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Abstract
We study the mixing time of a random walker who moves inside a dynamical random
cluster model on the d-dimensional torus of side-length n. In this model, edges switch
at rate μ between open and closed, following a Glauber dynamics for the random
cluster model with parameters p, q. At the same time, the walker jumps at rate 1 as
a simple random walk on the torus, but is only allowed to traverse open edges. We
show that for small enough p the mixing time of the random walker is of order n2/μ.
In our proof we construct a non-Markovian coupling through a multi-scale analysis
of the environment, which we believe could be more widely applicable.

Keywords Mixing time · Random walk · Time inhomogeneous Markov chains ·
Random cluster

Mathematics Subject Classification Primary 60K35; Secondary 60K37

1 Introduction

We study the mixing time of a random walk on a dynamical random cluster model in
T
d
n , the d-dimensional torus of side-length n. In this model, each edge of Td

n can be
in either of two states: open or closed. At time 0, we take the state of the edges to be
distributed according to the random cluster measure with parameters p ∈ (0, 1) and
q > 0. That is, for any subset of edges ω ⊂ E(Td

n), with E(Td
n) denoting the set of
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edges of the torus, the probability that the set of open edges at time 0 is equal to ω is

υ(ω) = 1

Z
p|ω|(1 − p)|E(Td

n )\ω|qκ(ω), (1.1)

where κ(ω) is the number of connected components obtained in the graph with vertex
set Td

n and edge set ω, and Z = Z(d, p, q) > 0 is just a normalizing constant so that
the above is a probability measure. Instead of representing the state of the edges by
the set ω of open edges, we will often represent it by an element η ∈ {0, 1}E(Td

n ), with
η(e) = 0 meaning that the edge e ∈ E(Td

n) is closed and η(e) = 1 meaning that e is
open. Thus, given η, we have ω = {

e ∈ E(Td
n) : η(e) = 1

}
.

From time 0, edges change their state following a continuous-time Glauber dynam-
ics. Thus, given a parameter μ > 0, each edge e ∈ E(Td

n) has a Poisson clock of rate
μ, and when the clock of e rings, the state of e is resampled (open or closed) according
to the conditional probability obtained from υ in (1.1) conditioned on the states of all
the other edges. This resampling can be easily described: if the clock of e rings at time
t , then the probability that e becomes open at time t is equal to

p, if e is not a cut-edge at time t−,
p

p+(1−p)q , if e is a cut-edge at time t−,
(1.2)

where an edge e is called a cut-edge if modifying the state of e (while keeping the state
of the other edges unaltered) causes a change in the number of connected components
in the configuration. Note that whether an edge e is a cut-edge for a configuration η

is, in fact, independent of η(e). We let ηt ∈ {0, 1}E(Td
n ) denote the configuration that

gives the state of the edges at time t .
On top of this dynamic environment we place a random walker which starts from

the origin of Td
n and has a Poisson clock of rate 1. When the clock of the walker

rings, the walker chooses an edge uniformly at random from the set of edges that are
adjacent to its current location, regardless of their states. If the chosen edge is open
at that time, then the walker traverses the edge, otherwise the walker stays put. We
denote by Xt ∈ T

d
n the position of the walker at time t , and let

{Mt }t≥0 = {Xt , ηt }t≥0,

denote the full system composed of the walker {Xt }t≥0 and the environment {ηt }t≥0.
We note that {Mt }t≥0 and {ηt }t≥0 are Markov chains, while {Xt }t≥0 is not.

One can check (for example, by reversibility) that if π denotes the uniform proba-
bility measure on Td

n then π × υ is the unique stationary distribution of {Mt }t .
Let Tmix denote the mixing time of the full system, starting from the worst-case

initial state. In other words, given x ∈ T
d
n and ξ ∈ {0, 1}E(Td

n ), let T x,ξ
mix be the

smallest t such that, starting from M0 = (x, ξ), the total variation distance between
the distribution ofMt andπ×υ is smaller than a given constant,which for concreteness
we take to be 1/4. Then Tmix = maxx,ξ T

x,ξ
mix .

Our main result establishes that the mixing time is of order n2/μ for all small
enough p. We remark that p and q are considered to be constants independent of
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n, while μ may depend on n; in particular, a natural case in the context of dynamic
networks is that μ → 0 as n → ∞.

Theorem 1.1 Given any q > 0 and any dimension d ≥ 1, there exists a positive
p0 > 0 so that for all p ∈ (0, p0) there exists C1 = C1(d, p, q) > 0 for which

Tmix ≤ C1
n2

μ
, for all μ = μ(n) > 0 and all n ≥ 1.

Previous works were restricted to the case q = 1, which is known as dynamical
percolation. This is a much simpler case: both expressions in (1.2) are equal, so edges
update independently of one another. This allowed the construction of very clean
regeneration arguments to bound the mixing time and other quantities, especially
in the subcritical regime (see related works below in Sect. 1.2). To the best of our
knowledge, our work is the first to analyze the mixing time when edge updates are not
independent.

The regeneration arguments developed for dynamical percolation cannot be applied
when q �= 1. We go around this by constructing a delicate non-Markovian coupling
using a multi-scale analysis of the environment. We believe this to be a novel ideal
and regard it as one of our main contributions.

In a nutshell, the idea is to develop a coupling between two randomwalkers moving
on dynamical random clusters. To do this, we employ a multi-scale analysis of the
environment alone, so as to control the evolution of the state of the edges. We then
use this multi-scale analysis to identify good and bad regions of the environment.
Depending on whether the walkers are passing through a space-time region that is
good or bad, we employ a different coupling strategy for the walkers. It is crucial that
the multi-scale analysis does not reveal all the information regarding the environment
so that, conditioned on which regions are good and which regions are bad, there is
still enough randomness in the environment for the coupling argument to be carried
out. This leads to a quite delicate coupling, which is non-Markovian. In particular, in
order to decide which coupling strategy to apply for the walkers at a time t , we will
use future information about the enviroment (i.e., information about the state of the
edges after time t). The reason is that, if the walkers are passing through a space-time
region that is approaching (in time) a bad region of the environment, we will already
need to start employing a coupling that prepares the walkers before they enter into the
bad regions.

We believe that the idea of using a multi-scale analysis to develop a coupling
argument can be more widely applicable to analyze the mixing time of random walks
on particle systems. Our proof actually relies very little on specific properties of the
random cluster dynamics, and can be readily adapted to other settings. We decided
to carry out the proof for the random cluster dynamics for the sake of clarity, since
the general conditions under which this argument can be made to work are rather
cumbersome to state.

We will give a more thorough description of the main ideas of the proof in Sect. 1.4,
since first, in Sect. 1.3, we will need to introduce an auxiliary process.
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1.1 Lower bounds on themixing time

We also derive matching lower bounds on the mixing time. We start by stating a
straightforward generalization of the lower bound from [11].

We consider a larger class of models, which we refer to as continuous-time random
walks on general dynamical percolation, where the word general is to mean that the
percolation process may not be independent. Let {Xt , ηt }t≥0 be a continuous-time
Markov chain where the walker Xt jumps at rate 1 and can only traverse open edges
ofTd

n , and the environment {ηt }t is a Markov chain on {0, 1}E(Td
n ) where edges refresh

their state at rate μ independently of the walker. As usual μ may depend on n. Let π
be the uniform distribution onTd

n and let ν be the stationary distribution of theMarkov
chain {ηt }t .

We recall some fundamental definitions. The spectral gap γ of a reversible Markov
chain is defined as

γ = inf
f

E( f , f )

Var( f )
,

where the infimum is over all functions f from the state space to R with Var( f ) �= 0,
the variance Var( f ) being with respect to the stationary distribution of the chain, and
E( f , f ) is the so-called Dirichlet form. The relaxation time of the said Markov chain
is defined as

Trel = γ −1.

Given a time interval I ⊂ R+, we say that an edge is I -open, if it is open at some
time during I . Then, for any vertex x ∈ T

d
n and any time interval I ⊂ R+, we let

Cx (I ) denote the connected component of I -open edges from x . Finally, given a subset
S ⊂ T

d
n , let diam(S) = maxx,y∈S ‖x − y‖1 be the diameter of S, where ‖x − y‖1 is

the L1 distance (or, equivalently, the length of the shortest path) between x and y in
T
d
n . We require the following two assumptions from the process {Xt , ηt }t≥0:

π × ν is the stationary distribution of {Xt , ηt }t≥0 , (1.3)

and

∃δ > 0 and C2 > 0 such that for any x ∈ T
d
n , any μ = μ(n) > 0

and any n ≥ 1 we have Eν

(
D2
x,δ

)
≤ C2, (1.4)

where Dx,δ = diam (Cx ([0, δ])) and Eν denotes the expectation with respect to the
stationary measure of the environment. The assumption in (1.3) just says that the
stationary measure of the walker is uniform, while (1.4) gives that the environment is
strictly subcritical.
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Theorem 1.2 Let {Xt , ηt }t≥0 be a random walk in a general dynamical percolation
satisfying (1.3) and (1.4) above. Then, there exist a constant C3 > 0 depending only
on d such that

Trel ≥ C3δn2

C2
.

A natural setting is when the environment starts from its stationary distribution.
For this, let υt stand for the distribution of (Xt , ηt ) where the walker starts from the
origin and the environment starts from stationarity (that is, η0 is distributed as ν).
Then, ‖υt − π × ν‖TV is the total variation distance between υt and the stationary
measure of {Xt , ηt }t .
Theorem 1.3 Let {Xt , ηt }t≥0 be a random walk in a general dynamical percolation
satisfying (1.3) and (1.4) above. Then, there exists a constant C4 > 0 depending only
on d such that, for any ε > 0,

if t ≤ C4
C2

ε
d+2
d δn2 then ‖υt − π × ν‖TV ≥ 1 − ε.

Moreover, there exists a constant C5 > 0 depending only on d such that, for any t ≥ δ,

Eυt

(
‖Xt − X0‖21

)
≤ C5C2

t

δ
,

where Eυt stands for the expectation with respect to υt .

The proofs of Theorems 1.2 and 1.3 are identical to the ones for random walk on
dynamical percolation from [11]. For the sake of completeness, we add the proofs in
Sect. 8.

We want to apply the above theorems to derive lower bounds on the mixing time
of a random walk in dynamical random cluster. It is clear that (1.3) holds in this case.
We will show in Sect. 9 that (1.4) also holds, obtaining the corollary below. For any
q ≥ 1, let pqc be the critical probability for the appearance of an infinite cluster in the
random cluster model on Z

d .

Corollary 1.4 If {Xt , ηt }t≥0 is a random walker in the dynamic random cluster model,
then for any q ≥ 1 and any p < pqc , there exists a constant c = c(d, q, p) > 0
such that the relaxation time of the full system and the mixing time starting from a
stationary environment is at least cn2/μ. If q < 1, then for all small enough p the
same conclusion holds.

The proof of the lower bound ismuch simpler than that of the upper bound, allowing
us to derive it in thewhole subcritical regimewhenq ≥ 1. In fact,whenq ≥ 1, the proof
follows by using a sprinkling lemma to compare two random cluster configurations
with densities p < p′ (Lemma 9.1), and the exponential decay of cluster sizes in the
subcritical regime. When q < 1, exponential decay of cluster sizes is only known for
small enough p. In fact, for q < 1, even the existence of a single critical value pqc
separating a subcritical phase and a supercritical phase, has not yet been proved.
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We expect the upper bound of order n2/μ to hold in the whole subcritical regime
as well, however our proof technique requires the percolation process to be a small
perturbation of subcritical independent percolation, in a sense that we better explain
in Remark 1.5, after introducing the �-process.

1.2 Related works

We will restrict our discussion to works dealing with the mixing time of random
walks on dynamic environments, as otherwise there is simply a plethora of works.
We also remark that, if the environment is allowed to evolve in an arbitrary fashion
(for example, by taking any sequence of graphs on a fixed vertex set), then several
problems may arise. For example, there may not be a stationary distribution for the
walker. Moreover, even if there is a stationary distribution, the distribution of the
walker may not converge to stationarity, or the total variation distance to stationarity
may not be monotone in time.

Random walk on dynamical percolation on T
d
n . This model is equivalent to the

model we described restricted to q = 1. This special case is already quite challenging
but some results have been obtained recently. First note that, when q = 1, the two
probabilities in (1.2) become equal, andwhen an edge updates, it does so independently
of the other edges, becoming open with probability p or closed with probability 1 −
p. Though in this case edges evolve independently of one another, there are strong
dependences between the location of the walker and the state of the edges (especially
if μ → 0 as n → ∞, since edges update very slowly in comparison to the rate of
jump of the walker).

The randomwalkondynamical percolationmodelwas introducedbyPeres, Stauffer
and Steif [11], where it is shown that, in the whole subcritical regime,1 the mixing
time is of order n2/μ. We remark that in [11] both upper and lower bounds of order
n2/μ were derived for Tmix. Recall that n2 is the order of the mixing time of a simple
random walk on the static torus (that is, where all edges are open at all times). So, in
a subcritical dynamical percolation, the walker is delayed by a factor of 1/μ, which
is the expected time that a single edge takes to refresh.

Later, Peres, Sousi and Steif [10] analyzed the supercritical regime and showed that,

for p large enough, the mixing time is at most (log n)a
(
n2 + 1

μ

)
for some constant

a > 0. Their upper bound is not believed to be tight: one expects that, in the whole
supercritical regime, the mixing time is of order n2 + 1

μ
. This remains an interesting

open problem. Their proof makes strong use of isoperimetric properties of the infinite
cluster of supercritical percolation, which are only known for q = 1. With regard to
the critical regime, the only known result is that the mixing time is of order at most
n2
μ
, which is the mixing time in the subcritical regime [7]. It is not inconceivable that

the mixing time in the critical case is in fact of smaller order than n2
μ
.

Random walk on dynamical percolation on other graphs. Sousi and Thomas [14]
studied the case where the torus is replaced by the complete graph. This is a simpler

1 That is, for any p < pc with pc = pc(d) being the critical probability for the existence of an infinite
cluster in percolation in Zd
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case due to the lack of an underlying geometry, but for which a more detailed analysis
can be carried out. They established the order of the mixing time in that case, and also
the occurrence of a cut-off phenomenon.We remark that if the walker is at some vertex
v and we know that an edge incident to v is updating to open, but we refrain from
observing which of the edges incident to v is updating, then the other endpoint of this
edge is uniform among all vertices (but v). So, by traversing this edge (call it e), after
one additional step, the walker can find itself in a location that is essentially uniform,
so very close to stationarity. Though suggestive, this is not enough to establish the
mixing time, as one still needs to control that the walker “forgets” that e is now open
(that is, the walker may be close to stationarity, but the full system is not). Still, this
illustrates the kind of simplification that the lack of an underlying geometry brings.

The last work we mention for the random walk on dynamical percolation model
is a recent result by Hermon and Sousi [7]. They developed a comparison principle
and showed that, for any graph G, the so-called spectral profile mixing time for the
random walk on dynamical percolation on G is at most 1

μ
times the spectral profile

mixing time of simple random walk on (the static graph) G.
In all the above results, it was crucial that when q = 1 edges update independently

of one another. The main objective of our work is to develop a technique that can
go beyond the dynamical percolation case and which can deal with environments
whose edge updates may depend on one another, including the case of unbounded
dependences such as in the dynamical random cluster.

Other models.We end this section by mentioning two lines of work. In the first one,
Avena et al. [1, 2] studied a different dynamic on the environment, where instead of
dynamical percolation one has a dynamic configuration model. This model has some
intuitive similarities with the dynamical percolation on the complete graph, in the
sense that it also lacks an underlying geometry. They studied the mixing time and the
occurrence of a cut-off phenomenon in this setting, but restricted to a random walker
that is non-backtracking. This helps the walker to move away from its current location,
strongly reducing dependences between the walker and the environment.

Finally, the second line of work we mention is that of [12, 13]. They considered the
case of a discrete-time random walk on a graph with a fixed set of vertices, but which
evolves over time by means of an arbitrary sequence of graphs on that vertex set. The
goal of their work is very different to ours; for example, they want to understand which
conditions on the sequence of graphs one can impose to guarantee that the mixing time
is polynomial. They also derive results for the hitting time and cover time. We refer to
[12, 13] and references therein for a list of known results on dynamic graphs that go
beyond the mixing time. We also refer the reader to [4] for results on a model similar
to random walks on dynamical percolation on the complete graph.

1.3 The �-process: retaining some randomness

Before giving the ideas of our proof, we need to describe a different representation of
the full system, which is inspired by [11]. Recall that each edge has a Poisson clock
of rate μ associated to it, which gives the times at which the edge is updated. To
each update of an edge, we can decide whether the edge becomes open or closed by
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sampling an independent random variableU with a uniform distribution in (0, 1), and
then making the edge open if and only if the edge is not a cut-edge and U < p or the
edge is a cut-edge and U <

p
p+(1−p)q . Now, let

pmin = min

{
p,

p

p + (1 − p)q

}
and pmax = max

{
p,

p

p + (1 − p)q

}
;

thus, pmin = p
p+(1−p)q if q > 1 and pmin = p if q < 1. Note that if U turns out to

be in the interval (0, pmin) ∪ (pmax, 1) the outcome of the update (i.e., whether the
edge becomes open or closed) is determined regardless of whether or not the edge is a
cut-edge. In other words, the update is oblivious to the current configuration, and we
will refer to those updates as �-updates. We then let

p� = pmin + 1 − pmax ∈ (0, 1)

be the probability that a given update is a �-update.
Wenowdefine the update of an edge e in two stages. First,we sample an independent

random variable U�, which is uniform in (0, 1), so that if U� < p�, then the update
is a �-update, otherwise it is not a �-update. Next, we use the random variable U
to determine whether e updates to open or closed. More precisely, in the case of a
�-update, we make e open if U <

pmin
p�

, otherwise e becomes closed. In the case of
a non-�-update, we need to inspect the current configuration to see whether e is a
cut-edge or not. In particular, we need to perform what we call an exploration of e,
which means that we perform a local search from the endpoints of e that traverses
only open edges in order to determine what are the open clusters of the endpoints of
e. Hence, each update of e will be represented by a tuple (s,U�,U ), where s > 0 is
the time at which the update occurs,U� ∈ (0, 1) is the variable used to decide whether
the update is a �-update, andU ∈ (0, 1) is the random variable governing whether the
edge is to be updated open or closed.

We use this to introduce another Markov process which we denote by {M�
t }t≥0 ={

Xt , η
�
t

}
t≥0, and which we refer to as the �-process. This process will retain more

randomness than {Mt }t≥0 and its state space will be

� =
{
(v, η�) ∈ T

d
n × {0, 1, �}E(Td

n ) : η�(e) ∈ {0, 1} for each edge e adjacent to v
}

.

So an edge will be allowed to be in an additional state, called �, which means that in
its last update the edge underwent a �-update. However, we do not allow that edges
adjacent to the walker are in state �.

The �-process evolves as follows. If the Poisson clock of an edge e rings, we look
at the variable U� associated with this update and determine whether the update is a
�-update. If the update is a �-update and if e is not currently adjacent to the walker,
then we make the state of e equal to �. If e is adjacent to the walker, then we look
at the variable U associated with this update and determine whether e is open or
closed. Finally, if the update is not a �-update, then we perform an exploration of e
as mentioned above. The difference is that, in such an exploration, we may run into
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edges that are in state �. For each such edge, we immediately sample whether that edge
is open or closed by using the random variable U associated with its last update. We
proceed in this way until the exploration ends and we have fully determined the cluster
of each endpoint of e. At this moment, we know whether or not e is a cut-edge, and
we can use the random variable U associated to the update of e to determine whether
e is to be made open or closed. There is still one final case to be described: when it is
the clock of the walker that rings. Suppose this happens and the walker jumps from a
vertex v to a vertex w. Then, if there are edges adjacent to w at state � we sample the
state of such edges (using the random variables U associated to their last update) and
switch them to open or closed, appropriately.

Note that, conditioned on the position of the walker and on the state 0, 1 or � of
each edge, we gain no information concerning whether the edges in state � are open
or closed. In particular, each such edge is open with probability pmin

p�
(which is the

probability that the random variable U associated to their last update is at most pmin
p�

).
Therefore, we do not need to keep track of the variablesU related to the last �-update
of each edge, since we can sample U whenever needed independently of the whole
trajectory of the process. The �-process is thus a Markov process.

Remark 1.5 When q = 1, we have pmin = pmax, and so p� = 1: all updates are
�-updates, as in this case the random cluster model reduces to dynamical percolation.
If q �= 1, then as p → 0 we have that pmax− pmin → 0 and so p� → 1. Therefore, for
any fixed q and all small enough p, the dynamic random cluster model can be viewed
as a small perturbation of dynamical percolation. We also obtain that edges of state
� are open with probability pmin

p�
< pc, so they form a subcritical percolation process

as well. Those are the properties that play an essential role in the constructions of the
multi-scale analysis and the coupling used to establish the upper bound on the mixing
time (Theorem 1.1).

1.4 Proof overview

We will only give an overview of the upper bound, which is our main result and by far
the most involved proof. We start recalling the proof in [11] for the subcritical regime
when q = 1. There they also define the �-process (which they denote by M̃t ). Recall
that, when q = 1, we have p� = 1, so all updates are �-updates. With this, they define
a stopping time τ0 as the first time at which

all edges adjacent to the walker are closed, and all remaining edges are in state �.

(1.5)

Then, one can define a sequence of times τ1, τ2, . . . so that τi is the first time after
τi−1 + C/μ, for some fixed constant C > 0, at which the event in (1.5) happens.
These are regeneration times in the sense that the evolution of the full system from τi
does not depend on what happened before τi . Once the full system is at a regeneration
time τi , with positive probability the following sequence of events happen within time
τi + C/μ:
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(i) an edge e adjacent to the walker opens
(ii) when the walker jumps to the other endpoint of e, all the adjacent edges (which

are in state �) are sampled closed
(iii) e remains open for some time of order 1/μ
(iv) e closes before any of the other edges adjacent to e open, thereby locking the

walker in one of e’s endpoints, and
(v) the edges adjacent to the other endpoint of e (i.e., opposite to the location of the

walker) refresh before the edges adjacent to the walker refresh.

When these events occur, the walker does nothing more than a jump to a uniformly
random neighbor, and immediately gets back to a regeneration time (so τi+1 = τi +
C/μ); such a regeneration time is then called a simple random walk regeneration
since, at the end, what the walker did was just one step of a simple random walk in
T
d
n .
The proof in [11] then goes by showing that the τi+1−τi are of order 1

μ
. Therefore,

after time n2
μ
, the walker underwent an order of n2 regeneration times, a positive

fraction of which being simple random walk regeneration. So it is possible to couple
the full system with another copy of the full system so that, whenever the walker
does a simple random walk regeneration, we employ one of the standard couplings of
simple random walks on the torus. On the other hand, if the regeneration time is not a
simple random walk regeneration, we couple the motion of the two walkers from one
regeneration time to the next identically, so that the distance between the walkers does
not change. Since an order of n2 steps is necessary to couple two simple randomwalks
on T

d
n , we get that performing an order of n2 simple random walk regenerations is

enough to couple the two processes, which translates to a mixing time of order n2/μ.
If we try to mimic the steps above for the case q �= 1, we immediately run into the

issue that the event (1.5) now occurs very rarely. In fact, since non-�-updates occur
with positive probability, we will typically have a positive density of non-�-edges.
Therefore, it will take an exponential amount of time to reach a regeneration time as
in (1.5), rendering this strategy useless.

Wewill devise a different strategy.Wewill, as before, construct a coupling between
two copies of the full-system, where we see the edges “from the point of view of the
walker” in the sense that whenever the edge Xt + e updates at time t , where Xt is
the position of the walker in the first copy, then in the second copy we will do the
same update to the edge Xt + e, where Xt is the location of the walker in the second
copy. Note that to establish the mixing time of the full system we need to couple the
environments and the walkers. For simplicity, we concentrate our discussion here in
the coupling of the walkers (which is the most delicate bit), and assume for now that
somehow we managed to couple the two environments: that is, the two copies are
coupled modulo a translation of the walkers. Note that, from this moment, if we were
to employ the identity coupling (that is, the second copy mimics all the edge updates
and jumps of the walker from the first copy) we would get that the environments will
remain coupled (from the point of view of the walkers) but the distance between the
walkers will not change, thereby not allowing the walkers to couple.

Our idea is to observe “a bit” the environment and, whenever the environment
looks “favorable enough”, we attempt to do a coupling that could bring the walkers
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closer together, which will be a standard coupling of simple random walks. We will
refer to such moments as simple random walk moments, as an allusion to the simple
random walk regenerations described above, but with the fundamental difference that
they will not be regeneration times. On the other hand, when the environment is not
favorable enough, then doing a simple random walk moment is a bit too risky, so
instead we resort to identity coupling as a means to keeping the distance between the
walkers unchanged and not spoiling the work done during the favorable regions of the
environments.

But what does it mean for the environment to look favorable enough? In short terms,
it will mean that the event (1.5) occurs locally. That is, at such times, all edges adjacent
to the walkers will be closed and all edges in a small region around the walkers will
be � (for example, all edges inside a ball of radius 3 around the walkers, excluding the
edges adjacent to thewalkers).At such a time,with positive probability, the sequence of
events described above for the simple randomwalk regeneration occurs, and therefore
we could attemp to perform one of the standard couplings of simple random walks.
However, there are two important caveats.

The first caveat is that if we succeed in doing a simple random walk moment with a
coupling of simple random walks, then the distance between the walkers will change.
This means that the translation that maps the location of one walker to the location of
the second walker will change, and this map is what we use to match the edges of the
first copy to the edges of the second copy, when we view the edges from the point of
view of the walkers. As a consequence, the environments will immediately decouple.
Of course, if we only had �-edges (besides the ones adjacent to the walkers, as in the
case q = 1), then the environments would not decouple since despite the change in the
translation map, we would still match �-edges in the first copy to �-edges in the second
copy, so we can easily maintain the environments coupled. But, since q �= 1 implies a
density of non-� edges, the environments will necessarily decouple. Moreover, if we
decide to just wait for the environments to recouple completely, this would take a time
of order log n

μ
, which is just too long: it will lead to an upper bound on the mixing time

of n2 log n
μ

. So we will not recouple the environments completely, but will work with
partially coupled environments.

The second caveat is that a simple random walk moment occurs with positive
probability, so it is also possible that it turns out that a simple random walk moment
does not take place. Then, what could happen in this case? If the environments were
completely coupled, then we are guaranteed that we can perform identity coupling
and keep the distance between the walkers unchanged. But we have just seen that the
environments will typically not be fully coupled. Yet, if we knew that the environments
are coupled in a neighborhood around the walkers and that the walkers will not exit
this neighborhood, then identity coupling is still doable. That will be our strategy, but
to implement it we will require a more delicate definition of what a favorable enough
environment means.

Wewill use amulti-scale analysis to control the environment. This will reveal future
information regarding the environment; that is, we will observe some information
about the environment from time 0 to some time t , and then decide how to couple
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the walkers from time 0. Therefore, this construction will lead to a non-Markovian
coupling.

A good picture to have in mind is that the environment is a process in space-time,
where some regions are classified as good and others as bad. We observe these regions
from time 0 to time t , and then start observing the walkers which are paths in space-
time that start from time 0. Whenever we see that the walkers are passing through
a good part of the environment, where good will also imply that the walkers will
not move outside some neighborhood around their current locations, we will try to
do a simple random walk moment. If successful, the distance between the walkers
may change and the environments may decouple, but we will be able to recouple the
environments within a neighborhood around the walkers using again that the walkers
are passing through a good region in space-time. If, instead, the simple random walk
moment is not successful, then the walkers may move more than just one step of a
simple random walk, but again using the fact that the space-time region is good we
will obtain that the walkers will not move too far away, in particular they will remain
within a region where we know the environments were coupled. This will translate to
a successful application of identity coupling.

On the other hand, if we see that the walkers are approaching a bad region of
the environment, then we will want to do identity coupling but we will need to start
preparing ourselves beforehand. The problem is that such a bad region could be of an
arbitrarily large scale, and the larger its size is, the earlier we need to start preparing
for it. So when we see that in space-time the path of the walker is getting dangerously
near some bad region Q, we stop doing simple random walk moments even if in
a smaller scale around the walkers the environment looks good. By switching off
the simple random walk moments, we only apply identity coupling until the walkers
reach Q or are again far enough from any bad region. We can show that such identity
couplings will succeed and, since the translation map from one walker to the next will
not change during this period, it will give enough time for the environments to couple
in a region around the walkers that is as large as needed to contain Q. Then, with the
environments properly coupled, if the walkers do enter Q, they can move as wildly
as the environment there allows because we can perform identity coupling throughout
Q. So the walkers survive the traversal of Q without changing their distance.

The above strategy is quite delicate, since in order to define which coupling (simple
randomwalkmoment or identity coupling) to usewe need to observewhich regions are
good or bad from time 0 to time t . In particular, we need to compute the probability
that a simple random walk moment is successful in a region Q given any possible
assignment of good and bad to space-time regions so that Q is good. But such events
will depend on one another. Thus, wewill carefully split the definition of a good region
into two parts, one that has a larger degree of independence, and another that is much
more likely than the probability that a simple random walk moment is successful. In
particular, we will need to estimate how such probabilities depend on p so that the
coupling argument can be carried out. It becomes evenmore delicate to do this in more
generality, which motivates our choice for carrying out the proof only for the random
cluster dynamics.

Then one can imagine that the proof ends by showing that n2 instances of a simple
random walk moment are enough to guarantee that we can couple the walkers. This
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is partially true. The fact is that, as mentioned above, we need to observe future
information to carry out this coupling strategy. But in order to establish that the mixing
time is at most t , we need to show that with a large enough probability the two copies
of the full system are coupled at time t without revealing any information that goes
beyond time t . So our strategy to finalize the proof is to choose an appropriate time
t ′ ∈ (0, t), reveal the information up to time t and do the coupling described above up
to time t ′, showing that within t ′ we have carried out an order of n2 simple random
walk moments, and that we coupled the walkers at time t ′ (the environments may, and
typically will, be uncoupled except for a small region around the walkers). The whole
analysis will be split into three phases, and the above will be carried out in the first
two phases. We will be able to show that these first two phase succeed with positive
probability.

Next, the goal is to try to do identity coupling from time t ′ to t in a similar manner as
we were doing when approaching a bad region. In this second phase, identity coupling
can only fail due to information that we have not observed because we are limited to
observe the environment up to time t . We will show that, with positive probability,
identity coupling will indeed succeed from t ′ to t , leading to a coupling of the full
system at time t . This is the content of the third phase. If any of the three phases fail,
then we just restart from scratch. We only need to repeat the phases a constant number
of times to guarantee that the whole coupling succeeds with probability at least 3/4.

1.5 Organization of the paper

In Sect. 2 we will introduce the multi-scale analysis that will allow to control the good
regions of the environment. Then in Sect. 3 we will give a more thorough overview
of the three phases of the proof of the upper bound, which will better explain the
constructions from the tessellation of Sect. 2. Then in Sects. 4, 5 and 6 we will give
the three phases of the coupling, with the second phase in Sect. 5 being the most
delicate part where the non-Markovian coupling is developed. Then in Sect. 7 we
put all phases together to complete the proof of the upper bound (Theorem 1.1). In
Sect. 8we establish the general lower bounds fromTheorems 1.2 and 1.3, butwhich are
essentially the sameproofs as in [11]; this section is added for the sake of completeness.
Finally, in Sect. 9 we apply these theorems to derive the lower bounds on the mixing
time and relaxation time of random walks on the dynamical random cluster model
(Corollary 1.4).

2 Multi-scale setup

We start defining a multi-scale tessellation of Td
n , which will consist of partitioning

T
d
n into boxes and defining the event that boxes are good or bad. Those events will be

then used to define the favorable parts of the environment.
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2.1 Tessellation

Let

� = p− 1
3d , (2.1)

and m be a sufficiently large integer. For each scale k ≥ 1 we tessellate Td
n into cubes

of length �k where

�1 = � and �k+1 = mk2�k . (2.2)

The cubes will be indexed by integer vectors i ∈ Z
d , and denoted Scorek (i) ⊂ T

d
n with

Scorek (i) = i�k + [0, �k)d .

We will consider a tiling of Td
n with a hierarchy as each cube of scale k is contained

inside a unique cube of scale k + 1. For simplicity we will assume �k divides n for all
k we will consider.2 Moreover for any subset V of the vertices of Td

n , we denote by

E(V ) = {(v1, v2) ∈ E(Td
n) : v1, v2 ∈ V }

the set of all edges incident only to vertices in V .
Now we define a multi-scale tessellation of time. At scale 1, we tessellate R into

intervals of length t1 =
√

�
μ

and then, for higher scales, we define

tk+1 = mk2tk, k ≥ 1.

We index the time intervals by τ ∈ Z and denote them by T core
k (τ ), where

T core
k (τ ) = [τ tk, (τ + 1)tk) .

We will use the tessellations of space and time at scale k to define a space-time
k-box later in (2.5). Before that, for any i ∈ Z

d , k ≥ 1, and τ ∈ Z, we define the core
of the space-time k-box by

Rcore
k (i, τ ) = Scorek (i) × T core

k (τ ).

For any subset of A ⊂ Z
d , we let ∂A denote its inner boundary. Then, in space-time,

we define the spatial boundary of Rcore
k (i, τ ) by

∂sR
core
k (i, τ ) = ∂Scorek (i) × T core

k (τ ). (2.3)

2 If that were not the case, one could consider for each k some cubes to have length between �k and 2�k to
fully tessellate the torus.
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Fig. 1 On the left a space-time box Rk+1(i, τ ) represented by a blue square, its core highlighted in yellow,
its partition into cores of scale k + 1 represented by solid black lines, and its partition into cores of scale
k in dashed lines. The horizontal axis represents space and the vertical axis represents time. On the right a
space-time box of scale 1 (highlighted in blue), and space-time cores of level 1 in dashed lines

For the time dimension, we define two time boundaries, the boundary ∂+
t correspond-

ing to the largest unit of time in the box and the boundary ∂−
t corresponding to the

smallest unit of time in the box:

∂+
t Rcore

k (i, τ ) = Scorek (i) × sup
{
T core
k (τ )

} = Scorek (i) × {(τ + 1)tk} , and

∂−
t Rcore

k (i, τ ) = Scorek (i) × inf
{
T core
k (τ )

} = Scorek (i) × {τ tk} . (2.4)

For k ≥ 2, each box Rcore
k (i, τ ) will be the central part of a larger box

Rk(i, τ ) =
⋃

( j,τ ′)∈{−1,0,+1}d+1

Rcore
k (i + j, τ + τ ′) = Sk(i) × Tk(τ ), (2.5)

where we let

Sk(i) =
⋃

j∈{−1,0,+1}d
Scorek (i + j), and Tk(τ ) =

⋃

τ ′∈{−1,0,+1}
T core
k (τ + τ ′).

(2.6)

In words Rk(i, τ ) is composed of a cube in space of side length 3�k and a time interval
of length 3tk , and it has Rcore

k (i, τ ) as its central part (see Fig. 1).
For scale k = 1, wewill define boxes differently with respect to the time dimension.

For this, let

t1 = log2 �

μ
, (2.7)

and set for each τ ∈ Z

T1(τ ) = [
τ t1 − t1, (τ + 1)t1

]
.
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With S1 defined as in (2.6) we can define R1(i, τ ) = S1(i)×T1(τ ). We then define the
space and time boundaries of Rk(i, τ ) for each k, i, τ analogously to (2.3) and (2.4).

Finally we denote by Sinn1 (i) the inner part of S1(i) which is obtained by removing
all the vertices within distance γ

6 log2 � from the boundary of S1(i) (γ is a constant
that will be clarified later in the definition); in symbols,

Sinn1 (i) =
{
v ∈ S1(i) : ‖v − w‖1 >

γ

6
log2 � for all w ∈ ∂S1(i)

}
. (2.8)

2.2 Good boxes at scale 1

Definition 2.1 We say that an event A is restricted to a region R ⊂ V (Td
n) and a

time interval [s0, s1] if A is measurable with respect to the σ -algebra generated by the
updates of the edges from E(R) from time s0 to s1, together with the random variables
U ,U ′ associated to such updates.

Denote with Cx (t) the connected component of open edges containing vertex x ∈ V
at time t . Given a time interval [s, s′], we say that an edge is [s, s′]-open if there is at
least one time during [s, s′] at which this edge is open. Then, we denote with Cx (s, s′)
the connected component of [s, s′]-open edges that contains x . Ifwe denote I = [s, s′],
then we employ the shorter notation Cx (I ). Below we split the time interval of a box
into two sets of sub-intervals, and then introduce the definition of good boxes.

Definition 2.2 Recall that t1 = log2 �
μ

. We define two other tessellations of disjoint

time intervals. The first one has length log2 �
μ

:

T 1( j) = [ j t1, ( j + 1)t1), for j ∈ Z+.

Moreover, we fix a constant γ = γ (p, q, d) > 0 such that pmin
p�

+ γ < pc, where

pc is the critical probability for independent bond percolation on Zd , and introduce a
tessellation of time of length γ

μ
:

T 1( j) =
[
j γ
μ
, ( j + 1) γ

μ

)
, for j ∈ Z+.

We assume throughout this paper that t1 divides t1 and that γ /μ divides t1, so that

T 1 is a finer tessellation than T 1, which in turn is a finer tessellation than T core
1 .

Remark 2.3 Note that the larger p is (that is, the closer p is to pc) the smaller we need
to take γ . However, as we will need to take p small enough in several places in the
proof, we will set γ first (for example, it is enough to take γ = 1

100 ). Then we make
p small enough so that the condition on γ is satisfied.

The definition of good boxeswill be done in steps. Firstwe define some fundamental
events that we will require from good boxes.
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(G′
1) Given a box R1(i, τ ), let G′

1(i, τ ) be the event that, for any e ∈ E(S1(i)), there
are no non-� updates on e during T1(τ ) ∩ [0,∞).

(G′
2) For each j ∈ Z+ and each spatial box S1(i), define G′

2(i, j) the event that, for any
e ∈ E(S1(i)), during T 1( j) edge e never gets a �-update to become open.

(G′
3) For each j ∈ Z+ and each spatial box S1(i), let G′

3(i, j) be the event that, for
each e ∈ E(Score1 (i)), the number of �-updates on edge e during T 1( j) is at least
1
2 p� log2 � (for the values of � and p we will consider this will always be at least
1).

(G′
4) For any j ∈ Z+ take the unique τ such that T 1( j) ⊂ T core

1 (τ ). For any site x on
the torus, if we regard all edges closed at time τ t1 and we only consider �-updates

disregarding all non-�-updates, then let G′
4(x, j) be the event that

∣∣∣Cx
(
T 1( j)

)∣∣∣ <

log2(�).

Now for a box R1(i, τ ), define

j(τ ) the value j such that min T 1( j) = τ t1 − t1; (2.9)

in other words, it is the value such that T 1( j(τ )) starts at the initial time of R1(i, τ ).
Note that both T 1( j(τ )) and T 1( j(τ + 1)) are contained in T1(τ ).

The event that a box R1(i, τ ) is good will be composed of four events, which we
denote by G1(i, τ ), G2(i, τ ), G3(i, τ ) and G4(i, τ ). The first event regards only non-�
updates and is simply

G1(i, τ ) = G′
1(i, τ ).

The second event regards the time intervals T 1( j(τ )) and T 1( j(τ +1)), and is defined
as

G2(i, τ ) = G′
2(i, j(τ )) ∩ G′

2(i, j(τ+1))
⋂

i ′ : Score1 (i ′)⊂S1(i)

G′
3(i

′, j(τ )) ∩ G′
3(i

′, j(τ+1)).

The next two events are confined to the time interval T core
1 (τ ) \ T1(τ + 1):

G3(i, τ ) =
⋂

i ′ : Score1 (i ′)⊂S1(i)

j : T 1( j)⊂(T core
1 (τ )\T1(τ+1))

G′
3(i

′, j)

and

G4(i, τ ) =
⋂

x∈Sinn1 (i)

j : T j

1(τ )⊂(T core
1 (τ )\T1(τ+1))

G′
4(x, j).

For convenience, we write

G12(i, τ ) = G1(i, τ ) ∩ G2(i, τ ) and G34(i, τ ) = G3(i, τ ) ∩ G4(i, τ )
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Lemma 2.4 The family of events {G1(i, τ )}(i,τ ), {G2(i, τ )}(i,τ ) and {G34(i, τ )}(i,τ ) are
independent of one another.

Proof The eventsG1(·, ·) depend only on non-� updates, so it is independent ofG2(·, ·),
G3(·, ·) and G4(·, ·), which only regard �-updates. Then, note that G2(·, ·) are events
about �-updates during

⋃
τ T 1( j(τ )), while G3(·, ·) and G4(·, ·) regard �-updates dur-

ing
⋃

τ T
core
1 (τ )\T1(τ + 1). Since these two time intervals are disjoint, independence

is obtained from standard properties of Poisson processes. ��
Lemma 2.5 Let R1(i, τ ) be any box of scale 1. There exist constants c, c′ > 0 so that
for all small enough p we obtain

P
(
Gc
12(i, τ )

) ≤ c�d+ 1
2 pmax.

and

P
(
Gc
34(i, τ )

) ≤ exp
(
−c′ log2 �

)
.

Proof We start with event G34(i, τ ). For a given edge, an update that is not � occurs at
rate (1− p�)μ, a �-update occurs at rate p�μ, and a �-update that opens an edge occurs
at rate p�

pmin
p�

μ = pminμ. Moreover, there are at most 2d 3d�d edges in E(S1(i)).
For G3, note that for a given edge e ∈ S1(i) and a given j , the number of �-updates

on e during T 1( j) is a Poisson random variable of mean p� log2 �. Therefore, using a
standard Chernoff bound for Poisson random variables and the union bound over the
edges in S1(i) and over the values of j , we obtain a constant c1 > 0 such that

P
(
Gc
3(i, τ )

) ≤2d3d�d
(t1 − t1)μ

log2 �
exp

(
−c1 p� log

2 �
)

.

Note that as p decreases to 0 we have that p� increases to 1 and � increases to ∞. So
for all small enough p we obtain

P(Gc
3(i, τ )) ≤ exp

(
−c2 log

2 �
)

,

for someconstant c2.RegardingG4(i, τ ), for any j ≥ 0with T 1( j) ⊂ T core
1 (τ )\T1(τ+

1) and any edge e, note that the probability that e is open at the beginning of the interval

T 1( j), given that we only consider �-updates and consider that all edges are closed
at τ t1, is at most pmin

p�
, since this is the probability that the last �-update of e (if there

was any) made e open. Thus, using that 1− exp (−p�γ ) is the probability that e has a

�-update during T
j

1, we obtain that the probability that e is T
j

1-open under the above
assumptions is at most

pmin

p�

+ 1 − exp (−p�γ ) ≤ pmin

p�

+ p�γ < pc.
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In other words, the set of T
j

1-open edges (under the above assumptions) forms a
subcritical percolation cluster. Therefore, using the exponential decay of cluster size
for subcritical percolation, together with the union bound over all sites and values of
j , we obtain a constant c′′ such that

P(Gc
4(i, τ )) ≤ �d

t1μ

γ
exp

(
−c3 log

2 �
)

.

We note that c3 increases as p decreases. So the bound on P
(
Gc
34(i, τ )

)
follows by

taking p small enough.
Now we turn to G12(i, τ ). From the above considerations we obtain

P(Gc
12(i, τ )) ≤ 1 − exp

(
−2d3d�d

(
(1 − p�)μ

(
t1 + t1

) + pmin log
2 �

))

+ 2d3d�d 2 exp
(
−c1 p� log

2 �
)

,

where the term 1 − exp(·) comes from G′
1 and G′

2, while the last term comes from G′
3

as in the case of G3 above. Using that t1 + t1 ≤ 2t1 and that e−x ≥ 1− x for all x ∈ R,
we obtain

P(Gc
12(i, τ )) ≤ 2d3d�d

(
(1 − p�)2

√
� + pmin log

2 � + 2 exp
(
−c1 p� log

2 �
))

≤ 4d3d�d+ 1
2 (1 − p� + pmin)

= 4d3d�d+ 1
2 (1 − p� + pmin) = 4d3d�d+ 1

2 pmax,

where we use that
√

� is the term that dominates inside the parenthesis as p is made
small enough (hence, � is made large enough). So we can take p small enough so that
pmin log2 � + 2 exp

(−c1 p� log2 �
) ≤ 2pmin log2 � ≤ 2pmin

√
�. ��

We need one more step to define good boxes of scale 1. Using a standard result for
percolation with bounded dependences [8], we will replace G34(i, τ ) by a collection
of i.i.d. Bernoulli random variables.

Lemma 2.6 There exists a constant C6 = C6(d) > 0 such that letting
{
Ĝ34(i, τ )

}
(i,τ )

be a collection of i.i.d. Bernoulli random variables of parameter 1−exp
(−C6 log2 �

)
,

Then for any p small enough we obtain that {G34(i, τ )}(i,τ ) stochastically dominates{
Ĝ34(i, τ )

}
(i,τ )

.

Proof First note that if we fix i , then G34(i, τ ) forms a collection of independent
random variables as τ varies. So G34(i, τ ) depends only on events G34(i ′, τ ) such that
S1(i) ∩ S1(i ′) �= ∅. Note that this is true even for the events G′

4 since for x ∈ Sinn1 (i),
the event that the component of x is of length log2 � is measurable with respect to
the edges in S1(i). Given i , the number of i ′ such that S1(i) ∩ S1(i ′) �= ∅ is strictly
smaller than� = 5d . Then, from Lemma 2.5 we obtain that by taking p small enough

the marginal probability w = P
(
Gc
34(i, τ )

)
can be made smaller than (�−1)�−1

�� , and
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so we can apply [8, Theorem 1.3] to deduce that the family G34(·, ·) stochastically
dominates a set of i.i.d. Bernoulli random variables with parameter

ρ =
(
1 − w1/�

(� − 1)1−1/�

)(
1 − (w(� − 1))1/�

)

≥ 1 − w1/�

(� − 1)1−1/� − (w(� − 1))1/�

= 1 − w1/�
(

�

(� − 1)1−1/�

)
.

ApplyingLemma2.5 for the valueofw completes theproof sincew1/�
(

�
(�−1)1−1/�

)
≤

exp(−C6 log2 �) for some constant C6 > 0. ��
Now we are ready to define good boxes at scale 1.

Definition 2.7 (Good boxes of scale 1) Let i ∈ Z
d and τ ≥ 0. A box R1(i, τ ) is said

to be good if the following event happens

G(i, τ ) = G12(i, τ ) ∩ Ĝ34(i, τ ).

For convenience, we assume that for τ < 0 then G(i, τ ) holds for all i ∈ Z
d . We also

couple
{
Ĝ34(i, τ )

}
(i,τ )

with {G34(i, τ )}(i,τ ) so that,

for each (i, τ ), whenever Ĝ34(i, τ ) holds, so does G34(i, τ ). (2.10)

The following lemma bounds the probability that a box is bad, and follows directly
from the previous lemmas.

Lemma 2.8 Let R1(i, τ ) be any box of scale 1. There exists a constant C7 > 0 so that
for all small enough p we obtain

P
(
Gc(i, τ )

) ≤ C7�
d+ 1

2 pmax.

Proof This follows from Lemmas 2.5 and 2.6 ��
Remark 2.9 Note that the event {R1(i, τ ) is good} is restricted to the cube S1(i) and
the interval T1(τ ). In fact, that is why in G′

4 we assume that all edges are closed at time
τ t1, the initial time of the core T core

1 (τ ); note that the fact that all edges are closed
at time τ t1 is implied by G2, but by explicitly adding the assumption in G′

4 we make
G2(i, τ ) and G4(i, τ ) independent of each other. Note also that the decision of whether
a box is good is completely independent of the walker, it only depends on the updates
of the dynamical random cluster process.

Recall that Xt denotes the position of the random walker at time t . In the lemma
below, we will show that if the walker happens to be inside a good box, then it cannot
move very quickly. This will allow us to have a better control on where the walker can
be.
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Lemma 2.10 Let t ≥ 0 be any given time and suppose (Xt , t) ∈ Rcore
1 (i, τ ), where

R1(i, τ ) is a good box. Then,

sup
s≥t

s∈T1(τ )

‖Xt − Xs‖1 ≤ |CXt (t)| + � (τ + 1)t1 − t

γ /μ
� log2 �,

In particular, if τ > 0 then

sup
s≥t

s∈T1(τ )

‖Xt − Xs‖1 ≤ log2 � + � (τ + 1)t1 − t

γ /μ
� log2 � ≤ log2 � +

√
�

γ
log2 � ≤ �

10
,

where the last inequality holds for all p small enough (thus, � large enough) and where
‖x − y‖1 denotes the L1 distance in the torus between the positions x, y ∈ T

d
n; in

particular, ‖x − y‖1 does not depend on whether edges are open or closed.

Proof This is a direct consequence of the event G′
4 from the definition of good boxes,

and the fact that good boxes do not have non-�-updates. There is just one caveat. The
event G′

4 is not enforced in time intervals T 1( j) where j = j(τ ) for some τ ; recall the
definition of j(τ ) from (2.9). So for example,G4(i, τ ) does not include the eventG′

4( j)
for j such that T 1( j) = T1(τ ) ∩ T1(τ + 1), which is the only time interval of the type
T 1(·) inside T1(τ ). However, for such a j , we know that the connected components
inside T 1( j − 1) are of size at most log2 �, and G2(i, τ ) implies that during T 1( j) no
edge of S1(i) gets an update to open. Therefore, the size of the connected components
can only decrease during T 1( j) and the result follows. ��

2.3 Good boxes at larger scales

In this section we define the concept of good and bad boxes of scale larger than 1, but
first we define a slightly relaxed version of intersection of boxes.

Definition 2.11 Since boxes are definedby semi-open intervals,wewill consider boxes
that are barely non-intersecting as intersecting. That is, we consider two boxes Rk(i, τ )

and Rk(i ′, τ ′) as non-intersecting if and only if

inf
( j,s)∈Rk (i,τ )

( j ′,s′)∈Rk (i ′,τ ′)

‖( j, s) − ( j ′, s′)‖1 ≥ 2.

Definition 2.12 A k-box Rk(i, τ ) with k ≥ 2 is said to be bad if it contains at least
two non-intersecting bad boxes of scale k − 1. Otherwise, Rk(i, τ ) is called good.

Remark 2.13 The event {Rk(i, τ ) is bad} is strictly restricted to the cube Sk(i) and the
time interval Tk(τ ).Moreover, by translation invariance, for any pair (i, τ ), (i ′, τ ′) and
any scale k we have P(Rk(i, τ ) is bad) = P(Rk(i ′, τ ′) is bad). Therefore if Rk(i, τ )

and Rk(i ′, τ ′) are two non-intersecting boxes then

P(Rk(i, τ ) and Rk(i
′, τ ′) are bad) = P(Rk(i, τ ) is bad)2.
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Definition 2.14 Define ρk as the probability that a k-box Rk(i, τ ) is bad, that is,

ρk = P (Rk(i, τ ) is bad) .

As noted in Remark 2.13, this probability does not depend on (i, τ ).

Recall that m is the variable that appears in the definition of �k from (2.2).

Lemma 2.15 For any m > 0, by setting p small enough we obtain

ρk ≤ ρ2k−2

1

Proof We prove the lemma in a slightly stronger version: we prove that we can set
values ck , satisfying ck ≥ 1

2 for all k, so that

ρk ≤ ρ
ck2k−1

1 .

We prove this by induction. For k = 1 the statement is trivially satisfied by setting
c1 = 1. Assume the statement is true up to k. Now, by the definition of bad box we
have

ρk+1 ≤
((

3�k+1

�k

)d 3tk+1

tk

)2

ρ2
k

= 32d+2(mk2)2d+2ρ2
k

≤ 32d+2(mk2)2d+2
(
ρ
ck2k−1

1

)2

= 32d+2(mk2)2d+2ρ
(ck−ck+1)2k

1 ρ
ck+12k

1 .

Setting ck+1 = ck − 1
10k2

gives that

32d+2(mk2)2d+2ρ
(ck−ck+1)2k

1 = 32d+2(mk2)2d+2ρ

2k

10k2

1 ≤ 1,

for all k ≥ 1, provided ρ1 is small enough with respect to m. Given m, ρ1 can
be made small enough by setting p small enough, as in Lemma 2.8. Notice that
ck > c1 − ∑∞

i=1
1

10i2
≥ 1

2 , which proves the lemma. ��

2.4 Enlargement of boxes

As we discussed in the proof overview, whenever the walkers are in a favorable region
of the environment, we will try to use a simple random walk coupling to bring the
walkers together. However, when the walkers are in an unfavorable region of the
environment, which essentially means that the walkers are approaching a bad box
(at some scale), then we will have to refrain from doing this simple random walk
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coupling, and will just do a naïve identity coupling in order to let the environments
couple around the walkers before they can reach the bad box. Here we will define two
types of enlargements of boxes so that when the walker enters the enlargement of a
bad box we will need to stop doing the simple random walk coupling.

Definition 2.16 (1-enlargement) The 1-enlargement of a box Rk(i, τ ) of scale k, is
the set of boxes

Renl1
k (i, τ ) =

⋃

( j,β)∈{−3,−2,...,3}d+1

Rk(i + j, τ + β).

We also denote

Senl1k (i) =
⋃

j∈{−3,−2,...,3}d
Sk(i + j), and T enl1

k (τ ) =
⋃

β∈{−3,−2,...,3}
Tk(τ + β).

Note that Renl1
k (i, τ ) is a parallelogram of spatial length 9�k and time length 9tk for

d ≥ 2 and 7t1 + t1 for d = 1.

Remark 2.17 The 1-enlargement is a (d + 1)-dimensional parallelogram centered in
Rk(i, τ ) defined to obtain the following property. Let Rk(i, τ ) be a bad box, whose
whole 1-enlargement Renl1

k (i, τ ) is contained inside a good box of scale k + 1. Then,
we know that the only boxes of scale k inside the (k+1)-box that can be bad are those
intersecting Rk(i, τ ). Let I be the set of tuples (i ′, τ ′) such that Rk(i, τ )∩Rk(i ′, τ ′) �=
∅. Note that Rk(i ′, τ ′) ⊂ Renl1

k (i, τ ) for all (i ′, τ ′) ∈ I . Moreover, the property that
we get is that

⋃
(i ′,τ ′)∈I Rcore

k (i ′, τ ′) does not exhaust Renl1
k (i, τ ) in the sense that

⋃
(i ′,τ ′)∈I Rcore

k (i ′, τ ′) is separated from the outside of Renl1
k (i, τ ) by at least one layer

of cores. We define this layer of cores as

R∂enl1
k (i, τ ) = Renl1

k (i, τ ) \
⎛

⎝
⋃

(i ′,τ ′)∈I
Rcore
k (i ′, τ ′)

⎞

⎠ .

Definition 2.18 (2-enlargement) The 2-enlargement of a box Rk(i, τ ) of scale k is the
set of boxes

Renl2
k (i, τ ) =

⋃

j∈{−20,−19,...,20}d ,
β∈{−18,−17,...,3}

Rk(i + j, τ + β),

and we also denote

Senl2k (i) =
⋃

j∈{−20,−19,...,20}d
Sk(i + j), T enl2

k (τ ) =
⋃

β∈{−18,−17,...,3}
Tk(τ + β).
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Fig. 2 In black a box Rk (i, τ ), with its 1-enlargement in blue and its 2-enlargement in purple. The figure
is not to scale and illustrates the case k ≥ 2; recall that the time intervals are defined differently at scale 1

Note that the 2-enlargement is a larger (d+1)-dimensional parallelogram centered
in Rk(i, τ ) so that sup

{
T enl1
k (τ )

} = sup
{
T enl2
k (τ )

}
; See Fig. 2.

We will require a different type of boundary for the second enlargement.

Definition 2.19 (2-enlargement boundary) We define ∂enl2s Renl2
k (i, τ ), the 2-

enlargement boundary of Renl2
k (i, τ ), as the set of space-time points (x, s) ∈

Renl2
k (i, τ ) such that (x, s) ∈ Rcore

k (i ′, τ ′) for some (i ′, τ ′) with Rk(i ′, τ ′) ⊂
Renl2
k (i, τ ) and Rk(i ′, τ ′) ∩ ∂sRenl2

k (i, τ ) �= ∅.

2.5 Feasible paths

In this subsection we introduce the concept of feasible paths. For any graph G =
(V , E),wedenote the neighbors of a vertexv ∈ V byNG(v) = {w ∈ V : (v,w) ∈ E}.
A path P : R+ → V on a graph G = (V , E) is a càdlàg function of time such that
for any s ∈ R

+, if we take s′ to be the smallest value that is larger than s and such
that P(s′) �= P(s) then P(s′) ∈ NG(P(s)). Note that a path, as defined above, does
not consider whether edges are open or closed and is thus allowed to jump across
closed edges. The same is true in the definition below. Recall the definition of the time

intervals T
j

1 from Definition 2.2 and the inner part Sinn1 (i) of box i from (2.8).

Definition 2.20 (Feasible path) A path P is said to be feasible if for any times s, s′

with s, s′ ∈ T
j

1(τ ) ⊂ T core
1 (τ ) for some j and τ > 0, and such that P(s) ∈ Sinn1 (i)

for some i ∈ Z
d for which R1(i, τ ) is a good box, then

‖P(s′) − P(s)‖1 < log2 �.

Intuitively, a feasible path can move at most log2 � during any interval T
j

1 in which
it is inside good boxes. Even though the definition of feasible paths does not consider
whether edges are open or closed, this is aligned with the fact that in good boxes the
clusters are of size at most log2 �.
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Wewill refer to a path that leaves the box Rk(i, τ ) from the time boundary as a path
P such that (P(s), s) ∈ Rcore

k (i, τ ) for some s ≥ 0 and if s′ > s is the smallest value
such that (P(s′), s′) /∈ Rk(i, τ ) then P(s′) ∈ Sk(i). In other words, it is a path that
exits Rk(i, τ ) through ∂+

t Rk(i, τ ). In the following two lemmas we will prove that a
feasible path always leaves good boxes from the time boundary. Recall the definition
of Cx (I ), the connected component of x during a time interval I , from the paragraph
preceding Definition 2.2.

We define the spatial core of a box as follows:

Rs-core
k (i, τ ) = Scorek (i) × Tk(τ ). (2.11)

Lemma 2.21 For all p small enough (hence, � large enough) the following holds. Let
(i, τ ) be such that R1(i, τ ) is a good box. LetP be a feasible path such that (P(s), s) ∈
Rs-core
1 (i, τ ) for some s. Assume that either s ≥ t1 or |CP(s)(s)| ≤ √

� log2 �. Then, P
leaves R1(i, τ ) from the time boundary and

sup
s′∈[s,max T1(τ )]

‖P(s) − P(s′)‖1 ≤ √
� log3 �.

Proof For any (v, s) ∈ Rs-core
1 (i, τ ) and any (v′, s′) ∈ ∂sR1(i, τ ), ‖v − v′‖1 ≥ � as

well as |s′ − s| ≤ 3t1. Recall that T1(τ ) is split into intervals T
j

1(τ ) of length γ
μ
.

Assume first that s ≥ t1. Then the subinterval T
j
1(τ ) containing s consists only of

positive times; hence, CP(s)(s) has cardinality at most log2 �. From the definition of
feasible paths we obtain

sup
s′∈[s,max T1(τ )]

‖P(s) − P(s′)‖1 ≤ 3t1μ

γ
log2 �.

For all small enough p we have 3t1μ
γ

log2 � = 3
√

�
γ

log2 � ≤ � log3 �, recalling that γ

is set before we take p small enough as in Remark 2.3.

If s ∈ [0, t1) then s ∈ T
1
1(0) ⊂ T1(0) and we use that during T 1

1 (0) no edge in
S1(i) opens. Therefore,

sup
s′∈[s,max T1(τ )]

‖P(s) − P(s′)‖1 ≤ |CP(s)(s)| + 3t1μ

γ
log2 � ≤ √

� log3 �.

��
The next lemma is the analogue of Lemma 2.21 for higher scales.

Lemma 2.22 For all m large enough and all p small enough with respect to m, the
following holds. Let k ≥ 2 and let (i, τ ) be such that Rk(i, τ ) is a good box. Let P
be a feasible path such that (P(s), s) ∈ Rs-core

k (i, τ ) for some s. Assume that either
s ≥ t1 or |CP(s)(s)| ≤ √

� log2 �. Then P leaves Rk(i, τ ) from the time boundary.
Moreover, while the path is inside the box, from time s up to time (τ + 2)tk , the path
must be within distance �k/9 from P(s).
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Proof For any (v, s) ∈ Rs-core
k (i, τ ) and any (v′, s′) ∈ ∂sRk(i, τ ), ‖v − v′‖1 ≥ �k as

well as |s′ − s| ≤ 3tk . We do a proof by induction on k. The case k = 1 is a direct
consequence of Lemma 2.21. We will actually assume a slightly stronger induction
hypothesis. Take c1 = 1

100 , c2 = 1
10 and, for j ≥ 2, set c j+1 = c j + 11

mj2
. We take

m large enough so that c j ≤ 1
9 for all j ≥ 1. Now, for a scale k, assume that if

P(s) ∈ Rs-core
k (i, τ ) for some (i, τ ) and some s as in the statement of the lemma, then

sups′∈[s,(τ+2)tk ] ‖P(s) −P(s′)‖1 ≤ ck�k . We want to prove the above for scale k + 1.
We split into two cases, startingwith k ≥ 2 (thus, k+1 ≥ 3). Let nowP be a feasible

path such that (P(s), s) ∈ Rs-core
k+1 (i, τ ), and Rk+1(i, τ ) is a good box. Thus there are

no pairs of non intersecting bad boxes of scale k inside Rk+1(i, τ ). By Remark 2.17,
if Rk+1(i, τ ) contains at least one bad box Rk(i ′, τ ′), then all bad boxes contained
in Rk+1(i, τ ) are contained in Renl1

k (i ′, τ ′). Inside Renl1
k (i ′, τ ′) a feasible path has

no restriction on how quickly it can move and it could potentially traverse Senl1k (i ′)
instantaneously. The remaining boxes of scale k that are in Rk+1(i, τ ) are good and
by the inductive hypothesis we can use that in these ones the maximum displacement
of the path is bounded above by ck�k , so for k ≥ 2 it follows that

sup
s′∈[s,(τ+2)tk+1]

‖P(s) − P(s′)‖1 ≤9�k +
(
12 + 2tk+1

2tk

)
ck�k

≤9�k +
(
12 + k2m

)
ck�k

=
(

9

mk2
+ 12ck

mk2
+ ck

)
�k+1

≤ ck+1�k+1.

The term
(
12 + 2tk+1

2tk

)
accounts for the following boxes. Each time the path P finds

itself at the starting time of a k-core, it spends at least time 2tk inside the corresponding
k-box, and after that amount of time it finds itself at the starting time of another k-core.
This gives atmost 2tk+1

2tk
k-cores forwhichwe can apply the induction hypothesis. There

are situations, however, that we cannot guarantee that the pathP is at the starting time
of a k-core. One such situation is the very first box. We can still apply the induction
hypothesis in such cases, since the hypothesis requires only that the path is inside the
spatial core, regardless of it being the starting time of a core or not, but can give rise
to at most 12 additional boxes to the counting: the first box, the boxes right before and
after Renl1

k (i ′, τ ′), and the 9 time intervals contained in Renl1
k (i ′, τ ′).

Now we turn to the last case, which is k = 1 (that is, k + 1 = 2). We proceed in the
same way as before, but taking care of the fact that boxes at scale 1 have a different
length in the time dimension. We have

sup
s′∈[s,(τ+2)t2]

‖P(s) − P(s′)‖1 ≤9�1 +
(
12 + 2t2

t1

)
c1�1

≤9�1 + (12 + 2m) c1�1
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=
(
9

m
+ 12c1

m
+ 2c1

)
�2

≤ c2�2.

The proof is concluded by takingm large enough to guarantee that ck+1 = 1
100 + 1

10 +
20
m

∑k
i=2

1
i2

< 1
9 for all k. ��

Next we will prove that if a feasible path enters the 2-enlargement of a box Rk(i, τ )

from its spatial boundary, and all the k-boxes inside Renl2
k (i, τ ) \ Renl1

k (i, τ ) are good,
then the path remains far from the box Rk(i, τ ). For this lemma, recall the definition
of ∂enl2s Renl2

k (i, τ ) the 2-enlargement boundary of Rk(i, τ ) from Definition 2.19.

Lemma 2.23 Let P be a feasible path such that (P(s), s) ∈ ∂enl2s Renl2
k (i, τ ) for some

(i, τ ) and s ≥ 0. Assume that either s ≥ t1 or |CP(s)(s)| ≤ √
� log2 �. Assume also

that Rk(i ′, τ ′) is good for all Rk(i ′, τ ′) ⊂ Renl2
k (i, τ )\Renl1

k (i, τ ). Then,

inf
v∈Senl1k (i)

s′≥s, s′∈T enl2
k (τ )

‖P(s′) − v‖1 ≥ 12�k .

Proof By hypothesis every box Rk(·, ·) ⊂ Renl2
k (i, τ )\Renl1

k (i, τ ) is good. For any
s′ ∈ T enl2

k (τ ), |s − s′| ≤ 24tk . Assume without loss of generality that during [s, s′]
the path never visits a box Rk(·, ·) which is not contained in Renl2

k (i, τ ); otherwise we
can carry out the proof separately to each portion of the path that only traverses boxes
Rk(·, ·) contained in Renl2

k (i, τ ). Let (i ′, τ ′) be such that (P(s), s) ∈ Rcore
k (i ′, τ ′).

Since Rk(i ′, τ ′) is a good box, letting s′′ = sup
{
Tk(τ ′)

}
we have that ‖P(s) −

P(s′′)‖1 ≤ �k
9 by Lemma 2.22. If s′′ < s′, we can iterate the above argument obtaining

that ‖P(s) −P(s′)‖1 ≤ 24 �k
9 , where 24 amounts for the largest number of iterations.

Since boxes have length 2tk in the time dimension, it would be enough to replace 24
by 12 for k ≥ 2, but we just use the larger bound 24 to accommodate also the k = 1
case, for which the length of a box in the time dimension is smaller.

Now since 24�k
9 is smaller than 13�k , which is the distance between P(s) and the

spatial boundary of Senl1k (i) enlarged by all boxes Rk(·, ·) that intersects it, the path can
only traverse good k-boxes while inside Renl2

k (i, τ ). In addition, for any v ∈ Senl1k (i)
one has

‖v − P(s′)‖1 ≥ ‖v − P(s)‖1 − 24�k
9

≥ 15�k − 24�k
9

≥ 12�k .

��

2.6 Great boxes

We will need a stroger notion for boxes of scale 1, which we will call great boxes.
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Definition 2.24 A box R1(i, τ ) is said to be k-great if for all k′ ≤ k, for all Rk′(i ′, τ ′)
such that Renl2

k′ (i ′, τ ′) intersects R1(i, τ ) then Rk′(i ′, τ ′) is good. Moreover, we define

Gk = {(i, τ ) : R1(i, τ ) is k-great}

to be the set of k-great boxes.

Later wewill see that the walker has to traverse a feasible path. The next lemmawill
be used to say that if thewalker traverses a k-box that is goodwith a large neighborhood
of good k-boxes, then it is necessarily the case that the walker has to traverse enough
k-great boxes. Such great boxes will be the places where we will attemp a simple
random walk coupling later.

Lemma 2.25 Let P be a feasible path such that (P(τ tk), τ tk) ∈ ∂−
t Rcore

k (i, τ ) for
some (i, τ ). Assume that either τ > 0 or |CP(τ tk)(τ tk)| ≤ √

� log2 �. Then there exists
C8 > 0 such that letting r = C8

tk
t1

we can find times s1 < · · · < sr and distinct
space-time indices (i1, τ1), . . . , (ir , τr ) such that the following all hold:

• For all j , (P(s j ), s j ) ∈ ∂−
t Rcore

1 (i j , τ j ) and P exits R1(i j , τ j ) from the time
boundary.

• R1(i j , τ j ) ⊂ Rk(i, τ ) are k-great for all j .
• τ1t1 ≥ τ tk and τ j ≥ τ j−1 + 2 for all j ∈ {2, 3, . . . , r}.

Proof First, note that if a box R1(ĩ, τ̃ ) is (k − 1)-great and is contained in Rk(i, τ )

then it is also k-great. We will prove the statement of the lemma replacing C8 with
ck , some function of k. Then the lemma follows by showing that there is a universal
value C8 such that 0 < C8 ≤ ck for all k. We will do a proof by induction on k. Case
k = 1 is trivially verified by choosing c1 = 1 because in this case r = c1 = 1 and we
take (i1, τ1) = (i, τ ).

Now, for k ≥ 2, assume the lemma is true up to scale k − 1 and consider a feasible
path that at time τ tk is inside ∂−

t Rcore
k (i, τ ) such that every box of scale k whose 2-

enlargement intersects Rk(i, τ ) is good. By Remark 2.17, the bad boxes of scale k−1
inside Rk(i, τ ) (if there are any) are all contained in Renl1

k−1(i
′, τ ′) for some i ′, τ ′. We

then regard all boxes of scale 1 which are in at least one of the 2-enlargement of the
boxes contained in Renl1

k−1(i
′, τ ′) as potentially not (k − 1)-great. By Lemma 2.22 we

know that P crosses ∂+
t Rk(i, τ ) before ∂sRk(i, τ ). In words the path stays for time at

least 2tk in the box Sk(i).
Since the path starts from ∂−

t Rcore
k (i, τ ), it starts on ∂−

t Rcore
k−1(i

′′, τ ′′) for some i ′′
and τ ′′. In this (k − 1)-box we can apply the inductive hypothesis, so after time
2tk−1 the path has gone through at least ck−1

tk−1
t1

distinct (k − 1)-great boxes. Since
this path remains inside Rk(i, τ ), we immediately obtain that such boxes are all k-
great boxes. When the path reaches ∂+

t Rk−1(i ′′, τ ′′) we have that the path is now on
∂−
t Rcore

k−1(i
′′ + j, τ ′′ + 2) ⊂ Rk(i, τ ) for some j ∈ Z

d and from here we can reapply
the inductive hypothesis. So it remains to count how many times we can iterate this
procedure before 2tk amount of time has passed.

To do this,wefirst count howmuch time the path can spend inside the 2-enlargement
of a bad (k−1)-box. It suffices to count howmuch time is spanned by the boxes whose
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2-enlargements intersect Renl1
k−1(i

′, τ ′), which is |T enl1
k−1 (·)| + 2|T enl2

k−1 (·)| = 57tk−1.
Hence, the number of times the above procedure can be iterated is at least

2tk − 57tk−1

2tk−1
= tk

tk−1

(
1 − 57

2m(k − 1)2

)
.

From the inductive hypothesis, the path will traverse at least

tk
tk−1

(
1 − 57

2m(k − 1)2

)
ck−1

tk−1

t1
= ck

tk
t1

(k−1)-great boxes, by setting ck =
(
1 − 57

2m(k−1)2

)
ck−1. These boxes are k-great by

the properties of Rk(i, τ ). The lemma is then concluded by setting

C8 = lim
k→∞ ck =

∞∏

i=1

(
1 − 57

2mi2

)
> 0.

��

3 Overview of the proof

In this section we give a high-level description of the proof. Consider two processes
{M�

t }t≥0 = {Xt , η
�
t }t≥0 and {M�

t }t≥0 = {Xt , η
�
t }t≥0 with starting states M�

0 , M
�

0 ∈
�. We will construct a coupling of the two processes so that for some time T =
�1 + �2 + �3 of order n2

μ
the two configurations agree with positive probability.

Since {Mt }t≥0 can be recovered from {M�
t }t≥0, by sampling independently the edges

with status �, we will obtain our result.
The coupling will consist of three different phases which we will describe in a

high level way below. The coupling of each phase will have a small, albeit positive,
probability of failing. If the coupling of a phase fails, we declare the whole three-
phase procedure to have failed, let the two processes evolve arbitrarily until time T
and restart everything again from phase 1. The detailed analysis of each phase will
be given in sections 4, 5 and 6. Then in Sect. 7, we will put all phases together and
complete the proof of Theorem 1.1.

3.1 First phase: the local coupling

During the first phase we let the two processes evolve independently, and wait for
the first time the graphs of the two processes agree on a ball of radius 2� around the
walkers, that is, we wait for a time t such that

η�
t (Xt + e) = η�

t (Xt + e),
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for all edges e ∈ E(B∞
2� (0)), where B∞

r (x) is the vertices inside the L∞ ball of radius
r around x . We will show in Lemma 4.1 that this will happen within time �1 with

large enough probability, where �1 has order
log2 n

μ
. This is the shortest of the three

phases.
If the first phase does not end within time �1, we declare the whole three-phase

procedure to have failed. This phase will be handled in Sect. 4.

3.2 Second phase: the non-Markovian coupling of the walkers

This is the most involved phase. After the first phase has been completed successfully,
the graphs of the two processes are the same on a ball of radius 2� around the walkers.
Then, in the second phase we wish to couple the motion of the walkers. We use the
tessellation to decide when to couple the walkers identically (so that they jump in the
same way) and when to perform a better coupling aiming to decrease the distance
between the walkers.

Intuitively, whenever the walkers are passing through a “bad” region of the envi-
ronment (which in our case will be the 2-enlargement of a bad box) we will just do
identity coupling to make sure the distance between the walkers does not increase.
In fact, we will only be able to do identity coupling because we will use the annulus
between the 2-enlargement of the bad box and the bad box itself (which is composed
of good boxes) to give time for the graphs around the walkers to get coupled in both
configurations, allowing identity coupling to be carried out. If instead the two walkers
are in a great box, then we try to do a better coupling, which we shall refer to as a
simple random walk moment.

More precisely, translate time so that the second phase starts from time 0. Then,
we create the multi-scale tessellation described in Sect. 2 up to time �2 + �3 where
�2 and �3 are of order n2

μ
. We will fix a largest scale kmax and will look at how many

times the walkers enter kmax-great boxes.
When the walkers are in great boxes, Lemma 5.14 will give that the environment

is favourable enough so that with positive probability the displacement of the walkers
will have the same distribution as that of a simple random walk on Td

n (i.e., where all
edges are open). Phase 2 ends at time �2 where we check whether the walkers are
coupled and the graphs are coupled on a ball of radius 2� around the walkers.

Lemma 2.25 says that the walkers will cross an order of n2 great boxes during
[0,�2] and, therefore, by time �2 the walkers are expected to have done an order of
n2 simple randomwalk steps. Since two simple randomwalkers on Td

n can be coupled
in a way that they coalesce after a time of order n2, we can ensure that with high
probability phase 2 ends successfully. The details are carried out in Sect. 5.

3.3 Third phase: the coupling of the graphs

The third phase starts at time �2; as before we translate time so that the second phase
starts at time 0. At the beginning of the third phase the walkers are coupled and the
graphs are coupled as well on a ball of radius 2� around them. The idea of this phase
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is to keep performing identity couplings until the graphs couple together everywhere.
We will show that this simple idea works.

There is one tricky issue. During the second phase, we needed to construct the
tessellation all the way to time �2 + �3, while the second phase ends already at time
�2. The reason for this is that, in order to know whether we can perform a simple
random walk moment, we need to observe a little bit of future information about
the environment. Therefore, as we performed the second phase, we observed some
information from the updates after the end of phase two.

So the goal of the third phase is simply to let time pass until we get to a point where
no information regarding future times has been observed, meanwhile doing identity
coupling. With this, during the third phase we aim to keep the walkers coupled at all
times, while we finish to couple the graphs before time �2 + �3.

We do not use any further information from the tessellation than what we already
observed for phase 2. The delicate point is that in order to apply identity coupling of the
walkers, as we explained in the second phase, we have to ensure that the graphs around
the walkers are coupled. How large a region we require to be coupled depends on the
environment of good and bad boxes that is ahead of the walker, but now we cannot
observe anything beyond what we have already observed in phase two; otherwise we
would keep observing future information.

As hinted above, we just proceed with identity coupling “blindly”. That is, we
perform identity couplings up to time �2 +�3 assuming that any information that we
have not yet observed is “good”, and simply “hope for the best”. It will turn out that
this procedure succeeds with large probability leaving the two processes completely
coupled (both the graphs and the walkers) by time �2 + �3. The details of this phase
are given in Sect. 6.

3.4 What if a phase fails?

If any of the three phases does not successfully end, we let the two processes run inde-
pendently (modulo what has already been observed) until the end of the third phase.
This is needed as we might have observed some information about the environment
up to that time. After that, we repeat the procedure from phase 1. Since the three
phases succeed with positive probability, we only need to repeat the whole procedure
a constant number of times. The end of the proof of the upper bound is given in Sect. 7.

4 First phase

During the first phase we let the processes M�
t = (Xt , η

�
t ) and M

�

t = (Xt , η
�
t ) evolve

independently. Let�t : V → V be the translation that maps Xt into Xt ; we will abuse
notation and use the same �t to denote the corresponding translation map E → E of
the edges. For any i ∈ Z+ ∪ {∞}, we define
E(Bi

r (v))={(v1, v2) ∈ E : v1, v2∈ Bi
r (v)} and Bi

r (v) = {v1 ∈ V : ‖v − v1‖i ≤r};

thus E(Bi
r (v)) is the set of edges in the ball of radius r around v according to the norm

Li . We omit i from the superscript whenever i = 1. Define the event
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Bt = {∀e ∈ E (B1(Xt )) , η�
t (e) = η�

t (�t (e)) = 0
}

∩ {∀e ∈ E(B∞
2� (Xt )) \ E(B1(Xt )), η�

t (e) = η�
t (�t (e)) = �

}
(4.1)

that the edges in an L∞ ball of radius 2� around the walkers are all � at time t , except
for the ones adjacent to the walkers which are closed; recall that � is the size of the
core of boxes of scale 1, whose value is given in (2.1). Let

τB = inf {t ≥ 0 : Bt holds} . (4.2)

Note that τB is a stopping time. Define �1 = C9 log2 n
μ

, for some constant C9(p) > 0,
and define the event

F1 = {τB < �1}, (4.3)

whichwe shall take as the event that phase 1 succeeds. This event is a bitmore restricted
than the one announced in the previous section, but this will be convenient for us in
the next phase.

We then run phase 1 until τB or �1, whichever occurs first. If it turns out that F1
does not occur, phase 1 is then stopped at time�1 and we declare the whole procedure
to have failed at time �1. In this case, we do not proceed to the second phase, and
define �1 as the failing time of the procedure and, as we will explain more thoroughly
in Sect. 7, we will restart from phase 1 from �1.

The following lemma establishes the probability that the first phase is successful.

Lemma 4.1 (Phase 1 success probability) For any δ > 0, there exists p0 = p0(d, δ) >

0 such that for any p < p0, there exists C9(p, d, δ) > 0 in the definition of �1 so that
for any initial configurations η�

0, η
�
0 ∈ � we obtain

P
(
Fc
1

) ≤ δ

for all large enough n.

Before showing that phase 1 succeeds with good probability, we need to establish
a simple result on percolation. We then prove Lemma 4.1 in Sect. 4.2.

4.1 Percolation on cylinders and open upwards paths

Let G = (V , E) be a finite graph whose maximum degree is dmax; in our case, it
would be enough to take G to be the d-dimensional torus Td

n of side length n, where
nearest-neighbors are defined according to the �∞ norm. We consider the discrete
cylinder Vcyl = V × Z+ and define a site percolation process on Vcyl with parameter
� > 0. In other words, we declare each site of Vcyl to be open with probability �,
independently of one another; a vertex that is not open is said to be closed. For two
vertices of x, y ∈ V , we write x ∼ y to denote that the graph distance between x and
y is at most 1 in G; thus, for example, x ∼ x for all x ∈ V .
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Definition 4.2 (open upwards path) An open upwards path in Vcyl is defined as a
sequence of sites (i0, τ0), (i1, τ1), (i2, τ2), . . . , (ir , τr ) such that i j ∈ V , τ j ∈ Z+,
i j ∼ i j+1 and the following holds for all j . If (i j , τ j ) is open, then τ j+1 = τ j + 1;
otherwise, τ j+1−τ j ∈ {0, 1}. In otherwords, the path is compelled tomove “upwards”
in the cylinder when it visits open sites.

Note that an open upwards path is allowed to visit a vertex more than once. We say
that an open upwards path (i0, τ0), (i1, τ1), (i2, τ2), . . . , (ir , τr ) traverses m levels if
τr − τ0 = m. When � is close to 1, an open upwards path cannot visit too many closed
sites. This is quantified in the next lemma.

Lemma 4.3 (Open upwards path) Let (i0, 0) ∈ Vcyl be fixed. For any α > 0, there
exists �′ = �′(α, dmax) ∈ (0, 1) such that if � > �′ then the probability that there
exists an open upwards path from (i0, 0) that traverses m levels and visits at least αm
distinct closed sites is at most e−cm for some constant c = c(α, dmax) > 0.

Before proving the above result, we need the following estimate on the number of
subgraphs of G that contain a given vertex.

Lemma 4.4 Given a vertex v ∈ V , let Ar be the number of induced connected sub-
graphs of V containing v and having r vertices. There exists a constant c = c(dmax) >

0 such that Ar ≤ ecr for all r .

Proof This proof is quite standard and a version for the lattice can be found in [6,
Proof of Theorem 4.20]; we include a proof here for the sake of completeness. Let
Ar ,s be the number of induced connected subgraphs of V containing v and having r
vertices and s boundary vertices, where a boundary vertex is a vertex that does not
belong to the subgraph but has a neighbor who does. Hence, Ar = ∑

s Ar ,s . Note that
for any � ∈ (0, 1), if we perform percolation on V , we obtain

∑

r ,s

Ar ,s�
r (1 − �)s = 1. (4.4)

For any vertex u ∈ V denote d(u) its degree in G. Let S ∈ V be one subgraph counted
in Ar ,s , denote m(S) the number of edges between vertices of S and ∂S the number
of edges between vertices in S and vertices in V \ S. Then,

dmaxr ≥
∑

u∈S
d(u) = 2m(S) + ∂S ≥ 2 (r − 1) + s.

Thus, s ≤ (dmax − 2) r+2. Plugging this result into (4.4) and taking � = 1
2 we obtain

1 ≥
∑

r ,s

Ar ,s�
r (1 − �)(dmax−2)r+2 =

∑

r ,s

Ar ,s2
−(dmax−1)r−2 =

∑

r

Ar2
−(dmax−1)r−2.

Thus, Ar ≤ 2(dmax−1)r+2 for each r . ��
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Proof of Lemma 4.3 Let m be an integer and, for convenience, set τ0 = 0. Consider an
open upwards path (i0, τ0), (i1, τ1), (i2, τ2), . . . , (ir , τr ) such that τr −τ0 = m; that is,
the path traverses m levels. Let s1 be the number of distinct closed sites visited by the
path before it traverses 1 level, and for j ≥ 2 let s j be the number of distinct closed sites
visited by the path after having traversed j − 1 levels and before traversing j levels.
So

∑m
j=1 s j is the total number of distinct closed sites visited by the path. Note that,

the sites counted in each s j must be of the form (·, j − 1) and must form a connected
set with respect to the relation ∼ over G. Using Lemma 4.4, given s1, s2, . . . , sm , the
number of possibles ways to pick the set of distinct sites within (i0, τ0), (i1, τ1), . . .
is

(dmax + 1)m
m∏

j=1

s j e
c′s j ,

where c′ is the constant from Lemma 4.4, and the term s j in the product counts the
number of sites at level j that can be selected to be the last vertex visited by the path
before going to level j + 1. Then, (dmax + 1)m accounts for the number of ways to
choose the first site at level j given the last site at level j − 1; this amounts to at most
dmax +1 choices per level. If we fix

∑m
j=1 s j = S, the number of ways to select the s j

is
(S+m−1

S

)
. Finally, given all sites in the path with s j as defined above, the probability

that this path is an open upwards path is at most
∏m

j=1(1−�)s j since each site counted
in the s j must be closed. Therefore, the expected number of open upwards paths that
traverse m levels and visit at least αm closed sites is at most

∑

S≥αm

(
S + m − 1

S

)
(dmax + 1)m

m∏

j=1

ec
′s j s j (1 − �)s j

= (dmax + 1)m
∑

S≥αm

(
S + m − 1

S

)(
c′′ec′′

(1 − �)
)S

,

where we used that given c there exists a constant c′′ such that zec
′z ≤ c′′ec′′z for all

z. It is enough to use the trivial bound
(S+m−1

S

) ≤ 2S+m−1 in the above expression to
obtain the upper bound

(2(dmax + 1))m
∑

S≥αm

(
2c′′ec′′

(1 − �)
)S ≤ 2 (2(dmax + 1))m

(
2c′′ec′′

(1 − �)
)αm

,

with the inequality hold whenever � is close enough to 1 so that 2c′′ec′′
(1 −

�) ≤ 1
2 . Then the lemma holds by setting � further closer to 1 so that 4(dmax +

1)
(
2c′′ec′′

(1 − �)
)α ≤ e−c. ��

By using a result by Liggett, Schonmann and Stacey [8], the above result can be
extended to percolation on Td × Z+ with bounded dependences.
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Lemma 4.5 Let C ≥ 1 be a constant. Consider a site percolation process on Td ×Z+
where the probability that a given site is open depends on at most C other sites. Then
Lemma 4.3 holds with the lower bound on � depending on C.

Proof For any �̃, provided � is large enough we can apply Liggett, Schonmann and
Stacey [8, Theorem 0.0] to obtain that the dependent site percolation process stochas-
tically dominates an independent site percolation process of parameter �̃. The lemma
then follows by applying Lemma 4.3 to this independent site percolation process. ��

4.2 Proof of Lemma 4.1

Now we are in a position to establish the occurence of the first phase.

Proof of Lemma 4.1 Let τ ′
B be the first time t ≥ t1 such that Xt and Xt are both isolated,

meaning that all edges adjacent to them are closed.Wewill show that τ ′
B occurs before

time �1 − t1 + t1.
For each process M�

t and M
�

t we create a tessellation of T
d
n ×[0,�1] into boxes of

scale 1 using the values for � and t1 from Sect. 2. The event that a given box is good is
defined as in Definition 2.7. We let M�

t and M
�

t evolve independently of one another
until a stopping time st1 where Xst1 and Xst1 are both in good boxes and s ≥ 1. Note
that good 1-boxes form a dependent site percolation process on T

d
n × Z+ so that we

can apply Lemma 4.5. Let (i0, 1) and (i0, 1) be the boxes visited by Xt and Xt at
time t = t1. Now, since random walks must traverse a feasible path, and since feasible
paths leave good boxes from the time boundary (cf. Lemma 2.21), we obtain that from
(i0, 1) and (i0, 1) the random walks Xt and Xt must traverse an open upwards path.
Therefore, the probability that up to level m = �1/t1 − 1 we have that Xt and Xt

each visited more than m
3 bad 1-boxes is at most 2e−cm provided p is small enough

(which makes the probability that a 1-box being good large enough). Under this event,
there must exist m

3 instances of time s ≤ m at which Xst1 and Xst1 are both in good
1-boxes. when this happens, at time st1 + t1 both Xst1+t1 and Xst1+t1 are isolated in
a vertex (i.e., all edges adjacent to them are closed). Therefore,

P
(
τ ′
B ≥ �1 − t1 + t1

) ≤ n2dP (s > m) ≤ 2ne−cm,

where the term n2d accounts for the number of choices for i0 and i0.
Now let F be the σ -algebra generated by M�

t and M
�

t during t ∈ [0, τ ′
B]. We want

to establish a lower bound on the probability that Bτ ′
B+t1 given F . Since Xt and Xt

are isolated in t = τ ′
B , it is enough to compute the probability that all edges inside a

L∞ ball of radius 2� around the walkers do a �-update but no non-� update, and the
edges adjacent to the walkers do not open or do a non �-update during [τ ′

B, τ ′
B + t1].

This probability is

exp
(
−t1μ(1 − p�)2 (4�)d

) (
1 − exp

(−t1μp�

))2(4�)d exp
(−t1μpmin4d

)
,

where the first term is the probability that no edge in the L∞ ball of radius 2� around
the walkers does a non �-update, the second term is the probability that those edges
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do a �-update and the last term is the probability that the edges adjacent to the walkers
do not open. Therefore,

P
(
Fc
1

) ≤ 2ne−cm + 1 − exp
(
−t1μ(1 − p�)2 (4�)d − t1μpmin4d

)

(
1 − exp

(−t1μp�

))2(4�)d

≤ 2ne−cm + 1 − exp
(
−t1μ(1 − p�)2 (4�)d − t1μpmin4d

)

− 2 (4�)d exp
(−t1μp�

)
.

Recall that �1 = C9 log2 n
μ

, t1 = log2 �
μ

and t1 =
√

�
μ
, where � is just a large enough

constant that is set before letting p be small enough. Now we show that we can make
the above smaller than δ. We start with the term 2 (4�)d exp

(−t1μp�

)
, which can be

made, say, smaller than δ
3 . We will do this by adjusting � only, but this term involves

also p though p�. However, note that p� goes to 1 as p goes to 0. So, since t1μ is of
order log2 �, we can choose � large enough so that 2 (4�)d exp

(−t1μp�

) ≤ δ
3 for all

p so that p� ≥ 1
2 . After fixing �, we can take p close enough to 0, which makes pmin

goes to 0 and p� goes to 1, so that exp
(−t1μ(1 − p�)2 (4�)d − t1μpmin4d

) ≥ 1− δ
3 .

Finally, after fixing � and p, we can take n large enough so that 2ne−cm ≤ δ
3 since

m = �1
t1

− 1 is of order log2 n as a function of n. This concludes the first phase. ��

5 The second phase: nonMarkovian coupling

To describe the coupling during the second phase we will use the full multi-scale
space-time tessellation described in Sect. 2. For simplicity, we translate time so that
this phase starts at time 0 and that X0 is at the origin. Hence, X0 can be arbitrary, and
η�
0 and η�

0 can be any configuration for which the event B0 from (4.1) holds.

5.1 Largest scale

We begin by creating the multi-scale space-time tessellation of Td
n ×[0,�2] and with

largest scale

kmax = log2 log n. (5.1)

We consider a positive constant C10(p) > 0 to be chosen later so that tkmax divides

C10
n2
μ
, and define

�3 = �2 + n2

μ
and �2 = C10

n2

μ
. (5.2)

The following lemma shows that with large probability there are no bad boxes of
scale kmax or larger. This will allow us to restrict our analysis to boxes of scale at
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most kmax. We will consider all the boxes contained into the tessellation Td
n ×[0,�3],

which in particular are all the boxes intersecting the tessellation of Td
n × [0,�2].

Lemma 5.1 For any δ > 0, there exists p0 = p0(δ, d) > 0 such that for all p < p0
and n large enough

P

(
Rk(i, τ ) is bad for some Rk(i, τ ) ⊂ T

d
n × [0,�3], with k ≥ kmax

)
≤ ρ2kmax−3

1 .

Proof The number ζk of boxes of scale k in Td
n × [0,�3] is trivially bounded as

ζk ≤
(
n

�k

)d
�3

tk
≤ (C10 + 1)nd+2.

Using Lemma 2.15 the probability that there exists a box of scale kmax or bigger that
is bad is bounded above by

∑

k≥kmax

ζkρk ≤ (C10 + 1)nd+2
∑

k≥kmax

ρ2k−2

1 ≤ 2(C10 + 1)nd+2ρ2kmax−2

1 .

Using the value of kmax and the fact that ρ1 can be made arbitrarily small by taking p
small concludes the proof. ��

5.2 The coupling

Recall the map �t introduced in Sect. 4 which maps Xt into Xt . In order to define the
coupling of the two processes, we will use a different map�t . The idea is that our new
map will be equal to �t in good parts of the environment, but when the walker enters
the enlargement of a bad box, we will stop changing �t and will keep it “frozen” until
the walkers exit the enlargements of all bad boxes. The idea is that in the enlargement
of bad boxes we want to couple the graphs in a large region around the walkers so that
if the walkers enter a bad box, then they do so with their graphs coupled within the
box. We stop updating �t because when �t changes many edges uncouple.

More precisely, given a time t , denote with

st = sup{s ≤ t : (Xs, s) is inside akmax-great box}

the last time before t the walker is in a kmax great box. We will consider the new map
�t defined as

�t = �st .

Wewill show that this change of map actually will not create any problems; in fact,
we will show that �t ≡ �t for all t because in the way we construct the coupling,
when the walkers are in the enlargement of a bad box, we will succeed in applying
identity coupling, hence the translation map remains constant. So, the introduction
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of �t here is a formalism so that the coupling procedure is well defined. This will
imply that our application of identity coupling later on will be successful, which in
turn implies that �t ≡ �t .

As soon as the second phase begins we check whether the box R1(i, 0), such that
(X0, 0) ∈ Rcore

1 (i, 0), is kmax-great (the reason we do this will be clarified later, see
Remark 5.9). If that is the case then we can begin the coupling procedure relative to
the second phase. The coupling is composed of two parts: the coupling of the graphs
(that is, the coupling of η�

t and η�
t ) and the coupling of the walkers.

5.2.1 Coupling of the graphs

We let the process {η�
t }t≥0 evolve. Denote with Cv(t) (resp., Cv(t)) the cluster that

contains vertex v at time t in the process η�
t (resp., η�

t ). When an update (s,U ′,U )

occurs at an edge e in η�
s we update the process η�

s as follows.

• If the update is a �-update we refrain from looking at U and instead simply set
η�
s (e) = � and η�

s (�s(e)) = �.
• If the update is not a �-update we must check in both configurations η�

s and η�
s

whether e is a cut-edge or not. We do this by looking at the connected components
of the endpoints v1, v2 of the edge e. If an edge e′ is such that η�

s (e
′) = � and e′ is

incident to a vertex in Cv1(s)∪Cv2(s), we sample its current status, open or closed,
according to its last update. Note that this last update is itself a tuple (s,U

′
,U ),

so this step boils down to checking the value of U . If η�
s (�s(e′)) = � we set

η�
s (�s(e′)) = η�

s (e
′) as well. We continue this procedure until the components of

v1 and v2 have been fully explored in η�
s and proceed analogously for the process η�

s
until the components of �s(v1) and �s(v2) have been fully explored. A potential
disagreement η�

s (e) �= η�
s (�s(e)) can happen only if, by revealing the components

of v1, v2, �s(v1) and �s(v2), we find that e is a cut-edge in η�
s but �s(e) is not a

cut-edge in η�
s , or vice-versa.

In this way edges whose status is � can always be coupled equivalently whereas non �-
updates cause the reveal of the status of other edges, potentially creating disagreements
between the two configurations.

Remark 5.2 (Momentaneous change of coupling) At some times we will carry out a
different coupling of the environment. This will be done by simply introducing another
map �̃ of the environments, and the coupling of the graphs will go as described above
with �t replaced with �̃ until we specify that �t is again the map to be used.

5.2.2 Coupling of the walkers

During this discussion the reader should refer to Fig. 3.
Our goal is to define a coupling that can bring the walkers together. For this we will

use the multi-scale tessellation. The coupling of the walkers will be composed of two
different couplings. When the walker Xs enters the core of a great box Rcore

1 (i, τ ),
we will try to take advantage of the nice environment that a great box provides to
perform a coupling that we refer to as a simple random walk moment. This coupling
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Fig. 3 In red the bad boxes, in blue their enlargement, in black the tessellation and the walker’s trajectory.
In bad boxes there is no control over the displacement of the walker, whereas in good boxes, the walker
always leaves the box from its time boundary. Whenever the walker enters the enlargement of a bad box,
we start doing identity coupling. Otherwise, the walker is in great boxes, and we attempt to check whether
a SRWM occurs, in which case a coupling of simple random walks is performed

aims to change the distance between the walkers, so that eventually the walkers may
find themselves at the same site.

On the other hand, whenever Xs is not in a great box, then we do not have a good
enough control on the environment around the walker to do a simple random walk
moment. In such cases, we will just resort to a simple identity coupling that keeps the
distance between the walkers unchanged. An identity coupling will only be able to be
performed if the environment around the walkers are the same. For this, we define the
following event:

B′
t =

{
∀e ∈ E(B∞

�/2(Xt )), η�
t (e) = η�

t (�t (e))
}

. (5.3)

If B ′
s holds for all s ∈ (s1, s2), then in this time interval the walkers can perform the

same jumps and not change their relative distance. In other words, identity coupling
is successful. In fact if the environment around the walkers is the same (as a matter of
fact we only need the environments to agree on a ball of radius 1 around the walkers),
by doing identity coupling the walkers are able to perform the same jumps.

So the proof is now split into three steps. Since�t does not change when the walker
enters the 2-enlargement of a bad box, we will show in Sect. 5.3 that when �t does
not change the graph couples. Next, we deal with showing that identity coupling can
be successfully implemented as the walker enters the 2-enlargement of a bad box (i.e.,
when the walker is not in a great box). This is carried out in Sect. 5.4. Then in Sect. 5.5
we deal with the simple random walk moments.
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5.3 Coupling of the graphs with8t unchanged

Given I ⊂ Z
d and k ≥ 1, let

Sk(I ) =
⋃

i∈I
Sk(i) and S�

k (I ) =
⋃

i∈I
S�
k (i),

for any � ∈ {core, enl1, enl2}. Recall the valuem in the definition of �k in (2.2). Recall
also tk from (2.7). Then, for k ≥ 2, we define

tk = 6tk
(k − 1)2m

. (5.4)

We start this section showing that the graph gets coupled in regions of good boxes
if �t does not change.

Lemma 5.3 (Graphs couple in good boxes) Let m be large enough, and then let � be
large enough with respect to m. Let Rk(i, τ ) be a good box, and let s1 be any time
instance so that [s1, s1 + 2tk] ⊂ Tk(τ ). If �t does not change during [s1, s1 + 2tk],
then

there exists t ∈ [s1, s1 + 2tk] such that η�
t (e) = η�

t (�t (e)) for alle ∈ Sk(i). (5.5)

Proof If k = 1 then the proof follows since each edge of Sk(i) receives only �-updates
and gets updated at least once during [s1, s1 + 2tk]. For k ≥ 2, we assume that the
statement of the lemma holds up to scale k − 1. Let s2 = max Tk(τ ). Let τ ′ be the
first time index such that τ ′tk−1 ∈ [s1, s2] and all boxes Rk−1(·, τ ′) ⊂ Rk(i, τ ) are
good. Let I be the set of indices containing all (k − 1)-boxes that are inside Sk(i);
more precisely,

I = {
i ′ : Sk−1(i

′) ⊂ Sk(i)
}
.

Then, by induction, by time τ ′tk−1 + 2tk−1 we obtain that Sk−1(I ) = Sk(i) has been
coupled.

Now it remains to show that τ ′tk−1 + 2tk−1 ≤ s1 + 2tk . Note that since Rk(i, τ )

is a good box, there exist ı̂, τ̂ such that all (k − 1)-bad boxes contained in Rk(i, τ )

are contained in Renl1
k−1(̂ı, τ̂ ). Since the amount of time spanned by the enlargement at

scale k−1 is 9tk−1, we obtain that τ ′tk−1 ≤ s1+9tk−1+ tk−1, where the last tk−1 is to
account for the possibility that s1 is not a multiple of tk−1. Hence, using the notation
a+ = max {a, 1} for consistency with the case k = 2, and noting that t1 ≤ 6t1

(k−2)2+m
provided � is made large enough once m has been fixed, we have

τ ′tk−1 + 2tk−1 ≤ s1 + 10tk−1 + 2tk−1

≤ s1 + tk−1

(

10 + 2
6

(k − 2)2+m

)
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= s1 + tk
m(k − 1)2

(

10 + 12

(k − 2)2+m

)

= s1 + tk
6

(

10 + 12

(k − 2)2+m

)

≤ s1 + 2tk .

��
Recall the definition of Sinn1 (i) from (2.8). For k ≥ 2, define

Sinnk (i) =
⋃

j : Senl2k−1(i)⊂Sk ( j)

Scorek−1( j). (5.6)

For a set of indices I , we write

S inn
k (I ) =

⋃

j∈I
Sinnk ( j).

Note that by taking m large enough, then Score
k (I ) ⊂ S inn

k (I ) ⊂ Sk(I ). We start with
a simple result about the connected component of a vertex.

Lemma 5.4 Let m ≥ 2 and let � be large enough with respect to m. Let I ⊂ Z
d be a

set of indices, k ≥ 1 a scale and τ ≥ 1 a time index such that Rk(i, τ ) is a good box
for all i ∈ I . Then, for any v ∈ S inn

k (I ) and any t ∈ Tk(τ ), the connected component
of v is contained in B∞

5�k/m
(v), where we recall that B∞

r (v) is the L∞ ball of radius
r around v.

Proof For k = 1, the result follows by the fact that components have size at most
log2 � in good 1-boxes when τ ≥ 1, and � is large enough so log2 � ≤ 5�/m. For
k ≥ 2, let (i ′, τ ′) be such that v ∈ Scorek−1(i

′) and t ∈ Tk−1(τ
′) ⊂ Tk(τ ); there could

be more than one choice for τ ′, it is irrelevant which one we pick. Note that since
v ∈ S inn

k (I )

Sk−1(i
′) ⊂ Senl2k−1(i

′) ⊂ Sk(i) for some i ∈ I .

If Rk−1(i ′, τ ′) is good, then the connected component of v is contained in
B5�k−1/m(v) ⊂ B5�k/m(v) by applying the induction hypothesis at scale k − 1 and
set of indices

{
i ′
}
. Otherwise, note that by Remark 2.17 we have that Renl1

k−1(i
′, τ ′)

contains all bad boxes in Rk(i, τ ). If the connected component of v is contained in
Senl1k−1(i

′) then it is contained in B5�k−1(v) ⊃ Senl1k−1(i
′). Since 5�k−1 = 5 �k

m(k−1)2
≤ 5�k

m
the lemma holds on this case as well. In the final case, when the connected com-
ponent of v is not contained in Senl1k−1(i

′), it may sound contradictory but we can
get an even smaller bound for the component of v. The reason is that there must
exist i ′′ such that v is at the same component of a vertex u with u ∈ Scorek−1(i

′′) and
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Scorek−1(i
′′) ∩ Senl1k−1(i

′) = ∅ but Sk−1(i ′′) ∩ Senl1k−1(i
′) �= ∅. But since (u, t) is in the

box Rk−1(i ′′, τ ′), and Sk−1(i ′′) ⊂ Senl2k−1(i
′) ⊂ Sk(i), we have that Rk−1(i ′′, τ ′′) is a

good box. Thus, by induction we obtain that the connected component of v is inside
B5�k−1/m(u) ⊂ B10�k−1/m(v). Since 10 �k−1

m = 10 �k
m2(k−1)2

≤ 5�k
m for all k as long as

m ≥ 2, the proof is completed. ��
With the help of the above lemma, we can show that the graph cannot uncouple in

regions surrounded by good boxes.

Lemma 5.5 (Graphs remain coupled if �t does not change) Let m be large, and let �
be large enough with respect to m. Let Rk(i, τ ) be a good box, and let s1 < s2 with
s1, s2 ∈ Tk(τ ) and s1 ≤ (τ + 1)tk . If �t does not change during t ∈ [s1, s2] and

η�
s1(e) = η�

s1(�s1(e)) for all e ∈ E(Sk(i)),

then η�
t (e) = η�

t (�t (e)) for all e ∈ E(Sinnk (i)) and all t ∈ [s1, s2].
Proof For k = 1 the lemma is obvious, since for any e ∈ E(Sk(i)), e only receives
�-updates during Tk(τ ). Therefore, η�

t (e) = η�
t (�t (e)) for all t ∈ [s1, s2]. For k ≥ 2,

assume the lemma holds up to scale k − 1. Let

T = {
τ ′ : Tk−1(τ

′) ∩ [s1, s2] �= ∅ and Tk−1(τ
′) ⊂ Tk(τ )

}
.

Let τ1 = min T . Note that either

s1 ∈ T core
k−1 (τ1) or s1 ∈ T core

k−1 (τ1 − 1), (5.7)

where the latter happens when s1 is near the starting time of Tk(τ ). Because s1 cannot
be near the ending time of Tk(τ ) due to the condition s1 ≤ (τ + 1)tk , we obtain that
T is not empty. We will first show that

Sinnk−1( j) is coupled during [s1, s2] for all jsuch that Sk−1( j) ⊂ Sk(i)

and for which Rk−1( j, τ
′) is good for all τ ′ ∈ T . (5.8)

To see this, let r1 = sup Tk−1(τ1) and note that r1 ≥ s1 + tk−1 because of (5.7). Now,
induction gives that Sinnk−1( j) remains coupled up to time r1. We would like to reapply
the induction hypothesis on the box Sk−1( j) in the next time step, but for this we need
Sk−1( j) to be coupled, not only Sinnk−1( j). Thus, we first apply Lemma 5.3 from time
r1 − 2tk−1 to obtain that there exists a time r ′

1 ∈ [r1 − 2tk−1, r1] for which the whole
of Sk−1( j) is coupled. Let τ2 be such that r ′

1 ∈ T core
k−1 (τ2) and note that τ2 ≥ τ1 + 1.

Thus, we repeat the induction hypothesis and the application of Lemma 5.3 to obtain
a sequence of τι, rι and r ′

ι until a certain value r ′
ι ∈ [s2 − 2tk−1, s2]. At that time, the

induction hypothesis gives that Sinnk−1( j) is coupled at time s2, establishing (5.8).
Nowwe turn to establish the lemma. If Rk(i, τ ) has no bad (k−1)-box intersecting

the time interval [s1, s2], then (5.8) and the fact that (k − 1)-boxes overlap give that⋃
j : Sk−1( j)⊂Sk(i) S

inn
k−1( j) ⊃ Sinnk (i) is coupled during [s1, s2].
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Now assume that Rk(i, τ ) contains bad (k − 1)-boxes that intersect [s1, s2]. From
Remark 2.17, there exists Rk−1(i ′, τ ′) so that all (k − 1)-bad boxes contained in
Rk(i, τ ) are contained in Renl1

k−1(i
′, τ ′). Let

J =
{
j : Sk−1( j) ⊂ Sk(i) and Sk−1( j) �⊂ Senl1k−1(i

′)
}

,

and note that Rk−1( j, τ ′′) is good for all j ∈ J and τ ′′ ∈ T . Therefore, (5.8) gives
that Sinnk−1( j) is coupled during [s1, s2] for all j ∈ J . The remaining of the proof is
split into two cases. First assume that Senl1k−1(i

′) is separated from infinity by J , which
means that any path from Senl1k−1(i

′) to the outside of Sk(i)must enter Scorek−1( j) for some
j ∈ J . In fact, letting

J ′ =
{
j ∈ J : Scorek−1( j) ⊂ Senl1k−1(i

′)
}

,

we get that the path must enter Scorek−1( j) for some j ∈ J ′. Besides, Lemma 5.4
gives that for all v ∈ S inn

k−1(J ) and all s ∈ T enl1
k−1 (τ ′) we have that the connected

component of v is contained in B∞
5�k−1/m

(v). Therefore, all connected components

intersecting Senl1k−1(i
′) must be contained in

⋃
v∈Senl1k−1(i

′) B
∞
5�k−1/m

(v), which is a spatial

region contained in the interior of S inn
k (J ′). Therefore, since S inn

k−1(J ) ⊃ S inn
k−1(J

′)
remains coupled throughout [s1, s2] by (5.8), non-� updates inside Senl1k−1(i

′) cannot
uncouple the graph.

Turning to the second case, we assume that Senl1k−1(i
′) is not separated from infinity

by J . This means that Senl1k−1(i
′) is so close to the boundary of Sk(i) that it does not

intersect Sinnk (i). More formally, for any v ∈ Senl1k−1(i) we have that B
∞
10�k−1

(v) cannot

be contained in Sk(i). But this implies that any i ′′ with Scorek−1(i
′′) ⊂ Senl1k−1(i

′) we have
that Senl2k−1(i

′′) �⊂ Sinnk (i). Therefore, applying (5.8) to the boxes inJ already gives that
Sinnk (i) is coupled during [s1, s2]. ��

5.4 Identity coupling

We prove that, by doing identity coupling, as long as the particle Xt is in a point
(v, t) ∈ T

d
n × R

+ in space-time that is part of a 1-box R1(·, ·) that is good, it is
always possible to keep the distance between Xt and Xt constant. Recall the event
B′
t from (5.3), the event Bt from (4.1), and the definition of the spatial core of a box

in (2.11). We will need a weaker version of B′
t which we define as

B′′
t =

{
∀e ∈ E

(
B∞

�/3(Xt )
)

, η�
t (e) = η�

t (�t (e))
}

. (5.9)

Recall that in the second phase we assume that R0(0, 0) is a kmax-great box and B0
holds; we do not restate these conditions on the lemmas.

Lemma 5.6 (Identity coupling succeeds in good boxes) Let s1 be a time so that B′′
s1

holds and (Xs1 , s1) ∈ Rs-core
1 (i, τ ) with R1(i, τ ) being a good box. Let s2 ∈ T1(τ ),
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s2 ≥ s1. If we attempt to do identity coupling for the entire time interval [s1, s2], then
the coupling succeeds and �s1 ≡ �t for all t ∈ [s1, s2].
Proof Let B be the L∞ ball of radius �/3 around Xs1 ; B is a fixed region in space,
not changing in time. The edges in E(B) are coupled at time s1 since B′′

s1 holds. By
Lemma 2.22 the walker never leaves S1(i) ⊂ B during the time interval [s1, s2]; if
s1 ≤ t1, then we know that the component of the walker is at most log2 � since B0
holds and the box R1(0, 0) is kmax-great by the properties of the second phase. Since
there is no non-� update in E(B) during [s1, s2], B remains coupled with its translate
throughout and identity coupling is successful. ��

The lemma below is a composition of the previous lemmawhen thewalker traverses
a sequence of good 1-boxes. We assume that the stronger event B′

t holds at the start
time to be able to guarantee that B′′

t holds during the entire time interval covered by
the lemma.

Lemma 5.7 (Identity coupling succeeds in sequences of good boxes) Let s1 be a time
so that B′

s1 holds. Let s2 > s1 be such that during [s1, s2] the walker only traverses
1-boxes that are good. Then, if we attempt to do identity coupling for the entire time
interval [s1, s2], the coupling succeeds, B′′

t holds and �s1 ≡ �t for all t ∈ [s1, s2].
Moreover, B′

t holds for all t ∈ [s1 + 2t1, s2].
Proof Let R1(i, τ ) be the box the walker is in its core at time s1. Since R1(i, τ ) is a
good box, Lemma 5.6 gives that identity coupling works up to the end of T1(τ ) and
Lemma 5.3 gives that S1(i) couples at some time during [s1, s1 + 2t1]. Moreover, for
any t ∈ [s1, s1 + 2t1], B′′

t holds since B′
s1 holds. For t ∈ T1(τ ) ∩ [s1 + 2t1,∞) we

have that B′
t ⊂ B′′

t holds by Lemma 5.5. Hence, if R1(i ′, τ ′) is the box whose core
the walker is in when exitting R1(i, τ ), we can apply Lemma 5.6 again to show that
identity coupling succeeds. Repeating this argument over and over again establishes
the lemma. ��

Now we analyze what happens in the neighborhood around a bad 1-box, supposing
that the walker enters the 2-enlargement of that box. Two things can happen, either
the walker enters the 2-enlargement of the box from the space boundary ∂sRenl2

1 (·, ·)
or it enters from the time boundary ∂−

t Renl2
1 (·, ·). If it is from the space boundary, then

the walker does not get too close to the bad box and B′
t would still be verified for all

t . Moreover, as long as the walker is in the 2-enlargement, identity coupling can be
applied successfully. In the other case, if the walker enters from the time boundary,
then it could eventually reach the bad box but the environment in the 2-enlargement of
the bad box will be coupled before that. In particular, the environments will be coupled
at all times in T enl1

1 (·, ·) thanks to the abundance of �-updates in T enl2
1 (·, ·)\T enl1

1 (·, ·).
This reasoning gives that the relative distance between the walkers does not change
and the graphs remain coupled in E(Senl21 (i))when the walker cross a bad box of scale
1.

In the lemma below we will require m to be large enough so that the following
holds:

For any (k, i, τ ) and any (i ′, τ ′) so that Rcore
k+1(i

′, τ ′) intersects Rk(i, τ )
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we obtain that

Rk+1(i
′, τ ′) contains all k-boxes that intersectsRenl2

k (i, τ ),

and Sinnk+1(i
′) contains Senl2k (i). (5.10)

Lemma 5.8 (Identity coupling in enlargement of bad boxes) Let m be large enough
so that (5.10) holds. Let Rk(i, τ ) be a bad box of scale k such that Rk+1(i ′, τ ′)
is good for some (k + 1)-box for which Rcore

k+1(i
′, τ ′) ∩ Rk(i, τ ) �= ∅. Denote with

τ+
k = max T enl2

k (τ ), and with τ−
k = min T enl2

k (τ ). Let sc be a time at which the
walker enters Renl2

k (i, τ ) so Xsc ∈ Senl2k (i) but Xsc− /∈ Senl2k (i) or sc = τ−
k . Let

se = inf{t ∈ (sc, τ
+
k ] : Xt /∈ Senl2k (i)} the first time the walker exits Renl2

k (i, τ ) after
sc; we take the convention that se = τ+

k if Xt ∈ Senl2k (i) for all t ∈ [sc, τ+
k ]. Thus

if B′
sc holds, then for all t ∈ [sc, se]�t remains unchanged and B′′

t holds; (5.11)

consequently, identity coupling succeeds during [sc, se]. Moreover,

if sc > τ−
k , the walker does not enter Renl1

k (i, τ ). (5.12)

Ultimately, letting J = {
j : Sk( j) ∩ Senl2k (i) �= ∅},

if sc = τ−
k , then η�

t (e) = η�
t (�t (e)) for all e ∈ E(S inn

k (J ))

and all t ∈ [sc, se] with t ≥ min T enl1
k (τ ). (5.13)

The proof uses induction on k, so we treat the case k = 1 separately.

Proof of Lemma 5.8 for k = 1 We start with the case sc > τ−
1 , meaning that the walker

entered the 2-enlargement of the bad box from ∂sRenl2
1 (i, τ ). We need to estab-

lish (5.11) and (5.12) in this case. We establish (5.12) by showing that the walker
never gets closer than 12� from Senl11 (i). To see this, from (5.10) we have that
R2(i ′, τ ′) contains the 2-enlargement of R1(i, τ ), and R2(i ′, τ ′) is a good box. More-
over, Remark 2.17 gives that the 1-enlargement of R1(i, τ ) contains all bad 1-boxes
inside R2(i ′, τ ′), and Lemma 2.23 gives that the distance between the walker and
Senl11 (i) is at least 12�, establishing (5.12). To establish (5.11), note that the walker
only traverses good boxes during [sc, se], so (5.11) follows from 5.7.

Now we consider the case sc = τ−
1 , and need to establish (5.11) and (5.13). The

idea in this case is to use the time interval between sc and min T enl1
1 (τ ), which is large

enough for the graphs to couple. In fact, applying Lemma 5.3 to the box R2(i ′, τ ′)
from time sc, we obtain a time s ∈ [sc, sc + 2t2] so that S2(i ′) is coupled. From this
time onwards Lemma 5.5 gives that Sinn2 (i ′) ⊃ Senl21 (i) remains coupled up to time
se. From Lemma 2.22 we know that the walker does not leave Sinn2 (i ′) during [sc, se].
So if identity coupling succeeds up to time sc + 2t2, then it succeeds up to time se.
Moreover, note that 2t2 = 12t2/m = 12t1 is smaller than the distance between sc and
min T enl1

1 (τ ), which is 15t1. So Sinn2 (i ′) couples before the walker can enter Renl1
1 (i, τ )

and (5.13) is established.
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It remains to show that the coupling succeeds andB′′
t holds for all t ∈ [sc, sc+2t2],

completing the proof of (5.11). For this, we only need to note that during this time
interval the walker only traverses good 1-boxes, so (5.11) follows from Lemma 5.7. ��

Proof of Lemma 5.8 for k ≥ 2 We have already established the case k = 1. Now we
proceed via induction. Assume all claims of the lemma are proved up to scale k − 1.
Let Rk(i, τ ) be a bad box and Rk+1(i ′, τ ′) as in the statement of the lemma be a good
box. All bad boxes in Rk+1(i ′, τ ′) are contained in Renl1

k (i, τ ).
We first prove the case sc > τ−

k , which requires establishing (5.11) and (5.12). In
this case we use the same argument as in the case k = 1; that is, (5.12) follows from
Lemma 2.23. To show that identity coupling can be performed and B′′

t holds, notice
that if at time sc the walker is inside a bad box Rk′′(i ′′, τ ′′) for some k′′ < k, then since
R1(0, 0) is kmax-great, we have that in a previous time the walker was in the boundary
of Renl2

k′′ (i ′′, τ ′′). If there are more than one tuple (k′′, i ′′, τ ′′) satisfying the property
above, we take the one with the largest k′′ (breaking ties arbitrarily if there still are
more than one such tuples). Since the walker must have entered the 2-enlargement
Renl2
k′′ (i ′′, τ ′′) at some time s′′

c , we obtain by induction that while traversing the bad
box Rk′′(i ′′, τ ′′) identity coupling is successful and B′

t holds up to the end of Tk′′(τ ′′),
since (5.13) implies B′

t . Therefore, when the walker leaves Rk′′(i ′′, τ ′′), we can apply
the induction hypothesis again if the walker is inside another bad box. It remains
to check that identity coupling can be performed while the walker passes through
space-time locations that belong to good boxes at all scale, in particular, while the
walker passes through good 1-boxes. But since B′

t holds at that time, identity coupling
succeeds by Lemma 5.7, concluding the proof of (5.11).

We now prove the case sc = τ−
k , which requires establishing (5.11) and (5.13).

Assume that se ≥ min T enl1
k (τ ), otherwise (5.11) follows from the same argument

above and (5.13) is irrelevant. We can do the same argument as for k = 1; i.e., we
show that the time interval between sc and min T enl1

k (τ ) is large enough for the graphs
to couple. By Lemma 5.3 we obtain a time s ∈ [sc, sc + 2tk+1] so that Sk+1(i ′)
is coupled and, by Lemma 5.5, Sinnk+1(i

′) ⊃ Senl2k (i) remains coupled until se. Since
Lemma 2.22 gives that the walker does not leave Sinnk+1(i

′) during [sc, se], if identity
coupling succeeds up to time sc+2tk+1, then it succeeds up to time se. Besides, 2tk+1 =
12 tk+1

k2m
= 12tk is smaller than the distance between sc and min T enl1

k (τ ), which is 15tk .

So Sinnk+1(i
′) couples before the walker can enter Renl1

k (i, τ ) and (5.13) is established.
To establish (5.11), we need to show thatB′′

t holds for all t ∈ [sc, sc+2tk+1], but during
this time the walker only traverses good 1-boxes, so (5.11) follows from Lemma 5.7.

��

Remark 5.9 The 2-enlargement of a bad box is chosen so that whenever the walker
crosses it, by doing identity coupling the two processes have time to couple the envi-
ronment before the walker crosses the bad box. For this exact reason we want the first
box whose core the walker is at, at the beginning of the second phase, to be kmax-great,
so we know that the walker does not start inside the enlargement of a bad box, meaning
that if the walker encountersa bad box during the second phase, it must first traverse
its enlargement.
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5.5 Simple randomwalkmoment

Now we handle the case when the walker traverses great boxes, during which we do
not perform identity coupling but try a different coupling. This coupling will be based
on what we call a simple random walk moment (SRWM), which is a given condition
of the evolution of the environment that makes the walker performs a simple random
walk step.

Definition 5.10 (Simple random walk moment) Let R1(i, τ ) be a great box such that
(Xτ t1 , τ t1) ∈ Rcore

1 (i, τ ). We consider three consecutive intervals I1, I2, I3 of lengths

|I1| = t1
2

and |I2| = |I3| = 1

μ
,

such that I1 begins at time τ t1 = min T core
1 (τ ); note that τ t1+∑3

j=1 |I j | < (τ+2)t1 =
max T core

1 (τ ). Let v ∈ S1(i) be the position of the walker Xτ t1 ; note that since R1(i, τ )

is a good box then all edges adjacent to v at time τ t1 are closed. All the events below
consider only �-updates during I1∪ I2 ∪ I3, ignoring all non-� updates. Then, a simple
random walk moment (SRWM) is said to occur in R1(i, τ ) if the following events
happen consecutively:

(E1) During I1, one of the edges adjacent to v, say e = (v, u), receives an update
to become open, and the edges adjacent to u with status � are sampled closed.
Moreover, the other edges adjacent to v or u do not open during I1, and after e
opens, e does not close for at least time C11

μ
.

(E2) During I2, edge e closes and does not open, while the edges adjacent to e, that
were closed, do not open; note that at the end of I2, the walker is in either u or v.

(E3) During I3, the edges adjacent to u or v do a �-update, and the edges adjacent to
the walker do not open.

See Fig. 4 for an illustrative realization of a simple random walk moment. Define

I
SRWM
(i,τ ) to be the indicator for the event that SRWM occurs in R1(i, τ ). (5.14)

Remark 5.11 Given v, the position of the walker at time τ t1, the event SRWMdepends
only on the updates in E(S1(i)) during the time interval I1 ∪ I2 ∪ I3. In particular, it
does not depend on the jumps of the walkers during I1 ∪ I2 ∪ I3, and does not depend
on non-� updates that could occur during I1 ∪ I2 ∪ I3.

Note that from τ t1 to time τ t1 + |I1 ∪ I2 ∪ I3| the walker essentially performed a
simple random walk step since the edge e adjacent to v that is chosen to open during
I1 is a uniformly random edge. Now assume that the walker enters Rcore

1 (i, τ ) with
R1(i, τ ) being a kmax-great box; i.e., (Xτ t1 , τ t1) ∈ Rcore

1 (i, τ ). We define the coupling
we employ in this situation.

Definition 5.12 (Coupling on great boxes) At time τ t1 both walkers are trapped at
some vertices v = Xτ t1 ∈ Score1 (i) and v = �τ t1(v). Then we perform the following
steps.
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Fig. 4 A possible realization of SRWM in a kmax-great box. a configuration at time τ t1 − t1, with dashed
lines representing closed edges, solid lines representing open edges, and the black ball representing the
walker. b During [τ t1 − t1, τ t1] all edges close, trapping the walker in a vertex v. c During I1, edge (u, v)

adjacent to the walker opens, edges adjacent to u are closed, and the other edges receive a �-update. Blue
lines represent edges that are updated �. d Edge (u, v) closes at some time during I2, trapping the walker
in one of its endpoints, in this case endpoint u. e During I3 all edges adjacent to v receive a �-update, while
the edges adjacent to the walker do not open

1. Sample whether a simple random walk moment occurs in R1(i, τ ). If not, sample
the updates of the edges in S1(i) during I1∪I2∪I3 from the distribution conditioned
on ISRWM

(i,τ ) = 0, apply the coupling of the graphs from Sect. 5.2.1 and apply identity
coupling for the walkers. Identity coupling succeeds since the graphs are coupled
inside S1(i) and we obtain that �t does not change during I1 ∪ I2 ∪ I3. This
concludes the coupling when I

SRWM
(i,τ ) = 0.

2. If ISRWM
(i,τ ) = 1, choose a coordinate j ∈ {1, 2, . . . , d} and a sign s ∈ {−1,+1}

uniformly at random. If v and v agree in that coordinate, let e = (v, v + se j ) and
e = (v, v + se j ) be the edges chosen to open during I1 in the configurations η�

and η�, respectively, where e1, e2, . . . , ed stands for the standard basis of Zd . In
this case, during I2, we let the walkers perform the same jumps across e and e (i.e.,
we perform identity coupling), and note that �t maps e into e during this time.
Then we couple the graphs using �t , as described in Sect. 5.2.1, until the end of
I3. In this case, the map �t does not change during I1 ∪ I2 ∪ I3.

3. If ISRWM
(i,τ ) = 1, and v and v do not agree in the j th coordinate,we set e = (v, v+se j )

and e = (v, v − se j ). This is the most delicate case as we will need to change the
coupling of the graphs from the time e opens to the end of I1 ∪ I2 ∪ I3. For this, we
will use themap �̃whichmaps v to v and is a translationmap in all coordinates but
the j th one, where it is a reflection map around e. In particular, �̃ maps e onto e.
Then the graphs will be coupled as in Remark 5.2; that is, the graphs are coupled as
in Sect. 5.2.1 but using themap �̃ instead of�t . Note that any update to e translates
to an update of e, so they open at the same time and close at the same time. Let ζ
be the time that e and e open for the first time during I1. Then, they remain open
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during [ζ, ζ + C11/μ] since ISRWM
(i,τ ) = 1. We couple the position of the walkers at

time ζ + C11/μ as follows. Let δ be the probability that Xζ+C11/μ = v and 1− δ

be the probability that Xζ+C11/μ = u. Then we make Xζ+C11/μ = X ζ+C11/μ with
probability min {δ, 1 − δ}; otherwise, we sample them accordingly. Then, we let
the graph and thewalkers evolveup to the endof the interval I1∪I2∪I3, coupling the
jumps of the walkers so that they jump at the same times after time ζ +C11/μ; note
that the walkers do not move after e and e close for the first time after ζ +C11/μ.

Now, let s = τ t1+|I1∪ I2∪ I3| be the end time of the simple randomwalkmoment.
Note that if SRWM occurs then ‖Xs − Xs‖1 may differ from ‖X1

τ t1 − X2
τ t1‖1, and

as a result the translation map �s may be different from �τ t1 as well. So it could be
the case that an edge that was coupled before the simple random walk moment (in the
sense that ητ t1(e

′) = ητ t1(�τ t1(e
′))) may get uncoupled because the map � changes.

On the other hand, after I1 all the edges in the box receive a � update. So at the end of
the SRWM, all edges in S1(i) are � with the only exception being the edges adjacent
to the walker which are closed. So the configurations are coupled locally, in particular,
B′
s holds. Moreover, as R1(i, τ ) is great (so it is also good) the particles will stay

in S1(i) for the whole time interval T1(τ ). In other words we obtain that the edges
in S1(i), where the random walk moment is occurring, are coupled after the simple
random walk moment ends.

More formally, we will implement this by assigning a “hidden” random variable
to each 1-box, which tells whether the box will undergo a SRWM should the walker
pass there. We will not try the above coupling at each great box the walker enters,
since we do need a bit of time separation between two simple random walk moments
because of the overlapping of the boxes. But whenever we decide to attempt a simple
random walk moment inside a great box the walker is in, the hidden random variable
will tell whether SRWM occurs. The main point is that we can obtain a lower bound

on P

(
I
SRWM
(i,τ ) = 1

)
that is uniform on the location of the walker at time τ t1. Because

of this uniform bound, we can couple the outcome of the hidden variable with the
evolution of the processes M�

t and M
�

t so that the simple random walk moment takes
place, regardless of the location of the walker within the box. The content of the

hidden variable is just a Bernoulli random variable of parameter C12 p
6d−1
6d , which is

the bound we derive in Lemma 5.14 below, so the event of successfully performing
a SRWM stochastically dominates the hidden variable. Whenever we decide to look
at the hidden variable of a box, we perform the coupling described above. Otherwise,
we just do identity coupling.

Before establishing a bound on P

(
I
SRWM
(i,τ ) = 1

)
we need to show that the environ-

ments recouple locally after a SRWM.

Lemma 5.13 (Recoupling the graphs after SRWM) Let R1(i, τ ) be a kmax-great box
such that Xτ t1 ∈ Score1 (i) and B′′

τ t1 holds. Suppose the walkers perform successfully a
simple random walk moment. Then

η�
t (e) = η�

t (�t (e)) for alle ∈ E(Senl21 (i)) and all t ∈ [s, (τ + 1)t1],

where s = τ t1 + |I1 ∪ I2 ∪ I3| + t1.
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Proof R1(i, τ ) is kmax-great, and in particular 1-great. Thus, every 1-box R( j, τ ) such
that S1( j)∩ Senl21 (i) �= ∅ is good. After s − t1 = τ t1 +|I1 ∪ I2 ∪ I3|, we have that the
edges in S1(i) are coupled and we start performing identity coupling of the walkers.
The coupling is succeessful so �t does not change from that moment onwards and all
edges in S1( j) with S1( j) ∩ Senl21 (i) �= ∅ receives a �-update and couples. ��

Nowwe bound the probability of a SRWM.Recall fromDefinition 2.7 that the event
that a box R1(i, τ ) is good is based on the events G12(i, τ ) and Ĝ34(i, τ ). Define J to
be the set of all tuples (i, τ ) such that R1(i, τ ) is a box of the tessellation of the second
phase. Let � = {0, 1}2J be the set of all possible assignments of occurrence or non
occurrence to the events G12(i, τ ) and Ĝ34(i, τ ). Then for each σ ∈ � and each (i, τ ),
the values σ12(i, τ ) and σ34(i, τ ) will be used to specify whether the events G12(i, τ )

and Ĝ34(i, τ ) occur, respectively. In this way, given σ ∈ �, we abuse notation and
denote by σ the event that the realizations of G12(i, τ ) and Ĝ34(i, τ ) match the values
of σ12(i, τ ) and σ34(i, τ ) for each (i, τ ) ∈ J , and write P(· | σ) for the corresponding
conditional probability. More precisely,

P (· | σ) = P

⎛

⎝·
∣∣∣∣

⋂

(i,τ )∈J
{σ12(i, τ ) = 1 (G12(i, τ ))} ∩ {

σ34(i, τ ) = 1
(
Ĝ34(i, τ )

)}
⎞

⎠ .

Note that once we condition on some σ ∈ �, then which boxes of all scales are
good or bad is a deterministic function of σ . Let Ft be the σ -algebra generated by the
trajectory of the walker Xs and the value of the map �s , s ∈ [0, t], and all the updates
of the graph up to time t . Let �i,τ ⊂ � be the set of assignments σ for which R1(i, τ )

is a kmax-great box.

Lemma 5.14 Let (i, τ ) be such that R(i, τ ) is a kmax-great box. There exists p0 > 0
and C12 > 0 such that for all p < p0, for all σ ∈ �i,τ , and all F ∈ Fτ t1 for which
P (σ ∩ F) > 0, then the probability of performing a simple random walk moment in
R1(i, τ ) is

P

(
I
SRWM
(i,τ ) = 1 | F ∩ σ

)
≥ C12 p

6d−1
6d . (5.15)

Proof Start with the following simplification of σ . Recall the definition of j(τ )

from (2.9). So j(τ ) and j(τ + 1) are the first and last interval of the type T 1(·)
inside T1(τ ). Recall that σ34(·, ·) correspond to the events Ĝ34(·, ·), which are i.i.d.
events coupled with the events G34(·, ·). Since G34(·, ·) are independent of G12(·, ·)
by Lemma 2.4, we have that also Ĝ34(·, ·) are independent of G12(·, ·). Moreover, for
any x , we have that G34(i ′, τ ) is independent of Fτ t1 since G34(i ′, τ ) only considers
updates on the edges during the interval T core

1 (τ ) \ T1(τ + 1). Since for any fixed
x we have that G34(i ′, τ ′) are independent for different s, we have that Ĝ34(i ′, τ ) is
independent of Fτ t1 . So now we collect in J34 all tuples from J for which I

SRWM
(i,τ )

depend on σ34(·, ·):

J34 = {
(i ′, τ ) : S1(i ′) ∩ S1(i) �= ∅} and J ′ = J \ J34.
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We will not need to split σ12(·, ·) into two groups since those events are already
independent of ISRWM

(i,τ ) .
For any σ ∈ � denote

S = S(σ ) =
⋂

(i ′,τ ′)∈J
σ12(i

′, τ ′)
⋂

(i ′,τ ′)∈J ′
σ34(i

′, τ ′)

S34 = S34(σ ) =
⋂

(i ′,τ ′)∈J34

σ34(i
′, τ ′).

Then,

P

(
I
SRWM
(i,τ ) = 1 | F ∩ σ

)
= P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ F ∩ S ∩ S34

)

≥
P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ F ∩ S
)

− P

(
Sc
34

∣∣∣∣ F ∩ S
)

P

(
S34

∣∣∣∣ F ∩ S
)

≥ P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ F ∩ S
)

− P

(
Sc
34

∣∣∣∣ F ∩ S
)

.

Note that T core
1 (τ )\T1(τ + 1) ⊃ I1 ∪ I2 ∪ I3, so I

SRWM
(i,τ ) does not depend on F ∩ S

given the position of the walker at time τ t1. Letting S′
1(i) = ⋃

u∈Score1 (i) B
∞
log2 �

(u),

which are the places where the walker can be at time τ t1, we write

P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ F ∩ S
)

=
∑

v∈S′
1(i)

P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ F ∩ S ∩ {
Xτ t1 = v

})

P

(
Xτ t1 = v

∣∣∣∣ F ∩ S
)

=
∑

v∈S′
1(i)

P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ Xτ t1 = v

)
P

(
Xτ t1 = v

∣∣∣∣ F ∩ S
)

We are left with the following lower bound on P

(
I
SRWM
(i,τ )

)

= 1 | F ∩ σ :

∑

v∈S′
1(i)

P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ Xτ t1 = v

)
P

(
Xτ t1 = v

∣∣∣∣ F ∩ S
)

− P

(
Sc
34

∣∣∣∣ F ∩ S
)

≥ inf
v∈S′

1(i)
P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ Xτ t1 = v

)
− P

(
Sc
34

∣∣∣∣ F ∩ S
)

. (5.16)
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Westartwith thefirst term in (5.16) to derive a lower boundonP

(
I
SRWM
(i,τ ) =1

∣∣∣∣Xτ t1 =v

)

that is uniform in v. Since ISRWM
(i,τ ) is composed of the events E1, E2 and E3, which are

independent of one another since they involve disjoint time intervals, we will derive a
lower bound for each of them. For the event E1, we will require that an edge adjacent
to v (call it e) opens during the first half of I1, so that e has time to remains open for
time C11/μ during I1. Recall that I1 has length t1/2, so its first half has length t1/4,
and the rate at which an edge opens due to a �-update is μp�

pmin
p�

= μpmin, and the
rate at which an edge close due to a �-update is 1 − pmax. We obtain

P

(
E1

∣∣∣∣ Xτ t1 = v

)
=

(
1 − e−2dμpmin

t1
4

)(
1 − pmax

p�

)2d−1

e−(4d−2)μpmin
t1
2 e−μ(1−pmax)

C11
μ .

In the product above, the first term corresponds to an edge adjacent to the walker (call
it e) opening during the first half of I1, the second term is the probability that all 2d−1
edges adjacent to e are closed at that time, the third term is the probability that none
of the 4d − 2 edges adjacent to e open until the end of I1, and the fourth term is the

probability that e remains open for at least time C11/μ. Recalling that t1 =
√

�
μ

and

that � = p− 1
3d we obtain

P

(
E1

∣∣∣∣ Xτ t1 = v

)
=

(
1 − e−dpmin

√
�
2

)(
1 − pmax

p�

)2d−1

e−(2d−1)pmin
√

�

e−C11(1−pmax).

Using that p� ≤ 1 in the second term, pmin ∈
[

p
1+q , p

]
in the first and third terms, and

pmax ≥ 0 in the fourth term, and thenmaking p small enough so that pmin ≤ pmax ≤ 1
2

and e−d p
1+q

√
�
2 ≤ 1 − dp

√
�

4(1+q)
we obtain

P

(
E1

∣∣∣∣ Xτ t1 = v

)
≥

(
1 − e−d p

1+q

√
�
2

)
(1 − pmax)

2d−1 e−(2d−1)p
√

�e−C11

≥ dp
√

�

4(1 + q)
2−2d+1e−(2d−1)p

√
�e−C11

= e−C11d

22d+1(1 + q)
p
√

�e−(2d−1)p
√

�.

Now note that p
√

� = p1− 1
6d goes to 0 as p → 0. Thus, we can take p small enough

so that p
√

�e−(2d−1)p
√

� ≥ p
√

�
2 to otain

P

(
E1

∣∣∣∣ Xτ t1 = v

)
≥ e−C11d

22d+2(1 + q)
p
√

� = e−C11d

22d+2(1 + q)
p1−

1
6d . (5.17)
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The event E1 is the main one governing the probability that SRWM occurs, since it
involves the opening of an edge, which has small probability. For E2 and E3 we will
just derive simple bounds that will not go to 0 as p → 0. Recall that I2 and I3 are
time intervals of length 1/μ, so

P

(
E2

∣∣∣∣ Xτ t1 = v

)
=

(
1 − e−μ(1−pmax)

1
μ

)
e−μpmin

1
μ e−(4d−2)μpmin

1
μ ,

where the first term is the probability that e has a �-update to close, the second term
is the probability that e does not get a �-update to open, and the final term is the
probability that all 4d−2 edges adjacent to e do not receive a �-update to open. Recall
that pmin and pmax both go to 0 as p → 0, so we obtain that

P

(
E2

∣∣∣∣ Xτ t1 = v

)
≥ 1 − 1

2e
. (5.18)

Regarding E3, we obtain

P

(
E3

∣∣∣∣ Xτ t1 = v

)
=

(
1 − e−(2d−1)μp�

1
μ

)
e−2dμpmin

1
μ ≥ 1 − 1

2e2d−1 , (5.19)

where the inequality follows for all small enough p since p� → 1 and pmin → 0 as
p → 0. Putting (5.17), (5.18) and (5.19) together we have a constant c = c(d, q) so
that for all small enough p we obtain

P

(
I
SRWM
(i,τ ) = 1

∣∣∣∣ Xτ t1 = v

)
≥ cp1−

1
6d .

Plugging the bound above into (5.16), we obtain

P

(
I
SRWM
(i,τ ) = 1 | F ∩ σ

)
≥ cp1−

1
6d − P

(
Sc
34

∣∣∣∣ F ∩ S
)

. (5.20)

Now as we explained in the beginning of the proof, S34 is independent of Fτ t1 and of
S. Moreover, S34 is composed of an intersection of independent events Ĝ34(·, τ ) since
σ ∈ �i,τ so that R1(i, τ ) is kmax-great. Therefore,

P

(
I
SRWM
(i,τ ) = 1 | F ∩ σ

)
≥ cp1−

1
6d − P

⎛

⎝
⋃

(i ′,τ )∈J34

Ĝc
34(i

′, τ )

⎞

⎠

≥ cp1−
1
6d −

∑

(i ′,τ )∈J34

P
(
Ĝc
34(i

′, τ )
)

≥ cp1−
1
6d − 5d exp

(
−C6 log

2 �
)

,

where the last inequality follows from Lemma 2.6. Since as p → 0 the second term
is much smaller than the first one, the lemma follows. ��
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5.6 Concluding the second phase

Recall that for simplicity we are assuming that (X0, 0) = (0, 0), and recall the value
of �2 from (5.2). Denote with Id : V → V the identity map, then we define

F2 = {(0, 0) iskmax-great} ∩ {��2 = Id} ∩ B′
�2

. (5.21)

If F2 is verified, the second phase is successful and the third phase can start, otherwise
we let the two processes evolve independently until the end of phase 3, and only then
restart the coupling from phase 1.

Lemma 5.15 Assume F1 is verified at time 0. For any δ > 0 and for all p small enough,
there exists C10 = C10(d, p, δ) > 0 in the definition of �2 and n0 < ∞ such that for
all n > n0

P(F2) ≥ 1 − δ.

Proof Let P be any feasible path and consider

ϒP
1 = inf

{
τ > 0 : (P(τ t1), τ t1) ∈ Rcore

1 (i, τ ) where R1(i, τ ) is akmax-great box
}
,

ϒP
j = inf

{
τ > ϒP

j−1 : (P(τ t1), τ t1) ∈ Rcore
1 (i, τ ) where R1(i, τ ) is akmax-great box

}
,

for j ≥ 2. For any feasible path P we let κP be the largest value such that ϒP
κP ≤

�2
t1

− 2. Recall that � represents the set of all possible realizations of occurrences and

non occurrences for the events G12(·, ·) and Ĝ34(·, ·), so the good and bad boxes at all
scales are deterministic functions of σ . Let F(σ ) be the set of all feasible paths for a
given σ . Given the uniform bound from Lemma 5.14, we let Y1,Y2, . . . be a sequence

of i.i.d. Bernoulli random variables of parameter C12 p
6d−1
6d where Y j gives whether

the j th SRWM will succeed when we try to perform it during the coupling. Let

ζ = C8C10

4
√

�
n2 = C8

4t1
�2, (5.22)

where C8 is from Lemma 2.25 and C10 from the definition of �2 in (5.2). Define the
following events

E1 =
{∑ζ

j=1
Y j ≥ c0n

2
}

, with c0 to be chosen later, and

E2 = {κP ≥ ζ for all feasible paths P ∈ F(σ )} .

In this stage we want to couple the position of the walkers. From Lemma 5.8, by doing
identity coupling whenever the walkers are not in a great box, their relative distance
does not change. Their relative distance changes only when they are in a great box
and a simple random walk moment is successfully performed. Let Ecoup = {��2 =
Id} ∩ B′

�2
. Hence
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P(Fc
2 ) ≤ P ((0, 0) is not kmax-great) + P

(
E1 ∩ E2 ∩ Ec

coup

)
+ P

(
Ec
1

) + P
(
Ec
2

)
.

We start by bounding the first term. Notice that {(0, 0) is not kmax-great} does not
depend on the configuration at time 0. Moreover, at time 0, the walkers are stuck in a
vertex, so Xs has to leave R1(0, 0) from the time boundary if R1(0, 0) is a good box.
Using Lemmas 2.8 and 2.15 to bound ρ j , we obtain

P ((0, 0) is not kmax-great) ≤ cd

kmax∑

j=1

ρ j ≤ cd

⎛

⎝ρ1 +
kmax∑

j=2

ρ2k−2

1

⎞

⎠ ≤ 3cdρ1 ≤ δ

4
,

where cd is a constant that counts the number of boxes whose 2-enlargement intersects
R1(0, 0), and the last inequality follows for all p small enough. Next we bound

P

(
E1 ∩ E2 ∩ Ec

coup

)
≤ δ

4
.

Under E1 ∩ E2, we know we performed at least c0n2 simple random walk moments.

So, P
(
E1 ∩ Ec

coup

)
can be bounded by the probability that two random walkers per-

forming SRW on T
d
n are not coupled after c0n2 steps. Taking c0 = c0(d, δ) large

enough we obtain that they have coupled with probability at least 1 − δ
4 .

Next, we bound P
(
Ec
2

)
. From Lemma 5.1, with probability at least 1−ρ2kmax−3

1 , all
kmax-boxes in the tessellation are good. Thus, Lemma 2.25 gives that while traversing
the first good kmax-great box any feasible paths will traverse at least

C8
tkmax

t1

kmax-great 1-boxes. After the feasible path exits the first kmax-great box, it enters into
another one and we obtain again another set of kmax-great 1-boxes. The total number
of steps we can iterate this procedure up to reaching time �2 is

�2
2tkmax

− 1 ≥ �2
4tkmax

.
Therefore, any feasible path must traverse at least

C8
tkmax

t1

�2

4tkmax

= C8
�2

4t1
= ζ

kmax-great boxes. Hence,

P
(
Ec
2

) ≤ ρ2kmax−3

1 ≤ δ

4
,

by simply having n large enough.
Finally we bound P

(
Ec
1

)
. This is a simple Chernoff bound for the sum of indepen-

dent Bernoulli random variables, where P(Y j = 1) = C12 p
6d−1
6d . Since
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E

⎛

⎝
ζ∑

j=1

Y j

⎞

⎠ = C12 p
6d−1
6d ζ = C8C10C12

4

p
6d−1
6d√
�

n2 = C8C10C12

4
p

1
6d + 6d−1

6d n2

= C8C10C12

4
pn2.

Now we take C10 large enough so that the above is larger than 2c0n2, which gives a
constant c so that

P
(
Ec
1

) ≤ exp

⎛

⎝−cE

⎛

⎝
ζ∑

j=1

Y j

⎞

⎠

⎞

⎠ ≤ exp
(
−c2c0n

2
)

≤ δ

4
,

where the last inequality follows by taking n large. ��
To conclude the second phase, once the walkers are coupled after one SRWM, we

just perform identity coupling up to time�2. If t is a timewhere a SRWMended, notice
that Lemma 5.13 gives that B′

t holds. So we succeed performing identity coupling up
to �2 by Lemmas 5.6, 5.7 and 5.8.

6 Third phase

The third phase starts at time �2, at which time the walkers are coupled and B′
�2

holds. During the third phase we let M
�

t mimic the evolution of M�
t by doing identity

coupling on both the motion of the walkers and the updates of the edges. We now
check whether the processes are fully coupled by time �3 = �2 + n2

μ
.

Define

F3 =
{
X�3 = X�3 and η�

�3
(e) = η�

�3
(e)∀e ∈ E(T)dn

}
. (6.1)

If F3 is not verified, we restart the coupling at time �3 from phase 1.

Lemma 6.1 For any δ > 0, if p is small enough and n large enough, we obtain

P (F3) ≥ 1 − δ. (6.2)

Proof Recall that boxes contained in [0,�3] have been sampled as good or bad during
the second phase. ByLemmas 5.6, 5.7 and 5.8, identity coupling is successful provided
we cannot enter a bad box without first entering its 2-enlargement. Therefore, for the
walkers to get uncoupled during [�2,�3], it must so happen that the walkers entered
a bad box of some scale k whose 2-enlargement intersects [0,�2] and which was not
observed during the second phase because it is not contained in [0,�3]. We now count
the number of such boxes.

We start by deriving bounds on �k and tk , the size of the boxes of scale k, for which
the above can happen. When k ≥ kmax, we can choose n large enough so that for any
m, � fixed
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2�k2k ≤ �k = mk(k!)2� ≤ �k3k,

2
√

�k2k ≤ μtk = mk(k!)2√� ≤ √
�k3k .

Recall that kmax = log2 log n from (5.1). Then,μtkmax ≤ √
�k

3 log2 log n
max ismuch smaller

than a polynomial in n. Therefore, any box whose enlargement intersects [0,�2] and
is not contained in [0,�3] must be of scale larger than kmax. So

P (F3) ≥ 1 − P

(
∃ k > kmax : Rk(i, τ ) is bad and �3 ∈ T enl2

k (τ )
)

.

Next, using the bounds we derived above for �k and tk , the number ζk of boxes of scale
k that intersect Td

n × �3 is bounded above and below by

ζk ≥
(

n

3�k

)d

24 ≥ 24nd

3d�dk3dk
,

ζk ≤1 + 24

(
n

�k

)d

≤ 1 + 24nd

�dk2dk
.

In the upper bound of ζk we add a 1 to the fraction to consider the case when k is so
large that we cannot find a box all contained in the tessellation. Using Lemma 2.15
the probability that there exists a box of scale kmax or bigger that is bad is bounded
above by

∑

k≥kmax

ζkρk ≤
∑

k≥kmax

ζkρ
2k−2

1 ,

moreover using the inequalities above for ζk it is easy to see that, for any k ≥ kmax,

∑

k≥kmax

ζkρk ≤ 2ζkmaxρ
2kmax−2

1 .

Since 2kmax = log n, by taking p small enough we make ρ1 small enough, which gives
that

P(F3) ≥ 1 − δ.

��

7 Completing the proof of Theorem 1.1

Proof of Theorem 1.1 Let {M�
t }t≥0 and {M�

t }t≥0 denote two copies of the process, each

starting from an arbitrary configuration in T
d
n × {0, 1}E(Td

n ). Recall the events F1, F2
and F3 from (4.3), (5.21) and (6.1). If the three events hold then X�3 = X�3 and
η�

�3
≡ η�3

. So from �3 onwards we can keep the processes coupled. We can now set
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δ = 1
12 so that F1 ∩ F2 ∩ F3 all hold with probability at least 3

4 . If any of the above
fails, we just let the processes evolve independently up to time �3 and restart from
scratch. Since �3 is of order n2/μ from (5.2), we obtain that the mixing time is of
order n2 concluding the proof. ��

8 Proof of the lower bound (Theorems 1.2 and 1.3)

The proof of the lower bounds are identical to the ones in [11]. We add them here for
completion.

Proof of Theorem 1.2 First we introduce a discrete time Markov chain M̃k = (X̃k, η̃k)

which is defined by sampling the continuous time chain Mt = (Xt , ηt ) on intervals
of length δ; that is,

X̃k = Xkδ and η̃k = ηkδ,

where δ is given from (1.4). Let γ̃ = γ̃ (M̃) and γ = γ (M) be the spectral gaps of
the discrete time and continuous time chain, respectively. We obtain

1 − γ̃ = exp (−δγ ) .

For all γ̃ ≤ 1/2 we simply use the bound γ ≤ 2γ̃
δ
. The lower bound on the relaxation

time follows by taking the function f (x, ξ) = d(x, 0), so f (Xt , ηt ) is the distance
between the walker and the origin ofTd

n . Since the stationary distribution of the walker
is uniform by (1.3), it follows that Var( f ) ≥ cn2 for some constant c > 0. Moreover,
from (1.4), we have

E( f , f ) = 1

2

∑

x,ξ

π(x)ν(ξ)
∑

x ′,ξ ′
P((x, ξ), (x ′, ξ ′))

(
d(x, 0) − d(x ′, 0)

)2

≤ 1

2
Ex∼π

(
D2
x,δ

)
≤ 1

2
C2,

where Ex∼π denotes the expectation where x is a random variable sampled according
to π , the uniform measure on T

d
n . From the above we obtain

γ̃ ≤ C2

2cn2
.

If the above is at most 1/2 we obtain

γ ≤ C2

cn2δ
.

Otherwise, if γ̃ ≥ 1/2 we obtain that γ is of order 1/δ. The above establishes the
relaxation time of the chain. ��
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Proof of Theorem 1.3 We use the following nice result from [9], which appeared
implicitly already in [3].

Lemma 8.1 Let {Yk}k∈Z be a discrete-time, stationary, reversible Markov chain with
finite state space S, and let h : S → R

m for some m ∈ Z+. Then, for each k ≥ 0

E

(
‖h(Yk) − h(Y0)‖2L2

)
≤ kE

(
‖h(Y1) − h(Y0)‖2L2

)
,

where ‖ · ‖L2 denotes the Euclidean norm on Rm.

Letting gn : Td
n → R

2d the function

gn(x1, x2, . . . , xd) = (n) cos (2πx1/n) , n sin (2πx1/n) , . . . , n cos (2πxd/n) ,

n sin (2πxd/n) .

For x ∈ T
d
n and ξ ∈ {0, 1}E

(
T
d
n
)
we let h(x, ξ) = gn(x). Then, noting that gn is

bi-Lipschitz with some constant c we have

Eπ×ν

(
‖X̃k − X̃0‖21

)
≤ c2Eπ×ν

((
gn(X̃k) − gn(X̃0)

)2)

≤ c2kEπ×ν

((
gn(X̃1) − gn(X̃0)

)2)

≤ c4kEπ×ν

(
‖X̃1 − X̃0)‖22

)
≤ c4kEπ×ν

(
D2

X̃0,δ

)
≤ c4C2k.

Hence for any t ≥ δ we have

Eπ×ν

(
‖Xt − X0‖21

)
≤ c4C2� t

δ
� ≤ 2c4C2

t

δ
.

Now for the total variation starting from a stationary environment, we simply make

‖υt − π × ν‖TV ≥ P

(
‖Xt − X0‖1 ≤ ε1/dn

)(
1 − 2ε

3

)

=
(
1 − P

(
‖Xt − X0‖1 ≤ ε1/dn

))(
1 − 2ε

3

)

≥
(

1 − E
(‖Xt − X0‖21

)

ε2/dn2

)(
1 − 2ε

3

)

≤
(
1 − 2c4C2t

δε2/dn2

)(
1 − 2ε

3

)
.

Therefore, if t ≤ ε
2+d
d δn2

6c4C2
we have that ‖υt − π × ν‖TV ≥ 1 − ε. ��
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9 Proof of Corollary 1.4

In order to apply the above to the random walk on dynamical random cluster model,
we first need a certain sprinkling lemma for the random cluster model. Given q ≥ 1
and p > 0, let νp,q be the measure of a random cluster model with parameters p, q.
Let η be a configuration sampled from νp,q . We construct a sprinkling by associating
to each edge e an independent Bernoulli random variable Z(e) of parameter ε. Define
the configurations

(η + Z) (e) = 1 (η(e) + Z(e) ≥ 1) for e ∈ E(Td
n)

and

(η − Z) (e) = 1 (η(e)(1 − Z(e)) = 1) for e ∈ E(Td
n).

So η+Z (resp., η−Z ) is the configuration obtained from η by opening (resp., closing)
all edges e with Z(e) = 1. Given two elements ξ, ξ ′ of {0, 1}E(Td

n ) we say that ξ ≤ ξ ′
if ξ(e) ≤ ξ ′(e) for all e ∈ E(Td

n).

Lemma 9.1 (Sprinkling lemma) Let q ≥ 1, 0 < p < p′ < 1 and ε > 0 be fixed. Let{
Z(e) : e ∈ E(Td

n)
}
be a collection of i.i.d. Bernoulli random variables of parameter

ε. Let η and η′ be random configurations with distributions νp,q and νp′,q , respectively.
If

ε + (1 − ε)p ≤ p′ and ε + (1 − ε)
p

p + (1 − p)q
≤ p′

p′ + (1 − p′)q
(9.1)

then there exists a coupling between ν, ν′, Z such that (η + Z) ≤ η′. Similarly, if

(1 − ε)p′ ≥ p and (1 − ε)
p′

p′ + (1 − p′)q
≥ p

p + (1 − p)q
(9.2)

then there exists a coupling between ν, ν′, Z such that
(
η′ − Z

) ≥ η.

Proof Let {ηt }t and
{
η′
t

}
t be the single-site Glauber dynamics Markov chains on

the random cluster model with parameters (p, q) and (p′, q), respectively. Let {Zt }t
be a Glauber dynamics Markov chain on the state space {0, 1}E(Td

n ) with stationary
distribution given by a product of Bernoulli measures with parameter ε. Start with
arbitrary configurations such that η0 ≡ η′

0 and Z0(e) = 0 for all e ∈ E(Td
n). Assume

that ηt + Zt ≤ η′
t at some time t . We will show that we can couple the next transition

of the chains so that ηt+1 + Zt+1 ≤ η′
t+1. This establishes the lemma. For any edge e

and configuration η, let

α(e, η) = 1 (e is a cut-edge in η) .

In the coupling we will choose the same edge to be updated in all chains. Let e be
such an edge. Then, note that
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P
(
(ηt+1 + Zt+1) (e) = 1 | ηt , η

′
t , Zt

)

= ε + (1 − ε)

(
α(e, ηt )

p

p + (1 − p)q
+ (1 − α(e, ηt )) p

)
.

Since ηt ≤ η′
t we have that α(e, ηt ) ≥ α(e, η′

t ). So if α(e, ηt ) = 0 we have that
α(e, η′

t ) = 0, which gives

P
(
(ηt+1 + Zt+1) (e) = 1 | ηt , η

′
t , Zt

) = ε + (1 − ε)p ≤ p′

= P
(
η′
t+1(e) = 1 | ηt , η

′
t , Zt

)
,

where in the first inequality we used (9.1). If α(e, ηt ) = 1, then we use the second
part of (9.1) and that p′

p′+(1−p′)q ≤ p′ to write

P
(
(ηt+1 + Zt+1) (e) = 1 | ηt , η

′
t , Zt

) = ε + (1 − ε)
p

p + (1 − p)q

≤ p′

p′ + (1 − p′)q

≤ α(e, η′
t )

p′

p′ + (1 − p′)q
+ (

1 − α(e, η′
t )
)
p′

= P
(
η′
t+1(e) = 1 | ηt , η

′
t , Zt

)
.

Therefore, it follows that we can couple the next transition of theMarkov chains so that
ηt+1 ≤ (ηt+1 + Zt+1) ≤ η′

t+1. Consequently, we can couple the stationary measures
of such chains to obtain that (η + Z) ≤ η′.

For the second part of the lemma,we use the same strategy and analyze the transition
probabilities for η′

t − Zt . We have

P
((

η′
t+1 − Zt+1

)
(e) = 1 | ηt , η

′
t , Zt

)

= (1 − ε)

(
α(e, η′

t )
p′

p′ + (1 − p′)q
+ (

1 − α(e, η′
t )
)
p′
)

.

If α(e, η′
t ) = 1 then α(e, ηt ) = 1, yielding

P
((

η′
t+1 − Zt+1

)
(e) = 1 | ηt , η

′
t , Zt

) = (1 − ε)
p′

p′ + (1 − p′)q
≥ p

p + (1 − p)q

= P
(
ηt+1 = 1 | ηt , η

′
t , Zt

)
.

If α(e, η′
t ) = 0 then

P
((

η′
t+1 − Zt+1

)
(e) = 1 | ηt , η

′
t , Zt

) = (1 − ε)p′ ≥ p

≥ α(e, ηt )
p

p + (1 − p)q
+ (1 − α(e, ηt )) p

= P
(
ηt+1 = 1 | ηt , η

′
t , Zt

)
.

123



A. Lelli, A. Stauffer

Therefore, there exists a coupling such that ηt+1 ≤ (
η′
t+1 − Zt+1

)
and we obtain(

η′ − Z
) ≥ η. ��

Proof of Corollary 1.4 We only need to check that assumptions (1.3) and (1.4) hold for
the random walk on dynamical random cluster model. For any q, p we have that (1.3)
holds. For q ≥ 1, (1.4) holds for all p < pqc using the following argument. Take

p′ = p+pqc
2 ∈ (p, pqc ). Take ε > 0 small enough so that (9.1) is satisfied. We choose

δ = ε/μ and take η to be a random cluster configuration of parameters p, q. Note that
the probability that a given edge gets refreshed during [0, δ] is

1 − e−μδ = 1 − e−ε ≤ ε.

Therefore, if Z(e) is a Bernoulli random variable of parameter of parameter ε, we can
couple Z(e) with the refresh clocks of the dynamical random cluster so that if e gets
refreshed during [0, δ] then Z(e) = 1. Therefore, this coupling gives that Cx ([0, δ])
is contained in the cluster of x inside the configuration η + Z , which by Lemma 9.1
is contained inside η′, a random cluster configuration with parameters p′, q. Then
it follows by the sharpness of the phase transition [5] that the cluster of x in η′ has
an exponential decay, establishing (1.4) and allowing us to obtain the conclusions of
Theorems 1.2 and 1.3 for the random cluster model with q ≥ 1.

Regarding the case q < 1, one can deduce the exponential decay of the cluster
η + Z only when p is small enough. This becames rather trivial as regardless of the
state of the other edges, we obtain that an edge e is open during [0, δ] with probability
at most

max

{
p

p + (1 − p)q
, p

}
+ ε = p

p + (1 − p)q
+ ε

which for small enough p can be made smaller than pc, the critical probability for
independent percolation. ��
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