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Abstract
Answering a pair of questions of Conrey, Gabbard, Grant, Liu, and Morrison, we
prove that a triplet of dice drawn from the multiset model are intransitive with prob-
ability 1/4 + o(1) and the probability a random pair of dice tie tends toward αn−1

for an explicitly defined constant α. This extends and sharpens the recent results of
Polymath regarding the balanced sequence model. We further show the distribution
of larger tournaments converges to a universal tournamenton in both models. This
limit naturally arises from the discrete spectrum of a certain skew-symmetric operator
(given by the kernel in the title acting on L2([−1, 1])). The limit exhibits a degree
of symmetry and can be used to prove that, for instance, the limiting probability that
Ai beats Ai+1 for 1 ≤ i ≤ 4 and that A5 beats A1 is 1/32 + o(1). Furthermore, the
limiting tournamenton has range contained in the discrete set {0, 1}. This proves that
the associated tournamenton is non-quasirandom in a dramatic fashion, vastly extend-
ing work of Cornacchia and Hązła regarding the continuous analogue of the balanced
sequence model. The proof is based on a reduction to conditional central limit the-
orems (related to work of Polymath), the use of a “Poissonization” style method to
reduce to computations with independent random variables, and the systematic use of
switching-based arguments to extract cancellations in Fourier estimates when estab-
lishing local limit-type estimates.
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1 Introduction

We consider the following pair of models of random dice.

Definition 1.1 A n-sided die is a sequence of numbers (a1, . . . , an) ∈ [n]n such that∑n
j=1 a j = n(n + 1)/2. In the multiset model, the faces of a die (a1, . . . , an) are

sampled as a uniform randomnondecreasing sequence in [n]which satisfy∑n
j=1 a j =

n(n+1)/2. In the balanced sequencemodel the faces of a die (a1, . . . , an) are sampled
as a uniform random sequence in [n] such that

∑n
j=1 a j = n(n + 1)/2.

We also require a notion of when one die is said to “beat” another die.

Definition 1.2 An n-sided die (a1, . . . , an) beats another die (b1, . . . , bn) if

n∑

j=1

n∑

k=1

(

1a j>bk +
1

2
1a j=bk

)

>
n2

2
.

Furthermore we say that die (a1, . . . , an) ties die (b1, . . . , bn) if

n∑

j=1

n∑

k=1

(

1a j>bk +
1

2
1a j=bk

)

= n2

2
.

Our goal is to study dice tournaments. Specifically, we sample m independent
random n-sided dice, either all from the multiset model or all from the balanced
sequence model, and consider the outcome of each pair. We will think of m as fixed
while n is tending to infinity.

The phenomenon of intransitive dice are exemplified by an example constructed
by Efron in the 1960s [11]: consider the dice1

A = (0, 0, 4, 4, 4, 4), B = (3, 3, 3, 3, 3, 3), C = (2, 2, 2, 2, 6, 6), D = (1, 1, 1, 5, 5, 5).

Efron observed that in this example that A beats B, B beats C , C beats D, and D
beats A: peculiarly, the relation “beats” is not transitive. This phenomenon gathered a
substantial amount of popular interest [12, 23] including appearing inMartinGardner’s
column in Scientific American [11].

Mathematical work until recently had largely been focused on constructing tour-
naments with various properties [1–3, 10, 18, 28]; for instance work of Moon and
Moser [18] established that given any tournament T there exists a set of dice (not
necessarily satisfying the sum constraints of Definition 1.1) which realize this tour-
nament T .2 However, recently there has been significant interest in understanding
random models of intransitive dice due to a set of conjectures raised in work of Con-
rey et al. [7].

1 Notice that as stated these dice do not satisfy the precise sum and face side bounds specified in Defini-
tion 1.1.
2 As it turns out, our main results on random intransitive dice can be used to reprove a number of these
results; we refer the reader to Proposition 8.3.
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The intransitive dice kernel…

In the work of Conrey et al. [7], the authors considered dice drawn from themultiset
model. While a nice model for dice, one may ask why they do not consider the “most
natural” model of dice where there is no additional condition on the sum. In this case it
is straightforward to observe empirically (and can be proven rigorously) that with high
probability whether die A beats die B can be determined simply by looking at the sum
of the faces of the dice. Conrey et al. [7] conducted empirical simulations in themultiset
model. Based on these experimental results, they conjectured ([7, Conjectures 1,2,3])
that as n → ∞ (a) the probability a pair of dice tie is o(1) (b) for a random triplet
of dice A, B, and C the probability that A beats B, B beats C , and C beats A is
1/8+o(1) and (c) the tournament associated to dice is quasirandom. (Conrey et al. [7]
equivalently formulate (c) in terms of the probability of various m-die tournaments.)

The first rigorous progress towards these conjectures was made by Polymath [22],
where they considered n-sided die drawn from not the multiset model but from the
balanced-sequence model in Definition 1.1. In this balanced sequence model, Poly-
math [22] was able to prove both conjectures (a) and (b) by showing that for almost all
dice A drawn from the balanced sequence model, approximately half of the dice from
the balanced sequence model beat it. However, based on numerical calculations Poly-
math conjectured that (c) is false (see discussion surrounding [22, Conjecture 1.3]).
This suspicion was later confirmed in a continuous analogue of the balanced sequence
model by work of Cornacchia and Hązła [8] where die faces are sampled from [0, 1]
uniformly at random. They proved this by studying four-cycle counts and proved that
there exists a small absolute constant ε > 0 such that the probability that A beats B,
B beats C , C beats D, and D beats A for n large is at least 1/16+ ε (higher than if the
underlying tournament was quasirandom). Finally, in the work of Hązła et al. [14], the
phenomenon of transitivitywas investigated in the context of die faceswhich are drawn
independently at random from a fixed distribution ρ which is continuous. Remarkably,
the phenomenon of intransitivity is extremely delicate and under mild conditions on ρ

the only distribution exhibiting any form of intransitivity is the uniform distribution.
In all the rigorous work regarding probabilistic models of intransitive dice, the use of
local central limit theorem type techniques has been crucial and this has been aided by
the fact that the underlying faces of the die are independent modulo conditioning on a
simple linear relation. We note this is no longer true in the original multiset model of
Conrey et al. [7] and this served as a key obstacle for extending results to the original
model.

Our main result is a complete characterization of the tournament associated with
intransitive dice. Our results are sufficiently strong to naturally explain the results
of Polymath [22] and Cornacchia and Hązła [8] and point to a number of surprising
phenomena which are not immediately obvious numerically.

In order to state our main result we will require the definition of a certain operator
on L2([−1, 1]).

Definition 1.3 Consider the skew-symmetric kernel f : [−1, 1]2 → R defined by

f (x, y) = 1x≥y − 1x≤y

4
− 3(x − y)(1+ xy)

8
.
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Define the operatorA : L2([−1, 1]) → L2([−1, 1]) (with the Lebesgue measure) by

A(g)(x) =
∫ 1

−1
f (x, y)g(y)dy.

Let σ1 ≥ σ2 ≥ · · · denote real numbers so that {±iσ� : � ≥ 1} forms the discrete
spectrum of A.

Remark SinceA is real skew-symmetricwe have that the spectrum is purely imaginary
and coming in pairs. Furthermore, based on numerical computation, a closed form
solution for σ j appears unlikely.

Our main result captures the precise probability distribution associated with the
dice tournament.

Theorem 1.4 Fix m ≥ 2 and independently sample n-sided dice A1, . . . , Am, either
all from the multiset model or all from the balanced sequence model. Let G( j) for
1 ≤ j ≤ m be infinite vectors of standard Gaussians and for 1 ≤ j < k ≤ m let

Hjk =
∑

�≥1
σ�

(
G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1

)
.

Then for any digraph D on vertices [m],

lim
n→∞P[A j beats Ak for all jk ∈ E(D)] = P[Hjk > 0 for all jk ∈ E(D)].

Remark Hjk is defined by a convergent sumalmost surely due to the bound
∑

�≥t σ 2
� =

O(1/t), which we prove in Lemma 2.6 (M9), and an application of Borel–Cantelli to
the random events Et defined by |∑t≤�<2t σ�(G

( j)
2�−1G

(k)
2� −G( j)

2� G
(k)
2�−1)| ≥ t−1/4 for

t ranging over powers of 2. Indeed, P[Et ] = O(t−1/2) by the Chebyshev inequality,
which has finite sum over powers of 2, so all but finitely many Et hold and the conver-
gence follows. Alternatively, we can interpret each individual Hjk as a Gaussian with
random variance equal to the inverse of an almost surely convergent weighted sum of
chi-squared distributions.

Remark The proof of Theorem 1.4 actually shows something stronger, which is that
(Hjk)1≤ j<k≤m is the limiting distribution of (c ·margin jk/n)1≤ j<k≤m , where c = 1/2
for themultiset model and c = 1 for the balanced sequencemodel and wheremargin jk

is by how much die A j beats Ak (i.e., how many more pairs than n2/2, possibly
negative, A j beats Ak for).

We note that the statement of Theorem 1.4 may appear slightly strange and difficult
to work with; however, a number combinatorial consequences follow in a routine
manner given Theorem 1.4.

Corollary 1.5 Sample m independent random n-sided dice A1, . . . , Am either all from
the multiset model or all from the balanced sequence model. Then for any digraph
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D on vertices [m] let Dv denote the digraph where all edges incident to the vertex
v ∈ [m] are reversed. We have

limn→∞P[A j beats Ak for all jk ∈ E(D)] = lim
n→∞P[A j beats Ak for all jk ∈ E(Dv)]

for all v ∈ [m]. Furthermore let D′ denote the digraph where all the edges of D are
reversed. We have

P[A j beats Ak for all jk ∈ E(D)] = P[A j beats Ak for all jk ∈ E(D′)].

From Theorem 1.4 we see that the probability a pair of dice tie is o(1). Then,
considering D to be a directed cycle on 3 vertices and comparing to Dv , along with
using permutation symmetry, we immediately see that all labelled 3-vertex tourna-
ments appear asymptotically with the same probability. Thus a random triplet of dice
is intransitive with probability 1/4+ o(1). This immediately implies the conjectures
of Conrey et al. [7, Conjectures 1, 2] (and recovers the results of Polymath which
proved these two facts in the balanced sequence model).

We can deduce that a forest with e edges occurs with probability 2−e + o(1) by
iteratively applying Corollary 1.5 to a leaf (and using that ties occur negligibly).
We can also deduce that any orientation of a labeled (2k + 1)-cycle occurs with the
same limiting probability 2−(2k+1) + o(1) by repeatedly applying the two operations
specified in Corollary 1.5. These are perhaps surprising given the results of Cornacchia
and Hązła [8] showing a lack of quasirandomness for continuous dice models. We
conjecture, however, that the only equalities between complete tournaments in the
limit can be achieved via these symmetries and permutation symmetry.

For our next corollary, we will require the tournament analogue of a graphon. We
refer the reader to [29, Chapter 4] for a more extensive discussion of graphons.

Definition 1.6 Given two measurable functions U ,W : [0, 1]2 → R, define the cut
metric as

δ�(U ,W ) = inf
φ

sup
S,T∈[0,1]

∣
∣
∣
∣

∫

S×T
U (x, y) −W (φ(x), φ(y))dxdy

∣
∣
∣
∣,

where the infimum φ is taken over all invertible measure preserving maps. We define
the tournamentons T0 to be the space of all functions T : [0, 1]2 → [0, 1] such that
T (x, y) = 1− T (y, x) and let T̃0 denote the space of tournamentons modulo identi-
fying tournamentons with cut distance 0.

As is standard one can identify a graphG with an associated graphon, and similar for
a tournamenton, by embedding the adjacencymatrix into [0, 1]2 (for the tournamenton
this requires putting values of 1/2 on the diagonal); we will carry this transformation
out without comment.

Corollary 1.7 Consider the graph Tn where the vertex set is either (a) all nondecreasing
sequences (a1, . . . , an) in [n]n such that ∑n

j=1 a j = n(n + 1)/2 or (b) all sequences
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(a1, . . . , an) in [n]n such that
∑n

j=1 a j = n(n + 1)/2, and where there is a directed
edge from one sequence to another if the corresponding die beats the other.

Then Tn converges under the cut metric to a tournamenton T (which is the same in
cases (a) and (b)). Furthermore, the preimage of the set {0, 1} under T has measure
1.

Remark Technically Tn may not be a tournament but a partial tournament due to
ties, so a priori we only have convergence to a partial tournamenton; however, a
consequence of Theorem 1.4 discussed above is that ties occur with probability o(1)
so we will obtain a genuine tournamenton in the limit.

Note that the density of digraph D in the tournament Tn is precisely the probability
that the associated digraph of dice beating other dice occurs when sampling from
either the multiset model (case (a)) or the balanced sequence model (case (b)). Thus
the density of digraph D in the limit tournament T is the limiting probability described
by Theorem 1.4.

The claim that the preimage of the set {0, 1} has measure 1 is equivalent to the
fact that for every ε > 0 there is a k such that a T -random tournament (defined
analogously to a W -random graph [29, Section 4.4]) on k vertices lies in a set of size
2εk2 with at probability at least 1 − ε. This equivalence is detailed in Lemma 8.1;
we will prove Corollary 1.7 through this equivalence and prove that one can take a
polynomial relation between k and ε. The fact that T �= 1/2 corresponds to a lack of
quasirandomness. We also establish that the directed 4-cycle in particular occurs with
limiting probability greater than 1/16 in Proposition 8.2, and show that all digraphs
D have positive density in T in Proposition 8.3.

Finally, we also precisely quantify the probability that a given pair of dice are tied
beyond the o(1) guaranteed as a consequence of Theorem 1.4.

Theorem 1.8 Let A and B be dice which are jointly drawn independently from the
multiset model. Let α = 2−5/2π−1/2

E[(∑�≥1 σ 2
� (Z2

� + Z ′2
� ))−1/2], where Z�, Z ′

� ∼
N (0, 1). We have

P[A ties B] = (α + o(1))n−1

for some absolute constant c = c1.8 > 0. If instead A and B are jointly drawn
independently from the balanced sequence model then

P[A ties B] = (2α + o(1))n−1.

Remark This can be heuristically reconstructed by considering the second remark after
Theorem 1.4 with m = 2. H12 is the limiting distribution of c · margin12/n (where
c = 1/2 for the multiset model and c = 1 for the balanced sequence model). If we
imagine that the mass of this distribution was discretized in the obvious way along all
possible values of margin12 in the lattice Z/2, we obtain the above. In fact, one can
use the techniques in Sect. 9 to show a local limit theorem for margin12:

P[margin12 = x] = c

2n
fH12(cx/n) + o(1/n)

123
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uniformly for x ∈ Z/2, where fH12 is the probability density function of H12. We
do not prove this here since the technical details are quite involved, but note that
Theorem 1.8 is the x = 0 case.

We interpret the constant α as the (inverse) standard deviation around the best
linear approximant (in the sense of Ordinary Least Squares) to a conditioned Brownian
motion at the end of Sect. 9.

In general, a tournament T with exactly t ties amongm dice, and
(m
2

)− t prescribed
outcomes of the other match-ups, where m and 0 ≤ t ≤ (m

2

)
are fixed, should occur

with probability (cT + o(1))n−t . We do not pursue such a general statement here
though similar techniques may apply and a probabilistic interpretation of the constant
cT should arise from Theorem 1.4 similar to the case (m, t) = (2, 1) above.

1.1 First steps, proof outline, and organization

Our techniques at a high level involve Fourier analysis in the style of local limit
theorems. In particular, we study various “conditional Fourier coefficients” in detail
to show that the normalized joint distribution of “victory margins” (see the second
remark following Theorem 1.4) converges to (Hjk)1≤ j<k≤m . We also use a more
detailed analysis involving additional control on the “coarseness” of certain modified
statistics of random dice to get very good local control of the event that there is a
precise tie. We defer a more detailed proof outline to Sect. 3 after developing the basic
tools to attack the problem in Sect. 2.

The first step in provingTheorem1.4 (in themultisetmodel) relies on observing that
while the dice face in the multiset model are nonindependent, the frequency statistics
can be given a natural “near-independent” model. This ultimately relies on a well-
known bijection between the multiset model and the simple random walk; the details
appear in Lemma 2.2. We note that in the context of the balanced sequence model,
Lemma 2.2 reduces to the “Poissonization” trick. Given this we interpret the “beats”
relation through frequency counts (Lemmas 2.3, 2.5) and the operator in Definition 1.3
arises naturally. These initial steps are carried out in Sect. 2, and provide the key starting
point to understand the necessary distributions from a Fourier perspective.

Given the setup in Sect. 2, we provide a heuristic outline of the argument for Theo-
rems1.4 and1.8 and anoverviewof the various consequences inSect. 3.We then collect
a list of technical preliminaries which will be used throughout the paper in Sect. 4. We
prove various Fourier coefficient bounds used in the proofs of Theorems 1.4 and 1.8
in Sect. 5. We prove Theorem 1.4 in Sect. 6, modulo a technical ingredient proven in
Sect. 7, and then collect various consequences following from Theorem 1.4 in Sect. 8.
Finally we prove Theorem 1.8 in Sect. 9.

Notation

Wewrite f = O(g) tomean that f ≤ Cg for some absolute constantC , and g = 
( f )
and f � g to mean the same.We write f = o(g) if for all c > 0 we have f ≤ cg once
the implicit growing parameter (typically n) grows large enough, and g = ω( f )means
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the same. We also use
 to denote two quantities which are within absolute constants.
Subscripts imply a dependence of these implicit constants on those parameters. We

use
d.=,

d.→ for distributional equality and limits, respectively.
For μ ∈ R

d and positive semidefinite � ∈ R
d×d we let N (μ,�) be the Gaussian

vector with mean μ and covariance matrix �. For finite matrices M we will use Mi j

to denote the entry in the (i, j) position. Throughout this paper all logarithms are base
e.

2 Count statistics of balanced sequencemodel andmultiset model

The idea to get a handle on the multiset model is to create a procedure for sampling
which derives from a sequence of independent random variables. We will require the
notion of a frequency statistic which will be crucial for our purposes.

Definition 2.1 Given an n-sided die A = (a1, . . . , an) define the frequency counts of
A to be

ãi = |{ j : a j = i}|

for 1 ≤ i ≤ n.

The key point is the following distributional claim regarding the frequency counts
of a die drawn from either multiset or balanced sequence model, which relates these
models to a sequence of either geometric (in themultiset case) or a sequence of Poisson
random variables (in the balanced sequence case). In the balanced sequence case this
is essentially equivalent to the “Poissonization” trick.

Lemma 2.2 We have the following:

• If B is drawn from the multiset model we have

(̃b1, . . . , b̃n)
d.= (G1, . . . ,Gn),

where G j are sampled as follows: draw independent Geom(1/2) random vari-
ables3 Gi and then condition on

∑n
j=1 G j = n and

∑n
j=1 jG j = n(n + 1)/2.

• If B is drawn from the balanced sequence model we have

(̃b1, . . . , b̃n)
d.= (P1, . . . , Pn),

where Pj are sampled as follows: draw independent Pois(1) random variables Pj

and then condition on
∑n

j=1 Pj = n and
∑n

j=1 j Pj = n(n + 1)/2.

3 Here X
d.= Geom(1/2) means P[X = k] = (1/2)k+1 for k ∈ {0, 1, . . .}. Note this is 0-indexed,

corresponding to the number of “failures” before a repeatedly flipped fair coin shows heads, instead of the
number of “trials”.
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Proof We consider the first case. Notice that the multiset model of a die can equiv-
alently be sampled by sampling a uniformly random right-up walk between (1, 1)
and (n + 1, n) and looking at the height of each rightward step, conditional on the
area under the walk being n(n + 1)/2. Indeed, there is a standard bijection between
nondecreasing integer sequences (b1, . . . , bn) with 1 ≤ b j ≤ n and such walks: each
a j corresponds to a rightward step from ( j, b j ) to ( j + 1, b j ); furthermore, the area
under the walk ends up being b1+· · ·+ bn . Notice that drawing such a walk is equiv-
alent to looking at an infinite random walk which takes steps in the directions (1, 0) or
(0, 1) each with probability 1/2 and then conditioning on starting at (1, 1) and passing
through both (n + 1, n) and (n + 1, n + 1), then truncating appropriately.

Now define G j as precisely the length of the horizontal segment on the line y = j
in this conditioned infinite random walk. In the unconditioned infinite walk starting
at (1, 1), we have that the lengths (which might be 0) of these horizontal segments in
order have an independent distribution where the law is by definition a sequence of
independent geometric random variables with parameter 1/2. Notice that conditioning
on thewalk passing through the line segment (n+1, n) and (n+1, n+1) is equivalent to∑n

j=1 G j = n and the conditioning on area is equivalent to
∑n

j=1 jG j = n(n+1)/2.
Considering the bijection defined above, these conditionedG j then corresponddirectly
to the b̃ j .

The second case is simpler. Notice that if one draws n faces from [n] uniformly at
random then we have the proportionality

P[(̃b1, . . . , b̃n) = (c1, . . . , cn)] ∝
n∏

j=1

1

c j !

for tuples (c j )1≤ j≤n ∈ {0, . . . , n}n with sum n. The result then follows since

P[Pois(1) = k] = e−1

k! for k ∈ Z, and since conditioning on the sum of the dice
being n(n + 1)/2 corresponds to conditioning on

∑n
j=1 j Pj = n(n + 1)/2. �

The precise reason this description is useful is that given a die B one can define
a linear function of the frequency count statistics of another die A which captures
precisely whether A beats B or not. An equivalent computation appears in the work of
Polymath [22, Section 4]; the formulation presented there however is more naturally
a linear function of the “die faces” instead of the “frequency count statistics”.

Lemma 2.3 We have that a die A with sides (a1, . . . , an) beats a die B with sides
(b1, . . . , bn) if and only if

n∑

j=1

⎛

⎝
∑

1≤k< j

b̃k + b̃ j

2
− ( j − 1/2)

⎞

⎠ ã j > 0

and ties if and only if the sum on the left is 0.

123



A. Sah, M. Sawhney

Proof Notice that

n∑

i=1

n∑

j=1

(

1ai>b j +
1

2
1ai=b j

)

=
n∑

j=1

ã j

∑

1≤k< j

b̃ j +
n∑

j=1

ã j b̃ j

2

=
n∑

j=1

ã j

⎛

⎝
∑

1≤k< j

b̃ j + b̃ j

2

⎞

⎠ .

Since A is an n-sided die with sum of faces n(n + 1)/2 we have

n∑

j=1

ã j ( j − 1/2) =
n∑

j=1

a j − n

2
= n2

2

and therefore the event that A beats B is precisely equivalent to

n∑

j=1

ã j

⎛

⎝
∑

1≤k< j

b̃k + b̃ j

2
− ( j − 1/2)

⎞

⎠ > 0,

whereas A and B being tied corresponds to the left side being equal to 0. �
We cast this condition in an equivalent form which will be useful for computations

involving Gaussians.

Definition 2.4 Let In be the n × n identity matrix. Let �v1, �v2 ∈ R
n be defined by

v1i = 1/
√
n for 1 ≤ i ≤ n and v2i = (i − (n+ 1)/2)/

√
n(n2 − 1)/12 for 1 ≤ i ≤ n.

Note these are orthogonal unit vectors. Let Mn ∈ R
n×n be defined via (Mn)i j =

1i< j + (1i= j/2) and M∗
n ∈ R

n×n via

M∗
n = (In − �v2�vᵀ

2 )(In − �v1�vᵀ
1 )Mn(In − �v1�vᵀ

1 )(In − �v2�vᵀ
2 )

= (In − �v1�vᵀ
1 − �v2�vᵀ

2 )Mn(In − �v1�vᵀ
1 − �v2�vᵀ

2 ).

Equivalently, we re-express the (asymmetric) bilinear form Mn in a basis including
�v1, �v2 on both sides, zero out the rows and columns corresponding to �v1, �v2, and then
convert back. Finally, define σn,1 ≥ · · · ≥ σn,�n/2� be such that {±iσn,� : � ∈ [�n/2�]}
is the spectrum of M∗

n (or the spectrum minus a copy of 0 if n is odd).

The following lemma introduces this discrete variant of the kernel which appears
in the title of the paper.

Lemma 2.5 Given dice A, B with frequency vectors ã, b̃ ∈ {0, . . . , n}n, we have that
A beats B if and only if

b̃ᵀM∗
n ã > 0.
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Proof This is immediate since a simple manipulation of Lemma 2.3 shows the con-
dition that A beats B is equivalent to (̃b − √

n�v1)ᵀMn (̃a − √
n�v1) > 0, and since

�vᵀ
1 (̃a −√

n�v1) = �vᵀ
2 (̃a −√

n�v1) = �vᵀ
1 (̃b −√

n�v1) = �vᵀ
2 (̃b −√

n�v1) = 0. �
Finally, we record some properties of M∗

n as well asA (Definition 1.3).We are brief
with the details as it mostly amounts calculation with explicit functions and operators.

Lemma 2.6 There exists C = C2.6 > 0 such that the following holds. Let M∗
n be as

in Definition 2.4, x = (n + 1− 2i)/(n − 1) and y = (n + 1− 2 j)/(n − 1). Then we
have the following:

M1

(M∗
n )i j = 1x≥y − 1x≤y

2
− 3(x − y)(1− 1/n)

4
− 3xy(x − y)(n − 1)2

4n(n + 1)
.

M2 M∗
n is skew-symmetric.

M3 ‖M∗
n‖1→∞ ≤ C2.6 (i.e., the entries are of bounded size).

M4 ‖M∗
n‖1→2 = ‖M∗ᵀ

n ‖1→2 ≤ C2.6
√
n (i.e., the row and column L2-norms are

O(
√
n) in size).

M5 ‖M∗
n‖F/n ∈ [C−1

2.6,C2.6].4
M6 For fixed t ≥ 1 and n sufficiently large,

∑

�≥t
σ 2
n,� ≤ C2.6n

2/t .

M7 For 1 ≤ i, j, k ≤ n we have |(M∗
n ) j i − (M∗

n )ki | ≤ C2.6| j − k|/n for all
i /∈ [ j, k] ∪ [k, j].

We also have the following properties of A.

M8 (σn,�/n)1≤�≤t → (σ�)1≤�≤t as n →∞.
M9 For all t ≥ 1 we have that tσt ∈ [C−1

2.6,C2.6] (i.e., tσt is bounded above and
below by an absolute constant).

Proof Via a direct, albeit tedious computation, one has that if x = (n+1−2i)/(n−1)
and y = (n + 1− 2 j)/(n − 1) then

(M∗
n )i j = 1x≥y − 1x≤y

2
− 3(x − y)(1− 1/n)

4
− 3xy(x − y)(n − 1)2

4n(n + 1)
.

The properties M2 toM5 and M7 all follow immediately via direct inspection.
To prove M6, it suffices to show that there is a rank t + 4 (say) approximation of

M∗
n , call it Rt , such that ‖M∗

n − Rt‖2F � n2/t . This follows from considering a rank t
approximation for Mn and then plugging it into Definition 2.4. An appropriate rank t
approximation for Mn with square-error O(n2/t) can be formed by removing square

4 Here the Frobenius norm of matrix M ∈ R
n×n is ‖M‖F :=

√∑
1≤ j,k≤n M2

jk .
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matrices of 1s from the right isosceles triangle above the main diagonal of Mn in a
dyadic fashion.

To prove the convergence given in M8, we proceed by an argument identifying
matrices with operators in L2([−1, 1]) via step functions. In particular, consider the
matrices M∗

n and identify them with the kernels

M (∗)
n (x, y) = nM∗

n (�n(1− x)/2�, �n(1− y)/2�)
2

and note that the action of M∗
n on R

n corresponds exactly to the action of kernel

M (∗)
n (x, y) on step functions where the index i ∈ [n] has been mapped to the interval

[1− 2i/n, 1 − 2(i − 1)/n). These have the same spectrum: the multiplicative factor
of n/2 corresponds to fact that the step function which is 1 on a single length 2/n
interval has norm (2/n)1/2 in the continuous formulation while it has norm 1 when
viewed as a vector in R

n .
In general, given a kernel K : [−1, 1]2 → R one can define the integral operator

K̃ : g(x) →
∫ 1

−1
K (x, y)g(y)dy

and we have ‖K̃‖L2([−1,1])→L2([−1,1]) ≤ ‖K‖L2([−1,1]2) by Cauchy–Schwarz (see
e.g. [13, Example 9.23]). Via this identification, we have the strong convergence

M (∗)
n (x, y)/n → ˜M (∗) := A, where the corresponding kernel is

f (x, y) = 1x≥y − 1x≤y

4
− 3(x − y)(1+ xy)

8
.

Given this, since A, M (∗)
n , M∗

n are skew-symmetric (hence normal) operators, it is
easy to see that the normalized eigenvalues of M∗

n converge to those specified by
Definition 1.3 (as strong convergence implies convergence of the spectrum). This
proves M8.

Finallywe proveM9. In order to proveM9, we first note thatA is a skew-symmetric
perturbation of the integral operator associated to the function g(x, y) = 1x≥y−1x≤y

4 ,
with the rank of the perturbation bounded by 2. We claim that it suffices to prove that
the t-th singular value of g̃ scales as (1/t). Indeed, apply the generalized Weyl’s
inequality to the Hermitian operator g̃†g̃ using that A†A is a bounded rank perturba-
tion.

To compute the spectrum of g̃ (and thus that of g̃†g̃), note that the matrix given
by (Tn)i j = 1i≥ j − 1i≤ j has characteristic polynomial (−1)n((λ+1)n+(λ−1)n)

2 ; this is
easily proven via row operations and induction. It follows that the eigenvalues of Tn
are (1+ exp(π i(2 j − 1)/n))/(1− exp(π i(2 j − 1)/n)) for 1 ≤ j ≤ n. Thus the j th
largest eigenvalue in magnitude scales as (n/ j). The desired result then follows by
rescaling and taking n →∞. �
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3 Outline of the remainder of the proof

We now outline the remainder of the proofs of Theorems 1.4 and 1.8 in the multiset
model; the balanced sequencemodel is very similar modulo adjusting various constant
factors arising due to Var[Geom(1/2)] = 2Var[Pois(1)] = 2. We also discuss the var-
ious deductions which follow from Theorem 1.4. Consider a set ofm dice A1, . . . , Am

and let ãk = (̃akj )1≤ j≤n be the n-dimensional vector corresponding to the frequency
counts of Ak for 1 ≤ k ≤ m.

3.1 Theorem 1.4 and its consequences

By Lemma 2.5 we have that A j beats Ak if an only if x̃ᵀ
k M

∗
n x̃ j > 0. Note that the

constraints that x̃ j satisfy are precisely (1, . . . , 1)ᵀ x̃ j = n and (1, 2, . . . , n)ᵀ x̃ j =
n(n+1)/2 (equivalently, x̃ j −�1 is orthogonal to �v1, �v2). By construction we have that
M∗

n
�1 = �0 and M∗

n (1, 2 . . . , n) = �0. Therefore for the sake of reasoning heuristically,
we can pretend that the conditioning in Lemma 2.2 does not affect the probability dis-
tribution of x̃ᵀ

k M
∗
n x̃ j and instead suppose that x̃� are replaced by X�, n-dimensional

vectors where every entry is taken independently at random to be Geom(1/2). Now
Xᵀ
k M

∗
n X j is a bilinear polynomial of independent random variables. Tools such as the

invariance principle of Mossel et al. [19] imply that the associated distribution is close
to the distribution in the case where X� are replaced by Z�, where each entry of Z� is
an independent normal of variance Var[Geom(1/2)] = 2. Given this, we can convert
to a Gaussian quadratic form. This is invariant under orthogonal transformation, so a
singular value decomposition for the skew-symmetric matrix M∗

n and an appropriate
variant of the spectral theorem quickly leads to the distribution in Theorem 1.4. In par-
ticular, the coefficients associated in Theorem 1.4 arise precisely from an application
of Lemma 2.6.

In order to prove this heuristic, we need to precisely understand the joint distribution
of (1, . . . , 1)ᵀX j , (1, 2, . . . , n)ᵀX j , and the desired quadratic forms. We proceed
using Fourier transform (characteristic function) and computing the multidimensional
Fourier coefficients of the joint distribution of the quadratic forms conditional on these
linear equalities. This conditional expectation can be recast using Bayes’ theorem and
converted to an expression involving joint coefficients involving both quadratic and
linear forms, which we can provide control for using the techniques in Sect. 5. Our
proof here is closely related to that of that in thework of Polymath [22] which similarly
used local central limit theorem techniques to decouple various linear conditions;
however the implementation is performed in a rather different manner.

We write this more explicitly. For the sake of this discussion, let E denote the
event that all that the m samples X� for 1 ≤ � ≤ m satisfy (1, . . . , 1)ᵀX j =
n, (1, 2, . . . , n)ᵀX j = n(n + 1)/2. We then must compute

E

⎡

⎣exp

⎛

⎝i
∑

1≤ j<k≤m
θ jk X

ᵀ
k M

∗
n X j

⎞

⎠
∣
∣
∣E

⎤

⎦
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for all choices of θ = (θ jk)1≤ j<k≤m , where ‖θ‖∞ is roughly Õ(1/n).
Via applying Bayes’ rule, this amounts to computing

E

⎡

⎣exp

⎛

⎝i
∑

1≤ j<k≤m
θ jk X

ᵀ
k M

∗
n X j

⎞

⎠1E

⎤

⎦ ,

since then considering θ = 0 gives an estimate for E[1E ] = P[E] and we can divide
to obtain the conditional expectation. At this juncture, much as in the work of Poly-
math [22], we rely on the Fourier inversion formula to convert the indicator 1E into
an explicit integral formula in terms of additional Fourier terms involving the above
linear forms. (Note that this conversion is only available to us in the multiset model
due to the key lemma Lemma 2.2, and even in the balanced sequence model we utilize
the setup of Lemma 2.2 to prove Theorem 1.4.)

In particular, by applying Fourier inversion on the lattices we will find

E

⎡

⎣exp

⎛

⎝i
∑

1≤ j<k≤m
θ jk X

ᵀ
k M

∗
n X j

⎞

⎠1E

⎤

⎦

= (2π)−2m
∫

[−π,π ]2m
E

⎡

⎣exp

⎛

⎝i
∑

1≤ j<k≤m
θ jk X

ᵀ
k M

∗
n X j

⎞

⎠

× exp

⎛

⎝i

⎛

⎝
m∑

j=1

ξ1 j

(
n∑

r=1

(X jr − 1)

)

+ ξ2 j

(
n∑

r=1

r(X jr − 1)

)⎞

⎠

⎞

⎠

⎤

⎦ d�ξ .

In order to prove the desired result, we split the integral into several regions. If any
|ξ1 j | ≥ n−1/2(log n)7 or |ξ2 j | ≥ n−3/2(log n)6, we prove that the corresponding term
in the integral is super-polynomially small using Lemmas 5.6–5.8. Specifically, we
condition on everything outside of the index r , and then the corresponding Fourier
integral is simply a product of independent terms handled by these lemmas. To prove
these lemmas, we extract cancellation in a systematic and cleanmanner by considering
pairs and triplets of indices and performing “switches” between then in order to extract
Boolean randomness. These switches allow for one to provide sufficient conditions
on various coefficient sequences to be good enough to perform these arguments, and
said conditions exist purely in “physical space” (whereas the approach taken in the
work of Polymath [22] naturally leads one to consider how various coefficients are
distributed with respect to angles on the torus). Finally, in the region where |ξ1 j | ≤
n−1/2(log n)7 and |ξ2 j | ≤ n−3/2(log n)6 we apply a Lindeberg exchange argument
(see [16], and also the related proof of the invariance principle [19]) to replace the
geometric random variables with Gaussians of the same variance. Using the rapid
decay of Fourier coefficients the Gaussian and Gaussian rotational symmetry one
can verify the Fourier coefficient matches that of the associated Gaussian prediction
and thus the desired result follows via Lévy continuity and similar techniques which
convert Fourier control back to physical space control.
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In order to prove Corollary 1.5, we directly cite Theorem 1.4 and uses symmetries
of the Gaussian distribution under negation to derive the necessary result. For Corol-
lary 1.7, note that convergence to a tournamenton follows from general machinery
since we have the convergence of each digraph. To deduce that the associated tourna-
menton is {0, 1}-valued we reduce to proving a random tournament on M dice takes
on outcomes within a specific set of complete tournaments of size 2εM2

with proba-
bility at least 1− ε. This is shown using Theorem 1.4: note that we can simulate the
limiting tournament on M vertices by sampling the Gaussians G( j)

� for 1 ≤ j ≤ M
and � ≥ 1 and computing the various Hjk and checking their signs. By revealing for

each j the first 2M1/2 Gaussians Z ( j)
� within a rounding error of M−10, this provides

at most exp(O(M3/2 logM)) buckets where almost all the probability mass lies and
also allows us with good probability to determine the outcome of almost all match-ups
in the tournament (this deduction requires Gaussian anticoncentration results such as
Theorem 4.3 in order to see that it is unlikely that many match-ups are “too close to
call” due to the rounding error). Then revealing the outcomes of the remaining match-
ups introduces exp(o(M2)) total buckets that contain almost all the probability mass,
and which uniquely determine the outcome of the M-die tournament.

Given the non-quasirandomness of the associated tournament from Corollary 1.7
and the underlying symmetries in Corollary 1.5 it also follows from a simple Cauchy–
Schwarz argument that the limiting probability A beats B, B beats C , C beats D, and
D beats A is strictly larger than 1/16 (see Proposition 8.2). Finally, we note that via
carefully choosing various Gaussians Z ( j)

� to lie in certain ranges one can prove that
the limiting probability of any fixed M-die tournament occurring is strictly positive
(see Proposition 8.3). This allows one to quickly deduce a number of prior results as
discussed in the introduction.

3.2 Proof of Theorem 1.8

To compute the probability that two dice tie, proceed via a more delicate route. As
discussed in the remark following Theorem 1.8, one can see this as a (special case of
a) local limit theorem version of Theorem 1.4 with two dice.

We use ideas closely related to those in the proof of Theorem 1.4, as well as addi-
tional Fourier coefficient estimates (Lemmas 5.4, 5.5) which use the extra condition
that certain associated coefficient sequences “resemble a simple random walk at all
scales” in a coarse sense. It follows that for almost all outcomes of die A1, the proba-
bility a random die A2 with frequency counts x̃2 ties A1 is proportional to ‖M∗

n �x2‖−1
2 .

(We note that such a result for the balanced sequence model is essentially implicit in
the work of Polymath [22] although not stated in such a manner; however, again, our
work proceeds through frequency counts instead of using independent die faces which
are not available for the multiset model.)

Therefore the natural approach at this point would be to prove a limit theorem for
‖M∗

n X‖22, where X is a sequence of geometric random variables conditional on the
two linear constraints (1, . . . , 1)ᵀX = n, (1, 2, . . . , n)ᵀX = n(n + 1)/2. While this
appears to be possible note that ‖M∗

n �x‖22 is a genuinely quadratic polynomial in the
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underlying random variables (instead of being multilinear in the case of Theorem 1.4)
and hence for a direct approach various tools developed by Berkowitz [4], developed
in the context of local central limit theorems for clique counts in dense random graphs,
would appear to be necessary, which would greatly complicate the situation.

To circumvent this, we proceed indirectly so as to only require linear Fourier esti-
mates. The basic idea is that given a sufficiently good upper bound on ‖M∗

n X‖3
(conditional on our two linear constraints), by sampling a fixed number of random
coordinates j1, . . . , jT for some large constant T we have

‖M∗
n X‖22 ≈

n

T

∑T

�=1

〈e j� , M∗
n X〉2

holds with high probability as T → ∞. Therefore the question can be reduced to a
question of understanding the linear statistics (〈e j� , M∗

n X〉)1≤�≤T jointly conditional
on our two linear constraints. This can be handled by precisely the techniques devel-
oped we discussed in Sect. 3.1 for Theorem 1.4. The estimates are necessarily a bit
delicate since the function y �→ 1/y is not bounded near 0 and thus care must be
taken to rule out the pathological cases where ‖M∗

n X‖2 is small with unusually large
probability.

4 Preliminaries

We briefly collect a series of preliminaries which will be used throughout the proof.
First we will require a version of the classical Bernstein inequality, which generalizes
Chernoff.

Theorem 4.1 ([26, Theorem 2.8.1]) For a random variable X define the ψ1-norm

‖X‖ψ1 = inf{t > 0 : E[exp(|X |/t)] ≤ 2}.

There is an absolute constant c = c4.1 > 0 such that the following holds. If
X1, . . . , XN are independent random variables then

P

[∣
∣
∣
∣
∣

N∑

i=1

Xi

∣
∣
∣
∣
∣
≥ t

]

≤ 2 exp

(

−cmin

(
t2

∑N
i=1‖Xi‖2ψ1

,
t

maxi‖Xi‖ψ1

))

for all t ≥ 0.

Next we will require the Azuma–Hoeffding inequality (see [15, Theorem 2.25]).

Lemma 4.2 (Azuma–Hoeffding inequality)Let X0, . . . , Xn formamartingale sequence
such that |Xk − Xk−1| ≤ ck almost surely. Then

P[|X0 − Xn| ≥ t] ≤ 2 exp

(

− t2

2
∑n

k=1 c
2
k

)
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Remark We will refer to
∑n

k=1 c
2
k as the variance proxy in such a situation.

Furthermore we will require the Carbery–Wright theorem [5] for which prove
that low-degree functions of Gaussians are anticoncentrated; we will only require the
quadratic case.

Theorem 4.3 (see e.g. [17, Theorem 1.4]) Fix an integer d ≥ 1. There exists a con-
stant Cd such that the following holds. For any ε > 0, if (Gi )1≤i≤n are independent
Gaussian random variables, and P is a polynomial of degree at most d then

sup
t∈R

P
[|P(G1, . . . ,Gn) − t | ≤ ε

√
Var(P(G1, . . . ,Gn))

] ≤ Cdε
1/d .

Wewill also require the invariance principle ofMossel et al. [19]. The version stated
in Theorem 4.5 below is a stated as [20, (11.66)] (with the necessary hypercontractivity
following from [19, Proposition 3.16]).

Definition 4.4 Given a multilinear polynomial g(x1, . . . , xn) = ∑
S⊆[n] aS

∏
i∈S xi ,

for t = 1, . . . , n the influence of the variable xt is defined as

Inf t [g] =
∑

S⊆[n]
S�t

a2S .

Theorem 4.5 Fix M ≥ 1; there exists M ′ > 0 such that the following holds. Let
g be an n-variable multilinear polynomial of degree at most k. Let �y be a vector
of i.i.d. random variables such that E[yi ] = 0, E[y2i ] = 1 and E[|yi |3] ≤ M. Let
�z ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random variables.
Then for any three-times-differentiable function ψ : R → R, we have

∣
∣
∣E[ψ(g(�y)) − ψ(g(�z))]

∣
∣
∣ ≤ (M ′)k · ‖ψ(3)‖∞

n∑

t=1

Inf t [g]3/2.

Next, we will require the following concentration inequality for low-degree poly-
nomials of Gaussian; the Rademacher case is stated as [20, Theorem 9.23] and the
Gaussian case follows by taking limits via and applying the central limit theorem.

Theorem 4.6 Let f be a polynomial in n variables of degree at most d. Let �x =
(x1, . . . , xn) be a vector of independent standard Gaussian random variables. Then
for any t ≥ (2e)d/2,

P

[
| f (�x)| ≥ t(E[ f (�x)2])1/2

]
≤ exp

(

− d

2e
t2/d

)

.

We also require a statement allowing one to quantify the convergence in distribution
of a random variable given convergence of the associated Fourier transform. The
following result is immediate from [21, p. 104, Theorem 1]; this is an essentially
standard inequality used in the proof of the Berry–Esseen theorem.
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Theorem 4.7 There exists an absolute constant C = C4.7 > 0 such that the following
statement holds. Consider a pair of random variables X and Y and a parameter T > 0.
We have that

sup
τ∈R

|P[X ≤ τ ] − P[Y ≤ τ ]| ≤ C4.7
(∫ T

−T

|E[exp(i t X) − exp(i tY )]|
|t | dt + sup

τ∈R
P[|Y − τ | ≤ 1/T ]

)

.

Next we will require a multidimensional version of Esséen’s concentration inequal-
ity.

Theorem 4.8 ([24, Lemma 7.17]) There exists an absolute constant C = C4.8 > 0
such that the following statement holds. Given a random variable X in R

d , we have
that

sup
τ∈Rd

P[‖X − τ‖2 ≤ ε] ≤
(
C4.8ε√

d

)d ∫

�ξ∈Rd

‖�ξ‖2≤d/ε

|E[exp(2π i �ξ · X)]|d�ξ .

Finally we will require the following consequence of Fourier inversion on lattices.

Theorem 4.9 Given a bounded random variables T ∈ Z
d and X ∈ R, possibly

dependent, we have

E[1T=�t X ] = (2π)−d
∫

[−π,π ]d
exp(−i�t · �ξ)E[X exp(i �ξ · T )]d�ξ .

5 Fourier coefficient bounds

5.1 Coefficient sequence

For the purposes of proving various central limit theorem and local central limit the-
orems, we will consider sums

n∑

j=1

c j ã j

with coefficient sequences (c j )1≤ j≤n which are more general than those arising from
(∑

1≤k< j b̃k + b̃ j
2 − ( j −1/2)

)
1≤ j≤n , which comes out of Lemma 2.3. The following

definitions for such sequences arises from the proof; roughly, a sequence is well-
bounded if it does not deviate much more than a simple random walk would, and it is
coarse if it further resembles such a simple random walk at some finer scales.

Definition 5.1 We say a coefficient sequence (c j )1≤ j≤n iswell-bounded if the follow-
ing conditions hold:
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S1 |c j | ≤ √
n log n;

S2
∑n

j=1 c j = 0;

S3 |c j − ck | ≤ √| j − k|(log n)2 for all 1 ≤ j, k ≤ n;

and we say it is coarse if it is well-bounded and additionally the following hold:

S4 mina,b∈R
∑n

j=1(c j − aj − b)2 ≥ n2/(log n)2;
S5 There are at least n/ log n indices j such that c j = c j+1 = c j+2 − 1/2;
S6 For each integer y ∈ [n1/4, n/(log n)2] there are at least n/ log n indices 1 ≤ j ≤

n − 2y such that |c j − 2c j+y + c j+2y | ≥ √
y.

5.2 Fourier estimates

We now bound various Fourier expressions that will serve as a key input to our argu-
ment. We first define the basic setup.

Definition 5.2 Let � be a distribution which is either Geom(1/2) or Pois(1). Sample
X j ∼ � independently for 1 ≤ j ≤ n and fix a sequence (c j )1≤ j≤n . Define the
random variables

T1 =
n∑

j=1

X j − n, T2 =
n∑

j=1

j X j − n(n + 1)

2
, T3 = 2

n∑

j=1

c j X j .

Wewill be interested in Fourier coefficients of the formE exp(i �·(T1, T2, T3)). Our
approach in general will be to reduce to essentially expressions involving Rademacher
random variables and then to apply various basic bounds to conclude. (Note that we
are not conditioning on the sum variable T1 or “area” variable T2 at this stage.)

Fact 5.3 Given R ∼ Ber(1/2), R ∼ Geom(1/2), or R ∼ Pois(1)and real || ≤ 3π/2
we have

|E exp(i R)| ≤ exp(−c5.32)

for some appropriate absolute constant c5.3 > 0.

Proof This follows immediately from the explicit computation that

|E exp(iR)| =

⎧
⎪⎨

⎪⎩

| cos(/2)|, if R ∼ Ber(1/2),

|2− exp(i)|−1, if R ∼ Geom(1/2),

exp(cos()− 1), if R ∼ Pois(1)

and some simple bounds based on Taylor series. �
We first handle � where |3| is large, since it is the most involved and serves as a

basis for the other proofs. The key idea, which will be used to handle all the estimates
present, is to extract independent random variables which isolate the effect of exactly
one of the  j .
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Lemma 5.4 Suppose that � = (1,2,3) is such that n−1/2(log n)2 ≤ |3| ≤ π .
Then given Definition 5.2 and that (c j )1≤ j≤n is coarse, we have

|E exp(i � · (T1, T2, T3))| ≤ n−ω(1).

Remark This estimate, as well as Lemma 5.5, is only needed to establish Theorem 1.8.

Proof Since the coefficient sequence (c j )1≤ j≤n is coarse, using S5 there exists a 4-
separated set of indices J (i.e., the difference of distinct elements is at least 4) such
that |J | = 
(n/ log n) and such that for j ∈ J we have c j = c j+1 = c j+2− 1/2. We
now claim that

(X1, X2, X3)
d.= (1−W )Z +W ((1− R)(0, 2, 0) + R(1, 0, 1)), (5.1)

where R, W , and Z are independent random variables defined via R = Ber(1/2),

W = Ber
(
min{P[(X1, X2, X3) = (0, 2, 0)], P[(X1, X2, X3) = (1, 0, 1)]}),

P[Z = (k1, k2, k3)] = 1

E[1−W ]
·
(

P[(X1, X2, X3) = (k1, k2, k3)] − 1

2
1(k1,k2,k3)∈{(0,2,0),(1,0,1)}EW

)

for (k1, k2, k3) ∈ Z
3≥0. Indeed, to see this let 2q = min{P[(X1, X2, X3) =

(0, 2, 0)], P[(X1, X2, X3) = (1, 0, 1)]} and consider the following procedure: sample
(X1, X2, X3), but if either of the tuples (x1, x2, x3) ∈ {(0, 2, 0), (1, 0, 1)} is drawn
then with probability q/P[(X1, X2, X3) = (x1, x2, x3)] enter a “resampling phase”
where we decide with probability 1/2 whether to output (0, 2, 0) or (1, 0, 1), overwrit-
ing the old value to produce a tuple (X ′

1, X
′
2, X

′
3). (So, the “resampling phase” occurs

with chance 2q by the law of total probability.) We see the distributional equality

(X ′
1, X

′
2, X

′
3)

d.= (X1, X2, X3) by construction, but (X ′
1, X

′
2, X

′
3) is easily seen to be

captured by the formula (5.1).
Note (5.1) holds even if we shift indices. Furthermore as the indices in J are 4-

separated we have the distributional equality

((X j , X j+1, X j+2)) j∈J
d.= ((1−Wj )Z j +Wj ((0, 2, 0) + R j (1,−2, 1))) j∈J .

Notice by the triangle inequality and independence that

|E exp(i � · (T1, T2, T3))|

≤
∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,1,2}

(
1 +2 j + 23c j

)
X j

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ EW

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,1,2}

(
1 + 2 j + 23c j

)
X j

⎞

⎠
∣
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦
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≤ EW

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝−i
∑

j∈J
1Wj=13R j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣exp

⎛

⎝−
(2
3)

∑

j∈J
1Wj=1

⎞

⎠

⎤

⎦

≤ n−ω(1).

The first and second lines follow from independence and the triangle inequality, the
third follows from

(1, 1, 1) · (1,−2, 1) = 0, ( j, j + 1, j + 2) · (1,−2, 1)) = 0,

(c j , c j+1, c j+2) · (1,−2, 1) = −1/2,

and the fourth follows from Fact 5.3. In the final line we have used independence
and Bernstein’s inequality, which implies that #{ j ∈ J : Wj = 1} = ∑

j∈J 1Wj=1 ≤
cn/ log n occurs with super-polynomially small probability for some small absolute
constant c > 0. �

We next handle the case of intermediate |3|. The remaining unhandled range will
be in some sense controllable by an appropriate central limit theorem.

Lemma 5.5 Suppose that � = (1,2,3) is such that n−1(log n)3 ≤ |3| ≤
n−1/2(log n)2. Then given Definition 5.2 and that (c j )1≤ j≤n is coarse, we have

|E exp(i � · (T1, T2, T3))| ≤ n−ω(1).

Proof Let y ∈ [n1/4, n/(log n)2] be an integer to be chosen later based on n, |3|.
Since (c j )1≤ j≤n is a coarse sequence, by S6 there exists a set of indices J of size

(n/ log n) such that the sets J , J + y, J + 2y are disjoint and for each j ∈ J we
have

√
y ≤ |c j −2c j+y + c j+2y | ≤ 2

√
y(log n)2 (the second inequality follows from

two applications of S3). Therefore proceeding in an essentially identical manner to
Lemma 5.4 (in particular writing (X j , X j+y, X j+2y) = (1−Wj )Z j +Wj ((0, 2, 0)+
R j (1,−2, 1)) for j ∈ J similar to the proof of the previous lemma), we have that

|E[exp(i � · (T1, T2, T3))]|

≤
∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,y,2y}

(
1 +2 j + 23c j

)
X j

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,1,2}

(
1 +2 j + 23c j

)
X j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J
1Wj=13R j (c j − 2c j+y + c j+2y)

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦
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≤ E

⎡

⎣exp

⎛

⎝−
(2
3y)

∑

j∈J
1Wj=1

⎞

⎠

⎤

⎦

≤ n−ω(1).

The reasoning is essentially identical to that in the proof of Lemma 5.4. We need that
|3(c j − 2c j+y + c j+2y)| ≤ √

y(log n)2|3| ≤ 3π/2 in order to apply Fact 5.3. If
we additionally have that 2

3y · n/(log n) ≥ (log n)2, then using |J | = 
(n/ log n)

we can conclude the final estimate in a similar manner to the proof of Lemma 5.4.
Thus it suffices to choose an integer y satisfying

(log n)3/(n2
3) ≤ y ≤ 1/((log n)42

3)

and y ∈ [n1/4, n/(log n)2]. This clearly exists by the given bounds for |3|. �
We now prove a similar estimate for the case where |2| is near the maximum

size. The proof is once again rather similar, but in this case we only need to consider
consecutive pairs of indices ( j, j + 1) in order to extract the necessary effect.

Lemma 5.6 Suppose that � = (1,2,3) is such that n−1/2 log n ≤ |2| ≤ π ,
|3| ≤ n−1(log n)3 and (c j )1≤ j≤n satisfies S1 and S3. Then given Definition 5.2, we
have

|E exp(i � · (T1, T2, T3))| ≤ n−ω(1).

Remark Lemmas 5.6–5.8 are needed for both Theorems 1.4 and 1.8. Note that these
lemmas do not need an assumption on coarseness of (c j )1≤ j≤n .

Proof Since the coefficient sequence (c j )1≤ j≤n satisfies S3 we have |c j − c j+1| ≤
(log n)2. Let J ⊆ [n] be a 2-separated set of indices of size 
(n). Furthermore note

that (X1, X2)
d.= (1−W )Z +W ((1, 0)+ R(−1, 1)), where R,W , Z are independent

random variables with R = Ber(1/2), W = Ber(P[(X1, X2) = (1, 0)]), and

P[Z = (k1, k2)]
= 1

E[1−W ] ·
(

P[(X1, X2, X3) = (k1, k2)] − 1

2
1(k1,k2)∈{(0,1),(1,0)}EW

)

for (k1, k2) ∈ Z
2≥0, similar to as in the proof of Lemma 5.4.
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Now for each index in J , we write (X j , X j+1) = (1 − Wj )Z j + Wj ((1, 0) +
R j (−1, 1)). Notice by the triangle inequality and independence that

|E exp(i � · (T1, T2, T3))|

≤
∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,1}

(
1 +2 j + 23c j

)
X j

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J+{0,1}

(
1 + 2 j + 23c j

)
X j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J
1Wj=1(2 + 2(c j+1 − c j )3)R j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣exp

⎛

⎝−
(2
2)

∑

j∈J
1Wj=1

⎞

⎠

⎤

⎦

≤ n−ω(1).

The first and second line follows from triangle inequality, the third follows from
(1, 1) · (−1, 1) = 0, ( j, j + 1) · (−1, 1) = 1, and (c j , c j+1) · (−1, 1) = c j+1− c j for
j ∈ J , and the fourth from Fact 5.3 as well as 2|c j+1 − c j ||3| ≤ 2n−1(log n)5 ≤
|2|/2. In the final line we have once again used Bernstein’s inequality. �

We next handle intermediate |2|. In the remaining range central limit theorem
type estimates become effective.

Lemma 5.7 Suppose that � = (1,2,3) is such that n−3/2(log n)6 ≤ |2| ≤
n−1/2 log n, |3| ≤ n−1(log n)3 and (c j )1≤ j≤n satisfies S1 and S3. Then given Defi-
nition 5.2, we have

|E exp(i � · (T1, T2, T3))| ≤ n−ω(1).

Proof Let 1 ≤ y ≤ n/8 be an integer to be chosen later based on n, |2|. Consider
J = {�n/2� − 2y, �n/2� − 2y + 1, . . . , �n/2� − y}. We have

|3||c j − cn− j | � √
y(log n)5/n, 2y|2| ≤ |2||n − 2 j | ≤ 4y|2|

for all j ∈ J . We ensure that y is chosen so that
√
y(log n)5/n ≤ cy|2| for an

appropriately small absolute constant c > 0 and so that y|2| ≤ 1/8 as well. We also
guarantee y ≥ (log n)2.
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We now write (X j , Xn− j ) = (1−Wj )Z j +Wj ((1, 0)+ R j (−1, 1)) for j ∈ J in
a similar manner to the proof of Lemma 5.6, and find

|E exp(i � · (T1, T2, T3))| ≤
∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J∪(n−J )

(
1 +2 j + 23c j

)
X j

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J∪(n−J )

(
1 +2 j + 23c j

)
X j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
∑

j∈J
1Wj=1((n − 2 j)2 + 2(cn− j − c j )3)R j

⎞

⎠
∣
∣
∣(Wj ) j∈J

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣exp

⎛

⎝−
(y22
2)

∑

j∈J
1Wj=1

⎞

⎠

⎤

⎦

≤ n−ω(1).

We used that (n−2 j)2 dominates 2(cn− j − c j )3 in the second last line, as well as
2|(n− 2 j)2| ≤ 1 to apply Fact 5.3. For the last line, we note that

∑
j∈J 1Wj=1 � y

occurs with super-polynomially small probability (since y ≥ (log n)2) and we are
using the estimate y32

2 ≥ (log n)2.
To finish the proof, we check that it is possible to choose integer 1 ≤ y ≤ n/8

with y ≥ (log n)2/3|2|−2/3 and y ≥ (log n)2 as well as y ≤ |2|−1/8 and y ≥
c−2(log n)10/(n22

2). The bounds on |2| easily imply this is possible. �
Wenoware finally in position to handle the caseswhere |1| is large. The remaining

region will be handled by central limit theorem style techniques.

Lemma 5.8 Suppose that � = (1,2,3) is such that n−1/2(log n)7 ≤ |1| ≤
5π/4, |2| ≤ n−3/2(log n)6, and |3| ≤ n−1(log n)3 and (c j )1≤ j≤n satisfies S1 and
S3. Then given Definition 5.2, we have

|E exp(i � · (T1, T2, T3))| ≤ n−ω(1).

Proof Note that |2|n + |3|max1≤ j≤n |c j | ≤ 2(log n)6n−1/2. Therefore we have

|E[exp( � · (T1, T2, T3))]| =
∣
∣
∣
∣
∣
∣
E

⎡

⎣exp

⎛

⎝i
n∑

j=1

(
1 + 2 j + 23c j

)
X j

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ exp(−
(n2
1)) ≤ n−ω(1),

where we have simply noted that 1 dominates 2 j + 23c j and applied Fact 5.3. �
We now prove the desired estimate for the region which is approximately within the

region which is controlled via a central limit theorem. For completeness we provide
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a short proof via an argument closely related to the Lindeberg exchange method [16]
and the proof of the Gaussian invariance principle [19] (see Theorem 4.5). This will
help us reduce computing the necessary integrals to a purely Gaussian integration
problem.

Lemma 5.9 Suppose that � = (1,2,3) is such that |1| ≤ n−1/2(log n)7,
|2| ≤ n−3/2(log n)6, |3| ≤ n−1(log n)3, and (c j )1≤ j≤n satisfies S1 and S2. Given
Definition 5.2, we further define

T ′
1 =

n∑

j=1

X ′
j , T ′

2 =
n∑

j=1

j X ′
j , T ′

3 = 2
n∑

j=1

c j X
′
j ,

where we independently sample X ′
j ∼ N (0,Var[�]). Then we have

|E[exp(i � · (T1, T2, T3))] − E[exp(i � · (T ′
1, T

′
2, T

′
3))]| � n−1/2(log n)21.

Remark If � = Geom(1/2) then (E[�],Var[�]) = (1, 2), and if � = Pois(1) then
(E[�],Var[�]) = (1, 1).

Proof Notice that by iteratively replacing Xi by X ′
i and applying the triangle inequality

we have

|E exp(i � · (T1, T2, T3)) − E exp(i � · (T ′
1, T

′
2, T

′
3))|

≤
n∑

j=1

∣
∣
∣
∣

(

E exp(i � · (1, j, 2c j )(X j − 1)) − E exp
(
i � · (1, j, 2c j )X ′

j

))

×E exp

⎛

⎝i � ·
⎛

⎝
∑

1≤ j ′< j

(1, j ′, 2c j ′)X ′
j ′ +

∑

j< j ′≤n
(1, j ′, 2c j ′)(X j ′ − 1)

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣

≤
n∑

j=1

|E exp(i � · (1, j, 2c j )(X j − 1)) − E exp(i � · (1, j, 2c j )X ′
j )|

�
n∑

j=1

(|1| + n|2| + 2n1/2(log n)|3|)3E[|X j |3 + |X ′
j |3] � n−1/2(log n)21.

To justify the second-to-last inequality, we use that | exp(i x)− 1− i x + x2/2| ≤ |x |3
for x ∈ R from Taylor’s theorem and that the first and second moments of X j − 1 and
X ′

j match. �

6 Translating Fourier information

We now translate Fourier information into probabilistic information in order to prove
Theorem 1.4. We defer the proof of the following lemma, which shows that certain
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coefficient sequences that will arise in our computation are well-bounded with very
high probability, until the next section.

Lemma 6.1 Fix m and let 1 ≤ k∗ ≤ m. Consider  �= 0 and θ = (θ jk)1≤ j<k≤m with

‖θ‖∞ ≤ . Consider independent random variables X (k)
j ∼ � for 1 ≤ k ≤ m and

1 ≤ j ≤ n, where � ∈ {Geom(1/2),Pois(1)}. Finally, let

c(k∗)
j = 1

2

⎛

⎝
∑

k<k∗
θkk∗

⎛

⎝
n∑

j ′=1

(M∗
n ) j j ′

(
X (k)

j ′ − 1
)
⎞

⎠

+
∑

k>k∗
θk∗k

⎛

⎝
n∑

j ′=1

(M∗
n ) j ′ j

(
X (k)

j ′ − 1
)
⎞

⎠

⎞

⎠ .

Then with probability 1− n−ω(1) we have that (c(k∗)
j )1≤ j≤n is well-bounded (Defini-

tion 5.1).

Now we prove Theorem 1.4, which we recall for convenience.

Theorem 1.4 Fix m ≥ 2 and independently sample n-sided dice A1, . . . , Am , either
all from the multiset model or all from the balanced sequence model. Let G( j) for
1 ≤ j ≤ m be infinite vectors of standard Gaussians and for 1 ≤ j < k ≤ m let

Hjk =
∑

�≥1
σ�(G

( j)
2�−1G

(k)
2� − G( j)

2� G
(k)
2�−1).

Then for any digraph D on vertices [m],

lim
n→∞P[A j beats Ak for all jk ∈ E(D)] = P[Hjk > 0 for all jk ∈ E(D)].

Proof of Theorem 1.4 given Lemma 6.1 Sample k dice either all from themultisetmodel
or all from the balanced sequence model, A1, . . . , Am with A j = (a j1, . . . , a jn) ∈
[n]n . Let the frequency counts of die Ak be ãki = |{ j : akj = i}|. We are given the
tournament D on [k] and wish to understand the chance that Ai beats A j precisely
when i j is a directed edge. (Note that we may assume D is a full tournament since
partial tournaments clearly follow by summing appropriately.)

If we are in the multiset model let � = Geom(1/2) and if we are in the balanced
sequence model let� = Pois(1). Considerm independent copies of the setup in Defi-
nition 5.2 (ignoring the sequence c j and random variable T3), denoted by (X (k)

j )1≤ j≤n
and (T (k)

j )1≤ j≤2 for 1 ≤ k ≤ m, corresponding to the k-th die. Note that (̃aki )1≤i≤n
is distributed as (X (k)

j )1≤ j≤n conditional on T (k)
1 = T (k)

2 = 0 by Lemma 2.2.
Let

Yk1k2 := X (k2)ᵀM∗
n X

(k1) = (X (k2) −√
n�v1)ᵀM∗

n (X (k1) −√
n�v1)
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for 1 ≤ k1 < k2 ≤ m (recall �v1 from Definition 2.4), and for θ = (θk1k2)1≤k1<k2≤m
let

Y (θ) := exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2Yk1k2

⎞

⎠ .

By Theorem 4.9 with T := (T (k)
b )k∈[m],b∈[2] and indexing the coordinates of �ξ by

(ξkb)k∈[m],b∈[2], we have

E[1T=�0Y (θ)] = (2π)−2m
∫

[−π,π ]2m
E[Y (θ) exp(i �ξ · T )]d�ξ

= (2π)−2m
∫

[−π,π ]2m
E

⎡

⎣exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2Yk1k2 + i �ξ · T

⎞

⎠

⎤

⎦ d�ξ .

(6.1)

We fix some θ satisfying ‖θ‖∞ ≤ n−1(log n)3. Given this condition, we will now
estimate the integrand and show that it is very small unless ‖�ξ·1‖∞ = Õ(n−1/2) and
‖�ξ·2‖∞ = Õ(n−3/2).

We now collect terms so as to express the argument in the exponential as a linear
function of X (k∗) with coefficients depending on X (k) for k �= k∗. We see

∑

1≤k1<k2≤m
θk1k2Yk1k2 + �ξ · T

=
n∑

j=1

⎛

⎝
∑

k<k∗
θkk∗

⎛

⎝
n∑

j ′=1

(M∗
n ) j j ′

(
X (k)

j ′ − 1
)
⎞

⎠

+
∑

k>k∗
θk∗k

⎛

⎝
n∑

j ′=1

(M∗
n ) j ′ j

(
X (k)

j ′ − 1
)
⎞

⎠

⎞

⎠ X (k∗)
j + Ỹk∗

+ ξk∗,1

n∑

j=1

(
X (k∗)

j − 1
)
+ ξk∗,2

n∑

j=1

j
(
X (k∗)

j − 1
)

(6.2)

for some Ỹk∗ that depends only on (X (k))k �=k∗ . Consider  = (log n)3/n, and define

c(k∗)
j := 1

2

⎛

⎝
∑

k<k∗
θkk∗

⎛

⎝
n∑

j ′=1

(M∗
n ) j j ′

(
X (k)

j ′ − 1
)
⎞

⎠+
∑

k>k∗
θk∗k

⎛

⎝
n∑

j ′=1

(M∗
n ) j ′ j

(
X (k)

j ′ − 1
)
⎞

⎠

⎞

⎠
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for k∗ ∈ [m] and j ∈ [n]. We have

∣
∣
∣
∣
∣
∣
E exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2Yk1k2 + i �ξ · T

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣
E exp

⎛

⎝i

⎛

⎝

n∑

j=1

2c(k∗)
j X (k∗)

j + ξk∗,1

n∑

j=1

(X (k∗)
j − 1)

+ ξk∗,2

n∑

j=1

j(X (k∗)
j − 1) + Ỹk∗

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣
. (6.3)

Now we apply Lemmas 5.6–5.8 to gain control over ξ . In order to use these, we
need each (c(k∗)

j )1≤ j≤n for k∗ ∈ [m] to be a well-bounded coefficient sequence. By

Lemma 6.1, this occurs with probability 1− n−ω(1) over (X (k))k �=k∗ .
So ifn−1/2 log n ≤ |ξk∗2| ≤ π then byLemma5.6wehave that (6.3) is ofmagnitude

n−ω(1): condition on an outcome of (X (k))k �=k∗ for which c
(k∗)
j is well-bounded using

Lemma 6.1, and then apply Lemma 5.6.We are using that = n−1(log n)3. Similarly,
if n−3/2(log n)6 ≤ |ξk∗2| ≤ n−1/2 log n then byLemmas 5.7 and 6.1we see that (6.3) is
of magnitude n−ω(1). Finally, if |ξk∗2| ≤ n−3/2(log n)6 and n−1/2(log n)7 ≤ |ξk∗1| ≤
π then Lemmas 5.8 and 6.1 show (6.3) is of magnitude n−ω(1).

Combining these observations with (6.1) and (6.2) we see

E[1T=�0Y (θ)] = (2π)−2m
∫

[−τ1,τ1]m×[−τ2,τ2]m

E

⎡

⎣exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2Yk1k2 + i �ξ · T

⎞

⎠

⎤

⎦ d�ξ ± n−ω(1), (6.4)

where τ1 = n−1/2(log n)7 and τ2 = n−3/2(log n)6. Additionally, the product in the
region of integration is interpreted as corresponding to the choice of b ∈ {1, 2}, i.e.,
the region is defined by |ξk1| ≤ τ1 and |ξk2| ≤ τ2.

Recall also that we assumed ‖θ‖∞ ≤ n−1(log n)3. We can now use an approach
similar to the proof of Lemma 5.9 (or [16, 19]) to exchange the variables X (k)

j with

shifted Gaussians Z (k)
j + 1, where Z (k)

j ∼ N (0,Var[�]). Note that

∑

1≤k1<k2≤m
θk1k2Yk1k2 + �ξ · T =

∑

1≤k1<k2≤m
θk1k2

(
X (k2) −√

n�v1
)ᵀ

M∗
n (X (k1) −√

n�v1)

+
m∑

k=1

ξk1

n∑

j=1

(
X (k)

j − 1
)
+

m∑

k=1

ξk2

n∑

j=1

j(X (k)
j − 1).

(6.5)
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Now since X (k)
j − 1 are independent and mean 0, and have variance Var[�], we are

in position to apply Theorem 4.5. We first compute that the influences for the degree
2 multilinear polynomial corresponding to (6.5) are bounded by

O((‖M∗
n‖21→2 + ‖M∗ᵀ

n ‖21→2) · ‖θ‖2∞ + ‖ξ·1‖2∞ + n2‖ξ·2‖2∞) = O(n−1(log n)14)

using Lemma 2.6 (specifically, M4).
Let Z (k)

j ∼ N (0,Var[�]) be independent Gaussians and let

Z̃(�ξ) :=
∑

1≤k1<k2≤m
θk1k2 Z

(k2)ᵀM∗
n Z

(k1) +
m∑

k=1

ξk1

n∑

j=1

Z (k)
j +

m∑

k=1

ξk2

n∑

j=1

j Z (k)
j .

By Theorem 4.5 and (6.4) we have

E[1T=�0Y (θ)] = (2π)−2m
∫

[−τ1,τ1]m×[−τ2,τ2]m
E[exp(i Z̃(�ξ))]d�ξ

±O((τ1τ2)
mn−1/2(log n)21). (6.6)

Note that the latter two sums in Z̃ , which involve �ξ , only depend on Z (k) ·�v1 and Z (k) ·�v2
whereas the bilinear forms only depend on the projection of Z (k) to the orthogonal
complement of spanR{�v1, �v2} (by Definition 2.4). Therefore we see that the first sum
is independent from the latter two. This means that the integrand in (6.6) is the product
of some constant and some multivariate Gaussian characteristic function.

Now, if ‖ξ·1‖∞ ≥ τ1 or ‖ξ·2‖∞ ≥ τ2, then easily we find there is some k∗ ∈ [m]
with

n∑

j=1

(ξk∗1 + jξk∗2)
2 � (log n)12.

We therefore deduce that for such �ξ ,

|E[exp(i Z̃(�ξ))]| =
∣
∣
∣
∣
∣
∣
E exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2 Z

(k2)ᵀM∗
n Z

(k1)

⎞

⎠

∣
∣
∣
∣
∣
∣
· exp(−
((log n)12))

≤ n−ω(1).

Furthermore, since the integrand is proportional to the characteristic function of some
multivariate Gaussian, it is easy to see that the integral to infinity over such �ξ is still
n−ω(1) in size. So, from (6.6) we deduce

E[1T=�0Y (θ)] = (2π)−2m
∫

R2m
E[exp(i Z̃(�ξ))]d�ξ ± O((τ1τ2)

mn−1/2(log n)21)
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= E exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2 Z

(k2)ᵀM∗
n Z

(k1)

⎞

⎠

× (2π)−2m
∫

R2m
E exp

⎛

⎝i

⎛

⎝
m∑

k=1

ξk1

n∑

j=1

Z (k)
j +

m∑

k=1

ξk2

n∑

j=1

j Z (k)
j

⎞

⎠

⎞

⎠ d�ξ

± O((τ1τ2)
mn−1/2(log n)21).

Plugging in θ = �0 and dividing, and noting that the integral in the last line is order
((n−1/2 · n−3/2)m) (treating m as fixed), we deduce

E[Y (θ)|T = �0] = E exp

⎛

⎝i
∑

1≤k1<k2≤m
θk1k2 Z

(k2)ᵀM∗
n Z

(k1)

⎞

⎠

±O(n−1/2(log n)21+13m) (6.7)

for ‖θ‖∞ ≤ n−1(log n)3.
We wish to show

(
Y jk

nVar[�]
∣
∣
∣
∣T = 0

)

1≤ j<k≤m
d.→ (Hjk)1≤ j<k≤m

since Lemma 2.5 (and the facts �vᵀ
1 M

∗
n = 0 and M∗

n �v1 = 0) shows A j beats Ak

precisely when Y jk > 0. Now let G( j) and Hjk be as in Theorem 1.4. From (6.7) and
Lévy continuity, we see it is enough to show

(
Z (k)ᵀM∗

n Z
( j)

nVar[�]
)

1≤ j<k≤m
d.→ (Hjk)1≤ j<k≤m

as n → ∞. (Simple inspection of the proof shows that this would also imply the
second remark following Theorem 1.4.) Note that we may assume Var[�] = 1 since
Z ( j)

� ∼ N (0,Var[�]) and we are now in a scale-invariant situation with respect to �.
We are now purely in a setting of joint convergence of certain bilinear forms of

standardGaussianvectors. Thus, the problemwill ultimately reduce to limiting spectral
properties of the operators M∗

n . By a variant of the spectral theorem, since M∗
n is

skew-symmetric by Lemma 2.6 (M2), we can write M∗
n = Qn�nQ

ᵀ
n , where Qn is

orthogonal and �n consists of diagonal 2× 2 blocks of the form

[
0 −σn,�

σn,� 0

]

for � ∈ [�n/2�], and possibly a single 0 in the final diagonal entry if n is odd. By
orthogonal invariance of Gaussian vectors, applying the orthogonal matrix Qn , our
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distribution is the same as

(
G(k)ᵀ�nG( j)

n

)

1≤ j<k≤m
,

where G( j) are independent standard Gaussian vectors. We have

G(k)ᵀ�nG( j)

n
=

�n/2�∑

�=1

σn,�

n
(G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1). (6.8)

We have that for any constant t ≥ 1, (σn,�/n)1≤�≤t → (σ�)1≤�≤t as n → ∞ by
Lemma 2.6 (M8).

Now consider some fixed t ≥ 1 (which we will take to be growing slowly at the
end of this argument). Using

∑
�≥t (σn,t/n)2 = O(1/t) and Chebyshev’s inequality

we easily see that with probability 1− O(t−1/2), the sum in (6.8) over indices � ≥ t
contributes at most O(t−1/4). Furthermore, (σn,�/n)1≤�≤t → (σ�)1≤�≤t as n → ∞
by the above argument. Hence, we deduce that with probability at least 1−O(t−1/2),

(
G(k)ᵀ�nG( j)

n

)

1≤ j<k≤m

is within �∞ distance O(t−1/4) of a random vector which converges to

(
t∑

�=1

σ�

(
G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1

)
)

1≤ j<k≤m

in distribution. Finally, taking t → ∞ slowly gives the desired result, recalling from
the remark following Theorem 1.4 that almost surely the appropriate sums converge
as t → ∞. �

7 Properties of coefficient sequences

We next prove Lemma 6.1.

Proof of Lemma 6.1 By definition we have

n∑

j=1

(M∗
n ) j j ′ =

n∑

j=1

(M∗
n ) j ′ j = 0

hence
∑n

j=1 c
(k∗)
j = 0 immediately follows, establishing S2. Note also that c(k∗)

j is a
weighted sum of independent random variables X−1, where X ∼ �. SinceE[�] = 0
and� is either Poisson or geometric we easily see that it is a sum of independent mean
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0 random variables with bounded ‖X − 1‖ψ1 . Additionally, the coefficients of c
(k∗)
j

are of the form θkk∗(M∗
n ) j j ′/(2) and θk∗k(M∗

n ) j ′ j )/(2), which by definition and
Lemma 2.6 (M3) are bounded in magnitude.

Hence we can apply Bernstein’s inequality (Theorem 4.1) to obtain

P[|c(k∗)
j | ≥ t] ≤ 2 exp

(

−c4.1 min

(
t2

O(n)
,

t

O(1)

))

.

Choose t = √
n log n, which implies that the event |c(k∗)

j | ≥ √
n log n occurs with

probability at most exp(−
((log n)2)). Taking a union bound over n events for 1 ≤
j ≤ n, we obtain S1 with probability 1− n−ω(1).
Finally, S3 is similar. We wish to show |c j1 − c j2 | ≤

√| j1 − j2|(log n)2 for all
1 ≤ j1 < j2 ≤ n occurs with probability 1 − n−ω(1), as then a union bound will
finish the proof. To do this, we will exploit cancellations in (M∗

n ) j1 j ′ − (M∗
n ) j2 j ′ . In

particular, we have

c(k∗)
j1

− c(k∗)
j2

= 1

2

⎛

⎝
∑

k<k∗
θkk∗

⎛

⎝
n∑

j ′=1

(
(M∗

n ) j1 j ′ − (M∗
n ) j2 j ′

) (
X (k)

j ′ − 1
)
⎞

⎠

+
∑

k>k∗
θk∗k

⎛

⎝
n∑

j ′=1

(
(M∗

n ) j ′ j1 − (M∗
n ) j ′ j2

)
(X (k)

j ′ − 1)

⎞

⎠

⎞

⎠ .

By Lemma 2.6 (M7) we have that |(M∗
n ) j1 j ′ − (M∗

n ) j2 j ′ | = O(| j1− j2|/n) for all but
O(| j1 − j2|) values of j ′, for which the value is O(1). Since M∗

n is skew-symmetric
(M2), the same occurswhenwe transpose thematrix. Thereforewe can useBernstein’s
inequality (Theorem 4.1) again, this time deducing

P[|c(k∗)
j1

− c(k∗)
j2

| ≥ t] ≤ 2 exp

(

−c4.1 min

(
t2

O(| j1 − j2|) ,
t

O(1)

))

.

Taking t = √| j1 − j2|(log n)2 ≥ (log n)2 and taking a union bound, we deduce the
desired conclusion. �

We now prove that the coefficient sequence coming from Lemma 2.3 is typically
coarse. This will be used to prove Theorem 1.8 later. We note that the idea of breaking
into various intervals and extracting tuples of coefficients with the desired properties
also appears in the work of Polymath, in particular in [22, Lemma 5.10]; however
the proofs here are simpler as we require only a “physical space” condition on the
coefficients.

Lemma 7.1 Let � ∈ {Geom(1/2),Pois(1)}. Let X̃ j ∼ � for all 1 ≤ j ≤ n and then
condition on

∑n
j=1 X̃ j = n and

∑n
j=1 j X̃ j = n(n + 1)/2. If

c j =
∑

1≤k< j

X̃ j + X̃ j

2
− ( j − 1/2)
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then with probability 1− n−ω(1) the sequence (c j )1≤ j≤n is coarse (Definition 5.1).

Proof We will prove that everything but S2 occurs in the unconditioned independent
model with probability 1− n−ω(1). Then note that

P

⎡

⎣
n∑

j=1

X̃ j = n ∧
n∑

j=1

j X̃ j = n(n + 1)

2

⎤

⎦ � n−2

from Lemma 9.1 (which is proved only using results up to Sect. 5) or from the line
before (6.7) in the proof of Theorem 1.4.

Thus the failure probability of any property in the conditional model will be at most
equal to (n−ω(1))/(
(n−2)) = n−ω(1) by Bayes’ rule. So it suffices to consider the
independent model, noting that S2 follows from the conditions

∑n
j=1 X̃ j = n and

∑n
j=1 j X̃ j = n(n + 1)/2.
S1 and S3 are simple Bernstein inequality calculations, similar to the proof of

Lemma 6.1, and we omit the details. For S5, note that c j = c j+1 = c j+2 − 1/2
follows if X̃ j = X̃ j+1 = 0 and X̃ j+2 = 1. Let J be a 3-separated sequence of size

(n) and note that j ∈ J satisfies the condition required by S5with probability
(1).
Thus Bernstein’s inequality or Chernoff easily implies S5.

For S6, consider J which is all multiples of 4y in {1, . . . , n− 4y}, of size 
(n/y).
For each j ∈ J , the probability that |c j −2c j+y + c j+2y | ≥ √

y is seen to be 
(1) by
the central limit theorem, and this is independent over all j ∈ J . Thus by Bernstein or
Chernoff, with probability at least 1− exp(−
(n/y)) there are at least 
(n/y) many
j ∈ J satisfying the condition required by S6. We can repeat the argument for the
translations of J by {1, 2, . . . , y} and take a union bound, which yields 
(n) many
indices j with probability 1− n−ω(1) as desired.

Finally, we consider S4. We can mimic the proof of S6 above except with y =
�n/(log n)3/2� and still deduce that with probability 1 − n−ω(1), there are at least

(n) indices 1 ≤ j ≤ n − 2y with |c j − 2c j+y + c j+2y | ≥ √

y. We can pass to a
subset J of size 
(n) with the property that j − j ′ /∈ {±y,±2y} for all j, j ′ ∈ J . For
each j ∈ J we have

(c j − aj − b)2 + (c j+y − a( j + y) − b)2 + (c j+2y − a( j + 2y) − b)2

≥ 1

4
(c j − 2c j+y + c j+2y)

2

using the inequality x21 + x22 + x23 ≥ (x1 − 2x2 + x3)2/4. Hence we deduce

n∑

j=1

(c j − aj − b)2 � |J | · (√y)2/4 � ny ≥ n2/(log n)2

for all a, b ∈ R. The result follows. �
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8 Consequences of Theorem 1.4

We now derive the claimed symmetry facts from the statement of Theorem 1.4.

Proof of Corollary 1.5 For the first consequence, note that the Gaussian distribution
is negation invariant and therefore the result for reversing the edges at vertex u
follows by negating the Gaussian G(u) in Theorem 1.4. For the second conse-
quence, simple replace every die with its “complement”, i.e., we map (a1, . . . , an)
to (n + 1 − an, . . . , n + 1 − ai ). (In the limiting expression of Theorem 1.4, this
corresponds to switching G( j)

2�−1 and G( j)
2� for all 1 ≤ j ≤ m and � ≥ 1.) �

Now we turn to Corollary 1.7. We require the following lemma relating a tourna-
menton having image in the set {0, 1} to the distribution of its k-vertex subtournaments.
Recall that for tournamenton T , a T -random tournament on M vertices is obtained
by sampling M random points x1, . . . , xM from [0, 1] uniformly at random, and then
sampling a directed edge from xi to x j with probability T (xi , x j ) (and otherwise
putting one from x j to xi ) for all 1 ≤ i < j ≤ M .

Lemma 8.1 Fix a tournamenton T . Suppose that for every ε > 0, for all M sufficiently
large there is a set FM of M-vertex tournaments with |FM | ≤ 2εM2

such that a T -
random tournament on M vertices lies in FM with probability at least 1 − ε. Then
μ({(x, y) : T (x, y) /∈ {0, 1}}) = 0, where μ is the Lebesgue measure on [0, 1]2.

Proof Suppose that μ({(x, y) : T (x, y) /∈ {0, 1}}) > 0. Then there exists δ > 0 such
that

μ({(x, y) : T (x, y) ∈ [δ, 1− δ]}) ≥ δ. (8.1)

Sample an M-vertex T -random tournament, and define x1, . . . , xM as above. Let

XM = {(i, j) ∈ [M]2 : i < j and T (xi , x j ) ∈ [δ, 1− δ]}.

We have that E|XM | ≥ δ
(M
2

)
from (8.1) and thus by applying the Azuma–Hoeffding

inequality (Lemma 4.2) on the Doob martingale formed by revealing x1, . . . , xM in
order, we see that P[XM ≥ δM2/4] ≥ 1− δ for M sufficiently large as a function of
δ.

This means there is an event E occurring with probability at least 1 − δ over the
randomness of x1, . . . , xM such that conditional on E , the entropy of our T -random
tournament is at least H(Ber(δ)) · |XM | � δ2 M2.

But by initial assumption there is an eventF holdingwith probability 1−ε such that
the original M-vertex tournament is in FM . We see that the entropy of the T -random
tournament must be at most H(ε)+ log2 |FM |+ ε log2(2

M2
) � εM2. Taking ε much

smaller than δ2 and M sufficiently large, we obtain a contradiction. �

We now are in position to prove Corollary 1.7.
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Proof of Corollary 1.7 We first note that Tn converges to a limit tournamenton T since
Theorem 1.4 implies that for a fixed digraph D the associated densities converge. Thus
the result follows via convergence of subgraph densities implying convergence in cut
metric (see [9] where this theory is worked out in the case of directed graphs; the theory
for tournamentons follows as a direct consequence via say applying [25, Theorem 4.1]
which characterizes a directed graph limit being a tournamenton in terms of certain
subgraph counts vanishing).

The more difficult part of Corollary 1.7 is verifying the conditions of Lemma 8.1.
Fix m dice, where we will consider m large, and consider the random series Hjk from

Theorem 1.4. For thesem dice, reveal G( j)
� for � ≤ 2�m1/2� and round the value to the

nearest 1/m25, and label each vertex with the corresponding tuple of values. Call the
collection of these labels L(G), which depends only on G( j)

� for � ≤ 2�m1/2�. Note
that with probability 1− exp(−
(m)) all these sampled Gaussians are bounded by m
and hence there is a set L of at most exp(O(m3/2 logm)) different possible labelings
such that L(G) ∈ L under this event. Furthermore given these labels L(G), the value

H∗
jk =

�m1/2�∑

�=1

σ�

(
G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1

)

is pinned down to within an interval I jk(G) (defined whenever L(G) ∈ L) of length
at most m−20, say, for all 1 ≤ j < k ≤ m.

Note that Hj,k − H∗
j,k has variance O(m−1/2) and hence with probability 1 −

exp(−m
(1)) all these infinite tails are ofmagnitude atmost saym−1/5 byTheorem4.6.
Let L′ be the set of labelings L(G) ∈ L such that the interval I jk(G) intersects

[−m−1/5,m1/5] for at most m2−1/20 many choices of 1 ≤ j < k ≤ m. Let B(G)

be the set of ( j, k) where there is an intersection. Note B(G) depends only on L(G)

whenever L(G) ∈ L. Combining the observations above, there is an event E which
occurs with probability 1− exp(−m
(1)) such that the following holds if we assume
E :

• L(G) ∈ L, where L is a deterministic set of size exp(O(m3/2 logm));
• If L(G) ∈ L′ then the digraph D(G) := {( j, k) : Hjk > 0} depends only on the
identity of L(G) and on whether ( j, k) or (k, j) is in D(G) for all ( j, k) ∈ B(G).
Here L′ is the deterministic subset of L defined above.

If we can show that L(G) ∈ L′ with probability 1 − O(m−1/20), say, then by The-
orem 1.4 this will establish the hypotheses of Lemma 8.1 and hence this will finish
the proof. Indeed, then we know that with high probability the digraph D(G) can
be determined by revealing L(G) ∈ L (with exp(O(m3/2 logm)) choices), which
determines B(G), and then revealing whether ( j, k) ∈ D(G) for all ( j, k) ∈ B(G),
which has at most 2m

2−1/20
choices. This will establish the hypothesis of Lemma 8.1

for M = 
(ε−20), say.
Finally, by Theorem 4.3 for fixed 1 ≤ j < k ≤ m the probability that H∗

jk =
O(m−1/5) is at most O(m−1/10). Therefore by Markov’s inequality, there are at most
m2−1/20 pairs in B(G) with probability 1− O(m−1/20). The result follows. �
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We now give a sketch of an alternative proof of Corollary 1.7 pointed out by the
anonymous referee; this proof more directly stems from Theorem 1.4.

Sketch of alternative proof of Corollary 1.7 By using measure-isomorphisms note that
one can view digraphons as measurable functions W : X2 → [0, 1] where X is 
 =
(X , μ) is any atomless probability space. Consider X = R

N
+
equipped with the Borel

σ -algebra (of the product topology). Let μ be the distribution of an infinite vector of
standard Gaussians and define W : X2 → [0, 1] by

W (x, y) = 1

⎡

⎣
∑

�≥1
σ�(x2�−1y2� − x2�y2�−1) > 0

⎤

⎦ .

By Theorem 1.4, sampling a digraph on m vertices from W has desired densities.
Therefore T is exactlyW by the fact that convergence of tournamentons in cut metric
is equivalent to convergence of digraph homomorphism densities. Furthermore W is
obviously a {0, 1}-tournamenton and thus the desired result follows. �

We end by providing a short proof given Corollary 1.7 that the four-cycle (A beats
B, B beatsC ,C beats D, and D beats A) occurs with a greater than 1/16 limiting prob-
ability. This consequence was the method used by Cornacchia and Hązła to disprove
quasirandomness of dice tournaments (in the simpler model where die faces are drawn
independently at random from the uniform distribution on [0, 1]). The surprising fact
that this limiting probability is larger than 1/16 falls out naturally of Corollarys 1.5
and 1.7. Note that this means that if A beats B, B beats C , and C beats D then D is
more likely to beat A in the limit, since a path with 3 edges is a tree so has limiting
probability 1/8. (An analogous result holds for larger even cycles which we leave as
an exercise to the reader.)

Proposition 8.2 Let T be as in Corollary 1.7. We have that

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x3, x4)T (x4, x1)dx1dx2dx3dx4 >

1

16
.

Proof Note that

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x3, x4)T (x4, x1)dx1dx2dx3dx4

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x4, x3)T (x1, x4)dx1dx2dx3dx4

=
∫ 1

0

∫ 1

0

(∫ 1

0
T (x1, x2)T (x2, x3)dx2

)2

dx1dx3

≥
(∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)dx1dx3dx2

)2

=
(∫ 1

0

∫ 1

0

∫ 1

0
T (x2, x1)T (x2, x3)dx1dx3dx2

)2
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=
(∫ 1

0

(∫ 1

0
T (x2, x1)dx1

)2

dx2

)2

≥
(∫ 1

0

∫ 1

0
T (x2, x1)dx1dx2

)4

= 1

16
,

where we have applied Corollary 1.5 on vertex 4, factoring the square, Cauchy–
Schwarz, Corollary 1.5 on vertex 1, factoring the square, Cauchy–Schwarz, and then
used that T has average 1/2 (from Theorem 1.4 and symmetry). For equality to occur
we must have that for almost all x, y,

1/4 =
∫ 1

0
T (x, z)T (z, y)dz.

By the equivalence of codegree counts with quasirandomness for tournaments; see [6,
P4, Theorem 1] in work of Chung and Graham, in order for equality to occur we must
have T (x, y) = 1/2 almost everywhere in Lebesgue measure. This contradicts the
statement of Corollary 1.7, so the inequality is strict. �

We also briefly derive that any tournament T on m vertices occurs in the limit with
positive probability. This recovers a recent result of Akin [1] (which was proven by
dynamical methods and which in turn reproves results of Moon andMoser [18] which
allows for dice to not have the same means and a result of Finkelstein and Thorp [10]
which constructs cycles of arbitrary length via a more explicit construction).

Proposition 8.3 Recall the setup of Theorem 1.4 and fix any digraph D. We have that

P[Hjk > 0 for all jk ∈ E(D)] > 0.

Equivalently, the D-density in T is positive. In particular, given any D there exists a
set of dice which produce the digraph D.

Proof Let C be a sufficiently large constant to be chosen later. Let |E(D)| = u and
label the edges of the digraph D by e1, . . . , eu and the vertices by 1, . . . ,m. We may
assume D is connected so m ≤ u + 1. We correspond the indices {2� − 1, 2�} to
directed edge e�. For each � ∈ [u] and each i ∈ [m] which is not an endpoint of the
edge e� we define the event E�,i :

max
{
|G(i)

2�−1|, |G(i)
2� |

}
≤ 1.

For each � ∈ [u], if e� is an edge directed from j to k then we define the event E�:

G( j)
2�−1,G

(k)
2� ≥ Cu1/2, |G( j)

2� |, |G(k)
2�−1| ≤ 1.

Recall that

Hjk =
∑

�≥1
σ�

(
G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1

)
.
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Let us further define the event Etail:
∣
∣
∣
∣
∣
∣

∑

�>|E(D)|
σ�

(
G( j)

2�−1G
(k)
2� − G( j)

2� G
(k)
2�−1

)
∣
∣
∣
∣
∣
∣
≤ C

for all jk ∈ E(D). By Chebyshev’s inequality, for any given j, k ∈ [m] this occurs
with probability 1 − O(1/(C2u)). Taking a union bound over jk ∈ E(D) we see
P[Etail] ≥ 1/2 if C is large enough.

Note that E�,i , E�, Etail are jointly independent, so they jointly occur with positive
probability (at least exp(−O(u2))).

If jk is directed edge e�∗ , then by construction the first |E(D)| terms of Hjk

contribute � C2σ�∗u, so 
(C2) by Lemma 2.6 (M9). On the other hand, the tail
� > |E(D)| contributes at most C . Thus Hjk > 0 if C was chosen large enough. The
result follows. �

9 Proof of Theorem 1.8

Finally we compute the probability of having a tie. We proceed in a slightly indirect
manner via first considering the probability that a given coarse die (i.e., an appropriate
associated sequence is coarse in the sense of Definition 5.1) ties with a randomly
sampled die. This amounts to computing the chance that T1 = T2 = 0 and T1 = T2 =
T3 = 0 given the setup of Definition 5.2, which will be the first step in understanding
the necessary probability.

Lemma 9.1 Assume the setup of Definition 5.2 and that (c j )1≤ j≤n is coarse. We have

P[T1 = 0 ∧ T2 = 0] =
√
3

πVar[�]n2 + O(n−5/2(log n)34),

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0]

=
√
3

(2πVar[�])3/2n2(mina,b∈R
∑n

j=1(c j − aj − b)2)1/2
+ O(n−7/2(log n)37).

Proof Let

T̃1 =
n∑

j=1

X̃ j , T̃2 =
n∑

j=1

j X̃ j , T̃3 = 2
n∑

j=1

c j X̃ j ,

where X̃ j ∼ N (0,Var[�]) are independent Gaussians. Let �X ∈ R
n be the vector with

these coordinates. Define the sets

R2 = {(ξ1, ξ2) : |ξ1| ≤ n−1/2(log n)7, |ξ2| ≤ n−3/2(log n)6},
R3 = {(ξ1, ξ2, ξ3) : |ξ1| ≤ n−1/2(log n)7, |ξ2| ≤ n−3/2(log n)6, |ξ3| ≤ n−1(log n)3}.
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By Theorem 4.9 and Lemmas 5.4 to 5.8 we easily see

P[T1 = 0 ∧ T2 = 0] = (2π)−2
∫

R2

E[exp(i �ξ · (T1, T2))]d�ξ ± n−ω(1),

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3
∫

R3

E[exp(i �ξ · (T1, T2, T3))]d�ξ ± n−ω(1).

Then, using Lemma 5.9 to transfer to Gaussians we find

P[T1 = 0 ∧ T2 = 0] = (2π)−2
∫

R2

E[exp(i �ξ · (T̃1, T̃2))]d�ξ + O(n−5/2(log n)34),

(9.1)

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3
∫

R3

E[exp(i �ξ · (T̃1, T̃2, T̃3))]d�ξ

+ O(n−7/2(log n)37). (9.2)

We define the matrix 3× n matrix Q3 via

Q3 :=
⎛

⎝
1 1 . . . 1
1 2 . . . n
2c1 2c2 . . . 2cn

⎞

⎠

and we let Q2 be the first two rows of Q3. We have �ξ · (T̃1, T̃2, T̃3) = �ξᵀQ3 �X and
E[�ξ · (T̃1, T̃2, T̃3)] = 0. Furthermore note that E[(�ξᵀQ3 �X)2] = Var[�] · (�ξᵀQ3Q

ᵀ
3
�ξ).

We deduce

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3
∫

R3

exp(−Var[�] · ξᵀQ3Q
ᵀ
3
�ξ/2))d�ξ

+ O(n−7/2(log n)37),

P[T1 = 0 ∧ T2 = 0] = (2π)−2
∫

R2

exp(−Var[�] · �ξᵀQ2Q
ᵀ
2
�ξ/2)d�ξ

+ O(n−5/2(log n)34).

We compute

Q3Q
ᵀ
3 =

⎛

⎝
n n(n + 1)/2 0

n(n + 1)/2 n(n + 1)(2n + 1)/6 2
∑n

j=1 jc j
0 2

∑n
j=1 jc j 4

∑n
j=1 c

2
j

⎞

⎠ ,
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recalling S2 which implies (1, . . . , 1) · (c1, . . . , cn) = 0. Also, since Qᵀ
3 �e1, Qᵀ

3 �e3 are
orthogonal (denoting �e j ∈ R

3 as the j th elementary vector), we deduce

dist(Qᵀ
3 �e2, spanR{Qᵀ

3 �e j } j∈{1,3})2
= dist((−(n − 1)/2,−(n − 3)/2, . . . , (n − 1)/2), spanR{(c1, . . . , cn)})2

� n3
(

1− 〈(−(n − 1)/2,−(n − 3)/2, . . . , (n − 1)/2), (c1, . . . , cn)〉2
‖(−(n − 1)/2,−(n − 3)/2, . . . , (n − 1)/2)‖22‖(c1, . . . , cn)‖22

)

� n3 · mina,b∈R
∑n

j=1(c j − aj − b)2
∑n

j=1 c
2
j

� n3/(log n)4.

The second-to-last line comes from noting that the desired minimum corresponds to
the distance from (c1, . . . , cn) to the plane spanned by Qᵀ

3 �e1, Qᵀ
3 �e2. The last line uses

S1 and S4. Similarly, we find

dist(Qᵀ
3 �e3, spanR{Qᵀ

3 �e j } j∈{1,2})2 = min
a,b∈R

n∑

j=1

(c j − aj − b)2 ≥ n2/(log n)2.

Therefore we have

ξᵀQ3Q
ᵀ
3 ξ = ‖Qᵀ

3 ξ‖22 ≥ max
j∗∈[3] ξ

2
j∗dist(M

ᵀ�e j∗ , spanR({M�e j } j∈[3]\{ j∗})2

� nξ21 + n3ξ22 /(log n)4 + n2ξ23 /(log n)2.

This inequality immediately allows us to extend the regions of integration in (9.1)
and (9.2) toR

2 andR
3, respectively, since the integrand within the remaining region is

super-polynomially small and decaying rapidly. Applying the formula for a Gaussian
integral, we have

P[T1 = 0 ∧ T2 = 0] = (2π)−2
∫

R2
exp(−Var[�] · �ξᵀQ2Q

ᵀ
2
�ξ/2)d�ξ + O(n−5/2(log n)34)

= (2π)−1(det Q2Q
ᵀ
2 )−1/2 + O(n−5/2(log n)34)

=
√
3

πVar[�]n2 + O(n−5/2(log n)34).

We computed the determinant explicitly as n2(n2 − 1)/12 using the expression for
Q3Q

ᵀ
3 . Similarly, we have
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P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3
∫

R3
exp(−Var[�] · �ξᵀQ3Q

ᵀ
3
�ξ/2)d �x

+ O(n−7/2(log n)37)

= (2πVar[�])−3/2 det(Q3Q
ᵀ
3 )−1/2 + O(n−7/2(log n)37)

=
√
3

(2πVar[�])3/2n2(mina,b∈R
∑n

j=1(c j − aj − b)2)1/2
+ O(n−7/2(log n)37).

In the last line we used the base times height formula row-by-row to compute
(det Q3Q

ᵀ
3 )1/2, which can be interpreted as the 3-dimensional volume of the cor-

responding parallelepiped spanned by Qᵀ
3 �e1, Qᵀ

3 �e2, Qᵀ
3 �e3 within R

n . �
Given Lemma 9.1, and recalling Lemma 2.2, the approach will now be to take an

average ofP[T3 = 0|T1 = T2 = 0] over the distribution of coarse sequences (c j )1≤ j≤n
that come from the frequency count statistics of a typical die sampled from either
model. This requires us to understand the quadratic expressions mina,b∈R

∑n
j=1(c j −

aj − b)2 (where c j will linearly depend on the frequency count statistics) conditional
on stuff such as T1 = T2 = 0. At a high level, wewill reduce understanding a quadratic
form to understanding finitely many linear forms jointly (via sampling random rows
to take a dot product against; heuristically, one could study the large singular vectors).
Thus we will reduce to a situation where we only need the sort of Fourier control
guaranteed by Sect. 5. Specifically, we can prove Lemma 9.4 given the tools in Sect. 5,
which is the key estimate. Beyond this, we need various tools to control certain tail
estimates and related notions that occur in the course of the proof, which is very much
related to the fact that evaluating E(

∑
�≥1 σ 2

� (Z2
� + Z ′2

� ))−1/2 involves a (convergent)
improper integral.

We will require the following estimate regarding sampling independent points for
a given distribution on [n]. We use the following estimate on sums of independent
random variables from [27].

Theorem 9.2 ([27, Theorem 4])Fix β ∈ [1, 2]. There exists C9.2(β) > 0 such that the
followingholds. Let Xi be independentmean zero randomvariableswithE|Xi |β < ∞.
We have that

E

[∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣

β]

≤ C9.2(β)

n∑

i=1

E|Xi |β

Lemma 9.3 There exists a constant C9.3 > 0 such that the following holds. Given a
sequence x1, . . . , xn, let i1, . . . , iM be indices chosen uniformly at random from [n].
Then

∣
∣
∣
∣
∣
∣

1

M

M∑

j=1

xi j −
1

n

n∑

j=1

x j

∣
∣
∣
∣
∣
∣
≤ C9.3M

−1/4

(∑n
j=1 |x j |3/2

n

)2/3

occurs with probability at least 1− M−1/8.
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Proof We have that

E

∣
∣
∣
∣
∣
∣

1

M

M∑

j=1

xi j −
1

n

n∑

j=1

x j

∣
∣
∣
∣
∣
∣

3/2

= M−3/2
E

∣
∣
∣
∣
∣
∣

M∑

j=1

⎛

⎝xi j −
1

n

n∑

j=1

x j

⎞

⎠

∣
∣
∣
∣
∣
∣

3/2

� M−1/2 · E
∣
∣
∣
∣
∣
∣
xi1 −

1

n

n∑

j=1

x j

∣
∣
∣
∣
∣
∣

3/2

� M−1/2 · E|xi1 − xi2 |3/2 � M−1/2 · E|xi1 |3/2

= n−1M−1/2
n∑

i=1

|xi |3/2,

where we have used Theorem 9.2, Jensen’s inequality, and that |x − y|3/2 ≤
21/2(|x |3/2 + |y|3/2). The desired follows immediately by Markov’s inequality. �

Wenext verify the following key distributional identity.Wewill use it after applying

the identity mina,b∈R
∑

j (c j − a − bj)2 = ‖M∗
n b̃‖22, where c j =

∑
1≤k< j b̃k + b̃ j

2 −
( j − 1/2). This fact comes from the definition of M∗

n in Definition 2.4 as the result
of applying two projection operations to Mn in the orthogonal directions �v1, �v2 ∈ R

n

which span the same space as (1, 1, . . . , 1), (1, 2, . . . , n); see (9.9).

Lemma 9.4 Let X j , T1, T2 be as in Definition 5.2, sample X̃ j ∼ N (0,Var[�]) for
1 ≤ j ≤ n, let X = (X1, . . . , Xn), and let X̃ = (X̃1, . . . , X̃n). If M ≤ log log n and
jk ∈ [n] and |k | ≤ (log n)7/4 for 1 ≤ k ≤ M then

∣
∣
∣
∣
∣
E

[

exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n

) ∣
∣
∣
∣T1 = T2 = 0

]

−E

[

exp

(

i
M∑

k=1

k〈X̃ , M∗
n �e jk 〉√

n

)]∣
∣
∣
∣
∣
≤ n−1/2(log n)39.

Proof The proof is very similar to the first part of the proof of Theorem 1.4 as well
as the proof of Lemma 9.1, so we will be brief and focus only on the necessary
modifications from the basic proof strategy.

We apply Theorem 4.9 to deduce

E

[

1T1=T2=0 exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n

)]

= 1

(2π)2

∫

[−π,π ]2
E exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n
+ i �ξ · (T1, T2)

)

d�ξ
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and then apply Lemmas 5.6–5.8. In order to apply these, we define

c∗j := n
M∑

k=1

k(M∗
n �e jk ) j

2
√
n

so that

M∑

k=1

k〈X , M∗
n �e jk 〉√

n
= 2

∑n
j=1 c

∗
j X j

n
.

However, (c∗j )1≤ j≤n does not quite satisfy S3 so we cannot apply the lemmas directly;
the only obstruction is that c∗j will have slight “local jumps” near j ∈ { j1, . . . , jM }
due to the fact that M∗

n has slightly “discontinuous” entries along the diagonal. Indeed,
one can check

|c∗j − c∗j ′ | � | j − j ′|√
n

(log n)7/4 log log n +√
n

M∑

k=1

1 jk∈[ j, j ′]

for all 1 ≤ j < j ′ ≤ n due toM7. This is at most
√| j − j ′|(log n)2 if { j1, . . . , jM } ∩

[ j, j ′] = ∅.
To fix this obstruction, we simply apply Lemmas 5.6–5.8 to a consecutive sequence

of entries. Note that there is some {n1 + 1, n1 + 2, . . . , n2} ⊆ [n] with |n2 − n1| ≥
n/(2M)with no jk contained in this consecutive range. Let n′ = |n2−n1|. Therefore,
wemay condition on values of X[n]\{n1+1,...,n2} and then deduce the necessary estimate
from the randomness of X{n1+1,...,n2}. We deduce

∣
∣
∣
∣
∣
E exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n
+ i �ξ · (T1, T2)

)∣
∣
∣
∣
∣
≤ n−ω(1)

as long as |ξ2| ∈ [(n′)−3/2(log n′)6, π ] or |ξ2| ≤ (n′)−3/2(log n′)6 and |ξ1 + n1ξ2| ∈
[(n′)−1/2(log n′)7, 5π/4] (where one applies Lemmas 5.6–5.8). This trivially covers
all (ξ1, ξ2) except for say |ξ1| ≤ n−1/2(log n)8 and |ξ2| ≤ n−3/2(log n)7.

Then we can apply Lemma 5.9 (technically, since ξ1, ξ2 could be slightly larger
than the range considered in Lemma 5.9, it is slightly different but the exact same
technique applies). Overall, we deduce

E

[

1T1=T2=0 exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n

)]

= 1

(2π)2

∫ τ1

−τ1

∫ τ2

−τ2

E exp

(

i
M∑

k=1

k〈X̃ , M∗
n �e jk 〉√

n
+ i �ξ · (T̃1, T̃2)

)

dξ2dξ1 + O(n−5/2(log n)39),

123



A. Sah, M. Sawhney

where τ1 = n−1/2(log n)8 and τ2 = n−3/2(log n)7 and T̃1 = ∑n
j=1 X̃ j and T̃2 =

∑n
j=1 j X̃ j .
Next, use that

∑n
j=1 c

∗
j =

∑n
j=1 jc∗j = 0, which follows from Definition 2.4. This

implies that (T̃1, T̃2) is independent of the first part of the sum in the exponential. So,
we can factor and integrate over ξ1, ξ2 to deduce

E

[

1T1=T2=0 exp

(

i
M∑

k=1

k〈X , M∗
n �e jk 〉√

n

)]

= qE exp

(

i
M∑

k=1

k〈X̃ , M∗
n �e jk 〉√

n

)

+O(n−5/2(log n)39),

where q = (2π)−2
∫
R2 E exp(i �ξ · (T̃1, T̃2))d�ξ (note completing the integral to∞ does

not change the error term). Comparing with the proof of Lemma 9.1, we easily deduce
that q = (1 + O(n−1/2(log n)34))P[T1 = 0 ∧ T2 = 0] and thus also q = 
(n−2).
Dividing by P[T1 = 0 ∧ T2 = 0] and subtracting, we deduce the desired result. �

We deduce an appropriate bound on a moment of n−1/2|〈�x, M∗
n �e j 〉|.

Lemma 9.5 Let X j , T1, T2 be as in Definition 5.2 and let X = (X1, . . . , Xn). We have

E

[ n∑

j=1

( |〈X , M∗
n �e j 〉|√
n

)3∣∣
∣
∣T1 = T2 = 0

]

≤ C9.5n.

Similarly if X ′
j is as in Lemma 5.9, we have

E

[ n∑

j=1

( |〈X ′, M∗
n �e j 〉|√
n

)3]

≤ C9.5n.

Proof The second estimate is trivial by linearity of expectation and Lemma 2.6
(M3). For the first estimate, using linearity of expectation it suffices to show
E|〈X , M∗

n �e j 〉|3 = O(n3/2) uniformly for all 1 ≤ j ≤ n.
Note by Bernstein’s inequality (Theorem 4.1) that

P[|〈X , M∗
n �e j 〉| ≥

√
n log n log log n] ≤ n−ω(1).

As P[T1 = T2 = 0] = 
(n−2) from Lemma 9.1, we have that

P[|〈X , M∗
n �e j 〉| ≥

√
n log n log log n|T1 = T2 = 0]

≤ P[|〈X , M∗
n �e j 〉| ≥

√
n log n log log n]

P[T1 = T2 = 0] ≤ n−ω(1).
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Similarly we have that

E[|〈X , M∗
n �e j 〉|31|〈X ,M∗

n �e j 〉|≥
√
n log n log log n|T1 = T2 = 0]

≤ E[|〈X , M∗
n �e j 〉|31|〈X ,M∗

n �e j 〉|≥
√
n log n log log n]

P[T1 = T2 = 0]
� n2E[|〈X , M∗

n �e j 〉|31|〈X ,M∗
n �e j 〉|≥

√
n log n log log n]

� n2
∑

j≥0
23 jP[|〈X , M∗

n �e j 〉| ≥ 2 j
√
n log n log log n]

� n2
∑

j≥0
23 j exp(−
(4 j log n(log log n)2)) � n−ω(1), (9.3)

where we have again used Bernstein’s inequality (Theorem 4.1) when not condition-
ing on T1 = T2 = 0. Therefore it will suffice to consider “reasonable” scales for
|〈X , M∗

n �e j 〉|.
We now apply Theorem 4.7 with 〈X , M∗

n �e j 〉/
√
n conditional on T1 = T2 = 0 and

also with 〈X ′, M∗
n �e j 〉/

√
n, replacing T by L = (log n)7/4. In particular notice that

sup
τ∈R

|P[〈X , M∗
n �e j 〉 ≤ τ

√
n|T1 = T2 = 0] − P[〈X ′, M∗

n �e j 〉 ≤ τ
√
n]|

= sup
τ∈R

|P[〈X , M∗
n �e j 〉/

√
n ≤ τ |T1 = T2 = 0] − P[〈X ′, M∗

n �e j 〉/
√
n ≤ τ ]|

�
∫ L

−L

∣
∣E[exp(i t〈X , M∗

n �e j 〉/
√
n)|T1 = T2 = 0] − E[exp(i t〈X ′, M∗

n �e j 〉/
√
n)]∣∣

|t | dt

+ sup
τ∈R

P[|〈X ′, M∗
n �e j 〉/

√
n − τ | ≤ 1/L]

�
∫ L

−L

min{n−1/2(log n)39, E[|t ||〈X , M∗
n �e j 〉|/

√
n|T1 = T2 = 0] + E[|t ||〈X ′, M∗

n �e j 〉|/
√
n]}

|t | dt + 1/L

�
∫ L

−L

min{n−1/2(log n)39, |t |n1/2}
|t | dt + 1/L � n−1/2(log n)42 + 1/L � 1/L. (9.4)

The bound on supτ∈R P[|〈X ′, M∗
n �e j 〉/

√
n − τ | ≤ 1/L] follows since 〈X ′, M∗

n �e j 〉 is a
centered Gaussian random variable and

sup
τ∈R

P[|〈X ′, M∗
n �e j 〉/

√
n − τ | ≤ 1/L] = P[|〈X ′, M∗

n �e j 〉/
√
n| ≤ 1/L]

� 1

L
√
Var(〈X ′, M∗

n �e j 〉/
√
n)

� 1/L

where we use ‖M∗
n �e j‖2 � √

n for all j (which is obvious from M1). The first bound
between Fourier coefficients in theminimum follows fromLemma 9.4which shows an
error of O(n−1/2(log n)39) between the two resulting Fourier coefficients. To justify
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the second bound in the minimum, note that | exp(i t) − 1| ≤ |t | and therefore

∣
∣E[exp(i t〈X , M∗

n �e j 〉)|T1 = T2 = 0] − E[exp(i t〈X ′, M∗
n �e j 〉)]

∣
∣

= ∣
∣E[exp(i t〈X , M∗

n �e j 〉) − 1|T1 = T2 = 0] − E[exp(i t〈X ′, M∗
n �e j 〉) − 1]∣∣

≤ ∣
∣E[|t ||〈X , M∗

n �e j 〉)||T1 = T2 = 0]∣∣+ ∣
∣E[|t ||〈X ′, M∗

n �e j 〉|]
∣
∣

≤ |t |(|E[|〈X , M∗
n �e j 〉)|3|T1 = T2 = 0]∣∣)1/3 + |t |(|E[|〈X ′, M∗

n �e j 〉)|3]
∣
∣
)1/3 � |t |n.

In the final inequality, the first term is controlled using the tail bound (9.3), which
allows us to focus on cases where |〈X , M∗

n �e j 〉| <
√
n log n log log n (in which case

the claimed bound is evident). The second term, coming from a Gaussian model, is
easy to control using Lemma 2.6 (M3).

Finally, we use (9.4) and apply integration by parts. We have

E

[
|〈X , M∗

n �e j 〉|31|〈X ,M∗
n �e j 〉|<

√
n log n log log n|T1 = T2 = 0

]

= E

[
|〈X ′, M∗

n �e j 〉|31|〈X ′,M∗
n �e j 〉|<

√
n log n log log n

]
+ O((

√
n log n log log n)3/L)

= O(n3/2),

using that X ′ is Gaussian (and M4) to control the first term in the second line. �
Wewill also require the followingvariant ofLemma9.5whichbounds the difference

between nearby coordinates.

Lemma 9.6 Let X j , T1, T2 be as in Definition 5.2 and let X = (X1, . . . , Xn). If
ε ≥ 1/ log log n, and | j − j ′| ≤ εn then we have

E

[ ||〈X , M∗
n �e j 〉|2 − |〈X , M∗

n �e j ′ 〉|2|
n

∣
∣
∣
∣T1 = T2 = 0

]

≤ C9.5ε1/2.

Similarly if X ′
j is as in Lemma 5.9, we have

E

[ ||〈X ′, M∗
n �e j 〉|2 − |〈X ′, M∗

n �e j ′ 〉|2|
n

]

≤ C9.5ε1/2.

Proof First, we may assume that | j − j ′| ≥ εn/4 (i.e., the “separated” case). Indeed,
given values with | j− j ′| < εn/4 we may choose j∗ which is at least at εn/4 distance
fromboth j, j ′ (and still in the range [n]). Thenwe can apply the result for the separated
case twice on the pairs j, j∗ and j∗, j ′ and then use the triangle inequality.

As |y2 − z2| = |y − z| · |y + z| ≤ |y − z| · (|y| + |z|), by Cauchy–Schwarz it
suffices to prove that

E

[ |〈X , M∗
n �e j 〉|2
n

∣
∣
∣
∣T1 = T2 = 0

]

≤ C9.5,

E

[ |〈X , M∗
n �e j 〉 − 〈X , M∗

n �e j ′ 〉|2
n

∣
∣
∣
∣T1 = T2 = 0

]

≤ C9.5ε (9.5)
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and analogous estimates for X ′. The estimates (9.5) follow immediately for X ′ by
Lemma 2.6 (in particular M7 for the second estimate). For X , note that by Hölder’s
inequality a strictly stronger estimate than the first estimate in (9.5) is given in the
proof of Lemma 9.5 (which shows E|〈X , M∗

n �e j 〉|3 = O(n3/2) uniformly in j). We
now focus on the second estimate of (9.5).

We apply Theorem 4.7 with 〈X , M∗
n (�e j − �e j ′)〉/√n conditional on T1 = T2 = 0

and also with 〈X ′, M∗
n (�e j − �e j ′)〉/√n, replacing T by L = (log n)7/4. In particular

notice that

sup
τ∈R

|P[〈X , M∗
n (�e j − �e j ′ )〉/

√
n ≤ τ |T1 = T2 = 0] − P[〈X ′, M∗

n (�e j − �e j ′ )〉/
√
n ≤ τ ]|

�
∫ L

−L

∣
∣E[exp(i t〈X , M∗

n (�e j − �e j ′ )〉/√n)|T1 = T2 = 0] − E[exp(i t〈X ′, M∗
n (�e j − �e j ′ )〉/√n)]∣∣

|t | dt + ε−1/L

�
∫ L

−L

min{n−1/2(log n)39,E[|t ||〈X , M∗
n (�e j − �e j ′ )〉||T1 = T2 = 0] + E[|t ||〈X ′, M∗

n (�e j − �e j ′ )〉|]}
|t | dt + ε−1/L

�
∫ L

−L

min{n−1/2(log n)39, |t |n4}
|t | dt + 1/L � n−1/2(log n)42 + ε−1/L � ε−1/L. (9.6)

The error term ε−1/L is deduced in a similar manner to the 1/L term in (9.4), except
that insteadwe have ‖M∗

n (�e j−�e j ′)‖2 � ε
√
n due to | j− j ′| ∈ [εn/4, εn] andM1. The

first boundbetweenFourier coefficients in theminimumfollows fromLemma9.4 (with
M = 2) which shows an error of O(n−1/2(log n)39) between the two resulting Fourier
coefficients. To justify the second bound in the minimum, note that | exp(i t)−1| ≤ |t |
and therefore

∣
∣E[exp(i t〈X , M∗

n (�e j − �e j ′)〉)|T1 = T2 = 0] − E[exp(i t〈X ′, M∗
n (�e j − �e j ′)〉)]

∣
∣

= ∣
∣E[exp(i t〈X , M∗

n (�e j − �e j ′)〉)− 1|T1 = T2 = 0] − E[exp(i t〈X ′, M∗
n (�e j − �e j ′)〉)− 1]∣∣

≤ ∣
∣E[|t ||〈X , M∗

n (�e j − �e j ′)〉)||T1 = T2 = 0]∣∣+ ∣
∣E[|t ||〈X ′, M∗

n (�e j − �e j ′)〉|]
∣
∣

≤ |t |P[T1 = T2 = 0]−1
∣
∣E[|〈X , M∗

n (�e j − �e j ′)〉)|]
∣
∣+ |t |n � |t |n4.

In the final inequality, to control the first term we use P[T1 = T2 = 0] = 
(n−2) and
then we use Bernstein’s inequality to control the moment.

Furthermore, by Bernstein’s inequality (Theorem 4.1) and a similar argument as in
the derivation of (9.3) we have

E
[
|〈X , M∗

n (�e j − �e j ′)〉|21|〈X ,M∗
n (�e j−�e j ′ )〉|≥

√
n log n(log log n)

]
= n−ω(1).

Since P[T1 = T2 = 0] = 
(n−2) we deduce

mbmE
[
|〈X , M∗

n (�e j − �e j ′)〉|21|〈X ,M∗
n (�e j−�e j ′ )〉|≥

√
n log n(log log n)|T1 = T2 = 0

]

≤ n−ω(1)

P[T1 = T2 = 0] = n−ω(1).
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Finally, by (9.6) and integration by parts we have

E

[
|〈X , M∗

n (�e j − �e j ′)〉|21|〈X ,M∗
n (�e j−�e j ′ )〉|<

√
n log n log log n|T1 = T2 = 0

]

= E

[
|〈X ′, M∗

n (�e j − �e j ′)〉|21|〈X ′,M∗
n (�e j−�e j ′ )〉|<

√
n log n log log n

]

+ O((
√
n log n log log n)2ε−1/L)

� εn + O(n(log log n)3(log n)−3/4),

The last line follows from the result for the Gaussian model X ′ deduced above (which
relies on the assumption | j − j ′| ≤ εn). �

We next deduce that mina,b∈R
∑

j (c j − a − bj)2 satisfies an appropriate anticon-
centration bound near 0 with high probability, so as to control singularity behavior.

Lemma 9.7 Let X j , T1, T2 be as in Definition 5.2 and let ε ≥ 1/ log n. Let X =
(X1, . . . , Xn). We have

P

[ n∑

j=1

〈X , M∗
n �e j 〉2 ≤ εn2

∣
∣
∣
∣T1 = T2 = 0

]

� ε4.

Proof Let k be a sufficiently large absolute integer constant. For 1 ≤ t ≤ k define
St = [tn/(k + 1), tn/(k + 1)+ δ2n], S′t = [tn/(k + 1)+ 2δ2n, tn/(k + 1)+ 3δ2n],
where δ ∈ (0, 1/2)will be a sufficiently small constant (with respect to k) to be chosen
later. Let

I = {( j1, j ′1, j2, j ′2, . . . , jk , j ′k)| : jt ∈ St , j
′
t ∈ S′t , |〈X , M∗

n (�e j ′t − �e jt )〉| ≤ δ−2ε1/2n1/2}.

If
∑n

j=1〈X , M∗
n �e j 〉2 ≤ εn2, by Markov’s inequality there are fewer than δ4n indices

j such that |〈X , M∗
n �e j 〉| ≥ δ−2ε1/2n1/2. Therefore it follows that |I| ≥ (δ2n/2)2k

under this event.
We now assume that for any choices of jt ∈ St , j ′t ∈ S′t for 1 ≤ t ≤ k that

P

[
k⋂

t=1

|〈X , M∗
n (�e j ′t − �e jt )〉| ≤ δ−2ε1/2n1/2

∣
∣
∣
∣
∣
T1 = T2 = 0

]

�k,δ εk/2; (9.7)

we will justify this at the end of the proof. Given (9.7), we compute that

E[|I||T1 = T2 = 0] ≤
∑

jt∈St , j ′t∈S′t∀t∈[k]

P

[
k⋂

t=1

|〈X , M∗
n (�e j ′t − �e jt )〉| ≤ δ−2ε1/2n1/2

∣
∣
∣
∣T1 = T2 = 0

]

�k,δ εk/2n2k . (9.8)
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Note (9.8) immediately implies the desired result taking any integer k ≥ 8 and applying
Markov’s inequality: we find that |I| ≥ (δ2n/2)2k occurs with probability O(ε4),
which implies the same for the original event by the earlier analysis.

To prove (9.7) the idea is to use Theorem 4.8 and Lemma 9.4. Writing B for the
radius kδ2/ε1/2 unit ball in R

k , we have

P

[
k⋂

t=1

|〈X , M∗
n (�e j ′t − �e jt )〉|√

n
≤ δ−2ε1/2

∣
∣
∣
∣T1 = T2 = 0

]

�δ,k εk/2
∫

B

∣
∣
∣
∣E

[

exp

(

2π i
k∑

t=1

ξt 〈X , M∗
n (�e j ′t − �e jt )〉√

n

)∣
∣
∣
∣T1 = T2 = 0

]∣
∣
∣
∣d
�ξ

�δ,k εk/2
∫

B

∣
∣
∣
∣E exp

(

2π i
k∑

t=1

ξt 〈X̃ , M∗
n (�e j ′t − �e jt )〉√

n

)∣
∣
∣
∣d
�ξ + O(n−1/2(log n)39)

�δ,k εk/2q + O(n−1/2(log n)39),

where q is the probability density function of the Gaussian vector (n−1/2〈X̃ , M∗
n (�e j ′t −�e jt )〉)1≤t≤k evaluated at 0. For the last line, we used the nonnegativity of Gaussian

characteristic functions and Fourier inversion. Now we show q = Oδ,k(1) to finish.
Note that by M1 and explicit computation we have

M∗
n (�e j ′t − �e jt ) =

1

2

∑

jt<r< j ′t

�er + �v jt , j ′t ,

where ‖�v jt , j ′t ‖2 � δ2n1/2 and note that ‖∑ jt<r< j ′t �er‖2 � δn1/2. Therefore we find
that

dist(M∗
n (�e j ′t − �e jt ), spanR{M∗

n (�e j ′s − �e js ) : s ∈ [k] \ {t}}) ≥ ‖M∗
n (�e j ′t − �e jt )‖2/2

if δ is sufficiently small as a function of k. This implies that the covariance matrix
of the above Gaussian vector is diagonally dominated with constant order diagonal
entries, and the result follows. �

We now conclude with the proof of Theorem 1.8.

Proof of Theorem 1.8 Given a die B with the frequency counts (̃b j )1≤ j≤n , let y j =∑
1≤k< j b̃k + b̃ j/2 − ( j − 1/2). We say B is suitable if (y j )1≤ j≤n is coarse (Def-

inition 5.1). By Lemma 7.1 we have that B is coarse with probability 1 − n−ω(1).
Furthermore, write b̃ = (̃b1, . . . , b̃n) and note

min
a,b∈R

n∑

j=1

(y j − aj − b)2 = ‖M∗
n b̃‖22, (9.9)

which can be seen by looking at projections of vectors in R
n , and also noting that∑n

j=1(̃b j − 1) = ∑n
j=1 j (̃b j − 1) = 0.
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Recall that by Lemma 2.2, (̃b1, . . . , b̃n) has the distribution of (X1, . . . , Xn) condi-
tional on T1 = T2 = 0, borrowing the setup of Definition 5.2 (where� = Geom(1/2)
for the multiset model and � = Pois(1) for the balanced sequence model).

Therefore, applying Lemma 9.1 we find

P[A ties B] = P[A ties B ∧ B is suitable] ± n−ω(1)

= EB
[
P[A ties B|B is suitable]]± n−ω(1)

= E

[
1B is suitable

(8πVar[�])1/2‖M∗
n b̃‖2

]

± n−3/2(log n)40.

The final line follows from using Lemma 2.2 to interpret the probability of a tie as the
ratio of the two expressions in Lemma 9.1, and using S4 to control the resulting error
terms.

Fix a constant ε > 0. We will take ε → 0+ sufficiently slowly at the end of the
proof. We have

E

[
1B is suitable

‖M∗
n b̃‖2

− 1B is suitable

max(‖M∗
n b̃‖2, εn)

]

� n−ω(1) +
∑

(log n)−2≤2− j≤ε

2 j

n
· P[‖M∗

n b̃‖2 ≤ 2− j n]

� n−ω(1) +
∑

(log n)−2≤2− j≤ε

2 j

n
· 4− j

� ε

n
,

where we have dyadically decomposed the small values of ‖M∗
n b̃‖2 and applied

Lemma 9.7 (we apply the lemma for max(2− j , (log n)−1)). Note that 〈X , M∗
n �e j 〉 =

−〈M∗
n X , �e j 〉 is the negative of the j th coordinate of M∗

n X byM2, and we again used
Lemma 2.2. Additionally, we are using that ‖M∗

n
�b‖2 ≥ n(log n)−2 for coarse �b by

(9.9) and S4.
Therefore

(8πVar[�])1/2P[A ties B] = E

[
1B is suitable

max(‖M∗
n b̃‖2, εn)

]

± O(εn−1)

= E

[
1

max(‖M∗
n b̃‖2, εn)

]

± O(εn−1)

provided that n is sufficiently large with respect to ε.
The next idea is to approximate ‖M∗

n b̃‖2 via sampling random coordinates
j1, . . . , jT for a sufficiently large value of T and then estimating the L2-norm of
the vector M∗

n b̃ via examining only these coordinates. This converts understanding
a quadratic form into a question of purely linear forms. Let E1 denote the event that
‖M∗

n b̃‖3/n1/3 ≤ ε−1n1/2. Lemma 9.5 and Markov’s inequality implies that E1 holds
with probability at least 1− ε3, hence
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E

[
1

max(‖M∗
n b̃‖2, εn)

]

= E

[
1E1

max(‖M∗
n b̃‖2, εn)

]

± O(ε2n−1). (9.10)

Let ψ : R → R≥0 be smooth with ψ(y) = 0 for y ≤ ε/2 and ψ(y) = y for
y ≥ ε, 0 ≤ ψ(y) ≤ y for y ∈ [ε/2, ε], and such that ψ is O(1/ε)-Lipschitz (a
construction can be derived in a standard manner using bump functions). Let g(x) :=
ψ(1/max(x, ε)). Then

(8πVar[�])1/2nP[A ties B] = E[1E1g(‖M∗
n b̃‖2/n)] ± O(ε) (9.11)

since E1 implies ‖M∗
n b̃‖2/n1/2 ≤ ε−1n1/2.

Now we use Lemma 9.3. Given the event E1 we have ‖M∗
n b̃‖3/2/n2/3 ≤

‖M∗
n b̃‖3/n1/3 ≤ ε−1n1/2. Thus a uniformly random sample of T = �ε−100� indepen-

dent coordinates j1, . . . , jT satisfies

∣
∣
∣
∣
1

n
‖M∗

n b̃‖22 −
1

T

∑

1≤k≤T

〈�e jk , M∗
n b̃〉2

∣
∣
∣
∣ ≤ ε20n (9.12)

with probability at least 1− ε10 in such a situation.
Nowconsider the function h(x) := g(x1/2).Due to the properties ofψ , h isO(ε−4)-

Lipschitz since x �→ 1/max(x1/2, ε) is O(ε−3)-Lipschitz andψ is O(1/ε)-Lipschitz.
Now we can use this and (9.12) to immediately deduce

∣
∣
∣
∣E[1E1g(‖M∗

n b̃‖2/n)] − E

[

E

[

1E1g
((

1

nT

T∑

k=1

〈M∗
n b̃, �e jk 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]

∣
∣
∣
∣ ≤ O(ε−4) · ε20 + ε10,

where the second term encapsulates the probability of failure of the event (9.12). Since
P[E1] ≥ 1− ε3 and g is clearly bounded by 1/ε, it follows immediately that

∣
∣
∣
∣E[1E1g(‖M∗

n b̃‖2/n)] − E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n b̃, �e jk 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]

∣
∣
∣
∣ � ε16 + (1/ε) · ε3. (9.13)

Now let L = �ε−1000� and n′ = �ε1000n�. For each k let j̃k denote the nearest index
to jk in the set {n′, 2n′, . . . , Ln′}. Recall that h is O(ε−4)-Lipschitz. So, applying
Lemma 9.6, we have
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∣
∣
∣
∣E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n b̃, �e jk 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]

− E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n b̃, �e j̃k 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]∣
∣
∣
∣

� ε−4
E

[

E

[∣
∣
∣
∣
1

nT

T∑

k=1

〈M∗
n b̃, �e jk 〉2 −

1

nT

T∑

k=1

〈M∗
n b̃, �e j̃k 〉2

∣
∣
∣
∣

∣
∣
∣
∣ j1, . . . , jT

]]

� ε−4(ε1000)1/2 = ε496.

As noted at the beginning of this proof, Lemma 2.2 implies that b̃ = (̃b1, . . . , b̃n)
has the distribution of (X1, . . . , Xn) conditional on T1 = T2 = 0 with X defined
as in Definition 5.2. Now by Lévy continuity, Lemma 9.4, and M1 we see that the
distributions of

( 〈M∗
n b̃, �ekn′ 〉√

n

)

1≤k≤L
,

( 〈M∗
n X̃ , �ekn′ 〉√

n

)

1≤k≤L

each converge jointly to the same fixed distribution which is independent of n (but
depending on ε). As g is a bounded and continuous function, for n sufficiently large
by the Portmanteau theorem we deduce that

∣
∣
∣
∣E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n b̃, �e j̃k 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]

− E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n X̃ , �e j̃k 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]∣
∣
∣
∣ ≤ ε2, (9.14)

say. Finally, using Lemmas 9.3, 9.5 and 9.6 in the Gaussian model instead and mim-
icking the above argument (for (9.13)) in reverse demonstrates

∣
∣
∣
∣E[1E2g(‖M∗

n X̃‖2/n)] − E

[

E

[

g

((
1

nT

T∑

k=1

〈M∗
n X̃ , �e j̃k 〉2

)1/2)∣∣
∣
∣ j1, . . . , jT

]]∣
∣
∣
∣ � ε2,

(9.15)

where E2 is the event that ‖M∗
n X̃‖3/n1/3 ≤ ε−1n1/2. Combining (9.11) and (9.13)–

(9.15), we deduce

(8πVar[�])1/2nP[A ties B] = E[1E2g(‖M∗
n X̃‖2/n)] ± O(ε).

Finally, we note P[E2] ≥ 1 − ε3 similar to the argument for E1 (namely, Lemma 9.5
and Markov’s inequality); we have already implicitly used this when mimicking the
argument in the Gaussian model. Since g is bounded by 1/ε, we deduce
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(8πVar[�])1/2nP[A ties B] = E[g(‖M∗
n X̃‖2/n)] ± O(ε). (9.16)

Finally, we study the distribution of ‖M∗
n X̃‖2/n. Recall from Definition 2.4 that

the spectrum of M∗
n (perhaps minus one copy of 0) is {±iσn,� : � ∈ [�n/2�]} and

M∗
n is skew-symmetric. Thus the eigenvalues of the symmetric matrix (M∗

n )ᵀM∗
n are

composed of two copies of σ 2
n,� (with corresponding eigenvectors �u�, �u′�) for � ∈

[�n/2�] and maybe 0. We choose these eigenvectors so that they are orthonormal.
Therefore, by the spectral theorem,

‖M∗
n X̃‖22 = X̃ᵀ(M∗

n )ᵀM∗
n X̃ =

�n/2�∑

�=1

(σ 2
n,�〈X̃ , �u�〉2 + σ 2

n,�〈X̃ , �u′�〉2).

Finally, letting W�,W ′
� ∼ N (0,Var[�]) for � ≥ 1 (such that all these variables are

mutually independent) and using orthogonal invariance of Gaussian vectors, this can
be rewritten as

‖M∗
n X̃‖2
n

d.=
⎛

⎝
�n/2�∑

�=1

σ 2
n,�

n2
(W 2

� +W ′2
� )

⎞

⎠

1/2

.

Now by M6 and M8 and Theorem 4.6 we deduce

E[g(‖M∗
n X̃‖2/n)] = E

⎡

⎢
⎣g

⎛

⎜
⎝

⎛

⎝
�n/2�∑

�=1

σ 2
n,�

n2
(W 2

� +W ′2
� )

⎞

⎠

1/2
⎞

⎟
⎠

⎤

⎥
⎦

= E

⎡

⎢
⎣g

⎛

⎜
⎝

⎛

⎝
�ε−8�∑

�=1

σ 2
n,�

n2
(W 2

� +W ′2
� )

⎞

⎠

1/2
⎞

⎟
⎠

⎤

⎥
⎦± O(ε2)

= E

⎡

⎢
⎣g

⎛

⎜
⎝

⎛

⎝
�ε−8�∑

�=1

σ 2
� (W 2

� +W ′2
� )

⎞

⎠

1/2
⎞

⎟
⎠

⎤

⎥
⎦± O(ε2)

as long as n is large in terms of ε. We have used the Lipschitz property of h here. We
claim that taking the limit ε → 0+ gives the result. To check this, we note that for all
ρ ≥ 0 we have

P

[∑

�≥1
σ 2

� (W 2
� +W ′2

� ) ≤ ρ

]

≤ P

[ ⋂

1≤�≤5
σ 2

� (W 2
� +W ′2

� ) ≤ ρ

]

≤
5∏

�=1

(P[W 2
� ≤ Kρ]P[W ′2

� ≤ Kρ]) � ρ5

for an appropriate absolute constant K . Additionally,
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P

⎡

⎣
∑

�≥1
σ 2

� (W 2
� +W ′2

� ) ≥ ε−1

⎤

⎦ ≤ exp(−ε−
(1))

byTheorem4.6.Therefore,we can absorb the difference between g(y) and1/ywithout
any issue, uniformly in the limit. That is,

lim
ε→0+

E

⎡

⎢
⎣g

⎛

⎜
⎝

⎛

⎝
�ε−8�∑

�=1

σ 2
� (W 2

� +W ′2
� )

⎞

⎠

1/2
⎞

⎟
⎠

⎤

⎥
⎦ = E

⎡

⎢
⎣

⎛

⎝
∑

�≥1
σ 2

� (W 2
� +W ′2

� )

⎞

⎠

−1/2
⎤

⎥
⎦

(note that g depends on ε here). Combining these final equalities with (9.16) and taking
ε to go slowly to 0, and letting (W�,W ′

�) =
√
Var[�](Z�, Z ′

�) for standard Gaussians
Z�, Z ′

�, we ultimately deduce

(8πVar[�])1/2nP[A ties B] = (Var[�])−1/2
E

⎡

⎢
⎣

⎛

⎝
∑

�≥1
σ 2

� (Z2
� + Z ′2

� )

⎞

⎠

−1/2
⎤

⎥
⎦+ o(1).

Rearranging, this agrees with the desired Theorem 1.8. �
We end by briefly discussing an (amusing) interpretation of the constant α corre-

sponding to ordinary least squares regression in the context of Brownian motion.
The above proof implicitly shows that given a fixed set of indices j1, . . . , jk ,
(�e jt M∗

n X)1≤t≤k in distribution converges toward a snapshot of a Brownian motion
at the times jt/n, where the Brownian motion is conditioned to end at 0 at time 1 and
conditioned to have total signed area under the Brownian motion equal to 0. Note that
then mina,b∈R(c j − a − bj)2 corresponds to approximating such a Brownian motion
by the best linear-function fit coming from Ordinary Least Squares regression. We
leave making this precise an exercise for the reader.
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