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Abstract
In Bayesian statistics, posterior contraction rates (PCRs) quantify the speed at which
the posterior distribution concentrates on arbitrarily small neighborhoods of a true
model, in a suitable way, as the sample size goes to infinity. In this paper, we develop a
new approach to PCRs, with respect to strong norm distances on parameter spaces of
functions. Critical to our approach is the combination of a local Lipschitz-continuity
for the posterior distribution with a dynamic formulation of the Wasserstein dis-
tance, which allows to set forth an interesting connection between PCRs and some
classical problems arising in mathematical analysis, probability and statistics, e.g.,
Laplace methods for approximating integrals, Sanov’s large deviation principles in
the Wasserstein distance, rates of convergence of mean Glivenko–Cantelli theorems,
and estimates of weighted Poincaré–Wirtinger constants.We first present a theorem on
PCRs for amodel in the regular infinite-dimensional exponential family,which exploits
sufficient statistics of the model, and then extend such a theorem to a general domi-
nated model. These results rely on the development of novel techniques to evaluate
Laplace integrals and weighted Poincaré–Wirtinger constants in infinite-dimension,
which are of independent interest. The proposed approach is applied to the regular
parametric model, the multinomial model, the finite-dimensional and the infinite-
dimensional logistic-Gaussian model and the infinite-dimensional linear regression.
In general, our approach leads to optimal PCRs in finite-dimensional models, whereas
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for infinite-dimensional models it is shown explicitly how the prior distribution affect
PCRs.

Keywords Bayesian consistency · Laplace method · Posterior contraction rate ·
Regular infinite-dimensional exponential family · Wasserstein dynamics · Weighted
Poincaré–Wirtinger constant

Mathematics Subject Classification 62G20 · 62G05

1 Introduction

Bayesian consistency guarantees that the posterior distribution concentrates on arbi-
trarily small neighborhoods of the truemodel, in a suitableway, as the sample size goes
to infinity [15, 35, 40, 44, 45, 49, 71, 84]. See Ghosal and van der Vaart [50, Chapter 6
and Chapter 7] for a general overview on Bayesian consistency. Posterior contractions
rates (PCRs) strengthen the notion of Bayesian consistency, as they quantify the speed
at which such small neighborhoods of the true model may decrease to zero mean-
while still capturing most of the posterior mass. The problem of establishing optimal
PCRs in finite-dimensional (parametric) Bayesian models have been first considered
in Ibragimov and Has’minskiı̌ [57] and LeCam [59]. However, it is in the works of
Ghosal et al. [49] and Shen andWasserman [73] that the problem of establishing PCRs
have been investigated in a systematic way, setting forth a general approach to provide
PCRs in both finite-dimensional and infinite-dimensional (nonparametric) Bayesian
models. Since then, several methods have been proposed to obtain more explicit and
also sharper PCRs. Among them, we recall the metric entropy approach, in combi-
nation with the definition of specific tests [49, 71], the methods based on bracketing
numbers and entropy integrals [73], the martingale approach [84, 85], the Hausdorff
entropy approach Xing [88], and some approaches based on the Wasserstein distance
[25, 27]. See Ghosal and van der Vaart [50, Chapter 8 and Chapter 9], and references
therein, for a comprehensive and up-to-date account on PCRs.

1.1 Our contributions

In this paper, we develop a new approach to PCRs, in the spirit of the seminal work of
Ghosal et al. [49].We consider a dominated statisticalmodel as a familyM = { fθ }θ∈Θ
of densities, with the parameter space Θ being a (possibly infinite-dimensional) sep-
arable Hilbert space. We focus on posterior Hilbert neighborhoods of a given true
parameter, say θ0, measuring PCRs in terms of strong norm distances on parame-
ter spaces of functions, such as Sobolev-like norms. This assumption on Θ yields a
stronger metric structure onM , as a subset of the space of densities, usually not equiv-
alent to those considered so far by the literature on nonparametric density estimation
(see, e.g., [48, 54, 72, 73, 82, 84, 85]), based on the choice of (pseudo-)distances such
as the Lp-norm, the Hellinger, the Kullback–Leibler, and the chi-square. To the best
of our knowledge, we are not aware of works in the Bayesian literature that deal with
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strong PCRs for density estimation by using constructive tests, as prescribed by the
standard theory, even if this line of research could be pursued as well. As far as we
know, the standard nonparametric approach covers the case of (semi-)metrics which
are dominated by the Hellinger distance (see, e.g., [50, Proposition D.8]).

We present a theorem on PCRs for the regular infinite-dimensional exponential
family of statistical model, and a theorem on PCRs for a general dominated statis-
tical models. The former may be viewed as a special case of the latter, allowing to
exploit sufficient statistics arising from the infinite-dimensional exponential family.
Critical to our approach is an assumption of local Lipschitz-continuity for the posterior
distribution, with respect to the observations or a sufficient statistics of them. Such
a property is typically known as “Bayesian well-posedness” ([77, Section 4.2]), and
it has been investigated in depth in Dolera and Mainini [37, 38]. By combining the
local Lipschitz-continuity with the dynamic formulation of the Wasserstein distance
[5, 12], referred to as Wasserstein dynamics, we set forth a connection between the
problem of establishing PCRs and some classical problems arising in mathematical
analysis, probability and statistics, e.g., Laplace methods for approximating integrals
[22, 87], Sanov’s large deviation principle in Wasserstein distance [19, 58], rates of
convergence of mean Glivenko–Cantelli theorems [1, 7, 17, 36, 39, 46, 58, 78, 79, 86],
and estimates of weighted Poincaré–Wirtinger constants ([14, Chapter 4], [56, Chapter
15]). In particular, our study leads to introduce new results on Laplace methods for
approximating integrals and the estimation of weighted Poincaré–Wirtinger constants
in infinite dimension, which are of independent interest.

Some applications of our main theorems are presented for the regular parametric
model, the multinomial model, the finite-dimensional and the infinite-dimensional
logistic-Gaussianmodel and the infinite-dimensional linear regression. It turns out that
ourmain results lead to optimalPCRs infinite dimension,whereas in infinite dimension
it is shown explicitly how the prior distribution affects PCRs. Among the applications
of our results, the infinite-dimensional logistic-Gaussian model is arguably the best
setting to motivate the use of strong norm distances. In such a setting our approach is
of interest when the ultimate goal of the inferential procedure is the estimation of some
functional Φ( fθ ) of the density [75, Chapter 6] for which the mapping f �→ Φ( f ) is
not continuous with respect to the aforesaid metrics on densities, whereas θ �→ Φ( fθ )
turns out to be even locally Lipschitz-continuous with respect to the Hilbertian metric
on Θ . Thus, strong norms allow to consider larger classes of functionals of density
functions, and then possibly a broader range of analyses. Another motivation in the
use of strong norms comes from the theory of density estimation under penalized loss
functions, with penalizations depending on derivatives of the density, according to the
original Good–Gaskins proposal [55, 74]. As these penalized loss functions are used
to derive smoother estimators, it sounds interesting to derive relative PCRs under the
same loss functions.

1.2 Related works

The most popular classical (frequentist) approaches to density estimation are devel-
opedwithin the following frameworks: (i) a parameter space that is the space of density
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functions, typically endowed with the Lp norm or the Hellinger distance [81], usually
associated to the notion of “strong consistency”; (ii) a parameter space that is the
space of density functions endowed with the Wasserstein distance, under which the
parameter space is metrized according to a (concrete) metric structure on the space of
the observations [16], usually associated to the notion of “weak consistency”. Both
these frameworks are different from the one we consider in this paper, and there-
fore a comparison of our PCRs with optimal minimax rates from Tsybakov [81] and
Berthet and Niels-Weed [16] it is not directly possible. Within the classical literature,
Sriperumbudur et al. [76] considered our statistical framework and provided rates of
consistency under the infinite-dimensional exponential family of statistical models,
though without any formal statement on their minimax optimality. In principle, our
approach to PCRs may be developed within the aforementioned popular statistical
frameworks for density estimation. However, since our approach relies on properties
of the Wasserstein distance that are well-known for parameter spaces with a linear
structure, i.e. Wasserstein dynamics, the framework considered in this paper is the
most natural and convenient to start with. As for the other statistical frameworks for
density estimation, we conjecture that our approach to PCRs requires a suitable for-
mulation of Wasserstein dynamics for parameter spaces with a nonlinear structure.
While such a formulation is available from Gigli [51] and Gigli and Ohta [52], it is
still not clear to us how to exploit it to deal with PCRs.

1.3 Organization of the paper

The paper is structured as follows. In Sect. 2 we recall the definition of PCR, present-
ing an equivalent definition in terms of the Wasserstein distance, and we outline the
main steps of our approach to PCRs. Section3 contains the main results of our work,
that is a theorem on PCRs for the regular infinite-dimensional exponential family of
statistical models, and a generalization of it for general dominated statistical models.
In Sect. 4 we present some applications of our results for the regular parametric model,
the multinomial model, the finite-dimensional and the infinite-dimensional logistic-
Gaussian model and the infinite-dimensional linear regression. Section5 contains a
discussion of some directions for future work, especially with respect to the appli-
cation of our approach to other nonparametric models, such as the popular class of
hierarchical (mixture) models. Proofs of our results are deferred to appendices.

2 A new approach to PCRs

We consider n ≥ 1 observations to be modeled as part of a sequence X (∞) := {Xi }i≥1
of exchangeable random variables, with the Xi ’s taking values in a measurable space
(X,X ). Let (Θ, dΘ) be metric space, referred to as the parameter space, endowed
with its Borel σ -algebra T . Moreover, let π be a probability measure on (Θ,T ),
referred to as the prior measure, and let μ(· | ·) : X × Θ → [0, 1] be a probability
kernel, referred to as the statistical model. The Bayesian approach relies on modeling
the parameter of interest as a Θ-valued random variable, say T , with probability
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distribution π . At the core of Bayesian inferences lies the posterior distribution, that is
the conditional distribution of T given a random sample (X1, . . . , Xn), whenever both
T and the sequence X (∞) are supported on a common probability space (Ω,F ,P).
The minimal regularity conditions that are maintained, and possibly strengthened,
throughout the paper are the following: the set X is a separable topological space,
withX coinciding with the ensuing Borel σ -algebra, and (Θ,T ) is a standard Borel
space. In this setting, the posterior distribution can be represented through a probability
kernel πn(· | ·) : T × X

n → [0, 1] that satisfies the disintegration

P[X1 ∈ A1, . . . , Xn ∈ An, T ∈ B] =
∫
A1×···×An

πn(B | x (n))αn(dx (n)) (1)

for all sets A1, . . . , An ∈ X and B ∈ T and n ≥ 1, where x (n) := (x1, . . . , xn) and

αn(A1 × · · · × An) :=
∫
Θ

[
n∏

i=1

μ(Ai | θ)
]
π(dθ), (2)

so that P[T ∈ B | X1, . . . , Xn] = πn(B | X1, . . . , Xn) is valid P-a.s. for any B ∈ T .

Remark 1 When the statistical model μ(· | ·) is dominated by some σ -finite measure
λ on (X,X ), with a relative family of λ-densities { f (· | θ)}θ∈Θ , then (a version of)
the posterior distribution is given by the Bayes formula, that is we write

πn(B | x (n)) =
∫
B[∏n

i=1 f (xi | θ)]π(dθ)∫
Θ

[∏n
i=1 f (xi | θ)]π(dθ)

for any set B ∈ T and αn-a.e. x (n), while αn turns out to be absolutely continuous
with respect to the product measure λ⊗n with density function of the form

ρn(x1, . . . , xn) :=
∫
Θ

[
n∏

i=1

f (xi | θ)
]
π(dθ) . (3)

We say that the posterior distribution is (weakly) consistent at θ0 ∈ Θ if, as
n → +∞, πn(Uc

0 | ξ1, . . . , ξn) → 0 holds in probability for any neighborhood U0

of θ0, where ξ (∞) := {ξi }i≥1 stands for a sequence of X-valued independent random
variables identically distributed as μ0(·) := μ(·|θ0) ([50, Definition 6.1]). The non
uniqueness of the posterior distribution πn requires additional regularity assumptions
in order that πn(· | ξ1, . . . , ξn) is well-defined. PCRs strengthen the notion of Bayesian
consistency, in the sense that they quantify the speed at which such neighborhoodsmay
decrease to zero meanwhile still capturing most of the posterior mass. In particular,
the definition of PCR can be stated as follows ([50, Definition 8.1]).

Definition 1 A sequence {εn}n≥1 of positive numbers is a PCR at θ0 if, as n → +∞,

πn ({θ ∈ Θ : dΘ(θ, θ0) ≥ Mnεn} | ξ1, . . . , ξn)→ 0 (4)
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holds in probability for every sequence {Mn}n≥1 of positive numbers such that Mn →
∞.

Now, we present our approach to PCRs based on the Wasserstein distance. This
is a new approach, which relies on four main steps that are outlined hereafter. The
first step of our approach originates from a reformulation of Definition 1 in terms of
the so-called p-Wasserstein distance, for p ≥ 1. In particular, to recall this concept
in full generality, we denote by (M, dM) an abstract separable metric space, and we
denote by P(M) the relative space of all probability measures on (M,B(M)). Then,
the p-Wasserstein distance is defined as

W(P(M))
p (γ1; γ2) := inf

η∈F(γ1,γ2)

(∫
M2

[dM(x, y)]p η(dxdy)
)1/p

(5)

for any γ1, γ2 ∈ Pp(M), where

Pp(M) :=
{
γ ∈ P(M)

∫
M

[dM(x, x0)]pγ (dx) < +∞ for some x0 ∈ M

}

and F(γ1, γ2) is the class of all probability measures on (M2,B(M2)) with i-th
marginal γi , for i = 1, 2. See Ambrosio et al. [5, Chapter 7] and Ambrosio et al. [5,
Proposition 7.1.5]. If we let (M, dM) = (Θ, dΘ), then we can reformulate Definition 1
according to the next lemma; the proof is deferred to Appendix A.1

Lemma 1 Assume that π ∈ Pp(Θ) and that μ⊗n
0 � αn is valid for any n ∈ N. Then,

πn(· | ξ1, . . . , ξn) is a well-defined random probability measure belonging to Pp(Θ)

with P-probability one, and

εn = E
[
W(P(Θ))

p (πn(· | ξ1, . . . , ξn); δθ0)
]

(6)

gives a PCR at θ0, where δθ0 denotes the degenerate distribution at θ0.

The second step of our approach relies on the assumption of the existence of a
suitable sufficient statistics. In particular, we assume the existence of another metric
space, say (S, dS), and the existence of a measurable map, saySn : Xn → S, in such
a way that the kernel πn(·|·) in (1) can be represented by means of another kernel, say
π∗
n (· | ·) : T × S → [0, 1], according to the identity

πn(· | x1, . . . , xn) = π∗
n (· |Sn(x1, . . . , xn)) (7)

for all (x1, . . . , xn) ∈ X
n . See Fortini et al. [43], and references therein, for the

existence of sufficient statistics in relationship with the exchangeability assumption.
Of course, when the statisticalmodelμ(·|·) is dominated, the existence of the sufficient
statistics Sn is implied by standard assumptions on the statistical model, such as the
well-known Fisher-Neyman factorization criterion.
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The third step of our approach relies on the large n asymptotic behavior of the
random variable Ŝn := Sn(ξ1, . . . , ξn). In particular, we assume the existence of a
weak law of large numbers for Ŝn , which means that there exists some (non random)
S0 ∈ S for which Ŝn → S0 holds true in P-probability, as n → +∞. Hereafter, for
any sequence {δn}n≥1 of positive numbers, we denote by

Jn(δn) := P[dS(Ŝn, S0) ≥ δn] (8)

the probability that Ŝn lies outside a δn-neighborhood of S0. Usually, Jn(δn) can be
evaluated by means of concentration inequalities and large deviation principles.

Based on (7), the fourth step of our approach relies on a form of local Lipschitz-
continuity for the kernelπ∗

n (· | ·), which holds under suitable assumptions on themodel
μ(· | ·) and the prior π . It corresponds to the existence of two sequences of positive
numbers, say {δn}n≥1 and {L(n)0 }n≥1 such that, for each n ∈ N,

W(P(Θ))
p

(
π∗
n (· | S0);π∗

n (· | S′)
) ≤ L(n)0 dS(S0, S

′) (9)

holds for any S′ belonging to Uδn (S0) := {S ∈ S: dS(S0, S) < δn}. We refer to
Dolera andMainini [37, 38] for a detailed treatment of the property of local Lipschitz-
continuity, for fixed n ∈ N, providing some quantitative estimates for L(n)0 . Then,
according to Lemma 1, under the validity of (7) and (9), we write

εn ≤ W(P(Θ))
p (π∗

n (· | S0); δθ0)
+ L(n)0 E[dS(Ŝn, S0)]
+ E[W(P(Θ))

p (π∗
n (· | S0);π∗

n (· | Ŝn))1{Ŝn /∈ Uδn (S0)}]. (10)

Under additional assumptions, in Sect. 3 we develop a careful analysis of the three
terms on the right-hand side of (10), in order to show that they can be bounded in
terms of more explicit quantities that behave like n−α , for some α > 0. In particular,
the first term is a non-random quantity which is equal to

W(P(Θ))
p (π∗

n (· | S0); δθ0) =
(∫
Θ

dpΘ(θ, θ0)π
∗
n (dθ | S0)

)1/p

, (11)

and it measures the speed of shrinkage of π∗
n (·|S0) at θ0. Its evaluation is a pure

analytical problem, which relies on an extension to infinite-dimensional spaces of the
classical Laplace methods of approximating integrals. In (10), the term

εn,p(S, S0) := E[dS(Ŝn, S0)] (12)

provides the speed of convergence of the mean law of large numbers, which is well-
known, at least for the situations considered throughout this paper. The term 1{Ŝn /∈
Uδn (S0)} in (10) hints at an application of a large deviation principle. As for the L(n)0 ’s
in (10), the bounds provided in Dolera and Mainini [37, 38] show that they can be
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expressed in terms of weighted Poincaré–Wirtinger constants. As we will show below,
a proper choice of the sequence {δn}n≥1 should entail that {L(n)0 }n≥1 is bounded or, at
least, diverges at a controlled rate.

Critical to our analysis of the term L(n)0 is the so-called dynamic formulation of
the p-Wasserstein distance, which is referred to as Wasserstein dynamics [12]. In
particular, assume thatM is the norm-closure of some nonempty, open and connected
subset of a separable Hilbert spaceH, and endowed with scalar product 〈·, ·〉 and norm
‖ · ‖. Then, for any γ0, γ1 ∈ Pp(M)

[
W(P(M))

p (γ0; γ1)
]p = inf{γt }t∈[0,1]∈AC p[γ0;γ1]

∫ 1

0

∫
M

‖vt (x)‖pγt (dx)dt,

where AC p[γ0; γ1] is the space of all absolutely continuous curves in Pp(M) with
Lp(0, 1)metric derivative (w.r.t.Wp) connecting γ0 to γ1, and [0, 1]×M � (t, x) �→
vt (x) ∈ H is a Borel function such that for almost every t ∈ (0, 1) it holds

d

ds

∫
M

ψ(x)γs(dx) ∣∣s=t
=
∫
M

〈v(x),Dψ(x)〉γt (dx) ∀ ψ ∈ C1
b(M). (13)

Here, Dψ denotes the Riesz representative of the Frechét differential of the function
ψ , and ψ ∈ C1

b(M) means that ψ is the restriction to M of a function in the class
C1
b(H), that is ψ is a bounded continuous function with bounded continuous Fréchet

derivative on H. See Da Prato and Zabczyk [32, Chapter 2] for spaces of continuous
functions defined on Hilbert spaces, and Ambrosio et al. [5, Chapter 8] for a detailed
account on the partial differential equation (13).

For any fixed t and given γt , it is natural to look for a solution vt (·) of Eq. (13) in the
form of a gradient, and therefore we may interpret (13) as an abstract elliptic equation,
for which it is well-known that a critical role is played by Poincaré inequalities in the
context of proving the existence and regularity of a solution.

Definition 2 We say that a probability measure μ on (M,B(M)) satisfies a weighted
Poincaré inequality of order p if there exists a constant Cp for which

inf
a∈R

(∫
M

|ψ(x)− a|p μ(dx)
) 1

p ≤ Cp

(∫
M

‖Dψ(x)‖p μ(dx)

) 1
p

(14)

holds for every ψ ∈ C1
b(M). We denote by Cp[μ] the best constant Cp in (14). In

particular, for p = 2 the best constant C2[μ] may be characterized by means of

(
1

C2[μ]
)2

= inf
{ψ∈C1

b (M) :
∫
M
ψ(x) μ(dx)=0∧ ∫

M
|ψ(x)|2 μ(dx)=1}

∫
M

‖Dψ(x)‖2 μ(dx).

Finally, if M = H and μ is absolutely continuous with respect to a non-degenerate
Gaussian measure, then the Fréchet derivative in (14) can be replaced by theMalliavin
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derivative D, yielding the following weaker definition

(
1

C
(M)
2 [μ]

)2

= inf
{ψ∈C1

b (M) :
∫
M
ψ(x) μ(dx)=0∧ ∫

M
|ψ(x)|2 μ(dx)=1}

∫
M

‖Dψ(x)‖2 μ(dx).

We refer to the monographs of Bogachev [18], Da Prato [30] and Da Prato and
Zabczyk [32] for a detailed account of Malliavin calculus and related Sobolev spaces.

3 Main results on PCRs

Following the approach to PCRs outlined in Sect. 2, we present two main results: (i) a
theorem on PCRs for the regular infinite-dimensional exponential family of statistical
models; (ii) a theorem on PCRs for a general dominated statistical model.

3.1 PCRs for the regular infinite-dimensional exponential family

It is useful to recall the definition and some basic properties of the infinite-dimensional
exponential family. In general, classical results on exponential familymay be extended
to the infinite-dimensional setting through suitable arguments of convex analysis [10,
11].

Definition 3 Let λ be a σ -finite measure on (X,X ), B be a separable Banach space
with dualB∗, and B∗〈·, ·〉B be the pairing betweenB andB∗. Also, letΓ be a nonempty
open subset of B∗, and let β : X → B be a measurable map. If the interior Λ of the
convex hull of the support of λ ◦ β−1 is nonempty and

∫
X

exp{B∗〈γ, βx 〉B}λ(dx) < +∞ (15)

holds for any γ ∈ Γ , then the regular infinite-dimensional exponential family is a
statistical model defined through the family of λ-densities {ϕ(· | γ )}γ∈Γ , where

ϕ(x | γ ) = exp{B∗〈γ, βx 〉B − Mϕ(γ )} (16)

with

Mϕ(γ ) := log

(∫
X

exp{B∗〈γ, βx 〉B}λ(dx)
)
. (17)

Brown [24, Theorems 1.13, Theorem2.2 andTheorem2.7] state thatMϕ is a strictly
convex function on Γ , lower semi-continuous on B

∗, of class C∞(Γ ) and analytic.
In addition, Barndorff–Nielsen [9, Corollary 5.3] implies that Mϕ is steep (essentially
smooth). Therefore, from Brown [24, Theorem 3.6] it holds that

S : γ �→ ∇Mϕ(γ ) =
∫
X

βxϕ(x | γ )λ(dx) (18)
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defines a smooth injectivemap fromΓ intoB, with dense range. Finally, [24, Corollary
2.5] entails the identifiability of the model characterized by the densities (16).

To introduce the setting of our theorem on PCR, it is useful to express the statistical
model μ(· | ·) in terms of an infinite-dimensional exponential family. In this regard,
we introduce a further measurable mapping g : Θ → Γ and write

μ(dx | θ) = ϕ(x | g(θ))λ(dx) . (19)

In the setting of (19), we observe that the identity (7) is satisfied with S = B,
dS(s1, s2) = ‖s1 − s2‖B andSn(x1, . . . , xn) = n−1∑

1≤i≤n βxi . Therefore, we write

Ŝn = 1

n

n∑
i=1

βξi . (20)

Note that Eq. (19) arises naturally from the assumption that the statistical modelμ(· | ·)
is dominated, which provides a family { f (· | θ)}θ∈Θ of density functions. Accordingly,
by assuming that X is endowed of a richer metric structure, if f (· | θ) > 0 and x �→
f (x | θ) is continuous for any θ ∈ Θ , we write

log f (x | θ) =
∫
X

log f (y | θ)δx (dy).

The functions g and β then arise from the mapping y �→ log f (y | θ) and the measure
δx through (some sort of) integration-by-parts, if this is admitted, or through classical
Fourier transformation arguments, such as the Plancherel formula.

According to Ledoux and Talagrand [62, Corollary 7.10], under the assumption

E
[‖βξi ‖B] =

∫
X

‖βx‖B μ0(dx) =
∫
X

‖βx‖B ϕ(x | g(θ0))λ(dx) < +∞ (21)

we set

S0 =
∫
X

βxμ0(dx) =
∫
X

βxϕ(x | g(θ0))λ(dx) (22)

in the sense of Bochner integral, and conclude the strong law of large numbers, i.e.
Ŝn → S0 holds P-a.s., as n → +∞. Now, we set M(θ) = Mϕ(g(θ)) and then define

π∗
n (dθ | b) := exp{n[B∗〈g(θ), b〉B − M(θ)]}π(dθ)∫

Θ
exp{n[〈g(τ ), b〉B − M(τ )]}π(dτ) , (23)

provided that

∫
Θ

exp{n B∗〈g(τ ), b〉B}π(dτ) < +∞ (24)
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for any n ∈ N and b ∈ B. We remark that (24) is a necessary assumption for the
existence of the posterior distribution.Now,we state the theoremonPCRs in the setting
of infinite-dimensional exponential families; the proof is deferred to Appendix A.3.

Theorem 1 Let p ≥ 1 be a fixed number. Let {ϕ(· | γ )}γ∈Γ be a regular infinite-
dimensional exponential family according toDefinition 3. LetΘ be an open, connected
subset of some separable Hilbert space H. Let g : Θ → Γ be a measurable mapping
for which representation (19) is in force. For a fixed θ0 ∈ Θ , suppose that:

(i) (21) is valid;
(ii) (24) holds for any n ∈ N and b ∈ B;
(iii)

∫
Θ

‖θ‖apπ(dθ) < +∞ for some a > 1;
(iv) there exists a sequence {δn}n≥1 of positive numbers for which (9) is valid for any

n ∈ N, with S = B, dS(s1, s2) = ‖s1 − s2‖B and suitable positive constants L(n)0 .

Then, for the PCR εn at θ0 it holds

εn �
(∫
Θ

‖θ − θ0‖p
Θπ

∗
n (dθ | S0)

) 1
p

+ ‖θ0‖Θ P
[
Ŝn /∈ Uδn (S0)

]

+
(
E

[∫
Θ

‖θ‖apΘ π∗
n (dθ | Ŝn)

]) 1
ap (

P
[
Ŝn /∈ Uδn (S0)

])1− 1
ap

+ L(n)0 E[‖Ŝn − S0‖B] (25)

where π∗
n (· | ·) is given by (23), S0 and Ŝn are as in (22) and (20), respectively, and

Uδn (S0) := {S ∈ S | ‖S0 − S‖B < δn}.
Theorem 1 provides an implicit form for PCRs. That is, the large n asymptotic

behaviour of the terms on the right-hand side of (25) must be further investigated to
obtain a more explicit expression for the corresponding PCR. In this regard, it is useful
to rewrite π∗

n in terms of the Kullback–Leibler divergence. That is, if S ◦ g is injective
and b belongs to the range of S ◦ g, then

π∗
n (dθ | b) = exp{−nK(θ | θb)}π(dθ)∫

Θ
exp{−nK(τ | θb)}π(dτ) (26)

where θb = (S ◦ g)−1(b) and

K(θ | θ ′) :=
∫
X

[
ln

(
f (x | θ ′)
f (x | θ)

)]
f (x | θ ′)dx . (27)

denotes the Kullback–Leibler divergence. See Appendix A.2 for the proof of Eq. (26).
It is natural to expect that the main contribution to PCRs arises from the first and
the fourth term on the right-hand side of (25), which provide general algebraic rates
of convergence to zero. Hereafter, we investigate the large n asymptotic behaviour
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of the terms on the right-hand of (25). More explicit results in terms of PCRs will
be presented in Sect. 4 with respect to the application of Theorem 1 in the context
of the regular parametric model, the multinomial model, the finite-dimensional and
the infinite-dimensional logistic-Gaussian model and the infinite-dimensional linear
regression.

3.1.1 First term on the right-hand of (25)

We start by considering the large n asymptotic behaviour of the first term on the
right-hand side of (25). In particular, from (26), we can rewrite this terms as

∫
Θ

‖θ − θ0‖p
Θπ

∗
n (dθ | S0)

=
∫
Θ

‖θ − θ0‖p
Θ exp{n[B∗〈g(θ), S0〉B − M(θ)]}π(dθ)∫

Θ
exp{n[〈g(τ ), S0〉 − M(τ )]}π(dτ)

=
∫
Θ

‖θ − θ0‖p
Θ exp{−nK(θ | θ0)}π(dθ)∫

Θ
exp{−nK(θ | θ0)}π(dθ) . (28)

The last expression of (28) shows the ratio of two Laplace integrals, and therefore the
Laplace method of approximating integrals can be applied. In the finite-dimensional
setting, i.e. Θ ⊆ R

d , the Laplace approximation method is well-known [22, 87], and
it leads to the following proposition.

Proposition 1 In the case that Θ ⊆ R
d , assume that π has a continuous density q

with respect to the Lebesgue measure, with q(θ0) > 0, and that θ �→ K(θ | θ0) is a
C2-function with a strictly positive definite Hessian at θ0, which coincides with the
Fisher information matrix I[θ0] at θ0. Let

∫
Θ

|θ |pπ(dθ) < +∞ be fulfilled for some
p ≥ 1. Finally, suppose that for any δ > 0 there exists c(δ) > 0 such that

inf|θ−θ0|≥δ
K(θ | θ0) ≥ c(δ). (29)

Then, for any p > 0, there hold

∫
Θ

|θ − θ0|pe−nK(θ | θ0)π(dθ) ∼ 1

2

(
2

n

) d+p
2

Γ

(
d + p

2

)

and

∫
Sd (1)

{〈z, I[θ0]−1z〉}p/2dS(z)√
det[I(θ0)]

∫
Θ

e−nK(θ | θ0)π(dθ) ∼
(
2π

n

)d/2 1√
det[I(θ0)]

as n → +∞, where Sd(1) := {z ∈ R
d | ‖z‖ = 1}, dS denotes the surface measure

and 〈·, ·〉 stands for the standard scalar product inRd . Thus, under these assumptions,
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∫
Θ

‖θ − θ0‖p
Θπ

∗
n (dθ | S0) = O(n−p/2) (30)

as n → +∞.

It is interesting to observe that the inequality (29) is a sort of strengthening of
the so-called Shannon–Kolmogorov information inequality. See, e.g., Ferguson [42,
Chapter 17]. In particular, because of (29), integrals on the whole Θ can be reduced
to integrals over balls centered at θ0, as integration over the complement of any such
ball yields exponentially small quantities with respect to n.

According to Proposition 1, in the finite-dimensional setting the prior distribution
does not affect the large n asymptotic behaviour of the first term on the right-hand
side of (25). Differently from the standard finite-dimensional setting, the literature
on the Laplace approximation method in the infinite-dimensional setting appears to
be not well developed. That is, to the best of our knowledge, infinite-dimensional
Laplace approximations are limited to the case in which the measure π is a Gaussian
measure [2, 3]. Unfortunately, this literature does not cover the case in which the
Hessian of the map θ �→ K(θ | θ0) at θ0 is not coercive (uniformly elliptic), which is
precisely the case of interest in our specific problem. The next proposition covers this
critical gap; the proof is deferred to Appendix A.4. The proposition is of independent
interest in the context of the classical Laplace method.

Proposition 2 LetΘ be a separable Hilbert space with scalar product 〈·, ·〉, and let π
be the non-degenerate Gaussian measureN (m, Q), with m ∈ Θ and Q a trace-class
operator. For fixed θ0 ∈ Θ , assume that θ �→ K(θ | θ0) belongs to C2+q(Θ) for some
q ∈ (0, 1], and that its Hessian at θ0, which coincides with the Fisher information
operator I(θ0) at θ0, is a compact self-adjoint linear operator from Θ into itself, with
trivial kernel. Suppose there exists an orthonormal Fourier basis {ek}k≥1 of Θ which
diagonalizes simultaneously both Q and I(θ0), so that

Q[ek] = λkek I(θ0)[ek] = γkek (31)

are valid with two suitable sequences {λk}k≥1 and {γk}k≥1 of strictly positive numbers
that go to zero as k → +∞, with {λk}k≥1 ∈ �1. Finally, assume there exist two other
Hilbert spaces K and V such that

(i) V ⊂ Θ ⊂ K with continuous, dense embeddings;
(ii) an interpolation inequality like

‖θ‖Θ � ‖θ‖1/r
K

‖θ‖1/s
V

(32)

holds for any θ ∈ V with conjugate exponents r , s > 1 such that r < 1 + q/2;
(iii) for all θ ∈ V, the inequalities

K(θ | θ0) ≥ φ(‖θ − θ0‖K) (33)

〈θ − θ0, I(θ0)[θ − θ0]〉 � ‖θ − θ0‖2K (34)
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are valid with some monotone non-decreasing function φ : [0,+∞)→ [0,+∞)
such that φ(x) = O(x2) as x → 0+;

(iv) π(V) = 1 and
∫
V
et‖θ‖Vπ(dθ) < +∞ for some t > 0.

Then, as n → +∞, the following expansion

∫
Θ

‖θ − θ0‖2Θπ∗
n (dθ | S0) = O

( ∞∑
k=1

λk

nλkγk + 1

)
+ O

( ∞∑
k=1

ω2k

(nλkγk + 1)2

)
(35)

holds with the sequence {ωk}k≥1 ∈ �2 given by (θ0 − m) = ∑∞
k=1 ωkek .

Remark 2 In the infinite-dimensional setting, the assumption (29) is, in general, too
strong. Conditions (33)–(34), combined with the interpolation (32), constitute a rea-
sonable set of assumptions that allow a quite general treatment in the applications. It is
worth noticing that (29), as well as (33), is expressed in the form of a lower bound for
K(θ | θ0). These bounds are conceptually opposite with respect to the so-called “prior
mass condition” required in the standard theory ([50, Theorem 8.9, inequality (8.4)]),
which is usually proved by means of upper bounds for K(θ | θ0). See, e.g. the upper
bounds for K(θ | θ0) in Lemma 2.5 of Ghosal and van der Vaart [50].

Remark 3 With respect to Proposition 1, the statement of Proposition 2 is confined to
the case p = 2. There are no technical limitations for treating the more general case
p �= 2, though p = 2 yields to a more readable (conclusive) result.

Remark 4 Assumption (31) is not necessary to obtain PCRs. However, without this
assumption, the resulting PCR would have a complicated form, which may be recov-
ered from the proof. For example, let ΘN be the finite-dimensional subspace of Θ
obtained by the linear span of {e1, . . . , eN }, let QN denote the N × N matrix that
represents the restriction of Q to ΘN , after projecting the range of such restriction
again onΘN , and let IN (θ0) denote the N×N matrix associated to the same restriction
of the operator I(θ0) to ΘN . If QN and IN (θ0) are non-singular, then the first term on
the right-hand side of (35) can be replaced by

lim
N→+∞Tr

[(
nIN (θ0)+ Q−1

N

)−1
]
, (36)

which is not as clear as the series
∑∞

k=1 λk/(nλkγk + 1). An analogous operation can
be performed with respect to the second term on the right-hand side of (35).

Moreover, the above argument can be reinforced by resorting to some trace inequal-
ities, as explained in [26]. In particular, we assume there exists another compact,
self-adjoint operator I∗ such that I(θ0) ≥ I∗ in the sense of quadratic forms, i.e.

〈θ, I(θ0)[θ ]〉 ≥ 〈θ, I∗[θ ]〉

for any θ ∈ Θ . Whence, upon denoting by I∗N the restriction of I∗ to ΘN as above,
we have IN (θ0) ≥ I∗N and, consequently, nIN (θ0) + Q−1

N ≥ nI∗N + Q−1
N . By the
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Löwner–Heinz theorem, the mapping t �→ −t−1 is operator monotone, yielding that

Tr

[(
nIN (θ0)+ Q−1

N

)−1
]

≤ Tr

[(
nI∗N + Q−1

N

)−1
]
.

See again [26] for the details. Therefore, if the orthonormal Fourier basis {ek}k≥1 of
Θ diagonalizes simultaneously both Q and I∗ (instead of I(θ0)), so that

Q[ek] = λkek I∗[ek] = γ ∗
k ek (37)

are valid with suitable strictly positive γ ∗
k ’s that go to zero as k → +∞, then by

Proposition 2

∫
Θ

‖θ − θ0‖2Θπ∗
n (dθ | S0) �

∞∑
k=1

λk

nλkγ ∗
k + 1

+
∞∑
k=1

ω2k

(nλkγ ∗
k + 1)2

. (38)

Proposition 2 shows that the large n asymptotic behavior of the first term on the
right-hand side of (25) is worse than 1/n, which is the large n asymptotic behaviour
obtained in Proposition 1 with p = 2. For example, by taking the first term on the
right-hand side of (35) into account, if λk ∼ k−(1+a) and γk ∼ k−b as k → +∞, for
some a, b > 0, a straightforward calculation shows that

∞∑
k=1

k−(1+a)

nk−(1+a+b) + 1
∼ n− a

1+a+b (39)

holds as n → +∞. As for the second term on the right-hand side of (35), it can be
made identical to zero by choosingm = θ0, that is by means of centering the Gaussian
prior at θ0. However, if λk ∼ k−(1+a), γk ∼ k−b and ω2k ∼ k−(1+c) as k → +∞, for
some choice of a, b, c > 0 with c < 2(1 + a + b), then

∞∑
k=1

k−(1+c)

(nk−(1+a+b) + 1)2
∼ n− c

1+a+b

holds as n → +∞. Therefore, if c < a this second term is slower than the one in
(39), whilst if c > a it is negligible with respect to that term. Again on (39), it is
interesting to notice what happens if the eigenvalues λk’s approach zero very rapidly,
like λk ∼ e−k , for example. Another straightforward calculation shows that

∞∑
k=1

e−k

ne−kk−b + 1
∼ (log n)b+1

n

holds as n → +∞. A refinement of this argument entails that the large n asymptotic
behavior of the right-hand side of (35) can be made arbitrarily close to the rate 1/n,
for example by choosing λk ∼ e−kr and γk ∼ k−b and ω2k ∼ k−(1+c) for some
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r , b, c > 0, with arbitrarily large r . By recalling that the first term on the right-hand
side of (25) coincides with the square root of the left-hand side of (35), this argument
shows that the PCR is arbitrarily close to 1/

√
n. It is reasonable to guess that the

minimax (classical) risk should go to zero as fast as 1/
√
n, though we are not aware

of any result proving such a behaviour.
A merit of Proposition 2 is to show explicitly that, within the infinite-dimensional

setting, PCRs are influenced by three quantities that do not appear in finite-dimensional
setting of Proposition 1: (i) the rate of approach to zero of the sequence {λk}k≥1, which
measures the “regularity of the prior”; (ii) the rate of approach to zero of the sequence
{γk}k≥1, which measures the “regularity of the model”; (iii) the rate of approach to
zero of the sequence {ωk}k≥1, which measures how close is θ0 tom. Finally, we notice
that the spaceV is linked with the Cameron–Martin space associated to π , which must
be included in V.

3.1.2 Second and third term on the right-hand of (25)

Now, we consider the large n asymptotic behaviour of the second term and of the third
term on the right-hand side of (25). Both these terms depend explicitly on

P
[
Ŝn /∈ Uδn (S0)

]
= P

[
‖Ŝn − S0‖B ≥ δn

]
= P

[
‖Ŝn − E[Ŝn]‖B ≥ δn

]
. (40)

Note that the tail probability in (40) is directly related to classical concentra-
tion inequalities for sum or random variables. Besides well-know Bernstein-type
concentration inequalities for real-valued random variables [20, 33], some useful gen-
eralizations or extension can be found in, e.g., Giné and Nickl [53], Ledoux and
Talagrand [62], Pinelis and Sakhanenko [68] and Yurinskii [89]. In particular, for a
suitable choice of the sequence {δn}n≥1, such that a constant sequence or a vanishing
sequence at an algebraic rate, the term (40) goes to zero at suitable exponential rates,
and therefore it provides a negligible contribution in the right-hand side of (25).

The third term on the right-hand side of (25) includes the posterior moment
E[∫

Θ
‖θ‖apΘ π∗

n (dθ | Ŝn)] = E[∫
Θ

‖θ‖apΘ πn(dθ | ξ1, . . . , ξn)]. In particular, an appli-
cation of Hölder’s inequality shows that such a moment is bounded from above by

(∫
Θ

‖θ‖ρapπ(dθ)
)1/ρ

(∫
Xn

[∏n
i=1 f (xi | θ0)
ρn(x1, . . . , xn)

]ρ′

ρn(x1, . . . , xn)
n∏

i=1

λ(dxi )

)1/ρ′

for conjugate exponents ρ, ρ′ > 1, provided that
∫
Θ

‖θ‖ρapπ(dθ) < +∞. It is useful
to recall that the density function ρn has been defined in (3). Accordingly, the second
factor above coincides with the ρ′-th moment of a martingale, since

∫
Xn

[∏n
i=1 f (xi | θ0)
ρn(x1, . . . , xn)

]ρ′

ρn(x1, . . . , xn)
n∏

i=1

λ(dxi ) = E

[(∏n
i=1 f (Xi | θ0)

ρn(X1, . . . , Xn)

)ρ′]
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and

E

[ ∏n+1
i=1 f (Xi | θ0)

ρn+1(X1, . . . , Xn+1)

∣∣∣ X1, . . . , Xn

]
=
∏n

i=1 f (Xi | θ0)
ρn(X1, . . . , Xn)

.

At this stage, a possible resolutive strategy may rely on well-known bounds for
moments of martingales [34]. As for the term E[‖Ŝn − S0‖B], by means of a direct
application of Lyapuonov’s inequality, we can write that

E[‖Ŝn − S0‖B] ≤
(
E[‖Ŝn − S0‖2B]

)1/2

and the right-hand side typically goes to zero as 1/
√
n. Besides the obvious case

in which B coincides with a separable Hilbert space, we refer to Nemirovski [66],
Massart [63] and Massart and Rossignol [64] for the case in which we have B =
�p(R

d).

3.1.3 Fourth term on the right-hand of (25)

Finally, we consider the large n asymptotic behaviour of the fourth term on the right-
hand side of (25). In particular, this term involves the constant L(n)0 , whose treatment
requires to recall some fundamental notions of infinite-dimensional calculus. Given
g : Θ → B

∗, the Fréchet differential Dθ [g] of g is now meant as a bounded linear
operator from Θ to B

∗ such that g(θ + δ) = g(θ)+ Dθ [g](δ)+ o(‖δ‖Θ), as δ → 0
in Θ , and

‖Dθ [g]‖∗ := sup
‖δ‖Θ ≤1

‖Dθ [g](δ)‖B∗ .

Here, we consider the case p = 2. It should be recalled that the theory of weighted
Poincaré constant has been mainly focused on the two cases p = 1 and p = 2 (see,
e.g., [13]). We choose only the latter case in order to avoid other technical problems
connected with the Wasserstein dynamic when p = 1. See, e.g., the first comment
opening Section 8.3 of Ambrosio et al. [5]. Therefore, in order to obtain an explicit
upper bound for the constant L(n)0 it is useful to consider the following proposition;
the proof is deferred to Appendix A.5

Proposition 3 In addition to the assumptions of Theorem 1, suppose that g ∈
C1(Θ;B∗), that

∫
Θ

‖Dθ [g]‖2∗ π(dθ) < +∞, and that map S ◦ g is continuous.

Then, for the constant L(n)0 in (25) we can put

L(n)0 = n sup
S∈Uδn (S0)

{
C2[π∗

n (· | S)]
}2 (∫

Θ

‖Dθ [g]‖2∗ π∗
n (dθ | S)

)1/2

. (41)
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In addition, if

sup
n∈N

sup
θ ′∈Vδn (θ0)

∫
Θ

‖Dθ [g]‖2∗ exp{−nK(θ | θ ′)}π(dθ)∫
Θ
exp{−nK(θ | θ ′)}π(dθ) =: B(g) < +∞ (42)

holds with Vδn (θ0) := (S ◦ g)−1(Uδn (S0)), then

L(n)0 ≤ √
B(g) n sup

S∈Uδn (S0)
{
C2[π∗

n (· | S)]
}2
. (43)

Remark 5 When π is a Gaussian measure on the infinite-dimensional Hilbert space
Θ , an analogous statement can be formulated with the Fréchet derivative replaced by
the Malliavin derivative. Hence, for the constant L(n)0 in (25) we can set

L(n)0 = n sup
S∈Uδn (S0)

{
C
(M)
2 [π∗

n (· | S)]
}2 (∫

Θ

‖Dθ [g]‖2∗ π∗
n (dθ | S)

)1/2

, (44)

and if

sup
n∈N

sup
θ ′∈Vδn (θ0)

∫
Θ

‖Dθ [g]‖2∗ exp{−nK(θ | θ ′)}π(dθ)∫
Θ
exp{−nK(θ | θ ′)}π(dθ) =: BM (g) < +∞ (45)

holds with Vδn (θ0) := (S ◦ g)−1(Uδn (S0)), then the following inequality holds true

L(n)0 ≤ √
BM (g) n sup

S∈Uδn (S0)

{
C
(M)
2 [π∗

n (· | S)]
}2
. (46)

Denote by ⇒ the weak convergence of probability measures on (Θ,B(Θ)). Veri-
fying the validity of (42) represents a strengthening of the fact that, as n → +∞

exp{−nK(θ | θ ′)}π(dθ)∫
Θ
exp{−nK(τ | θ ′)}π(dτ) ⇒ δθ ′ .

This may be proved by means of the same arguments as in the proofs of Propo-
sitions 1 and 2. According to Proposition 3, to conclude it remains to make more
explicit the large n asymptotic behaviour of the weighted Poincaré–Wirtinger con-
stant C2[π∗

n (· | S′)]. In the finite-dimensional setting, i.e. Θ ⊆ R
d , the representation

(28) shows that the posterior distribution, or better π∗
n (· | ·), characterizes Gibbsean

(Boltzmann) probability distributions. Properties of the Kullback-Leibler divergence
entail that the mapping θ �→ K(θ | θ ′) is non-negative and vanishes iff θ = θ ′ Fergu-
son [42, Chapter 17]. Moreover, under standard regularity assumptions for f (· | ·) [42,
Chapter 18], the aforesaid mapping proved also to be strictly convex, at least in finite
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dimension. In this context, there are several conditions that entail the upper bound

[C2(π
∗
n (· |S ◦ g(θ ′)))]2 ≤ C(θ ′)

n

for every n ∈ N and positive constant C(θ ′). In particular, the simplest condition to
quote is the so-called Bakry–Emery condition, characterized by the fact that

Hess[K(· | θ ′)](θ) ≥ ρId (47)

for some ρ > 0, with Id being the identity matrix, uniformly with respect to θ ∈ Θ , in
conjunction with the hypothesis that π(dθ) = e−U (θ)dθ for some U ∈ C2(Θ). Some
generalizations of the condition (47) are given in the next proposition, which specifies
some results that have first appeared in Bakry et al. [13].

Proposition 4 (Dolera andMainini [38]) Let U and G be elements of C2(Θ), bounded
from below and such that Hess(G(θ)) ≥ αId and Hess(U (θ)) ≥ hId (in the sense of
quadratic forms) whenever |θ | ≤ R, for some α > 0, R > 0 and h ∈ R.

(1) If, in addition, there exist c > 0 and � ∈ R such that θ · ∇G(θ) ≥ c|θ | and
θ · ∇U (θ) ≥ �|θ | whenever |θ | ≥ R, then

[
C2

(
e−nG(θ)−U (θ)dθ∫
Θ
e−nG(τ )−U (τ )dτ

)]2

≤ αn + h + (cn + �− dR + nGR +UR)CR

(αn + h) (cn + �− 1 − dR)
∼ 1

n

for every n > (−h/α) ∨ ((dR + 1 − �)/c), where dR := (d − 1)/R, GR :=
supBR

|∇G|, UR := supBR
|∇U | and CR is an explicit universal constant only

depending on R.
(2) If, in addition, there exist c1 > 0, c2 > 0 such that

|∇G(θ)|2 ≥ 2c1 + c2 [ΔG(θ)+ ∇G(θ) · ∇U (θ)]+
whenever |θ | ≥ R, then

[
C2

(
e−nG(θ)−U (θ)dθ∫
Θ
e−nG(τ )−U (τ )dτ

)]2
≤ αn + h + eωR (c1n + G∗

R + WR)

(αn + h)c1n
∼ 1

n

for every n > (1 + 1/c2) ∨ (−h/α), where G∗
R := supBR

|ΔG|, WR :=
supBR

|∇U ||∇G| and ωR := supBR
G − infΘ G.

According to Proposition 4, in the finite-dimensional setting the prior distribution
does not affect the large n asymptotic behaviour of the weighted Poincaré–Wirtinger
constant C2[π∗

n (· | S′)]. A similar phenomenon has been observed in the study of the
first termon the right-hand side of (25).Differently from the finite-dimensional setting,
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the literature on weighted Poincaré–Wirtinger constants in the infinite-dimensional
setting appears to be not well developed. To the best of our knowledge, in the infinite-
dimensional setting, upper bounds on weighted Poincaré–Wirtinger constants are
limited to the case of Gibbsean (Boltzmann) measures, that is measures of the form
exp{−nG(θ)}π(dθ) with G being a smooth convex function and π being an infinite-
dimensionalGaussianmeasure ([31,Chapters 10–11]).While this is the case of interest
in our problem, the upper bounds available in the literatures are not sharp for large
values of n, and therefore they can not be applied. The next proposition covers this
critical gap by providing results involving Malliavin calculus; the proof is deferred to
Appendix A.6. The proposition is of independent interest in the context of weighted
Poincaré–Wirtinger constants.

Proposition 5 Let Θ be a separable Hilbert space, and let π be the non-degenerate
GaussianmeasureN (m, Q), withm ∈ Θ and Q a trace-class operator. LetG0 : Θ →
Θ be a compact linear operator, with trivial kernel. Let G be an element of C2(Θ),
bounded from below and such that Hess(G(θ)) ≥ G0 (in the sense of operators)
whenever ‖θ‖Θ ≤ R, for some R > 0. Suppose there exists a Fourier orthonormal
basis {ek}k≥1 of Θ which diagonalizes simultaneously both Q and G0, that is

Q[ek] = λkek G0[ek] = ηkek (48)

for two suitable sequences {λk}k≥1 and {ηk}k≥1 of strictly positive numbers that go to
zero as k → +∞, with {λk}k≥1 ∈ �1.
(1) Suppose, in addition, there exists c > 0 such that θ · DθG ≥ c‖θ‖Θ whenever

‖θ‖Θ ≥ R. Then, for every n > Tr[Q](1 + 1/R)/c, it holds

[
C
(M)
2

(
e−nG(θ)π(dθ)∫
Θ
e−nG(τ )π(dτ)

)]2

�
1 + CR(1 + τn + nGR)maxk∈N

{
λk

nλkηk+1

}

cn − Tr[Q](1 + 1/R)

= O

(
max
k∈N

{
λk

nλkηk + 1

})
(49)

where GR := supBR
‖DθG‖ and CR is an explicit universal constant only depend-

ing on R.
(2) Suppose, in addition, there exist c1 > 0, c2 > 0 such that

‖DθG‖2 ≥ 2c1 + c2 [LπG(θ)]+ (50)

whenever ‖θ‖ ≥ R, where Dθ and Lπ denote the Malliavin derivative and the
Malliavin–Laplace operator associated to π , respectively. Then, for every n >

123



Strong posterior contraction rates via Wasserstein dynamics

1 + 1/c2, it holds

[
C
(M)
2

(
e−nG(θ)π(dθ)∫
Θ
e−nG(τ )π(dτ)

)]2

�
1 + eωR (C1n + G∗

R)maxk∈N
{

λk
nλkηk+1

}

c1n

= O

(
max
k∈N

{
λk

nλkηk + 1

})

where ωR := supBR
G − infΘ G and G∗

R := supBR
[|Lπ [G]| + ‖Dθ [G]‖2].

Proposition 5 shows that the large n asymptotic behavior of the Poincaré–Wirtinger
constantC(M)2 [π∗

n (· | S′)] isworse thann−1/2,which is the largen asymptotic behaviour
obtained in Proposition 4. By straightforward calculations, as n → +∞

max
k∈N

{
k−(1+a)

nk−(1+a+b) + 1

}
∼ n− a+1

1+a+b (51)

holds for any a, b > 0. A particular merit of Proposition 5 consists in showing explic-
itly that, within the infinite-dimensional setting, PCRs are influenced by two quantities
that do not appear in finite-dimensional setting of Proposition 4: (i) the rate of approach
to zero of the sequence {λk}k≥1, which measures the “regularity of the prior”; (ii) the
rate of approach to zero of the sequence {ηk}k≥1, which measures another “regularity
of the model”. A similar phenomenon has been observed in the study of the first term
on the right-hand side of (25). To conclude, we observe that, under the assumptions of
Proposition 2, we can apply Eq. (26) to rewrite the right-hand side of (43) as follows

sup
S′∈Uδn (S0)

{
C
(M)
2 [π∗

n (· | S′)]
}2

= sup
θ ′∈(S◦g)−1(Uδn (S0))

[
C
(M)
2

(
e−nK(θ | θ ′)π(dθ)∫
Θ
e−nK(τ | θ ′)π(dτ)

)]2
, (52)

and then observe that the role of θ ′ is now confined to the multiplicative constants
that appear on the right-hand sides of the various inequalities that we considered.
Thus, in order to handle the supremum, it is enough to check the boundedness of such
multiplicative constants by standard arguments of continuity.

We conclude this section by summarizing our results on the large n asymptotic
behaviours of the terms on the right-hand side of (25). The second and the third term
go to zero exponentially fast, and this holds true independently on the dimension of
the statistical model. This confirms that the main contribution to the PCR arise from
the first and the fourth term, which give generally algebraic rates of convergence to
zero. In the finite-dimensional setting, when p = 2, the first and the fourth term go
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to zero as n−1, which is the optimal rate. In the infinite-dimensional setting, the first
and the second term go to zero according to Propositions 2 and 5. At least when
ηk ∼ γk ∼ k−b, λk ∼ k−(1+a) and ω2k ∼ k−(1+c) with a, b, c > 0, Eqs. (39) and (51)
show that the first term on the right-hand side of (25) is asymptotically equivalent to

n− a
2(a+b+1) + n− c

2(a+b+1) ,

whereas the fourth term on the right-hand side of (25) is asymptotically equivalent to

n− a+1−b
2(a+b+1) ,

at least assuming that E[‖Ŝn − S0‖B] ∼ n−1/2. This completes our analysis of PCRs
in the setting of infinite-dimensional exponential families. Some applications of these
results will be presented in Sect. 4 with respect to specific statistical models.

3.2 PCRs for a general dominated statistical model

We present a more general version of Theorem 1, which relies on the assumption that
both the sample space X and parameter space Θ have richer analytical structures.
Here, we confine to the case p = 2. In particular, the setting that we consider may be
summarized through the following assumptions.

Assumptions 1 The set X, the parameter space Θ , the statistical model μ(· | ·) and θ0
are such that

(i) X coincides with an open, connected subset of Rm with Lipschitz boundary,
and X = B(X). With minor changes of notation, X could also coincide with
a smooth Riemannian manifold without boundary of dimension m ∈ N.

(ii) Θ coincides with an open, connected subset of a separable Hilbert space of
dimension d ∈ N ∪ {+∞}.

(iii) μ(· | ·) is dominated by the m-dimensional Lebesgue measure, i.e. μ(A | θ) =∫
A f (x | θ)dx for every A ∈ X , where x �→ f (x | θ) > 0 is a probability

density function for any θ ∈ Θ .
(iv) (x, θ) �→ f (x | θ) ∈ C2(X ×Θ);
(v) the model { f (· | θ)}θ∈Θ is C2-regular at θ0 (as in [42, Theorem 18])
(vi) for any θ , there exist positive constants b(θ), c(θ) for which

| log f (x | θ)| ≤ b(θ)(1 + |x |2) and |∇x log f (x | θ)| ≤ c(θ)(1 + |x |)
(53)

hold for every x ∈ X;
(vii) π ∈ P2(Θ), with full support;
(viii) μ0 ∈ P2(X).

The setting of infinite-dimensional exponential families, considered in Sect. 3.1.3,
is a popular example that satisfies Assumptions 1. Now, we state the theorem on PCRs
in the setting of Assumptions 1; the proof is deferred to Appendix A.7
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Theorem 2 Within the setting specified by Assumptions 1, (7) is fulfilled with

π∗
n (dθ | γ ) := exp{n ∫

X
log f (y | θ)γ (dy)}∫

Θ
exp{n ∫

X
log f (y | τ)γ (dy)}π(dτ)π(dθ) (54)

where γ ∈ S = P2(X). Moreover, (9) holds relatively to a suitable choice of a
W(P(Θ))

2 -neighborhood V (n)0 of μ0(·) := μ(· | θ0), provided that

L(n)0 := n sup
γ∈V (n)0

[C2(π
∗
n (· | γ ))]2

×
(∫
Θ

∫
X

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2γ (dx)π∗
n (dθ | γ )

)1/2

< +∞ (55)

for any n ∈ N. Thus, the assumptions of Lemma 1 are fulfilled and a PCR at θ0 is
given by

εn = 3

(∫
Θ

‖θ − θ0‖2e−nK(θ | θ0)π(dθ)∫
Θ
e−nK(θ | θ0)π(dθ)

)1/2

+ L(n)0 εn,2(X, μ0)+ 2‖θ0‖P[e(ξ)n /∈ V (n)0 ]

+ E

⎡
⎣
(
2

∫
Θ

‖θ‖2 [∏n
i=1 f (ξi | θ)

]
π(dθ)∫

Θ

[∏n
i=1 f (ξi | θ)

]
π(dθ)

)1/2

1{e(ξ)n /∈ V (n)0 }
⎤
⎦ (56)

where e(ξ)n := n−1∑
1≤i≤n δξi and εn,p(X, μ0) := E[W(P(X))

p (μ0; e(ξ)n )] is the speed
of mean Glivenko–Cantelli.

From Theorem 2, we observe that if V (n)0 = P2(X) makes L(n)0 finite for every
n ∈ N, then the expression on the right-hand side of (56) reduces to the first two
terms. Similarly to Theorems 1 and 2 provides an implicit form for the PCR, thus
requiring to further investigate the large n asymptotic behaviour of the terms on the
right-hand side of (56). The posterior distribution appears in (55) and (56), meaning
that further work is required to obtain more explicit terms. In general, it is possible to
get rid of π∗

n in (55) and (56), thus reducing (55) and (56) to expressions that involve
only the statistical model and the prior distribution. The first term on the right-hand
side of (56) has the same form as in (25), meaning that the Laplace method plays
a critical role in the study of these term. Such a term can be handled as described
in Propositions 1 and 2. With regards to εn,2(X, μ0), we recall from Fournier and
Guillin [46, Theorem 1] that, if

∫
X

|x |qμ0(dx) < +∞ for some q > 2, then

εn,2(X, μ0)

≤ C(q,m)

(∫
X

|x |qμ0(dx)

)1/q

123



E. Dolera et al.

×
⎧⎨
⎩
n−1/4 + n−(q−2)/(2q) if m = 1, 2, 3 and q �= 4
n−1/4

√
log(1 + n)+ n−(q−2)/(2q) if m = 4 and q �= 4

n−1/m + n−(q−2)/(2q) if m > 4 and q �= m/(m − 2)

with some positive constant C(q,m). Under some more restrictive assumptions,
εn,2(X, μ0) is of order O(n−1/2), which is optimal in the dimension 1 ([17, Sec-
tion 5]). In the dimension 2, the optimal rate is

√
(log n)/n [7], whereas form ≥ 3 the

optimal rate is n−1/m [79]. Lastly, when X has infinite dimension, logarithmic rates
have been obtained in Jing [58]. With regards to P[e(ξ)n /∈ V (n)0 ], we refer to Bolley et
al. [19, Theorem 2.7]. In particular, if

∫
X

|x |qμ0(dx) < +∞ for some q ≥ 1, then

P[W2(e
(ξ)
n ;μ0) > t] ≤ B(q,m)t−q ×

{
n−q/4 if q > 4
n1−q/2 if q ∈ [2, 4)

for any t > 0 and n ∈ N, with some positive constant B(q,m). Exponential bounds
can be also obtained upon requiring that

∫
X
eα|x |μ0(dx) < +∞ for some α > 0. See

Bolley et al. [19, Theorem 2.8]. In the next corollary we show that, under additional
assumptions, similar bounds hold true for the other terms appearing on the right-hand
side of (56); the proof is deferred to Appendix A.8.

Corollary 1 In addition to the hypotheses of Theorem 2, suppose that there exist con-
stants some C > 0 and β ≥ 2 for which

K(θ |θ0) ≥ C min{‖θ − θ0‖β, 1} (57)

holds for all θ ∈ Θ . Moreover, assume that

∫
X

|x |qμ0(dx) < +∞

holds for some constants q > 4, and

Mn,r := E

[∫
Θ

‖θ‖rπn(dθ | ξ1, . . . , ξn)
]
< +∞ (58)

for all n ∈ N and some r > 2. Then, if the neighborhood V (n)0 has the form

{γ ∈ P2(X) | W2(γ ;μ0) ≤ Kn−a}

for some K > 0 and a ∈ [0, 1/4), for the PCR given in (56) we obtain the new bound

εn ≤ C1n
−1/β + L(n)0 εn,2(X, μ0)+ 2‖θ0‖K−q B(q,m)nq(a−1/4)

+ C2n
[q(r−1)(a−1/4)]/rMn,r (59)

with suitable positive constants C1 and C2.
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From Corollary 1, the posterior distribution appears in (58) and (59). With regards
to (58), this term is typically available in an explicit form, even if the posterior is not
explicit. In general, a possible strategy may rely on well-known bounds for moments
of martingales. With regards to L(n)0 , this term can be handled as described in Propo-
sitions 4 and 5, that is by inequalities for the weighted Poincaré–Wirtinger constant.
To conclude it remains to handle with

sup
γ∈V (n)0

∫
Θ

∫
X

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2γ (dx)π∗
n (dθ | γ ),

which is expected to be bounded with respect to n, in regular situations. To deal with
this term, a possible strategy consists in obtaining inequality of the form

∫
X

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2γ (dx) ≤ CγW (θ)

for a suitable constant Cγ and a suitable function W . This particular point will be
made more precise in Sect. 4 with respect to some specific statistical models.

4 Applications

4.1 Regular parametric models

Consider the case of dominated Bayesian statistical models with a finite-dimensional
parameter θ ∈ Θ ⊂ R

d .Accordingly,we start by considering the set ofAssumptions 1,
with d ∈ N, along with the hypotheses of Theorem 2. In this setting, the Kullback–
Leibler divergence K(θ | θ0) is a C2 function, whose Hessian at θ0 just coincides with
the Fisher information matrix at θ0. Whence,

K(θ | θ0) = 1

2
t (θ − θ0)I[θ0](θ − θ0)+ o(|θ − θ0|2) (60)

as θ → θ0. Finally, we assume (29). Therefore, we can apply Proposition 1 to get

Wp(π
∗
n (dθ |μ0), δθ0) =

(∫
Θ

|θ − θ0|pe−nK(θ | θ0)π(dθ)∫
Θ
e−nK(θ | θ0)π(dθ)

)1/p

= O
(
n−1/2) (61)

as n → +∞. Now, we discuss the behavior of the constant L(n)0 , as n goes to infinity.
First, we would like to stress that there are plenty of conditions that entail

[C2(π
∗
n (· | γ ))]2 ≤ C(γ )

n
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for every n ∈ N and some positive constant C(γ ). We consider the double integral

∫
Θ

∫
X

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2γ (dx)π∗
n (dθ | γ ) .

First, if f (x | θ) = exp{〈θ, T (x)〉 − M(θ)}, that is the model is an element of the
exponential family in the canonical form, then we notice that Dθ

∇x f (x |θ)
f (x |θ) reduces to a

d×m matrix whose entries are given by ∂x j Ti (x), for j = 1, . . . ,m and i = 1, . . . , d.
Therefore, the study of the above double integral boils down to that of themuch simpler
expressions

∫
X

|∂x j Ti (x)|2γ (dx), which are independent of n. More generally, we can
reduce the problem by resorting to the Laplace method for approximating probability
integrals, from which we have that

∫
Θ

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2π∗
n (dθ |γ ) ∼

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2 ∣∣∣ θ=θ∗(γ )

as n → +∞, where θ∗(γ ) denotes a maximum point of the mapping θ �→∫
X
log f (y|θ)γ (dy). Therefore, if the above right-hand side proves to be positive,

a reasonable plan to prove global boundedness of L(n)0 with respect to n can be based
on the following two steps. First, we check the validity of an inequality like

sup
n∈N

∫
Θ

∥∥∥Dθ ∇x f (x | θ)
f (x |θ)

∥∥∥2π∗
n (dθ | γ ) ≤ C

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2 ∣∣∣ θ=θ∗(γ )

for every γ belonging to aW(P(Θ))
2 -neighborhood ofμ0, whereC is a positive constant

possibly depending on the fixed neighborhood. Second, we prove global boundedness
(for γ varying in the neighborhood) of the following integral

∫
X

∥∥∥Dθ ∇x f (x | θ)
f (x | θ)

∥∥∥2 ∣∣∣ θ=θ∗(γ )
γ (dx) < +∞ .

To fix ideas in a more concrete way, we consider the Gaussian case, where θ = (μ,Σ)
and

f (x | θ) = (2π)−m/2 1√
det(Σ)

exp

{
−1

2
(x − μ)tΣ−1(x − μ)

}
x ∈ R

m .

Note that the mapping θ �→ ∫
X
log f (y | θ)γ (dy) depends on γ only through its

moments of order 1 and 2. Thus, the above strategy reduces to an ordinary finite-
dimensional maximization problem, very similar to the question of finding the
maximum likelihood estimator. Finally, the last term in on the right-hand side of
(56) can be treated as in Corollary 1, by studying the asymptotic behavior of some
posterior r -moment as in (58). We state two propositions that summarize the above
considerations. The former result holds when Theorem 1 can be applied and gives the
optimal rate, while the latter result ensues from Theorem 2.
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Proposition 6 Assume that there exist a separable Banach space B with dual B∗ and
two measurable maps β : X → B and g : Θ → B

∗ for which (19) is in force. If the
assumptions of Theorem 1 and Propositions 1, 3 and 4 are met, then as n → +∞

εn = O
(
n−1/2),

which is the optimal rate.

Proposition 7 Assume that themodel { f (·|·)}θ∈Θ and the priorπ satisfy Assumption 1
along with Propositions 1, 3 and 4. Then, as n → +∞

εn = O
(
εn,2(X, μ0)

)
,

which is the optimal rate, at least when m = 1.

4.2 Multinomial models

Consider the case in which the observations, i.e. both the sequence {Xi }i≥1 and the
sequence {ξi }i≥1, take values in the finite set, say {a1, . . . , aN }. It is easy to check that
Θ can be assumed to coincide with the interior of the (N − 1)-dimensional simplex

ΔN−1 :=
{
θ = (θ1, . . . , θN−1) ∈ [0, 1]N−1

∣∣∣
N−1∑
i=1

θi ≤ 1

}

and

πn(dθ | x1, . . . , xn) =
[∏N

i=1 θ
νn,i (x)
i

]
π(dθ)

∫
ΔN−1

[∏N
i=1 t

νn,i (x)
i

]
π(dt)

where θ = (θ1, . . . , θN−1), t = (t1, . . . , tN−1), θN := 1 − ∑N−1
i=1 θi , tN := 1 −∑N−1

i=1 ti and

νn,i (x) :=
n∑
j=1

1{x j = ai } i = 1, . . . , N .

Of course, if we putX = {a1, . . . , aN }, we can not directly apply Theorem 2. Nonethe-
less, we can resort to a reinterpretation of the data, in terms of the frequencies νn,i ,
that we now explain, that allows the use of our theorem. We consider

π∗
n (dθ | p) :=

[∏N
i=1 θ

npi
i

]
π(dθ)

∫
ΔN−1

[∏N
i=1 t

npi
i

]
π(dt)
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defined for p = (p1, . . . , pN−1) ∈ ΔN−1 with the usual proviso that pN := 1 −∑N−1
i=1 pi . Whence,

πn(dθ | x1, . . . , xn) = π∗
n

(
dθ
∣∣∣
(
νn,1(x)

n
, . . . ,

νn,N−1(x)

n

))
.

The problem of consistency, and the allied question of finding a PCR, can be now
reformulated as follows. After fixing θ0 ∈ ΔN−1, we consider the sequence {ξi }i≥1 of
i.i.d. random variables, each taking values in {a1, . . . , aN }, with P[ξ1 = ai ] = θ0,i ,
for i = 1, . . . , N . An analogous version of Lemma 1 states that

εn = E[W(P(Θ))
2 (πn(dθ | ξ1, . . . , ξn); δθ0)]

provides a PCR at θ0. Now, we reformulate Theorem 2 as follows. First of all, we have
that

E

[∣∣∣∣
(
νn,1(ξ)

n
, . . . ,

νn,N−1(ξ)

n

)
− θ0

∣∣∣∣
]

≤
√√√√N−1∑

i=1

E

[∣∣∣∣νn,1(ξ)n
− θ0,i

∣∣∣∣
2
]

≤ 1√
n

replaces the speed of the mean Glivenko–Cantelli convergence. Then, we have that

K(θ | θ0) =
N∑
i=1

θ0,i log

(
θ0,i

θi

)
.

The relation analogous to that in (56), which gives a PCR at θ0, reads as follows

εn = 3

(∫
ΔN−1

|θ − θ0|2e−nK(θ |θ0)π(dθ)∫
Θ
e−nK(θ | θ0)π(dθ)

)1/2

+ L(n)0 (δn)E

[∣∣∣∣
(
νn,1(ξ)

n
, . . . ,

νn,N−1(ξ)

n

)
− θ0

∣∣∣∣
]

+ 2|θ0|P
[∣∣∣∣
(
νn,1(ξ)

n
, . . . ,

νn,N−1(ξ)

n

)
− θ0

∣∣∣∣ > δn
]

+ E

[⎛
⎝2

∫
ΔN−1

|θ |2
[∏N

i=1 θ
νn,i (ξ)

i

]
π(dθ)

∫
ΔN−1

[∏N
i=1 θ

νn,i (ξ)

i

]
π(dθ)

⎞
⎠

1/2

× 1

{∣∣∣∣
(
νn,1(ξ)

n
, . . . ,

νn,N−1(ξ)

n

)
− θ0

∣∣∣∣ > δn
}]

(62)

where {δn}n≥1 provides a sequence of positive numbers and L(n)0 is defined as follows

L(n)0 := n sup
|p−θ0|≤δn

[C2(π
∗
n (· | p))]2

(∫
ΔN−1

∣∣∣∇θ∇pK(θ | p)
∣∣∣2π∗

n (dθ | p)
)1/2

.
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We show that the PCR in (62) reduces to a simpler expression. Indeed, the first
term on the right-hand side of (62) is similar to the one already studied in the previous
section. By resorting to the same theorems from Breitung [22], recalling that the
mapping θ �→ K(θ | θ0) is minimum when θ = θ0, we get, as n → +∞,

(∫
ΔN−1

|θ − θ0|2e−nK(θ | θ0)π(dθ)∫
ΔN−1

e−nK(θ | θ0)π(dθ)

)1/2

= O
(
n−1/2)

provided thatπ has full support. As for the second terms on the right-hand side of (62),
we have already shown that the expectation is controlled by 1/

√
n. Apropos of the

constant L(n)0 (δn), we can easily show that it is bounded, at least whenever θ0 is fixed in
the interior ofΔN−1. In fact, δn can be chosen equal to any positive constant δ less than
the distance between θ0 and the boundary of ΔN−1. In particular, by exploiting the
convexity of themapping θ �→ K(θ | p), we can resort to Proposition 4, upon assuming
more regularity on the prior distribution π , in order to obtain [C2(π

∗
n (· | p))]2 ≤

C(δ)/n, with a positive constant C(δ) which is independent of p. Then, by means of
a direct computation, under the above conditions on θ0 and δ we can show that the
integral

∫
ΔN−1

∣∣∣∇θ∇pK(θ | p)
∣∣∣2π∗

n (dθ | p)

can be bounded uniformly in n. To conclude the analysis of the terms on the right-hand
side of (62), we only need to exploit the boundedness of |θ |, as θ varies in ΔN−1, to
show that the third and the fourth terms are both bounded by a multiple of

P

[∣∣∣∣
(
νn,1(ξ)

n
, . . . ,

νn,N−1(ξ)

n

)
− θ0

∣∣∣∣ > δn
]
.

Thus, if θ0 is in the interior of ΔN−1 and δn = δ for every n ∈ N, for the same δ as
above, it is well-known from the theory of large deviations that this probability goes to
zero exponentially fast. SeeDembo andZeitouni [33, Chapter 2] for a detailed account.
To conclude, we state a proposition that summarizes the above considerations.

Proposition 8 Let N ≥ 2 be an integer. Let π be a prior on ΔN−1. If π has a density
q (with respect to the Lebesgue measure) such that q ∈ C1(ΔN−1) and q(θ) = 0 for
any θ ∈ ∂ΔN−1, then as n → +∞

εn = O
(
n−1/2),

which is the optimal rate.
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4.3 Finite-dimensional logistic-Gaussianmodel

Consider a class of dominated statistical models specified by density functions of the
form

f (x | θ) = eθ ·ΓN (x)∫ 1
0 eθ ·ΓN (x)λ(dy)

x ∈ X, θ ∈ Θ (63)

where, for simplicity, we have fixed N ∈ N, Θ = R
N , X = [0, 1], X = B([0, 1]),

λ = L1[0,1], that is the one-dimensional Lebesgue measure restricted to [0,1], and

ΓN (x) := (sin πx, sin 2πx, . . . , sin Nπx) .

Of course, the expression θ ·ΓN (x) represents a Fourier polynomial and, for sufficiently
large N , can approximate verywell any smooth function, in various norms. Thismodel
has been studied in connection with the problem of density estimation [28, 29, 60,
61], essentially as a toy model. In the following section, we will analyze its infinite
dimensional generalization, which is a more flexible statistical model, even if more
complex from a mathematical point of view.

To apply Theorem 1, we start by fixing θ0 ∈ Θ , so that μ0(dx) = f (x |θ0)dx ,
where x �→ f (x |θ0) is a continuous and bounded density function on [0, 1]. Then,
we let {ξi }i≥1 be a sequence of independent random variables identically distributed
as the probability law μ0. The model (63) satisfies Definition 3 with B = Θ , B∗ = Θ
(by Riesz’s representation theorem) and Γ = B

∗, with B∗〈·, ·〉B being identified with
the standard (Euclidean) scalar product of RN . The function β coincides with ΓN (x),
while g is the identity function. Finally, we have that

M(θ) = log

(∫ 1

0
eθ ·ΓN (x)dx

)

which proves to be a convex function, steep, of class C∞(Θ) and analytic. Therefore,
we have a regular exponential family, in canonical form. As for the prior distribution,
besides themultivariate (non-degenerate)GaussiandistributionN (m, Q),withm ∈ Θ
and Q being a symmetric and positive-definite N × N matrix, any other distribution
of log-concave form like π(dθ) ∝ exp{−U (θ)}dθ fits our assumptions, provided that
U is of class C2(Θ) and strongly convex.

Coming back to the application of Theorem 1, we check the validity of the assump-
tions. First, |ΓN (x)| ≤ √

N for all x ∈ [0, 1], so that (21) is in force. Then, (24)
and

∫
Θ

‖θ‖apπ(dθ) < +∞ for some a > 1 hold, because of the assumptions on the
prior distribution. Thus, the bound (25) provides the desired PCR, so that we proceed
further by analyzing the various terms as in Sect. 3.1. Since

I(θ0) = Hess[M](θ0) = Covθ0(ΓN (ξ1))

is strictly positive definite, we can apply Proposition 1. We conclude that the first term
on the right-hand side of (25) goes to zero as 1√

n
. Then, the boundedness condition
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|ΓN (x)| ≤ √
N for all x ∈ [0, 1] entails that the second and the third terms on the right-

hand side of (25) go to zero exponentially fast by means of classical concentration
inequalities, like Bernstein’s inequality for instance [20, 33]. Finally, we consider the
last term on the right-hand side of (25). In particular, by Jensen’s inequality

E[‖Ŝn − S0‖B] ≤
(
E[‖Ŝn − S0‖2B]

)1/2 = O
(
n−1/2)

as n → +∞, where Ŝn = n−1∑n
i=1 ΓN (ξi ) and

S0 = Eθ0 [ΓN (ξ1)] =
∫ 1

0
ΓN (x)μ0(dx) .

Then, we apply Proposition 3. Since Dθ [g] coincides with the identity operator, we
conclude that

∫
Θ

‖Dθ [g]‖2∗ π∗
n (dθ | S) = 1

for all S ∈ B. Whence,

L(n)0 = n sup
S∈Uδn (S0)

{
C2[π∗

n (· | S)]
}2
.

We conclude our analysis by estimating the weighted Poincaré–Wirtinger constant by
means of Proposition 4. Indeed, a common feature of these logistic models is that the
behavior of the Kullback–Leibler K(θ |θ0) is twofold: it is quadratic as θ varies around
θ0, while it is linear as |θ | → +∞. Thus, the strong Bakry–Emery condition does not
apply here, and we resort to the boundedness condition

θ · ∇θK(θ | θ0) ≥ c|θ | (64)

for all |θ | ≥ R, with some suitable R > 0. To check the validity of this lower bound,
we fix for simplicity θ0 = 0, to get

θ · ∇θK(θ | θ0) =
∫ 1
0 φ(x)e

φ(x)dx∫ 1
0 eφ(x)dx

−
∫ 1

0
φ(x)dx

with φ(x) := θ ·ΓN (x). By fixing a unitary vector σ ∈ SN−1 and considering θ = tσ ,
the Laplace approximation yields that the above right-hand side is asymptotic to

t

[
max
x∈[0,1] σ · ΓN (x)− σ ·

∫ 1

0
ΓN (x)dx

]
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as t → +∞. At this stage, the function

σ �→ max
x∈[0,1] σ · ΓN (x)− σ ·

∫ 1

0
ΓN (x)dx (65)

proves to be continuous and non-negative on SN−1. The minimum of such a function
must be positive, otherwise there would exist σ̂ ∈ SN−1 for which the map x �→
σ̂ · ΓN (x) turns out to be constant. But this contradicts the linear independence of
the Fourier basis ΓN , yielding that the function in (65) must be strictly positive. This
fact validates (64). Thus, by point (1) of Proposition 4, the square of the weighted
Poincaré–Wirtinger constant is asymptotic to 1/n. All the above considerations can
be summarized in the following proposition.

Proposition 9 Let π(dθ) ∝ exp{−U (θ)}dθ be any prior onΘ = R
N , with U of class

C2(Θ) and stongly convex. Then, for the finite-dimensional logistic-Gaussian model
as in (63) with N ∈ N, X = [0, 1], X = B([0, 1]) and λ = L1[0,1], the PCR εn
satisfies

εn = O
(
n−1/2)

as n → +∞, which is the optimal one.

4.4 Infinite-dimensional logistic-Gaussianmodel

Consider a class of dominated statistical models specified by density functions of the
form

f (x | θ) = eθ(x)∫ 1
0 eθ(y)λ(dy)

x ∈ X, θ ∈ Θ (66)

where we have fixed X = [0, 1], X = B([0, 1]), λ = L1[0,1], that is the one-
dimensional Lebesgue measure restricted to [0,1]. As for the parameter space Θ , we
set

Θ = H1∗(0, 1) := {φ ∈ H1(0, 1) | φ(0) = 0} (67)

thought of as an infinite-dimensional Hilbert space endowed with scalar product

〈φ,ψ〉 =
∫ 1

0
φ′(z)ψ ′(z)dz (68)

and norm

‖φ‖H1∗(0,1) :=
(∫ 1

0
[φ′(z)]2dz

)1/2

.
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Here, the well-known Sobolev embedding theorem [65] states that H1∗(0, 1) is con-
tinuously embedded in C0[0, 1], and therefore the above notations θ(x) and φ(0) are
referred to the continuous representatives of θ and φ, respectively.

The infinite-dimensional logistic-Gaussian model is typically considered in con-
nection with the fundamental problem of density estimation [28, 29, 60, 61]. Under
the assumption that the prior is a Gaussian measure, Bayesian consistency is investi-
gated in Tokdar and Ghosh [80], whereas PCRs are provided in Giné and Nickl [54],
Rivoirard and Rousseau [70], Scricciolo [72] and van der Vaart and van Zanten [82].
These results consider the set Θ to be the space of all density functions on [0, 1],
typically endowed with the total variation distance, the Hellinger distance, some Lp

norm or the Kullback–Leibler divergence. Our approach to PCRs relies on the choice
(67), so that our PCRs refers to Definition 1 with dΘ equal to the H1∗(0, 1)-norm. This
metric is generally stronger, since a Sobolev norm is, for suitable exponents, grater that
the Lr norm considered in Giné and Nickl [54] and, in turn, greater than the (squared)
Hellinger distance, as proved in Scricciolo [72, Lemma A.1]. In connection with the
statistical model (66), the work of Fukumizu [47] provides an implicit Riemannian
structure on the space of densities which is modeled on the metric of the underlying
space Θ , that is the Riemannian distance between two densities f (·|θ1) and f (·|θ2)
turns out to be locally equivalent to ‖θ1 − θ2‖H1∗(0,1). Another (geometrical) view of
the set { f (· | θ)}θ∈Θ , which is simply thought as a differential manifold, is provided
in Pistone and Rogantin [69].

We provide PCRs for the model (66) on the basis of Theorem 1. We start by fixing
θ0 ∈ Θ , withΘ being the same as in (67). Whence,μ0(dx) = f (x |θ0)dx , where x �→
f (x |θ0) is a continuous and bounded density function on [0, 1]. Then, we let {ξi }i≥1
be a sequence of independent random variables identically distributed with probability
law μ0. At this stage, we notice that the model (66) satisfies Definition 3 with B = Θ ,
B

∗ = Θ (by Riesz’s representation theorem) and Γ = B
∗. For completeness, we

specify that also the pairing B∗〈·, ·〉B is identified with the scalar product 〈·, ·〉 as
in (68), again by Riesz’s representation theorem. In this setting, we deduce that the
function β in Definition 3 coincides with the Riesz representative of the δx functional,
for any x ∈ [0, 1], that is βx (z) := z1[0,x](z) + x1(x,1](z) for z ∈ [0, 1], since, for
any θ ∈ Θ , θ(x) = 〈θ, βx 〉. Lastly, we fix g as the identity map on Θ , so that (19) is
satisfied and

M(θ) = log
∫ 1

0
eθ(y)dy. (69)

As for the priorπ , we assume that it is aGaussianmeasure onΘ , withmeanm ∈ Θ and
covariance operator Q : Θ → Θ . We recall that Q is a trace operator with eigenvalues
{λk}k≥0 that satisfy

∑∞
k=0 λk < +∞. See Da Prato [30, 31], and references therein,

for a review on Gaussian measures on Hilbert spaces.
Now, we check the validity of the assumptions of Theorem 1. First, we have that

‖βx‖B =
(∫ 1

0
1[0,x](z)dz

)1/2

= √
x ∈ [0, 1] (70)
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yielding that (21) is trivially satisfied. In particular, the element S0 is given by

z �→ S0(z) =
∫ 1

0
βx (z)μ0(dx) = zμ0([z, 1])+

∫ z

0
xμ0(dx) ∈ Θ

and Ŝn = n−1∑n
i=1 βξi . We recall that Ŝn → S0 as n → +∞, in both P-a.s. and L2

sense, by the Laws of Large Numbers in Hilbert spaces ([62, Corollary 7.10]). Now,
we observe that (24) boils down to write that

∫
Θ

exp{n B∗〈g(τ ), b〉B}π(dτ) = exp

{
n〈m, b〉 + n2

2
〈Q[b], b〉

}
< +∞

for all n ∈ N and b ∈ B = Θ . See Da Prato [31, Proposition 1.15]. Then, condition
(iii) of Theorem 1 is trivially satisfied. Finally, with regards to (iv), we mention that
any sequence δn ∼ n−q with q ∈ [0, 1/2), as n → +∞, is valid as far as we verify the
validity of (9), as we will do just below. After these preliminaries, we start analyzing
the four terms on the right-hand side of (25).

As for the first term on the right-hand side of (25), we study (28). We observe that

K(θ | θ0) =
∫ 1

0
[θ0(y)− M(θ0)− θ(y)+ M(θ)] f (y | θ0)dy

=
∫ 1

0
〈θ0 − θ, βy〉 f (y | θ0)dy + M(θ)− M(θ0)

= 〈Dθ0M, θ0 − θ〉 + M(θ)− M(θ0)

= 1

2
〈Hessθ0 [M][θ0 − θ ], θ0 − θ〉 + o(‖θ0 − θ‖2) (as θ → θ0)

where Dθ0M represents the (Riesz representative of) the Fréchet differential of M :
Θ → R at θ0, while Hessθ0 [M] = I(θ0) stands for the Hessian operator of M at θ0,
which coincides with the Fisher information operator I(θ0). In particular, in the last
identity we have used the Taylor expansion ofM around θ0. In view of amore concrete
characterization of Dθ0M and I(θ0), we write that

M(θ0 + h)− M(θ0)

=
∫ 1

0
h(y)μ0(dy)+ 1

2

[∫ 1

0
h2(y)μ0(dy)−

(∫ 1

0
h(y)μ0(dy)

)2
]

+ R(h;μ0)

where ‖R(h;μ0)‖ ≤ C(μ0)‖h‖3Θ for ‖h‖Θ ≤ 1, with some suitable constant C(μ0)

depending solely on μ0. In particular, a straightforward integration by parts shows
that

∫ 1

0
h(y)μ0(dy) =

∫ 1

0
h′(y)Φ ′

0(y)dy = 〈h, Φ0〉

123



Strong posterior contraction rates via Wasserstein dynamics

with Φ0(y) := ∫ y
0 [1 − F0(z)]dz and F0(z) := μ0([0, z]). Whence, Φ0 = Dθ0M , by

means of Riesz’s representation. Moreover, with the same technique, we obtain

Hessθ0 [M][h](y) = 2
∫ y

0
h(z)[1 − F0(z)]dz − 〈h, Φ0〉Φ0(y) (71)

for any y ∈ [0, 1] and h ∈ Θ . The above left-hand side should be read as follows:
first, the operator Hessθ0 [M], applied to h ∈ Θ , gives a new element of Θ , called
Hessθ0 [M][h]; second, this new object, as a continuous function evaluated at y, coin-
cides with the right-hand side. Finally, integration by parts entails that

∫ 1

0
h2(y)μ0(dy)−

(∫ 1

0
h(y)μ0(dy)

)2

= 〈h,Hessθ0 [M][h]〉

for any h ∈ Θ . The way is now paved for the application of Proposition 2 and Remark
4. As first step, we check that the operator in (71), fromΘ to itself, is compact. As for
the term 〈h, Φ0〉Φ0, it defines a finite-rank operator, which is of course compact. As for
the term 2

∫ y
0 h(z)[1−F0(z)]dz, it is enough to pick a bounded sequence, say {hn}n≥1,

in Θ , and study the sequence {Ψn}n≥1 given by Ψn(y) := 2
∫ y
0 hn(z)[1 − F0(z)]dz.

Now, from the well-known properties of weak topologies of separable Hilbert spaces,
we can extract a subsequence {hn j } j≥1, which converges weakly to some h∗ ∈ Θ .
Whence, hn j converges uniformly (i.e. in the strong topology of C0[0, 1]) to h∗, by
the Rellich–Kondrachov embedding theorem. Consequently, it is trivial to get that the
sequence {Ψn j } j≥1 converges strongly in Θ to Ψ∗(y) := 2

∫ y
0 h∗(z)[1 − F0(z)]dz

since

‖Ψn j − Ψ∗‖2Θ = 4
∫ 1

0
|hn j (z)− h∗(z)|2[1 − F0(z)]2dz ≤ 4‖hn j − h∗‖2∞ → 0

as j → +∞. This proves that the operator in (71), from Θ to itself, is a compact
operator, even if it is not self-adjoint. Then, we resort to Remark 4, noticing that

∫ 1

0
h2(y)μ0(dy)−

(∫ 1

0
h(y)μ0(dy)

)2

=
∫ 1

0

[
h(x)−

∫ 1

0
h(y)μ0(dy)

]2
f (x | θ0)dx

≥ exp{−osc(θ0)}
∫ 1

0

[
h(x)−

∫ 1

0
h(y)μ0(dy)

]2
dx

≥ exp{−osc(θ0)}
∫ 1

0

[
h(x)−

∫ 1

0
h(y)dy

]2
dx
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where osc(θ0) := maxx∈[0,1] θ0(x)−minx∈[0,1] θ0(x) is the oscillation. Therefore, we
can set

I†[h] := exp{−osc(θ0)}Hess0[M][h]

where Hess0[M][h] is defined by (71) with θ0 ≡ 0, to re-write the above relations as

〈h,Hessθ0 [M][h]〉 ≥ 〈h, I†[h]〉

or simply as Hessθ0 [M] ≥ I†. By means of the above argument, I†, as a linear operator
fromΘ to itself, is again compact, but not self-adjoint. By a straightforward integration
by part, we find that a self-adjointized version of I† is given by

I∗[h](x) := exp{−osc(θ0)}
{∫ 1

0
βx (y)h(y)dy −

(
x − x2

2

)∫ 1

0
h(y)dy

}

with x ∈ [0, 1] and h ∈ Θ . The relation Hessθ0 [M] ≥ I∗ is, of course, still in
force. We can now invoke the spectral theorem for compact, self-adjoint operators
on separable Hilbert spaces to deduce the existence of a Fourier basis (complete
orthonormal system) {ek}k≥1 forΘ which diagonalizes I∗. With reference to (37), we
call {γ ∗

k }k≥1 the sequence of the relative eigenvalues, for which we have that γ ∗
k → 0

as k → +∞, again by the spectral theorem. An explicit derivation of ek could be
drawn from the following integral-differential Cauchy problem

⎧⎨
⎩

−ek(x)+
∫ 1

0
ek(y)dy = γ ∗

k e
′′
k(x) x ∈ [0, 1]

ek(0) = e
′
k(0) = 0

which is obtained bydifferentiating twice the relation I∗[ek] = γ ∗
k ek . Explicit solutions

are

ek(x) =
√
2

kπ
(1 − cos(kπx)) γ ∗

k = exp{−osc(θ0)}
(kπ)2

(72)

with x ∈ [0, 1] and k ∈ N. After having fixed the Fourier basis {ek}k≥1, we can further
specify the prior distributions in terms of the probability laws of the random elements
Ξ , with values in Θ , of the form (Karhunen–Loève representation)

Ξ =
∞∑
k=1

Zkek .

Here, {Zk}k≥1 is a sequence of independent real-valued random variables with Zk ∼
N (mk, λk), for suitable sequences m := {mk}k≥1 ⊂ R and {λk}k≥1 ⊂ (0,+∞) with
{mk}k≥1 ∈ �2 and {λk}k≥1 ∈ �1. Thus, if π(B) := P [ Ξ ∈ B] for any B ∈ B(Θ),
it is straightforward to check that π is a Gaussian measure on (Θ,B(Θ)) with mean
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m and covariance operator Q satisfying Q[ek] = λkek . Whence, (37) is verified. To
justify the validity of (38), we check the remaining assumptions of Proposition 2.
First, it is trivial to check that θ �→ K(θ |θ0) belongs to C∞(Θ), so that we can put
q = 1. Then, we consider points i)–iv). For simplicity, we again fix θ0 ≡ 0, with no
real loss of generality. We start with the definition of the space K, expressed as the
closure of Θ with respect to the norm

‖θ‖K := sup
ψ∈Θ

‖ψ‖Θ≤1

∫ 1

0

[
θ(x)−

∫ 1

0
θ(y)dy

]
ψ(x)dx (73)

which represents, plainly speaking, a dual Sobolev norm of the function x �→ θ(x)−∫ 1
0 θ(y)dy. The embedding Θ ⊂ K, with dense and continuous inclusion, follows
from the Poincaré–Wirtinger inequality. Then, we notice that the function

θ �→ K(θ |θ0) = log

(∫ 1

0
eθ(y)dy

)
−
∫ 1

0
θ(y)dy

= log

(∫ 1

0
exp

{
θ(x)−

∫ 1

0
θ(y)dy

}
dx

)

has two different behaviors according on whether the norm of θ is small or large. To
be more precise, we fix σ ∈ Θ with ‖σ‖Θ = 1 and then we set θ = tσ for any
t ∈ (0,+∞). In particular, as t → 0, a straightforward argument based on Taylor
expansions of the exponential and the logarithmic functions shows that

K(tσ |θ0) = t2

2

∫ 1

0

[
σ(x)−

∫ 1

0
σ(y)dy

]2
dx + o(t2) .

On the other hand, as t → +∞, by means of a direct application of the Laplace
method of approximation ([87, Theorem 1.II]), we obtain the following expansion

K(tσ |θ0) ∼ t max
x∈[0,1]

(
σ(x)−

∫ 1

0
σ(y)dy

)
+

with (a)+ := max{a, 0}. Upon denoting by H−1∗ (0, 1) the dual space of Θ , we can
exploit that L1(0, 1) ⊂ H−1∗ (0, 1), with continuous dense embedding, to obtain that

max
x∈[0,1]

(
σ(x)−

∫ 1

0
σ(y)dy

)
+

≥ 1

2

∫ 1

0

∣∣∣∣σ(x)−
∫ 1

0
σ(y)dy

∣∣∣∣ dx � ‖σ‖K .

Therefore, (33)–(34) are fulfilled with the above choice of the space K, and some
φ : [0,+∞) → [0,+∞) which behaves quadratically for small arguments and
linearly for large arguments, like φ(x) = x21[0,1](x)+x1(1,+∞)(x). Then, the choice
of q = 1 entails that r ∈ (1, 32 ). Further insights on inequalities like (33) can be found
in Bal et al. [8], while properties of homogeneous spaces like K have been recently
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investigated in Brasco et al. [21]. As for the validity of the interpolation inequality
(32), we can fix, for example, r = 4/3, s = 4 and start from the following specific
version of the Gagliardo–Nirenberg interpolation inequality

‖ f ‖H1(0,1) � ‖ f ‖7/8
L2(0,1)

‖ f ‖1/8
H8(0,1)

whereHm(0, 1) denotes the standard (Hilbertian) Sobolev space of orderm [23, Corol-
lary 5.1]. Applying this inequality to f (x) = θ(x)− ∫ 1

0 θ(y)dy, we get

‖θ‖Θ �
∥∥∥∥θ −

∫ 1

0
θ(y)dy

∥∥∥∥
7/8

L2(0,1)
·
∥∥∥∥θ −

∫ 1

0
θ(y)dy

∥∥∥∥
1/8

H8(0,1)
(74)

for all θ ∈ Θ such that d8

dx8
θ(x) ∈ L2(0, 1). Now, we define the Hilbert space V as the

subspace of Θ formed by those θ ∈ Θ such that d8

dx8
θ(x) ∈ L2(0, 1), with the norm

‖θ‖V :=
∥∥∥∥θ −

∫ 1

0
θ(y)dy

∥∥∥∥
H8(0,1)

. (75)

The inclusion V ⊂ Θ with continuous and dense embedding follows by means of
the usual Sobolev embedding theorem [65]. At this stage, we make use of the other
specific version of the Gagliardo–Nirenberg interpolation inequality given by

‖ f ‖H2(0,1) � ‖ f ‖6/7
H1(0,1)

‖ f ‖1/7
H8(0,1)

to deduce that

‖u‖L2(0,1) � ‖u‖6/7
K

‖u‖1/7
V

holds for any u ∈ C∞
c (0, 1) with

∫ 1
0 u(x)dx = 0. By combining this inequal-

ity with (74), we finally deduce (32) with r = 4/3 and s = 4. To guarantee
that π(V) = 1, we can resort to the standard Kolmogorov three-series criterion to
obtain that P [ Ξ ∈ V] = 1 provided that mk = O(k−8−δ) and λk = O(k−16−δ) as
k → +∞, for some δ > 0. Finally, since we have ‖ek‖V = O(k7) as k → +∞, then

∫
V

et‖θ‖Vπ(dθ) = E
[
et‖Ξ‖V

]
≤ E

[
exp

{
t

∞∑
k=1

|Zk | · ‖ek‖V
}]

≤ exp

{
t

∞∑
k=1

|mk | · ‖ek‖V + t2

2

∞∑
k=1

λk‖ek‖2V
}
< +∞

holds for any t > 0.
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By proceeding with the analysis of the other terms on the right-hand side of (25),
we observe that the boundedness condition (70) entails a direct application of results
in Pinelis and Sakhanenko [68] and Yurinskii [89], yielding that

E[‖Ŝn − S0‖B] ≤
(
E[‖Ŝn − S0‖2B]

)1/2 = O
(
n−1/2)

and in addition that, for any sequence {δn}n≥1 such that δn ∼ n−q with q ∈ [0, 1/2),

P
[
Ŝn /∈ Uδn (S0)

]
≤ 2 exp{−Cn1−2q}

for a positive constantC that depends only onμ0. It remains to dealwith the asymptotic
behavior of L(n)0 by combining Propositions 3 and 5. Here, we exploit once again the
fact that g coincides with identity function, so that

∫
Θ

‖Dθ [g]‖2∗ π∗
n (dθ | S) = 1

for all S ∈ Θ . Whence,

L(n)0 = n sup
S∈Uδn (S0)

{
C
(M)
2 [π∗

n (· | S)]
}2
,

where we have indicated our preference for a weighted Poincaré–Wirtinger con-
stant, with respect to the Malliavin derivative. Indeed, we can argue as in the
finite-dimensional setting, exploiting the key observation that the Kullback–Leibler
divergence K(θ |θ0) behaves quadratically if θ varies around θ0, while it is linear as
‖θ‖ → +∞. To be more precise, we can use the same arguments developed above
to show that the choice G0 = I∗ fits the requirements of Proposition 5. Thus, the
eigenfunctions {ek}k≥1 are the same as above, and ηk = γ ∗

k . In order to exploit point
(1) of Proposition 5, we can mimic the same arguments already used in the previous
section to prove (64). Actually, it works in the same way, with the sole difference that
the function in (65) is now replaced by

σ �→ max
x∈[0,1] Q

1/2[σ ](x)−
∫ 1

0
Q1/2[σ ](x)dx (76)

with ‖σ‖Θ = 1, because of the fact that the gradient is replaced by the Malliavin
derivative. See Da Prato [30, Section 2.3]. Since Q1/2 is a compact operator, the
image of the bounded set {σ ∈ Θ | ‖σ‖Θ = 1} through Q1/2 is sequentially compact.
Thus, the infimum of the function in (76) cannot be equal to zero. Finally, with the
application of (49), which provides the rate of the weighted Poincaré–Wirtinger con-
stant, the discussion is completed. To conclude our analysis, we state a proposition
that summarizes all the above considerations.
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Proposition 10 In connection with the model (66), let X = [0, 1] and Θ = H1∗(0, 1).
Let θ0 ∈ Θ be fixed. Assume that π = N (m, Q) with m ∈ Θ and Q a non-degenerate
trace-class operator satisfying (31). Fix the eigenfunctions {ek}k≥1 and the spaces K
andV as in (72), (73) and (75), respectively. Finally, set γ ∗

k as in (72), ηk = γ ∗
k andωk

according to the Fourier representation θ0−m = ∑∞
k=1 ωkek . If mk = O(k−8−δ) and

λk = O(k−16−δ) as k → +∞, for some δ > 0, then points (i)–(iv) of Proposition 2
are valid, along with the assumptions of point (1) of Proposition 5. In conclusion, it
holds

εn = O

⎛
⎝
√√√√ ∞∑

k=1

λk

nλkγ ∗
k + 1

+
√√√√ ∞∑

k=1

ω2k

(nλkγ ∗
k + 1)2

+ √
nmax

k∈N

{
λk

nλkηk + 1

}⎞
⎠ .

To provide some hints on the optimality of our PCRs, it is useful to recall the
discussion at the end of Section 3.1. At least in the simpler case when m = θ0, the

above rate has the form O
(
n− a−1

2(a+3)
)
when λk = O(k−(1+a)). The parameter a can

be interpreted as a smoothness parameter, in the sense that it measures the analytical
regularity of the trajectories of the prior π . By way of example, supposing mk = 0
for all k for simplicity, a precise statement is as follows: if a > 1 and ε ∈ (

0, a−1
2

)
,

then the trajectories of the random process Ξ belong to H1+ε(0, 1) almost surely. We
notice that our rate is just slightly slower than the standard rate n− α

2α+1 which is proved
in Giné and Nickl [54], Rivoirard and Rousseau [70] and Scricciolo [72], where α is
characterized by the fact that the random processΞ belongs to Hα(0, 1) almost surely.
This slight discrepancy makes sense since our reference norm (i.e., the Sobolev norm
of H1∗) is larger than any Lp norm, for any p ∈ [1,+∞]. To the best of our knowledge,
our rate does not admit a fair comparison with any other known rate of consistency,
neither Bayesian nor classical, because of the different choice of the loss function.
The only fair comparison could be made with the rates obtained in Sriperumbudur et
al. [76], which are nonetheless relative to distinguished classical estimators (see, in
particular, Theorem 7, point (ii) therein). Since these classical rates are slower than
n−1/3, we notice, in support of the optimality of our approach, that our rate is: (i)
arbitrarily close to the optimal (parametric) rate n−1/2 if a → +∞; (ii) faster than
n−1/3 as soon as a > 9, a condition which is surely met in the framework presented in
Proposition 10, where a = 15 + δ. Hence, a Bayesian estimator, that shares our PCR
as rate of consistency, performs better that the minimum-distance estimator proposed
in Sriperumbudur et al. [76].

4.5 Infinite-dimensional linear regression

Consider a statisticalmodel that arises from the popular linear regression. The observed
data are the collection of pairs (u1, v1), . . . , (un, vn), such that: i) the ui vary in an
interval [a, b] ⊂ R, and are modeled as i.i.d. random variables, say U1, . . . ,Un , with
a known distribution, say  (du) = h(u)du, on ([a, b],B([a, b])); the vi ’s vary in
R, and are modeled as i.i.d. random variables V1, . . . , Vn . The Vi ’s are stochastically
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dependent of the Ui ’s according to the relation

Vi = θ(Ui )+ Ei i = 1, . . . , n (77)

where E1, . . . , En are i.i.d. random variables with Normal N (0, σ 2) distribution,
while θ : [a, b] → R is an unknown continuous function. Assuming for simplicity
that σ 2 > 0 is known, the statistical model is characterized by probability densities
f (·|θ) on [a, b] × R, with respect to the Lebesgue measure, given by

f (x |θ) = f ((u, v)|θ) = 1√
2πσ 2

exp

{
−[θ(u)− v]2

2σ 2

}
h(u) . (78)

The space Θ is chosen, as in the previous section, as a Sobolev space Hs(a, b) with
s > 1/2, which is continuously embedded in C0[a, b]. Whence, upon fixing θ0 ∈ Θ ,

μ0(dudv) = 1√
2πσ 2

exp

{
−[θ0(u)− v]2

2σ 2

}
h(u)dudv .

On the other hand, from the Bayesian point of view, upon fixing a prior distribution
π on (Θ,T ) and resorting to the Bayes formula, the posterior takes on the form

πn(dθ |x1, . . . , xn) = πn(dθ |(u1, v1) . . . , (un, vn))

=
exp

{
− 1

2σ 2
∑n

i=1[θ(ui )− vi ]2
}
π(dθ)

∫
Θ
exp

{
− 1

2σ 2
∑n

i=1[τ(ui )− vi ]2
}
π(dτ)

.

Whence, for any probability measure γ ∈ P2([a, b]×R), we can write the following

π∗
n (dθ |γ ) =

exp
{
− n

2σ 2
∫
[a,b]×R

[θ(u)− v]2γ (dudv)
}
π(dθ)

∫
Θ
exp

{
− n

2σ 2
∫
[a,b]×R

[τ(u)− v]2γ (dudv)
}
π(dτ)

.

Lastly, as for the Kullback–Leibler divergence, a straightforward computation yields

K(θ |θ0) = 1

2σ 2

∫ b

a
[θ(u)− θ0(u)]2h(u)du .

This statistical model is particularly versatile with respect to our theory, because it
can be studied as either an infinite-dimensional exponential family or by means of
Theorem 2 and Corollary 1. For example, to see that we can use the theory of infinite-
dimensional exponential families, it suffices to consider the identities

(θ(u)− v)2 =
∫ b

a

∫
R

(θ(x)− y)2δ(u,v)(dxdy)
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= −
∫ b

a

∫
R

[Δ((θ(x)− y)2)]G(x, y; u, v)dxdy

where G(x, y; u, v) stands for the Green function of the set [a, b] ×R. If θ varies in a
sufficiently regular space, that is if s is sufficiently large, then [Δ((θ(x)− y)2)] is still
a function, which can be set equal to g(θ). On the other hand, G(x, y; u, v) represents
the function β in the theory of exponential families.

As for the assumptions of Theorem 2, we can prove their validity if, for instance,
h belongs to C0[a, b] ∩ C2(a, b) and it is bounded away from zero. The assumption∫
X

|x |qμ0(dx) < +∞ is valid for any q > 0 and (58) holds if we assume, for
instance, a Gaussian prior π . As for Corollary 1, we can check the validity of (57)
as a consequence of the Gagliardo–Nirenberg interpolation inequality ([65, Section
12.3]). Being K(θ |θ0) equivalent to the squared L2-norm,

‖θ − θ0‖Hs (a,b) ≤ ‖θ − θ0‖1−αL2(a,b)
‖θ − θ0‖αHs′ (a,b)

for any s′ > s, where α := s/s′. Therefore, choosing a prior distribution that
is supported on Hs′(a, b), such as for instance a Gaussian type prior, and recall-
ing that Hs′(a, b) is dense in Hs(a, b), it is enough to consider the neighborhood
‖θ − θ0‖Hs′ (a,b) ≤ 1 of θ0 and check that the interpolation inequality immediately
yields (57). Whence, β = 2/(1− α). These considerations show that Proposition 2 is
applicable, provided that the prior is Gaussian with a covariance matrix that satisfies
(31). In any case, both the methods end up by highlighting the main terms that figures
on the right-hand sides of (25) and (56).

Now, for the sake of brevity, we confine ourselves on the application of Theorem 1.
Apropos of the first term on the right-hand side of (25), we notice that I(θ0) is inde-
pendent of θ0, and is equivalent to the identity operator. In view of a straightforward
coercivity, we can apply the results in Section 3.3 of Albeverio and Steblovskaya [2]
to obtain that the first term on the right-hand side of (25) is asymptotic to 1√

n
, as

n → +∞. Then, the second and the third terms are exponentially small, and hence
asymptotically negligible. To complete the treatment, we are left to discuss the asymp-
totic behavior of the constant L(n)0 . Apropos of the Poincaré constant [C2(π

∗
n (·|γ ))]2,

here it is trivial to notice that the mapping θ �→ ∫
[a,b]×R

[θ(u) − v]2γ (dudv) is
twice Frechét-differentiable with respect to θ . Therefore, the Bakry–Emery criterion
applies and, if π is Gaussian, results in Da Prato [31, Chapters 10–11] show that
[C2(π

∗
n (·|γ ))]2 = O(1/n), as n → ∞. As for the termDθ

∇x f (x |θ)
f (x |θ) , we first notice that

∇x f (x |θ)
f (x |θ) = − 1

σ 2

(
θ ′(u)(θ(u)− v),−(θ(u)− v)) .

This is the sum of the terms σ−2
(
vθ ′(u), θ(u)− v) and 1

σ 2

(−θ ′(u)θ(u), 0
)
, where

the former vector is a linear functional of θ . Thus, the Fréchet derivative of the first
term with respect to θ is given by the vector σ−2(vSu, Tu), where Tu (Su , respec-
tively) stands for the Riesz representative of the functional δu (−δ′u , respectively).
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It is useful to observe that such a derivative, being independent of θ , does not con-
tribute asymptotically in the expression of the double integral, as we have already
discussed in the previous section. Finally, the Fréchet derivative of the second term
is −σ−2

(
Tuθ ′(u)+ Suθ(u), 0

)
. At this stage, we can see that the study of the double

integral can be reduced, through the use of Sobolev inequalities, to the study of the cor-
responding posterior moments. To conclude, we state a proposition that summarizes
the above considerations.

Proposition 11 In connection with the model (77), let X = [a, b] × R and Θ =
Hs(0, 1) for some s ≥ 3. Suppose that h is a smooth density on [a, b], satisfying
1/c ≤ h(x) ≤ c for any x ∈ [a, b] and some c > 0. Let θ0 ∈ Θ be fixed. Assume that
π = N (m, Q) with any m ∈ Θ and Q a non-degenerate trace-class operator. Then,
it holds that

εn = O
(
n−1/2)

as n → +∞, which represents the optimal rate.

5 Discussion

We conclude our work by discussing some directions for future research. The flexibil-
ity of the Wasserstein distance is promising when considering non-regular Bayesian
statistical models, even in a finite-dimensional setting. One may consider the problem
of dealing with dominated statistical models that have moving supports, i.e. supports
that depend on θ . The prototypical example is the family of Pareto distributions, which
is characterized by a density function

f (x |α, x0) = αxα0
x1+α

1{x ≥ x0},

where θ = (α, x0) ∈ (0,+∞)2. Under this model, by rewriting the posterior distribu-
tion to obtain the representation (7), we observe that the empirical distribution can be
replaced by the minimum of the observations, which is the maximum likelihood esti-
mator. In doing this, we expect to parallel the proof of Theorem 2, with the minimum
playing the role of the sufficient statistic, instead of the empirical measure. In partic-
ular, we expect that the term εn,p(X, μ0) should be replaced by other rates typically
involved in limit theorems of order statistics. The theoretical framework for such an
extension of our results is developed in the work of Dolera and Mainini [38], where
it is shown how the continuity equation yields a specific boundary-value problem of
Neumann type.

As for the infinite-dimensional setting covered by Theorems 1 and 2, an interesting
development of our approach to PCRs is represented by the possibility of finding, for
general statistical models, explicit sufficient statistics belonging to Banach spaces of
functions. To be more precise, we hint at a constructive version of the well-known
Fisher-Neyman factorization lemma. This result would pave the way for a suitable
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rewriting of the statistical model, that allows for the use of our approach. By way
of example, one may consider the identity log f (x |θ) = ∫

X
log f (y|θ)δx (dy), and

exploit an integration-by-part formula to obtain an identity like (19), with respect to a
suitable measure λ on (X,X ). Such a procedure is at the basis for the development of
our approach to PCRs in the context of popular nonparametric models, not considered
in this paper, such as theDirichlet processmixturemodel ([50, Chapter 5]), the random
histograms ([50, Example 5.11]) and Pólya trees ([50, Section 3.7]).

Another promising line of research consists in extending Theorem 2 to metric mea-
sure spaces. The theoretical ground for this development may be found in the seminal
works of Gigli [51], Gigli and Ohta [52], Ambrosio et al. [6], Otto and Villani [67]
and von Renesse and Sturm [83]. In such a context, it is of interest the treatment of the
relative entropy-functional in the Wasserstein space. It is well-known that the Hessian
of the relative entropy-functional, i.e. the Kullback–Leibler divergence, generalizes by
using techniques from infinite-dimensional Riemannian geometry [67]. From the sta-
tistical side, the possibility of choosing a parameter space that coincides with a space
of measures allows to re-consider, from a different point of view, popular Bayesian
statistical models such as Dirichlet process mixture models, which are defined as

f (x | p) =
∫
τ(x | y)p(dy)

where τ is a kernel parameterized by y, and p is a random probability measure with
a Dirichlet process prior [41]. The goal should be that of considering PCRs relative
to Wasserstein neighborhoods of a given true distribution, say p0. This approach is
again different from the nonparametric framework considered in Berthet and Niels-
Weed [16], and seems still unexplored.
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A Proofs

A.1 Proof of Lemma 1

By a standard measure theoretic argument, any two solutions πn(·|·) and π ′
n(·|·) of

(1) satisfy πn(·|x (n)) = π ′
n(·|x (n)) as elements of P(Θ), for all x (n) ∈ X

n\Nn , where
Nn is a αn-null set. The assumption μ⊗n

0 � αn entails that ξ (n) := (ξ1, . . . , ξn) takes
values in Nn with P-probability zero, yielding the desired well-definiteness.

Then, if π ∈ Pp(Θ), any solution πn(·|·) of (1) satisfies πn(Pp(Θ)|x (n)) = 1 for
αn-almost every x (n) ∈ X

n . Since μ⊗n
0 � αn , it follows that πn(Pp(Θ)|ξ (n)) = 1

with P-probability 1. Whence,

Wp(πn(·|ξ (n)); δθ0) =
(∫
Θ

[dΘ(θ, θ0)]pπn(dθ |ξ (n))
)1/p

is a random variable, which proves to be finite P-a.s.. Combining Markov’s and Lya-
punov’s inequalities, it follows that

πn

(
{θ ∈ Θ dΘ(θ, θ0) ≥ Mnεn}

∣∣ξ (n)) ≤
(∫
Θ

[dΘ(θ, θ0)]pπn(dθ |ξ (n))
)1/p

Mnεn

holds P-a.s.. Now, taking expectation of both sides and taking account of (6) yields

E
[
πn

(
{θ ∈ Θ dΘ(θ, θ0) ≥ Mnεn}

∣∣ξ (n))] ≤ 1

Mn
→ 0 .

Thus, the convergence indicated in (4) holds in L1(Ω,F ,P) and, hence, in P-
probability. The proof is complete.

A.2 Proof of identity (26)

In view of (23), it is enough to prove that

B∗〈g(θ), b〉B − M(θ) = −K(θ | θb)+ H(b) (79)

holds for all θ ∈ Θ and b in the range of S ◦ g, with some suitable function H :
Range(S ◦ g)→ R. Then, (19) yields

− K(θ | θb) = −
∫
X

log

(
ϕ(x | g(θb))
ϕ(x | g(θ))

)
μ(dx | θb)
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= M(θb)− M(θ)+
∫
X

B∗〈g(θ), β(x)〉B μ(dx | θb)

−
∫
X

B∗〈g(θb), β(x)〉B μ(dx | θb).

Combining the above identity with (18) and observing that g(θb) = S−1(b), it follows
that

− K(θ | θb) = M(θb)− M(θ)+B∗ 〈g(θ),S(g(θb))〉B − B∗〈g(θb),S(g(θb))〉B
= B∗〈g(θ), b〉B − M(θ)+ [M(θb)− B∗〈g(θb), b〉B]

is valid for all θ ∈ Θ and b in the range of S ◦ g. Then, the validity of (79) follows
by putting H(b) := B∗〈g(θb), b〉B − M(θb), completing the proof.

A.3 Proof of Theorem 1

Under the assumptions of the Theorem, Lemma 1 is valid, and a PCR at θ0 is given
by (6). Moreover, (7) is valid with Sn(ξ1, . . . , ξn) = Ŝn , where Ŝn is given by (20),
S = B endowed with the distance ensuing from the norm ‖ · ‖B, and the kernel π∗

n (·|·)
is. given by (23). The triangle inequality forW(P(Θ))

p gives

W(P(Θ))
p (π∗

n (·|Ŝn); δθ0) ≤ W(P(Θ))
p (π∗

n (·|S0); δθ0)+ W(P(Θ))
p (π∗

n (·|Ŝn);π∗
n (·|S0))

with the same S0 as in (22). See [5, Chapter 7] for information about the aforesaid
triangle inequality. Then, take the expectation of both sides above to obtain

εn ≤ W(P(Θ))
p (π∗

n (·|S0); δθ0)+ E
[
W(P(Θ))

p (π∗
n (·|Ŝn);π∗

n (·|S0))
]

= W(P(Θ))
p (π∗

n (·|S0); δθ0)
+ E

[
W(P(Θ))

p (π∗
n (·|S0);π∗

n (·|Ŝn))1{Ŝn ∈ Uδn (S0)}
]

+ E
[
W(P(Θ))

p (π∗
n (·|S0);π∗

n (·|Ŝn))1{Ŝn /∈ Uδn (S0)}
]
. (80)

At this stage, the first summand on the last member of (80) is exactly equal to the
first summand on the right-hand side of (25), thanks to identity (11). For the second
summandon the lastmember of (80), invoke (9) to conclude that such term ismajorized
by the last summand on the right-hand side of (25). It remains to handle the third
summand on the last member of (80). Exploit the fact that, for any two elements
μ, ν ∈ Pp(Θ) there holds

W(P(Θ))
p (μ; ν) �

[∫
Θ

‖θ‖p
Θμ(dθ)

] 1
p +

[∫
Θ

‖θ‖p
Θν(dθ)

] 1
p
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to obtain that

E
[
W(P(Θ))

p (π∗
n (·|S0);π∗

n (·|Ŝn))1{Ŝn /∈ Uδn (S0)}
]

� E

[
1{Ŝn /∈ Uδn (S0)}

(∫
Θ

‖θ‖p
Θπ

∗
n (dθ |Ŝn)

) 1
p
]

+
(∫
Θ

‖θ‖p
Θπ

∗
n (dθ |S0)

) 1
p

P
[
Ŝn /∈ Uδn (S0)

]
. (81)

Now, the first summand on the right-hand side of (81) can be bounded by means of a
combination of Hölder’s and Lyapunov’s inequalities, yielding

E

[
1{Ŝn /∈ Uδn (S0)}

(∫
Θ

‖θ‖p
Θπ

∗
n (dθ |Ŝn)

) 1
p
]

≤
(
E

[∫
Θ

‖θ‖apΘ π∗
n (dθ | Ŝn)

]) 1
ap (

P
[
Ŝn /∈ Uδn (S0)

])1− 1
ap
.

For the second summand on the right-hand side of (81) just exploit the triangular
inequality to obtain

(∫
Θ

‖θ‖p
Θπ

∗
n (dθ |S0)

) 1
p

� ‖θ0‖Θ +
(∫
Θ

‖θ − θ0‖p
Θπ

∗
n (dθ |S0)

) 1
p

.

Re-organizing the terms just obtained yields the right-hand side of (25), concluding
the proof.

A.4 Proof of Proposition 2

Start by fixing ε in the interval
(
2(r−1), q

)
, which is possible since 0 < 2(r−1) < q.

Then, let {ηn}n≥1 be a sequence of positive numbers such that ηn = O(n−1/(2+ε))
as n → +∞. Let Bηn (θ0) denote the open ball in Θ with radius ηn , centered at θ0.
Without loss of generality, assume that θ0 ∈ V. Otherwise, by density of V, pick a
sequence {θ0,n}n≥1 ⊂ V such that ‖θ0,n − θ0‖Θ → 0 sufficiently fast, and replace θ0
by θ0,n .

The proof is divided into four steps, according to typical operations in the theory
of Laplace approximation. First, let us prove that

∫
Θ

‖θ − θ0‖2Θπ∗
n (dθ |S0) ∼

∫
Bηn (θ0)

‖θ − θ0‖2Θ exp{−nK(θ |θ0)}π(dθ)∫
Bηn (θ0)

exp{−nK(θ |θ0)}π(dθ) (82)

as n → +∞where, for any pair of sequences {an}n≥1 and {bn}n≥1 of positive numbers,
the notation an ∼ bn means that limn→+∞ an/bn = 1. To this aim, it is enough to
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show that the integrals on the exterior of Bηn (θ0) are exponentially small, and hence
irrelevant in the global asymptotic expansion. Exploiting (32)–(33), one gets

∫
Bηn (θ0)

c
exp{−nK(θ |θ0)}π(dθ)

≤
∫
Bηn (θ0)

c
exp{−nφ(‖θ − θ0‖K)}π(dθ)

≤
∫
Bηn (θ0)

c
exp

{
−nφ

([
‖θ − θ0‖Θ
‖θ − θ0‖1/sV

]r)}
π(dθ)

≤
∫
V

exp

{
−nφ

([
ηn

‖θ − θ0‖1/sV

]r)}
π(dθ) .

Now, let B(V)ρn (θ0) denote the open ball in V, with radius ρn and centered at θ0. Thus,
the last integral can be bounded from above by

π
(
B(V)ρn (θ0)

c
)

+ exp

{
−nφ

([
ηn

ρ
1/s
n

]r)}
(83)

which can be made an exponentially small quantity after choosing properly the
sequence {ρn}n≥1. Actually, it is enough to fix that ρn = O(nh) as n → +∞, for
some h satisfying

0 < h <

(
1

2r
− 1

2 + ε
)

r

r − 1
. (84)

Of course, this is possible in view of the bound 2 + ε > 2r . Now, h > 0 entails that
ηnρ

−1/s
n → 0 as n → +∞. Then, exploiting that φ(x) = O(x2) as x → 0+, one

gets

nφ
([
ηnρ

−1/s
n

]r) ∼ n
1−2r

(
1

2+ε+ h
s

)
.

Lastly, combination of the identity s = r
r−1 with the inequality (84) entails that

c := 1 − 2r

(
1

2 + ε + h

s

)
> 0 .

This argument shows that the second summand in (83) goes to zero like e−nc , making
it a negligible quantity. Finally, the first summand in (83) is also bounded by a term that
goes to zero like e−nh , thanks to a straightforward combination ofMarkov’s inequality
with the assumption that

∫
V
et‖θ‖Vπ(dθ) < +∞ for some t > 0.
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As for the term

∫
Bηn (θ0)

c
‖θ − θ0‖2Θ exp{−nK(θ |θ0)}π(dθ)

the argument to prove that it is also exponentially small is similar. Indeed, it is enough
to get rid of the term ‖θ − θ0‖2Θ by a straightforward application of Hölder inequality.
This proves (82).

After reducing both the integrals on Bηn (θ0), exploit the regularity of the map
θ �→ K(θ |θ0) by showing that it can be replaced by its second order Taylor polynomial,
which reads

1

2
〈θ − θ0, I(θ0)[θ − θ0]〉

because K(θ0|θ0) = 0 andDθK(θ |θ0)|θ=θ0 = 0. By the assumptions of the proposition,

∣∣∣∣K(θ0|θ0)− 1

2
〈θ − θ0, I(θ0)[θ − θ0]〉

∣∣∣∣ ∼ n

(
1√
n

)2+q

→ 0

which entails that the two integrals

∫
Bηn (θ0)

‖θ − θ0‖2Θ
∣∣∣exp{−nK(θ |θ0)} − exp

{
−n

2
〈θ − θ0, I(θ0)[θ − θ0]〉

}∣∣∣π(dθ)
∫
Bηn (θ0)

∣∣∣exp{−nK(θ |θ0)} − exp
{
−n

2
〈θ − θ0, I(θ0)[θ − θ0]〉

}∣∣∣π(dθ)

go to zero faster than their respective counterparts

∫
Bηn (θ0)

‖θ − θ0‖2Θ exp{−nK(θ |θ0)}π(dθ)
∫
Bηn (θ0)

exp{−nK(θ |θ0)}π(dθ) .

Whence,

∫
Bηn (θ0)

‖θ − θ0‖2Θ exp{−nK(θ |θ0)}π(dθ)∫
Bηn (θ0)

exp{−nK(θ |θ0)}π(dθ)

∼
∫
Bηn (θ0)

‖θ − θ0‖2Θ exp{− n
2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)∫

Bηn (θ0)
exp{− n

2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ) . (85)
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This concludes the second step. The third step is similar to the first one, the goal being
to show that

∫
Bηn (θ0)

‖θ − θ0‖2Θ exp{− n
2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)∫

Bηn (θ0)
exp{− n

2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)

∼
∫
Θ

‖θ − θ0‖2Θ exp{− n
2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)∫

Θ
exp{− n

2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ) . (86)

The argument is similar, just utilize (34) instead of (33). This concludes the third
step. Lastly, observe that the right-hand side of (86) coincides with the ratio of two
Gaussian integrals, which are factorized in view of the assumption (31). An explicit
computation now gives

∫
Θ

‖θ − θ0‖2Θ exp{− n
2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)∫

Θ
exp{− n

2 〈θ − θ0, I(θ0)[θ − θ0]〉}π(dθ)

=
∞∑
k=1

λk

nλkγk + 1
+

∞∑
k=1

ω2k

(nλkγk + 1)2
. (87)

This concludes the fourth step and the proof.

A.5 Proof of Proposition 3

The main issue is to prove the validity of (9). Thus, fix S0 ∈ B and S′ ∈ Uδn (S0). For
t varying in [0, 1], let St = S0 + t(S′ − S0) denote the line-segment joining S0 with
S′. Use the kernel π∗

n (·|·) defined in (23) to lift the line-segment [St ]t∈[0,1] to P2(Θ),
by means of the new curve

μ∗
t (·) := π∗

n (·|St )

which joins π∗
n (·|S0) with π∗

n (·|S′). Here, we apply the Benamou–Brenier represen-
tation introduced in Sect. 2 withM = Θ , to get

W2
2 (π

∗
n (·|S0);π∗

n (·|S′)) ≤
∫ 1

0

∫
Θ

‖Dθu∗(θ, t)‖2 μ∗
t (dθ) dt =

∫ 1

0
‖u∗(·, t)‖21,μ∗

t
dt

where u∗(·, t) is the (unique) solution in H1
m(Θ;μ∗

t ) of (13) with γt = μ∗
t . Here,

H1
m(Θ;μ∗

t ) is defined as the completion of the space

{
ψ ∈ C1

b(Θ)

∣∣∣
∫
Θ

ψ(θ)μ∗
t (dθ) = 0

}
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with respect to the norm

‖ψ‖1,t :=
(∫
Θ

‖Dθψ(θ)‖2μ∗
t (dθ)

)1/2

associated with the scalar product

〈ϕ,ψ〉1,t :=
∫
Θ

〈Dθ ϕ(θ),Dθ ψ(θ)〉μ∗
t (dθ) .

Then, rewrite (13) as

Tt [ψ] = 〈ψ, u∗(·, t)〉1,μ∗
t

with

Tt [ψ] := d

dt

∫
Θ

ψ(θ)μ∗
t (dθ) = d

ds

∫
Θ

ψ(θ)μ∗
s (dθ)

∣∣
s=t

.

By Riesz representation, we get

‖u∗(·, t)‖1,μ∗
t

= sup
‖ψ‖1,μ∗

t
≤1

|Tt [ψ]| .

Now, take the derivative inside the integral in the expression ofTt , consider the expres-
sion of μ∗

t and apply the Leibnitz rule, as follows.

|Tt [ψ]| =
∣∣∣∣
∫
Θ

ψ(θ)

[
∂

∂t

exp{n[〈g(θ), St 〉] − M(θ)∫
Θ
exp{n[〈g(τ ), St 〉 − M(τ )]}π(dτ)

]
π(dθ)

∣∣∣∣
(Leibnitz)= n

∣∣∣Covμ∗
t

(
ψ(·), 〈g(·), S′ − S0〉

)∣∣∣
(Cauchy–Scwartz)≤ n

√
Varμ∗

t
(ψ(·))

√
Varμ∗

t

(
〈g(·), S′ − S0〉

)

(Poincaré–Wirtinger)≤ n{C2[μ∗
t ]}2 ‖ψ‖1,μ∗

t︸ ︷︷ ︸
≤1

‖〈g(·), S′ − S0〉‖1,μ∗
t

(duality)≤ n{C2[μ∗
t ]}2‖S′ − S0‖B

(∫
Θ

‖Dθ [g]‖2∗ μ∗
t (dθ)

)1/2

≤ ‖S′ − S0‖B n sup
S∈Uδn (S0)

{C2[π∗
n (·|S)]}2

(∫
Θ

‖Dθ [g]‖2∗ π∗
n (dθ |S)

)1/2

︸ ︷︷ ︸
=L(n)0
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where in the inequality with the super-script “duality” we have used the fact that, for
any b ∈ B, it holds

‖Dθ [〈g(·), b〉] ‖Θ = |〈Dθ [g], b〉| ≤ ‖Dθ [g]‖∗‖b‖B .

This proves inequality (41). Finally, (43) follows trivially from (41), in view of the
boundedness condition (42).

A.6 Proof of Proposition 5

The first step of the proof is to provide a result analogous to Bakry et al. [13, Theorem
1.4]. To this aim, we need the concept of Lyapunov function, as done in that paper.
Therefore, let V : Θ → R a C2 function bounded from below. Define the probability
measure μV ,π in Gibbsean form as

μV ,π (dθ) = e−V (θ)π(dθ)∫
Θ
e−V (τ )π(dτ)

. (88)

Then, define the differential operator LV ,π := Lπ − Dθ [V ] · Dθ , where D and
Lπ denote the Malliavin derivative and the Malliavin–Laplace operator associated
to π , respectively. See Da Prato [30, Chapter 2] for definition and properties of these
differential operators. In particular, here it is enough to recall the following integration-
by-parts formula that links these operator together:

∫
Θ

{−Lπ [φ](θ)}ψ(θ)π(dθ) =
∫
Θ

〈Dθ [φ] · Dθ [ψ]〉π(dθ)

for arbitrary C2 functions φ,ψ : Θ → R. Then, we shall say that W : Θ → R is a
Lyapunov function if W belongs to C2(Θ), W (θ) ≥ 1 and

LV ,π [W ](θ) ≤ −aW (θ)+ b1BR (89)

hold for all θ ∈ Θ , for some suitable constants a > 0, b ≥ 0 and R > 0, with
BR := {‖θ‖ < R}. We notice that, for any function f ∈ C1

b(Θ), we have
∫
Θ

−LV ,π [W ](θ)
W (θ)

[ f (θ)]2e−V (θ)π(dθ)

=
∫
Θ

−Lπ [W ](θ)
W (θ)

[ f (θ)]2e−V (θ)π(dθ)+
∫
Θ

Dθ [V ] · Dθ [W ] [ f (θ)]
2

W (θ)
e−V (θ)π(dθ)

=
∫
Θ

Dθ [W ] · Dθ
[ [ f (θ)]2

W (θ)
e−V (θ)

]
π(dθ)+

∫
Θ

Dθ [V ] · Dθ [W ] [ f (θ)]
2

W (θ)
e−V (θ)π(dθ)

=
∫
Θ

Dθ [W ] · Dθ
[ [ f (θ)]2

W (θ)

]
e−V (θ)π(dθ)

= 2
∫
Θ

f (θ)

W (θ)
Dθ [W ] · Dθ [ f ]e−V (θ)π(dθ)−

∫
Θ

[
f (θ)

W (θ)

]2
‖Dθ [W ]‖2e−V (θ)π(dθ)
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=
∫
Θ

‖Dθ [ f ]‖2e−V (θ)π(dθ)−
∫
Θ

∥∥∥∥Dθ [ f ] − f (θ)

W (θ)
Dθ [W ]

∥∥∥∥
2

e−V (θ)π(dθ)

≤
∫
Θ

‖Dθ [ f ]‖2e−V (θ)π(dθ) .

At this stage, we can follow the same exact steps in Bakry et al. [13] to conclude that

[C(M)2 (μV ,π )]2 ≤ 1

a
(1 + bκR) (90)

where the constants a, b are the same as in (89), while κR denotes the weighted
Poincaré–Wirtinger constant (relative to theMalliavin derivative) of themeasureμV ,π

restricted on the ball ‖θ‖ < R.
After these preliminaries, let us consider point (1). We put V := nG in (88). Let

W be a C2(Θ) function such thatW ≥ 1 onΘ and such thatW (θ) = e‖θ‖ if |θ | ≥ R.
Let CR := supBr [|W | + ‖DW‖ + |Lπ [W ]|]. The above operator LV ,π now becomes
Lπ − nDθ [G] · Dθ . A computation shows that if ‖θ‖ ≥ R there holds

LV ,π [W ](θ) =
[ ∞∑
k=1

λk

(
θ2k + ‖θ‖ − θ2k /‖θ‖

‖θ‖2 − n
θkΓk

‖θ‖

)]
W (θ) (91)

where θk and Γk denote the k-th coordinate of θ andDθ [G], respectively, with respect
to the basis {ek}. Let τn := cn − Tr[Q](1 + 1/R), so that τn > 0 as soon as n >
Tr[Q](1+ 1/R)/c. If |θ | ≥ R, a combination of (91) with the assumption θ ·DθG ≥
c‖θ‖Θ yields LV ,π [W ](θ) ≤ −τnW (θ). If |θ | ≤ R, we estimate as

LV ,π [W ](θ) = −τnW (θ)+ τnW (θ)+ LV ,π [W ](θ)
≤ −τnW (θ)+ τnW (θ)+ |Lπ [W ]| + n‖DθW‖ · ‖DθG‖
≤ −τnW (θ)+ CR(1 + τn + nGR).

Thus, we have W (θ) ≥ 1 and (89) holds for every θ ∈ Θ , with a = τn and b =
CR(1+ τn +nGR). At this stage, the conclusion follows from (90) after noticing that

κR � max
k∈N

{
λk

nλkηk + 1

}
(92)

which is valid in view of a combination of the assumption (48) with the classical
Bakry–Emery criterion and the well-known tensorization property of the Poincaré–
Wirtinger constant (see [14, Proposition 4.3.1]. This complete the proof of point (1).

Let us consider point (2). Let W (θ) = exp{G(θ) − infΘ G}, θ ∈ Θ . By direct
computation, Lπ [W ] = W {‖DG‖2 +Lπ [G]}. Putting V := nG in (88) as above, we
have again that the operator LV ,π becomes Lπ − nDθ [G] · Dθ . Whence,

LV ,π [W ] =
{
(1 − n)‖Dθ [G]‖2 + Lπ [G]

}
W . (93)
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Thanks to assumption (50), we have

(n − 1)‖Dθ [G]‖2 − Lπ [G] ≥ 2(n − 1)c1 + [(n − 1)c2 − 1] (Lπ [G])+ ≥ nc1

whenever |θ | ≥ R and n > 1 + 1/c2. Thus, if n > 1 + 1/c2, (93) entails

LV ,π [W ] ≤ −c1n W

whenever |θ | ≥ R. On the other hand, if |θ | ≤ R, we easily deduce from (93) that

LV ,π [W ] ≤ −c1n W (θ)+ eωR (c1n + G∗
R).

Thus, we have W (θ) ≥ 1 and LV ,π [W ](θ) ≤ −c1n W (θ) + b̃nχBR (θ) for every
θ ∈ Θ , where b̃n := eωR (c1n+G∗

R). to conclude, we resort to (90), which holds with
a = c1n and b = b̃n , in combination with (92).

A.7 Proof of Theorem 2

To establish (54), we start from the Bayes formula

πn(dθ |x (n)) =
[∏n

i=1 f (xi |θ)
]

∫
Θ

[∏n
i=1 f (xi |τ)

]
π(dτ)

π(dθ)

and we observe that the regularity of the mapping x �→ f (x |θ) allows us to write∏n
i=1 f (xi |θ) as

exp

{
n∑

i=1

log f (xi |θ)
}

= exp

{
n
∫
X

log f (y|θ)
(
1

n

n∑
i=1

δxi (dy)

)}
.

Then, the bound (53) entails that the integral
∫
X
log f (y|θ)γ (dy) is well-defined and

finite for any γ ∈ P2(X) and θ ∈ Θ . Now, recalling that μ0 ∈ P2(X), let V
(n)
0 be the

W(P(Θ))
2 -neighborhood of μ0 for which (55) is in force. Let ζ be a fixed element of

such a neighborhood and let {ζt }t∈[0,1] be aW2-constant speed geodesic connectingμ0
with ζ . In particular, [0, 1] � t �→ ζt is an absolutely continuous curve in P2(X). The
mapπ∗

n allows the construction of a lifting of this path, in the sense that {π∗
n (·|ζt )}t∈[0,1]

is a path inP2(Θ) connecting π∗
n (·|μ0)with π∗

n (·|ζ ), with π∗
n (·|ζt ) having full support

inΘ for any t ∈ [0, 1]. The Benamou-Brenier formula discussed in Sect. 3 shows that

[
W(P2(Θ))

2 (π∗
n (·|μ0), π

∗
n (·|ζ ))

]2 ≤
∫ 1

0

∫
Θ

‖Dθu(θ, t)‖2π∗
n (dθ |ζt )dt (94)
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where, for almost every t ∈ (0, 1), u(·, t) denotes the solution of the elliptic problem.
The weak formulation of the elliptic problem reads as the following problem

∫
Θ

〈Dθ u(θ, t),Dθ ψ(θ)〉π∗
n (dθ |ζt ) = d

ds

∫
Θ

ψ(θ)π∗
n (dθ | ζs) ∣∣s=t

∀ ψ ∈ C1
b(Θ).

(95)

The right space for the solution of this problem is, for fixed t ∈ (0, 1), the weighted
Sobolev space H1

m(Θ;π∗
n (·|ζt )), defined as the completion of the space

{
ψ ∈ C1

b(Θ)

∣∣∣
∫
Θ

ψ(θ)π∗
n (dθ |ζt ) = 0

}

with respect to the norm

‖ψ‖1,t :=
(∫
Θ

‖Dθψ(θ)‖2π∗
n (dθ |ζt )

)1/2

associated with the scalar product

〈ϕ,ψ〉1,t :=
∫
Θ

〈Dθ ϕ(θ),Dθ ψ(θ)〉π∗
n (dθ |ζt ) .

Now, since the equation displayed in (95) can be re-written in the abstract form as

Tt [ψ] = 〈u(·, t), ψ〉1,t
where

Tt [ψ] := d

ds

∫
Θ

ψ(θ)π∗
n (dθ |ζs) ∣∣s=t

(96)

existence, uniqueness and regularity for the solution of (95) would follow from the
Riesz representation theorem, provided that the functional Tt belongs to the dual of
H1
m(Θ;π∗

n (·|ζt )). Whence, again by Riesz theorem, we have

‖u(·, t)‖1,t =
(∫
Θ

‖Dθu(θ, t)‖2π∗
n (dθ |ζt )

)1/2

= sup
ψ∈H1

m (Θ;π∗
n (·|ζt ))‖ψ‖1,t≤1

Tt [ψ] .

Accordingly, by combining the Riesz representation with (94), we obtain that

[
W(P2(Θ))

2 (π∗
n (·|μ0), π

∗
n (·|ζ ))

]2 ≤
∫ 1

0

⎡
⎢⎢⎣ sup
ψ∈H1

m (Θ;π∗
n (·|ζt ))‖ψ‖1,t≤1

Tt [ψ]

⎤
⎥⎥⎦
2

dt . (97)
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Now, in order to obtain further estimates, we introduce the following function

G(θ, t) :=
∫
X

log f (y|θ)ζt (dy)

and we indicate by G ′(θ, t) the partial derivative of G(θ, t) with respect to t . Coming
back to the expression of the operator Tt , after justifying the exchange of derivatives
with integrals by the regularity assumptions on the mapping (x, θ) �→ f (x |θ), the
Leibniz rule for the derivative of a quotient gives

Tt [ψ] = n

∫
Θ
ψ(θ)G ′enGdπ

∫
Θ
enGdπ − ∫

Θ
ψ(θ)enGdπ

∫
Θ
G ′enGdπ(∫

Θ
enGdπ

)2
= n

[∫
Θ

ψ(θ)G ′(θ, t)π∗
n (dθ |ζt )−

∫
Θ

ψ(θ)π∗
n (dθ |ζt )

∫
Θ

G ′(θ, t)π∗
n (dθ |ζt )

]

= n
∫
Θ

[
ψ(θ)−

∫
Θ

ψ(τ)π∗
n (dτ |ζt )

]

[
G ′(θ, t)−

∫
Θ

G ′(τ, t)π∗
n (dτ |ζt )

]
π∗
n (dθ |ζt ) . (98)

The last term in the above chain of inequalities can be interpreted as a covariance
operator, so that the Cauchy–Schwartz inequality entails the following

{Tt [ψ]}2 ≤ n2
∫
Θ

[
ψ(θ)−

∫
Θ

ψ(τ)π∗
n (dτ |ζt )

]2
π∗
n (dθ |ζt )

×
∫
Θ

[
G ′(θ, t)−

∫
Θ

G ′(τ, t)π∗
n (dτ |ζt )

]2
π∗
n (dθ |ζt ) . (99)

In order to obtain further bounds, we now recall the definition of the Poincaré–
Wirtinger constant C2[·], which is given in Sect. 2. Thus, (99) directly gives

{Tt [ψ]}2 ≤ n2{C2[π∗
n (·|ζt )]}4

∫
Θ

‖Dθψ(θ)‖2π∗
n (dθ |ζt )

∫
Θ

‖DθG ′(θ, t)‖2π∗
n (dθ |ζt ) . (100)

Now, we provide another expression for G ′(θ, t), exploiting the fact the ζt is a
Wasserstein constant speed geodesic: indeed, applying again the Benamou–Brenier
representation, in this case there exist w ∈ L1((0, 1); L2

ζt
(X)) such that

[
W(P(Θ))

2 (μ0, ζ )
]2 =

∫ 1

0

∫
X

|w(x, t)|2ζt (dx)dt (101)

where, for almost every t ∈ (0, 1), w(·, t) satisfies
d

ds

∫
X

φ(x)ζs(dx) ∣∣s=t
=
∫
X

w(x, t) · ∇x φ(x)ζt (dx) ∀ φ ∈ C1
b(X) . (102)
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See Ambrosio and Gigli [4, Proposition 3.30]. At this stage, in view of a density
argument and in view of (53), by replacing φ by log f (·|θ) in (102) yields

G ′(θ, t) =
∫
X

w(x, t) · ∇x f (x |θ)
f (x |θ) ζt (dx). (103)

Thus, in view of (100), the squared supremum in (97) can be bounded as follows

sup
ψ∈H1

m (Θ;π∗
n (·|ζt ))‖ψ‖1,t≤1

{Tt [ψ]}2 = n2{C2[π∗
n (·|ζt )]}4

∫
Θ

‖Dθ G ′(θ, t)‖2π∗
n (dθ |ζt ) .

(104)

By (103), after justifying the exchange of the gradient with the integral, we can write

∇θ G ′(θ, t) =
∫
X

w(x, t) · Dθ ∇x f (x |θ)
f (x |θ) ζt (dx)

so that, again by Cauchy–Schwartz,

‖Dθ G ′(θ, t)‖2 ≤
∫
X

|w(x, t)|2ζt (dx)
∫
X

∥∥∥Dθ ∇x f (x |θ)
f (x | θ)

∥∥∥2ζt (dx) .

Then, by a direct combination of (97) and (104) with this last inequality we obtain

[
W(P2(Θ))

2 (π∗
n (·|μ0), π

∗
n (·|ζ ))

]2 ≤ n2
∫ 1

0
{C2[π∗

n (·|ζt )]}4
(∫

X

|w(x, t)|2ζt (dx)
)

×
(∫
Θ

∫
X

∥∥∥Dθ ∇x f (x |θ)
f (x |θ)

∥∥∥2ζt (dx)π∗
n (dθ |ζt )

)
dt .

(105)

We invoke assumption (55) to conclude that

[
W(P2(Θ))

2 (π∗
n (·|μ0), π

∗
n (·|ζ ))

]2 ≤ {L(n)0 }2
∫ 1

0

∫
X

|w(x, t)|2ζt (dx)

which, in view of (101), coincides with (9) to be proved. To get (56), we start from
considering the right-hand side of the last inequality in (10). For the first summand,

W(P(Θ))
2 (π∗

n (·|μ0); δθ0)

=
(∫

Θ
‖θ − θ0‖2 exp

{
n
∫
X
[log f (y|θ)] f (y|θ0)dy

}
π(dθ)∫

Θ
exp

{
n
∫
X
[log f (y|θ)] f (y|θ0)dy

}
π(dθ)

)1/2

123



E. Dolera et al.

so that it is enough to observe that

∫
X

[log f (y|θ)] f (y|θ0)dy

=
∫
X

[log f (y|θ0)] f (y|θ0)dy +
∫
X

[
log

(
f (y|θ)
f (y|θ0)

)]
f (y|θ0)dy

= H(θ0)− K(θ |θ0) .

Whence,

W(P(Θ))
2 (π∗

n (·|μ0); δθ0) =
(∫

Θ
‖θ − θ0‖2en[H(θ0)−K(θ |θ0)]π(dθ)∫
Θ
en[H(θ0)−K(θ |θ0)]π(dθ)

)1/2

.

Then, the second summand on the right-hand side of (56) is already provided by the
second summand on the the right-hand side of the last inequality in (10). Finally, the
last two terms on the the right-hand side of (56) comes from the last summand on the
the right-hand side of (10), after noticing that we have

W(P(Θ))
2 (π∗

n (·|μ0);π∗
n (·|e(ξ)n )) ≤

√
2
∫
Θ

‖θ‖2π∗
n (dθ |μ0)+

√
2
∫
Θ

‖θ‖2π∗
n (dθ |e(ξ)n ) .

Indeed, the last term on the above right-hand side yields immediately the last term on
the right-hand side of (56). Lastly, we just observe that

√
2
∫
Θ

‖θ‖2π∗
n (dθ |μ0) ≤ 2

[√∫
Θ

‖θ − θ0‖2π∗
n (dθ |μ0)+ ‖θ0‖

]

so that the result follows.

A.8 Proof of Corollary 1

With respect to the first termon the right-hand side ofEq. (56),we exploit the inequality
(57) to obtain that

∫
Θ

‖θ − θ0‖2e−nK(θ |θ0)π(dθ)∫
Θ
e−nK(θ |θ0)π(dθ)

≤
∫
Θ

[K(θ |θ0)]2/βe−nK(θ |θ0)π(dθ)∫
Θ
e−nK(θ |θ0)π(dθ)

=
∫∞
0 z2/βe−nzμ(dz)∫
Θ
e−nzμ(dz)

∼
(
1

n

)2/β

where the last asymptotic relation comes from a straightforward application of the
Laplace method for approximating exponential integrals. See, e.g., Breitung [22, The-
orems 41 and Theorem 43]. The third term is obtained by just inserting the bound
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borrowed from Bolley et al. [19, Theorem 2.7]. For the last term, we start from apply-
ing, in combination, Hölder and Lyapunov’s inequalities to get

E

⎡
⎣
(∫

Θ
‖θ‖2 [∏n

i=1 f (ξi |θ)
]
π(dθ)∫

Θ

[∏n
i=1 f (ξi |θ)

]
π(dθ)

)1/2

1{e(ξ)n /∈ V (n)0 }
⎤
⎦

≤
{
E
[∫
Θ

‖θ‖rπn(dθ |ξ1, . . . , ξn)
]}1/r

·
{
P[en /∈ V (n)0 ]

}(r−1)/r
.

The conclusion of the proof then follows by using (58), again by a direct combination
with respect to the bound borrowed from Bolley et al. [19, Theorem 2.7].
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