎝

⎧
⎪⎨

⎪⎩
x ∈ [0, 2−hi

] :

∣
∣
∣
∣
∣
∣
∣

M(i)∑

m=1

d−1∑

j=0

sin(2π2 jmx)
∑

k∈�
(m)
i

sin(2π2k x)

∣
∣
∣
∣
∣
∣
∣
>

√
2Ri log log Ri + 1

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

≤ 1

i2
,

where the relevant point for the argument is that the function
∑d−1

j=0 sin(2π2
jmx) is

also very small in the interval [0, 2−hi ] (and where we use a variant of Gaposhkin’s
Lemma 6 for sine instead of cosine).
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Combining these two estimates with (37), (38) and (42), we obtain

λ

⎛

⎝

⎧
⎨

⎩
x ∈ [0, 1] :

∣
∣
∣
∣
∣
∣

∑

k∈�i

f (νk x)

∣
∣
∣
∣
∣
∣
>

(
d
√

ε

2
− 2

)√
2Ri log log Ri − 2d2i − 2

⎫
⎬

⎭

⎞

⎠

≥ 1

i1−ε/6 − 2

i2

for sufficiently large i ∈ N. By (33) and (34) this implies

λ(Ai ) ≥ i−1+ε/6 − 2i−2

for all sufficiently large i ∈ N. Thus, we have established (32), which completes the
proof of Theorem 1.

Finally we prove Corollary 2, by showing that our lacunary sequence leads to a
almost surely constant limit in (11).

Proof of Corollary 2 Let f and (nk)k∈N be as in Sect. 4 and denote

σ(x) := lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

, x ∈ [0, 1].

By Theorem 1 it follows that σ(x) > 0 almost surely and (29) implies σ(x) < ∞ for
all x ∈ [0, 1]. For every p ∈ N, we find a q ∈ N such that 2p|nk for all k ≥ q. This

is due to the fact that all nk are divisible by 22
i4

by construction, and we can choose
k large enough such that i = i(k) satisfies 2i

4 ≥ p. Since f is 1-periodic we get

σ(x) = lim sup
N→∞

∣
∣
∣
∑N

k=1 f (nkx)
∣
∣
∣

√
2N log log N

= lim sup
N→∞

∣
∣
∣
∑N

k=p f (nkx)
∣
∣
∣

√
2N log log N

= lim sup
N→∞

∣
∣
∣
∑N

k=p f (nk(x + 2−p))

∣
∣
∣

√
2N log log N

= σ(x + 2−p).

This shows that our random variable σ(x) is periodic with period 1
2p for any p ∈ N.

For k ∈ N, let

Fk := σ

({[
j

2k
,
j + 1

2k

)

: j ∈ {0, . . . , 2k − 1}
})

.
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Then, for the Borel-σ field B([0, 1]), we have B([0, 1]) = σ
(⋃

k∈N Fk
)
. Because of

the periodicity of our random variable σ(x), it is independent of Fp for any p ∈ N,
implying

E
[
σ(x)|Fp

] =
∫ 1

0
σ(x) dx =: σ̄ .

The martingale convergence theorem now tells us that

σ̄ = lim
p→∞E

[
σ(x)|Fp

]

= E

[
σ(x)

∣
∣
∣B ([0, 1])

]

= σ(x).

This completes the proof of Corollary 2. ��
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