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Abstract
We find the scaling limits of a general class of boundary-to-boundary connection
probabilities and multiple interfaces in the critical planar FK-Ising model, thus ver-
ifying predictions from the physics literature. We also discuss conjectural formulas
using Coulomb gas integrals for the corresponding quantities in general critical planar
random-cluster models with cluster-weight q ∈ [1, 4). Thus far, proofs for conver-
gence, including ours, rely on discrete complex analysis techniques and are beyond
reach for other values of q than the FK-Ising model (q = 2). Given the convergence
of interfaces, the conjectural formulas for other values of q could be verified similarly
with relatively minor technical work. The limit interfaces are variants of SLEκ curves
(with κ = 16/3 for q = 2). Their partition functions, that give the connection prob-
abilities, also satisfy properties predicted for correlation functions in conformal field
theory (CFT), expected to describe scaling limits of critical random-cluster models.
We verify these properties for all q ∈ [1, 4), thus providing further evidence of the
expected CFT description of these models.
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1 Introduction

Fortuin and Kasteleyn introduced the random-cluster model around the 1970s as a
general family of discrete percolation models that combines together Bernoulli perco-
lation, graphical representations of spin models (Ising and Potts models), and polymer
models (as a limiting case). Generally in such models, edges are declared to be open
or closed according to a given probability measure, the simplest being the independent
product measure of Bernoulli percolation. Of particular interest in such models are
percolation properties, that is, whether various points in space are connected by paths
of open edges. The present article is concerned with boundary-to-boundary connec-
tions in the planar case. Such connection events, or crossing events, have been used
for a convenient description of the large-scale properties of the Bernoulli percolation
model in [38, 66], whereas for dependent percolation models such a description would
be much more complex (cf. [66, Question 1.22], see also [22]).

Random-cluster models have been under active research in the past decades, for
instance due to their important feature of criticality: for certain parameter values the
model exhibits a continuous phase transition. Criticality can be practically identified
as follows. Consider on a lattice with small mesh, say δZ2, the probability that an
open path connects two opposite sides of a topological rectangle. It is not hard to
prove that this probability tends to zero as δ → 0 when the model is “subcritical”,
while it tends to one as δ→ 0 when the model is “supercritical”. At the critical point,
the connection probability has a nontrivial limit, which is a real number in (0, 1) that
depends on the shape (i.e., conformalmodulus) of the topological rectangle. This latter
fact follows from Russo–Seymour–Welsh type estimates that are now ubiquitous tools
for percolation models [12, 20, 24]. Exact identification of the limit of the connection
probability, though, is highly non-trivial. Motivated by numerical experiments by
Langlands et al. [57], an answer in the physics level of rigor using conformal field
theory predictions was given by Cardy for the case of Bernoulli percolation in [9].
The first proof of Cardy’s formula was established by Smirnov [68] using miraculous
discrete complex analysis tricks à la Kenyon [47] and Smirnov). To date, analogues
and generalizations of Cardy’s formula have been proven only for a number of other
models, all of which rely on some kind of specific exact solvability (or “magic”,
quoting Smirnov1), mainly due to underlying free fermion or free boson structures:
critical spin-Isingmodel and FK-Isingmodel, Gaussian free field, loop-erased random
walks, and uniform spanning trees (see [16, 41, 42, 46, 48, 49, 58, 62] and references
therein). In the continuum, some connection probabilities for CLE loops were found
in [60], see also [1] for recent results relating to Liouville theory. Analogous numerical
results and predictions for connectivity events in the bulk for the random-cluster and
Potts models were found in [29].

1 “Since it usedmagic, it only works in situations where there is magic, and weweren’t able to findmagic in
other situations.” in Quanta Magazine (July 8, 2021)Mathematicians Prove Symmetry of Phase Transitions
by Allison Whitten.
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The phase transition in random-cluster models has been argued to result in confor-
mal invariance and universality for the scaling limit δ → 0 of the model (see, e.g.,
[10]). Since then, tremendous progress has been established towards verifying this pre-
diction. Recently, in [21] it was shown that correlations in the critical random-cluster
model with cluster-weight q ∈ [1, 4] do indeed become rotationally invariant in the
scaling limit. This provides very strong evidence of conformal invariance, while still
not being enough to prove it. For the special case of the FK-Ising model (q = 2), con-
formal invariance has been established rigorously to a large extent, thanks to special
integrability properties of the model that allow the use of discrete complex analysis in
a fundamental way (the “magic” referred to above), cf. [11, 16, 41, 42, 52, 55, 69].

Crucially, in addition to proving conformal invariance, identifying the scaling limit
objects with their corresponding counterparts in conformal field theory (CFT) is nec-
essary in order to get access to the full power of the CFT formalism applicable to
critical lattice models. The purpose of this article is to provide such an identification
for boundary-to-boundary connection probabilities in the FK-Isingmodel with various
boundary conditions (Theorems 1.5 and 1.8). Analogous results remain conjectural
for other values2 of q ∈ [1, 4). We also provide formulas for the quantities of interest
for all q ∈ [1, 4) in terms of solutions to PDE boundary value problems and Coulomb
gas integrals, earlier appearing, e.g., in [30, 34, 37]. We also verify CFT predictions
for all these formulas (Theorem 1.9), thus providing further evidence for the CFT
description of these critical planar models.

Our main results are summarized in Sects. 1.3–1.4. We first discuss the general
setup and common terminology for the random-cluster models and the conjectural
formulas for the connection probabilities (Sects. 1.1–1.2). Section1.3 then focuses
on results in the special case of the FK-Ising model, and Sect. 1.4 gathers important
properties of the Coulomb gas integral formulas in general.

1.1 Random-cluster models in polygons

Here, we summarize notation and terminology to be used throughout, and define
the random-cluster model. For more background and properties of these models, we
recommend [19, 40].

1.1.1 Notation and terminology

For definiteness, we consider subgraphs G = (V (G), E(G)) of the square lattice Z
2,

which is the graph with vertex set V (Z2) := {z = (m, n) : m, n ∈ Z} and edge set
E(Z2) given by edges between those vertices whose Euclidean distance equals one
(called neighbors). This is our primal lattice. Its standard dual lattice is denoted by
(Z2)•. The medial lattice (Z2)� is the graph with centers of edges of Z

2 as its vertex
set and edges connecting neighbors. For a subgraph G ⊂ Z

2 (resp. of (Z2)• or (Z2)�),
we define its boundary to be the following set of vertices:

∂G = {z ∈ V (G) : ∃ w /∈ V (G) such that 〈z, w〉 ∈ E(Z2)}.
2 Bernoulli site percolation on the triangular lattice (q = 1, a slightly different setup) is presented in [64].
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When we add the subscript or superscript δ, we mean that subgraphs of the lattices
Z
2, (Z2)•, (Z2)� have been scaled by δ > 0. We consider the models in the scaling

limit δ → 0. For a given medial graph �δ,� ⊂ (δZ2)�, let �δ ⊂ δZ2 be the graph
on the primal lattice corresponding to �δ,� (see details in Sect. 3.1). By a (discrete)
polygonwe either refer to themedial graph�δ,� endowedwith given distinct boundary
points xδ,�1 , . . . , xδ,�2N in counterclockwise order, or to the corresponding primal graph
(�δ; xδ1, . . . , xδ2N )with given boundary points xδ1, . . . , xδ2N in counterclockwise order.
We consider random-cluster models on such polygons, where the boundary behavior
changes at the marked boundary points.

1.1.2 Random-cluster model

Let G = (V (G), E(G)) be a finite subgraph of Z
2. A random-cluster configuration

ω = (ωe)e∈E(G) is an element of {0, 1}E(G). An edge e ∈ E(G) is said to be open
(resp. closed) if ωe = 1 (resp. ωe = 0). We view the configuration ω as a subgraph
of G with vertex set V (G) and edge set {e ∈ E(G) : ωe = 1}. We denote by o(ω)
(resp. c(ω)) the number of open (resp. closed) edges in ω.

We are interested in the connectivity properties of the graph ω with various bound-
ary conditions. The maximal connected3 components of ω are called clusters. The
boundary conditions encode how the vertices are connected outside of G. Precisely,
by a boundary condition π we refer to a partition π1 	 · · · 	 πm of the boundary ∂G.
Two vertices z, w ∈ ∂G are said to be wired in π if z, w ∈ π j for some common j . In
contrast, free boundary segments comprise vertices that are not wired with any other
vertex (so the corresponding part π j is a singleton). We denote by ωπ the (quotient)
graph obtained from the configuration ω by identifying the wired vertices in π .

Finally, the random-cluster model on G with edge-weight p ∈ [0, 1], cluster-
weight q > 0, and boundary condition π , is the probability measure μπ

p,q,G on the set
{0, 1}E(G) of configurations ω defined by

μπ
p,q,G [ω] :=

po(ω)(1− p)c(ω)qk(ω
π )

∑
�∈{0,1}E(G) po(�)(1− p)c(�)qk(�π )

,

where k(ωπ) is the number of connected components of the graph ωπ . For q = 2,
this model is also known as the FK-Ising model, while for q = 1, it is simply the
Bernoulli bond percolation (assigning independent values for each ωe). The random-
cluster model combines together several important models in the same family. For
integer values of q, it is very closely related to the q-Potts model, and by taking a
suitable limit, the case of q = 0 corresponds to the uniform spanning tree (see, e.g.,
[19]). It has been proven for the range q ∈ [1, 4] in [24] that when the edge-weight is
chosen suitably, namely as (the critical, self-dual value)

p = pc(q) :=
√
q

1+√q , (1.1)

3 Two vertices z and w are said to be connected by ω if there exists a sequence {z j : 0 ≤ j ≤ l} of vertices
such that z0 = z and zl = w, and each edge 〈z j , z j+1〉 is open in ω for 0 ≤ j < l.
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Fig. 1 Consider discrete polygons (gray)with sixmarked boundary points. One possible boundary condition
for the random-cluster model is illustrated in the left figure, where the arcs (x1 x2), (x3 x4), (x5 x6) are
wired, and the arcs (x1 x2) and (x5 x6) are further wired outside of the polygon. This boundary condition
corresponds to the non-crossing partition {{1, 3}, {2}} of the three wired boundary arcs. One possible
random-cluster configuration in terms of its loop representation is illustrated in the right figure. It comprises
loops (black) and three interfaces inside the polygon: the orange curve connects x�1 and x�2 ; the purple curve
connects x�3 and x�6 ; and the green curve connects x�4 and x�5 . See Sect. 3 for details (color figure online)

then the random-cluster model exhibits a continuous phase transition in the sense that
after taking the infinite-volume (thermodynamic) limit, for p > pc(q) there almost
surely exists an infinite cluster, while for p < pc(q) there does not, and the limit
p ↘ pc(q) is approached in a continuous way. (This is also expected to hold when
q ∈ (0, 1), while it is known that the phase transition is discontinuous when q > 4
by [25].) Therefore, the scaling limit of the model at its critical point (1.1) is expected
to be conformally invariant for all q ∈ [0, 4]. In the present article, we will consider
multiple interfaces and boundary-to-boundary connection probabilities in the critical
random-cluster model with q ∈ [1, 4). See also [58] for the uniform spanning tree
model corresponding to q = 0.

1.1.3 Markov property

At the heart of many geometric arguments concerning the random-cluster model is its
(domain)Markov property: the restriction of themodel to a smaller graph only depends
on the boundary condition induced by such a restriction. To state this more precisely,
fix any p ∈ [0, 1] and q > 0, and suppose that G ⊂ G ′ are two finite subgraphs of Z

2

and that we have fixed a boundary condition π for the model on the boundary ∂G ′ of
the larger graph. Let X be a random variable which is measurable with respect to the
status of the edges in the smaller graph G. Then, for all υ ∈ {0, 1}E(G ′)\E(G), we have

μπ
p,q,G ′

[
X | ωe = υe for all e ∈ E(G ′)\E(G)

] = μυπ

p,q,G [X ],

where υπ is the partition on ∂G obtained by wiring two vertices in ∂G if they are
connected inυ. For instance, takingG to be a connected component of the complement
of the purple curve in Fig. 1, we obtain a random-cluster model on the smaller graph
G with modified boundary conditions.
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1.1.4 Boundary conditions

Consider now the random-cluster model on a polygon (�δ; xδ1, . . . , xδ2N ) with the
following boundary conditions: first, every other boundary arc is wired,

(xδ2r−1 xδ2r ) is wired, for all r ∈ {1, 2, . . . , N },

and second, these N wired arcs are further wired together according to a non-crossing
partition π outside of �δ , as illustrated in Figs. 1 and 2. Note that there is a natural
bijection β ↔ πβ between non-crossing partitions πβ of the N wired boundary arcs
and planar link patterns β with N links,

β ={{a1, b1}, {a2, b2}, . . . , {aN , bN }}
with link endpoints ordered as a1 < a2 < · · · < aN and ar < br ,

for all 1 ≤ r ≤ N ,

and such that there are no indices 1 ≤ r , s ≤ N with ar < as < br < bs,
(1.2)

where {a1, b1, . . . , aN , bN } = {1, 2, . . . , 2N } and the pairs {a j , b j } are called links.
Hence, we encode the boundary condition πβ in a label β. We denote by LPN � β the
set of planar link patterns of N links.

Let ω be a critical random-cluster configuration on�δ with boundary condition β.
For notational ease, keeping q ∈ [1, 4) and p = pc(q) fixed, we denote its law by

P
δ
β := μ

πβ

pc(q),q,�δ .

We consider in particular the cluster boundaries of ω (that is, its loop representation,
see Fig. 1 and Sect. 3). By planarity, there exist N curves, interfaces, on the medial
graph �δ,� running along ω and connecting the marked points {xδ,�1 , xδ,�2 , . . . , xδ,�2N }
pairwise, as also illustrated in Fig. 1. Let us denote by ϑδ

RCM the random planar connec-
tivity in LPN formed by the N discrete interfaces. In this article, we are particularly
interested in the connection probabilities P

δ
β [ϑδ

RCM = α] for α ∈ LPN , as functions of
the marked boundary points—Fig. 2 illustrates these crossing events. The goal is to
study conjectures for the scaling limits of the interfaces and their connection proba-
bilities, and prove these conjectures for the case of the critical FK-Ising model (which

has q = 2 and p = pc(2) =
√
2

1+√2 ).

1.1.5 Scaling limits

To specify inwhich sense the convergence as δ→ 0 should take place,weneed anotion
of convergence of polygons. In contrast to the commonly used Carathéodory conver-
gence of planar sets, we need a slightly stronger notion termed close-Carathéodory
convergence, following Karrila [44]. The precise definition will be given in Sect. 3.1
(Definition 3.1). Roughly speaking, the usual Carathéodory convergence allows wild
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Fig. 2 Consider discrete polygonswith sixmarked points on the boundary. One possible boundary condition
for the random-cluster model is illustrated in a. The corresponding possible planar link patterns α formed
by the interfaces are depicted in red in b(bottom), and they correspond to non-crossing partitions inside
b(top)

behavior of the boundary approximations, while in order to obtain tightness of the
random interfaces (i.e., precompactness needed to find convergent subsequences),
a slightly stronger convergence which guarantees good approximations around the
marked boundary points is required.

We also need a topology for the interfaces, which we regard as (images of) con-
tinuous mappings from [0, 1] to C modulo reparameterization (i.e., planar oriented
curves). For a simply connected domain � � C, we will consider curves in �. For
definiteness, we map � onto the unit disc U := {z ∈ C : |z| < 1}: for this we shall
fix4 any conformal map from� onto U. Then, we endow the curves with the metric

dist(η1, η2) := inf
ψ1,ψ2

sup
t∈[0,1]

|(η1(ψ1(t)))−(η2(ψ2(t)))|, (1.3)

4 The metric (1.3) depends on the choice of the conformal map , but the induced topology does not.
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where the infimum is taken over all increasing homeomorphisms ψ1, ψ2 : [0, 1] →
[0, 1]. The space of continuous curves on�modulo reparameterizations then becomes
a complete separable metric space.

1.1.6 Loewner chains

To describe scaling limits of interfaces, we recall that planar chordal curves can be
dynamically generated by Loewner evolution. In general, any continuous real-valued
function, called the driving function Wt : [0,∞)→ R, gives rise to a growing family
of sets via the following recipe (see [56, 65] for background). The Loewner equation

∂t gt (z) = 2

gt (z)−Wt
, with initial condition g0(z) = z, (1.4)

is an ordinary differential equation in time t ≥ 0, for each fixed point in the upper
half-plane, z ∈ H := {z ∈ C : Im(z) > 0}. It has a unique solution (gt , t ≥ 0) up to
Tz := sup{t ≥ 0 : mins∈[0,t] |gs(z)− Ws | > 0}, called the swallowing time of z. The
Loewner chain is a dynamical family of conformal bijections5 gt : H\Kt → H, where
the hull of swallowed points is Kt := {z ∈ H : Tz ≤ t}. We also say that the Loewner
chain is parameterized by half-plane capacity, which refers to the property that for
each time t ≥ 0, the coefficient of z−1 in the series expansion of gt at infinity equals
2t (this coefficient is, by definition, the half-plane capacity of the hull Kt , measuring
its size as seen from infinity).

The family (Kt , t ≥ 0) of hulls is also often called a Loewner chain, and it is said to
be generated by a continuous curve η : [0, T )→ H if for each t ∈ [0, T ), the setH\Kt

is the unbounded connected component of H\η[0, t]. We also refer to the curve η as a
Loewner chain. An example of a Loewner chain generated by a continuous curve is the
chordal Schramm–Loewner evolution, SLEκ , that is the random Loewner chain driven
byW = √κ B, a standard one-dimensional Brownian motion B of speed κ > 0. This
family indexed by κ is uniquely determined by the following two properties.

• Conformal invariance: The law of the SLEκ curve η in any simply connected
domain � is the pushforward of the law of the SLEκ curve in H by a conformal
map ϕ : H→ � which maps the two points 0,∞ to the two endpoints of η.
• Domain Markov property: given a stopping time τ and initial segment η[0, τ ] of
the SLEκ curve inH, the conditional law of the remaining piece η[τ,∞) is the law
of the SLEκ curve from the tip η(τ) to∞ in the unbounded connected component
of H\η[0, τ ].
The standard SLEκ curve in H connects the two boundary points 0 = η(0) and

∞ = limt→∞ |η(t)|. One can change the target point by adding a specific drift to the
driving Brownian motion (corresponding to the case N = 1 in Theorem 1.5 when
κ = 16/3). The parameter κ > 0 describes the behavior and the fractal dimension of
the SLEκ curve. For instance, it is almost surely a simple curve when κ ≤ 4, while for
κ ≥ 8, the SLEκ curve is almost surely space-filling. In the intermediate parameter

5 In fact, gt : H\Kt → H is the unique conformal map such that |gK (z)− z| → 0 as z→∞.
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range κ ∈ (4, 8), including the parameter range considered in the present article, the
SLEκ curve almost surely has self-touchings, but is not space-filling. See [56, 65] for
background and further properties of this process.

1.2 Conjectures for random-cluster models

Let us now fix parameters

κ ∈ (4, 8), h(κ) := 6− κ

2κ
, and q(κ) := 4 cos2(4π/κ).

Note that when κ ∈ (4, 6], we have q = q(κ) ∈ [1, 4) corresponding to the critical
random-cluster model with p = pc(q). (The case of κ = 4 corresponds to q =
4, which is still critical. We comment on this case in Remark 1.12.) To state the
expected formulas describing the scaling limits of multiple interfaces and connection
probabilities in the critical random-cluster models, we define for each β ∈ LPN the
basis Coulomb gas integral functions6 as

Gβ : X2N → R, where X2N :=
{
x := (x1, . . . , x2N ) ∈ R

2N : x1 < · · · < x2N
}
,

Gβ(x) :=
(√

q(κ) �(2− 8/κ)

�(1− 4/κ)2

)N $ xb1

xa1

· · ·
$ xbN

xaN

f (x; u1, . . . , uN ) du1 · · · duN ,

(1.5)

where the integration contours are pairwise non-intersecting paths in the upper half-
plane connecting the marked points pairwise according to the connectivity β, and the
integrand is

f (x; u1, . . . , uN ) :=
∏

1≤i< j≤2N
(x j − xi )

2/κ
∏

1≤r<s≤N
(us − ur )

8/κ

×
∏

1≤i≤2N
1≤r≤N

(ur − xi )
−4/κ , (1.6)

and the branch of this multivalued integrand is chosen to be real and positive when

xar < Re(ur ) < xar+1, for all 1 ≤ r ≤ N .

In (1.5), we use the integration symbols
# xbr
xar

dur to indicate that the integration of the
variable ur is performed from xar to xbr in the upper half-plane. Formulas of type (1.5),
while originating from the Coulomb gas formalism of conformal field theory [26, 51],
have appeared in theSLE literature [30, 31, 50] as partition functions for SLEκ variants,
and have then been used in the physics literature [34, 37] pertaining to Conjecture 1.3.

6 Since κ > 4, these integrals are convergent, for their singularities at the endpoints of the contours are
mild enough.
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Our formulas are motivated by their properties listed in Theorem 1.9. In particular, Gβ

are indeed partition functions of multiple SLEκ curves.
For fixed N ≥ 1, by a polygon (�; x1, . . . , x2N ) we refer to a bounded simply

connected domain� ⊂ C with distinct marked boundary points x1, . . . , x2N ∈ ∂� in
counterclockwise order, such that ∂� is locally connected. We extend the definition of
Gβ to a general polygon (�; x1, . . . , x2N )whosemarked boundary points x1, . . . , x2N
lie on sufficiently regular boundary segments (e.g., C1+ε for some ε > 0) as

Gβ(�; x1, . . . , x2N ) :=
2N∏

j=1
|ϕ′(x j )|h(κ) × Gβ(ϕ(x1), . . . , ϕ(x2N )), (1.7)

where ϕ is any conformal map from� onto H with ϕ(x1) < · · · < ϕ(x2N ). It follows
from the Möbius covariance (1.12) in Theorem 1.9 that this definition is independent
of the choice of the map ϕ.

We formulate the next Conjectures 1.1 and 1.3 in the case of square-lattice approxi-
mations, which is the setup that we use to give detailed proofs of these conjectures for
the critical FK-Ising model in Theorems 1.5 and 1.8. By universality, we expect the
same results to hold with any approximations. In fact, one should be able to readily
extend Theorems 1.5 and 1.8 to more general discrete approximations following the
lines of [16, 18]. For the sake of presentation, we content ourselves in the present work
to the simplest setup.

Conjecture 1.1 Fix a polygon (�; x1, . . . , x2N ) and a link pattern β ∈ LPN .
Suppose that a sequence (�δ,�; xδ,�1 , . . . , xδ,�2N ) of medial polygons converges to
(�; x1, . . . , x2N ) in the close-Carathéodory sense (as detailed in Definition 3.1). Con-
sider the critical random-cluster model with cluster-weight q ∈ [1, 4) on the primal
polygon (�δ; xδ1, . . . , xδ2N ) with boundary condition β. For each i ∈ {1, 2, . . . , 2N },
let ηδi be the interface starting from the boundary point xδ,�i . Let ϕ be any conformal
map from � onto H such that ϕ(x1) < · · · < ϕ(x2N ). Then, ηδi converges weakly to
the image under ϕ−1 of the Loewner chain with the following driving function, up to
the first time when ϕ(xi−1) or ϕ(xi+1) is swallowed:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dWt = √κ dBt + κ(∂i logGβ)
(
V 1
t , . . . , V

i−1
t ,Wt , V

i+1
t , . . . , V 2N

t

)
dt,

dV j
t = 2 dt

V j
t −Wt

,

W0 = ϕ(xi ),

V j
0 = ϕ(x j ), j ∈ {1, . . . , i − 1, i + 1, . . . , 2N },

(1.8)

where Gβ is defined in (1.5).

We prove Conjecture 1.1 for q = 2 in Theorem 1.5.

Definition 1.2 A meander formed from two link patterns α, β ∈ LPN is the planar
diagram obtained by placing α and the horizontal reflection β on top of each other. We
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denote by Lα,β the number of loops in the meander formed from α and β. We define
the meander matrix {Mα,β(q(κ)) : α, β ∈ LPN } via

Mα,β(q(κ)) :=
√
q(κ)

Lα,β
. (1.9)

An example of a meander is

⎧
⎪⎨

⎪⎩

α =
β =

�⇒

Conjecture 1.3 Assume the same setup as in Conjecture 1.1. The endpoints of the N
interfaces give rise to a random planar link pattern ϑδ

RCM in LPN . For any α ∈ LPN ,
we have

lim
δ→0

P
δ
β [ϑδ

RCM = α] = Mα,β(q(κ))
Zα(�; x1, . . . , x2N )
Gβ(�; x1, . . . , x2N ) , (1.10)

where Gβ and Mα,β are defined in (1.5, 1.7) and (1.9), respectively, and {Zα : α ∈
LPN } is the collection of pure partition functions for multiple SLEκ described in
Definition 1.4 below.

We prove Conjecture 1.3 for q = 2 in Theorem 1.8.
The content of Conjectures 1.1 and 1.3 has been predicted in the physics litera-

ture and also numerically verified in some cases with high precision, see [36, 37] and
references therein. Via a similar strategy as in the proof of Theorem 2.7, by using The-
orem 2.6 one can verify that our formula (1.5) for Gβ is consistent with the prediction
in [37, Eq. (11)].

“Pure partition functions” refer to a family of smooth functions defined as solutions
to a system of partial differential equations (PDEs) important in both CFT and SLE
theory, with certain recursive asymptotic boundary conditions. Uniqueness results
for solutions to PDEs are usually not available. However, it was proven by Flores
and Kleban [32, 33] that in this particular case, we do have a classification if we
impose certain additional requirements (covariance (COV) and growth bound (PLB)).
The PDEs appear in the pioneering CFT articles [6, 7] of Belavin, Polyakov, and
Zamolodchikov (BPZ) as a feature of the algebraic structure of conformal symmetry
for certainfields, and in early articles inSLE theorybyBauer et al. [3], andDubédat [30,
31], as a manifestation of certain martingales.

(PDE) BPZ equations: for all j ∈ {1, . . . , 2N },
[
κ

2

∂2

∂x2j
+

∑

i �= j

( 2

xi − x j

∂

∂xi
− 2h(κ)

(xi − x j )2

)]

F(x1, . . . , x2N ) = 0. (1.11)

The covariance gives a version of global conformal symmetry for the functions.
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(COV) Möbius covariance: for all Möbius maps ϕ of the upper half-plane H such
that ϕ(x1) < · · · < ϕ(x2N ),

F(x1, . . . , x2N ) =
2N∏

i=1
ϕ′(xi )h(κ) × F(ϕ(x1), . . . , ϕ(x2N )). (1.12)

Definition 1.4 Fix κ ∈ (0, 6]. The pure partition functions of multiple SLEκ are the
recursive collection {Zα : α ∈ ⊔

N≥0 LPN } of functions Zα : X2N → R>0 uniquely
determined by the following properties. They satisfy the PDE system (1.11), Möbius
covariance (1.12), as well as (ASY) and (PLB) given below.

(ASY) Asymptotics:With Z∅ ≡ 1 for the empty link pattern ∅ ∈ LP0, the collection
{Zα : α ∈ LPN } satisfies the following recursive asymptotics property. Fix
N ≥ 1 and j ∈ {1, 2, . . . , 2N − 1}. Then, we have

lim
x j ,x j+1→ξ

Zα(x)

(x j+1 − x j )−2h(κ)
=

{
Zα/{ j, j+1}(ẍ j ), if { j, j + 1} ∈ α,

0, if { j, j + 1} /∈ α,
(1.13)

where

x = (x1, . . . , x2N ) ∈ X2N ,

ẍ j = (x1, . . . , x j−1, x j+2, . . . , x2N ) ∈ X2N−2,
(1.14)

and ξ ∈ (x j−1, x j+2) (with the convention that x0 = −∞ and x2N+1 = +∞).
(PLB) The functions are positive and satisfy the power-law bound

0 < Zα(x) ≤
∏

{a,b}∈α
|xb − xa |−2h(κ), for all x ∈ X2N . (1.15)

We extend the definition of Zα to more general polygons (�; x1, . . . , x2N ) as in (1.7)
(replacing Gβ by Zα).

With a weaker power-law bound and relaxing the positivity requirement in (1.15),
the collection {Zα : α ∈ LPN } was first constructed in [33] indirectly by using
Coulomb gas integrals for all κ ∈ (0, 8), and explicitly for all κ ∈ (0, 8)\Q in [50],
following the conjectures from [3]. It is believed that these functions satisfy (1.15)
for all κ ∈ (0, 8). In general, for the range κ ∈ (0, 8], to our knowledge there are
explicit formulas for Zα only when κ /∈ Q (cf. [50]) and for a few special rational
cases: κ = 2 [48]; κ = 4 [62]; and κ = 8 [58]. For κ ∈ (0, 6], an explicit probabilistic
construction was given in [70, Theorem 1.7], which immediately implies (1.15). See
also Remark 1.11 and [63].

1.3 Results: multiple interfaces and connection probabilities for the FK-Ising
model

Our first main result concerns the scaling limit of the FK-Ising interfaces.
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Theorem 1.5 Conjecture 1.1 holds for q = 2 and κ = 16/3. In this case, we have

Gβ(x1, . . . , x2N ) = Fβ(x1, . . . , x2N )

:=
N∏

s=1
|xbs − xas |−1/8

⎛

⎝
∑

σ∈{±1}N

∏

1≤s<t≤N
χ(xas , xat , xbt , xbs )

σsσt/4

⎞

⎠

1/2

, (1.16)

where σ = (σ1, σ2, . . . , σN ) ∈ {±1}N and χ : R4→ R is the cross-ratio

χ1,2,3,4 = χ(y1, y2, y3, y4) := |y2 − y1| |y4 − y3|
|y3 − y1| |y4 − y2| . (1.17)

Remark 1.6 The square of this formula also appears in moments of the real part of an
imaginary Gaussian multiplicative chaos distribution [43, Theorem 1.5].

The case N = 1 of one curve in Theorem 1.5 was proven in a celebrated group
effort summarized in [11]. The scaling limit curve is the chordal Schramm–Loewner
evolution. The proof in the case of N = 1 involves two main steps. The first step is to
show that the sequence {ηδ1}δ>0 of interfaces is tight, which implies precompactness

by Prokhorov’s theorem, and thus enables finding convergent subsequences ηδn1 → η1
with some limit curve η1. Second, one has to show that all of these subsequences
actually converge to the same limit, identified in this case with the chordal SLE16/3.
The precompactness step is established by refined crossing estimates [20, 53], while
the identification of the limit curve involves an ingenious usage of a discrete holomor-
phic spinor observable (devised by Smirnov [69] and further developed by Chelkak,
Smirnov, and others, cf. [13, 14, 16]) converging to its continuum counterpart, which
gives the sought driving function Wt = √16/3 Bt via a suitable series expansion.

In the case N = 2 of two curves (η1, η2), Theorem 1.5 was proven in [16, 54].
Since the conformal invariance fixes three real degrees of freedom, while the polygon
(�; x1, x2, x3, x4) has four real degrees of freedom, a similar strategy as in the case
of one curve gives the result, and the driving function of one curve, say η1 (in its
marginal law), is given by Brownian motion with a drift involving the hypergeometric
function. Essentially, the only additional input compared to the case of N = 1 is that
one has to solve an ordinary differential equation for the drift term, which results in
the hypergeometric equation.

The case of N ≥ 3 is significantly more involved. Because there are several degrees
of freedom, the identification of the scaling limit requires finding a suitablemulti-point
discrete holomorphic spinor observable, or alternatively, some other proof strategy.
For the special case where the boundary condition is the totally unnested link pattern

β = ∩∩ := {{1, 2}, {3, 4}, . . . , {2N − 1, 2N }}, (1.18)
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Theorem 1.5 was proven recently by Izyurov [42] and earlier implicitly conjectured
by Flores et al. [37]. In Sect. 3, we will prove Theorem 1.5 with general boundary
conditions β. The main addition compared to the earlier results is the identification of
the drift term for general β, given by (1.16), and finding a suitably general multi-point
observable. The rough strategy is the following.

• We construct a discrete holomorphic observable with general boundary conditions
in Sect. 3.2 and identify its scaling limit observable φβ in Sect. 3.4. This is a
generalization of the previous observables constructed in [16, 41, 42]. Some key
ideas for the proof in Sect. 3.4 are learned from [41].
• We analyze the observable φβ , expand it to certain precision, and relate its expan-
sion coefficients to Fβ in Sect. 3.3. This step is rather technical, but contains the
gist of the proof of Theorem 1.5: identification of the scaling limit (1.8) with the
explicit drift given by the function Fβ in formula (1.16). The form of the func-
tion Fβ is very similar to [42, Theorem 1.1], but we allow a general external
connectivity that gives the boundary condition β.
• Most importantly, in Sect. 2.3 (Theorem 2.7) we also show that the function Fβ

coincides with the prediction Gβ from the Coulomb gas formalism of CFT related
to [37, Eq. (C.14)].
• Finally, we derive the Loewner Eq. (1.8) for κ = 16/3 from the observable φβ in
Sect. 3.5 using its properties derived in Sect. 3.3. This step is relatively standard.

Remark 1.7 Note that formula (1.16) has the form of a bulk spin correlation function
in the Ising model [13, Eq. (1.4)], but with the spins put on the real line instead,
in such way that each pair {xar , xbr } corresponds to a bulk point zr and its complex
conjugate zr (see also [37, Eq. (C.14)] and [42, Theorem 1.1] for the special case
where β = ∩∩ (1.18)). This observation, or “reflection trick”, was used by Flores,
Simmons, Kleban, and Ziff [36, Fig. 3] and later in [37] to predict formulas,7 for
Gβ in [37, Eq. (11)]. The idea is, to our knowledge, originally due to Cardy [8],
who observed that via the reflection trick, bulk correlations satisfying so-called BPZ
differential equations [6, 7] can be related to boundary correlations also satisfying
similar equations.8 We show in Theorem 1.9 that Gβ indeed satisfies these equations,
along with specific asymptotic boundary conditions that heuristically give the “fusion
rules” for the corresponding CFT primary fields. See also [33, Theorem 8] and [34,
Theorem 2].

Theorem 1.8 Conjecture 1.3 holds for q = 2 and κ = 16/3, with Gβ = Fβ as
in (1.16).

Our formula (1.10) with N = 2 and κ = 16/3 is consistent with [37, Eq. (117)]; see
also [16, Eq. (1.1)] for a formula with different boundary conditions. Izyurov proved
the conformal invariance of some further probabilities of (unions of) connection events
[41, 42]—see in particular [42, Corollary 1.3]. Our result settles the general case for
any α, β ∈ LPN . We prove Theorem 1.8 in Sect. 4 via the following strategy.

7 Our formula (1.5) for Gβ is seemingly different from [37, Eq. (11)] but they actually coincide.
8 Note that the reflection trick only indicates that certain formulas satisfy certain partial differential equa-
tions, and does not give much physical interpretation of this relationship.
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• We first prove (1.10) for κ = 16/3 with β = ∩∩ (Sect. 4.1) via a martingale argu-
ment using the convergence of the interfaces. This step depends on fine analysis of
the martingale observable given by the ratio Zα/F∩∩ (which is a local martingale
with respect to growing any of the interfaces thanks to the PDEs (1.11)). There are
two key ingredients: a cascade relation for the pure partition functions Zα from
[70], and technical work that we defer to Appendix B.
• We then derive (1.10) for κ = 16/3 and for general boundary condition β

(Sect. 4.2), by using the conclusion for β = ∩∩. Indeed, we can relate the case of
general β to the case of ∩∩ for any random-cluster model directly in the discrete
setup—see Proposition 4.6 for such a useful formula.

1.4 Results: properties of the Coulomb gas integrals

Lastly, we show that the functions appearing in Conjectures 1.1 and 1.3 do indeed
satisfy important properties predicted by conformal field theory. These properties
are also needed for the identification of Gβ with Fβ for the case of κ = 16/3 in
Theorem 2.7.

Theorem 1.9 Fix κ ∈ (4, 8). The functions Gβ defined in (1.5) satisfy the following
properties.

(PDE) The BPZ Eq. (1.11).
(COV) The Möbius covariance (1.12).
(ASY) Asymptotics: With G∅ ≡ 1 for the empty link pattern ∅ ∈ LP0, the collection

{Gβ : β ∈ LPN } satisfies the following recursive asymptotics property. Fix
N ≥ 1 and j ∈ {1, 2, . . . , 2N − 1}. Then, for all ξ ∈ (x j−1, x j+2), using the
notation (1.14), we have

lim
x j ,x j+1→ξ

Gβ(x)

(x j+1 − x j )−2h(κ)
=

{√
q(κ)Gβ/{ j, j+1}(ẍ j ), if { j, j + 1} ∈ β,

G℘ j (β)/{ j, j+1}(ẍ j ), if { j, j + 1} /∈ β,

(1.19)

where β/{ j, j + 1} ∈ LPN−1 denotes the link pattern obtained from β

by removing the link { j, j + 1} and relabeling the remaining indices by
1, 2, . . . , 2N − 2, and ℘ j is the “tying operation” defined by

℘ j : LPN → LPN ,

℘ j (β) =
(
β\({ j, k1}, { j + 1, k2})

) ∪ { j, j + 1} ∪ {k1, k2},

where the index k1 (resp. k2) is the pair of the index j (resp. j + 1) in β (and
{ j, k1}, { j + 1, k2}, {k1, k2} are unordered).
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One can also relate these Coulomb gas integral functions directly to the pure parti-
tion functions by using the meander matrix. Such a relation appears implicitly in [33,
Theorem 8] for all κ ∈ (0, 8).

Proposition 1.10 Fix κ ∈ (4, 6]. For all x = (x1, . . . , x2N ) ∈ X2N , we have

Gβ(x) =
∑

α∈LPN

Mα,β(q(κ))Zα(x) > 0, for all β ∈ LPN , (1.20)

where Gβ andMα,β(q(κ)) are defined in (1.5) and (1.9), respectively, and {Zα : α ∈
LPN } is the collection of pure partition functions for multiple SLEκ described in
Definition 1.4.

We prove Proposition 1.10 in Sect. 2.2. The idea is that both sides of Eq. (1.20)
satisfy the same PDE boundary value problem, which uniquely determines them.

Remark 1.11 The relation (1.20) in Proposition 1.10 only allows to solve for Zα

explicitly when the meander matrix M(N )(q(κ)) := {Mα,β(q(κ)) : α, β ∈ LPN }
is invertible. By [27, Eq. (5.6)], we know thatM(N )(q(κ)) is invertible if and only if
κ is not one of the exceptional values

κr ,s := 4r

s
, r , s ∈ Z>0 coprime and 1 ≤ s < r < N + 2.

We see that, for example, the value κ = 16/3 belongs to this set with r = 4 and s = 3,
when N ≥ 3. Indeed, in the case where κ = 16/3 and N = 3, the following element
belongs to the kernel ofM(N )(2):

G + G + G −√2G −√2G .

One can find the kernel explicitly also in general (cf. [35]), but this does not immedi-
ately givemeans to solve forZα from (1.20). Let us also remark thatwe know from [33,
Theorem 8] that {Zα : α ∈ LPN } are linearly independent, but {Gβ : β ∈ LPN } are not
unless the matrixM(N )(q(κ)) is invertible.

Remark 1.12 The case of κ = 4, that is, q(κ) = 4, is excluded. Here, we believe that
one can take the limit κ ↘ 4 to obtain formulas for this case, and Conjectures 1.1
and 1.3 will still hold. Note that while the integrals in (1.5) are not convergent if
κ = 4, one can get convergent integrals easily by replacing the contours in

# xbr
xar

dur ,
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that we have chosen for simplicity of the presentation, by Pochhammer type contours
as illustrated in Sect. 2.1 (Eq. (2.3)). Also, the multiplicative constant in (1.5) equals
zero when κ = 4, so a slightly different normalization is needed (also chosen in
accordance with Appendix C).

1.4.1 Organization of this article

Section 2 and Appendix C concern the Coulomb gas integral functions (Theorem 1.9)
and their relation to the functionFβ when κ = 16/3 (Proposition 1.10). Section3 and
Appendix A together prove the convergence of the FK-Ising interfaces (Theorem 1.5),
and Sect. 4 and Appendix B contain the proof of our scaling limit result for the
connection probabilities (Theorem 1.8).

2 Properties of partition functions

Throughout, we consider link patternsβ ∈ LPN with link endpoints ordered as in (1.2).

2.1 Coulomb gas integrals and the proof of Theorem 1.9

In this section, we consider the functions Gβ , for β ∈ LPN , defined in Coulomb gas
integral form via (1.5). Coulomb gas integrals [26, 30, 51] stem from conformal field
theory (CFT), where they have been used as a general ansatz to find formulas for cor-
relation functions. Specifically to our case, we seek correlation functions satisfying a
system of PDEs (1.11) known as Belavin–Polyakov–Zamolodchikov (BPZ) differen-
tial equations [6], and a specific Möbius covariance property (1.12). The latter is just
a manifestation of the global conformal invariance, while the former is a peculiarity
in our case: the integrals Gβ represent correlation functions of so-called degenerate
fields at level two in a CFT. It is by now well-known that such correlation functions
have a close relationship with SLEκ curves: they are examples of partition functions
of multiple SLEκ (they are, in fact, linear combinations of the pure partition functions
in Definition 1.4—see Proposition 1.10).

To understand the definition of Gβ in (1.5), note that as a function of the integration
variables

u = (u1, . . . , uN ) ∈W(N ) = W(N )
x1,...,x2N :=

(
C\{x1, . . . , x2N }

)N
,

the integrand function f (x; ·) given in (1.6) has ramification points ur = x j and
ur = us for r �= s. To define a branch for it on a simply connected subset of W(N ),
we impose f (x; ·) to be real and positive on

Rβ :=
{
u ∈W(N ) : xar < Re(ur ) < xar+1 for all 1 ≤ r ≤ N

}
, (2.1)

and for definiteness, we denote this branch choice as fβ(x; ·) : Rβ → R>0. Then, its
values elsewhere inW(N ) are completely determined by analytic continuation.

123



Y. Feng et al.

The goal of this section is to give a proof of Theorem 1.9 via establishing a rela-
tion between Gβ with similar integrals H◦β involving Pochhammer contours, which
are easier to analyze. The latter only involve integrations avoiding the marked points
x1, . . . , x2N and are thus convergent for all κ > 0. Our choice in (1.5) for the inte-
gration contours touching the marked points is merely a notational simplification (for
κ ∈ (4, 8)). The proof of Theorem 1.9 comprises several auxiliary results presented
in this section.

Proof of Theorem 1.9 The proof is a collection of the following results.

• Gβ satisfies the BPZ PDEs (1.11) due to Eq. (2.5), Lemma 2.1, and Proposition 2.3.
• Gβ satisfies Möbius covariance (1.12) due to Eq. (2.5), Lemma 2.1, and Proposi-
tion 2.2.
• Gβ satisfies the asymptotics (1.19) due to Lemma 2.4 and Proposition 2.5.

For the auxiliary results, we define the functionH◦β : X2N → C on the configuration
space (1.5) as

H◦β(x) :=
j
ϑ
β
1

du1

j
ϑ
β
2

du2 · · ·
j
ϑ
β
N

duN fβ(x; u), x ∈ X2N , (2.2)

where each ϑ
β
r is a Pochhammer contour which encircles each of the points xar , xbr

once in the positive direction and once in the negative direction:

ϑβ
r = (2.3)

and which does not encircle any other marked point among {x1, . . . , x2N } (cf. illustra-
tions in [33, p. 7] and [30, Fig. 6]). Note that since the integration contours ϑβ

j avoid
the marked points x1, . . . , x2N , the integral H◦β(x) is convergent for all κ > 0. We
also extend H◦β to a multivalued function on the larger set

Y2N := {x = (x1, . . . , x2N ) ∈ C
2N : xi �= x j for all i �= j}.

Lemma 2.1 Fix κ > 4. Writing u = (u1, . . . , uN ), we have

Hβ(x) :=
$ xb1

xa1

du1 · · ·
$ xbN

xaN

duN fβ(x; u) =
(
4 sin2(4π/κ)

)−N H◦β(x). (2.4)

Note that the function Gβ defined in Eq. (1.5) equals

Gβ(x) =
(√

q(κ) �(2− 8/κ)

�(1− 4/κ)2

)N

Hβ(x), x ∈ X2N . (2.5)
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Proof Because the contours ϑβ
1 , . . . , ϑ

β
N in H◦β are all disjoint, by Fubini’s theorem,

we may first evaluate the integrals over those ϑ
β
s for which bs = as + 1. Suppose

first that the other integration variables are frozen to some positions such that xar <

Re(ur ) < xar+1 for all 1 ≤ r ≤ N with r �= s. Then, we have

j
ϑ
β
s

dus fβ(x; u) =
$ xbs

xas

dus | fβ(x; u)| + e8πi/κ
$ xas

xbs

dus | fβ(x; u)|

+ e−8πi/κe8πi/κ
$ xbs

xas

dus | fβ(x; u)|

+ e−8πi/κe−8πi/κe8πi/κ
$ xas

xbs

dus | fβ(x; u)|

= 4 sin2(4π/κ)
$ xbs

xas

dus | fβ(x; u)|. (2.6)

From this computation, we also see that when the other integration variables in u̇s :=
(u1, . . . , us−1, us+1, . . . , uN )move around their respective contours inH◦β , the phase
factors in both sides of (2.6) are the same. Therefore,we can replace each integral inH◦β
of type

ı
ϑ
β
s
dus for some bs = as + 1 by the integral

# xbs
xas

dus times the multiplicative
constant 4 sin2(4π/κ).

Next, for any bs = as+3, we see that the phase factors associated to the integration
variable us surrounding all of the points {xas+1, xas+2, us+1} cancel out. Therefore,
we can also replace each integral in H◦β of type

ı
ϑ
β
s
dus for some bs = as + 3 by the

integral
# xbs
xas

dus times 4 sin2(4π/κ).
We see iteratively that all of the integrals over the disjoint contours ϑβ

1 , . . . , ϑ
β
N in

H◦β canbe replacedby integrals over the corresponding intervalswith themultiplicative
constant as in asserted identity (2.4).

Proposition 2.2 For each β ∈ LPN , the function H◦β satisfies the covariance (1.12),
that is, for all Möbius maps ϕ : H→ H such that ϕ(x1) < · · · < ϕ(x2N ),

H◦β(x1, . . . , x2N ) =
2N∏

i=1
ϕ′(xi )h(κ) × H◦β(ϕ(x1), . . . , ϕ(x2N )). (2.7)

Proof The proof is very similar to arguments appearing in [51, Proposition 4.15] (for
κ /∈ Q). One readily checks the covariance under translations and scalings:

H◦β(x1 + y, . . . , x2N + y) = H◦β(x1, . . . , x2N ),
H◦β(λx1, . . . , λx2N ) = λ−2Nh(κ)H◦β(x1, . . . , x2N ),

for all y ∈ R and λ > 0. Then, using this translation invariance, for special conformal
transformations ϕc : z �→ z

1+cz satisfying ϕc(x1) < · · · < ϕc(x2N ), we may without
loss of generality assume that x1 < 0 and x2N > 0, so that c ∈ (−1/x2N ,−1/x1).
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The covariance property (2.7) can be verified by considering the c-variation of the
right-hand side of (2.7) with ϕ = ϕc: denoting ϕc(x) = (ϕc(x1), . . . , ϕc(x2N )),

d

dc

⎛

⎜
⎜
⎝

2N∏

i=1
ϕ′c(xi )h(κ) ×

ˆ

ϑ
β
1 ×···×ϑβ

N

fβ(ϕc(x); u) du1 · · · duN

⎞

⎟
⎟
⎠

= −
2N∏

i=1
ϕ′c(xi )h(κ) ×

ˆ

ϑ
β
1 ×···×ϑβ

N

2N∑

j=1

(

x2j
∂

∂x j
fβ − x j

4
fβ

)

(ϕc(x); u) du1 · · · duN .

(2.8)

This can be evaluated by observing (via a long calculation combined with Liouville
theorem, as in [51, Lemma 4.14]) that the integrand function f defined in (1.6) satisfies
the partial differential equation

2N∑

j=1

(
x2j

∂

∂x j
+ 2h(κ) x j

)
f (x; u) =

N∑

r=1

∂

∂ur

(
g(ur ; x; u̇r ) f (x; u)),

where u̇r = (u1, . . . , ur−1, ur+1, . . . , uN ) and g is a rational function which is sym-
metric in its last N−1 variables, andwhose only poles arewhere some of its arguments
coincide. This gives

(2.8) = −
2N∏

i=1
ϕ′c(xi )h(κ)

×
ˆ

ϑ
β
1 ×···×ϑβ

N

N∑

r=1

∂

∂ur

(
g(ur ;ϕc(x); u̇r ) fβ(ϕc(x); u)

)
du1 · · · duN ,

which equals zero because each term in the sum vanishes by integration by parts, as
the Pochhammer contours are homologically trivial. Therefore, the right-hand side of
the asserted formula (2.7) with ϕ = ϕc is constant in c ∈ (−1/x2N ,−1/x1). Since at
ξ = 0 we have ϕ0 = idH, this constant equals H◦β(x).

Since the Möbius group is generated by these three types of transformations, (2.7)
follows.

Proposition 2.3 For each β ∈ LPN , the function H◦β satisfies the PDE system (1.11),
that is, for all j ∈ {1, . . . , 2N },

D( j)H◦β(x) :=
[
κ

2

∂2

∂x2j
+

∑

i �= j

( 2

xi − x j

∂

∂xi
− 2h(κ)

(xi − x j )2

)]

H◦β(x) = 0. (2.9)
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Proof Fix j ∈ {1, . . . , 2N }. The proof is very similar to arguments appearing in [51,
Proposition 4.12] (for κ /∈ Q) and [58, Proposition 2.8] (for κ = 8). By dominated
convergence, we can take the differential operator D( j) inside the integral in H◦β ,
and thus let it act directly to the integrand fβ . Explicit calculations (similar to [51,
Lemma 4.9 and Corollary 4.11]) then give

D( j)H◦β(x) =
N∑

r=1

ˆ

ϑ
β
1 ×···×ϑβ

N

∂

∂ur

(
g(ur ; x; u̇r ) fβ(x; u)

)
du1 · · · duN ,

and similarly as in the proof of Proposition 2.2, integration by parts in each term in
this sum shows that each term equals zero, which gives the asserted PDE (2.9).

Lemma 2.4 Fixβ ∈ LPN with link endpoints ordered as in (1.2). Fix j ∈ {1, . . . , 2N−
1} such that { j, j + 1} ∈ β. Then, for all ξ ∈ (x j−1, x j+2), using the notation (1.14),
we have

lim
x j ,x j+1→ξ

Gβ(x)

(x j+1 − x j )−2h(κ)
= √

q(κ)Gβ/{ j, j+1}(ẍ j ). (2.10)

Proof We will use the relation of Gβ with H◦β from (2.4, 2.5). Let ϑβ
s � us be the

Pochhammer loop in (2.2) which surrounds the points x j and x j+1. Note that the
integration contours ϑ

β
1 , . . . , ϑ

β
s−1, ϑ

β
s+1, . . . , ϑ

β
N remain bounded away from each

other and fromϑ
β
s , and their homotopy types donot changeupon taking the limit (2.10).

By the dominated convergence theorem, the integral relevant for evaluating the limit
is

lim
x j ,x j+1→ξ

ˆ x j+1

x j
dur

fβ(x; u)
(x j+1 − x j )−2h(κ)

= lim
x j ,x j+1→ξ

$ x j+1

x j
dur

fβ(x; u)
(x j+1 − x j )−2h(κ)

. (2.11)

By making the change of variables v = us−x j
x j+1−x j in this integral and collecting all the

factors, carefully noting that no branch cuts are crossed, and after taking into account
cancellations and that some terms tend to one in the limit x j , x j+1→ ξ , we obtain

(2.11) = fβ(ẍ j ; u̇s)
ˆ 1

0
v−4/κ(1− v)−4/κdv =

(
�(1− 4/κ)

)2

�(2− 8/κ)
fβ(ẍ j ; u̇s),

where u̇s := (u1, . . . , us−1, us+1, . . . , uN ) and the multiplicative factor is the Euler
Beta function. Thus, using Lemma 2.1 together with (2.5), and (2.6) from the proof
of Lemma 2.1, we obtain (2.10).
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Proposition 2.5 Fix β ∈ LPN with link endpoints ordered as in (1.2). Fix j ∈
{1, . . . , 2N − 1} such that { j, j + 1} ∈ β. Then, for all ξ ∈ (x j−1, x j+2), using
the notation (1.14), we have

lim
x j ,x j+1→ξ

Gβ(x)

(x j+1 − x j )−2h(κ)
= G℘ j (β)/{ j, j+1}(ẍ j ).

Proof We prove Proposition 2.5 in Appendix C. The proof is rather long and technical.

2.2 Coulomb gas integrals as linear combinations of pure partition functions

In this section, we will prove Proposition 1.10, which gives a linear relation between
the Coulomb gas type partition functions Gβ of Theorem 1.9 and the pure partition
functionsZα of Definition 1.4. To this end, we use a deep result from [32] concerning
the uniqueness of solutions to the PDE boundary value problems associated to the
BPZ Eq. (1.11).

Theorem 2.6 [32, Lemma 1]Fix κ ∈ (0, 8). Let F : X2N → C be a function satisfying
the PDE system (1.11) and the covariance (1.12). Suppose furthermore that there exist
constants C > 0 and p > 0 such that for all N ≥ 1 and (x1, . . . , x2N ) ∈ X2N , we
have

|F(x1, . . . , x2N )| ≤ C
∏

1≤i< j≤2N
(x j − xi )

μi j (p),

where μi j (p) :=
{
p, if |x j − xi | > 1,

−p, if |x j − xi | < 1.
(2.12)

If F also has the following asymptotics property for all j ∈ {2, 3, . . . , 2N − 1}:

lim
x j ,x j+1→ξ

F(x1, . . . , x2N )

(x j+1 − x j )−2h(κ)
= 0, for any ξ ∈ (x j−1, x j+2), (2.13)

(with the convention that x0 = −∞ and x2N+1 = +∞), then F ≡ 0.

Thanks to Theorem 2.6, to verify the linear relation (1.20) asserted in Proposi-
tion 1.10 between the two sets of functions {Gβ : β ∈ LPN } and {Zα : α ∈ LPN }, it
suffices to show that the difference

Gβ −
∑

α∈LPN
Mα,β(q(κ))Zα

︸ ︷︷ ︸
=:G̃β

satisfies all of the properties in Theorem 2.6.
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Proof of Proposition 1.10 Fix κ ∈ (4, 6]. Let us consider the functions G̃β . As {Zα : α ∈
LPN } satisfy (1.11, 1.12), the functions G̃β also satisfy (1.11, 1.12) by linearity. Also,
asZα satisfy (1.15), the functions G̃β satisfy (2.12). It remains to study the asymptotics
of G̃β . To this end, we fix N ≥ 1, a link patternβ ∈ LPN , index j ∈ {1, 2, . . . , 2N−1},
and point ξ ∈ (x j−1, x j+2). Then, using the notation (1.14), we find the following
asymptotics for G̃β .

• If { j, j + 1} ∈ β, then for any α ∈ LPN , we have

Mα,β(q(κ)) =
√
q(κ)Mα/{ j, j+1},β/{ j, j+1}(q(κ)), (2.14)

since the number of loops in the meander satisfiesLα,β = Lα/{ j, j+1},β/{ j, j+1}+1.
Using this, we find

lim
x j ,x j+1→ξ

G̃β(x)

(x j+1 − x j )−2h(κ)

=
∑

α∈LPN{ j, j+1}∈α

Mα,β(q(κ))Zα/{ j, j+1}(ẍ j ) [by (1.13)]

=
∑

γ∈LPN−1

√
q(κ)Mγ,β/{ j, j+1}(q(κ))Zγ (ẍ j ) [by (2.14)]

= √
q(κ) G̃β/{ j, j+1}(ẍ j ),

by re-indexing the sum using the bijection α ↔ α/{ j, j + 1} = γ .
• If { j, j + 1} /∈ β, then for any α ∈ LPN , we have

Mα,β(q(κ)) =Mγ,℘ j (β)/{ j, j+1}(q(κ)) (2.15)

since the number of loops in themeander satisfiesLα,β = Lα/{ j, j+1},℘ j (β)/{ j, j+1}.
Using this, we find

lim
x j ,x j+1→ξ

G̃β(x)

(x j+1 − x j )−2h(κ)

=
∑

α∈LPN{ j, j+1}∈α

Mα,β(q(κ))Zα/{ j, j+1}(ẍ j ) [by (1.13)]

=
∑

γ∈LPN−1
Mγ,℘ j (β)/{ j, j+1}(q(κ))Zγ (ẍ j ) [by (2.15)]

= G̃℘ j (β)/{ j, j+1}(ẍ j ),

by re-indexing the sum using the bijection α ↔ α/{ j, j + 1} = γ .

With these properties of G̃β at hand, recalling that Gβ satisfy the asymptotics (1.19)
analogous to the asymptotics of G̃β , we see recursively (by induction on N ≥ 1) that
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the collection {Gβ − G̃β : β ∈ LPN } satisfies all of the properties in Theorem 2.6.
Therefore, we conclude that Gβ = G̃β , for all β ∈ LPN .

Lastly, we see that Gβ > 0 because Zα > 0 and Mα,β(q(κ)) > 0, for all α, β ∈
LPN .

2.3 Partition functionsFˇ when � = 16/3

The aim of this section is to verify the alternative formula (1.16) in Theorem 1.5 for
Gβ when κ = 16/3.

Theorem 2.7 The functions Fβ defined in (1.16) satisfy the PDEs (1.11) and the
Möbius covariance (1.12) with κ = 16/3, as well as the asymptotics (using the
notation (1.14))

lim
x j ,x j+1→ξ

Fβ(x)

(x j+1 − x j )−2h(κ)
=
{√

q(κ)Fβ/{ j, j+1}(ẍ j ), if { j, j + 1} ∈ β,

F℘ j (β)/{ j, j+1}(ẍ j ), if { j, j + 1} /∈ β,

(2.16)

for all ξ ∈ (x j−1, x j+2), j ∈ {1, 2, . . . , 2N − 1}, and N ≥ 1. Consequently, Fβ

equals Gβ when κ = 16/3.

To prove Theorem 2.7, we shall again make use of Theorem 2.6.

Proof of Theorem 2.7 It suffices to verify that the difference Fβ −Gβ (with κ = 16/3)
satisfies all of the properties in Theorem 2.6. Indeed, we will prove in this section the
following properties for Fβ .

• Fβ satisfies the PDE system (1.11) with κ = 16/3 due to Proposition 2.9.
• Fβ satisfies the Möbius covariance (1.12) with κ = 16/3 due to Proposition 2.10.
• Fβ satisfies the asymptotics (2.16) with κ = 16/3 due to Proposition 2.11.

Hence, byTheorem1.9, the differenceFβ−Gβ satisfies the power lawbound (2.12),
the PDE system (1.11), and the Möbius covariance (1.12). Since also similar asymp-
totics (2.16) and (2.13) hold for Fβ and Gβ , we see recursively9 that the collection
{Fβ − Gβ : β ∈ LPN } satisfies all of the properties in Theorem 2.6.

Corollary 2.8 We have

Fβ(x) =
∑

α∈LPN

Mα,β(2)Zα(x), for all β ∈ LPN ,

where Fβ is defined in (1.16), Mα,β(2) is defined in (1.9) with q = 2, and {Zα : α ∈
LPN } is the collection of pure partition functions for multiple SLEκ described in
Definition 1.4 with κ = 16/3.

9 That is, by induction on N ≥ 1.
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Proof This is immediate from Proposition 1.10 and Theorem 2.7.

In the remainder of this section, we prove the missing ingredients for Theorem 2.7.

Proposition 2.9 The functionsFβ defined in (1.16) satisfy the PDE system (1.11) with
κ = 16/3.

It has already been known for a long time in the physics literature that the bulk spin
correlation functions in the Ising model satisfy the BPZ PDEs (1.11) (see, e.g., [28,
Chapter 12.2.2]). Thiswas recently verified explicitly by Izyurov in [42,Corollary 1.3],
and we recover the same result from Theorem 1.5 (which will be proven in Sect. 3,
independently of the results of the present section).

Proof The PDEs (1.11) follow from Theorem 1.5 together with the commutation
relations for SLEs derived by Dubédat [31, Theorem 7], see also [50, Appendix A],
and [42, Corollary 1.3].

Proposition 2.10 The functionsFβ defined in (1.16) satisfy the covariance (1.12)with
κ = 16/3.

Proof For any Möbius map ϕ of H such that ϕ(x1) < · · · < ϕ(x2N ), we have

ϕ(y)− ϕ(x) = ϕ′(x)1/2ϕ′(y)1/2(y − x), for all x1 ≤ x < y ≤ x2N .

This gives the desired the covariance by direct inspection of the formula (1.16).

Proposition 2.11 The functions Fβ defined in (1.16) satisfy the asymptotics (2.16)
with κ = 16/3.

Proof We use the notation (1.14). We first treat the case where { j, j + 1} ∈ β. Write
ar = j and br = j + 1 for some r ∈ {1, . . . , N }. Then, we easily find the desired
asymptotics (2.16) from formula (1.16): writing χas ,at ,bt ,bs = χ(xas , xat , xbt , xbs ) as
in (1.17), we have

lim
x j ,x j+1→ξ

Fβ(x)
|x j+1 − x j |−1/8

=
∏

1≤s≤N
s �=r

|xbs − xas |−1/8
⎛

⎜
⎜
⎝

∑

σ∈{±1}N

∏

1≤s<t≤N
s,t �=r

χ
σsσt/4
as ,at ,bt ,bs

⎞

⎟
⎟
⎠

1/2

= √2Fβ/{ j, j+1}(ẍ j ).

Next, we treat the more complicated case where { j, j + 1} /∈ β. We consider three
cases separately.

(A): Suppose there exist 1 ≤ r < s ≤ N such that ar < br = j < j + 1 = as < bs .
First, we have
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lim
x j ,x j+1→ξ

∏

1≤t≤N
|xbt − xat |−1/8

= |ξ − xar |−1/8 |xbs − ξ |−1/8
∏

1≤t≤N
t �=r ,s

|xbt − xat |−1/8; (2.17)

and second, for fixed σ = (σ1, . . . , σN ) ∈ {±1}N , we have

∏

1≤t<u≤N
χ

σtσu/4
at ,au ,bu ,bt

=
∣
∣
∣
∣
(x j+1 − xar )(xbs − x j )

(xbs − xar )(x j+1 − x j )

∣
∣
∣
∣

σrσs/4 ∏

1≤t<u≤N
{t,u}�={r ,s}

χ
σtσu/4
at ,au ,bu ,bt

.

After normalizing by |x j+1 − x j |−1/4 and letting x j , x j+1 → ξ , only the terms
with σrσs = 1 survive. Thus, for fixed σ ∈ {±1}N with σrσs = 1, we have

lim
x j ,x j+1→ξ

1

|x j+1 − x j |−1/4
∏

1≤t<u≤N
χ

σtσu/4
at ,au ,bu ,bt

=
∏

1≤t<u≤N
{t,u}∩{r ,s}=∅

χ
σtσu/4
at ,au ,bu ,bt

∏

1≤t<r

χ(xat , xar , ξ, xbt )
σtσr /4

×
∏

1≤t<s
t �=r

χ(xat , ξ, xbs , xbt )
σtσs/4

∏

r<u≤N
u �=s

χ(xar , xau , xbu , ξ)
σrσu/4

×
∣
∣
∣
∣
(ξ − xar )(xbs − ξ)

(xbs − xar )

∣
∣
∣
∣

1/4 ∏

s<u≤N
χ(ξ, xau , xbu , xbs )

σsσu/4. (2.18)

Let us consider the terms on the right-hand side of (2.18). For 1 ≤ t < r , we
have σtσr = σtσs , and

χ(xat , xar , ξ, xbt ) χ(xat , ξ, xbs , xbt ) = χat ,ar ,bs ,bt ; (2.19)

while for s < u ≤ N , we have σrσu = σsσu , and

χ(xar , xau , xbu , ξ) χ(ξ, xau , xbu , xbs ) = χau ,ar ,bs ,bu ; (2.20)

while for r < t < s, we have σtσs = σtσr , and

χ(xat , ξ, xbs , xbt ) χ(xar , xat , xbt , ξ) = χat ,ar ,bs ,bt . (2.21)

Thus, after plugging all of (2.19, 2.20, 2.21) into (2.18), for each σ ∈ {±1}N
with σrσs = 1, we find
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lim
x j ,x j+1→ξ

1

|x j+1 − x j |−1/4
∏

1≤t<u≤N
χ

σtσu/4
at ,au ,bu ,bt

=
∣
∣
∣
∣
(ξ − xar )(xbs − ξ)

(xbs − xar )

∣
∣
∣
∣

1/4 ∏

1≤t<u≤N
{t,u}∩{r ,s}=∅

χ
σtσu/4
at ,au ,bu ,bt

∏

1≤t≤N
t �=r ,s

χ
σtσr /4
at ,ar ,bs ,bt

. (2.22)

Finally, by combining (2.17) and (2.22), we find the desired asymptotics (2.16):

lim
x j ,x j+1→ξ

Fβ(x)
|x j+1 − x j |−1/8

= |xbs − xar |−1/8
∏

1≤t≤N
t �=r ,s

|xbt − xat |−1/8

×

⎛

⎜
⎜
⎝

∑

σ∈{±1}N
σrσs=1

∏

1≤t<u≤N
{t,u}∩{r ,s}=∅

χ
σtσu/4
at ,au ,bu ,bt

∏

1≤t≤N
t �=r ,s

χ
σtσr /4
at ,ar ,bs ,bt

⎞

⎟
⎟
⎠

1/2

= F℘ j (β)/{ j, j+1}(ẍ j ).

This completes the proof of Case A.
(B): Suppose there exist 1 ≤ r < s ≤ N such that ar = j < j + 1 = as < bs < br .

This case can be derived in a similar way as Case A.
(C): Suppose there exist 1 ≤ r < s ≤ N such that ar < as < bs = j < j + 1 = br .

This case can be derived in a similar way as Case A.

This completes the proof.

3 Interfaces in the FK-Isingmodel: proof of Theorem 1.5

In this section, we consider the FK-Isingmodel on finite subgraphs of the square lattice
Z
2, or rather, of the square lattice δZ2 scaled by δ > 0. We take δ → 0, which we

call the scaling limit of the model. In this article, we only consider the critical model,
which has the following edge-weight [4]:

p = pc(2) :=
√
2

1+√2 .

We endow the model with various boundary conditions and prove the convergence
of multiple interfaces to multiple SLE16/3 curves in the scaling limit (Theorem 1.5,
whose proof is completed in Sect. 3.5). In the next Sect. 4, we prove the convergence
of connection probabilities of the interfaces (Theorem 1.8).
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3.1 Preliminaries on random-cluster models

In this section, we use the notation and terminology specified in Sect. 1.1. We also
recommend [19, 40] for more background and details on the discrete models, and [23]
for methods addressing the scaling limit.

3.1.1 Discrete polygons

A discrete (topological) polygon, whose precise definition is given below, is a finite
simply connected subgraph of Z

2, or δZ2, with 2N marked boundary points in coun-
terclockwise order.

1. First, we define the medial polygon. We give orientation to edges of the medial
lattice (Z2)� as follows: edges of each face containing a vertex of Z

2 are
oriented clockwise, and edges of each face containing a vertex of (Z2)• are
oriented counterclockwise. Let x�1 , . . . , x�2N be 2N distinct medial vertices. Let
(x�1 x�2 ), (x�2 x�3 ), . . . , (x�2N x�1 ) be 2N oriented paths on (Z2)� satisfying the fol-
lowing conditions10:

• each path (x�2r−1 x
�
2r ) has counterclockwise oriented edges for 1 ≤ r ≤ N ;

• each path (x�2r x�2r+1) has clockwise oriented edges for 1 ≤ r ≤ N ;
• all paths are edge-avoiding and (x�i−1 x

�
i )∩ (x�i x�i+1) = {x�i } for 1 ≤ i ≤ 2N ;

• if j /∈ {i + 1, i − 1}, then (x�i−1 x
�
i ) ∩ (x�j−1 x

�
j ) = ∅;

• the infinite connected component of (Z2)�\⋃2N
i=1(x�i x�i+1) lies to the right of

the oriented path (x�1 x�2 ).

Given {(x�i x�i+1) : 1 ≤ i ≤ 2N }, the medial polygon (��; x�1 , . . . , x�2N ) is
defined as the subgraph of (Z2)� induced by the vertices lying on or enclosed
by the non-oriented loop obtained by concatenating all of (x�i x�i+1). For each
i ∈ {1, 2, . . . , 2N }, the outer corner y�i ∈ (Z2)�\�� is defined to be a medial
vertex adjacent to x�i , and the outer corner edge e�i is defined to be the medial
edge connecting them.

2. Second, we define the primal polygon (�; x1, . . . , x2N ) induced by (��; x�1 , . . . ,
x�2N ) as follows:

• its edge set E(�) consists of edges passing through endpoints of medial edges
in E(��)\⋃N

r=1(x�2r x�2r+1);• its vertex set V (�) consists of endpoints of edges in E(�);
• the marked boundary vertex xi is defined to be the vertex in � nearest to x�i
for each 1 ≤ i ≤ 2N ;
• the arc (x2r−1 x2r ) is the set of edges whose midpoints are vertices in

(x�2r−1 x�2r ) ∩ ∂�� for 1 ≤ r ≤ N .

3. Third,wedefine thedual polygon (�•; x•1 , . . . , x•2N ) inducedby (��; x�1 , . . . , x�2N )
in a similar way.More precisely,�• is the subgraph of (Z2)• with edge set consist-
ingof edges passing throughendpoints ofmedial edges in E(��)\⋃N

r=1(x�2r−1 x�2r )

10 Throughout, we use the convention that x�2N+1 := x�1 .
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and vertex set consisting of the endpoints of these edges. Themarked boundary ver-
tex x•i is defined to be the vertex in�• nearest to x

�
i for 1 ≤ i ≤ 2N . The boundary

arc (x•2r x•2r+1) is the set of edges whose midpoints are vertices in (x�2r x�2r+1)∩��
for 1 ≤ r ≤ N .

3.1.2 Boundary conditions

Weshall focus on the critical FK-Isingmodel on theprimal polygon (�; x1, . . . , x2N ) =
(�δ; xδ1, . . . , xδ2N ), with the following boundary conditions: first, every other boundary
arc is wired,

(xδ2r−1 xδ2r ) is wired, for all r ∈ {1, 2, . . . , N },

and second, these N wired arcs are further wired together outside of �δ according
to a planar link pattern β ∈ LPN as in (1.2)—see Fig. 2 in Sect. 1. In this setup, we
say that the model has boundary condition (b.c.) β. We denote by P

δ
β the law, and by

E
δ
β the expectation, of the critical model on (�δ; xδ1, . . . , xδ2N ) with b.c. β, where the

cluster-weight has the fixed value q = 2 in this section.

3.1.3 Loop representation and interfaces

Let ω ∈ {0, 1}E(�δ) be a configuration with b.c. β ∈ LPN on the primal polygon
(�δ; xδ1, . . . , xδ2N ), as defined in Sect. 1.1. Note that ω induces a dual configuration
ω• on �• via ω•e = 1 − ωe. An edge e ∈ E(�•) is said to be dual-open (resp. dual-
closed) if ω•e = 1 (resp. ω•e = 0). Given ω, we can draw self-avoiding paths on the
medial graph �δ,� between ω and ω• as follows: a path arriving at a vertex of �δ,�
always makes a turn of ±π/2, so as not to cross the open or dual-open edges through
this vertex. The loop representation of ω contains a number of loops and N pairwise-
disjoint and self-avoiding interfaces connecting the 2N outer corners yδ,�1 , . . . , yδ,�2N
of the medial polygon (�δ,�; xδ,�1 , . . . , xδ,�2N ). For each i ∈ {1, 2, . . . , 2N }, we shall
denote by ηδi the interface starting from the medial vertex yδ,�i (and we also refer to it

as the interface starting from the boundary point xδ,�i ). See Fig. 1 in Sect. 1.

3.1.4 Convergence of polygons

To investigate the scaling limit, we use the following notion of convergence of domains
[61]. Abusing notation, for a discrete polygon, we will occasionally denote by�δ also

the open simply connected subset of C defined as the interior of the set�
δ
comprising

all vertices, edges, and faces of the polygon �δ .
Let {�δ}δ>0 and � be simply connected open sets �δ,� � C, all containing a

common point u. We say that �δ converges to � in the sense of kernel convergence
with respect to u, and denote �δ → �, if

1. Every z ∈ � has some neighborhood Uz such that Uz ⊂ �δ , for all small enough
δ > 0; and
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2. For every boundary point p ∈ ∂�, there exists a sequence pδ ∈ ∂�δ such that
pδ → p as δ→ 0.

If �δ → � in the sense of kernel convergence with respect to u, then the same
convergence holdswith respect to any ũ ∈ �.We say that�δ → � in theCarathéodory
sense as δ→ 0. By [61, Theorem 1.8],�δ → � in the Carathéodory sense if and only
if there exist conformal maps ϕδ from �δ onto the unit disc U := {z ∈ C : |z| < 1},
and a conformal map ϕ from� onto U, such that ϕ−1δ → ϕ−1 locally uniformly on U

as δ→ 0, see [61, Theorem 1.8].
For polygons, we say that a sequence of discrete polygons (�δ; xδ1, . . . , xδ2N ) con-

verges as δ → 0 to a polygon (�; x1, . . . , x2N ) in the Carathéodory sense if there
exist conformal maps ϕδ from�δ ontoU, and a conformal map ϕ from� ontoU, such
that ϕ−1δ → ϕ−1 locally uniformly on U, and ϕδ(xδj )→ ϕ(x j ) for all 1 ≤ j ≤ 2N .
Note that Carathéodory convergence allowswild behavior of the boundaries around the
marked points. In order to ensure precompactness of the interfaces in Theorem 1.5, we
need a convergence of polygons stronger than the above Carathéodory convergence.
The following notion was introduced by Karrila, see in particular [44, Theorem 4.2].
(See also [17, 45].)

Definition 3.1 We say that a sequence of discrete polygons (�δ; xδ1, . . . , xδ2N ) con-
verges as δ → 0 to a polygon (�; x1, . . . , x2N ) in the close-Carathéodory sense if it
converges in the Carathéodory sense and in addition, for all 1 ≤ j ≤ 2N , we have
xδj → x j as δ → 0 and the following is fulfilled. Given a reference point u ∈ � and
r > 0 small enough, let Sr be the arc of ∂B(x j , r) ∩� disconnecting (in �) x j from
u and from all other arcs of this set. We require that, for each r small enough and for
all sufficiently small δ (depending on r ), the boundary point xδj is connected to the

midpoint of Sr inside �δ ∩ B(x j , r).

In this setup, the FK-Ising interfaces, and more generally, the random-cluster inter-
faces for any parameter q ∈ [1, 4), always have a convergent subsequence in the curve
space with metric (1.3).

Lemma 3.2 Assume the same setup as in Conjecture 1.1. Fix i ∈ {1, 2, . . . , 2N }. The
family of laws of {ηδi }δ>0 is precompact in the space of curves with metric (1.3). Fur-
thermore, any subsequential limit ηi does not hit any other point in {x1, x2, . . . , x2N }
than its two endpoints, almost surely.

Proof The proof is standard nowadays. For instance, the case where q = 2 is treated
in [42, Lemmas 4.1 and 5.4]. The main tools are the so-called RSW bounds from [20,
53]—see also [44, 45]. The case of general q ∈ [1, 4) follows from [24, Theorem 6]
and [22, Section 1.4].

In the rest of this section, we fix q = 2 and thus focus on the critical FK-Ising
model.

3.2 Exploration process and holomorphic spinor observable

Fix N ≥ 1 and a boundary condition β ∈ LPN for the FK-Ising model as in (1.2).
By planarity, the pair of 1 = a1 in β is some even index 2� = b1, that is, we have
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Fig. 3 Consider discrete polygonswith sixmarked points on the boundary. One possible boundary condition
β = {{1, 6}, {2, 5}, {3, 4}} is depicted in a. The corresponding exploration path from x1 to x6 is depicted in
b. Note that the second possibility in b does not fully reveal the internal connectivity pattern of the interfaces

β = {{1, 2�}, {a2, b2}, . . . , {aN , bN }} with

{1, 2�} ∈ β for some � = �(β) ∈ {1, 2, . . . , N }. (3.1)

Consider a configuration ω of the critical FK-Ising model on the primal poly-
gon (�δ; xδ1, . . . , xδ2N ) with b.c. β. Its loop representation contains N interfaces
ηδ2r−1 starting from yδ,�2r−1, with 1 ≤ r ≤ N , terminating among the medial vertices
{yδ,�2r : 1 ≤ r ≤ N }. Inspired by [58] (see also [41, Fig. 2]), we define an exploration
path ξδβ starting from the outer corner yδ,�1 and terminating at the outer corner yδ,�2� via
the following procedure (see Fig. 3). The idea is that ξδβ traces a loop in the meander
formed by the b.c. β and the random internal connectivity ϑδ

RCM of the interfaces in the
loop representation of ω.

Definition 3.3 The following rules uniquely determine ξδβ , called the exploration path
associated to the configuration ω with b.c. β.

1 ξδβ starts from yδ,�1 and follows ηδ1 until it reaches some point in {yδ,�2r : 1 ≤ r ≤ N }.
2 When ξδβ arrives at some point in {yδ,�2r : 1 ≤ r ≤ N }, it follows the contour given
by β outside of �δ until it reaches some point in {yδ,�2r−1 : 1 ≤ r ≤ N }.

3 When ξδβ arrives at some point in {yδ,�2r−1 : 1 ≤ r ≤ N }, it follows the corresponding
interface until it reaches some point in {yδ,�2r : 1 ≤ r ≤ N }.

4 After repeating the steps 2–3 sufficiently many times, ξδβ arrives at yδ,�2� and it then
stops.

Thepath ξδβ also gives information about the connectivity of the interfaces, see (3.29)
in Lemma 3.15. Note, however, that if the meander associated to β and ϑδ

RCM has more
than one loop, then the exploration path ξδβ does not fully reveal ϑδ

RCM, and further
exploration would be needed.

Recall that for each medial edge, we have defined its orientation. For each medial
edge e�, we also associate a direction ν(e�) as follows: we view the oriented edge e�
as a complex number and define

ν(e�) :=
( e�

|e�|
)−1/2

.
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Note that ν(e�) is defined up to sign, which we will specify when necessary.

Definition 3.4 For the critical FK-Isingmodel on theprimal polygon (�δ; xδ1, . . . , xδ2N )
with b.c. β, we define the following discrete observables, inspired by [55, Section 4].
(We use the notation (3.1).)

• We define the edge observable on edges and outer corner edges e of �δ,� as

Fδ
β (e) := ν

(
eδ,�2�

)
E
δ
β

[
1{e ∈ ξδβ} exp

(
− i

2Wξδβ

(
eδ,�2� , e

))]
,

where

– ξδβ is the exploration path from Definition 3.3;
– eδ,�2� is the oriented outer corner edge connecting to yδ,�2� (oriented to have yδ,�2�
as its end vertex);

– Wξδβ
(eδ,�2� , e) ∈ R is the winding number from yδ,�2� to e along the reversal of

ξδβ ; and
– the value of ν(eδ,�2� ) will be specified in Proposition 3.5 and its proof.

Note that Fδ
β is only defined up to sign (hence, it is a so-called “spinor” observable).• We define the vertex observable on interior vertices z� of �δ,� as

Fδ
β (z
�) := 1

2

∑

e�∼z�
Fδ
β (e
�),

where the sum is over the four medial edges e� ∼ z� having z� as an endpoint.
• We define the vertex observable on vertices z� ∈ ∂�δ,�\{xδ,�1 , xδ,�2 , . . . , xδ,�2N } as
follows. Suppose that z� ∈ (xδ,�i xδ,�i+1) and let e

�−, e�+ ∈ (xδ,�i xδ,�i+1) be the oriented
medial edges having z� as their end vertex and beginning vertex, respectively. Set

Fδ
β (z
�) :=

{√
2 exp(−iπ4 )Fδ

β (e
�+)+

√
2 exp(iπ4 )F

δ
β (e
�−), if i is odd,√

2 exp(−iπ4 )Fδ
β (e
�−)+

√
2 exp(iπ4 )F

δ
β (e
�+), if i is even.

(3.2)

Akey result of this section is the convergence of the observable Fδ
β as δ→ 0 (Propo-

sitions 3.5 and 3.6, which are slight generalizations of [41, Theorem 2.6], see also [16,
Theorem 4.3]). We later relate the limit of Fδ

β to the partition function Fβ in Proposi-
tion 3.12 in Sect. 3.3 (which generalizes [42, Proposition 3.5], cf. [13]). Note that, as a
function on�, the scaling limit φβ of Fδ

β is a priori only determined up to a sign, while
it is a holomorphic function on a double-cover �x1,...,x2N of (�; x1, . . . , x2N ). Usu-
ally, we shall not be concerned with the choice of branch (i.e., sign) for this “spinor”
observable φβ .

Proposition 3.5 Fix a polygon (�; x1, . . . , x2N ). If a sequence (�δ,�; xδ,�1 , . . . , xδ,�2N )

of medial polygons converges to (�; x1, . . . , x2N ) in the Carathéodory sense, then the
scaled vertex observables converge as

2−1/4δ−1/2Fδ
β (·) δ→0−→ φβ(· ;�; x1, . . . , x2N ) locally uniformly,
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where both sides are determined up to a common sign, φβ is a holomorphic function
on the Riemann surface �x1,...,x2N as detailed in Proposition 3.6 and Remark 3.9,
and where the vertex observable Fδ

β is extended continuously to the planar domain

corresponding to �δ,� via linear interpolation.

For later use, we define a function (sometimes called “spinor” in the literature, e.g.,
[13, 16])

z �−→
2N∏

j=1

1√
z − x j

=: Sx1,...,x2N (z) = Sx(z), (3.3)

that is holomorphic and single-valued on a Riemann surface �x = �x1,...,x2N which
is a two-sheeted branched covering of the Riemann sphere Ĉ = C ∪ {∞} ramified
at the points x1, . . . , x2N . To determine the value of Sx(z) = Sx1,...,x2N (z) at z ∈
Ĉ\{x1, . . . , x2N } one has to choose a branch for it. We consider Sx as a holomorphic
function on�x formed by gluing two copies of the Riemann sphere together along N
fixed branch cuts that are simple non-crossing paths on the complement of � joining
pairs of the points x1, . . . , x2N (for example, we could pick the branch cuts according
to β). Locally around each ramification point xi , we may consider the square root
z �→ √z − xi as a holomorphic and single-valued function on the local chart of �x
at xi (with the two sheets locally identified with those of �x so that

√
z − xi and

Sx have the same sign). The properties (3.5, 3.6) stated in Proposition 3.6 are thus
well-defined.

Proposition 3.6 Let � = H and fix x = (x1, . . . , x2N ) ∈ X2N . There exists a unique
polynomial Pβ of degree at most N − 1 and with real coefficients such that the holo-
morphic function

φβ(z) := i Pβ(z)
∏2N

j=1
√
z − x j

= i Pβ(z) Sx(z) (3.4)

on the Riemann surface �x satisfies the following N properties:

lim
z→x1

√
π
√
z − x1 φβ(z) = 1, (3.5)

lim
z→xar

√
z − xar

√
z − xbr φβ(z) = − lim

z→xbr

√
z − xar

√
z − xbr φβ(z),

for all r ∈ {2, 3, . . . , N } (3.6)

We first prove Proposition 3.6 in Sect. 3.3 and using it, we prove Proposition 3.5
in Sect. 3.4.

Remark 3.7 The special case β = ∩∩ of Proposition (3.6) was proved in [41,
Lemma 2.4] using complex analysis techniques, which fail to work for general bound-
ary conditions β ∈ LPN . One can, in fact, use the computation in [13, Appendix A]
to prove uniqueness and existence in Proposition 3.6 and to show Proposition 3.12
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in Sect. 3.3, as Izyurov did in [42, Proof of Proposition 3.5]. We give an alternative
computation in Sect. 3.3, which could be applied11 in turn to bulk spin correlations
in [13, Theorem 1.2].

Remark 3.8 From the definition (3.3) of Sx , we see that the function z �→ φβ(z)
in Proposition 3.6 is holomorphic and single-valued on the Riemann surface �x =
�x1,...,x2N . Note that up to a choice of sign (that is, sheet of �x , or branch for φβ ),
z �→ φβ(z) gives a holomorphic function on the upper half-plane H. Moreover, φβ(z)
is purely real when z ∈ (x2r−1, x2r ), and purely imaginary when z ∈ (x2r , x2r+1).

Remark 3.9 Because φβ depends on x ∈ X2N , we also write φβ(z) = φβ(z;H; x) =
φβ(z; x) when necessary. The proof of Proposition 3.5 (in Sect. 3.4) implies that, for
all Möbius maps ϕ of H such that ϕ(x1) < · · · < ϕ(x2N ), we have

(
φβ(z;H; x1, . . . , x2N )

)2 = ϕ′(z)
(
φβ(ϕ(z);H;ϕ(x1), . . . , ϕ(x2N ))

)2
. (3.7)

Hence, we can define φβ for general polygons (�; x1, . . . , x2N ) via its conformal
covariance rule12:

φβ(z;�; x1, . . . , x2N ) :=
√
ϕ′(z) φβ(ϕ(z);H;ϕ(x1), . . . , ϕ(x2N )), z ∈ �,

where ϕ is any conformal map from � onto H such that ϕ(x1) < · · · < ϕ(x2N ).
Note that (3.7) ensures that φβ for general domains is independent of the choice of
the conformal map ϕ up to a sign.

Let us make some further remarks for small values of N .

• When N = 1, the function in Proposition 3.6 is

φ (z; x1, x2) = i√
π

√
x2 − x1√

z − x1
√
z − x2

, (3.8)

and for a polygon (�; x1, x2) with two marked points, we have (up to a sign)

φ (z;�; x1, x2) :=
√
ϕ′(z) φ (ϕ(z);H;ϕ(x1), ϕ(x2)),

where ϕ : � → H is any conformal map such that ϕ(x1) < ϕ(x2). In this case,
Smirnov proved Proposition 3.5 in [69, Theorem 2.2]:

2−1/4 δ−1/2 Fδ (·) δ→0−→ φ (· ;�; x1, x2) locally uniformly.

11 To achieve this, one has to consider the ratio Qβ(σ̂ 1)/Qβ(σ̂ 2) for σ̂ 1, σ̂ 2 ∈ {±1}N−1 when following
the analysis in the proof of Lemma A.1.
12 If needed, we could use some fixed branch of the square root, which is well-defined because ϕ′ �= 0,
by picking it in a simply connected neighborhood of some reference point and extending to all of � by
analytic continuation.
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• When N = 2, we may verify Proposition 3.6 by a direct computation. In this case,
there are two possible boundary conditions, = {{1, 2}, {3, 4}} and

φ (z; x1, x2, x3, x4)

= i√
π

(√
(x3−x1)(x4−x1)

(x2−x1) −
√

(x3−x2)(x4−x2)
(x2−x1)

)
(z − x1)−√(x2 − x1)(x3 − x1)(x4 − x1)√

z − x1
√
z − x2

√
z − x3

√
z − x4

,

(3.9)

and = {{1, 4}, {2, 3}} and

φ (z; x1, x2, x3, x4)

= i√
π

(√
(x4−x2)(x4−x3)

(x4−x1) +
√

(x2−x1)(x3−x1)
(x4−x1)

)
(z − x1)−√(x2 − x1)(x3 − x1)(x4 − x1)√

z − x1
√
z − x2

√
z − x3

√
z − x4

.

• For general N and β ∈ LPN , one can derive an explicit expression for φβ using
Cramer’s rule.

3.3 Proof of Proposition 3.6 and emergence ofFˇ

Our first goal is to show Proposition 3.6 via two auxiliary Lemmas 3.10 and A.1 (the
latter in Appendix A). To this end, we first set some notation. For 2 ≤ r ≤ N , we
define row vectors U±β (r) of size N − 1 as

U±β (r) :=
(
U±β (r , 1), U±β (r , 2), . . . , U±β (r , N − 1)

)
,

where for 2 ≤ r ≤ N and 0 ≤ s ≤ N − 1, we denote

U+β (r , s) := (xar − x1)
s S̈ar ,brx1,...,x2N (xar )

U−β (r , s) := (xbr − x1)
s S̈ar ,brx1,...,x2N (xbr ), (3.10)

and where the function

z �−→ √
z − xar

√
z − xbr Sx(z) =:

∏

j /∈{ar ,br }

1√
z − x j

=: S̈ar ,brx1,...,x2N (z)

is holomorphic and single-valued on a Riemann surface �x = �x1,...,x2N as in
Remark 3.8. We also define an (N − 1)× (N − 1)-matrix

Rβ :=

⎛

⎜
⎜
⎜
⎜
⎝

U+β (2) + U−β (2)
·
·
·

U+β (N ) + U−β (N )

⎞

⎟
⎟
⎟
⎟
⎠

, (3.11)
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that is, we define Rβ(r , s) := U+β (r + 1, s) + U−β (r + 1, s) for 1 ≤ r ≤ N − 1 and

1 ≤ s ≤ N − 1. Note that writing σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1, and identifying ±1
with the superscript ±, we have

det(Rβ) =
∑

σ̂∈{±1}N−1
Qβ(σ̂ ), where Qβ(σ̂ ) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

U σ̂2
β (2)
·
·
·

U σ̂N
β (N )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.12)

Proof of Proposition 3.6 We write the polynomial Pβ as

Pβ(z) = p0 + p1(z − x1)+ · · · + pN−1(z − x1)
N−1,

where p0, p1, . . . , pN−1 ∈ R are some real coefficients. Note that p0 =
Pβ(x1) and p1 = P ′β(x1). Defining an (N − 1)-component vector Vβ =
(
Vβ(1), Vβ(2), . . . , Vβ(N − 1)

)
with entries

Vβ(r) := Rβ(r , 0), 1 ≤ r ≤ N − 1, (3.13)

we note that the restrictions (3.5) and (3.6) read

√
π i p0 Sx2,x3,...,x2N (x1) = 1, (3.14)

N−1∑

n=1

pn
p0

Rβ(r , n) = −Vβ(r), 1 ≤ r ≤ N − 1, (3.15)

where Sx2,x3,...,x2N (z) =
∏

j �=1
1√
z−x j :=

√
z − x1 Sx is holomorphic and single-valued

on �x as in Remark 3.8. Proposition 3.6 now follows by showing that the matrix Rβ

in (3.11) is invertible (Lemma 3.10).

Lemma 3.10 The matrix Rβ defined by (3.11) is invertible.

Proof We need to show that det(Rβ) in (3.12) is non-zero. Write

y+,βr := xar and y−,βr := xbr , 2 ≤ r ≤ N . (3.16)

Using the Vandermonde determinant, we have

Qβ(σ̂ ) = Qβ(σ̂2, . . . , σ̂N )

=
∏

2≤r≤N

(
yσ̂r ,βr − x1

) ∏

2≤s<t≤N

(
yσ̂t ,βt − yσ̂s ,βs

) ∏

2≤r≤N
S̈ar ,brx1,...,x2N

(
yσ̂r ,βr

)
.

(3.17)
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From Lemma A.1, we find a constant θβ ∈ {±1,±i} depending only on β such that

Qβ(σ̂ )

θβ
> 0. (3.18)

Combining (3.12) with (3.18), we obtain det Rβ

θβ
> 0, which implies that Rβ is invert-

ible.

The second goal of this section is to derive the expansion of φβ as z → x1
(Lemma 3.11) and to relate its expansion coefficients to the partition function Fβ

defined in (1.16) (Proposition 3.12).

Lemma 3.11 Write x = (x1, . . . , x2N ) ∈ X2N . The holomorphic function (3.4) on�x
satisfies

φβ(z; x) = 1√
π
√
z − x1

+Kβ(x)
√
z − x1 + o(

√
z − x1), as z→ x1,

where

Kβ(x) = Kβ(x1, . . . , x2N ) = 1√
π

( P ′β(x1)
Pβ(x1)

+ 1

2

2N∑

k=2

1

xk − x1

)

. (3.19)

Proof From the expression in (3.4), we may write

φβ(z; x) = Jβ(x)√
z − x1

+Kβ(x)
√
z − x1 + o(

√
z − x1), as z→ x1,

where

Jβ(x1, . . . , x2N ) = i Pβ(x1) Sx2,x3,...,x2N (x1),

Kβ(x1, . . . , x2N ) = i Pβ(x1) Sx2,x3,...,x2N (x1)×
( P ′β(x1)
Pβ(x1)

+ 1

2

2N∑

k=2

1

xk − x1

)

.

From (3.14) with p0 = Pβ(x1), we see that Jβ = 1/
√
π and (3.19) holds. This

completes the proof.

Proposition 3.12 Write x = (x1, . . . , x2N ) ∈ X2N . We have

∂1 logFβ(x) =
√
π

4
Kβ(x), (3.20)

where Fβ is defined in (1.16) and Kβ is defined in (3.19).
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Proof On the one hand, let us compute ∂1 logFβ(x). For the cross-ratios, (recall-
ing (3.1)) we have

∂1χ(x1, xar , xbr , x2�) = −χ(x1, xar , xbr , x2�)
xbr − xar

(xar − x1)(xbr − x1)
, 2 ≤ r ≤ N .

Thus, writing σ = (σ1, . . . , σN ) ∈ {±1}N and σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1, where
the variables σ̂r in σ̂ could be viewed as products σ1σr of the variables σ1 and σr in
σ for 2 ≤ r ≤ N , and using the shorthand notation (1.17), we obtain

8 ∂1 logFβ(x) − 1

x2� − x1

=
∑

σ∈{±1}N
(
− σ1

∑N
r=2 σr

xbr −xar
(xar −x1)(xbr−x1)

)(∏N
s=2 χ

σ1σs/4
1,as ,bs ,2�

)(∏
2≤r<s≤N χ

σrσs/4
ar ,as ,bs ,br

)

∑
σ∈{±1}N

(∏N
s=2 χ

σ1σs/4
1,as ,bs ,2�

)(∏
2≤r<s≤N χ

σrσs/4
ar ,as ,bs ,br

)

=
∑

σ̂∈{±1}N−1
(
−∑N

r=2 σ̂r
xbr −xar

(xar −x1)(xbr −x1)
)(∏N

s=2 χ
σ̂s/4
1,as ,bs ,2�

)(∏
2≤r<s≤N χ

σ̂r σ̂s/4
ar ,as ,bs ,br

)

∑
σ̂∈{±1}N−1

(∏N
s=2 χ

σ̂s/4
1,as ,bs ,2�

)(∏
2≤r<s≤N χ

σ̂r σ̂s/4
ar ,as ,bs ,br

)

=
∑

σ̂∈{±1}N−1
(
−∑N

r=2 σ̂r
xbr −xar

(xar −x1)(xbr −x1)
)(∏N

s=2 χ
(σ̂s+1)/4
1,as ,bs ,2�

)(∏
2≤r<s≤N χ

(σ̂r σ̂s+1)/4
ar ,as ,bs ,br

)

∑
σ̂∈{±1}N−1

(∏N
s=2 χ

(σ̂s+1)/4
1,as ,bs ,2�

)(∏
2 ≤ r < s ≤ N χ

(σ̂r σ̂s+1)/4
ar ,as ,bs ,br

) ,

(3.21)

On the other hand, let us compute Kβ(x). We denote by R•β the (N − 1) ×
(N − 1)-matrix obtained by replacing the first column of Rβ by the column vector
Vβ =

(
Vβ(1), Vβ(2), . . . , Vβ(N − 1)

)t defined in (3.13). Then, combining (3.15)
with Cramer’s rule, we find that

P ′β(x1)
Pβ(x1)

= −det(R•β)
det(Rβ)

. (3.22)

Using Lemma A.2 (from Appendix A) we can find functions gσ̂ ,β(x) > 0 for σ̂ =
(σ̂2, . . . , σ̂N ) ∈ {±1}N−1 such that

det(R•β)
det(Rβ)

=
∑

σ̂∈{±1}N−1 gσ̂ ,β(x)
∑N

r=2
(
yσ̂r ,βr − x1

)−1
∑

σ̂∈{±1}N−1 gσ̂ ,β(x)
, (3.23)

where yσ̂r ,βr are defined in (3.16). Lemma A.3 (from Appendix A) implies that there
exist functions fβ(x) > 0 such that, for all σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1, we have

gσ̂ ,β(x) = fβ(x)
∏

2≤r≤N
χ

σ̂r+1
4

1,ar ,br ,2�

∏

2≤s<t≤N
χ

σ̂s σ̂t+1
4

as ,at ,bt ,bs
. (3.24)
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Plugging all of (3.22, 3.23, 3.24) into (3.19), and recalling (3.1), we obtain

2
√
π Kβ(x) = 2

P ′β(x)
Pβ(x)

+
2N∑

k=2

1

xk − x1

= 1

x2� − x1
+ 2

P ′β(x)
Pβ(x)

+
N∑

k=2

( 1

xak − x1
+ 1

xbk − x1

)

= 1

x2� − x1
+ (3.21),

where we also used the identity

−2
N∑

r=2

1

yσ̂r ,βr − x1
+

N∑

r=2

(
1

xar − x1
+ 1

xbr − x1

)

=
N∑

r=2
σ̂r

(
1

xbr − x1
− 1

xar − x1

)

for all σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1. This gives the asserted identity (3.20).

We fill in the details to finish the proof of Proposition 3.12 (Lemmas A.2 and A.3)
in Appendix A.

3.4 Scaling limit of the observable: proof of Proposition 3.5

Some key ideas in the proof of Proposition 3.5 are learned from [16, 41]—we adjust
them to deal with the FK-Ising model in polygons in our setup. We first fix some
terminology on discrete complex analysis—see [15] for more details on discrete har-
monicity, holomorphicity, and s-holomorphicity.

• Wesay that a functionu : Z2 → C is (discrete)harmonic (resp. sub/superharmonic)
at a vertex z ∈ Z

2 if �u(z) := ∑
w∼z(u(w) − u(z)) = 0 (resp. �u(z) ≥ 0,

�u(z) ≤ 0), where the sum is taken over all neighbors of z. We say that a function
u is harmonic (resp. sub/superharmonic) on a subgraph of Z

2 if u is harmonic
(resp. sub/superharmonic) at all vertices of this subgraph.
• We say that a function φ : Z

2 ∪ (Z2)• → C is (discrete) holomorphic around
a medial vertex z� if the (discrete) Cauchy–Riemann equation at z� holds:
φ(n) − φ(s) = i(φ(e) − φ(w)), where n, w, s, e are the vertices incident to
z� in counterclockwise order (two of them are primal vertices while the other two
are dual vertices).
• Wesay that a function f : (Z2)� → C is spin-holomorphic (s-holomorphic) around
a medial edge e� if

Projν(e�)R[ f (z�−)] = Projν(e�)R[ f (z�+)],

where z�− and z�+ are endpoints of the medial edge e�, and ProjL is the orthogonal
projection onto the line L on the complex plane. Note that, if f is s-holomorphic
around all medial edges of�δ,� that are not adjacent to themarkedmedial vertices,
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then it is holomorphic around all interior vertices of�δ and around all interior dual
vertices of �δ,• (see, e.g., [69, Remark 3.3]).

The next lemma shows that the observable Fδ
β hasRiemann type boundary behavior.

Lemma 3.13 The observable Fδ
β has the following properties.

1 If e� is a medial edge connecting two vertices on ∂�δ,�\{xδ,�1 , xδ,�2 , . . . , xδ,�2N },
then Fδ

β (e
�) ‖ ν(e�).

2 If x� ∈ ∂�δ,� is a medial vertex lying on some primal edge in
⋃N

r=1(xδ2r−1 xδ2r ),
then Fδ

β (x
�) ‖ 1√

e(x�) , where e(x
�) is the primal edge having x� as its midpoint,

oriented to have the primal polygon on its left, and the branch choice of the square
root is arbitrary.

3 If x� ∈ ∂�δ,� is a medial vertex lying on some dual edge in
⋃N

r=1(x
δ,•
2r xδ,•2r+1),

then Fδ
β (x
�) ‖ i√

e(x�) , where e(x�) is the dual edge having x� as its midpoint,
oriented to have the dual polygon on its left, and the branch choice of the square
root is arbitrary.

Proof The same argument as in [69, Lemma 4.1] proves Item 1. Covering both Items 2
and 3, suppose that x� ∈ (xδ,�i xδ,�i+1). Let e

�−, e�+ ∈ (xδ,�i xδ,�i+1) be the oriented medial
edges having x� as end vertex and beginning vertex, respectively. It follows from
Definition 3.3 (recalling also (3.1)) of the exploration path ξδ that it passes through e�−
if and only if it passes through e�+. Moreover, when ξδ passes through e�−, the winding
is

Wξδ
(
eδ,�2� , e�+

) =
{
Wξδ

(
eδ,�2� , e�−

)+ π
2 , if i is odd;

Wξδ
(
eδ,�2� , e�−

)− π
2 , if i is even.

Consequently, we have

Fδ
β (e
�+) =

{
Fδ
β (e
�−) exp(−iπ4 ), if i is odd,

Fδ
β (e
�−) exp(iπ4 ), if i is even.

(3.25)

Thus, by (3.2) and (3.25), we have

{
Fδ
β (x
�) ‖ Fδ

β (e
�−) exp(−iπ8 ), if i is odd,

Fδ
β (x
�) ‖ Fδ

β (e
�−) exp(iπ8 ), if i is even.

(3.26)

Items 2 and 3 now follow from (3.26) and Item 1.

The key property of the observable Fδ
β is its discrete holomorphicity.

Lemma 3.14 If z� and w� are either two interior vertices of �δ,�, or two boundary
vertices such that z�, w� ∈ ⋃N

r=1(x
δ,�
2r xδ,�2r+1)\{xδ,�1 , xδ,�2 , . . . , xδ,�2N }, and e� is the

medial edge connecting them, then Fδ
β is s-holomorphic around e�, that is,

Projν(e�)R
[
Fδ
β (z
�)
]
= Projν(e�)R

[
Fδ
β (w

�)
]
= Fδ

β (e
�). (3.27)
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In particular, the vertex observable Fδ
β is holomorphic around all interior vertices of

�δ and around all interior dual vertices of �δ,•.

Proof If z�, w� ∈ ⋃N
r=1(x

δ,�
2r xδ,�2r+1)\{xδ,�1 , xδ,�2 , . . . , xδ,�2N }, then (3.27) follows

immediately from the definition (3.2) of Fδ
β together with Item 1 of Lemma 3.13

and the observation (3.25). For two interior medial vertices (3.27) follows from [69,
Lemma 4.5]. The discrete holomorphicity of the vertex observable Fδ

β can be deduced
from its s-holomorphicity (see, e.g., [69, Remark 3.3]).

From Lemma 3.14 and [69, Lemma 3.6], we see that there exists a unique function
(the imaginary part of the discrete “primitive” of (Fδ

β )
2)

H δ
β : �δ ∪�δ,• → R such that

{
H δ

β(x
δ
1) = 0,

H δ
β(w

•)− H δ
β(z) =

∣
∣Projν(e�)R[Fδ

β (e
�)]∣∣2,

for each medial edge e� bordered by a primal vertex z ∈ �δ and a dual vertex w• ∈
�δ,•. Let H δ,•

β and H δ,◦
β be the restrictions of H δ

β on �δ,• and �δ , respectively. Note

that, if z, w ∈ �δ are two neighboring primal vertices, then we have (see, e.g., [69,
Remark 3.7])

H δ,◦
β (z)− H δ,◦

β (w) = Im

((
Fδ
β (

z+w
2 )

)2

√
2δ

(z − w)

)

. (3.28)

Notably, the function H δ
β has Dirichlet type boundary conditions that are more directly

related to the exploration path—see Eq. (3.29) in the next lemma.

Lemma 3.15 There exist constants (Cδ
1, . . . ,C

δ
2N ) ∈ R

2N with Cδ
1 = 0 such that the

following hold.

1 The function H δ,•
β is subharmonic on the interior vertices of �δ,•. The function

H δ,◦
β is superharmonic on the interior vertices of�δ . For each r ∈ {1, 2, . . . , N },

we have the boundary values

{
H δ,•

β = Cδ
2r on

(
xδ,•2r xδ,•2r+1

)
,

H δ,◦
β = Cδ

2r−1 on
(
xδ2r−1 xδ2r

)
.

2 For each r ∈ {1, 2, . . . , N }, set H δ,•
β := Cδ

2r−1 on dual vertices in (δZ2)•\�δ,•

adjacent to (xδ,•2r−1 x
δ,•
2r ) and H δ,◦

β := Cδ
2r on primal vertices in δZ2\�δ adja-

cent to (xδ2r x
δ
2r+1). Then, the function H δ,•

β is also subharmonic at all z• ∈
⋃N

r=1(x
δ,•
2r−1 x

δ,•
2r ) with Laplacian modified on the boundary:

�H δ,•
β (z•) :=

∑

w•∼z•
d(z•, w•)

(
H δ,•

β (w•)− H δ,•
β (z•)

)
≥ 0,
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where d(z•, w•) := 1 if w• ∈ �δ,• and d(z•, w•) := 2 tan π
8 = 2(

√
2 − 1) if

w• /∈ �δ,•.
Besides, H δ,◦

β is superharmonic at all z ∈ ⋃N
r=1(xδ2r xδ2r+1) with Laplacian mod-

ified on the boundary:

�H δ,◦
β (z) :=

∑

w∼z
d(z, w)

(
H δ,◦

β (w)− H δ,◦
β (z)

)
≤ 0,

where d(z, w) := 1 if w ∈ �δ and d(z, w) = 2(
√
2− 1) if w /∈ �δ .

3 For each r ∈ {1, 2, . . . , N }, we have Cδ
2r ≥ Cδ

2r−1 and Cδ
2r ≥ Cδ

2r+1.
4 For each r ∈ {1, 2, . . . , N }, we have

|Cδ
ar−1 − Cδ

ar | = |Cδ
br−1 − Cδ

br |
=

(
P
δ
β

[
ξδ passes through the outer corners yδ,�ar and yδ,�br

])2
.

(3.29)

In particular, we have |Cδ
1 − Cδ

2N | = 1. As a consequence, the family
{Cδ

1, . . . ,C
δ
2N }δ>0 of constants is uniformly bounded.

Proof The subharmonicity of H δ,•
β and superharmonicity of H δ,◦

β on interior vertices
both follow from [69, Lemma 3.8]. By construction, H δ,•

β is constant on (xδ,•2r xδ,•2r+1)
and H δ,◦

β is constant on (xδ2r−1 xδ2r ). This gives Item 1. Item 2 follows from [16,
Lemma 3.14]. Item 3 and relation (3.29) hold by construction. The identity |Cδ

1 −
Cδ
2N | = 1 follows from (3.29) since ξδ goes through yδ,�1 with probability one. Lastly,

as Cδ
1 = 0, we find from (3.29) that |Cδ

k | ≤ 2N − 1, for all δ > 0 and 1 ≤ k ≤ 2N .

We see from Lemma 3.15 that the collection {Cδ
1, . . . ,C

δ
2N }δ>0 of constants has

convergent subsequences. For the convergence of the observable, we also need the
following key lemma.

Lemma 3.16 Assume the same setup as in Proposition 3.5.We extend H δ
β to continuous

functions on the planar domains corresponding to�δ,� via linear interpolation. Then,
the sequence

{(
2−1/4δ−1/2 Fδ

β , H δ
β

)}

δ>0

has (locally uniformly) convergent subsequences. Moreover, any subsequential limit
(Fβ, Hβ), with also (Cδ

1,C
δ
2, . . . ,C

δ
2N ) converging to some (C1,C2, . . . ,C2N ) ∈

R
2N , satisfies the following properties.

1 The function Fβ is holomorphic on�, and Hβ(w) = Im
´ w Fβ(z)2 dz on� � w.

2 The function Hβ is bounded and harmonic on �.
3 We have Hβ(z)→ Ck as z→ (xk xk+1) in H, for all k ∈ {1, 2, . . . , 2N }.
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4 The relations C2r ≥ C2r−1 and C2r ≥ C2r+1 hold for all r ∈ {1, 2, . . . , N }.
5 The relation |Car−1 − Car | = |Cbr−1 − Cbr | holds for all r ∈ {1, 2, . . . , N }, and
we have |C1 − C2N | = 1.

6 The outer normal derivative ∂nHβ of the function Hβ satisfies ∂nHβ ≥ 0 on⋃N
r=1(x2r x2r+1) and ∂nHβ ≤ 0 on

⋃N
r=1(x2r−1 x2r ) in the following sense: if

z ∈ (x2r x2r+1) for some r, then

H−1β (−∞,C2r ] ∩ {w ∈ � : |w − z| < ε} �= ∅, for all ε > 0,

while if z ∈ (x2r−1 x2r ) for some r, then

H−1β [C2r−1,∞) ∩ {w ∈ � : |w − z| < ε} �= ∅, for all ε > 0.

Proof The sequence {H δ
β}δ>0 is uniformly bounded by Items 1 and 4 of Lemma 3.15:

we have

|H δ
β | ≤ M, for all δ > 0, (3.30)

with some M ∈ (0,∞). Thus, the sequence
{
(2−1/4δ−1/2 Fδ

β , H δ
β)

}
δ>0 has

(locally uniformly) convergent subsequences by [16, Theorem 3.12]. Item 4 of
Lemma 3.15 ensures that {(Cδ

1,C
δ
2, . . . ,C

δ
2N )}δ>0 has convergent subsequences.

Let (Fβ, Hβ) be any subsequential limit along a sequence δn → 0 as n →
∞ of

{
(2−1/4δ−1/2 Fδ

β , H δ
β)

}
δ>0 with (Cδn

1 , . . . ,Cδn
2N ) also converging to some

(C1, . . . ,C2N ) ∈ R
2N (choosing a simultaneously convergent subsequence by refin-

ing the sequence if necessary). Since Fδ
β is (discrete) holomorphic for each δ > 0

(Lemma 3.14) and the convergence is locally uniform, the limit Fβ is holomorphic
due to Morera’s theorem. By (3.28) and the locally uniform convergence, we obtain
the relation Hβ(w) = Im

´ w Fβ(z)2 dz. Being the imaginary part of the holomorphic
functionw �→ ´ w Fβ(z)2 dz, the function Hβ(w) is harmonic on�, and (3.30) implies
that Hβ is bounded on �. This proves Items 1 and 2.

Next, fix r ∈ {1, 2, . . . , N }.Wewill prove that Hβ(z)→ C2r−1 as z→ (x2r−1 x2r ).
Let z ∈ � be any point. On the one hand, let {zδn }n≥1 be a sequence of interior primal
vertices approximating z. Denote by Hm(zδn ; E;�δn ) the discrete harmonic measure
of E ⊂ ∂�δn viewed from zδn . Then, we have

Hβ(z) = lim
n→∞ H δn ,◦

β (zδn )

≥ lim sup
n→∞

(
Cδn
2r−1 Hm

(
zδn ; (xδn2r−1 xδn2r );�δn

)
− M Hm

(
zδn ; (xδn2r xδn2r−1);�δn

))

= C2r−1 Hm (z; (x2r−1 x2r );�)− M Hm (z; (x2r x2r−1);�) ,

where the inequality in the second line follows from the superharmonicity of H δn ,◦
β

(Items 1 and 2 of Lemma 3.15) and the fact that H δn ,◦
β takes the constant value Cδn

2r−1
along (xδn2r−1 x

δn
2r ) (Item 1 of Lemma 3.15); and the equality in the third line is due to
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the convergence of the discrete polygons in the Carathéodory sense and [15, Theo-
rem 3.12]. Therefore, we have

Hβ(z) ≥ C2r−1 − 2M Hm
(
z; (x2r x2r−1);�

)
. (3.31)

On the other hand, let {zδn ,•}n≥1 be a sequence of interior dual vertices approximating
z. Denote by Hm(zδn ,•; E;�δn ,•) the discrete harmonic measure of E ⊂ ∂�δn ,•
viewed from zδn ,•. Then, we have

Hβ(z) = lim
n→∞ H δn ,•

β (zδn ,•)

≤ lim inf
n→∞

(
Cδn
2r−1 Hm

(
zδn ,•; (xδn ,•2r−1 x

δn ,•
2r );�δn ,•

)

+M Hm
(
zδn ,•; (xδn ,•2r xδn ,•2r−1);�δn ,•

))

= C2r−1 Hm
(
z; (x2r−1 x2r ;�)

)+ M Hm
(
z; (x2r x2r−1);�

)
,

where the inequality in the second line is due to the subharmonicity of H δn ,•
β

(Items 1 and 2 of Lemma 3.15) and the fact that H δn ,•
β takes the constant value Cδn

2r−1
along (xδn ,•2r−1x

δn ,•
2r ) (Item 2 of Lemma 3.15). Therefore, we have

Hβ(z) ≤ C2r−1 + 2M Hm
(
z; (x2r x2r−1);�

)
. (3.32)

Combining the bounds (3.31, 3.32), we obtain Hβ(z)→ C2r−1 as z → (x2r−1 x2r ).
A similar argument shows that Hβ(z)→ C2r as z→ (x2r x2r+1). This proves Item 3.

Lastly, Items 4 and 5 follow respectively from Items 3 and 4 of Lemma 3.15; while
Item6 follows from [16, Remark 6.3] and Items 2 and 3 of Lemma3.13. This concludes
the proof.

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5 For definiteness, fix a sign for φβ(· ;�; x1, . . . , x2N ). Lem-
mas 3.15 and 3.16 ensure that the sequences {(Cδ

1, . . . ,C
δ
2N )}δ>0 of constants and

{
(2−1/4δ−1/2 Fδ

β , H δ
β)

}
δ>0 of pairs of functions have convergent subsequences. Let

(Fβ, Hβ) be any subsequential limit of the latter and (C1, . . . ,C2N ) ∈ R
2N of the for-

mer. It suffices to show that Fβ(·) = φβ(· ;�; x1, . . . , x2N ) (with appropriate choice
of sign for ν(eδ,�2� )). We consider the situation in the upper half-plane. Fix a sign for
the function φβ(· ;H; x1, . . . , x2N ). Let ϕ be a conformal map from � onto H such
that ϕ(x1) < · · · < ϕ(x2N ). We define

hH(z) := Hβ(ϕ
−1(z)),

fH(z) := Fβ(ϕ
−1(z))

√
(ϕ−1)′(z),

and x̊ i := ϕ(xi ) for all 1 ≤ i ≤ 2N , where we fix the branch of the square root so that

√
(ϕ)′(·) φβ(ϕ(·) ;H; x̊1, . . . , x̊2N ) = φβ(· ;�; x1, . . . , x2N ).
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Items 2 and 3 ofLemma3.16 imply that hH can be extended to a bounded continuous
function on H\{x̊1, x̊2, . . . , x̊2N } which is harmonic on H with constant value Ci on
each (x̊ i x̊ i+1) for i ∈ {1, . . . , 2N }. Consequently, the function hH(z) is a (real) linear
combination of Hm(z; (x̊ i x̊ i+1);H), the harmonicmeasures of (x̊ i x̊ i+1) viewed from
z ∈ H with 1 ≤ i ≤ 2N .

Item 1 of Lemma 3.16 gives the holomorphicity of fH on H and the relation
hH(w) = Im

´ w fH(z)2dz. Consequently, there exists a polynomial Q(z) of degree
at most 2N − 1 with real coefficients such that

fH(z)
2 = Q(z)

∏2N
i=1(z − x̊ i )

.

Item 6 of Lemma 3.16 implies that the outer normal derivative13 of the function
hH satisfies ∂nhH ≤ 0 on

⋃N
r=1(x̊2r−1 x̊2r ) and ∂nhH ≥ 0 on

⋃N
r=1(x̊2r x̊2r+1).

Furthermore, for each z ∈ R\{x̊1, x̊2, . . . , x̊2N } we have ∂nhH(z) = − fH(z)2, which
implies that Q(z) ≤ 0whenever z ∈ R. Since fH is holomorphic onH, the polynomial
Q(z) cannot have zeros of odd degree in H. Thus, we have Q(z) = −P(z)2 for some
polynomial P(z) of degree at most N−1 with real coefficients. Since |C1−C2N | = 1
(by Item 5 of Lemma 3.16), by computing the residue of fH(z)2 at x̊1, we conclude
that with appropriate choice of the sign of ν(eδ,�2� ) and hence the sign of fH, we have

lim
z→x̊1

√
π
√
z − x̊1 fH(z) = 1. (3.33)

For any r ∈ {2, . . . , N }, since Car−1 − Car = −(Cbr−1 − Cbr ) (Items 4 and 5 of
Lemma 3.16), by computing the residues of fH(z)2 at x̊ar and x̊br , we conclude that
for some sign εr ∈ {1,−1}, we have

lim
z→x̊ar

√
z − x̊ar

√
z − x̊br fH(z) = εr lim

z→x̊br

√
z − x̊ar

√
z − x̊br fH(z). (3.34)

Combining (3.33, 3.34) with Proposition 3.6, it remains to show that εr = −1 for all
2 ≤ r ≤ N . Without loss of generality, we may assume that ar is odd. Consider the
critical FK-Ising model on �δ with the boundary condition

wired on
(
xδar x

δ
br

)
and free on

(
xδbr x

δ
ar

)
, (3.35)

and denote by E
δ the expectation of this model. For this model, the edge observable

Fδ on the medial edges of �δ,� and the outer corner edges {eδ,�ar , eδ,�br } is

Fδ (e) := ν
(
eδ,�br

)
E
δ

[
1{e ∈ ηδar } exp

(− i
2Wηδar

(
eδ,�br , e

) )]
,

where ηδar is the exploration path from yδ,�ar to yδ,�br and the number Wηδar

(
yδ,�br , e

)
is

the winding from yδ,�br to e along the reversal of ηδar . One can prove similarly as in [69,

13 In this case, we also use ∂nhH to denote the ordinary outer normal derivative, since the boundary ∂H = R

is smooth.
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Lemma 4.1] that Fδ
β (e

δ,�
br

) ‖ ν(eδ,�br ), which implies that

Fδ
(
eδ,�br

)
= λbr F

δ
β

(
eδ,�br

)
for some λbr > 0. (3.36)

The vertex observable Fδ on interior vertices of �δ,� is

Fδ (e),

and on boundary vertices it is

Fδ (z) :=
⎧
⎨

⎩

√
2 exp

(−iπ4
)
Fδ (e�−), if v ∈

(
xδ,�ar xδ,�br

)
,

√
2 exp

(−iπ4
)
Fδ (e�+), if v ∈

(
xδ,�br xδ,�ar

)
,

where for a medial vertex z� ∈ ∂�δ,�\{xδ,�ar , xδ,�br }, we denote by e�−, e�+ ∈ �δ,� the
medial edges having z� as end vertex and beginning vertex, respectively. We extend
the vertex observable Fδ to a continuous function on the planar domain correspond-
ing to �δ,� via linear interpolation. A similar argument as for Fδ shows that the
sequence {2−1/4δ−1/2 Fδ }δ>0 of scaled vertex observables has locally uniformly
convergent subsequences, and by [69, Theorem 2.2], any subsequential limit equals
±φ (· ;�; x̊ar , x̊br ) defined in (3.8). Note also that14 by (3.8), we have

lim
z→x̊ar

√
z − x̊ar

√
z − x̊br φ (z;H; x̊ar , x̊br )

= lim
z→x̊br

√
z − x̊ar

√
z − x̊br φ (z;H; x̊ar , x̊br ).

(3.37)

Now, let us compare Fδ and Fδ
β . To this end, a key observation is that

∣
∣
∣Fδ

(
eδ,�br

)
+ Fδ

β

(
eδ,�br

)∣
∣
∣ and

∣
∣
∣Fδ

(
eδ,�ar

)+ Fδ
β

(
eδ,�ar

)∣∣
∣

differ by 2min
{∣
∣
∣Fδ

(
eδ,�br

)∣
∣
∣ ,

∣
∣
∣Fδ

β

(
eδ,�br

)∣
∣
∣
}
.

(3.38)

Observation (3.38) can be derived as follows.

• First, by construction, the exploration path ξδ passes through eδ,�ar and eδ,�br if and

only if it passes through the contour corresponding to {ar , br } outside of �δ . In
this case, we denote by W1 the winding from eδ,�ar to eδ,�br along the reversal of ξδ ,
which is independent of the configuration. Then, we have (recalling (3.1))

Wξδ

(
eδ,�2� , eδ,�ar

)
= Wξδ

(
eδ,�2� , eδ,�br

)
−W1 �⇒ Fδ

β

(
eδ,�ar

) = eiW1/2 Fδ
β

(
eδ,�br

)
.

14 Note that this does not violate (3.6), since r = 1 in (3.37).
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• Second, consider the critical FK-Ising model on �δ with boundary condi-
tion (3.35). The exploration path ηδar passes through e

δ,�
ar and eδ,�br with probability

one. Denote by W2 the winding from eδ,�br to eδ,�ar along the reversal of ηδar , which
is also independent of the configuration. Then, we have

Wηδar

(
eδ,�br , eδ,�ar

)
= Wηδar

(
eδ,�br , eδ,�br

)
+W2 �⇒ Fδ

(
eδ,�ar

) = e−iW2/2 Fδ
(
eδ,�br

)
.

• Third, the exploration path ηδar inside of �δ and the contour corresponding to
{ar , br } outside of �δ always form a loop, which implies that W1 +W2 = 2π .

Combining the above observations for the windings W1 and W2 with (3.36), we
obtain

Fδ
(
eδ,�ar

) = λar F
δ
β

(
eδ,�ar

)
, for some λar < 0. (3.39)

The relations (3.36) and (3.39) now together imply (3.38).
Now, we are ready to show that (3.34) holds with signs εr = −1 for all 2 ≤ r ≤ N .

First of all, if Car−1 = Car , then the left-hand side of (3.34) equals zero, so we can
take εr = −1. In contrast, if Car−1 �= Car , then (3.37) shows that the function

w �−→ Im
ˆ w

( fH(·)+ φ (· ;H; x̊ar , x̊br ))2

has jumps of the same size at x̊ar and x̊br , while by (3.38), the function defined via a
subsequential limit along some δn → 0 as n→∞,

w �−→ lim
n→∞ Im

ˆ ϕ−1(w)

(
Fδn
β (·)+ Fδn (·)

)2

√
2δn

= Im
ˆ w (

fH(·)+ φ (· ;H; x̊ar , x̊br )
)2
,

has jumps of different sizes (1 − |Car−1 − Car |)2 and (1 + |Car−1 − Car |)2 at x̊ar
and x̊br , respectively. This is a contradiction. Hence, we conclude that εr = −1 for
all 2 ≤ r ≤ N . The proof is now complete.

Corollary 3.17 The limit lim
δ→0

(Cδ
1, . . . ,C

δ
2N ) := (C1, . . . ,C2N ) exists and satisfies

lim
δ→0
|Cδ

k−1 − Cδ
k | = lim

z→ϕ(xk)
π |z − ϕ(xk)|

∣
∣φβ(z;ϕ(x1), . . . , ϕ(x2N ))

∣
∣2,

for 1 ≤ k ≤ 2N , (3.40)

where ϕ is any conformal map from � onto H such that ϕ(x1) < · · · < ϕ(x2N ).

Proof Proposition 3.5 implies that Cδ
k−1 − Cδ

k converges as δ → 0 for all 1 ≤
k ≤ 2N . Combining this with the fact that Cδ

1 = 0 (Lemma 3.15), we obtain
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the convergence of the sequence {(Cδ
1, . . . ,C

δ
2N )}δ>0 as δ → 0. Identity (3.40)

then follows from Lemma 3.16, Proposition 3.5, after computing the residues of
|φβ(z;ϕ(x1), . . . , ϕ(x2N ))|2 at ϕ(xk) for 1 ≤ k ≤ 2N .

3.5 Scaling limit of the interfaces: proof of Theorem 1.5

We are now ready to prove the convergence of the interfaces in Conjecture 1.1 for the
FK-Ising model (random-cluster model with q = 2), that is, the assertion in Theo-
rem 1.5.With precompactness from Lemma 3.2 and the convergence of the observable
from Propositions 3.5, 3.6, and 3.12 at hand, the proof is a standard martingale argu-
ment. We summarize its steps below.

Proof of Theorem 1.5 By rotation symmetry of the partition function (1.16) ononehand
and of the discretemodel on the other hand, wemaywithout loss of generality consider
the interface ηδ1 starting from xδ,�1 , i.e., assume that i = 1. By assumption, the medial
polygons (�δ,�; xδ,�1 , . . . , xδ,�2N ) converge to (�; x1, . . . , x2N ) in the Carathéodory
sense, so there are conformal maps ϕδ : �δ → H and ϕ : �→ H such that ϕ(x1) <

· · · < ϕ(x2N ) and, as δ → 0, the maps ϕ−1δ converge to ϕ−1 locally uniformly,
and ϕδ(xδj ) → ϕ(x j ) for all j . Denote by η̃δ1 := ϕδ(η

δ
1) the conformal image of the

interface ηδ1 parameterized by half-plane capacity. By Lemma 3.2, we may choose a

subsequence δn → 0 such that ηδn1 converges weakly in the metric (1.3) as n → ∞.
We denote the limit by η1, define η̃1 := ϕ(η1), and parameterize it also by half-plane
capacity. It follows from the proof of Lemma 3.2 together with [53, Corollary 1.7]
that the family {η̃δn1 |[0,t] : [0, t] → H}n≥1 is precompact in the uniform topology of
curves parameterized by half-plane capacity. Thus (also by coupling them into the
same probability space), we can choose a further subsequence, still denoted δn , such
that η̃δn1 converges to η̃1 locally uniformly as n→∞, almost surely. Next, define τ δn

to be the first time when η
δn
1 hits the arc (xδn2 xδn2N ) and τ to be the first time when

η1 hits (x2 x2N ). By properly adjusting the coupling (see, e.g., [39, Section 4] or [42,
Lemma 4.3]) we may furthermore assume that lim

n→∞τ δn = τ almost surely.

Now, denote by (Wt , t ≥ 0) the Loewner driving function of η̃1 and by (gt , t ≥ 0)
the corresponding conformal maps. Write V j

t := gt (ϕ(x j )) for j ∈ {2, 3, . . . , 2N }.
Via a standard argument (see, e.g., [42, Lemmas 3.3 and 4.3]), we derive from the
spinor observable φβ of Proposition 3.6 the local martingale

Mt (z) := (g′t (z))1/2 × φβ

(
gt (z);Wt , V

2
t , . . . , V

2N
t

)
, t < τ, (3.41)

where throughout the proof, (·)1/2 uses the principal branch of the square root.
It remains to argue that (Wt , t ≥ 0) is a semimartingale and to find the SDE for

it. This step is also standard by now. For any w < y2 < · · · < y2N , the function
∂wφβ(·;w, y2, . . . , y2N ) is holomorphic and not identically zero, so its zeros are iso-
lated. Pick z ∈ H with |z| large enough such that ∂wφβ(z;w, y2, . . . , y2N ) �= 0. By
the implicit function theorem, w is locally a smooth function of (φβ, z, y2, . . . , y2N ).
Thus, by continuity, each time t < τ has a neighborhood It for which we
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can choose a deterministic z such that Ws is locally a smooth function of
(Ms(z), gs(z), gs(y2), . . . , gs(y2N )) for all s ∈ It . This implies that (Wt , t ≥ 0)
is a semimartingale. To find the SDE for Wt , let Dt denote the drift term of Wt . By a
computation using Itô’s formula, we find from (3.41) and using the Loewner Eq. (1.4)
the identities

dMt (z)

(g′t (z))1/2
= −φβ dt

(gt (z)−Wt )2
+ 2(∂zφβ) dt

gt (z)−Wt
+ (∂1φβ) dWt

+
2N∑

j=2

2(∂ jφβ) dt

V j
t −Wt

+ 1

2
(∂21φβ) d〈W 〉t .

Combining this with Lemma 3.11, we find the expansion

dMt (z)

(g′t (z))1/2
= (gt (z)−Wt )

−5/2
(

− 2√
π
dt + 3

8
√
π
d〈W 〉t

)

+ (gt (z)−Wt )
−3/2

(
1

2
√
π
dWt − 1

8
Kβ d〈W 〉t

)

+ o(gt (z)−Wt )
−3/2.

As the drift term of Mt (z) has to vanish, we conclude that

d〈W 〉t = 16

3
dt and

1

2
√
π
dDt − 1

8
Kβ d〈W 〉t = 0

�⇒ d〈W 〉t = 16

3
dt and dDt = 4

√
π

3
Kβ dt .

Now, recalling that the goal is to derive an SDE for the driving functionW , we conclude
from Proposition 3.12 that

dWt =
√
16

3
dBt + 16

3
(∂1 logFβ)

(
Wt , V

2
t , . . . , V

2N
t

)
dt, t < τ.

This proves the convergence of the interface, and the identityFβ = Gβ from the proof
of Theorem 2.7 completes the proof of Theorem 1.5.

4 FK-Isingmodel connection probabilities: proof of Theorem 1.8

The goal of this section is to derive the scaling limit of the connection probabilities
(Theorem 1.8).

The convergence of the boundary values {(Cδ
1, . . . ,C

δ
2N )}δ>0 of the discrete prim-

itive in Corollary 3.17 is related to the convergence of the connection probabilities:
indeed, when N = 2, the former implies the latter via (3.29), see Lemma 4.1. How-
ever, for general N and general boundary conditions β ∈ LPN , this is not the case
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since the exploration path may not fully determine the internal connectivity pattern of
the interfaces. To find the scaling limit for general β, we first derive it with β = ∩∩
in Sect. 4.1 (via a martingale argument using the convergence of the interfaces from
Theorem 1.5, or [42, Theorem 1.1]), and then address a general β in Sect. 4.2 by
comparing it to the case of ∩∩. The comparison relies on combinatorial properties of
the meander matrix (Definition 1.2) together with those of the random-cluster model,
also of independent interest (Proposition 4.6).

Actually, we only really need from Theorem 1.5 the case of β = ∩∩ to show
Theorem 1.8 for general β (using the combinatorial observation from Proposition 4.6).
Indeed, themain inputs for provingTheorem1.8 in the case ofβ = ∩∩ areTheorem1.5
in the case of β = ∩∩, Corollary 2.8, and a priori estimates from Sect. 4.1 and
Appendix B. The additional non-trivial inputs to derive Theorem 1.8 for general β ∈
LPN are the aforementioned Proposition 4.6 and the cascade relation in Lemma 4.3.

Lemma 4.1 Theorem 1.8 holds with N = 2.

Note that this is consistent with [37, Eq. (117)] (see also [41, Corollary 2.7]).

Proof We have two possible boundary conditions, denoted = {{1, 2}, {3, 4}}
and = {{1, 4}, {2, 3}}. We will show the convergence

lim
δ→0

P
δ [ϑδ

FK = ] =
√
2Z (�; x1, x2, x3, x4)
F (�; x1, x2, x3, x4) , (4.1)

which also implies the assertion for ϑδ
FK = , since by combining (4.1) with

Corollary 2.8, we have

lim
δ→0

P
δ [ϑδ

FK = ] = 1 − lim
δ→0

P
δ [ϑδ

FK = ]

= 2Z (�; x1, x2, x3, x4)
F (�; x1, x2, x3, x4) .

The probabilities with boundary condition can be derived using rotation sym-
metry.

Thus, it remains to show (4.1). Note that the right-hand side of (4.1) is conformally
invariant by the covariance property (1.12) shared by both the numerator and the
denominator. Letϕ be a conformalmap from� ontoH such thatϕ(x1) < · · · < ϕ(x4),
and denote

χ = (x̊4 − x̊3)(x̊2 − x̊1)

(x̊3 − x̊1)(x̊4 − x̊2)
and x̊ i := ϕ(xi ) ∈ R, for 1 ≤ i ≤ 4.

On the one hand, Eq. (1.16) and [62, Section 2] give

F (x̊1, x̊2, x̊3, x̊4) =
√
2 (x̊2 − x̊1)

−1/8(x̊4 − x̊3)
−1/8((1− χ)1/4

+ (1− χ)−1/4
)1/2

,

Z (x̊1, x̊2, x̊3, x̊4) = (x̊4 − x̊1)
−1/8(x̊3 − x̊2)

−1/8χ3/8(1+√
1− χ)−1/2.
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Thus, since the ratio of F and Z is conformally invariant by (1.12), we
find that

√
2Z (�; x1, x2, x3, x4)
F (�; x1, x2, x3, x4) =

√
χ (1+√1− χ)−1/2

(1− χ)1/8
(
(1− χ)1/4 + (1− χ)−1/4

)1/2

=
√
χ

1+√1− χ
.

(4.2)

On the other hand, using the exploration path ξδ from Definition 3.3 and the
scaling limit of the observable from Sect. 3.2, we find

P
δ [ϑδ

FK = ]
= lim

z→x̊4

√
π
∣
∣(z − x̊4)

1/2 φ (z; x̊1, x̊2, x̊3, x̊4)
∣
∣ [by (3.29) and Cor. 3.17]

=
√
(x̊4 − x̊2)(x̊3 − x̊1)√
(x̊2 − x̊1)(x̊4 − x̊3)

−
√
(x̊4 − x̊1)(x̊3 − x̊2)√
(x̊2 − x̊1)(x̊4 − x̊3)

[by (3.9)]

= 1−√1− χ√
χ

.

Comparing this with (4.2), we obtain (4.1). This completes the proof.

4.1 Proof of Theorem 1.8: the completely unnested case

The goal of this section is to prove Theorem 1.8 when β = ∩∩ as in (1.18). We
use a standard martingale argument and the convergence of the interfaces, which also
relies on the domain Markov property of SLE curves and the Markov property of the
discrete model. The main difficulty in the proof is to establish a priori estimates for
the behavior of the martingale upon swallowing marked points.

For a polygon (�; x1, . . . , x2N )whose marked boundary points x1, . . . , x2N lie on
sufficiently regular boundary segments (e.g., C1+ε for some ε > 0), we denote

F (N )
∩∩ (�; x1, . . . , x2N ) :=

2N∏

j=1
|ϕ′(x j )|1/16 × F (N )

∩∩ (ϕ(x1), . . . , ϕ(x2N )),

where ϕ : �→ H is any conformal map such that ϕ(x1) < · · · < ϕ(x2N ). It follows
from the Möbius covariance (1.12) in Theorem 1.9 that this definition is independent
of the choice of the map ϕ. Fixing a choice and denoting throughout this section
x̊ i := ϕ(xi ) for notational simplicity, we have

F (N )
∩∩ (x̊1, . . . , x̊2N ) =

N∏

r=1
|x̊2r − x̊2r−1|−1/8

×
( ∑

σ∈{±1}N

∏

1≤s<t≤N
χ(x̊2s−1, x̊2t−1, x̊2t , x̊2s)σsσt/4

)1/2
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as in (1.16). Since Zα(�; x1, . . . , x2N ) is also given in terms of the conformal map ϕ

and Definition 1.4, we see that when considering ratios Zα/F (N )
∩∩ , we may relax the

assumption on the regularity of ∂�.

Proposition 4.2 Assume the same setup as in Theorem 1.5 with β = ∩∩ as in (1.18).
The endpoints of the N interfaces give rise to a random planar link pattern ϑδ

FK in
LPN . We have

lim
δ→0

P
δ∩∩[ϑδ

FK = α] = Mα,∩∩(2)
Zα(�; x1, . . . , x2N )
F (N )

∩∩ (�; x1, . . . , x2N )
, for any α ∈ LPN .

(4.3)

Proof We derive the probability (4.3) by induction on N ≥ 1. The initial case of
N = 1 is trivial, and the case of N = 2 holds by Lemma 4.1. Thus, we fix N ≥ 3
and assume that (4.3) holds up to N − 1. For definiteness, we consider the case
where {1, 2} ∈ α ∈ LPN . The probabilities

{
P
δ∩∩[ϑδ

FK = α]}
δ>0 form a sequence of

numbers in [0, 1], so there is always subsequential limit. It suffices to show that any
subsequential limit along a sequence δn → 0 satisfies

Pα := lim
n→∞P

δn∩∩[ϑδn
FK = α] = Mα,∩∩(2)

Zα(x̊1, . . . , x̊2N )

F (N )
∩∩ (x̊1, . . . , x̊2N )

, (4.4)

since the right-hand side is conformally invariant by the covariance property (1.12)
shared by both the numerator and the denominator. From Theorem 1.5, we know that
(up to the first time T when x̊1 or x̊3 is swallowed) the interface ηδ starting from
xδ,�2 converges weakly to the image under ϕ−1 of the Loewner chain η with driving
functionW started fromW0 = x̊2 and satisfying the SDE (1.8) with partition function
G∩∩ = F (N )

∩∩ , where (V 1
t ,Wt , V 3

t , . . . , V
2N
t ) = (gt (x̊1),Wt , gt (x̊3), . . . , gt (x̊2N )).

For convenience, we couple them (by the Skorohod representation theorem) in the
same probability space so that the convergence occurs almost surely. Now, the process

Mt := Zα(gt (x̊1),Wt , gt (x̊3), . . . , gt (x̊2N ))

F (N )
∩∩ (gt (x̊1),Wt , gt (x̊3), . . . , gt (x̊2N ))

, t < T ,

is a bounded martingale due to Corollary 2.8 and the PDEs (1.11) by Itô’s formula.
Note that (4.4) involves its starting value M0. The key to the proof is to analyze the
limiting behavior of Mt as t ↗ T .

We have either η(T ) ∈ (x̊ j , x̊ j+1) for j ∈ {3, 4, . . . , 2N }, or η(T ) ∈ (x̊2N , x̊1) =
(x̊2N ,∞)∪ (−∞, x̊1). When considering the limit of Mt , we classify the possibilities
η(T ) ∈ (x̊ j , x̊ j+1) with “correct" j and “wrong" j . For this, we define Cα to be the
set of indices j ∈ {4, 5, . . . , 2N } such that {3, 4, . . . , j} forms a sub-link pattern
of α (these indices are “correct"). After relabeling the indices by 1, 2, . . . , j − 2,
we denote this sub-link pattern by α j , and we denote by α/α j the sub-link pattern
obtained from α by removing the links in α j and relabeling the remaining indices by
1, 2, . . . , 2N − j + 2.
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(C): On the event η(T ) ∈ (x̊ j , x̊ j+1) with j ∈ Cα , Lemma 4.5 (proven below) gives
the following cascade relation: almost surely, we have

MT = lim
t→T

Mt

= Zα j (D
R
T ; x̊3, x̊4, . . . , x̊ j )

F ( j/2−1)
∩∩ (DR

T ; x̊3, x̊4, . . . , x̊ j )

Zα/α j (D
L
T ; x̊1, η(T ), x̊ j+1, x̊ j+2, . . . , x̊2N )

F (N− j/2+1)
∩∩ (DL

T ; x̊1, η(T ), x̊ j+1, x̊ j+2, . . . , x̊2N )
, (4.5)

where DR
T (resp. DL

T ) denotes the component of H\η[0, T ] with x̊3 (resp. x̊1)
on its boundary.

(Cc): On the event η(T ) ∈ (x̊ j , x̊ j+1) with j ∈ {3, 4, . . . , 2N }\Cα , from Proposi-
tion B.1 (presented in Appendix B) we see that MT vanishes: almost surely, we
have

MT = lim
t→T

Mt = 0. (4.6)

Combining (4.5, 4.6) with the identity M0 = E[MT ] from the optional stopping
theorem, we obtain

Zα(x̊1, . . . , x̊2N )

F (N )
∩∩ (x̊1, . . . , x̊2N )

= M0 = E[MT ] =
∑

j∈Cα

E
[
1{η(T ) ∈ (x̊ j , x̊ j+1)}MT

]
.

(4.7)

To simplify notation, we replace the superscripts “δn” by “n”, and we drop the super-
script “�”. Let us now consider the FK-Ising interface ηn starting from xn2 , and denote
by T n the first time when ηn intersects (xn3 x

n
1 ). Denote also by Dn,R (resp. Dn,L )

the connected component of �n\ηn[0, T n] with xn3 (resp. xn1 ) on its boundary. Then
for each j ∈ {3, 4, . . . , 2N }, on the event {ηn(T n) ∈ (xnj x

n
j+1)}, almost surely the

polygon (Dn,R; xn3 , xn4 , . . . , xnj ) converges to the polygon (ϕ−1(DR
T ); x3, x4, . . . , x j ),

and the polygon (Dn,L ; xn1 , ηn(T n), xnj+1, x
n
j+2, . . . , x

n
2N ) to the polygon (ϕ−1(DL

T );
x1, ϕ−1(η(T )), x j+1, x j+2, . . . , x2N ) in the close-Carathéodory sense (this can be
seen via a standard argument, see, e.g., [39, Section 4] and [42, Lemma 5.6]). Hence,
using the domainMarkov property of the FK-Isingmodel and the induction hypothesis,
we find that on the event {ηn(T n) ∈ (xnj x

n
j+1)}, the following almost sure conver-

gence15 holds:

E
n∩∩

[
1{ϑn

FK = α} | ηn[0, T n]]

= E
n∩∩

[
1{ϑ̂n,R

FK = α j } 1{ϑ̂n,L
FK = α/α j } | ηn[0, T n]]

15 By the Skorohod representation theorem, we can couple all of the random variables on the same proba-
bility space so that the convergence takes place almost surely.
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= P̂
n,R
∩∩ [ϑ̂n,R

FK = α j ] P̂n,L
∩∩ [ϑ̂n,L

FK = α/α j ]
n→∞−→ Mα j ,∩∩(2)Zα j (ϕ

−1(DR
T ); x3, x4, . . . , x j )

F ( j/2−1)
∩∩ (ϕ−1(DR

T ); x3, x4, . . . , x j )

×Mα/α j ,∩∩(2)Zα/α j (ϕ
−1(DL

T ); x1, ϕ−1(η(T )), x j+1, . . . , x2N )
F (N− j/2+1)

∩∩ (ϕ−1(DL
T ); x1, ϕ−1(η(T )), x j+1, . . . , x2N )

(4.8)

where P̂
n,R
∩∩ and P̂

n,L
∩∩ are respectively the FK-Ising measures on the random

polygons (Dn,R; xn3 , xn4 , . . . , xnj ) and (Dn,L ; xn1 , ηn(T n), xnj+1, . . . , x
n
2N ), both mea-

surable with respect to ηn , and ϑ̂
n,R
FK and ϑ̂

n,L
FK denote respectively the random

connectivity patterns in LP j/2−1 and LPN− j/2+1. Now, we note that for all j ∈ Cα ,
the meander matrix (1.9) satisfies the simple factorization identity

Mα j ,∩∩(2) Mα/α j ,∩∩(2) =Mα,∩∩(2). (4.9)

Therefore, using the conformal invariance (CI) of the SLE16/3 type curve η and of
the martingale M , together with the tower property and the above observations, we
conclude that

Pα := lim
n→∞P

n∩∩[ϑn
FK = α]

= lim
n→∞

∑

j∈Cα

E
n∩∩

[
1{ηn(T n) ∈ (xnj x

n
j+1)}En∩∩

[
1{ϑn

FK = α} | ηn[0, T n]]
]

=
∑

j∈Cα

E

[

1{ϕ−1(η(T )) ∈ (x j , x j+1)}
Mα j ,∩∩(2)Zα j (ϕ

−1(DR
T ); x3, x4, . . . , x j )

F ( j/2−1)
∩∩ (ϕ−1(DR

T ); x3, x4, . . . , x j )

×Mα/α j ,∩∩(2)Zα/α j (ϕ
−1(DL

T ); x1, ϕ−1(η(T )), x j+1, . . . , x2N )
F (N− j/2+1)

∩∩ (ϕ−1(DL
T ); x1, ϕ−1(η(T )), x j+1, . . . , x2N )

]

[by (4.8)]

= Mα,∩∩(2)
∑

j∈Cα

E
[
1{η(T ) ∈ (x̊ j , x̊ j+1)}MT

]
[by (4.5, 4.9) & CI]

= Mα,∩∩(2)
Zα(x̊1, . . . , x̊2N )

F (N )
∩∩ (x̊1, . . . , x̊2N )

. [by (4.7)]

This gives the sought identification (4.4) and finishes the induction step.

To complete the proof of Proposition 4.2, it remains to verify the properties (C)
and (Cc) of themartingaleM in the limit as t ↗ T . The latter is the topic ofAppendixB,
while the former we prove below in Lemma 4.5 after two preparatory results (Lem-
mas 4.3 and 4.4).

Lemma 4.3 Fix κ ∈ (4, 6] and (x̊1, . . . , x̊2N ) ∈ X2N , suppose that {1, 2} ∈ α ∈ LPN ,
and fix an index j ∈ Cα . Let η̂ be the SLEκ curve in H from x̊2 to x̊1, and let T̂ be
the first time when it swallows x̊1 or x̊3. Let (Ŵt : 0 ≤ t ≤ T̂ ) be the Loewner driving
function of η̂, and (ĝt : 0 ≤ t ≤ T̂ ) the corresponding conformal maps. Finally, denote
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by D̂R
T̂
(resp. D̂L

T̂
) the connected component of H\η̂[0, T̂ ] with x̊3 (resp. x̊1) on its

boundary. Then, almost surely on the event {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)}, we have

lim
t→T̂

( 2N∏

i=3
ĝ′t (x̊ i )h(κ)

) Zα(ĝt (x̊1), Ŵt , ĝt (x̊3), ĝt (x̊4), . . . , ĝt (x̊2N ))

Z (ĝt (x̊1), Ŵt )

= Zα j (D̂
R
T̂
; x̊3, x̊4, . . . , x̊ j )

Zα/α j (D̂
L
T̂
; x̊1, η̂(T̂ ), x̊ j+1, x̊ j+2, . . . , x̊2N )

Z (D̂L
T̂
; x̊1, η̂(T̂ ))

.

(4.10)

Proof We use the so-called “cascade relation" for pure partition functions, see [70,
Section 6]. With {1, 2} ∈ α, this relation holds for the SLEκ curve η̂ in any polygon
(�; x1, . . . , x2N ) from x2 to x1:

Zα(�; x1, . . . , x2N )
Z (�; x1, x2) = E

[
1{Eα(η̂)}ZαR,1(D̂R,1; . . .)× · · · × ZαR,r (D̂R,r ; . . .)

]
,

(4.11)

where

• Eα(η̂) is the event that η̂ is allowed by α, that is, for all {a, b} ∈ α such that
{a, b} �= {1, 2}, the points xa and xb lie on the boundary of the same connected
component of �\η̂;
• on the event Eα(η̂), from left to right D̂R,1, . . . , D̂R,r are those the connected
components of �\η̂ that have some of the points x3, . . . , x2N on the boundary;
and
• the link pattern α is divided into sub-link patterns corresponding to the marked
points on the boundaries of the components D̂R,1, . . . , D̂R,r ,which after relabeling
the indices we denote by αR,1, . . . , αR,r .

Using the cascade relation (4.11) conditioned on the initial segment η̂[0, t] together
with the domain Markov property of the SLE curve η̂ and the conformal covari-
ance (1.12), we find that

E

[
1{Eα(η̂)}ZαR,1(D̂R,1; . . .)× · · · × ZαR,r (D̂R,r ; . . .) | η̂[0, t]

]

=
( 2N∏

i=3
ĝ′t (x̊ i )h(κ)

) Zα(ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

Z (ĝt (x̊1), Ŵt )
, t < T̂ .

On the event {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)}, we have D̂R,1 = D̂R
T̂
and αR,1 = α j . Hence, we

obtain

lim
t→T̂

(
2N∏

i=3
ĝ′t (x̊ i )h(κ)

)
Zα(ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

Z (ĝt (x̊1), Ŵt )
(4.12)

= Zα j (D̂
R
T̂
; x̊3, x̊4, . . . , x̊ j ) E

[
1{Eα(η̂)}ZαR,2(D̂R,2; . . .)
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× · · · × ZαR,r (D̂R,r ; . . .) | η̂[0, T̂ ]
]
.

Now, (η̂(t) : t ≥ T̂ ) given η̂[0, T̂ ] has the law of the SLEκ curve in D̂L
T̂
from η̂(T̂ ) to

x̊1. Applying the cascade relation (4.11) to the curve (η̂(t) : t ≥ T̂ ) in D̂L
T̂
, together

with the Markov property of the SLEκ curve η̂ and the conformal covariance (1.12),
we have

E

[
1{Eα(η̂)}ZαR,2(D̂R,2; . . .)× · · · × ZαR,r (D̂R,r ; . . .) | η̂[0, T̂ ]

]

=
Zα/α j (D̂

L
T̂
; x̊1, η̂(T̂ ), x̊ j+1, . . . , x̊2N )

Z (D̂L
T̂
; x̊1, η̂(T̂ ))

.

Plugging this into (4.12), we obtain the asserted identity (4.10).

Lemma 4.4 Assume the same setup as in Lemma 4.3 and fix κ = 16/3. Sup-
pose that the index j ∈ {4, 6, . . . , 2N } is even. Then, almost surely on the event
{η̂(T̂ ) ∈ (x̊ j , x̊ j+1)}, we have

lim
t→T̂

( 2N∏

i=3
ĝ′t (x̊ i )1/16

) F (N )
∩∩ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

Z (ĝt (x̊1), Ŵt )

= F ( j/2−1)
∩∩ (D̂R

T̂
; x̊3, x̊4, . . . , x̊ j )

F (N− j/2+1)
∩∩ (D̂L

T̂
; x̊1, η̂(T̂ ), x̊ j+1, x̊ j+2, . . . , x̊2N )

Z (D̂L
T̂
; x̊1, η̂(T̂ ))

.

(4.13)

Proof From Corollary 2.8, we have

F (N )
∩∩ =

∑

γ∈LPN
Mγ,∩∩(2)Zγ .

We will divide γ ∈ LPN into three groups. First of all, set

J1 := {γ ∈ LPN : {1, 2} ∈ γ, j ∈ Cγ }.

Next, we consider γ ∈ LPN such that {2, b} ∈ γ for some b �= 1. With such γ , we
define Cγ to be the set of indices i ∈ {4, 5, . . . , b − 1} such that {3, 4, . . . , i} forms a
sub-link pattern of γ , and we define γi and γ /γi similarly as before. We set

J2(b) :=
{
γ ∈ LPN : {2, b} ∈ γ, j ∈ Cγ

}
, for b ∈ {3, 5, . . . , 2N − 1},

J2 :=
⊔

b∈{3,5,...,2N−1}
J2(b).

Lastly, we define J3 := {γ ∈ LPN : j /∈ Cγ }. We will treat the cases of J1, J2, and
J3 one by one.
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1 For γ ∈ J1, we find almost surely on the event {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)} the identity

lim
t→T̂

( 2N∏

i=3
ĝ′t (x̊ i )1/16

) Zγ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

Z (ĝt (x̊1), Ŵt )

= Zγ j (D̂
R
T̂
; x̊3, . . . , x̊ j )

Zγ /γ j (D̂
L
T̂
; x̊1, η̂(T̂ ), x̊ j+1, . . . , x̊2N )

Z (D̂L
T̂
; x̊1, η̂(T̂ ))

. [by Lem. 4.3]

2 For γ ∈ J2, fix some b ∈ {3, 5, . . . 2N − 1} such that γ ∈ J2(b). Let η̃ be the
SLE16/3 curve inH from x̊2 to x̊b, and let T̃ be the first timewhen it swallows x̊1 or
x̊3. Let (W̃t : 0 ≤ t ≤ T̃ ) be theLoewner driving function of η̃ and (g̃t : 0 ≤ t ≤ T̃ )

the corresponding conformal maps. Denote by D̃R
T̃
(resp. D̃L

T̃
) the connected com-

ponent of H\η̃[0, T̃ ] with x̊3 (resp. x̊1) on its boundary. Using a similar analysis
as in Lemma 4.3, almost surely on the event {η̃(T̃ ) ∈ (x̊ j , x̊ j+1)}, we have

lim
t→T̃

( ∏

i /∈{2,b}
g̃′t (x̊ i )1/16

) Zγ (g̃t (x̊1), W̃t , g̃t (x̊3), . . . , g̃t (x̊2N ))

Z (W̃t , g̃t (x̊b))

= Zγ j (D̃
R
T̃
; x̊3, . . . , x̊ j )

Zγ /γ j (D̃
L
T̃
; x̊1, η̃(T̃ ), x̊ j+1, . . . , x̊2N )

Z (D̃L
T̃
; η̃(T̃ ), x̊b)

.

Note that, on the event {η̃(T̃ ) ∈ (x̊ j , x̊ j+1)}, we also have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lim
t→T̃

g̃′t (x̊1) = g̃′
T̃
(x̊1),

lim
t→T̃

g̃′t (x̊b) = g̃′
T̃
(x̊b),

lim
t→T̃

Z (W̃T̃ , g̃T̃ (x̊b)).

(4.14)

Therefore, we obtain

lim
t→T̃

( 2N∏

i=3
g̃′t (x̊ i )1/16

) Zγ (g̃t (x̊1), W̃t , g̃t (x̊3), . . . , g̃t (x̊2N ))

Z (g̃t (x̊1), W̃t )

= lim
t→T̃

( ∏

i /∈{2,b}
g̃′t (x̊ i )1/16

) Zγ (g̃t (x̊1), W̃t , g̃t (x̊3), . . . , g̃t (x̊2N ))

Z (W̃t , g̃t (x̊b))

× g̃′t (x̊b)1/16 Z (W̃t , g̃t (x̊b))

g̃′t (x̊1)1/16 Z (g̃t (x̊1), W̃t )

= Zγ j (D̃
R
T̃
; x̊3, . . . , x̊ j )

Zγ /γ j (D̃
L
T̃
; x̊1, η̃(T̃ ), x̊ j+1, . . . , x̊2N )

Z (D̃L
T̃
; η̃(T̃ ), x̊b)

×
g̃′
T̃
(x̊b)1/16 Z (W̃T̃ , g̃T̃ (x̊b))

g̃′
T̃
(x̊1)1/16 Z (g̃T̃ (x̊1), W̃T̃ )

. [by (4.14]
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= Zγ j (D̃
R
T̃
; x̊3, . . . , x̊ j )

Zγ /γ j (D̃
L
T̃
; x̊1, η̃(T̃ ), x̊ j+1, . . . , x̊2N )

Z (D̃L
T̃
; x̊1, η̃(T̃ ))

, [by (4.15]

using also the observation

Z (D̃L
T̃
; x̊1, η̃(T̃ ))

Z (D̃L
T̃
; η̃(T̃ ), x̊b)

g̃′
T̃
(x̊b)1/16 Z (W̃T̃ , g̃T̃ (x̊b))

g̃′
T̃
(x̊1)1/16 Z (g̃T̃ (x̊1), W̃T̃ )

= 1. (4.15)

As the law of (η̂(t) : t ≤ T̂ ) conditional on {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)} is absolutely con-
tinuous to that of (η̃(t) : t ≤ T̃ ) conditional on {η̃(T̃ ) ∈ (x̊ j , x̊ j+1)}, the above
relation also holds for η̂—see, e.g., [67].

3 For γ ∈ J3, Item 2 of Proposition B.1 gives that almost surely on the event
{η̂(T̂ ) ∈ (x̊ j , x̊ j+1)}, we have

lim
t→T̂

Zγ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

F (N )
∩∩ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

= 0.

Combining Cases 1–3, we see that almost surely on the event {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)},
we have

1 = lim
t→T̂

∑

γ∈J1∪J2

Mγ,∩∩(2)Zγ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

F (N )
∩∩ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

+ lim
t→T̂

∑

γ∈J3

Mγ,∩∩(2)Zγ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

F (N )
∩∩ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

=
∑

γ∈J1∪J2

Mγ j ,∩∩(2)Zγ j (D̂
R
T̂
; x̊3, . . . , x̊ j )

lim
t→T̂

(∏2N
i=3 ĝ′t (x̊ i )1/16

) F (N )
∩∩ (ĝt (x̊1),Ŵt ,ĝt (x̊3),...,ĝt (x̊2N ))

Z (ĝt (x̊1),Ŵt )

×Mγ /γ j ,∩∩(2)
Zγ /γ j (D̂

L
T̂
; x̊1, η̂(T̂ ), x̊ j+1, . . . , x̊2N )

Z (D̂L
T̂
; x̊1, η̂(T̂ ))

[by (4.9) & 1− 3]

=
F ( j/2−1)

∩∩ (D̂R
T̂
; x̊3, . . . , x̊ j )

F (N− j/2+1)
∩∩ (D̂L

T̂
;x̊1,η̂(T̂ ),x̊ j+1,...,x̊2N )

Z (ĝt (x̊1),Ŵt )

.
[by Cor. 2.8]

This gives the asserted identity (4.13) and completes the proof.

Lemma 4.5 Assume the same setup as in the proof of Proposition 4.2. Suppose that
j ∈ Cα . Then, on the event {η(T ) ∈ (x̊ j , x̊ j+1)}, the relation (4.5) holds almost surely.
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Proof In thenotationofLemma4.3, on the event {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)}, Eqs. (4.10, 4.13)
give almost surely

lim
t→T̂

Zα(ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

F (N )
∩∩ (ĝt (x̊1), Ŵt , ĝt (x̊3), . . . , ĝt (x̊2N ))

=
Zα j (D̂

R
T̂
; x̊3, x̊4, . . . , x̊ j )

F ( j/2−1)
∩∩ (D̂R

T̂
; x̊3, x̊4, . . . , x̊ j )

Zα/α j (D̂
L
T̂
; x̊1, η̂(T̂ ), x̊ j+1, x̊ j+2, . . . , x̊2N )

F (N− j/2+1)
∩∩ (D̂L

T̂
; x̊1, η̂(T̂ ), x̊ j+1, x̊ j+2, . . . , x̊2N )

.

Since the law of (η(t) : t ≤ T ) conditional on {η(T ) ∈ (x̊ j , x̊ j+1)} is absolutely con-
tinuous with respect to the law of (η̂(t) : t ≤ T̂ ) conditional on {η̂(T̂ ) ∈ (x̊ j , x̊ j+1)},
this gives (4.5)—see, e.g., [67].

4.2 Proof of Theorem 1.8: the general case

The goal of this section is to prove Theorem 1.8 with a general boundary condition
β ∈ LPN , using Proposition 4.2. The key is the following observation for the discrete
models—which holds, in fact, for all random-clustermodelswith cluster-weight q > 0
and edge-weight being the self-dual value (4.16).

Proposition 4.6 Consider the random-clustermodel on theprimal polygon (�; x1, . . . ,
x2N ) with cluster-weight q > 0 and edge-weight

p =
√
q

1+√q . (4.16)

The random connectivity ϑRCM in this model satisfies the identity

Pβ [ϑRCM = α] =
Mα,β (q)
Mα,∩∩(q) P∩∩[ϑRCM = α]

∑

γ∈LPN

Mγ,β (q)
Mγ,∩∩(q) P∩∩[ϑRCM = γ ]

, for all α, β ∈ LPN . (4.17)

Proof We denote byW the set of random-cluster configurations that are wired on the
boundary arcs (x2r−1 x2r ) for 1 ≤ r ≤ N , namely,

W :=
{

ω = (ωe)e∈E(�) ∈ {0, 1}E(�) : ωe = 1 for all e ∈
N⋃

r=1
(x2r−1 x2r )

}

.

Also, we denote by N (ω) the number of loops in the loop representation of ω (recall
Fig. 1). Thanks to the hypothesis (4.16), a standard argument (see, e.g., [23, Proposi-
tion 3.17]) shows that

Pβ [ω] =
√
qN (ω)MϑRCM(ω),β(q)

∑

�∈W
√
qN (�)MϑRCM(�),β(q)

, for all ω ∈W. (4.18)
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On the one hand, identity (4.18) gives

Pβ [ϑRCM = α] = Mα,β(q)
∑

ω∈W(α)

√
qN (ω)

∑
γ∈LPN Mγ,β(q)

∑
�∈W(γ )

√
qN (�)

, for all α, β ∈ LPN ,

(4.19)

where W(α) := {ω ∈ W : ϑRCM(ω) = α}. On the other hand, applying (4.19) to the
right-hand side (RHS) of (4.17), we find that

RHS of (4.17) =
(

Mα,β(q)
∑

ω∈W(α)

√
qN (ω)

∑
δ∈LPN Mδ,∩∩(q)

∑
υ∈W(δ)

√
qN (υ)

)

⎛

⎜
⎝

∑

γ∈LPN

Mγ,β(q)
∑

�∈W(γ )

√
qN (�)

∑

δ∈LPN
Mδ,∩∩(q)

∑
υ∈W(δ)

√
qN (υ)

⎞

⎟
⎠

−1

= Mα,β(q)
∑

ω∈W(α)

√
qN (ω)

∑

γ∈LPN
Mγ,β(q)

∑
�∈W(γ )

√
qN (�)

= Pβ [ϑRCM = α],

as desired by (4.17).

The general case in Theorem 1.8 follows now with little effort.

Proof of Theorem 1.8 For any α, β ∈ LPN , we have

lim
δ→0

P
δ
β [ϑδ

FK = α] =
Mα,β (2)
Mα,∩∩(2) limδ→0 P

δ∩∩[ϑδ
FK = α]

∑
γ∈LPN

Mγ,β (2)
Mγ,∩∩(2) limδ→0 P

δ∩∩[ϑδ
FK = γ ]

[by Prop. 4.6 with q = 2]

=
Mα,β(2)

Zα(�;x1,...,x2N )

F (N )
∩∩ (�;x1,...,x2N )

∑
γ∈LPN Mγ,β(2)

Zγ (�;x1,...,x2N )

F (N )
∩∩ (�;x1,...,x2N )

[by Prop. 4.2]

=Mα,β(2)
Zα(�; x1, . . . , x2N )
Fβ(�; x1, . . . , x2N ) . [by Cor. 2.8]

This completes the proof.

Remark 4.7 It follows from Theorems 1.5 and 1.8 that the so-called “global” multiple
SLE16/3 associated to α, as defined in [5, Proposition 1.4], is the same as the so-called
“local” multiple SLE16/3 associated to α. We leave the details to a dedicated reader.
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Appendix A Combinatorial lemmas for Sect. 3: details for
Proposition 3.12

Here, we fill in the details to finish the proof of Proposition 3.12. We use the notation
from Sect. 3.3.

Lemma A.1 For the expression Qβ(σ̂ )appearing in (3.12, 3.17), there exists a constant
θβ ∈ {±1,±i} depending only on β such that (3.18) holds for all σ̂ = (σ̂2, . . . , σ̂N ) ∈
{±1}N−1:

Qβ(σ̂ )

θβ
> 0. (A1)

Proof We prove (A1) by induction on N ≥ 2. For the initial case where N = 2, we
have the two boundary conditions = {{1, 4}, {2, 3}}, and16

Q (−) = x4 − x1√
x4 − x1

√
x4 − x2

, Q (−) = −i x3 − x1√
x3 − x1

√
x4 − x3

,

Q (+) = x3 − x1√
x3 − x1

√
x3 − x2

, Q (+) = −i x2 − x1√
x2 − x1

√
x4 − x2

.

Thus, the claim (A1) holds for N = 2 with θ = 1 and θ = −i.
16 We use

√· to denote the principal branch of the square root.

123

http://creativecommons.org/licenses/by/4.0/


Y. Feng et al.

Next, fix N ≥ 3 and assume that the claim (A1) holds up to N − 1. Fix β ∈ LPN .
Choose an index r ∈ {2, . . . , N } such that br = ar +1. With this choice of r , we have

s < ar , for all s /∈ {ar , br } ⇐⇒ s < br , for all s /∈ {ar , br }. (A2)

For any σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1, note that (3.17) implies that

Qβ(σ̂ ) =
(∏

2≤s≤N
(
yσ̂s ,βs − x1

)
)

︸ ︷︷ ︸
=:T1

(
1

∏
j /∈{ar ,br }

√

yσ̂r ,βr − x j

)

︸ ︷︷ ︸
=:T2

×
(∏

2≤s<r

yσ̂r ,βr − yσ̂s ,βs
√

yσ̂s ,βs − xar

√

yσ̂s ,βs − xbr

)

︸ ︷︷ ︸
=:T3

(∏

r<s≤N
yσ̂s ,βs − yσ̂r ,βr

√

yσ̂s ,βs − xar

√

yσ̂s ,βs − xbr

)

︸ ︷︷ ︸
=:T4

×
(∏

2≤s<t≤N
s,t �=r

(
yσ̂t ,βt − yσ̂s ,βs

)
) (∏

2≤s≤N
s �=r

S̈as ,bsx1,...,xar−1,xbr+1,...,x2N
(
yσ̂s ,βs

)
)

︸ ︷︷ ︸
=:T5

,

where yσ̂r ,βr are defined in (3.16). Let us analyze the phase factors of the terms Tk for
1 ≤ k ≤ 5:

1. We always have T1 > 0.
2. The phase factor of T2 is independent of the choice of σ̂ , due to the observa-

tion (A2).
3. According to the explicit formula of T3, its phase factor depends on σ̂ only through

(σ̂2, . . . , σ̂r ). The observation (A2) readily implies that the phase factor of T3 is
independent of the choice of σ̂r . Moreover, it is also independent of the choice of
(σ̂2, . . . , σ̂r−1), since for each s ≤ r − 1, we have

• if yσ̂s ,βs < xar , then

yσ̂r ,βr − yσ̂s ,βs
√

yσ̂s ,βs − xar

√

yσ̂s ,βs − xbr

= − yσ̂r ,βr − yσ̂s ,βs
√

xar − yσ̂s ,βs

√

xbr − yσ̂s ,βs

< 0;
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• if yσ̂s ,βs > xbr , then

yσ̂r ,βr − yσ̂s ,βs
√

yσ̂s ,βs − xar

√

yσ̂s ,βs − xbr

= − yσ̂s ,βs − yσ̂r ,βr
√

yσ̂s ,βs − xar

√

yσ̂s ,βs − xbr

< 0.

Thus, in both cases the phase factor of T3 is independent of the choice of σ̂ .
4. The phase factor of T4 is similarly independent of the choice of σ̂ .
5. By the induction hypothesis, the phase factor of T5 equals θβ/{ar ,br } ∈ {±1,±i}.
As the phase factor of Qβ(σ̂ ) equals the product of the phase factors of Tk for

1 ≤ k ≤ 5, we find a constant θβ ∈ {±1,±i} depending only on β such that (3.18)
holds. This completes the induction step.

Lemma A.2 There exist functions gσ̂ ,β(x) > 0 for σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1
such that (3.23) holds:

det(R•β)
det(Rβ)

=
∑

σ̂∈{±1}N−1 gσ̂ ,β(x)
∑N

r=2
(
yσ̂r ,βr − x1

)−1
∑

σ̂∈{±1}N−1 gσ̂ ,β(x)
. (A3)

Proof By Lemma A.1, with Qβ(σ̂ ) defined in (3.12), we have

gσ̂ ,β(x) := Qβ(σ̂ )

θβ
> 0.

It remains to verify (A3). On the one hand, the identity (3.12) implies that

det(Rβ) = θβ
∑

σ̂∈{±1}N−1
gσ̂ ,β(x). (A4)

On the other hand, let us compute det R•β . For 2 ≤ r ≤ N , we define row vectors
U±,•β (r) of size N as

U±,•β (r) :=
(
U±β (r , 0), U±β (r , 1), U±β (r , 2), . . . , U±β (r , N − 1)

)
,

whereU±β (r , n) are defined in (3.10). We then define another row vector of size N for
a variable z as

Z := (1, z, z2, . . . , zN−1), (A5)
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and consider two polynomials Q(z) and Q•β(σ̂ ; z), for σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1,
defined as

Q(z) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z
U+,•β (2) + U−,•β (2)

·
·
·

U+,•β (N ) + U−,•β (N )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q•β(σ̂ ; z) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z
U σ̂2,•

β (2)
·
·
·

U σ̂N ,•
β (N )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, using the Vandermonde determinant, we find that

Q(z) =
∑

σ̂∈{±1}N−1
Q•β(σ̂ ; z)

=
∑

σ̂∈{±1}N−1

∏

2≤r≤N

(
yσ̂r ,βr − x1 − z

) ∏

2≤s<t≤N

(
yσ̂t ,βt − yσ̂s ,βs

)

×
∏

2≤r≤N
S̈ar ,brx1,...,x2N

(
yσ̂r ,βr

)
.

(A6)

Combining (3.17) and (A6) with the fact that − det(R•β) equals the coefficient of z in
the polynomial Q(z), we finally obtain

det(R•β) =
∑

σ̂∈{±1}N−1
Qβ(σ̂ )

N∑

r=2

1

yσ̂r ,βr − x1

= θβ
∑

σ̂∈{±1}N−1
gσ̂ ,β(x)

N∑

r=2

1

yσ̂r ,βr − x1
.

(A7)

Combining (A4) with (A7), we obtain the sought identity (A3).

Lemma A.3 For the functions gσ̂ ,β(σ̂ ) in LemmaA.2, there exist functions fβ(σ̂ ) such
that (3.24) holds for all σ̂ = (σ̂2, . . . , σ̂N ) ∈ {±1}N−1.
Proof Fix σ̂ . Recall from (3.1) that we have a1 = 1 and b1 = 2� in the bound-
ary condition β = {{a1, b1}, . . . , {aN , bN }}. Combining the facts that |θβ | = 1 and
gσ̂ ,β(x) > 0 with (3.17), we obtain

gσ̂ ,β (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∏

2≤r≤N

∣
∣yσ̂r ,βr − x1

∣
∣

√∣
∣yσ̂r ,βr − x1

∣
∣
√∣
∣yσ̂r ,βr − x2�

∣
∣

︸ ︷︷ ︸
=:A(σ̂ ;r)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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×
( ∏

2≤s<t≤N

∣
∣yσ̂t ,βt − yσ̂s ,βs

∣
∣

√∣
∣yσ̂t ,βt − xas

∣
∣
√∣
∣yσ̂t ,βt − xbs

∣
∣
√∣
∣yσ̂s ,βs − xat

∣
∣
√∣
∣yσ̂s ,βs − xbt

∣
∣

︸ ︷︷ ︸
=:B(σ̂ ;s,t)

)

,

where

A(σ̂ ; r) = χ(x1, xar , xbr , x2�)
σ̂r+1
4

√|xbr − x1|
√|xbr − x2�|

, 2 ≤ r ≤ N ,

B(σ̂ ; s, t) = χ(xas , xat , xbt , xbs )
σ̂s σ̂t+1

4
1

√|xbt − xbs |
√|xat − xas |

, 2 ≤ s < t ≤ N .

Therefore, we can choose

fβ(x) :=
∏

2≤r≤N

√|xbr − x1|
√|xbr − x2�|

×
∏

2≤s<t≤N

1
√|xbt − xbs |

√|xat − xas |
.

This proves the lemma.

Appendix B Technical lemmas for Sect. 4

In this appendix, we gather technical results for deterministic curves. The setup is the
following.

• Fix N ≥ 1 and marked points x = (x1, . . . , x2N ) ∈ X2N . Suppose η is a continu-
ous curve in H starting from x2 with continuous Loewner driving functionW . Let
T be the first time when x1 or x3 is swallowed by η. Assume that η[0, T ] does not
hit any marked points except for the starting point x2. Let (gt : 0 ≤ t ≤ T ) be the
conformal maps corresponding to this Loewner chain.
• For α ∈ LPN such that {2, b} ∈ α for b ∈ {1, 3, 5, . . . , 2N − 1}, define Cα to be
the set of indices j ∈ {4, 5, . . . , b − 1} such that {3, 4, . . . , j} forms a sub-link
pattern of α.
• Define the bound functions

Bα(x) :=
∏

{a,b}∈α
|xb − xa |−1/8,

and recall the formula (1.16):withσ = (σ1, σ2, . . . , σN ) andwritingχ2s−1,2t−1,2t,2s
= χ(x2s−1, x2t−1, x2t , x2s) as in (1.17), we have

F (N )
∩∩ (x) =

N∏

r=1
|x2r − x2r−1|−1/8

( ∑

σ∈{±1}N

∏

1≤s<t≤N
χ

σsσt/4
2s−1,2t−1,2t,2s

)1/2

.
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• For notational convenience, we also define

B(N )
∩∩ (x) :=

N∏

r=1
|x2r − x2r−1|−1/8,

Y(N )
∩∩ (x) := F (N )

∩∩ (x)

B(N )
∩∩ (x)

=
( ∑

σ∈{±1}N

∏

1≤s<t≤N
χ

σsσt/4
2s−1,2t−1,2t,2s

)1/2

.

Thegoal of this appendix is to prove the following technical result (PropositionB.1).
To this end, we first collect basic facts in Lemma B.2. Then, we give estimates for
Bα/B(N )

∩∩ and Y(N )
∩∩ in Lemmas B.3–B.5. With these at hand, we complete the proof

of Proposition B.1 in the end.

Proposition B.1 Fix a link pattern α ∈ LPN . Consider the continuous curve η in H in
the above setup.

1 Suppose {1, 2} ∈ α. For odd j ∈ {3, 5, . . . , 2N − 1}, if η(T ) ∈ (x j , x j+1), then
we have

lim
t→T

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

F (N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

= 0.

2 For even j ∈ {4, 6, . . . , 2N } such that j /∈ Cα , if η(T ) ∈ (x j , x j+1), then we have

lim
t→T

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

F (N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

= 0.

To simplify notation, we denote f � g if f /g is bounded by a finite constant from
above, by f � g if g � f , and by f ! g if f � g and f � g.

Lemma B.2 Fix marked points x1 < x2 < y1, y2, y3, y4 < x3 < x4. If η(T ) ∈
(x3, x4), then we have

∣
∣
∣
∣
gt (y1)− gt (y2)

gt (y3)− gt (y4)

∣
∣
∣
∣ ! 1, (B1)

where the constants in! depend on η[0, T ] and themarked points and are independent
of t ≥ 0, and

lim
t→T

∣
∣
∣
∣
gt (y2)− gt (y1)

Wt − gt (y3)

∣
∣
∣
∣ = 0. (B2)

Proof See, for instance, [59, Eqs. (A.1) and (A.2)].
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Lemma B.3 Suppose {1, 2} ∈ α. For odd j ∈ {3, 5, . . . , 2N−1}, if η(T ) ∈ (x j , x j+1),
then we have

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

B(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

� 1,

where the constant in� depends on η[0, T ] and x ∈ X2N and is independent of t ≥ 0.

Proof Write the link pattern α = {{a1, b1}, . . . , {aN , bN }} as in (1.2), so that
{a1, b1} = {1, 2}. Assuming that η(T ) ∈ (x j , x j+1), we have gt (xl)− gt (xk) ! 1 for
all indices 2 < k < j < l or j ≤ k < l. Thus, we see that

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

B(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

!

∏

r∈I j
α

|gt (xbr )− gt (xar )|−1/8
∏

s∈I j
∩∩

|gt (x2s)− gt (x2s−1)|−1/8 , (B3)

where

I j
α := {r ∈ {1, 2, . . . , N } : ar , br ∈ {3, 4, . . . , j}}, (B4)

I j
∩∩ := {s ∈ {1, 2, . . . , N } : 2s − 1, 2s ∈ {3, 4, . . . , j}}. (B5)

Since j is odd, we have

#I j
∩∩ =

j − 3

2
and m = m( j, α) := #I j

α ≤
j − 3

2
,

which implies that {2, 3, . . . ,m + 1} ⊂ I j
∩∩. Now, for s ∈ I j

∩∩, we have
lim
t→T
|gt (x2s)− gt (x2s−1)| = 0. Thus, we see that the right-hand side (RHS) of (B3)

can be estimated as

RHS of (B3) �
∏

r∈I j
α
|gt (xbr )− gt (xar )|−1/8

∏
s∈{2,3,...,m+1} |gt (x2s)− gt (x2s−1)|−1/8 . (B6)

There are equally many (namely, m) factors in the denominator and in the numerator
of RHS of (B6). From (B1), we then find that RHS of (B6) ! 1, which completes the
proof.

Lemma B.4 For even j ∈ {4, 6, . . . , 2N } and j /∈ Cα , if η(T ) ∈ (x j , x j+1), then we
have

lim
t→T

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

B(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

= 0. (B7)

Proof. Writeα = {{a1, b1}, . . . , {aN , bN }} as in (1.2), andwrite also {a2, b2} = {2, b}.
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• Assume that j ∈ {4, 6, . . . , 2N−2}. Define the setsI j
α andI j

∩∩ as in (B4) and (B5).
Combining the facts that j is even and j /∈ Cα , we obtain

#I j
∩∩ =

j − 2

2
and m = m( j, α) := #I j

α ≤
j − 2

2
− 1,

which implies that

{2, 3, . . . ,m + 1} ⊂ I j
∩∩ and

j

2
∈ I j

∩∩\{2, 3, . . . ,m + 1}.

Thus, we can write

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

B(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

=
( ∏

r∈I j
α
|gt (xbr )− gt (xar )|−1/8

∏
s∈{2,3,...,m+1} |gt (x2s)− gt (x2s−1)|−1/8

)

︸ ︷︷ ︸
=:A1

( |gt (xb)−Wt |−1/8
|gt (x j )− gt (x j−1)|−1/8

)

︸ ︷︷ ︸
=:A2

×
( ∏

r /∈I j
α∪{2} |gt (xbr )− gt (xar )|−1/8

|Wt − gt (x1)|−1/8 ∏s /∈{1,2,...,m+1}∪{ j/2} |gt (x2s)− gt (x2s−1)|−1/8
)

︸ ︷︷ ︸
=:A3

.

1. In A1, there are equally many (namely, m) factors in the denominator and in
the numerator. Hence, we see from (B1) that A1 ! 1 in the limit t → T .

2. In A2, we have |gt (x j ) − gt (x j−1)| → 0 as t → T . It remains to analyze
|gt (xb)− Wt | as t → T . If b = 1 or b ≥ j + 1, we have |gt (xb)− Wt | ! 1.
If 3 ≤ b ≤ j , we have |Wt − gt (xb)| → 0, but A2 → 0 due to (B2). Thus, in
both cases, we have lim

t→T
A2 = 0 in the limit t → T .

3. Lastly, for A3 the definition of the set I j
α implies that

either ar = 1 or j + 1 ≤ br ≤ 2N , for all r /∈ I j
α ∪ {2}.

Thus, for all r /∈ I j
α ∪ {2}, we have |gt (xbr )− gt (xar )| ! 1. Hence, A3 � 1 in

the limit t → T .

Combining the above three estimates, we obtain (B7).
• The case where j = 2N can be analyzed similarly.

Lemma B.5 We have

Y(N )
∩∩ (x1, . . . , x2N ) ≥ χ

1/8
2r−1,2s−1,2s,2r , for all 1 ≤ r < s ≤ N . (B8)

In particular, we have

Y(N )
∩∩ (x1, . . . , x2N ) ≥ 1. (B9)
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Proof Note that (B9) follows from (B8) because χ2r−1,2s−1,2s,2r ≥ 1 holds for all
1 ≤ r < s ≤ N . It suffices to show (B8). We proceed by induction on N ≥ 2.When
N = 2, we have

Y(2)
∩∩ =

(
2χ(x1, x3, x4, x2)

1/4 + 2χ(x1, x3, x4, x2)
−1/4)1/2

= (
2χ(x1, x3, x4, x2)

−1/2 + 2
)1/2

χ(x1, x3, x4, x2)
1/8 ≥ χ(x1, x3, x4, x2)

1/8.

This proves (B8) in the initial case N = 2. Now, assume that N ≥ 3 and (B8) holds
up to N − 1. For any 1 ≤ r < s ≤ N , fix some t ∈ {1, 2, . . . , N }\{r , s}. Defining the
function ζ : (0,+∞)→ (0,+∞) as ζ(x) := x + 1/x , we have

(Y(N )
∩∩ (x1, . . . , x2N )

)2 =
∑

σ∈{±1}N

∏

1≤u<v≤N
χ

σrσs/4
2u−1,2v−1,2v,2u

=
∑

σ̂∈{±1}N−1

( ∏

1≤u<v≤N
u,v �=t

χ
σ̂u σ̂v/4
2u−1,2v−1,2v,2u

)

× ζ

((∏

l<t

χ
σ̂l/4
2l−1,2t−1,2t,2l

)(∏

l>t

χ
σ̂l/4
2t−1,2l−1,2l,2t

))

≥ 2
(Y(N−1)

∩∩ (x1, . . . , x2t−2, x2t+1, . . . , x2N )
)2

≥ χ
1/4
2r−1,2s−1,2s,2r ,

where we used the induction hypothesis on the last line, and wrote σ = (σ1, σ2, . . . ,

σN ) ∈ {±1}N and σ̂ = (σ̂1, . . . , σ̂t−1, σ̂t+1, . . . , σ̂N ) ∈ {±1}N−1. This yields (B8)
and completes the proof.

Proof of Proposition B.1 1. If η(T ) ∈ (x j , x j+1), then the following estimate holds:

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

F (N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

� 1

Y(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

[by Lem. B.3]

≤ 1

χ(gt (x1), gt (x j ), gt (x j+1),Wt )1/8
. [by (B8)]

By assumption, j is odd and x1 < x2 < x j < x j+1. Thus, if η(T ) ∈ (x j , x j+1),
then we have

χ(gt (x1), gt (x j ), gt (x j+1),Wt ) = (gt (x j )− gt (x1))(gt (x j+1)−Wt )

(gt (x j+1)− gt (x1))(gt (x j )−Wt )

! 1

gt (x j )−Wt

t→T−→ ∞.
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This proves Item 1.
2. From Lemmas B.4 and B.5, we find that if η(T ) ∈ (x j , x j+1), then

Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

F (N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

≤ Bα(gt (x1),Wt , gt (x3), . . . , gt (x2N ))

B(N )
∩∩ (gt (x1),Wt , gt (x3), . . . , gt (x2N ))

t→T−→ 0,

This proves Item 2.

Appendix C Asymptotic properties of the Coulomb gas integralsGˇ

In this appendix, we assume κ ∈ (4, 8). Recall from (1.5) the function Gβ : X2N → R,

Gβ(x) :=
(√

q(κ) �(2− 8/κ)

�(1− 4/κ)2

)N $ xb1

xa1

· · ·
$ xbN

xaN

fβ(x; u1, . . . , uN ) du1 · · · duN ,

where the integrand is given by (1.6),

fβ(x; u1, . . . , uN ) :=
∏

1≤i< j≤2N
(x j − xi )

2/κ
∏

1≤r<s≤N
(us − ur )

8/κ
∏

1≤i≤2N
1≤r≤N

(ur − xi )
−4/κ ,

with its branch chosen real and positive on the set (2.1). The goal of this appendix
is to derive the asymptotic property (1.19) of Gβ for the case where { j, j + 1} /∈ β

(Proposition 2.5) via a direct calculation. To this end, it suffices to derive the following
asymptotics (Proposition C.1) for

Hβ(x) :=
(√

q(κ) �(2− 8/κ)

�(1− 4/κ)2

)−N
Gβ(x).

Proposition C.1 Fix β ∈ LPN with link endpoints ordered as in (1.2). Fix an index
j ∈ {1, 2, . . . , 2N −1} such that { j, j+1} ∈ β. Then, for all ξ ∈ (x j−1, x j+2), using
the notation (1.14), we have

lim
x j ,x j+1→ξ

Hβ(x)

(x j+1 − x j )−2h(κ)
= �(1− 4/κ)2√

q(κ) �(2− 8/κ)
H℘ j (β)/{ j, j+1}(ẍ j ). (C1)

Proposition C.1 can be proved via direct analysis. We consider three cases sepa-
rately, according to the pairs of j and of j + 1 in β:

(A): {ar , j} ∈ β and { j + 1, bs} ∈ β with ar < j < j + 1 < bs ,
(B): {as, j} ∈ β and {ar , j + 1} ∈ β with ar < as < j < j + 1,
(C): { j, br } ∈ β and { j + 1, bs} ∈ β with j < j + 1 < bs < br .
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In all three cases, by the ordering (1.2), we have r( j) = r < s = s( j) and ar < as .
Supplementing the notation in (1.14), we write

u = (u1, . . . , uN )

ür ,s = (u1, . . . , ur−1, ur+1, . . . , us−1, us+1, . . . , uN ).

As j , r , and s will be fixed throughout, we omit the dependence on them in the
notation for ẍ and ü. Even though the points x1, . . . , x2N are allowed to move in this
appendix, we always assume that they are ordered as x1 ≤ · · · ≤ x2N and only collide
upon taking the limit x j , x j+1→ ξ .

Proof of Proposition C.1, Case A Define βA := β\({ar , j} ∪ { j + 1, bs}) (we do not
relabel the indices here), and denote by �βA the integration contours inHβ other than
(xar , x j ), (x j+1, xbs ). Then, we have

Hβ(x) =
ˆ
�βA

$ x j

xar

$ xbs

x j+1
du fβ(x; u)

=
ˆ
�βA

dü fβ(x; ü) IA(xar , x j , x j+1, xbs ),
(C2)

where

fβ(x; ü) =
∏

1≤i< j≤2N
(x j − xi )

2/κ
∏

1≤t<l≤N
t,l �=r ,s

(ul − ut )
8/κ

∏

1≤i≤2N
1≤t≤N
t �=r ,s

(ut − xi )
−4/κ

is a part of the integrand function (1.6) chosen to be real and positive on

{x1 < · · · < x2N and xat < Re(ut ) < xat+1 for all t �= r , s}, (C3)

and where IA(xar , x j , x j+1, xbs ) =: IA is the integral

IA :=
$ x j

xar

dur
f (r)β (ur )

|ur − x j |4/κ |ur − x j+1|4/κ
$ xbs

x j+1
dus

(us − ur )8/κ f (s)β (us)

|us − x j |4/κ |us − x j+1|4/κ ,
(C4)

with xar < Re(ur ) < x j < x j+1 < Re(us) < xbs , where the branch of (us − ur )8/κ

is chosen to be positive when Re(ur ) < Re(us), and f (r)β is the multivalued function

f (r)β (y) = f (r)β (y; ẍ; ü) :=
∏

t �=r ,s
(y − ut )

8/κ
∏

l �= j, j+1
(y − xl)

−4/κ ,
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whose branch is chosen to be positive when xar < Re(y) < xar+1, or more precisely,
on

{x1 < · · · < x2N ; xar < Re(y) < xar+1; xat < Re(ut ) < xat+1 for all t �= r , s},
(C5)

and f (s)β is the multivalued function

f (s)β (y) = f (s)β (y; ẍ; ü) :=
∏

t �=r ,s
(y − ut )

8/κ
∏

l �= j, j+1
(y − xl)

−4/κ ,

whose branch is chosen to be positive when xas < Re(y) < xas+1, or more precisely,
on

{x1 < · · · < x2N ; xas < Re(y) < xas+1; xat < Re(ut ) < xat+1 for all t �= r , s}.
(C6)

Lemma C.3 (proven below) implies that

lim
x j ,x j+1→ξ

IA(xar , x j , x j+1, xbs )
(x j+1 − x j )1−8/κ

= �(1− 4/κ)2√
q(κ) �(2− 8/κ)

f (s)β (ξ)

$ xbs

xar

dy f (r)β (y).

(C7)

We thus obtain the asserted formula (C1) by combining (C2) with (C7):

lim
x j ,x j+1→ξ

Hβ(x)

(x j+1 − x j )−2h(κ)

= lim
x j ,x j+1→ξ

(x j+1 − x j )
6/κ−1

ˆ
�βA

$ x j

xar

$ xbs

x j+1
du fβ(x; u)

= lim
x j ,x j+1→ξ

(x j+1 − x j )
6/κ−1

ˆ
�βA

dü fβ(x; ü) IA(xar , x j , x j+1, xbs ) [by (C2)]

= �(1− 4/κ)2√
q(κ) �(2− 8/κ)

H℘ j (β)/{ j, j+1}(ẍ j ), [by (C7)]

after carefully collecting the phase factors (and recalling that ξ ∈ (x j−1, x j+2) and
that fβ(x; ü) is real and positive on (C3), f (r)β is real and positive on (C5), and f (s)β

is real and positive on (C6)).

In order to show the remaining idetity (C7), we first record an auxiliary lemma. Let
2F1(a, b, c; z) be the hypergeometric function [2, Eq. (15.3.1)] defined as

2F1(a, b, c; z) := �(c)

�(b)�(c − b)

ˆ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt
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= �(c)

�(b)�(c − b)
z1−c

ˆ z

0
tb−1(z − t)c−b−1(1− t)−a dt,

for Re(c) > Re(b) > 0 and z ∈ C\[1,∞). Recall the asymptotics (cf. [2, Eq. (15.3.7)]
and note that 2F1(a, b, c; 0) = 1)

2F1(a, b, c; z) ∼ �(c)�(b − a)

�(b)�(c − a)
(−z)−a + �(c)�(a − b)

�(a)�(c − b)
(−z)−b, z→−∞.

(C8)

Lemma C.2 Let κ > 4, λ > 0, ν < 1, and μ < 1
λ
. Then, we have

ˆ ν

μλ

du

u4/κ(u + λ)4/κ

= κ λ−4/κ

κ − 4

(

ν1−4/κ 2F1

( 4

κ
, 1− 4

κ
, 2− 4

κ
;−ν

λ

)

− (μλ)1−4/κ 2F1

( 4

κ
, 1− 4

κ
, 2− 4

κ
;−μ

))

.

Proof This follows by considering the hypergeometric function with b = 1 − 4/κ ,
a = 4/κ , c = 2− 4/κ > 0: with the change of variables u = −tλ, we have

ˆ z

0

du

u4/κ(u + λ)4/κ
= κ

κ − 4
λ−4/κ z1−4/κ 2F1

( 4

κ
, 1− 4

κ
, 2− 4

κ
;− z

λ

)
,

using also the functional equation �(ν+1)
�(ν)

= ν to simplify the Gamma functions in the
prefactor:

κ

κ − 4
= �(1− 4

κ
)

�(2− 4
κ
)
.

This implies the asserted identity.

Lemma C.3 For IA = IA(xar , x j , x j+1, xbr ) defined in (C4), we have the convergence
result (C7).

Proof Let us make some preparations before evaluating the limit.

• First, note that for any fixed ẍ ∈ X2N−2 and ü ∈ �βA , we have

f (s)β (x) f (r)β (y) = f (s)β (y) f (r)β (x), (C9)

for all x, y /∈ {x1, . . . , x j−1, x j+2, . . . , x2N , u1, . . . , ur−1, ur+1, . . . , us−1,
us+1, . . . , uN } such that x �= y, since the phase factors from the exchange of
x and y in the product cancel out.
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• Second, after making the changes of variables u = x j−ur
x j−xar and v = us−x j+1

xbs−x j+1 in
the integral IA, we obtain

IA =
$ 1

0
du

f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

×
$ 1

0
dv

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

p(u, v, xar , x j , x j+1, xbs ),

where

p(u, v, xar , x j , x j+1, xbs )

:=
(
x j+1 − x j + u (x j − xar )+ v (xbs − x j+1)

)8/κ

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

=
(
u (x j − xar )+ v (xbs − x j+1)

)8/κ

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
+O(|x j+1 − x j |), |x j+1 − x j | → 0.

• Third, we note that

∣
∣x j+1 − x j

∣
∣8/κ

∣
∣
∣
∣

$ 1

0
du

f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

$ 1

0
dv

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

∣
∣
∣
∣

≤
ˆ 1

0
du

∣
∣ f (r)β (x j − (x j − xar )u)

∣
∣
∣
∣
∣
x j − xar

u

∣
∣
∣
4/κ ∣∣

∣
x j+1 − x j

(x j − xar )u + x j+1 − x j

∣
∣
∣
4/κ

×
ˆ 1

0
dv

∣
∣ f (s)β ((xbs − x j+1)v + x j+1)

∣
∣
∣
∣
∣
xbs − x j+1

v

∣
∣
∣
4/κ

∣
∣
∣

x j+1 − x j
(xbs − x j+1)v + x j+1 − x j

∣
∣
∣
4/κ

,

which remains bounded as |x j+1 − x j | → 0 (the singularities of order 4/κ are
integrable since κ > 4).

Hence, we see that

lim
x j ,x j+1→ξ

IA(xar , x j , x j+1, xbs )
|x j+1 − x j |1−8/κ (C10)

= lim
x j ,x j+1→ξ

$ 1

0
du

f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

×
$ 1

0
dv

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

p̃(u, v, xar , x j , x j+1, xbs ),
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where

p̃(u, v, xar , x j , x j+1, xbs ) = (x j+1 − x j )
8/κ−1

(
u (x j − xar )+ v (xbs − x j+1)

)8/κ

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
.

The evaluation of (C10) involves several estimates. To this end, for each ε > 0
and c1 > 0, we choose c2 ∈ (0, 1) small enough such that there exist constants
M1,M2 ∈ (0,∞) such that

{| f (r)β (x)| ≤ M1,

| f (r)β (x)− f (r)β (ξ)| ≤ ε,
for x ∈ [

ξ − c2(ξ − xar ), ξ + 3c2(ξ − xar )
]
,

{| f (s)β (x)| ≤ M2,

| f (s)β (x)− f (s)β (ξ)| ≤ ε,
for x ∈ [

ξ − c2(xbs − ξ), ξ + 3c2(xbs − ξ)
]
.

Since x j , x j+1→ ξ , without loss of generality we may suppose furthermore that

x j , x j+1 ∈ (ξ − δ, ξ + δ), where δ ≤ min

{
c2 (ξ − xar )

1+ 2c1
,
c2 (xbs − ξ)

1+ 2c1

}

Then, we have

c1
x j+1 − x j
x j − xar

≤ c2 and c1
x j+1 − x j
xbs − x j+1

≤ c2.

We divide the integration over (u, v) ∈ [0, 1] × [0, 1] into the following regions:

R1,1 :=
{
(u, v) such that u ∈

[
0, c1

x j+1 − x j
x j − xar

]
and v ∈

[
0, c1

x j+1 − x j
xbs − x j+1

]}
,

R1,2 :=
{
(u, v) such that u ∈

[
0, c1

x j+1 − x j
x j − xar

]
and v ∈

[
c1

x j+1 − x j
xbs − x j+1

, c2
]}

,

R1,3 :=
{
(u, v) such that u ∈

[
0, c1

x j+1 − x j
x j − xar

]
and v ∈ [c2, 1]

}
,

R2,1 :=
{
(u, v) such that u ∈

[
c1

x j+1 − x j
x j − xar

, c2
]
and v ∈

[
0, c1

x j+1 − x j
xbs − x j+1

]}
,

R2,2 :=
{
(u, v) such that u ∈

[
c1

x j+1 − x j
x j − xar

, c2
]
and v ∈

[
c1

x j+1 − x j
xbs − x j+1

, c2
]}

,

R2,3 :=
{
(u, v) such that u ∈

[
c1

x j+1 − x j
x j − xar

, c2
]
and v ∈ [c2, 1]

}
,

R3,1 :=
{
(u, v) such that u ∈ [c2, 1] and v ∈

[
0, c1

x j+1 − x j
xbs − x j+1

]}
,

R3,2 :=
{
(u, v) such that u ∈ [c2, 1] and v ∈

[
c1

x j+1 − x j
xbs − x j+1

, c2
]}

,
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R3,3 :=
{
(u, v) such that u ∈ [c2, 1] and v ∈ [c2, 1]

}
.

We evaluate the contribution of these integrals by first taking the limit x j , x j+1→ ξ ,
then taking the limit c2 → 0, and finally taking the limit c1→ 0:

1. In the limit x j , x j+1→ ξ , the negligible regions are R1,1 and R3,3:

• The integral over R1,1 can be bounded as

∣
∣
∣
∣

ˆ
R1,1

du dv
f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

× p̃(u, v, xar , x j , x j+1, xbs )
∣
∣
∣
∣

≤ 28/κ c8/κ1 M1 M2
|x j+1 − x j |16/κ−1

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
∣
∣
∣
∣
x j+1 − x j
x j − xar

∣
∣
∣
∣

1−8/κ

×
∣
∣
∣
∣
x j+1 − x j
xbs − x j+1

∣
∣
∣
∣

1−8/κ ˆ c1

0

du

|u|4/κ |u + 1|4/κ
ˆ c1

0

dv

|v|4/κ |v + 1|4/κ

≤ 28/κ c8/κ1 M1 M2 |x j+1 − x j |
ˆ c1

0

du

|u|4/κ |u + 1|4/κ
ˆ c1

0

dv

|v|4/κ |v + 1|4/κ
x j ,x j+1→ξ−→ 0.

• The integral over R3,3 can be bounded as

∣
∣
∣
∣

ˆ
R3,3

du dv
f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

× p̃(u, v, xar , x j , x j+1, xbs )
∣
∣
∣
∣

≤ c−16/κ2 |x j+1 − x j |8/κ−1 |(x j − xar )+ (xbs − x j+1)|8/κ
|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ 1

0
du | f (r)β (x j − (x j − xar )u)|

ˆ 1

0
dv | f (s)β ((xbs − x j+1)v + x j+1)|

x j ,x j+1→ξ−→ 0.

2. Furthermore, the integrals over the regions R1,3, R3,1, R1,2, and R2,1 tend to zero
after first taking the limit x j , x j+1→ ξ and then taking the limit c1→ 0:

• The integral over R1,3 ∪ R1,2 can be bounded as

∣
∣
∣
∣

ˆ

R1,3∪R1,2

du dv
f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ
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× p̃(u, v, xar , x j , x j+1, xbs )
∣
∣
∣
∣

≤ M1
|x j+1 − x j |8/κ−1

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
∣
∣
∣
∣
x j+1 − x j
x j − xar

∣
∣
∣
∣

1−8/κ

× |(x j+1 − x j )+ (xbs − x j+1)|8/κ
ˆ c1

0

du

|u|4/κ |u + 1|4/κ

×
ˆ 1

0
dv | f (s)β ((xbs − x j+1)v + x j+1)| |v|8/κ

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

≤ M1
|(x j+1 − x j )+ (xbs − x j+1)|8/κ

|xbs − x j+1|−1+8/κ

×
ˆ c1

0

du

|u|4/κ |u + 1|4/κ
ˆ 1

0
dv | f (s)β ((xbs − x j+1)v + x j+1)|

x j ,x j+1→ξ−→ M1 |xbs − ξ |
ˆ c1

0

du

|u|4/κ |u + 1|4/κˆ 1

0
dv | f (s)β ((xbs − ξ)v + ξ)|

c1→0−→ 0,

because the integrals converge for each κ > 4.
• Very similarly, the integral over the region R2,1 ∪ R3,1 also tends to zero after
first taking the limit x j , x j+1→ ξ and then taking the limit c1→ 0.

3. In contrast, the regions R3,2, R2,3, and R2,2 do contribute to the limit x j , x j+1→ ξ .
To evaluate their contribution, it is useful to further split R2,2 into the two regions

R2,2 = R+2,2 ∪ R−2,2 :=
{
(u, v) ∈ R2,2 : |u| ≤ |v|

} ∪ {
(u, v) ∈ R2,2 : |v| ≤ |u|

}
,

and to evaluate the integrals over the two regions R+2,2 ∪ R2,3 and R−2,2 ∪ R3,2

separately. By symmetry, it suffices to consider the integral over R+2,2 ∪ R2,3.

• First, we show that f (r)β (x j − (x j − xar )u) can be replaced by f (r)β (ξ) when

evaluating the limit of the integral over R+2,2 ∪ R2,3:

∣
∣
∣
∣

ˆ

R+2,2∪R2,3

du dv

(
f (r)β (x j − (x j − xar )u)− f (r)β (ξ)

)

∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

× p̃(u, v, xar , x j , x j+1, xbs )
∣
∣
∣
∣

≤ ε |x j+1 − x j |8/κ−1 |(x j − xar )+ (xbs − x j+1)|8/κ
|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
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×
ˆ

R+2,2∪R2,3

du dv
|v|8/κ | f (s)β ((xbs − x j+1)v + x j+1)|

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

1
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

≤ ε |x j+1 − x j |8/κ−1 |(x j − xar )+ (xbs − x j+1)|8/κ
|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ 1

0
dv | f (s)β ((xbs − x j+1)v + x j+1)|

ˆ c2

c1
x j+1−x j
x j−xar

du

|u|8/κ

≤ ε |x j+1 − x j |8/κ−1 |(x j − xar )+ (xbs − x j+1)|8/κ
|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

× κ

κ − 8

(

c1−8/κ2 −
(
c1

x j+1 − x j
x j − xar

)1−8/κ)

×
ˆ 1

0
dv | f (s)β ((xbs − x j+1)v + x j+1)|

x j ,x j+1→ξ−→ ε c1−8/κ1
κ

8− κ

|xbs − xar |8/κ
|xbs − ξ |−1+8/κ

ˆ 1

0
dv | f (s)β ((xbs − ξ)v + ξ)|

c2→0−→ 0,

since we can let ε → 0 as c2 → 0.
• Next, we show that the function p̃(u, v, xar , x j , x j+1, xbs ) can be replaced by

|x j+1 − x j |8/κ−1 |xbs − x j+1|
|x j − xar |−1+8/κ

|v|8/κ

when evaluating the limit of the integral over R+2,2 ∪ R2,3. To verify this, we
write

R+2,2 ∪ R2,3 = (R+2,2 ∪ R2,3)
− ∪ (R+2,2 ∪ R2,3)

+,
(R+2,2 ∪ R2,3)

− := {(u, v) ∈ R2,2 ∪ R2,3 : |u| ≤ |v| < c3},
(R+2,2 ∪ R2,3)

+ := {(u, v) ∈ R2,2 ∪ R2,3 : |u| ≤ |v| and |v| ≥ c3},

where c3 := 2c2
1+ c2

1+2c1
. Note that, since c1

x j+1−x j
xbs−x j+1 ≤ c2 ≤ 1, we have

c1
x j+1 − x j
xbs − x j+1

≤ 2c2
1+ c2

1+2c1
= c3, (C11)
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and since | f (s)β (x)| ≤ M2 for x ∈ [ξ − c2(xbs − ξ), ξ +3c2(xbs − ξ)], we have

| f (s)β ((xbs − x j+1)v + x j+1)| ≤ M2, for |v| ∈
[
c1

x j+1 − x j
xbs − x j+1

, c3
]
.

(C12)

On the one hand, for the integral over (R+2,2 ∪ R2,3)
+, we find

∣
∣
∣
∣

ˆ

(R+2,2∪R2,3)+

du dv
f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

×
(
p̃(u, v, xar , x j , x j+1, xbs )− |x j+1 − x j |8/κ−1 |xbs−x j+1|

|x j−xar |−1+8/κ |v|
8/κ

)

∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

∣
∣
∣
∣

≤ |x j+1 − x j |8/κ−1
ˆ 1

c3
dv
|v|8/κ | f (s)β ((xbs − x j+1)v + x j+1)|

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

×
∣
∣|(c2/v) (x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ c2

c1
x j+1−x j
x j−xar

du
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

≤ |x j+1 − x j |8/κ−1
ˆ 1

c3
dv | f (s)β ((xbs − x j+1)v + x j+1)|

×
∣
∣|(c2/v) (x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ c2

c1
x j+1−x j
x j−xar

du

|u|8/κ

≤ κ

κ − 8
|x j+1 − x j |8/κ−1

(

c1−8/κ2 −
(
c1

x j+1 − x j
x j − xar

)1−8/κ)

×
ˆ 1

c3
dv | f (s)β ((xbs − x j+1)v + x j+1)|

×
∣
∣|(c2/v) (x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
x j ,x j+1→ξ−→ κ

8− κ
c1−8/κ1 |xbs − ξ |1−8/κ

ˆ 1

c3
dv | f (s)β ((xbs − ξ)v + ξ)|

× ∣
∣|(c2/v) (ξ − xar )+ (xbs − ξ)|8/κ − |xbs − ξ |8/κ ∣∣

c2→0−→ 0, (C13)
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after applying the reverse Fatou lemma as c2 → 0 (note also that c3 → 0
along with c2 → 0 by our choice (C11) of c3) to the functions

| f (s)β ((xbs − ξ)v + ξ)| ∣∣|(c2/v) (ξ − xar )+ (xbs − ξ)|8/κ − |xbs − ξ |8/κ ∣∣
≤ | f (s)β ((xbs − ξ)v + ξ)| (|(c2/c3) (ξ − xar )+ (xbs − ξ)|8/κ + |xbs − ξ |8/κ)

≤ | f (s)β ((xbs − ξ)v + ξ)|
(∣
∣
∣
1

2

(
1+ c2

1+ 2c1

)
(ξ − xar )+ (xbs − ξ)

∣
∣
∣
8/κ + |xbs − ξ |8/κ

)
,

bounded by the non-negative integrable function on the last line. On the other
hand, for the integral over (R+2,2 ∪ R2,3)

−, we find using (C12) that

∣
∣
∣
∣

ˆ

(R+2,2∪R2,3)−

du dv
f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

×
(
p̃(u, v, xar , x j , x j+1, xbs )− |x j+1 − x j |8/κ−1 |xbs−x j+1|

|x j−xar |−1+8/κ |v|
8/κ

)

∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

∣
∣
∣
∣

≤ |x j+1 − x j |8/κ−1
∣
∣|(x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ c3

c1
x j+1−x j
xbs −x j+1

dv
|v|8/κ | f (s)β ((xbs − x j+1)v + x j+1)|

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

×
ˆ v

c1
x j+1−x j
x j−xar

du
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

≤ |x j+1 − x j |8/κ−1
∣
∣|(x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ c3

c1
x j+1−x j
xbs −x j+1

dv
|v|8/κ |((xbs − x j+1)v + x j+1)|

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

ˆ v

c1
x j+1−x j
x j−xar

du

|u|8/κ

≤ κ

κ − 8
|x j+1 − x j |8/κ−1

∣
∣|(x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
ˆ c3

c1
x j+1−x j
xbs −x j+1

dv
|v|8/κ | f (s)β ((xbs − x j+1)v + x j+1)|

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

×
(

v1−8/κ −
(
c1

x j+1 − x j
x j − xar

)1−8/κ)

≤ κ

8− κ
M2 |x j+1 − x j |8/κ−1

×
∣
∣|(x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ
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×
((

c1
x j+1 − x j
x j − xar

)1−8/κ ˆ c3

c1
x j+1−x j
xbs −x j+1

dv

−
ˆ c3

c1
x j+1−x j
xbs −x j+1

|v| dv
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

)

= κ

8− κ
M2 |x j+1 − x j |8/κ−1

×
∣
∣|(x j − xar )+ (xbs − x j+1)|8/κ − |xbs − x j+1|8/κ

∣
∣

|xbs − x j+1|−1+8/κ |x j − xar |−1+8/κ

×
((

c1
x j+1 − x j
x j − xar

)1−8/κ(
c3 − c1

x j+1 − x j
xbs − x j+1

)

−
ˆ c3

c1
x j+1−x j
xbs −x j+1

|v| dv
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

)

x j ,x j+1→ξ−→ κ

8− κ
M2 c

1−8/κ
1 c3

∣
∣|xbs − xar |8/κ − |xbs − ξ |8/κ ∣∣

|xbs − ξ |−1+8/κ
c2→0−→ 0, (C14)

where we also used (C12) to bound | f (s)β | (note again that c3→ 0 along with
c2 → 0 by (C11)).
In conclusion, by combining (C13, C14), we see that the function p̃(u, v, xar ,
x j , x j+1, xbs ) can be replaced by

|x j+1 − x j |8/κ−1 |xbs − x j+1|
|x j − xar |−1+8/κ

|v|8/κ

when evaluating the limit of the integral over R+2,2 ∪ R2,3.

• Third, by using LemmaC.2with 0 < λ := x j+1−x j
x j−xar , and 0 < μ := c1 < 1

λ
, and

ν := |v|∧c2 < 1 to evaluate the integral over u in terms of the hypergeometric
function 2F1(a, b, c; z), and then using the asymptotics (C8) of 2F1 to take the
limit x j , x j+1→ ξ , thereafter the limit c2 → 0, and finally the limit c1→ 0,
we find that

lim
c1→0

lim
c2→0

lim
x j ,x j+1→ξ

ˆ

R+2,2∪R2,3

du dv
f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

× f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

p̃(u, v, xar , x j , x j+1, xbs )

= f (r)β (ξ) lim
c1→0

lim
c2→0

lim
x j ,x j+1→ξ

|x j+1 − x j |8/κ−1 |xbs − x j+1|
|x j − xar |−1+8/κ

×
$ 1

c1
x j+1−x j
xbs−x j+1

dv
|v|8/κ f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ
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ˆ |v|∧c2
c1

x j+1−x j
x j−xar

du
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

= f (r)β (ξ) lim
c1→0

lim
c2→0

lim
x j ,x j+1→ξ

|x j+1 − x j |8/κ−1 |xbs − x j+1|
|x j − xar |−1+8/κ

×
$ 1

c1
x j+1−x j
xbs−x j+1

dv
|v|8/κ f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

× κ

κ − 4

( x j+1 − x j
x j − xar

)−4/κ

×
(

(|v| ∧ c2)
1−4/κ

2F1
( 4

κ
, 1− 4

κ
, 2− 4

κ
;− (|v| ∧ c2) (x j − xar )

x j+1 − x j

)

−
(
c1

x j+1 − x j
x j − xar

)1−4/κ
2F1

( 4

κ
, 1− 4

κ
, 2− 4

κ
;−c1

))

= κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)�(1)

f (r)β (ξ) (xbs − ξ)

$ 1

0
dv f (s)β ((xbs − ξ)v + ξ)

= κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)�(1)

f (r)β (ξ)

$ xbs

ξ

dy f (s)β (y),

where we also made the change of variables y = (xbs − ξ)v + ξ to obtain the
last line.

The contribution of the integral over R−2,2 ∪ R3,2 can be evaluated similarly by
exchanging the roles of u and v, and the result is

lim
c1→0

lim
c2→0

lim
x j ,x j+1→ξ

ˆ

R−2,2∪R3,2

du dv
f (s)β ((xbs − x j+1)v + x j+1)

∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ

× p̃(u, v, xar , x j , x j+1, xbs )

= κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)�(1)

f (s)β (ξ)

$ ξ

xar

dy f (r)β (y). (C15)

Collecting all contributions, we finally obtain

lim
x j ,x j+1→ξ

IA(xar , x j , x j+1, xbs )
|x j+1 − x j |1−8/κ

= lim
x j ,x j+1→ξ

$ 1

0
du

f (r)β (x j − (x j − xar )u)
∣
∣u
(
u + x j+1−x j

x j−xar
)∣
∣4/κ
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×
$ 1

0
dv

f (s)β ((xbs − x j+1)v + x j+1)
∣
∣v
(
v + x j+1−x j

xbs−x j+1
)∣
∣4/κ

p̃(u, v, xar , x j , x j+1, xbs )

= κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)

(

f (r)β (ξ)

$ xbs

ξ

dy f (s)β (y)+ f (s)β (ξ)

$ ξ

xar

dy f (r)β (y)

)

[by (C15)]

= κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)

f (s)β (ξ)

$ xbs

xar

dy f (r)β (y). [by (C9)]

Using also the functional equation �(1− ν)�(ν) = π
sin(πν)

, we find the multiplicative
constant

κ

κ − 4

�(2− 4
κ
)�( 8

κ
− 1)

�( 4
κ
)

= �(1− 4/κ)2√
q(κ) �(2− 8/κ)

.

This completes the proof.

Proof of Proposition C.1, Case B Define βB := β\({as, j} ∪ {ar , j + 1}) (we do not
relabel the indices here), and denote by �βB the integration contours inHβ other than
(xas , x j ), (xar , x j+1). Then, we have

Hβ(x1, . . . , x2N ) =
ˆ
�βB

$ x j

xas

$ x j+1

xar

du fβ(x; u)

=
ˆ
�βB

dü fβ(x; ü) IB(xar , xas , x j , x j+1),
(C16)

where, as in the proof of Case A, fβ(x; ü) is a part of the integrand function (1.6)
chosen to be real and positive on (C3), and where IB(xar , xas , x j , x j+1) =: IB is the
integral

IB :=
$ x j

xas

dus
f (s)β (us)

|us − x j |4/κ |us − x j+1|4/κ
$ x j+1

xar

dur
(us − ur )8/κ f (r)β (ur )

|ur − x j |4/κ |ur − x j+1|4/κ ,

with xas < Re(us) < x j < xar < Re(ur ) < x j+1, where the branch of (us − ur )8/κ

is chosen to be positive when Re(ur ) < Re(us), and, as before, f
(r)
β and f (s)β are the

multivalued functions with branch choices (C5) and (C6), respectively. Note that for
any fixed ẍ ∈ X2N−2 and ü ∈ �βB , we have

f (s)β (x) f (r)β (y) = f (s)β (y) f (r)β (x),
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for all x, y /∈ {x1, . . . , x j−1, x j+2, . . . , x2N , u1, . . . , ur−1, ur+1, . . . , us−1, us+1,
. . . , uN } such that x �= y, since the phase factors from the exchange of x and y
in the product cancel out.

We proceed similarly as in the proof of Case A. After making the changes of
variables w = − x j+1−ur

x j+1−xar in the first integral and u = x j−us
x j−xas in the second integral,

we obtain

IB =
$ 1

0
du

f (s)β (x j − (x j − xas )u)
∣
∣u
(
u + x j+1−x j

x j−xas
)∣
∣4/κ

×
$ 0

−1
dw

f (r)β (x j+1 + (x j+1 − xar )w)
∣
∣w

(
w + x j+1−x j

x j+1−xar
)∣
∣4/κ

p(u, w, xar , xas , x j , x j+1),

where

p(u, v, xar , xas , x j , x j+1)

:=
(
x j+1 − x j + u (x j − xas )+ w (x j+1 − xar )

)8/κ

|xar − x j+1|−1+8/κ |x j − xas |−1+8/κ

=
(
u (x j − xas )+ w (x j+1 − xar )

)8/κ

|xar − x j+1|−1+8/κ |x j − xas |−1+8/κ
+O(|x j+1 − x j |), |x j+1 − x j | → 0.

This integral has a similar form as for IA defined in (C4), except for the following
changes:

• xar in IB plays the role of xbs in IA;
• xas in IB plays the role of xar in IA;
• in IB , we have x j+1 − xar > 0, while in IA, we have xbs − x j+1 > 0;
• we integrate in IB the variablew ∈ (−1, 0), while in IA the corresponding variable
is v ∈ (0, 1).

Nevertheless, this only affects the estimates slightly, so with similar estimates as in
the proof of Case A, one can show that

lim
x j ,x j+1→ξ

IB(xar , xas , x j , x j+1)
|x j+1 − x j |1−8/κ = �(1− 4/κ)2√

q(κ) �(2− 8/κ)
f (s)β (ξ)

$ xas

xar

dy f (r)β (y).

(C17)

We then conclude from (C16) and (C17) that (C1) holds:

lim
x j ,x j+1→ξ

Hβ(x)

(x j+1 − x j )−2h(κ)

= lim
x j ,x j+1→ξ

(x j+1 − x j )
6/κ−1

ˆ
�βB

$ x j

xar

$ x j+1

xas

du fβ(x; u)
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= lim
x j ,x j+1→ξ

(x j+1 − x j )
6/κ−1

ˆ
�βB

dü fβ(x; ü) IB(xar , xas , x j , x j+1) [by (C16)]

= �(1− 4/κ)2√
q(κ) �(2− 8/κ)

H℘ j (β)/{ j, j+1}(ẍ j ), [by (C17)]

after carefully collecting the phase factors (and recalling that ξ ∈ (x j−1, x j+2) and
that fβ(x; ü) is real and positive on (C3), f (r)β is real and positive on (C5), and f (s)β

is real and positive on (C6)).

Proof of Proposition C.1, Case C This symmetric to Case B and can be proven very
similarly.
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