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Abstract
The Erdős–Taylor theorem (Acta Math Acad Sci Hungar, 1960) states that if LN
is the local time at zero, up to time 2N , of a two-dimensional simple, symmet-
ric random walk, then π

log N LN converges in distribution to an exponential random
variable with parameter one. This can be equivalently stated in terms of the total
collision time of two independent simple random walks on the plane. More pre-
cisely, if L(1,2)

N = ∑N
n=1 1{S(1)

n =S(2)
n }, then

π
log N L(1,2)

N converges in distribution to an
exponential random variable of parameter one. We prove that for every h � 3, the
family

{
π

log N L(i, j)
N

}
1�i< j�h , of logarithmically rescaled, two-body collision local

times between h independent simple, symmetric randomwalks on the plane converges
jointly to a vector of independent exponential random variables with parameter one,
thus providing a multivariate version of the Erdős–Taylor theorem. We also discuss
connections to directed polymers in random environments.

Keywords Planar random walk collisions · Erdős–Taylor theorem · Schrödinger
operators with point interactions · Directed polymer in random environment
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1 Introduction

Let S(1), . . . , S(h) be independent, simple, symmetric random walks on Z
2 starting

at the origin. We will use Px and Ex to denote the probability and expectation with
respect to the law of the simple random walk when starting from x ∈ Z

2 and we will
omit the subscripts when the walk starts from 0. For 1 � i < j � h we define the
collision local time between S(i) and S( j) up to time N by

L(i, j)
N :=

N∑

n=1
1{S(i)

n =S( j)
n } .

Notice that given 1 � i < j � h, L(i, j)
N has the same law as the number of returns

to zero, before time 2N , for a single simple, symmetric random walk S on Z
2, that is

L(i, j)
N

law= LN := ∑N
n=1 1{S2n=0}. This equality is a consequence of the independence

of S(i), S( j) and the symmetry of the simple random walk. A first moment calculation
shows that

RN := E
[
LN

] =
N∑

n=1
P(S2n = 0)

N→∞≈ log N

π
, (1.1)

see Sect. 2 for more details. It was established by Erdős and Taylor, 60 years ago [10],
that under normalisation (1.1), LN satisfies the following limit theorem.

Theorem A ([10]) Let LN :=∑N
n=1 1{S2n=0} be the local time at zero, up to time 2N,

of a two-dimensional, simple, symmetric random walk (Sn)n�1 starting at 0. Then, as
N →∞,

π

log N
LN

(d)−→ Y ,

where Y has an exponential distribution with parameter 1.

Theorem A was recently generalised in [17]. In particular,

Theorem B [17] Let h ∈ N with h � 2 and S(1), . . . , S(h) be h independent two-
dimensional, simple random walks starting all at zero. Then, for β such that |β| ∈
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(0, 1), it holds that the total collision time
∑

1�i< j�h L
(i, j)
N satisfies

E⊗h
[

e
π β
log N

∑
1�i< j�h L

(i, j)
N

]

−−−−→
N→∞

(
1

1− β

) h(h−1)
2

,

and, consequently,

π

log N

∑

1�i< j�h

L(i, j)
N

(d)−−−−→
N→∞ �

( h(h−1)
2 , 1

)
,

where �
( h(h−1)

2 , 1
)
denotes a Gamma variable, which has a density �(h(h −

1)/2)−1x
h(h−1)

2 −1e−x ; �(·), in the expression of the density, denotes the Gamma
function.

Given the fact that a gamma distribution �(k, 1), with parameter k � 1, arises as
the distribution of the sum of k independent random variables each one distributed
according to an exponential random variable with parameter one (denoted as Exp(1)),
Theorem B raises the question as to whether the joint distribution of the individual

rescaled collision times
{

π
log N L(i, j)

N

}

1�i< j�h
converges to that of a family of inde-

pendent Exp(1) random variables. This is what we prove in this work. In particular,

Theorem 1.1 Let h ∈ Nwith h � 2 andβ := {βi, j }1�i< j�h ∈ R
h(h−1)

2 with |βi, j | < 1
for all 1 � i < j � h. Then we have that

E⊗h
[

e
π

log N

∑
1�i< j�h βi, j L

(i, j)
N

]

−−−−→
N→∞

∏

1�i< j�h

1

1− βi, j
(1.2)

and, consequently,

{
π

log N L(i, j)
N

}

1�i< j�h

(d)−−−−→
N→∞

{
Y (i, j)}

1�i< j�h, (1.3)

where
{
Y (i, j)

}
1�i< j�h are independent and identically distributed random variables

following an Exp(1) distribution.

An intuitive way to understand the convergence of the individual collision times,
or equivalently of the local time of a planar walk, to an exponential variable is the
following. By (1.1), the number of visits to zero of a planar walk, which starts at
zero, is O(log N ) and, thus, much smaller than the time horizon 2N . Typically, also,
these visits happen within a short time, much smaller than 2N , so that every time the
random walk is back at zero, the probability that it will return there again before time
2N is not essentially altered. This results in the local time LN being asymptotic to a
geometric random variable with parameter of order (log N )−1 (as also manifested by
(1.1)), which when rescaled suitably converges to an exponential random variable.
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The fact that the joint distribution of
{

π
log N L(i, j)

N

}

1�i< j�h
converges to that of

independent exponentials is much less apparent as the collision times have obvious
correlations. A way to understand this is, again, through the fact that collisions happen
at time scalesmuch shorter than the time horizon N and, thus, it is not really possible to
actually distinguish which pairs collide when collisions take place. More crucially, the
logarithmic scaling, as indicated via (1.1), introduces a separation of scales between
collisions of different pairs of walks, which is what, essentially, leads to the asymptotic
factorisation of the Laplace transform (1.2). This intuition is reflected in the two main
steps of our proof, which are carried out in Sects. 3.3 and 3.4.

Even though the Erdős–Taylor theorem appeared a long time ago, the multivariate
extension that we establish here appears to be new. In [11] it was shown that the law of

π
log N L(1,2)

N , conditioned on S(1), converges a.s. to that of an Exp(1) random variable.

This implies that
{

π
log N L(1,i)

N

}
1<i�h converge to independent exponentials. However,

it does not address the full independence of the family of all pairwise collisions
{

π
log N L(i, j)

N

}
1�i< j�h .

In the continuum, phenomena of independence in functionals of planar Brownian
motions have appeared in works around log-scaling laws see [18] (where the term
log-scaling laws was introduced) as well as [19] and [14]. These works are mostly
concerned with the problem of identifying the limiting distribution of windings of a
planar Brownian motion around a number of points z1, . . . , zk , different than the start-
ing point of the Brownian motion, or the winding around the origin of the differences
B(i)−B( j) between k independent Brownianmotions B(1), . . . , B(k), starting all from
different points, which are also different than zero. Without getting into details, we
mention that the results of [14, 18, 19] establish that thewindings (aswell as someother
functionals that fall within the class of log-scaling laws) converge, when logarithmi-
cally scaled, to independent Cauchy variables. [14] outlines a proof that the local times
of the differences B(i) − B( j), 1 � i < j � k, on the unit circle {z ∈ R

2 : |z| = 1}
converge, jointly, to independent exponentials Exp(1), when logarithmically scaled,
in a fashion similar to the scaling of Theorem 1.1. The methods employed in the above
works rely heavily on continuous techniques (Itô calculus, time changes etc.), which
do not have discrete counterparts. In fact, the passage from continuous to discrete is
not straightforward either at a technical level (see e.g. the discussion on page 41 of
[14] and [15]) or at a phenomenological level (see e.g. discussion on page 736 of [18]).

The approach we follow towards Theorem 1.1 starts with expanding the joint
Laplace transform in the form of chaos series, which take the form of Feynman-
type diagrams. To control (and simplify) these diagrams, we start by inputing a
renewal representation as well as a functional analytic framework. The renewal the-
oretic framework was originally introduced in [3] in the context of scaling limits of
random polymers (we will come back to the connection with polymers later on) and it
captures the stream of collisions within a single pair of walks. The functional analytic
framework can be traced back to works on spectral theory of delta-Bose gases [8, 9]
and was also recently used in works on random polymers [4, 12, 17]. The core of this
framework is to establish operator norm bounds for the total Green’s functions of a set
of planar random walks conditioned on a subset of them starting at the same location
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and on another subset of them ending up at the same location. Roughly speaking, the
significance of these operator estimates is to control the redistribution of collisions
when walks switch pairs. The operator framework (together with the renewal one)
allows to reduce the number of Feynman-type diagrams that need to be considered.
For the reduced Feynman diagrams, one, then, needs to look into the logarithmic struc-
ture, which induces a separation of scales and leads to the fact that, asymptotically, the
structure of the Feynman diagrams becomes that of the product of Feynman diagrams
corresponding to Laplace transforms of single pairs of random walks.

Relations to random polymers. Exponential moments of collision times arise
naturally when one looks at moments of partition functions of the model of directed
polymer in a random environment (DPRE), we refer to [5] for an introduction to
this model. For a family of i.i.d. variables

(
ωn,x : n ∈ N, x ∈ Z

2
)
with log-moment

generating function λ(β), the partition function of the directed polymer measure is
defined as

ZN ,β(x) := Ex

[
exp

( N∑

n=1

(
βωn,Sn − λ(β)

))]
,

where Ex is the expected value with respect to a simple, symmetric walk starting at
x ∈ Z

2. In the case that ωn,x is a standard normal variable, an explicit computation,

for βN := β
√

π
log N , gives that

E

[(
ZN ,βN (x)

)h
]
= E⊗h

[

e
πβ2

log N

∑
1�i< j�h L

(i, j)
N

]

. (1.4)

A corollary of our Theorem 1.1 is that the limit of the h-th moment of the DPRE
partition function converges to (1−β2)−h(h−1)/2; a result that was previously obtained
in [17] combining upper bounds on moments, established in [17], with results on the
distributional convergence of the partition function established in [1]. Using Theorem
1.1, we can further extend this to convergence of mixed moments. More precisely, for

βi,N := βi

√
π

log N and i = 1, . . . , h, we have that

E
[
ZN ,β1,N (x) · · · ZN ,βh,N (x)

] = E⊗h
[

e
π

log N

∑
1�i< j�h βiβ j L

(i, j)
N

]

−−−−→
N→∞

∏

1�i< j�N

1

1− βiβ j
. (1.5)

where the equality is again via an explicit computation as in (1.4) when the disorder
is standard normal and the convergence follows from Theorem 1.1 after specialising
the parameters βi, j to the particular case of βiβ j .1

1 (1.5) could also be achieved if one refined the results of [1] to joint convergence of
ZN ,β1,N (x), . . . , ZN ,βh,N (x) and combined with the moment estimates of [17]. However, the indepen-
dence of the collision times that we establish here cannot be recovered from joint moments of partition
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Moment estimates on polymer partition functions are important in establishing
fine properties, such as structure of maxima, of the field of partition functions{√

log N
(
log ZN ,β(x) − E[log ZN ,β(x)]) : x ∈ Z

2
}
, which is known to converge

to a log-correlated gaussian field [2]. We refer to [6] for more details. We expect the
independence structure of the collision local times, that we establish here, to be use-
ful towards these investigations. An interesting problem, in relation to this (but also
of broader interest), is how large can the number h of random walks be (depending
on N ), before we start seeing correlations in the limit of the rescaled collisions. The
work of Cosco–Zeitouni [6] has shown that there exists β0 ∈ (0, 1) such that for all
β ∈ (0, β0) and h = hN ∈ N such that

lim sup
N→∞

3β

1− β

1

log N

(
h

2

)

< 1,

one has that

E⊗h
[

e
π β
log N

∑
1�i< j�h L

(i, j)
N

]

� c(β)
( 1

1− β

)(h2)(1+εN )

,

with c(β) ∈ (0,∞) and 0 � εN = ε(β, N ) ↓ 0 as N → ∞. This suggests that the
threshold might be h = hN = O(

√
log N ). More recent results [7], imply that the

independence fails when the number of walks is	 log N . The question of whether
there is a critical constant ccrit . such that for a number of walks larger that ccrit . log N
the independence of the collisions fails is an open and interesting problem.

Outline. The structure of the article is as follows: In Sect. 2 we set the framework of
the chaos expansion, its graphical representations in terms of Feynman-type diagrams,
as well as the renewal and functional analytic frameworks. In Sect. 3 we carry out the
approximation steps, which lead to our theorem. At the beginning of Sect. 3 we also
provide an outline of the scheme.

We close by mentioning our convention on the constants: whenever a constant
depends on specific parameters, we will indicate this at the beginning of the statements
but then drop the dependence, while if no dependence on parameters is indicated, then
they will be understood as absolute constants.

2 Chaos expansions and auxiliary results

In this section we will introduce the framework, within which we work, and which
consists of chaos expansions for the joint Laplace transform

Mβ
N ,h := E⊗h

[

e
∑

1�i< j�h
πβi, j
log N L(i, j)

N

]

, (2.1)

Footnote 1 continued
functions as these will only give rise to Laplace transforms with a restricted form of Laplace param-
eters as {βiβ j }1�i< j�h instead of {βi, j }1�i< j�h , needed for the joint convergence of the vector

{L(i, j)
N }1�i< j�h . The structural aspects of the collision structure that we unveil in the present work are

crucial towards establishing the independence property.
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for a fixed collection of numbers β := {βi, j }1�i< j�h ∈ R
h(h−1)

2 with |βi, j | ∈ (0, 1)
for all 1 � i < j � h. We denote by

β̄ := max
1�i< j�h

|βi, j | < 1, (2.2)

and define

σ
i, j
N := σ

i, j
N (βi, j ) := eβ

i, j
N − 1 with β

i, j
N :=

π βi, j

log N
. (2.3)

Convention: From now on we will be assuming that all parameters βi, j are nonneg-
ative. We will return to the general case at the very end when discussing the proof of
Theorem 1.1.

We will use the notation qn(x) := P(Sn = x) for the transition probability of
the simple, symmetric random walk. The expected collision local time between two
independent simple, symmetric random walks will be

RN := E⊗2
[ N∑

n=1
1
S(1)
n =S(2)

n

]
=

N∑

n=1
q2n(0) (2.4)

and by Proposition 3.2 in [3] we have that in the two-dimensional setting

RN = log N

π
+ α

π
+ o(1), (2.5)

as N →∞, with α = γ + log 16− π 
 0.208 and γ 
 0.577 is the Euler constant.

2.1 Chaos expansion for two-body collisions and renewal framework

We start with the Laplace transform of the simple case of two-body collisions

E
[
eβ

i, j
N L(i, j)

N

]
and deduce its chaos expansion as follows:

E
[
eβ

i, j
N L(i, j)

N

]
= E

[

e
β
i, j
N

∑N
n=1

∑
x∈Z2 1{S(i)

n =x}
1{S( j)

n =x}
]

= E

[ ∏

1�n�N
x∈Z2

(
1+

(
eβ

i, j
N − 1

)
1{S(i)

n =x}1{S( j)
n =x}

)]

= 1+
∑

k�1

(σ
i, j
N )k

∑

1�n1<···<nk�N
x1,...,xk∈Z2

E

[ k∏

a=1
1{S(i)

na=xa}1{S( j)
na =xa}

]

= 1+
∑

k�1

(σ
i, j
N )k

∑

1�n1<···<nk�N ,

x1,...,xk∈Z2

k∏

a=1
q2na−na−1(xa − xa−1) (2.6)
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where in the last equality we used the Markov property, in the third we expanded the
product and in the second we used the simple fact that

e
β
i, j
N 1{S(i)

n =S( j)
n =x} = 1+

(
e
β
i, j
N 1{S(i)

n =S( j)
n =x} − 1

)
= 1+

(
eβ

i, j
N − 1

)
1{S(i)

n =S( j)
n =x}

= 1+ σ
i, j
N 1{S(i)

n =S( j)
n =x},

with σ
i, j
N defined in (2.3). We will express (2.6) in terms of the following quantity

Uβ
N (n, x), which plays an important role in our formulation. For σN := σN (β) :=

e
πβ

log N − 1 and (n, x) ∈ N× Z
2, we define

Uβ
N (n, x) := σN q2n (x)+

∑

k�1

σ k+1
N

∑

0<n1<···<nk<n
z1,z2,...,zk∈Z2

q2n1(z1)
{ k∏

j=2
q2n j−n j−1(z j − z j−1)

}
q2n−nk (x − zk).

(2.7)

and Uβ
N (n, x) := 1{x=0}, if n = 0. Moreover, for n ∈ N we define

Uβ
N (n) :=

∑

x∈Z2

Uβ
N (n, x) .

Uβ
N (n, x) represents the Laplace transform of the two-body collisions, scaled by β,

between a pair of random walks that are constrained to end at the spacetime point
(n, x) ∈ {1, . . . , N } × Z

2, starting from (0, 0). In particular, for any 1 � i < j � h,
we can write (2.6) as

E
[
eβ

i, j
N L(i, j)

N

]
=

N∑

n=0

∑

x∈Z2

U
βi, j
N (n, x) =

N∑

n=0
U

βi, j
N (n).

We will call Uβ
N (n, x) a replica and for σN (β) = e

πβ
log N − 1 we will graphically

represent σN (β)Uβ
N (n, x) as

σN (β)Uβ
N (b − a, y − x) ≡

(a, x) (b, y)

:=
∑

k�1

∑

n1<···<nk
x1,...,xk (a, x) (n1, x1) (n2, x2) (nk, xk) (b, y)

· · ·

In the second line we have assigned weights qn′−n(x ′ − x) to the solid lines going

from (n, x) to (n′, x ′) and we have assigned the weight σN (β) = e
πβ

log N − 1 to every
solid dot.
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Uβ
N (n) andUβ

N (n, x) admit a very useful probabilistic interpretation in terms of cer-
tain renewal processes.More specifically, consider the family of i.i.d. randomvariables
(T (N )

i , X (N )

i )i�1 with law

P
( (

T (N )

1 , X (N )

1

) = (n, x)
)
= q2n (x)

RN
1{n�N } .

and RN defined in (2.4). Define the random variables τ
(N )

k := T (N )

1 + · · · + T (N )

k ,
S(N )

k := X (N )

1 + · · · + X (N )

k , if k � 1, and (τ0, S0) := (0, 0), if k = 0. It is not difficult

to see that Uβ
N (n, x) and Uβ

N (n) can, now, be written as

Uβ
N (n, x) =

∑

k�0

(σN RN )k P
(
τ

(N )

k = n, S(N )

k = x
)

and

Uβ
N (n) =

∑

k�0

(σN RN )k P
(
τ

(N )

k = n
)

(2.8)

This formalism was developed in [3] and is very useful in obtaining sharp asymptotic

estimates. In particular, it was shown in [3] that the rescaled process
(

τ
(N )

s log N�
N ,

S(N )

s log N�√

N

)

converges in distribution for N → ∞ with the law of the marginal limiting process

for
τ

(N )

s log N�
N being the Dickman subordinator, which was defined in [3] as a truncated,

zero-stable Lévy process.
An estimate that follows easily from this framework, which is useful for our pur-

poses here, is the following: for β < 1, it holds

lim sup
N→∞

N∑

n=0
Uβ

N (n) = lim sup
N→∞

∑

k�0

(σN RN )k P
(
τ

(N )

k � N
)

� lim sup
N→∞

∑

k�0

(σN RN )k

= lim sup
N→∞

1

1− σN RN
= 1

1− β
, (2.9)

where we used the fact that

σN RN =
(
e

πβ
log N − 1

) ·
( log N

π
+ α

π
+ o(1)

)
−−−−→
N→∞ β < 1. (2.10)

2.2 Chaos expansion for many-body collisions

We nowmove to the expansion of the Laplace transformMβ
N ,h of themany-body colli-

sions. The goal is to obtain an expansion in the form of products of certain Markovian
operators. The desired expression will be presented in (2.17). This expansion will be
instrumental in obtaining some important estimates in Sect. 2.3.
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¨ ¨ ¨ ¨ ¨ ¨

N

Fig. 1 This is a graphical representation of expansion (2.11) corresponding to the collisions of four random
walks, each starting from the origin. Each solid line will be marked with the label of the walk that it
corresponds to throughout the diagram. Each solid dot, which marks a collision among a subset A of the

random walks, is given a weight
∏

i, j∈A σ
i, j
N . Any solid line between points (m, x), (n, y) is assigned the

weight of the simple random walk transition kernel qm−n(y − x). The hollow dots are assigned weight 1
and they mark the places where we simply apply the Chapman–Kolmogorov formula

The first steps are similar as in the expansion for the two-body collisions, above.
In particular, we have

Mβ
N ,h := E⊗h

[

e
∑

1�i< j�h β
i, j
N L(i, j)

N

]

= E

[ ∏

1�i< j�h

∏

1�n�N
x∈Z2

(
1+ σ

i, j
N 1{S(i)

n =x}1{S( j)
n =x}

)]

= 1+
∑

k�1

∑

(ia , ja ,na ,xa)∈Ah , for a=1,...,k
distinct

E
[ k∏

a=1
σ
ia , ja
N 1{S(ia )

na =xa} 1{S( ja )
na =xa}

]

(2.11)

where the last sum is over k distinct elements of the set

Ah :=
{
(i, j, n, x) ∈ N

3 × Z
2 : 1 � i < j � h

}
.

The graphical representation of expansion (2.11) is depicted in Fig. 1. There, we
have marked with black dots the space-time points (n, x) where some of the walks
collide and we have assigned to each the weight

∏
1�i< j�h σ

i, j
N 1{S(i)

n =S( j)
n =x}.

We nowwant towrite the above expansion as a convolution ofMarkovian operators,
following the Markov property of the simple random walks. We can partition the
time interval {0, 1, . . . , N } according to the times when collisions take place; these
are depicted in Fig. 1 by vertical lines. In between two successive times m, n, the
walks will move from their locations (x (i))i=1,...,h at time m to their new locations
(y(i))i=1,...,h at time n (some of which might coincide) according to their transition
probabilities, giving a total weight to this transition of

∏h
i=1 qn−m(y(i) − x (i)). We,

now, want to encode in this product the coincidences that may take place within the
sets (x (i))i=1,...,h and (y(i))i=1,...,h . To this end, we consider partitions I of the set
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of indices {1, . . . , h}, which we denote by I � {1, . . . , h}. We also denote by |I |
the number of parts of I . Given a partition I � {1, . . . , h}, we define an equivalence

relation
I∼ in {1, . . . , h} such that k I∼ � if and only if k and � belong to the same part

of partition I . Given a vector y = (y1, . . . , yh) ∈ (Z2)h and I � {1, . . . , h}, we shall
use the notation y ∼ I to mean that yk = y� for all pairs k

I∼ �. We use the symbol ◦
to denote the one-part partition,2 that is, ◦ := {1, . . . , h}, and ∗ to denote the partition
consisting only of singletons, that is ∗ := ⊔h

i=1{i}. Moreover, given I � {1, . . . , h}
such that |I | = h − 1 and I = {i, j} �⊔

k �=i, j {k}, by slightly abusing notation, we
may identify and denote I by its non-trivial part {i, j}.

Given this formalism, we denote the total transition weight of the h walks, from
points x = (x (1), . . . , x (h)) ∈ (Z2)h , subject to constraints x ∼ I at time m, to points
y = (y(1), . . . , y(h)) ∈ (Z2)h , subject to constraints y ∼ J at time n, by

QI ,J
n−m(x, y) := 1{x∼I }

h∏

i=1
qn−m(y(i) − x (i))1{ y∼J } . (2.12)

We will call this operator the constrained evolution. Furthermore, for a partition
I � {1, . . . , h} and β = {βi, j }1�i< j�h we define themixed collision weight subject
to I as

σN (I ) := σN (I , {βi, j }1�i< j�h) =
∏

1�i< j�h,

i
I∼ j

σ
i, j
N , (2.13)

with σ
i, j
N as defined in (2.3). We can then rewrite (2.11) in the form

1+
∞∑

r=1

∑

◦:=I0
I1,...,Ir �=∗

r∏

i=1
σN (Ii )

∑

1�n1<···<nr�N
0:=x0,x1,...,xr∈(Z2)h

r∏

i=1
QIi−1;Ii

ni−ni−1(xi−1, xi ) . (2.14)

We want to make one more simplification in this representation, which, however,
contains an important structural feature. This is to group together consecutive con-
strained evolution operators σN (Ii )Q

Ii−1;Ii
ni−ni−1(xi−1, xi ) for which Ii−1 = Ii = h − 1.

An example in Fig. 1 is the sequence of evolutions in the first three strips and
another one is the group of evolutions in strips five and six. Such groupings can
be captured by the following definition: For a partition I � {1, . . . , h} of the form
I = {k, �} �⊔

j �=k,�{ j} and x = (x (1), . . . , x (h)), y = (y(1), . . . , y(h)) ∈ (Z2)h , we
define the replica evolution as

UI
n(x, y) := 1{x, y∼I } ·Uβk,�

N (n, y(k) − x (k)) ·
∏

i �=k,�
qn(y

(i) − x (i)), (2.15)

2 The notation ◦, with which we denote the one-part partition, here, should not be confused with the ◦ that
appears in the figures, where it just marks places where we apply the Chapman–Kolmogorov formula.
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¨ ¨ ¨ ¨ ¨ ¨

N

Fig. 2 This is the simplified version of Figure’s 1 graphical representation of the expansion (2.14), where
we have grouped together the blocks of consecutive collisions between the same pair of random walks.
These are now represented by the wiggle lines (replicas) and we call the evolution in strips that contain
only one replica as replica evolution (although strip seven is the beginning of another wiggle line, we have
not represented it as such since we have not completed the picture beyond that point). The wiggle lines
(replicas) between points (n, x), (m, y), corresponding to collisions of a single pair of walks S(k), S(�), are

assigned weight U
βk,�
N (m − n, y − x). A solid line between points (m, x), (n, y) is assigned the weight of

the simple random walk transition kernel qm−n(y − x)

with Uβ
N (n, y(k) − x (k)) defined in (2.7). We name this replica evolution since in the

time interval [0, n] we see a stream of collisions between only two of the random
walks. The simplified version of expansion (2.14) (and Fig. 1) is presented in Fig. 2.

In order to re-express (2.14) with the reduction of the replica evolution (2.15), we
need to introduce one more formalism, which is

P I ;J
n (x, y) :=

⎧
⎨

⎩

∑
m1�1,m2�0 : m1+m2=n ,

z∈(Z2)h
QI ;J

m1 (x, z) · UJ
m2

(z, y), if |J | = h − 1,

QI ;J
n (x, y), if |J | < h − 1,

(2.16)

where we recall that |J | is the number of parts of J and so |J | = h−1means that J has
the form {k, �} �⊔

i �=k,�{i}, corresponding to a pairwise collision, while |J | < h − 1
means that there are multiple collisions (the latter would correspond to the end of the
eighth strip in Fig. 1). In other words, the operator P I ;J

n groups together each replica
evolution with its preceding constrained evolution.

We, finally, arrive at the desired expression for the Laplace transform of the many-
body collisions:

Mβ
N ,h = 1+

∞∑

r=1

∑

◦:=I0,I1,...,Ir
I j �=I j+1, if |I j |=|I j+1|=h−1

for j=1,...,r−1
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r∏

i=1
σN (Ii )

∑

1�n1<···<nr�N ,

0:=x0,x1,...,xr∈(Z2)h

r∏

i=1
P Ii−1;Ii
ni−ni−1(xi−1, xi ) . (2.17)

2.3 Functional analytic framework and some auxiliary estimates

Let us start with some, fairly easy, bounds on operators Q and U (with the estimate
on the latter being an upgrade of estimate (2.9)).

Lemma 2.1 Let the operators QI ;J
n ,UJ

n be defined in (2.12) and (2.15), respectively.
For all partitions I �= J with |J | = h − 1, β̄ < 1 defined in (2.2) and σN (I ) defined
in (2.13), we have the bounds

∑

0�n�N , y∈(Z2)h

UJ
n (x, y) � 1

1− β̄ ′
and σN (J )

·
( ∑

1�n�N , y∈(Z2)h

QI ;J
n (x, y)

)

� β̄ ′, (2.18)

for any β̄ ′ ∈ (β̄, 1) and all large enough N.

Proof We start by proving the first bound in (2.18). By definition (2.15) we have that

∑

n�0, y∈(Z2)h

UJ
n (x, y) :=

∑

n�0, y∈(Z2)h

1{x, y∼J } ·Uβk,�
N (n, y(k) − x (k)) ·

∏

j �=k,�
qn(y

( j) − x ( j))

=
∑

n�0

U
βk,�
N (n),

by using that
∑

z∈Z2 qn(z) = 1 to sum all the kernels qn(y( j)− x ( j)) for j �= k, � and
∑

z∈Z2 U
β
N (n, z) = Uβ

N (n). Moreover, by definition (2.7) and (2.3), since βk,� � β̄,
we have

∑

n�0

U
βk,�
N (n) �

∑

n�0

U β̄
N (n) =

∑

k�0

(σN (β̄)RN )k P(τ
(N )

k = n),

and by (2.10) we have that for any β̄ ′ ∈ (β̄, 1) and all N large enough

∑

n�0

U
βk,�
N (n) �

∑

k�0

(β̄ ′)k P(τ
(N )

k = n) �
∑

k�0

(β̄ ′)k = 1

1− β̄ ′
.

Therefore,

∑

n�0, y∈(Z2)h

UJ
n (x, y) � (1− β̄ ′)−1 .
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For the second bound in (2.18)we recall from (2.12) thatwhen J = {k, �}�⊔ j �=k,�{ j},
then

QI ;J
n (x, y) :=

(

1{x∼I }
∏

j �=k,�
qn(y

( j) − x ( j))

)

· qn(y(k) − x (k)) · qn(y(k) − x (�)) ,

since y ∼ J means that yk = y�. Therefore, σN (J ) = σN (βi, j ) � σN (β̄). We, now,
use that

∑
z∈Z2 qn(z) = 1 in order to sum the kernels qn(y( j)− x ( j)), j �= k, �, while

we also have by Cauchy-Schwarz that

σN (J ) ·
( ∑

1�n�N , yk∈Z2

qn(y
(k) − x (k)) · qn(y(k) − x (�))

)

� σN (β̄) ·
( N∑

n=1
q2n(0)

)
� β̄ ′,

by (2.10), for all N large enough, thus establishing the second bound in (2.18). ��

Next, in Proposition 2.2, we are going to recall some norm estimates from [17] on the
Laplace transform of operators P I ;J

n , defined (2.16). For this, we need to set up the
functional analytic framework. We start by defining (Z2)hI := { y ∈ (Z2)h : y ∼ I }
and, for q ∈ (1,∞), the �q((Z2)hI ) space of functions f : (Z2)hI → R which have
finite norm

‖ f ‖�qI := ‖ f ‖�q ((Z2)hI )
:=

( ∑

y∈((Z2)hI )

∣
∣ f ( y)

∣
∣q

) 1
q

.

For q ∈ (1,∞) and for an operator T : �q((Z2)hJ

)→ �q
(
(Z2)hI

)
with kernel T(x, y),

one can define the pairing

〈 f , Tg〉 :=
∑

x ∈(Z2)hI , y∈(Z2)hJ

f (x)T(x, y)g( y) . (2.19)

The operator norm will be given by

‖T‖�q→�q := sup
‖g‖

�
q
J
�1
‖Tg‖�qI = sup

‖ f ‖
�
p
I
�1, ‖g‖

�
q
J
�1
〈 f , Tg〉, (2.20)

for p, q ∈ (1,∞) conjugate exponents, i.e. 1
p + 1

q = 1.

We introduce the weighted Laplace transforms of operators QI ,J and UJ . In partic-
ular, let w(x) be any continuous function in L∞(R2) ∩ L1(R2) such that logw(x) is
Lipschitz (one can think ofw(x) = e−|x |) and definewN (x) := w(x/

√
N ). Also, for a

function g : R2 → Rwe define the tensor product g⊗h(x1, . . . , xh) = g(x1) · · · g(xh),
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The weighted Laplace transforms are now defined as

Q̂I ;J
N ,λ(x, y) :=

( N∑

n�1

e−λ n
N QI ;J

n (x, y)
)

· w
⊗h
N (x)

w⊗hN ( y)
,

ÛJ
N ,λ(x, y) :=

( N∑

n�0

e−λ n
N UJ

n (x, y)
)

· w
⊗h
N (x)

w⊗hN ( y)
.

(2.21)

The passage to a Laplace transform will help to estimate convolutions involving oper-
ators QI ;J

n (x, y) and UJ
n (x, y) and the introduction of the weight comes handy in

improving integrability when these operators are applied to functions which are not
in �1((Z2)h). We will see this in Lemma 2.3 below.

We also define the Laplace transform operator of the combined evolution (2.16):

P̂I ;JN ,λ =
{
Q̂I ;J
N ,λ, if |J | �= h − 1

Q̂I ;J
N ,λ Û

J
N ,λ, if |J | = h − 1 .

(2.22)

For our purposes, it will be sufficient to take λ = 0 and consider operators Q̂I ;J
N ,0, Û

J
N ,0

and P̂I ;JN ,0.
Using the above formalism we summarise in the next proposition some key esti-

mates of [17] (see Propositions 3.2–3.4 and the proof of Theorem 1.3 therein), which
are refinements of estimates in [4] (Section 6) and [8] (Section 3).

Proposition 2.2 Consider the operators Q̂I ;J
N ,0 and P̂I ;JN ,0 defined in (2.21) and (2.22)

with λ = 0 and a weight function w ∈ L∞(R2) ∩ L1(R2) such that logw(x) is
Lipschitz. Then there exists a constant C = C(h, β̄, w) ∈ (0,∞) (recall β̄ from (2.2))
such that for all p, q ∈ (1,∞) with 1

p + 1
q = 1 and all partitions I , J � {1, . . . , h},

such that |I |, |J | � h − 1 and I �= J when |I | = |J | = h − 1, we have that

∥
∥
∥̂PI ;JN ,0

∥
∥
∥

�q→�q
� C p q. (2.23)

Moreover, if g ∈ �q(Z2),

∥
∥
∥ g⊗h Q̂∗;IN ,0

∥
∥
∥

�p
� C q N

1
q ‖g‖h�p , (2.24)

for g⊗h(x1, . . . , xh) := g(x1) · · · g(xh).

Let us nowpresent the following lemma,which demonstrates how the above functional
analytic framework will be used. This lemma will be useful in the first approximation,
that we will perform in the next Section, in showing that contributions from multiple,
i.e. three or more, collisions are negligible.
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Lemma 2.3 Let Hr ,N be the r th term in the expansion (2.17), that is,

Hr ,N :=
∑

◦:=I0,I1,...,Ir

r∏

i=1
σN (Ii )

∑

1�n1<···<nr�N ,

0:=x0,x1,...,xr∈(Z2)h

r∏

i=1
P Ii−1;Ii
ni−ni−1(xi−1, xi ), (2.25)

and H (multi)
r ,N be the corresponding term with the additional constraint that there is at

least one multiple collision (i.e. at some point, three or more walks meet), that is,

H (multi)
r ,N :=

∑

◦:=I0,I1,...,Ir

( r∏

i=1
σN (Ii )

)

1{∃ 1� j�r : |I j |<h−1}

∑

1�n1<···<nr�N
0:=x0,x1,...,xr∈(Z2)h

r∏

i=1
P Ii−1;Ii
ni−ni−1(xi−1, xi ) .

Then the following bounds hold:

Hr ,N �
(C p q

log N

)r
N

h+1
q and H (multi)

r ,N � r

log N

(C p q

log N

)r
N

h+1
q . (2.26)

for any p, q ∈ (1,∞) with 1
p + 1

q = 1 and a constant C that depends on h and β̄ but
is independent of N , r , p, q.

Proof We start by consideringw(x) = e−|x |, wN (x) := w( x√
N

) andw⊗hN (x1, . . . , xh)

=∏h
i=1 wN (xi ) and by including in the expression (2.25) the term

1

w⊗hN (x0)

( r∏

i=1

w⊗hN (xi−1)
w⊗hN (xi )

)
w⊗hN (xr ) = 1,

thus rewriting Hr ,N as

Hr ,N =
∑

◦:=I0,I1,...,Ir

r∏

i=1
σN (Ii )

×
∑

1�n1<···<nr�N
0:=x0,x1,..., xr∈(Z2)h

1

w⊗hN (x0)

r∏

i=1
P Ii−1;Ii
ni−ni−1(xi−1, xi )

w⊗hN (xi−1)
w⊗hN (xi )

· w⊗hN (xr ) .
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We can extend the summation on x0 from x0 = 0 to x0 ∈ Z
2 by introducing a delta

function δ⊗h0 at zero. Then

Hr ,N =
∑

∗:=I0,I1,...,Ir

r∏

i=1
σN (Ii )

quad ×
∑

1�n1<···<nr�N
x0,x1,..., xr∈(Z2)h

δ⊗h0 (x0)

w⊗hN (x0)

r∏

i=1
P Ii−1;Ii
ni−ni−1(xi−1, xi )

w⊗hN (xi−1)
w⊗hN (xi )

· w⊗hN (xr ) .

Wecan, now, bound the last expression by extending the temporal range of summations
from1 � n1 < · · · < nr � N toni−ni−1 ∈ {1, . . . , N } for all i = 1, . . . , r . Recalling
the definition of the Laplace transforms of the operators (2.21), (2.22), we, thus, obtain
the upper bound

Hr ,N �
∑

∗:=I0,I1,...,Ir

r∏

i=1
σN (Ii )

∑

x0,x1,..., xr∈(Z2)h

δ⊗h0 (x0)

w⊗hN (x0)

r∏

i=1
P̂Ii−1;IiN ,0 (xi−1, xi ) · w⊗hN (xr ) ,

which we can write in the more compact and useful notation, using the brackets (2.19),
as

Hr ,N �
∑

I1,...,Ir

〈 δ⊗h0

w⊗hN

, Q̂∗;I1N ,0 P̂
I1;I2
N ,0 · · · P̂Ir−1;IrN ,0 w⊗hN

〉 r∏

i=1
σN (Ii ).

We note, here, that in the right-hand side we set the I0 partition to be equal to I0 =
{1} � · · · � {h}. In this case P̂I0;I1 = P̂∗;I1 = Q̂∗;I1 by definition (2.22). The delta
function δ⊗h0 (x0) will force all points of x0 to coincide at zero, thus, forcing I0 to be
equal to the partition ◦ = {1, . . . , h} but, at the stage of operators, we do not yet need
to enforce this constraint. At this stage we can proceed with the estimate using the
operator norms (2.20) as

Hr ,N �
∑

I1,...,Ir

∥
∥
∥
∥
∥

δ⊗h0

w⊗hN

Q̂∗,I1N ,0

∥
∥
∥
∥
∥

�p

r∏

i=2

∥
∥
∥̂P

Ii−1;Ii
N ,0

∥
∥
∥

�q→�q

∥
∥
∥w⊗hN

∥
∥
∥

�q
·

r∏

i=1
σN (Ii ), (2.27)

By (2.24) of Proposition 2.2 we have that

∥
∥
∥
∥
∥

δ⊗h0

w⊗hN

Q̂∗,I1N ,0

∥
∥
∥
∥
∥

�p

� C q N
1
q

∥
∥
∥
∥

δ0

wN

∥
∥
∥
∥

h

�p
= C q N

1
q ,

and by (2.23) we have that for all 1 � i � r − 1,

∥
∥
∥̂P

Ii−1;Ii
N ,0

∥
∥
∥

�q→�q
� C p q .
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Inserting these estimates in (2.27) we deduce that

Hr ,N � (C p q)r N
1
q

∥
∥
∥
∥

δ0

wN

∥
∥
∥
∥

h

�p
‖wN‖h�q

∑

I1,...,Ir

r∏

i=1
σN (Ii )

= (C p q)r N
1
q ‖wN‖h�q

∑

I1,...,Ir

r∏

i=1
σN (Ii ) , (2.28)

for a constant C = C(h, β̄) ∈ (0,∞), not depending on p, q, r , N . We now notice
that for any partition I � {1, . . . , h}, it holds that σN (I ) � C/ log N (recall definitions
(2.13) and (2.3)), so

∑

I1,...,Ir

r∏

i=1
σN (Ii ) �

( 2hC

log N

)r
.

Moreover, by Riemann summation, N−h/q ‖wN‖h�q is bounded uniformly in N .
Therefore, applying these on (2.28) we arrive at the bound

Hr ,N �
(C p q

log N

)r
N

h+1
q ,

for a new constant C = C(h, β̄) ∈ (0,∞), which is the first claimed estimate in
(2.26). For the second estimate in (2.26) we follow the same steps until we arrive at
the bound

H (multi)
r ,N � (C p q)r N

1
q ‖wN‖h�q

∑

I1,...,Ir

r∏

i=1
σN (Ii )1{∃ 1� j�r :|I j |<h−1}.

Then we notice that for a partition I � {1, . . . , h} with |I | < h − 1 it will hold that
σN (I ) � C(log N )−2 (recall definitions (2.13) and (2.3)). This fact, together with the
fact that there are r possible choices among the partitions I1, . . . , Ir that can be chosen
so that |I j | < h − 1, leads to the second bound in (2.26). ��

3 Approximation steps and proof of the theorem

In this section we prove Theorem 1.1 through a series of approximations on the chaos
expansion (2.11), (2.17). The first step, in Sect. 3.1, is to establish that the series in
the chaos expansion (2.17) can be truncated up to a finite order and that the main
contribution comes from diagrams where, at any fixed time, we only have at most two
walks colliding. The second step, Sect. 3.2, is to show that the main contribution to
the expansion and to diagrams like in Fig. 3, comes when all jumps between marked
dots (see Fig. 3) happen within diffusive scale. The third step, in Sect. 3.3, captures
the important feature of scale separation. This is intrinsic to the two-dimensionality
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and can be seen as the main feature that leads to the asymptotic independence of the
collision times.With reference toFig. 3, this says that the timebetween two consecutive
replicas, say a4− b3 in Fig. 3 must be much larger than the time between the previous
replicas, say b3− b2. This would then lead to the next step in Sect. 3.4, see also Fig. 4,
which is that we can rewire the links so that the solid lines connect only replicas
between the same pairs of walks. The final step, which is performed in Sect. 3.5 is to
reverse all the above approximations within the rewired diagrams, to which we arrived
in the previous step. The summation, then, of all rewired diagrams leads, in the limit,
to the right hand of (1.2), thus completing the proof of the theorem.

3.1 Reduction to 2-body collisions and finite order chaoses

In this step, we use the functional analytic framework and estimates of the previous
section to show that for each r � 1, Hr ,N decays exponentially in r , uniformly in
N ∈ N and that it is concentrated on configurations which contain only two-body
collisions between the h random walks.

Proposition 3.1 There exist constants a ∈ (0, 1) and C̄ = C(h, β̄, a) ∈ (0,∞) such
that for all r � 1,

sup
N∈N

Hr ,N � C̄ ar , and H (multi)
r ,N � C̄

log N
r ar . (3.1)

Proof We use the estimates in (2.26) and make the choice q = qN := a
C1

log N with

a ∈ (0, 1) and a constant C1 such that Cpq
log N < a (recall that 1

p + 1
q = 1). Moreover,

this choice of q implies that

N
h+1
q = e

h+1
q log N = e

C1 (h+1)
a .

Therefore, choosing C̄ = e
C1 (h+1)

a implies the first estimate in (3.1).
The second estimate follows from the same procedure and the same choice of

q = qN := a
C1

log N in the second bound of (2.26). ��

Proposition 3.2 If Mβ
N ,h is the joint Laplace transform of the collision local times

{
π

log N L(i, j)
N

}

1�i< j�h
, (2.1) and Hr ,N is the r th term in its chaos expansion (2.25),

then for any ε > 0 there exists K = Kε such that

∣
∣
∣M

β
N ,h −

K∑

r=0
Hr ,N

∣
∣
∣ � ε,

uniformly for all N ∈ N.
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Proof By Proposition, 3.1, Hr ,N decay exponentially in r , uniformly in N ∈ N and
therefore

lim sup
K→∞

(
sup
N�1

∑

r>K

Hr ,N

)
= 0,

which means that we can truncate the expansion of Mβ
N ,h to a finite number of terms

K depending only on ε. ��
By Proposition 3.1 we can focus on only two-body collisions, since higher order

collisions bear a negligible contribution as N →∞. Let us introduce some notation
to conveniently describe the expansion of Hr ,N , after the reduction to only two-body
collisions, which we will use in the sequel. Given r � 1 we will denote by ai , bi ∈
N∪ {0}, ai � bi , i = 1, . . . , r the times where replicas start and end respectively, see
(2.15) and Fig. 2, where replicas are represented by wiggle lines. Thus, ai will be the
timemarking the beginning of the i th wiggle line and bi the timemarking its end. Note
that, a1 = 0. Moreover, we use the notation �x = (x1, x2, . . . , xr ) ∈ (Z2)hr to denote
the starting points of the r replicas and �y = ( y1, . . . , yr ) ∈ (Z2)hr the corresponding
ending points. Again, notice that x1 = 0. We then define the set

Cr ,N :=
{
(�a, �b, �x, �y)

∣
∣
∣ 0 := a1 � b1 < a2 � · · · < ar

� br � N , �x, �y ∈ (Z2)hr , x1 = 0
}

. (3.2)

We also define a set of finite sequences of partitions

I(2) =
∞⋃

r=0

{

(I1, . . . , Ir ) : I j �= I j+1 and |I j | = h − 1,∀ j ∈ {1, . . . , r}
}

.

Using the notational conventions outlined above we canwrite Hr ,N = H (2)
r ,N+H (multi)

r ,N
with

H (2)
r ,N :=

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈Cr ,N
UI1
b1

(0, y1)
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi )σN (Ii ).

(3.3)

In the next sections will focus on H (2)
r ,N , which by Proposition 3.1 contains the main

contributions.

3.2 Diffusive spatial truncation

In this stepwe show that we can introduce diffusive spatial truncations in all the kernels
appearing in (3.3) which originate from the diffusive behaviour of the simple random
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walk in Z
2. For a vector x = (x (1), . . . , x (h)) ∈ (Z2)h , we shall use the notation

‖x‖∞ = max
1� j�h

|x ( j)|,

where | · | denotes the usual Euclidean norm on R
2. For each r ∈ N, define H (diff)

r ,R,N to
be the sum in (3.3) where Cr ,N is replaced by

C(diff)
r ,N ,R := Cr ,N ∩

{
(�a, �b, �x, �y) : ∥∥ yi − xi

∥
∥∞ � R

√
bi − ai and

∥
∥xi − yi−1

∥
∥∞

� R
√
ai − bi−1 for all 1 � i � r

} (3.4)

and similarly we define

H (superdiff)
r ,N ,R =

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(superdiff)
r ,N ,R

UI1
b1

(0, y1)

r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ), (3.5)

where

C(superdiff)
r ,N ,R := Cr ,N ∩

{
(�a, �b, �x, �y) : ∃ 1 � i � r : ∥∥ yi − xi

∥
∥∞

> R
√
bi − ai or

∥
∥xi − yi−1

∥
∥∞ > R

√
ai − bi−1

}
.

Note that then we have that

H (2)
r ,N = H (diff)

r ,N ,R + H (superdiff)
r ,N ,R .

We have the following Proposition.

Proposition 3.3 For all r � 1 we have that

lim
R→∞ sup

N∈N
H (superdiff)
r ,N ,R = 0 . (3.6)
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Proof We use the bounds established in Lemma 3.4, below, and (2.18) to show (3.6).
We can use a union bound for (3.5) to obtain that

H (superdiff)
r ,N ,R =

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(superdiff)r ,N ,R

UI1
b1

(0, y1)

r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii )

�
r∑

j=1

∑

(I1,...,Ir )∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1, y1,...,xr , yr∈(Z2)h

(

1{∥
∥ y j−x j

∥
∥∞>R

√
b j−a j

} + 1{∥
∥x j− y j−1

∥
∥∞>R

√
a j−b j−1

}
)

× UI1
b1

(0, y1)
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ) .

(3.7)

We split the sum on the last two lines of (3.7) according to the two indicator functions
that appear therein. By repeated successive application of the bounds from (2.18) for
j < i � r and then by using (3.10), which reads as

∑

y j∈(Z2)h , a j�b j�N

U
I j
b j−a j

(x j , y j )1{∥
∥ y j−x j

∥
∥∞>R

√
b j−a j

} � e−κR,

we deduce that

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1, y1,...,xr , yr∈(Z2)h

1{∥
∥ y j−x j

∥
∥∞>R

√
b j−a j

}UI1
b1

(0, y1)

r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii )

� e−κR
(

β̄ ′

1− β̄ ′

)r− j

×
∑

0:=a1�b1<a2�···<b j−1<a j�N ,

0:=x1, y1,...,x j∈(Z2)h

UI1
b1

(0, y1)
j−1∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii )

× Q
I j−1;I j
a j−b j−1( y j−1, x j ) σN (I j ) .

(3.8)
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We then continue the summation using the bounds from (2.18), to obtain that the
right-hand side of the inequality in (3.8) is bounded by

e−κR
(

β̄ ′

1− β̄ ′

)r− j (
β̄ ′

1− β̄ ′

) j−1
= e−κR

(
β̄ ′

1− β̄ ′

)r−1
.

Similarly, for the sum involving the second indicator function in (3.7) we obtain by
using (2.18) and (3.9) of Lemma 3.4 that

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1, y1,...,xr , yr∈(Z2)h

1{∥
∥x j− y j−1

∥
∥∞>R

√
a j−b j−1

}UI1
b1

(0, y1)

×
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii )

� e−κR2
(

1

1− β̄ ′

)r

(β̄ ′)r−1 .

Therefore, the right-hand side of the inequality in (3.7) is bounded by

r∑

j=1

∑

(I1,...,Ir )∈I(2)

e−κR
((

β̄ ′

1− β̄ ′

)r−1
+

(
1

1− β̄ ′

)r

(β̄ ′)r−1
)

� e−κR
(

2r · (β̄ ′)r−1

(1− β̄ ′)r
·
(
h

2

)r )

,

where the
(h
2

)r
factor comes from the fact that there are at most

(h
2

)r
choices for the

sequence (I1, . . . , Ir ) ∈ I(2). Thus, recalling (3.7) we get that

sup
N∈N

H (superdiff)
r ,N ,R � e−κR

(

2r · (β̄ ′)r−1

(1− β̄ ′)r
·
(
h

2

)r )
R→∞−−−→ 0.

��
Lemma 3.4 Let I , J � {1, . . . , h} such that |I | = |J | = h − 1 and I �= J . For
large enough R ∈ (0,∞) and uniformly in x ∈ (Z2)hI we have that for a constant
κ = κ(h, β̄) ∈ (0,∞),

σN (J ) ·
( ∑

1�n�N , y∈(Z2)h

QI ;J
n (x, y) · 1{

‖x− y‖∞>R
√
n
}
)

� e−κR2
(3.9)

and

∑

1�n�N , y∈(Z2)h

UJ
n (x, y) · 1{

‖x− y‖∞>R
√
n
} � e−κR . (3.10)
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Proof We start with the proof of (3.9). Since |J | = h − 1, let us assume without loss
of generality that J = {k, �} �⊔

j �=k,�{ j}. In this case, QI ;J
n (x, y) contains h − 2

random walk jumps with free endpoints y( j), j �= k, �, that is

∏

j �=k,�
qn(y

( j) − x ( j)) .

Moreover, J imposes the constraint that y(k) = y(�), which appears in QI ;J
n (x, y)

through the product of transition kernels

qn(y
(k) − x (k)) · qn(y(k) − x (�)),

recall (2.12). The constraint ‖x − y‖∞ > R
√
n implies that there exists 1 � j � h

such that |x ( j) − y( j)| > R
√
n. We distinguish two cases:

(1) There exists j �= k, � such that |x ( j) − y( j)| > R
√
n, or

(2) |x ( j) − y( j)| > R
√
n for j = k or j = �.

In both cases, we can use
∑

z∈Z2 qn(z) = 1 to sum the kernels qn(y(i) − x (i)) with
i /∈ { j, k, �} to which we do not impose any super-diffusive constraints. By symmetry
and translation invariance we can upper bound the left-hand side of (3.9) by

σN (J ) ·
(

(h − 2)
∑

1�n�N , z∈Z2

qn(z) · 1{|z|>R
√
n} ·

{
sup
u ∈Z2

∑

z∈Z2

qn(z)qn(z + u)
}

+2 sup
u ∈Z2

∑

1�n�N , z∈Z2

qn(z)qn(z + u) · 1{|z|>R
√
n}

)

.

(3.11)

Looking at the first summand in (3.11) we have by Cauchy-Schwarz that

sup
u∈Z2

∑

z∈Z2

qn(z) qn(z + u) �
( ∑

z∈Z2

q2n (z)
)1/2 · sup

u∈Z2

( ∑

z∈Z2

q2n (z + u)
)1/2

� q2n(0),

(3.12)

since
∑

z∈Z2 q2n (z) = q2n(0). Let us recall the deviation estimate for the simple random
walk, which can be found in [16], Proposition 2.1.2, that is

P
(

max
0�k�n

|Sk | > R
√
n
)

� e−cR2
, (3.13)

123



Amultivariate extension of the Erdős–Taylor theorem

for a constant c ∈ (0,∞) and all R ∈ (0,∞), large enough. By using bound (3.12)
and subsequently (3.13) on the first summand of (3.11) we get that

∑

1�n�N , z∈Z2

qn(z) · 1{|z|>R
√
n} ·

{
sup
u ∈Z2

∑

z∈Z2

qn(z)qn(z + u)
}

�
∑

1�n�N , z∈Z2

q2n(0) · qn(z)1{|z|>R
√
n}

� e−cR2
RN .

We recall from (2.4) and (2.5) that RN =∑N
n=1 q2n(0)

N→∞≈ log N
π

, therefore,

σN (J ) ·
(

(h − 2)
∑

1�n�N , z∈Z2

qn(z) · 1{|z|>R
√
n} ·

{
sup
u ∈Z2

∑

z∈Z2

qn(z)qn(z + u)
})

� (h − 2) σN (J ) RN e−cR2

� (h − 2) β̄ ′ e−cR2
,

(3.14)

for some β̄ ′ ∈ (β̄, 1). The second summand in the parenthesis in (3.11) can be bounded
via Cauchy-Schwarz by

( ∑

1�n�N , z∈Z2

q2n (z) · 1{|z|>R
√
n}

) 1
2

·
( ∑

1�n�N , z∈Z2

q2n (z + u)

) 1
2

. (3.15)

For the first term in (3.15), using that supz∈Z2 qn(z) � C
n we get

∑

1�n�N , z∈Z2

q2n (z) · 1{|z|>R
√
n} � C

∑

1�n�N , z∈Z2

qn(z)

n
· 1{|z|>R

√
n} � C e−cR2

log N
(3.16)

For the second term in (3.11), we have that for all u ∈ Z
2

∑

1�n�N , z∈Z2

q2n (z + u) =
N∑

n=1
q2n(0)

N→∞≈ log N

π
.

Thus, by (3.15) together with (3.16) we conclude that for the second summand in
(3.11) we have

σN (J ) ·
(

2 sup
u ∈Z2

∑

1�n�N , z∈Z2

qn(z)qn(z + u) · 1{|z|>R
√
n}

)

� C e−
cR2
2 .
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Therefore, recalling (3.14) we deduce that there exists a constant κ(h, β̄) ∈ (0,∞)

such that

σN (J ) ·
( ∑

1�n�N , y∈(Z2)h

QI ;J
n (x, y) · 1{

‖x− y‖∞>R
√
n
}
)

� e−κR2
.

Wemove to the proof of (3.10). Similar to the proof of (3.9), we can bound the left-hand
side of (3.10) by

(h − 1)
∑

1�n�N , w, z∈Z2

U β̄
N (n, w) · qn(z)1{|z|>R

√
n}

+
∑

1�n�N ,z∈Z2

U β̄
N (n, z) · 1{|z|>R

√
n} . (3.17)

For the first summand in (3.17), by (3.13) we have that

∑

z∈Z2

qn(z)1{|z|>R
√
n} � e−cR2

,

and
∑

1�n�N , w∈Z2 U
β̄
N (n, w) � 1

1−β̄ ′ , therefore

(h − 1)
∑

1�n�N , w, z∈Z2

U β̄
N (n, w) · qn(z)1{|z|>R

√
n} �

h − 1

1− β̄ ′
e−cR2

. (3.18)

For the second summand, we use the renewal representation ofU β̄
N (·, ·) introduced in

(2.8). In particular, we have that

∑

1�n�N ,z∈Z2

U β̄
N (n, z) · 1{|z|>R

√
n} =

∑

k�0

(σN (β̄)RN )k
N∑

n=0
P
(∣
∣S(N )

k

∣
∣ > R

√
n, τ

(N )

k = n
)

.

(3.19)

Then, by conditioning on the times (T (N )

i )1�i�k for which τ
(N )

k = T (N )

1 + · · · + T (N )

k
we have that

P
(∣
∣S(N )

k

∣
∣ > R

√
n, τ

(N )

k = n
)

=
∑

n1+···+nk=n
P
(∣
∣S(N )

k

∣
∣ > R

√
n

∣
∣
∣ ∩ki=1

{
T (N )

i = ni
}) k∏

i=1
P
(
T (N )

i = ni
)
.
(3.20)
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Note that when we condition on ∩ki=1
{
T (N )

i = ni
}
, S(N )

k is a sum of k independent
random variables (ξi )1�i�k taking values in Z

2, with law

P(ξi = x) = q2ni (x)

q2ni (0)
.

The proof of Proposition 3.5 in [17] showed that there exists a constant C ∈ (0,∞)

such that for all λ � 0

E
[
eλ|∑k

i=1 ξi |
]

� 2e4Cλ2n , (3.21)

uniformly over the values n1, . . . , nk . Therefore, by (3.21) with λ = 1√
n
andMarkov’s

inequality we obtain that

P
(∣
∣S(N )

k

∣
∣ > R

√
n

∣
∣
∣ ∩ki=1 {T (N )

i = ni }
)

� 2e4C−R .

Thus, looking back at (3.20) we have that for all k � 0,

P
(∣
∣S(N )

k

∣
∣ > R

√
n, τ

(N )

k = n
)

� 2e4C−R P(τ
(N )

k = n),

therefore, plugging the last inequality into (3.19), we get that

∑

1�n�N ,z∈Z2

U β̄
N (n, z) · 1{|z|>R

√
n} � 2e4C−R

N∑

n=1
U β̄

N (n) � 2e4C−R

1− β̄ ′
, (3.22)

therefore by (3.18) and (3.22) we have that there exists a constant κ(h, β̄) ∈ (0,∞)

such that

∑

1�n�N , y∈(Z2)h

UJ
n (x, y) · 1{

‖x− y‖∞>R
√
n
} � e−κR,

for large enough R ∈ (0,∞), thus concluding the proof of (3.10). ��

3.3 Scale separation

In this step we show that given r ∈ N, r � 2, the main contribution to H (diff)
r ,N comes

from configurations where ai+1 − bi > M(bi − bi−1) for all 1 � i � r and large M ,
as N →∞. Recall from (3.4) that

H (diff)
r ,N ,R =

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(diff)
r ,N ,R
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UI1
b1

(0, y1)
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) · σN (Ii ) .

Define the set

C(main)
r ,N ,R,M := C(diff)

r ,N ,R ∩
{
(�a, �b, �x, �y) : ai+1 − bi > M(bi − bi−1) for all 1 � i � r − 1

}
,

(3.23)

with the convention b0 := 0 and accordingly define

H (main)
r ,N ,R,M :=

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

UI1
b1

(0, y1)

r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ) . (3.24)

We then have the following approximation proposition:

Proposition 3.5 For all fixed r ∈ N, r � 2 and M ∈ (0,∞),

lim
N→∞ sup

R ∈(0,∞)

∣
∣
∣H

(diff)
r ,N ,R − H (main)

r ,N ,R,M

∣
∣
∣ = 0 . (3.25)

Proof FixM > 0. Let us begin by showing (3.25) for the simplest case which is r = 2.
We have

H (diff)
2,N ,R − H (main)

2,N ,R,M �
∑

(I1,I2)∈I(2)

∑

0�b1<a2�N , a2−b1�Mb1,
y1,x2, y2∈(Z2)h

UI1
b1

(0, y1)Q
I1;I2
a2−b1( y1, x2) σN (I2)U

I2
b2−a2(x2, y2).

We can bound σN (I2) by
πβ̄ ′
log N , for some β̄ ′ ∈ (β̄, 1) and use (2.18) to bound the last

replica, i.e. the sum over (b2, y2), thus getting

H (diff)
2,N ,R − H (main)

2,N ,R,M � πβ̄ ′(1− β̄ ′)−1

log N

∑

(I1,I2)∈I(2)

∑

0�b1<a2�N , a2−b1�Mb1,
y1,x2∈(Z2)h

UI1
b1

(0, y1)Q
I1;I2
a2−b1( y1, x2) .

(3.26)

Notice that at this stage we can sum out the spatial endpoints of the free kernels
in (3.26) and bound the coupling strength βk,� of any replica UI1

b1
(0, y1) with I1 =

123



Amultivariate extension of the Erdős–Taylor theorem

{k, �} �⊔
j �=k,�{ j} by β̄ to obtain

H (diff)
2,N ,R − H (main)

2,N ,R,M � πβ̄ ′(1− β̄ ′)−1

log N

∑

(I1,I2)∈I(2)

∑

0�b1<a2�N , a2−b1�Mb1 ,

y1,x2∈Z2

U β̄
N (b1, y1)qa2−b1(x2 − y1) qa2(x2)

� πβ̄ ′(1− β̄ ′)−1

log N

(
h

2

)2 ∑

0�b1<a2�N , a2−b1�Mb1 ,

y1,x2∈Z2

U β̄
N (b1, y1)qa2−b1(x2 − y1) qa2(x2) . (3.27)

For the last inequality we also have used that the number of possible partitions

(I1, I2) ∈ I(2) is bounded by
(h
2

)2
. For every fixed value of b1 in (3.27), we use

Cauchy-Schwarz for the sum over (a2, x2) ∈ (0, (1+ M)b1] ×Z
2 in (3.27) to obtain

that

∑

b1<a2�(1+M)b1, x2∈Z2

qa2−b1(x2 − y1) qa2(x2)

�
( ∑

0<a2�(1+M)b1, x2∈Z2

q2a2−b1(x2 − y1)

) 1
2

( ∑

b1<a2�(1+M)b1, x2∈Z2

q2a2(x2)

) 1
2

=
( ∑

0<a2�(1+M)b1

q2(a2−b1)(0)
) 1

2
( ∑

b1<a2�(1+M)b1

q2a2(0)

) 1
2

.

(3.28)

We can bound the leftmost parenthesis in the last line of (3.28) by R1/2
N =

(∑N
n=1 q2n(0)

)1/2 = O(
√
log N ). For the other term we have

∑

b1<a2�(1+M)b1

q2a2(0) � c
∑

b1<a2�(1+M)b1

1
a2

� c log(1+ M) . (3.29)

Therefore, using (3.28) and (3.29) along with
∑

0�b1�N , y1∈Z2 U
β̄
N (b1, y1) � (1 −

β̄ ′)−1 in (3.27) we obtain that

H (diff)
2,N ,R − H (main)

2,N ,R,M � Cπβ̄ ′(1− β̄ ′)−2
√
log(1+ M)

log N
N→∞−−−−→ 0 .
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Let us show how this argument can be extended to work for general r ∈ N. The
key observation is that for every fresh collision between two random walks, that is
Ii+1 = {k, �} �⊔

j �=k,�{ j}, happening at time 0 < ai+1 � N , we have Ii �= Ii+1,
therefore one of the two colliding walks with labels k, � has to have travelled freely,
for time at least ai+1− bi−1 from its previous collision. More precisely, every term in
the expansion of H (diff)

r ,N ,R − H (main)
r ,N ,R,M contains for every 1 � i � r − 1 a product of

the form

qai+1−bi (xi+1 − yi ) · qai+1−bi−1(xi+1 − yi−1) ,

see Fig. 3. Recall from (3.2) and (3.24) that we have the expansion

H (diff)
r ,N ,R − H (main)

r ,N ,R,M

=
∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(diff)
r ,N ,R�C(main)

r ,N ,R,M

UI1
b1

(0, y1)

r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ),

(3.30)

where by definition (3.23) we have that

C(diff)
r ,N ,R � C(main)

r ,N ,R,M = C(diff)
r ,N ,R ∩

r−1⋃

i=1

{
(�a, �b, �x, �y) : ai+1 − bi � M(bi − bi−1)

}
.

(3.31)

Wewill start the summation of (3.30) from the end until we find the index 1 � i � r−1
for which the sum over ai+1 is restricted to

(
bi , bi + M(bi − bi−1)

]
, in agreement

with (3.31), using (2.18) to bound the contribution of the sums over b j , a j+1 and the
corresponding spatial points for i < j � r − 1. Next, notice that we can bound the
contribution of the sum over ai+1 ∈

(
bi , bi + M(bi − bi−1)

]
and xi+1 ∈ Z

2, using a
change of variables, by a factor of

C

log N

(

sup
1�t�N , u∈Z2

∑

1�n�Mt, z∈Z2

qn(z)qn+t (z + u)

)

� C

√
log(1+ M)

log N
,

using Cauchy–Schwarz as in (3.28) and (3.29). The remaining sums over b j , a j−1,
1 � j � i can be bounded again via (2.18). Therefore, taking into account that by
(3.31) there are r − 1 choices for the index i such that the sum over ai+1 is restricted
to

(
bi , bi + M(bi − bi−1)

]
, we can give an upper bound to H (diff)

r ,N ,R − H (main)
r ,N ,R,M as

follows:

H (diff)
r ,N ,R − H (main)

r ,N ,R,M � C(r − 1)

(
h

2

)r ( β̄ ′

1− β̄ ′
)r

√
log(1+ M)

log N
N→∞−−−−→ 0,
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Amultivariate extension of the Erdős–Taylor theorem

Fig. 3 A diagramatic representation of a configuration of collisions between 4 random walks in H (2)
4,N with

I1 = {2, 3}, I2 = {1, 2}, I3 = {3, 4} and I4 = {2, 3}. Wiggly lines represent replica evolution, see (2.15)

where we also used that the number of distinct sequences (I1, . . . , Ir ) ∈ I(2) is
bounded by

(h
2

)r
. ��

3.4 Rewiring

Recall the expansion of H (main)
r ,N ,R,M ,

H (main)
r ,N ,R,M :=

∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

UI1
b1

(0, y1)
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ) . (3.32)

We also remind the reader that we may identify a partition I = {k, �} �⊔
j �=k,�{ j}

with its non-trivial part {k, �}. Moreover, if
({i1, j1}, · · · , {ir , jr }

) ∈ I(2) we will use
the notation

p(m) := max
{
k < m : {im, jm} = {ik, jk}

}
,

with the convention that p(m) = 0 if {ik, jk} �= {im, jm} for all 1 � k < m. Given this
definition, the time bp(m) represents the last time walks im, jm collided before their
new collision at time am . Note that since we always have {ik, jk} �= {ik+1, jk+1} by
construction, p(m) < m − 1.

Consider a sequence of partitions
({i1, j1}, . . . , {im, jm}

) ∈ I(2) and let m ∈
{2, . . . , r}. The goal of this step will be to show that we can make the replacement of
weight

qam−bm−1
(
x (im )
m − y(im )

m−1
)
· qam−bm−1

(
x ( jm )
m − y( jm )

m−1
)
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←→ q2am−bp(m)

(
x (im )
m − y(im )

p(m)

)
. (3.33)

by inducing an error which is negligible when M →∞. We iterate this procedure for
all partitions I1, . . . , Ir . We call the procedure described above rewiring, see Figs. 3
and 4. The first step towards the full rewiring is to show the following lemma which
quantifies the error of a single replacement (3.33).

Lemma 3.6 Let r � 2 fixed and m ∈ {2, . . . , r} with Im = {im, jm}. Then, for every
fixed R ∈ (0,∞) and uniformly in (�a, �b, �x, �y) ∈ C(main)

r ,N ,R,M and all sequences of

partitions (I1, . . . , Ir ) ∈ I(2),

qam−bm−1
(
x (im )
m − y(im )

m−1
)
· qam−bm−1

(
x ( jm )
m − y( jm )

m−1
)

= q2am−bp(m)

(
x (im )
m − y(im )

p(m)

)
· eoM (1), (3.34)

where oM (1) denotes a quantity such that limM→∞ oM (1) = 0.

Proof We will show that

qam−bm−1
(
x (im )
m − y(im )

m−1
)
= qam−bp(m)

(
x (im )
m − y(im )

p(m)

)
· eoM (1) (3.35)

and by symmetry we will get (3.34). To this end, we invoke the local limit theorem
for simple random walks, which we recall from [16]. In particular, by Theorem 2.3.11
[16], we have that there exists ρ > 0 such that for all n � 0 and x ∈ Z

2 with |x | < ρ n,

qn(x) = gn
2
(x) · eO

(
1
n+ |x |

4

n3

)

· 2 · 1{
(n,x)∈Z3

even

} , (3.36)

where gt (x) = e−
|x |2
2t

2π t denotes the 2-dimensional heat kernel and

Z
3
even := {(n, x) ∈ Z× Z

2 : n + x1 + x2 = 0 (mod 2)} .

The last constraint in (3.36) is a consequence of the periodicity of the simple random
walk. Let us proceed with the proof of Lemma 3.6. First, we derive two inequalities
which are going to be useful for the approximations using the local limit theorem.

Auxiliary inequality 1. We claim that

am − bm−1 > (M − 1)
(
bm−1 − bp(m)

)
. (3.37)

To this end, we start with the fact that

ak+1 − bk > M(bk − bk−1) holds for all 1 � k � r − 1, (3.38)
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Amultivariate extension of the Erdős–Taylor theorem

which we will apply repeatedly. Starting with k := m − 1, we have that

am − bm−1 > M(bm−1 − bm−2) = M(bm−1 − am−1)+ M(am−1 − bm−2) .

(3.39)

We can then estimate the second term in the right-hand-side as

M(am−1 − bm−2) = (M − 1)(am−1 − bm−2)+ (am−1 − bm−2)
> (M − 1)(am−1 − bm−2)+ M(bm−2 − bm−3)

where in the last step we used (3.38) with k := m − 2. Inserting this into (3.39) we
have that

am − bm−1 > M(bm−1 − am−1)+ (M − 1)(am−1 − bm−2)+ M(bm−2 − bm−3)

We next decompose M(bm−2 − bm−3) as we did in (3.39) for M(bm−1 − bm−2) and
iterating this procedure up to p(m) we obtain that

am − bm−1 >

m−1∑

j=p(m)+1

(
M(b j − a j )+ (M − 1)(a j − b j−1)

)

> (M − 1)
(
bm−1 − bp(m)

)
,

where in the last step we reduced M(b j−a j ) to (M−1)(b j−a j ) and then telescoped.
Auxiliary inequality 2. As a second step, we will prove that

∣
∣
∣
∣
∣x (im )

m − y(im )
p(m)

∣
∣− ∣

∣x (im )
m − y(im )

m−1
∣
∣
∣
∣
∣ � R · √2r − 1 ·

√
am − bm−1
M − 1

. (3.40)

To this end, by the reverse triangle inequality we have that

∣
∣
∣
∣
∣x (im )

m − y(im )
p(m)

∣
∣− ∣

∣x (im )
m − y(im )

m−1
∣
∣
∣
∣
∣ �

∣
∣y(im )

m−1 − x (im )
m−1

∣
∣

+∣
∣x (im )

m−1 − y(im )
m−2

∣
∣+ · · · + ∣

∣x (im )
p(m)+1 − y(im )

p(m)

∣
∣ . (3.41)

Note that by the diffusivity constraints of C(main)
r ,N ,R,M we have that

∣
∣y(im )

m−1 − x (im )
m−1

∣
∣+ ∣

∣x (im )
m−1 − y(im )

m−2
∣
∣+ · · · + ∣

∣x (im )
p(m)+1 − y(im )

p(m)

∣
∣

� R ·
( m−2∑

k=p(m)

√
ak+1 − bk +

m−1∑

k=p(m)+1

√
bk − ak

)

.
(3.42)
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By Cauchy-Schwarz on the right hand side of (3.42), (3.37) and the fact that m � r ,
we furthermore have that

( m−2∑

k=p(m)

√
ak+1 − bk +

m−1∑

k=p(m)+1

√
bk − ak

)

�
√
2r − 1

( m−2∑

k=p(m)

(ak+1 − bk)+
m−1∑

k=p(m)+1
(bk − ak)

)1/2

= √2r − 1 ·√bm−1 − bp(m)

�
√
2r − 1 ·

√
am − bm−1
M − 1

.

(3.43)

Combining (3.43) and (3.41) we arrive at (3.40).
Now, we are ready to show approximation (3.35). By (3.36) we have

qam−bm−1
(
x (im )
m − y(im )

m−1
)

qam−bp(m)

(
x (im )
m − y(im )

p(m)

) = e
− |x

(im )
m −y(im )

m−1|2
am−bm−1 + |x

(im )
m −y(im )

p(m)
|2

am−bp(m) ·

(
am − bp(m)

am − bm−1

)

· eO
(

1
am−bm−1+

|x(im )
m −y(im )

m−1|4+|x
(im )
m −y(im )

p(m)
|4

(am−bm−1)3

)

.

(3.44)

Let us look at each term on the right hand side of (3.44), separately. First, we have

e
−

∣
∣x(im )

m −y(im )
m−1

∣
∣2

am−bm−1 +
∣
∣x(im )

m −y(im )
p(m)

∣
∣2

am−bp(m) � e
1

am−bm−1

(∣
∣x(im )

m −y(im )
p(m)

∣
∣2−

∣
∣x(im )

m −y(im )
m−1

∣
∣2

)

= e
1

am−bm−1

(∣
∣x(im )

m −y(im )
p(m)

∣
∣+

∣
∣x(im )

m −y(im )
m−1

∣
∣
)
·
(∣
∣x(im )

m −y(im )
p(m)

∣
∣−

∣
∣x(im )

m −y(im )
m−1

∣
∣
)

.

and by using (3.40) we have

∣
∣x (im )

m − y(im )
p(m)

∣
∣+ ∣

∣x (im )
m − y(im )

m−1
∣
∣ � 2

∣
∣x (im )

m − y(im )
m−1

∣
∣+ R

√
2r − 1

√
am − bm−1
M − 1

� 2R
√
am − bm−1 + R

√
2r − 1

√
am − bm−1
M − 1

= R
√
am − bm−1

(
2+

√
2r − 1

M − 1

)
.

Therefore, by (3.40), again, we get

e
1

am−bm−1

(∣
∣x(im )

m −y(im )
p(m)

∣
∣+

∣
∣x(im )

m −y(im )
m−1

∣
∣
)
·
(∣
∣x(im )

m −y(im )
p(m)

∣
∣−

∣
∣x(im )

m −y(im )
m−1

∣
∣
)

� e
R2

(
2+

√
2r−1
M−1

)√
2r−1
M−1

.
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Similarly, we can get a lower bound of

e
−

∣
∣x(im )

m −y(im )
m−1

∣
∣2

am−bm−1 +
∣
∣x(im )

m −y(im )
p(m)

∣
∣2

am−bp(m) � e
−R2

(
1− 1

M

)(
2+

√
2r−1
M−1

)√
2r−1
M−1

,

since am − bp(m) <
(
1+ 1

M−1
)
(am − bm−1) by (3.37). The second term in (3.44) can

be handled by (3.37) as

1 �
(am − bp(m)

am − bm−1

)
=

(
1+ bm−1 − bp(m)

am − bm−1

)
< 1+ 1

M − 1
M→∞−−−−→ 1 .

For the last term in (3.44) we have that

∣
∣x (im )

m − y(im )
m−1

∣
∣4 + ∣

∣x (im )
m − y(im )

p(m)

∣
∣4

(am − bm−1)3

�
∣
∣x (im )

m − y(im )
m−1

∣
∣4

(am − bm−1)3
+

(
|x (im )

m − y(im )
m−1| + R · √2r − 1 ·

√
(am−bm−1)

M−1
)4

(am − bm−1)3

� 9 R4

(am − bm−1)
+ 8R4(2r − 1)2

(am − bm−1) · (M − 1)2
,

where we used (3.40) along with the inequality (x + y)4 � 8(x4 + y4) for x, y ∈ R.
Therefore,

e

∣
∣x(im )

m −y(im )
m−1

∣
∣4+

∣
∣x(im )

m −y(im )
p(m)

∣
∣4

(am−bm−1)3 � e
9 R4

(am−bm−1)
+ 8R4(2r−1)2

(am−bm−1)·(M−1)2 � e
9 R4
M + 8R4(2r−1)2

M ·(M−1)2 M→∞−−−−→ 1 ,

where we used in the last inequality that am − bm−1 > M(bm−1 − bm−2) � M by
(3.23). ��

3.5 Final step

Now that we have Lemma 3.6 at our disposal, we can prove the main approximation
result of this step. Recall from (3.32) that

H (main)
r ,N ,R,M

=
∑

(I1,...,Ir )∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

UI1
b1

(0, y1)
r∏

i=2
QIi−1;Ii

ai−bi−1( yi−1, xi )U
Ii
bi−ai (xi , yi ) σN (Ii ) .

Define H (rew)
r ,N ,R,M to be the resulting sum after rewiring has been applied to every

term of H (main)
r ,N ,R,M , that is, given a sequence of partitions (I1, . . . , Ir ) ∈ I(2) and
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Fig. 4 Figure3 after rewiring. We use blue lines to represent the new kernels produced by rewiring. The
dashed lines represent remaining free kernels from the rewiring procedure as well as kernels coming from
using the Chapman–Kolmogorov formula for the simple random walk

(�a, �b, �x, �y) ∈ C(main)
r ,N ,R,M , we apply the kernel replacement (3.33) to all partitions

I1, . . . , Ir starting from Ir and moving backward. We remind the reader that we may
denote a partition I = {i, j} �⊔

k �=i, j {k} ∈ I(2) by its non-trivial part {i, j}, see
subsection 2.2.

Proposition 3.7 Fix 0 � r � K. We have that

H (rew)
r ,N ,R,M = eK ·oM (1) H (main)

r ,N ,R,M (3.45)

and

H (rew)
r ,N ,R,M =

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

r∏

k=1
U

βik , jk
N

(
bk − ak, y

(ik )
k − x (ik )

k

) ·
∏

1���h,
� �=ik , jk

qbk−ak (y
(�)
k − x (�)

k )

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
x (im )
m − y(im )

p(m)

) ·
∏

1���h,
� �=im , jm

qam−bm−1
(
x (�)
m − y(�)

m−1
)
.

(3.46)

Proof Equation (3.45) is a consequence of Lemma 3.6 and the fact that r � K , while
expansion (3.46) is a direct consequence of the rewiring procedure we described in
the previous step, see also Figs. 3 and 4. ��

Next, we derive upper and lower bounds for H (rew)
r ,N ,R,M .We beginwith the upper bound.
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Proposition 3.8 We have that

H (rew)
r ,N ,R,M �

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak, yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

)
.

Proof Fix r � 1 and from (3.46) recall that

H (rew)
r ,N ,R,M

=
∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

r∏

k=1
U

βik , jk
N

(
bk − ak, y

(ik )
k − x (ik )

k

)·

∏

1���h,
��=ik , jk

qbk−ak (y
(�)
k − x (�)

k )

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
x (im )
m − y(im )

p(m)

) ·
∏

1���h,
��=im , jm

qam−bm−1
(
x (�)
m − y(�)

m−1
)
.

(3.47)

For the sake of obtaining an upper bound on H (rew)
r ,N ,R,M we can sum (�a, �b, �x, �y) in

(3.47) over Cr ,N , see definition in (3.2), instead of C
(main)
r ,N ,R,M . We start the summation

of the right hand side of (3.47) from the end. Using that for n ∈ N,
∑

z∈Z2 qn(z) = 1
we deduce that

∑

y(�)
r ∈Z2:

1���h, � �=ir , jr

∏

� �=ir , jr
qbr−ar (y(�)

r − x (�)
r ) = 1 .

We leave the sum
∑

br∈[ar ,N ], y(ir )
r ∈Z2 UN

(
br − ar , y

(ir )
r − x (ir )

r
)
intact and move on to

the time interval [br−1, ar ]. We use again that for n ∈ N,
∑

z∈Z2 qn(z) = 1, to deduce
that

∑

x (�)
r ∈Z2:

1���h, � �=ir , jr

∏

� �=ir , jr
qar−br−1(x (�)

r − y(�)
r−1) = 1 .

Again, we leave the sum
∑

ar∈ (br−1,br ], x (ir )
r ∈Z2 q2ar−bp(r)

(
x (ir )
r − y(ir )

p(r)

)
intact. We can

iterate this procedure inductively since due to rewiring all the spatial variables y(�)
r−1,
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� �= ir−1, jr−1 are free, that is, there are no outgoing laces starting off y(�)
r−1, � �=

ir−1, jr−1 at time br−1. The summations we have performed correspond to getting
rid of the dashed lines in Fig. 4. Iterating this procedure inductively then implies the
following upper bound for H (rew)

r ,N ,R,M .

H (rew)
r ,N ,R,M �

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak , yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

)
.

��

In the next propositionwe derive complementary lower bounds for H (rew)
r ,N ,R,M . Given

0 � r � K and a sequence of partitions �I = ({i1, j1}, . . . , {ir , jr }) ∈ I(2) we define
the set C(rew)

r ,N ,R,M ( �I ) to be C(main)
r ,N ,R,M where for every 2 � m � r we replace the

diffusivity constraint
∥
∥xm − ym−1

∥
∥∞ � R

√
am − bm−1 by the constraints

|x (�)
m − y(�)

m−1| � R
√
am − bm−1, � ∈ {1, . . . , h}� {im, jm} and

|x (�′)
m − y(�′)

p(m)| � R

√

1− 1

M

(

1−
√
2K − 1

M − 1

)
√
am − bp(m), �′ ∈ {im, jm} .

This replacement transforms the diffusivity constraints imposed on the jumps of
two walks {im, jm} from their respective positions at time bm−1 to time am , which is
the time they (re)start colliding, to a diffusivity constraint connecting their common
position at time bp(m), which is the last time they collided before time am , to their
common position at time am when they start colliding again.

We have the following Lemma.

Lemma 3.9 Let 0 � r � K and M > 2K. For all �I = ({i1, j1}, . . . , {ir , jr }
) ∈ I(2)

we have that

C(rew)
r ,N ,R,M ( �I ) ⊂ C(main)

r ,N ,R,M .

Proof Fix 0 � r � K , a sequence �I = ({i1, j1}, . . . , {ir , jr }
) ∈ I(2) and

(�a, �b, �x, �y) ∈ C(rew)
r ,N ,M,R( �I ). Moreover, let 2 � m � r . By symmetry it suffices

to prove that

1{
|x (im )
m −y(im )

p(m)
|�R

√
1− 1

M

(
1−

√
2r−1
M−1

)√
am−bp(m)

} � 1{
|x (im )
m −y(im )

m−1|�R
√
am−bm−1

} .
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Amultivariate extension of the Erdős–Taylor theorem

Indeed, by the definition of C(rew)
r ,N ,M,R( �I ) and (3.40) we have that for (�a, �b, �x, �y) ∈

C(rew)
r ,N ,M,R( �I ),

∣
∣
∣ |x (im )

m − y(im )
p(m)| − |x (im )

m − y(im )
m−1|

∣
∣
∣ � R · √2r − 1 ·

√
am − bm−1
M − 1

. (3.48)

Moreover by (3.37) we have that

am − bm−1 > (M − 1)(bm−1 − bp(m))⇒ am − bp(m) > M(bm−1 − bp(m)) .

Therefore,

am − bm−1 = am − bp(m) − (bm−1 − bp(m)) > am − bp(m)

− 1

M
(am − bp(m)) =

(
1− 1

M

)
(am − bp(m)) . (3.49)

Combining inequalities (3.48) and (3.49) we get the result. ��

Proposition 3.10 Let 0 � r � K. For M > 2K we have that

H (rew)
r ,N ,R,M

� (1− e−cR2
)2Kh

∑

�I=
(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,
ai+1−bi>M(bi−bi−1), 1�i�r−1,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak , yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

) · 1{
|yk−xk |�R

√
bk−ak , |xm−yp(m)|�R CK ,M

√
am−bp(m)

},

with CK ,M :=
√
1− 1

M

(

1−
√

2K−1
M−1

)

.

Proof Recall from (3.46) that

H (rew)
r ,N ,R,M =

∑

�I=
(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

(�a,�b,�x,�y)∈C(main)
r ,N ,R,M

×
r∏

k=1
U

βik , jk
N

(
bk − ak, y

(ik )
k − x (ik )

k

) ·
∏

� �=ik , jk
qbk−ak (y

(�)
k − x (�)

k )

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
x (im )
m − y(im )

p(m)

) ·
∏

� �=im , jm

qam−bm−1
(
x (�)
m − y(�)

m−1
)
.
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By Lemma 3.9 we have that

H (rew)
r ,N ,R,M �

∑

�I=
(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

(�a,�b,�x,�y)∈C(rew)
r ,N ,R,M ( �I )

×
r∏

k=1
U

βik , jk
N

(
bk − ak, y

(ik )
k − x (ik )

k

) ·
∏

��=ik , jk
qbk−ak (y

(�)
k − x (�)

k )

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
x (im )
m − y(im )

p(m)

) ·
∏

��=im , jm

qam−bm−1
(
x (�)
m − y(�)

m−1
)
.

(3.50)

The first step in getting a lower bound for H (rew)
r ,N ,R,M is to get rid of the dashed lines,

see Fig. 4. We follow the steps we took in the proof of Proposition 3.8 for the upper
bound. In particular, we start the summation of (3.50) beginning from the end. Using
that for n ∈ N and R ∈ (0,∞)

∑

z∈Z2: |z|�R
√
n

qn(z) = 1−
∑

z∈Z2: |z|>R
√
n

qn(z) � 1− e−cR2
, (3.51)

by (3.13), we get that

∑

y(�)
r ∈Z2:|y(�)

r −x (�)
r |�R

√
br−ar ,

1���h, � �=ir , jr

∏

� �=ir , jr
qbr−ar (y(�)

r − x (�)
r ) � (1− e−cR2

)h .

We leave the sum

∑

br∈[ar ,N ],
y(ir )
r ∈Z2: |y(ir )

r −x (ir )
r |�R

√
br−ar

UN
(
br − ar , y

(ir )
r − x (ir )

r

)

as is and move on to the time interval [br−1, ar ]. We use (3.51) to deduce that

∑

x (�)
r ∈Z2:|x (�)

r −y(�)
r−1|�R

√
ar−br−1,

1���h, � �=ir , jr

∏

� �=ir , jr
qar−br−1(x (�)

r − y(�)
r−1) � (1− e−cR2

)h .

Again, we leave the sum
∑

ar∈ (br−1,br ], x (ir )
r ∈Z2 q2ar−bp(r)

(
x (ir )
r − y(ir )

p(r)

)
intact. We

can continue this procedure since due to rewiring all the spatial variables y(�)
r−1,

� �= ir−1, jr−1 are free, i.e. there are no outgoing laces starting off y(�)
r−1, � �= ir−1, jr−1

123



Amultivariate extension of the Erdős–Taylor theorem

a3 b3a1 b1

a5 b5

a4 b4a2 b2 a6 b6

Fig. 5 Graphical representation of a term of the chaos representation of
∏

1�i< j�h E
[
e

πβi, j
log N L(i, j)N

]
for

h = 3. This diagramcaptures themain contribution,which iswhen all a’s and b’s are distinct. Configurations
where more than one pair of walks collide at a same time n � N have lower order contributions

at time br−1, and there are no diffusivity constraints linking x (ir )
r = x ( jr )

r with
y(ir )
r−1, y

( jr )
r−1 by definition of C(rew)

r ,N ,R,M ( �I ). Iterating this procedure we obtain that

H (rew)
r ,N ,R,M � (1− e−cR2

)2Kh
∑

�I=
(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,
ai+1−bi>M(bi−bi−1), 1�i�r−1,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak , yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

) · 1{
|yk−xk |�R

√
bk−ak , |xm−yp(m)|�R CK ,M

√
am−bp(m)

},

with CK ,M =
√
1− 1

M

(

1−
√

2K−1
M−1

)

. ��

To proceedwith the last steps of our proof it is useful to record two chaos expansions

of
∏

1�i< j�h E
[
e

πβi, j
log N L(i, j)

N

]
. These read as

∏

1�i< j�h

E
[
e

πβi, j
log N L(i, j)

N

]
=

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1�a2�...�ar�br�N ,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak , yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

)
(3.52)

=
∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1�a2�...�ar�br�N

r∏

k=1
U

βik , jk
N

(
bk − ak

)

×
r∏

m=2
σ
im , jm
N q2(am−bp(m))(0). (3.53)
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This follows from (2.6) and (2.7) and by grouping together intervals [a, b] where
one observes collisions of only a single pair of random walks. Firgure 5 presents a
graphical explanation / representation of these chaos expansions.

Proposition 3.11 We have that

lim
K→∞ lim

M→∞ lim
R→∞ lim

N→∞

K∑

r=0
H (rew)
r ,N ,R,M =

∏

1�i< j�h

1

1− βi, j
.

Proof We are going to prove this Proposition via means of the lower and upper bounds
established in Propositions 3.8 and 3.10. By Proposition 3.8 we have that

H (rew)
r ,N ,R,M �

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak, yk − xk

)

×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

)
.

(3.54)

Summing the spatial points on the right hand side of (3.54) we obtain that

H (rew)
r ,N ,R,M �

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N

r∏

k=1
U

βik , jk
N

(
bk − ak

) r∏

m=2
σ
im , jm
N q2(am−bp(m))(0) . (3.55)

Using (3.52) one can deduce that

∑

r�0

H (rew)
r ,N ,R,M �

∏

1�i< j�h

E
[
e

πβi, j
log N L(i, j)

N

]
= (

1+ oN (1)
) ∏

1�i< j�h

1

1− βi, j
.

(3.56)

Next, by Proposition 3.10 we have that

H (rew)
r ,N ,R,M � (1− e−cR2

)2Kh
∑

�I=
(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,
ai+1−bi>M(bi−bi−1), 1�i�r−1,

0:=x1,y1,...,xr ,yr∈Z2

r∏

k=1
U

βik , jk
N

(
bk − ak, yk − xk

) ×
r∏

m=2
σ
im , jm
N · q2am−bp(m)

(
xm − yp(m)

)·

1{
|yk−xk |�R

√
bk−ak , |xm−yp(m)|�R CK ,M

√
am−bp(m)

},

(3.57)
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Lifting the diffusivity conditions imposed on the right-hand side of (3.57) can be done
using arguments already present in Lemma 3.4. More specifically, we use that for
0 � m � N , w ∈ Z

2 and 1 � i < j � h,

∑

n∈[m,N ],
z∈Z2: |z−w|�R

√
n−m

U
βi, j
N

(
n − m, z − w

)

=
∑

n∈[m,N ]
U

βi, j
N

(
n − m

)−
∑

n∈[m,N ],
z∈Z2: |z−w|>R

√
n−m

U
βi, j
N

(
n − m, z − w

)

�
∑

n∈[m,N ]
U

βi, j
N

(
n − m

)− e−κR
∑

n∈[m,N ]
U

βi, j
N

(
n − m

)

�
(
1− e−κR) ∑

n∈[m,N ]
U

βi, j
N

(
n − m

)
,

where in the first inequality we used (3.22) from Lemma 3.4 with a suitable constant
κ(β̄) ∈ (0,∞). Similarly we have that

∑

n∈[m,N ],
z∈Z2:|z−w|�R CK ,M

√
n−m

q2n−m(z − w)

=
∑

n∈[m,N ]
q2(n−m)(0)−

∑

n∈[m,N ],
z∈Z2:|z−w|>R CK ,M

√
n−m

q2n−m(z − w)

�
(
1− e−κ R2 C2

K ,M
) ∑

n∈[m,N ]
q2(n−m)(0)

by tuning the constant κ if needed. Therefore, we finally obtain that

H (rew)
r ,N ,R,M � (1− e−cR2

)2Kh (1− e−κ R)K (1− e−κ R2 C2
K ,M )K×

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,
ai+1−bi>M(bi−bi−1), 1�i�r−1 .

r∏

k=1
U

βik , jk
N

(
bk − ak

) r∏

m=2
σ
im , jm
N · q2(am−bp(m))(0) .

(3.58)

The last restriction we need to lift is the restriction ai+1−bi > M(bi −bi−1), 1 �
i � r − 1. This can be done via the arguments used in Proposition 3.5, so we do not
repeat it here, but only note that there exists a constant C̃K = C̃K (β̄, h) ∈ (0,∞)

such that for all 0 � r � K , the corresponding sum to the right hand side of (3.58),
but with its temporal range of summation be such that there exists 1 � i � r − 1 :
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ai+1 − bi � M(bi − bi−1), satisfies the bound
∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N ,
∃ 1�i�r−1: ai+1−bi�M(bi−bi−1)

r∏

k=1
U

βik , jk
N

(
bk − ak

) r∏

m=2
σ
im , jm
N · q2(am−bp(m))(0)

� C̃K · εN ,M ,

where εN ,M is such that limN→∞ εN ,M = 0 for any fixed M ∈ (0,∞). Therefore,
the resulting lower bound on H (rew)

r ,N ,R,M will be

H (rew)
r ,N ,R,M � (1− e−cR2

)2Kh (1− e−κ R)K (1− e−κ R2 C2
K ,M )K

×
( ∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N

r∏

k=1
U

βik , jk
N

(
bk − ak

)

×
r∏

m=2
σ
im , jm
N · q2(am−bp(m))(0)− C̃K · εN ,M

)

.

(3.59)

Note that

∏

1�i< j�h

E
[
e

πβi, j
log N L(i, j)

N

]
=

K∑

r=0

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N

r∏

k=1
U

βik , jk
N

(
bk − ak

)

×
r∏

m=2
σ
im , jm
N · q2(am−bp(m))(0)+ A(1)

N + A(2)
N ,K ,

(3.60)

where A(1)
N denotes the part of the chaos expansion of

∏
1�i< j�h E

[
e

πβi, j
log N L(i, j)

N

]
where

there exists a time n � N at which multiple pairs collide. Moreover, A(2)
N ,K denotes

the corresponding sum on the right hand side of (3.60) but from r = K + 1 to∞, that
is

A(2)
N ,K =

∑

r>K

∑

(
{i1, j1},...,{ir , jr }

)
∈I(2)

∑

0:=a1�b1<a2�···<ar�br�N

r∏

k=1
U

βik , jk
N

(
bk − ak

)

×
r∏

m=2
σ
im , jm
N q2(am−bp(m))(0) .
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Next, we will give bounds for A(1)
N and A(2)

N ,K . Beginning with A(2)
N ,K , let ρK :=⌊

K
2(h2)

⌋

. Since we are summing over r > K , there has to be a pair 1 � i < j � h

which has recorded more than ρK collisions. We recall from (2.8) that Uβ
N (·) admits

the renewal representation

Uβ
N (n) =

∑

k�0

(σN (β) RN )k P
(
τ

(N )

k = n
)
.

There are
(h
2

)
choices for the pair with more than ρK collisions. We can also use the

bound (2.9) to bound the contribution of the rest
(h
2

)− 1 pairs in A(2)
N ,K . Therefore, we

can write

A(2)
N ,K �

(h
2

)

(1− β̄ ′)(
h
2)

∑

k>ρK

(σN (β̄)RN )k P(τ
(N )

k � N ) �
(h
2

)

(1− β̄ ′)(
h
2)

∑

k>ρK

(β̄ ′)k K→∞−−−−→ 0 ,

uniformly in N , where β̄ ′ ∈ (β̄, 1).
Let us nowproceedwith estimating A(1)

N and showing that it has negligible contribu-

tion. A(1)
N consists of configurations where m � 2 pairs {i1, j1}, {i2, j2}, . . . , {im, jm}

collide at a same time n � N . Referring to Fig. 5, a case ofm = 2 could correspond to
a situation when, for example, a3 = a4. Let n be the first time a multiple pair-collision
takes place. We can choose the pairs {i1, j1}, {i2, j2}, . . . , {im, jm}, which collide at
that time, in

(h
2

)·((h2
)−1) · · · ((h2

)−m+1)/m! < (h
2

)m
ways.We can use bound (2.9) to

bound the contribution to A(1)
N from the rest of the

(h
2

)−m pairs by c(1−β̄ ′)−(
h
2)+m and

the contribution from collisions involving pairs {i1, j1}, {i2, j2}, . . . , {im, jm} beyond
time n by c(1− β̄ ′)−m. More precisely, we obtain that

A(1)
N �

(h2)∑

m=2

(h
2

)m

(1− β̄ ′)(
h
2)

∑

n�0, x1,...,xm ∈Z2

m∏

i=1
U β̄

N (n, xi ) �
(h2)∑

m=2

(h
2

)m

(1− β̄ ′)(
h
2)

∑

n�0

(
U β̄

N

)m
(n) .

Schematically (making reference again to Fig. 5), we have summed out everything
except the ‘wiggle’ lines which span [0, n] and which correspond to the pairs that
simultaneously collide at time n and then summed out the spatial dependence of the
latters. We will next use Proposition 1.5 of [3], which provides the estimate

P(τ
(N )

k = n) � C k q2n(0)

RN
� C ′ k

n log N
,

where the second inequality follows by the local limit theorem. Therefore, from this,
(2.8) and (2.10) we get that

(
U β̄

N

)m
(n) =

( ∑

k �0

(σN (β̄)RN )k P(τ
(N )

k = n)
)m

� (C ′)m

nm (log N )m

( ∑

k�0

k · (β̄ ′)k
)m

.
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for some β̄ ′ ∈ (β̄, 1). Since β̄ ′ < 1 we have that
∑

k�0 k · (β̄ ′)k <∞ and we deduce

that there exists a constant C = C(β̄ ′) such that
(
U β̄

N

)m
(n) � Cm

nm (log N )m
. Since

∑
n�1

1
nm < ∞, for m � 2, there exists a (different) constant C = C(β̄ ′) ∈ (0,∞)

such that

∑

n�0

(
U β̄

N

)m
(n) � C

(log N )m
N→∞−−−−→ 0 .

The two bounds above, in combination with (3.59) and (3.60), allow us to write:

K∑

r=0
H (rew)
r ,N ,R,M � (1− e−cR2

)2Kh (1− e−κ R)K (1− e−κ R2 C2
K ,M )K

×
( ∏

1�i< j�h

E
[
e

πβi, j
log N L(i, j)

N

]
− K · C̃K · εN ,M − oN (1)− oK (1)

)

,

which together with upper bound (3.56) entail that

lim
K→∞ lim

M→∞ lim
R→∞ lim

N→∞

K∑

r=0
H (rew)
r ,N ,R,M =

∏

1�i< j�h

1

1− βi, j
.

��
We are now ready to put all pieces together and prove the main result of the paper,

Theorem 1.1.

Proof of Theorem 1.1 The joint convergence statement (1.3) will follow from the con-
vergence of the joint Laplace transform (1.2) for |βi, j | < 1 and general results
on the relation between convergence of Laplace transforms and distributional con-
vergence. Let us sketch this argument: Since

(
π

log N L
(i, j)
N

)
1�i< j�N are non-negative

random variables, it suffices by the Cramer-Wold device (see [13], Corollary 4.5) to
establish the distributional convergence of any nonnegative linear combinations, i.e.
Lβ
N :=

∑
i< j

βi, jπ

log N L(i, j)
N with βi, j � 0. The fact that Lβ

N has exponential moments both
positive (as follows from our estimates) and negative (as is clear from the nonnegativ-
ity of Lβ

N ) implies that the sequence Lβ
N is tight. Tightness together with exponential

moments imply that subsequential limits of the Laplace transforms exist, with the
convergence being uniform in the vicinity of 0 in the complex plane. This leads to
the analyticity of the limiting Laplace transforms in the neighbourhood of 0. We will
establish that the Laplace transform (1.2) with positive parameters converge to that of
the corresponding linear combination of independent exponential distributions with
parameter 1, which is also analytic in the vicinity of zero (see right-hand side of (1.2)).
Since the limiting Laplace transforms agree on an interval with non-empty interior (in
this case determined by the conditions βi, j ∈ [0, 1)), by analyticity they have to agree
in the whole domain of analyticity, which includes an open disc containing 0.
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Therefore, it only remains to establish the convergence of the joint Laplace trans-
form (1.2) for βi, j ∈ [0, 1). Let us do so relying on the results we have proven so
far.

Let ε > 0. There exists large K = Kε ∈ N such that uniformly in N ∈ N

∣
∣
∣M

β
N ,h −

K∑

r=0
Hr ,N

∣
∣
∣ � ε, (3.61)

by Proposition 3.2. We have

∣
∣
∣

K∑

r=0
Hr ,N −

K∑

r=0
H (rew)
r ,N ,R,M

∣
∣
∣ �

( K∑

r=0
(H (superdiff)

r ,N ,R + H (multi)
r ,N )

)

+
∣
∣
∣

K∑

r=0
(H (diff)

r ,N ,R − H (main)
r ,N ,R,M )

∣
∣
∣+

∣
∣
∣

K∑

r=0
(H (main)

r ,N ,R,M − H (rew)
r ,N ,R,M )

∣
∣
∣ .

By Propositions 3.1, 3.3 we have that

lim
R→∞ lim

N→∞

( K∑

r=0
(H (superdiff)

r ,N ,R + H (multi)
r ,N )

)

� lim
R→∞ sup

N∈N

K∑

r=0
H (superdiff)
r ,N ,R

+ lim
N→∞

K∑

r=0
H (multi)
r ,N = 0 .

Moreover, by Proposition 3.5 we have that

lim
R→∞ lim

M→∞ lim
N→∞

∣
∣
∣

K∑

r=0
H (diff)
r ,N ,R −

K∑

r=0
H (main)
r ,N ,R,M

∣
∣
∣ = 0 .

Last, by Proposition 3.7 we have that

lim
R→∞ lim

M→∞ lim
N→∞

∣
∣
∣

K∑

r=0
H (main)
r ,N ,R,M −

K∑

r=0
H (rew)
r ,N ,R,M

∣
∣
∣ = 0,

therefore

lim
R→∞ lim

M→∞ lim
N→∞

∣
∣
∣

K∑

r=0
Hr ,N −

K∑

r=0
H (rew)
r ,N ,R,M

∣
∣
∣ = 0 . (3.62)

By Proposition 3.11 we have that

lim
K→∞ lim

R→∞ lim
M→∞ lim

N→∞

K∑

r=0
H (rew)
r ,N ,R,M =

∏

1�i< j�h

1

1− βi, j
, (3.63)
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Therefore, by (3.61), (3.62) and (3.63) we obtain that

lim
N→∞Mβ

N ,h =
∏

1�i< j�h

1

1− βi, j
.

��
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