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Abstract
We construct an additive functional playing the role of the local time—at a fixed point
x—for Markov processes indexed by Lévy trees. We start by proving that Markov
processes indexed by Lévy trees satisfy a special Markov property which can be
thought as a spatial version of the classical Markov property. Then, we construct our
additive functional by an approximation procedure and we characterize the support
of its Lebesgue-Stieltjes measure. We also give an equivalent construction in terms
of a special family of exit local times. Finally, combining these results, we show that
the points at which the Markov process takes the value x encode a new Lévy tree and
we construct explicitly its height process. In particular, we recover a recent result of
Le Gall concerning the subordinate tree of the Brownian tree where the subordination
function is given by the past maximum process of Brownian motion indexed by the
Brownian tree.
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1 Introduction

Excursion theory plays a fundamental role in the study of R+–indexed Markov pro-
cesses dating back to Itô’s work [17]. The purpose of this theory is to describe the
evolution of a Markov process between visits to a fixed point in the state space. To
be more precise, consider a Polish space E , a strong E-valued continuous Markov
process ξ and fix a point x ∈ E , regular and instantaneous for ξ . The paths of ξ
can be decomposed in excursions away from x , where an excursion is a piece of
path of random length, starting and ending at x , such that in between ξ stays away
from x . Formally, they consist of the restrictions of ξ to the connected components of
R+\{t ∈ R+ : ξt = x}. In order to keep track of the ordering induced by the time,
the family of excursions is indexed by means of a remarkable additive functional of ξ ,
called its local time at x , and denoted throughout this work by L. It is well known that
L is a continuous process with Lebesgue-Stieltjes measure supported on the random
set:

{

t ∈ R+ : ξt = x
}

, (1.1)

and that the trajectories of ξ can be recovered from the family of indexed excursions
by gluing them together, taking into account the time spent by ξ at x . For technical
reasons, wewill also assume that the point x is recurrent for ξ .We stress that excursion
theory holds under broader assumptions on the Markov process ξ , and we refer to e.g.
[4, Chapter VI] and [6] for a complete account.

The purpose of this work is to set the first milestone towards introducing an excur-
sion theory for Markov processes indexed by random trees. The random trees that we
consider are the so-called Lévy trees. This family is canonical, in the sense that Lévy
trees are scaling limits of Galton-Watson trees [11, Chapter 2] and are characterized
by a branching property in the same vein as their discrete counterparts [24, 37]. At this
point, let us mention that Markov processes indexed by Lévy trees are fundamental
objects in probability theory – for instance, they are intimately linked to the theory of
superprocesses [11, 22]. More recently, Brownian motion indexed by the Brownian
tree has been used as the essential building block in the construction of the univer-
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sal model of random geometry called the Brownian map [23, 32], as well as in the
construction of other related random surfaces [3, 30]. We also stress that Brownian
motion indexed by a stable tree is also a universal object, due to the fact that it arises
as scaling limit of discrete models [31]. For the sake of completeness, we shall start
with a brief and informal account of our objects of interest.

A Lévy tree can be encoded by a continuous R+-valued process H = (Ht ) called
its height process; and for this reason we denote the associated tree by TH . Roughly
speaking, the tree TH has a root and H encodes the distances to it when the tree is
explored in “clockwise order”. Under appropriate assumptions, we consider the pair
consisting of the Markov process ξ and its local time L, indexed by a Lévy tree TH .
With a slight abuse of notation, this process will be denoted in the rest of this work
by:

(

(ξυ,Lυ) : υ ∈ TH
)

. (1.2)

In short, this process can be thought as a random motion defined on top of TH and
following the law of ((ξt ,Lt ) : t ∈ R+), but splitting at every branching point of TH

into independent copies. The role played by {t ∈ R+ : ξt = x} is taken over in this
setting by the following random subset of TH :

Z := {υ ∈ TH : ξυ = x}. (1.3)

The definition of the excursions of (ξυ)υ∈TH away from x should then be clear at
an intuitive level – since it suffices to consider the restrictions of (ξυ)υ∈TH to the
connected components of TH \Z . Notice however that we lack a proper indexing for
this family of excursions that would allow to recover the whole path, as in classical
excursion theory. Moreover, one can expect the gluing of these excursions to be more
delicate in our setting, since in the time-indexed case the extremities of an excursion
consist of only two points, while in the present case, the extremities are subsets of TH

of significantly more intricate nature. In the same vein, since the set Z is a subset of
TH , it inherits its tree structure and therefore it possesses richer geometric properties
than the subset of the real line (1.1). More precisely, we consider the equivalence
relation ∼L on TH which identifies the components of TH where (Lυ)υ∈TH stays
constant. The resulting quotient space T L

H := TH/ ∼L is also a tree, encoding the set
Z and endowing it with an additional tree structure. In the terminology of [24], the
tree T L

H is the so-called subordinate tree of TH by L. Since each component of TH

where L stays constant is naturally identified with an excursion of ξ away from x , a
proper understanding of T L

H is crucial to develop an excursion theory for (ξυ)υ∈TH .
This work is devoted to both:

1. Introducing a notion of local time at x suitable to index the excursion of (ξυ)υ∈TH

away from x ;
2. Studying the structure of the random set Z .

As we shall explain, both questions are intimately related and, as we mentioned
before, they lay the foundations for the development of an excursion theory for
(ξυ)υ∈TH . In the case of Brownian motion indexed by the Brownian tree, an excursion
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theory has already been developed in [1] and has turned out to have multiple appli-
cations in Brownian geometry, see e.g. [25, 29]. However, we stress that in [1] the
excursions are not indexed and, in particular, a reconstruction of the Brownian motion
indexed by the Brownian tree in terms of its excursions is still out of reach in [1].
The concept of local time at x that we introduce allows for an appropriate indexing of
the family of excursions, thereby enabling the development of an indexed excursion
theory. This theory will be studied in the companion paper [35]. Let us now present
the general framework of this work.

In order to formally define the tree indexed process (1.2), we rely on the theory
of Lévy snakes and we shall now give a brief account. The theory of Lévy snakes
has mainly been developed in the monograph of Duquesne and Le Gall [11], and a
detailed presentation of the results that we need is given in Sect. 2. The process (1.2)
is built from two layers of randomness. First, as we already mentioned, the family of
random trees that we work with are called Lévy trees. If ψ is the Laplace exponent
of a spectrally positive Lévy process X , under appropriate assumptions on ψ , one
can define the height process H as a functional of X . In order to explain how TH is
encoded by H , we work under the excursion measure of X above its running infimum
and we write σ for the duration of an excursion. The relation:

dH (s, t) := Hs + Ht − 2 · inf
s∧t�u�s∨t

Hu, for all (s, t) ∈ [0, σ ]2,

defines a pseudo-distance on [0, σ ], and the associated equivalence relation ∼H is
defined by setting s ∼H t if and only if dH (s, t) = 0. The pointed metric space
TH := ([0, σH ]/ ∼H , dH , 0) is a Lévy tree,1 where for simplicitywe keep the notation
0 for the equivalence class of 0. We also write pH : [0, σ ] �→ TH for the canonical
projection on TH and we refer to Sect. 2.2 for more details about this encoding. The
point 0 is called the root of TH and, by construction, the height process encodes the
distances to it. We stress that the distribution of TH is characterized by the exponent
ψ , and we say that TH is a ψ-Lévy tree. One of the main technical difficulties of
this work is that, except when X is a Brownian motion with drift, the process H is
not Markovian and we will need to introduce a measure-valued process – called the
exploration process – which heuristically, carries the information needed to make H
Markovian. This process will be denoted throughout this work by ρ = (ρt : t � 0)
and its nature has a crucial impact on the geometry of TH . For instance, ρ allows to
characterize the multiplicity and genealogy of points of TH . More precisely, recall that
the multiplicity of a point υ in TH is defined as the number of connected components
of TH \ {υ}. For i ∈ N

∗ ∪ {∞}, we write Multii (TH ) for the set of points of TH of
multiplicity i , and the points of multiplicity strictly larger than 2 are called branching
points. For instance, if X does not have jumps, the measures (ρt : t � 0) are atomless
and all branching points have multiplicity 3. In contrast, as soon as the Lévy measure
of X is non-null, the measures (ρt : t � 0) have atoms and the set Multi∞(TH ) is
non-empty. We also refer to [26] for the construction of the exploration process. The
second layer of randomness consists in defining, given TH , a spatial motion indexed by
TH that roughly speaking behaves like the Markov process (ξt )t∈R+ – when restricted

1 More precisely, since the duration σ is random, TH is referred to as a free Lévy tree.
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to an injective path connecting the root of TH to a leaf. This informal description
can be formalized by making use of the theory of random snakes [11, Section 5].
More precisely, one can define a process ((Wt ,�t ) : t ∈ [0, σ ]) taking values in the
collection of finite E × R+–valued continuous paths, each (Wt ,�t ) having lifetime
Ht and such that, for each t ∈ R+ and conditionally on Ht , the path (Wt ,�t ) has the
same distribution as ((ξr ,Lr ) : r ∈ [0, Ht ]). The second main property of (W ,�) is
that it satisfies the snake property, viz.

(

Wt (Ht ),�t (Ht )
) = (Ws(Hs),�s(Hs)

)

, for every t ∼H s.

For simplicity, from now on, we will write (̂Wt ,̂�t ) := (Wt (Ht ),�t (Ht )) for the tip
of (Wt ,�t ). By the snake property, it follows that the process ((̂Wt ,̂�t ) : t ∈ [0, σ ]) is
well defined on the quotient space TH , and hence it defines a random function indexed
by TH which will be denoted by (1.2). The triplet (ρ,W ,�) is the so-called ψ-Lévy
snake with spatial motion (ξ,L), a Markov process that will be extensively studied
throughout this work.

Let us now present the statements of our main results. These are stated under the
excursion measure of (ρ,W ,�), but let us mention that we will obtain similar results
under the underlying probability measure. By construction, the study ofZ is closely
related to the understanding of the random set:

{t ∈ [0, σ ] : ̂Wt = x}, (1.4)

since Z is precisely its image under the canonical projection pH on TH . However,
note that these two sets are of radically different natures. As in classical excursion
theory for Markov processes, we shall start by constructing an additive functional
A = (At )t∈[0,σ ] of the Lévy snake (ρ,W ,�) with suitable properties and Lebesgue-
Stieltjes measure dA supported on (1.4). The first main result of this work is obtained
in Sect. 4 and is divided in two parts:

(i) The construction of the additive functional A [Proposition 4.10];
(ii) The characterization of the support of dA [Theorem 4.20].

See also Theorem 4.3 for an equivalent formulation of (ii) in the terminology of the
tree indexed process (ξυ)υ∈TH . Recalling our initial discussion, the process (At )t∈R+
is the natural candidate to index the excursions away from x of (ξυ)υ∈TH . We are
not yet in position in this introduction to formally state the content of (i) and (ii),
but we can give a general description. Our construction of (At )t∈R+ relies on the so-
called exit local times of the Lévy snake (ρ,W ,�). More precisely, if we consider
the family of domains {E × [0, r) : r ∈ (0,∞)}, for each fixed r > 0, there exists
an additive functional of (ρ,W ,�) that heuristically measures, at every t � 0, the
number of connected components of TH\{υ ∈ TH : Lυ � r} visited up to time t . This
description is informal and we refer to Sect. 3 for details. We establish in Sect. 4.1 that
the corresponding family of exit local times possesses a jointly measurable version
(L r

t : t � 0, r > 0), and in Sect. 4.2 we define our continuous additive A by setting:

At :=
∫ ∞

0
dr L r

t , t � 0.
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After establishing that there is no branching point with label x , we give in Sect. 4.3 a
precise characterization of the support of the measure dA. Formally, we prove that:

supp dA = {t ∈ [0, σ ] : ξpH (t) = x, pH (t) ∈ Multi2(TH ) ∪ {0}}.

We also show in Theorem 4.20 that, equivalently, the support of dA is the complement
of the constancy intervals of (̂�t : t � 0). In particular, if we denote the right inverse
of A by (A−1

t : t � 0), the relation:

H A
t := ̂�A−1

t
, t � 0,

defines a continuous non-negative process that plays a crucial role in the second part
of our work.

In Sect. 5, we turn our attention to the study ofZ or, equivalently, to the structure of
the subordinate tree T L

H . Even if this is an object of very different nature, our analysis
relies deeply on the results and the machinery developed in Sect. 4. The second main
result of this work consists in showing that the process H A satisfies the following
properties:

(i’) It encodes the subordinate tree T L
H [Theorem 5.1 (i)];

(ii’) It is the height function of a Lévy tree, with an exponent ˜ψ that we identify
[Theorem 5.1 (ii)].

In particular, this shows that T L
H is a Lévy tree with exponent ˜ψ . We stress that a

continuous function can fulfill (i’) without satisfying (ii’), and it is remarkable that
H A follows the exploration order of a Lévy tree. We also mention that the previous
two points were established – although with a different construction of the height
process H A – in [24, Theorem 1] for the subordination of the Brownian tree by
the running maximum of the Brownian motion indexed by the Brownian tree.2 These
approaches are complementary, since the techniques employed in [24] rely on adiscrete
approximation of the height function, while we shall argue directly in the continuum.
We also mention that one of the strengths of our method is that it gives an explicit
definition of H A which is suitable for computations. This point is crucial in order to
study the excursions of (ξυ)υ∈TH from x . Our result shows that the height function
of the subordinate tree T L

H can be constructed in terms of functionals of (ρ,W ,�),
and that A−1 defines an exploration of T L

H compatible with the order induced by
H . Property (i’) will be a consequence of our previous results (i), (ii) and Sect. 5 is
mainly devoted to the proof of (ii’). The main difficulty to establish (ii’) comes from
the fact that, as we already mentioned, the height process of a Lévy tree is not always
Markovian. To circumvent this difficulty, the proof of (ii’) relies on the computation
of the so-called marginals of the tree associated with H A. In particular, it makes use
of all the machinery developed in previous sections as well as standard properties of
Poisson random measures.

2 When considering the process (ξυ ,Lυ)υ∈TH
indexed by the Brownian tree, the fact that the subordinate

tree T L
H is a ˜ψ–Lévy tree is also proved in [24, Theorem 16] but the construction of its height process is

lacking.
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Let us now close the presentation of our work with a result of independent interest
which is used extensively throughout this paper. In Sect. 3, we state and prove the
so-called Special Markov property of the Lévy snake. This section is independent
of the setting of Sects. 4 and 5, and we work with an arbitrary (ψ, ξ)-Lévy snake
under general assumptions on the pair (ψ, ξ). Roughly speaking, the special Markov
property is a spatial version of the classical Markov property for time-indexedMarkov
processes. The precise statement is the content of Theorem 3.7, see also Corollary 3.9.
This result was established in [24, Theorem 20] for continuous Markov processes
indexed by the Brownian tree, and a particular case was proved for the first time in
[21]. Our result is a generalisation of [24, Theorem20] holding in the broader setting of
continuous Markov processes indexed by ψ-Lévy trees. The special Markov property
of the Brownian motion indexed by the Brownian tree has already played a crucial
role in multiple contexts, to name a few applications see for instance [9, 21, 29, 30] as
well as [16, 22, 27] in the setting of super-processes. We expect this result to be useful
outside the scope of this work. We also mention that the special Markov property
of the Lévy snake is closely related to the one established by Dynkin in the context
of superprocesses, see [14, Theorem 1.6]. However, we stress that the formulation in
terms of the Lévy snake, although less general, gives additional and crucial information
for our purposes. In particular, it takes into account the genealogy induced by the Lévy
tree, and hence it carries geometrical information.

We conclude this introduction with a non-exhaustive summary of related works.
First, as we already mentioned, we extend to the general framework of Markov pro-
cesses indexed by Lévy snakes the work of Le Gall on subordination in the case of the
Brownian motion indexed by the Brownian tree [24]. Moreover, our results on subor-
dination of trees with respect to the local time are closely related, in the terminology
of Lévy snakes, to Theorem 4 in [5] stated in the setting of superprocesses – the main
difference being that in our work we encode the associated genealogy. For instance,
we recover [5, Theorem 4] in a more precise form in our case of interest. We also note
that we expect our results to be useful beyond the scope of this work, for instance in
Brownian geometry. Finally, in the case of Brownian motion indexed by the Brownian
tree and when x = 0, our functional A is closely related to the so-called integrated
super-Brownian excursion [2] – a random measure arising in multiple limit theorems
for discrete probability models, but also in the theory of interacting particle systems
[7, 8] and in a variety of models of statistical physics [10, 15]. More precisely, the
total mass A∞ is the density of the integrated super-Brownian excursion at 0, see [28,
Proposition 3]. In particular, we hope that our construction of the functional A will be
useful to obtain new explicit computations regarding the integrated super-Brownian
excursion and to generalize these computations to related models. For a connection
with local times of super-Brownian motion we refer to Remark 4.14 at the end of
Sect. 4.2.

The work is organized as follows: Sect. 2 gives an overview of the theory of Lévy
trees and snakes. In Section 3, we state and prove the special Markov property for
Lévy snakes and we explore some of its consequences. This section is independent of
the rest of the work but is key for the development of Sects. 4 and 5. The preliminary
results needed for its proof are covered in Sect. 3.1, andmainly concern approximation
results for exit local times. Section4 is devoted to first, constructing in Sect. 4.2 the
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additive functional A [Proposition 4.10], and afterward to the characterization of the
support of the measure dA [Theorem 4.20] in Sect. 4.3. We shall give two equivalent
descriptions for the support of dA, one in terms of the pair (H ,W ), and a second one
only depending on�. The latter will be needed in Sect. 5 and we expect the former to
be useful to develop an excursion theory – we plan to pursue this goal in future works.
The preliminary results needed for our constructions are covered in Sect. 4.1. Finally,
in Sect. 5, after recalling preliminary results on subordination of trees by continuous
functions, we explore the tree structure of the set {υ ∈ TH : ξυ = x} by considering
the subordinate tree of TH with respect to the local time L. The main result of the
section is stated in Theorem 5.1, and consists in proving (i’) and (ii’). We provide an
index with the main notations used in this work at the end of the manuscript.

2 Preliminaries

2.1 The height process and the exploration process

Let us start by introducing the class of Lévy processes that wewill consider throughout
this work. We set X a Lévy process indexed by R+, and we denote its law started
from 0 by P . It will be convenient to assume that X is the canonical process on the
Skorokhod space D(R+,R) of càdlàg (right–continuous with left limits) real-valued
paths equipped with the probability measure P . We denote the canonical filtration by
(Gt : t � 0), completed as usual by the class of P– negligible sets of G∞ =∨t�0 Gt .
We henceforth assume that X verifies P-a.s. the following properties:

• (A1) X does not have negative jumps;
• (A2) The paths of X are of infinite variation;
• (A3) X does not drift to +∞.

Since X has no negative jumps the mapping λ �→ E[exp(−λX1)] is well defined on
R+ and we denote the Laplace exponent of X by ψ , viz. the function defined by:

E[exp(−λX1)] = exp(ψ(λ)), for all λ � 0.

The function ψ can be written in the Lévy-Khintchine form:

ψ(λ) = α0λ+ βλ2 +
∫

(0,∞)
π(dx) (exp(−λx)− 1+ λx1{x�1}),

where α0 ∈ R, β ∈ R+ and π is a sigma-finite measure on R
∗+ satisfying

∫

(0,∞) π(dx)(1 ∧ x2) < ∞. Moreover, it is well known that condition (A2) holds
if and only if we have:

β �= 0 or
∫

(0,1)
π(dx) x = ∞.

The Laplace exponent ψ is infinitely differentiable and strictly convex in (0,∞) (see
e.g.Chapter 8 in [19]). Since X does not drift towards∞one has−ψ ′(0+) = E[X1] �

123



The structure of the local time...

0 which, in turn, implies that X oscillates, or drifts towards−∞ and that Xt has a finite
first moment for any t . In terms of the Lévy measure, this ensures that the additional
integrability condition

∫

(1,∞) π(dx) x < ∞ holds. Consequently, ψ can and will be
supposed to be of the following form:

ψ(λ) = αλ+ βλ2 +
∫

(0,∞)
π(dx)(exp(−λx)− 1+ λx), (2.1)

where now π satisfies
∫

(0,∞) π(dx)(x ∧ x2) <∞ and α, β ∈ R+ since α = ψ ′(0+).
From now on, we will denote the infimum of X by I and remark that, under our
current hypothesis, 0 is regular and instantaneous for the Markov process X − I =
(Xt − inf [0,t] Xs : t � 0). Moreover, it is standard that P –a.s., the Lebesgue measure
of {t ∈ R+ : Xt = It } is null - see e.g. Theorems 6.5 and 6.7 in [19] for a proof. The
process −I is a local time of X − I and we denote the associated excursion measure
from 0 by N . To simplify notation, we write σe for the lifetime of an excursion e.
Finally, we impose the following additional assumption on ψ :

∫ ∞

1

dλ

ψ(λ)
<∞. (A4)

From now on, we will be working under (A1)–(A4).
Let us now briefly discuss the main implications of our assumptions. The condition

(A4) is twofold: on the one hand, it ensures that limλ→∞ λ−1ψ(λ) = ∞which implies
that X has paths of infinite variation [4, VII-5] (the redundancy in our hypothesis
is on purpose for ease of reading). On the other hand, under our hypothesis (A1)–
(A3), it is well known that there exists a continuous state branching process with
branching mechanism ψ(λ) (abbreviated ψ-CSBP) and that (A4) is equivalent to its
a.s. extinction - we refer to Section II.1 of [22] for a detailed account. The ψ-Lévy
tree can be interpreted as the genealogical tree of this branching process and is defined
in terms of a fundamental functional of X , called the height process, that we now
introduce.

The height and exploration processes. Let us turn our attention to the so-called
height process—the main ingredient needed to define Lévy trees. Our presentation
follows [11, Chapter 1] and we refer to [22, Section VIII-1] for heuristics stemming
from the discrete setting. Let us start by introducing some standard notation. For every
0 < s � t , we set

Is,t := inf
s�u�t

Xu,

the infimum of X in [s, t] and remark that when s = 0 we have It = I0,t . Moreover,
since X drifts towards −∞ or oscillates, we must have It → −∞ when t ↑ ∞. By
[11, Lemma 1.2.1], for every fixed t � 0, the limit:

Ht := lim
ε→0

1

ε

∫

[0,t]
dr 1{Xr<Ir ,t+ε} (2.2)
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exists in probability. Roughly speaking, for every fixed t � 0, the quantity Ht measures
the size of the set:

{r � t : Xr− � Ir ,t },

and we refer to H = (Ht : t � 0) as the height process of X . By [11, Theorem 1.4.3],
condition (A4) ensures that H possesses a continuous modification that we consider
from now on and that we still denote by H .

The process H will be the building block to define Lévy trees. However, H is not
Markovian as soon as π �= 0 and we will need to introduce a process – called the
exploration process – which roughly speaking carries the needed information to make
H Markovian. More precisely, the exploration process is a Markov process and we
will write H as a functional of it. In this direction, we write M f (R+) for the set of
finite measures on R+ equipped with the topology of weak convergence and with a
slight abuse of notation we write 0 for the null measure on R+. For every t � 0, the
exploration process at time t , denoted by ρt , is the random measure on R+ defined
as:

〈ρt , f 〉 :=
∫

[0,t]
ds Is,t f (Hs), (2.3)

where ds Is,t stands for the measure associated with the non-decreasing function s �→
Is,t . Equivalently, ρ = (ρt : t � 0) can be defined as:

ρt (dr) := β1[0,Ht ](r)dr +
∑

0<s�t
Xs−<Is,t

(Is,t − Xs−) δHs (dr), t � 0, (2.4)

and remark that (2.3) implies that

〈ρt , 1〉 = It,t − I0,t = Xt − It , t � 0. (2.5)

In particular, ρt takes values in M f (R+). By [11, Proposition 1.2.3], the process
(ρt : t � 0) is an M f (R+)-valued càdlàg strong Markov process, and we briefly
recall some of its main properties for later use. For every μ ∈ M f (R+), we write
supp(μ) for the topological support of μ and we set H(μ) := sup supp(μ) with the
convention H(0) = 0. The following properties hold:

(i) Almost surely, for every t � 0, we have supp ρt = [0, Ht ] if ρt �= 0.
(ii) The process t �→ ρt is càdlàg with respect to the total variation distance.
(iii) Almost surely, the following sets are equal:

{t � 0 : ρt = 0} = {t � 0 : Xt − It = 0} = {t � 0 : Ht = 0}. (2.6)

Indeed, point (ii) was proved in [11, Proposition 1.2.3] while points (i) and (iii) are
a direct consequence of [11, Lemma 1.2.2] and (2.5). In particular, note that we have
(H(ρt ))t�0 = (Ht )t�0 and that point (ii) implies that the excursion intervals away

123



The structure of the local time...

from 0 of X − I , H and ρ coincide. Moreover, since It → −∞ when t ↑ ∞, the
excursion intervals have finite length and by [11, Lemma 1.3.2] and the monotonicity
of t �→ It we have:

lim
ε→0

E

[

sup
s∈[0,t]

∣

∣

1

ε

∫ s

0
du 1{Hu<ε} + Is

∣

∣

]

= 0, for every t � 0. (2.7)

By the previous display, −I can be thought as the local time of H at 0.
The Markov process ρ in our previous definition starts at ρ0 = 0 and, in order

to make use of the Markov property, we have to recall how to define its distribution
starting from an arbitrary measure μ ∈ M f (R+). In this direction, we will need to
introduce the following two operations:

Pruning. For everyμ ∈ M f (R+) and 0 � a < 〈μ, 1〉, we set κaμ the uniquemeasure
on R+ such that for every r � 0:

κaμ([0, r ]) := μ([0, r ]) ∧ (〈μ, 1〉 − a).

If a � 〈μ, 1〉 we simply set κaμ := 0. The operation μ �→ κaμ corresponds to a
pruning operation “from the right” and note that, for every a > 0 and μ ∈ M f (R+),
the measure κaμ has compact support. In particular, one has H(κaμ) <∞ for every
a > 0, even for μ with unbounded support.

Concatenation. Consider μ, ν ∈ M f (R+) such that H(μ) <∞. The concatenation
of the measure μ with ν is again an element of M f (R+), denoted by [μ, ν] and
defined by the relation:

〈[μ, ν], f 〉 :=
∫

μ(dr) f (r)+
∫

ν(dr) f (H(μ)+ r).

Finally, for every μ ∈ M f (R+), the exploration process started from μ is denoted by
ρμ and defined as:

ρ
μ
t := [κ−Itμ, ρt ], t > 0, (2.8)

with the convention ρμ0 := μ. In this definition we used the fact that, P-a.s., It < 0
for every t > 0, since we are not imposing the condition H(μ) < ∞ on μ. Remark
that by (2.5), the process 〈ρμ, 1〉 := (〈ρμt , 1〉 : t � 0) has the same distribution as the
Markov process X − I started from 〈μ, 1〉, this fact will be used frequently. For every
μ ∈ M f (R+), we write Pμ for the distribution of the exploration process started from
μ in D(R+,M f (R+)) – the space of càdlàg M f (R+)-valued paths.

For later use we also need to introduce, under P , the dual process of ρ, this is, the
M f (R+)-valued process (ηt : t � 0) defined by the formula

ηt (dr) := β1[0,Ht ](r)dr +
∑

0<s�t
Xs−<Is,t

(Xs − Is,t ) δHs (dr), t � 0. (2.9)
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We refer to [26] for a heuristic description of the process (ρ, η) in terms of queuing
systems. The processηwill be only needed for some computations and the terminology
will be justified by the identity (2.11) below. Moreover, η is càdlàg with respect to
the total variation distance and the pair (ρ, η) is a Markov process. We refer to [11,
Section 3.1] for a complete account on (ηt : t � 0).

Before concluding this section, it will be crucial for our purposes to define the height
process and the exploration process under the excursion measure N of X − I . In this
direction, if for an arbitrary fixed r we set g = sup{s � r : Xs − Is = 0} and
d = inf{s � r : Xs − Is = 0}, it is straightforward to see that (Ht : t ∈ [g, d])
can be written in terms of a functional of the excursion of X − I that straddles r , say
e j = (X(g+t)∧d − Ig : t � 0), and this functional does not depend on the choice of
r . Informally, from the initial definition (2.2) this should not come as a surprise since
the integral (2.2) for t ∈ [g, d] vanishes on [0, g], we refer to the discussion appearing
before Lemma 1.2.4 in [11] for more details. We denote this functional by H(e j ) and
it satisfies that P–a.s., Ht = Ht−g(e j ) for every t ∈ [g, d]. Furthermore, if we denote
the connected components of {t � 0 : Xt − It = 0} by ((ai , bi ) : i ∈ N

)

and the
corresponding excursions by (ei : i ∈ N), then we have H(ai+t)∧bi = Ht (ei ), for all
t � 0. By considering the first excursion e of X − I with duration σe > ε for every
ε > 0, it follows that the functional H(e) in D(R+,R) under N (de |σe > ε) is well
defined, and hence it is also well defined under the excursion measure N .

Turning now our attention to the exploration process and its dual, observe that for
t ∈ [ai , bi ] the mass of the atoms in (2.4) and (2.9) only depend on the corresponding
excursion ei . We deduce by our previous considerations on H that we can also write
ρ(ai+t)∧bi = ρt (ei ) and η(ai+t)∧bi = ηt (ei ), for all t � 0, where the functionals ρ(e),
η(e) are still defined by (2.4) and (2.9) respectively, but replacing X by ei and H by
H(ei ) – translated in time appropriately. By the same arguments as before, we deduce
that ρ(e) and η(e) under N (de) are well defined M f (R+)-valued functionals. From
now on, when working under N , the dependency on e is omitted from H , ρ and η.
Remark that under N , we still have H(ρt ) = Ht and 〈ρt , 1〉 = Xt , for every t � 0,
where now X is an excursion of the reflected process. By excursion theory for the
reflected Lévy process X − I we deduce that the random measure in R+ ×M f (R+)
defined as

∑

i∈N

δ(−Iai ,ρ(ai+·)∧bi ,η(ai+·)∧bi )
(2.10)

is a Poisson point measure with intensity 1��0d� N (dρ, dη). Finally, we recall for
later use the equality in distribution under N :

(

(ρt , ηt ) : t � 0
) (d)= (

(η(σ−t)−, ρ(σ−t)−) : t � 0
)

, (2.11)

and we refer to [11, Corollary 3.1.6] for a proof. This identity is the reason why η is
called the dual process of ρ.
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2.2 Trees coded by excursions and Lévy trees

The height process H under N is the main ingredient needed to define Lévy trees, one
of the central objects studied in this work. Before giving a formal definition, we shall
briefly recall some standard notation and notions related to (deterministic) pointed
R-trees.

Real trees. In the same vein as the construction of planar (discrete) trees in terms
of their contour functions, there exists a canonical construction of pointed R-trees
in terms of positive continuous functions. In order to be more precise, we introduce
some notation. Let e : R+ �→ R+ be a continuous function, set σe the functional
σe := sup{t > 0 : e(t) �= 0} with the convention sup{∅} := 0. In particular, when
e(0) = 0, σe <∞ and e(s) > 0 for all s ∈ (0, σe), the function e is called an excursion
with lifetime σe. Note that these notations are compatible with the ones introduced
in the previous section. For convenience, we take [0, σe] := [0,∞) if σe = ∞. For
every s, t ∈ [0, σe] with s � t set

me(s, t) := inf
s�u�t

e(u),

and consider the pseudo-distance on [0, σe] defined by:

de(s, t) := e(s)+ e(t)− 2 · me(s ∧ t, s ∨ t), for all (s, t) ∈ [0, σe]2.

The pseudo-distance de induces an equivalence relation ∼e in [0, σe] according to
the following simple rule: for every (s, t) ∈ [0, σe]2 we write s ∼e t if and only if
de(s, t) = 0, and we keep the notation 0 for the equivalency class of the real number
0. The pointed metric space Te := ([0, σe]/ ∼e, de, 0) is an R-tree, called the tree
encoded by e and we denote its canonical projection by pe : [0, σe] → Te. We stress
that if σe <∞, then Te is a compact R−tree.

Let us now give some standard properties and notations. We recall that in an R-tree
there is only one continuous injective path connecting any two points u, v ∈ Te, andwe
denote its image in Te by [u, v]Te . We say that u is an ancestor of v if u ∈ [0, v]Te and
we write u �Te v. One can check directly from the definition that we have u �Te v

if and only if there exists (s, t) ∈ [0, σe]2 such that (pe(s), pe(t)) = (u, v) and
e(s) = me(s ∧ t, s ∨ t). In other words, we have:

[0, v]Te = pe
({

s ∈ [0, σe] : e(s) = me(s ∧ t, s ∨ t)
})

,

where t is any preimage of v by pe. To simplify notation, we write u �Te v for
the unique element on the tree verifying [0, u �Te v]Te = [0, u]Te ∩ [0, v]Te . The
element u �Te v is known as the common ancestor of u and v. Finally, if u ∈ Te, the
number of connected components of Te \ {u} is called the multiplicity of u. For every
i ∈ N

∗ ∪ {∞}, we will denote the set of points u ∈ Te of multiplicity equal to i by
Multi (Te). The points of multiplicity larger than 2 are called branching points, and
the points of multiplicity 1 are called leaves.

123



A. Riera, A. Rosales-Ortiz

Lévy trees. We are now in position to introduce:

Definition 2.1 The random metric space TH under the excursion measure N is the
(free) ψ-Lévy tree.

The term free refers to the fact that the lifetime of H is not fixed under N and it will
be omitted from now on. Note that the metric space TH can be considered under P
without any modifications. Since, under P , we have σH = ∞, the tree TH stands
for the space (R+/ ∼H , dH , 0), and in particular it is no longer a compact space.
The rest of the properties however remain valid and we will use the same notations
indifferently under P and N . Moreover, since the point 0 is recurrent for the process
X − I , it is also recurrent for H by point (ii) of the previous section. This gives a
natural interpretation of TH as the concatenation at the root of infinitely many trees
THi , where (Hi )i∈N = (H(ei ))i∈N are the excursions of H away from 0, and where
the concatenation follows the order induced by the local time−I . For this reason, we
will say that TH under P is a ψ-forest (made of ψ-Lévy trees).3 In particular, remark
that under P (resp. N ), the root pH (0) is a branching point of multiplicity∞ (resp. a
leaf).

Before concluding the discussion on R-trees, we recall from [12, Theorem 4.6] that,
under P or N , Multi (TH ) = ∅ for every i /∈ {1, 2, 3,∞}. Moreover, we have
Mult∞(TH ) \ {pH (0)} = ∅ if and only if π = 0 or, equivalently, if X does not
have jumps. More precisely, pH realizes a bijection between {t � 0 : �Xt > 0} and
Mult∞(TH ) \ {pH (0)}.

2.3 The Lévy snake

In this section, we give a short introduction to the so-called Lévy snake, a path-valued
Markov process that allows to formalize the notion of a “Markov process indexed by
a Lévy tree”. We follow the presentation of [11, Chapter 4]. However, beware that
in this work we consider continuous paths defined on closed intervals, and hence our
framework differs slightly with the one considered in [11, Chapter 4].4

Snakes driven by continuous functions. Fix a Polish space E equipped with a dis-
tance dE inducing its topology and we letWE be the set of E-valued killed continuous
functions. Each w ∈ WE is a continuous path w : [0, ζw] → E , defined on a com-
pact interval [0, ζw]. The functional ζw ∈ [0,∞) is called the lifetime of w and it
will be convenient to denote the endpoint of w by ŵ := w(ζw). Further, we write
WE,x := {w ∈ WE : w(0) = x} for the subcollection of paths in WE starting at
x , and we identify the trivial element of Wx with zero lifetime with the point x . We
equip WE with the distance

dWE (w,w
′) := |ζw − ζw′ | + sup

r�0
dE
(

w(r ∧ ζw),w′(r ∧ ζw′)
)

,

3 Note that our definition of ψ-forest differs slightly with the notion of Lévy forest introduced in [13].
4 The paths considered in [11, Section 4.1] are càdlàg and defined on intervals of the form [0, ζ ), for
ζ ∈ (0,∞).
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and it is straightforward to check that (WE , dWE ) is a Polish space. Let us insist that
the notation e is exclusively used for continuous R+-valued functions defined on R+,
and w is reserved for E-valued continuous paths defined on compact intervals [0, ζw],
viz. for the elements of WE .

We will now endow WR+
E with a probability measure. In this direction, consider

an E-valued Markov process ξ = (ξt : t � 0) with continuous sample paths. For
every x ∈ E , let �x denote the distribution of ξ started at x and also assume that
ξ is time-homogeneous (it is implicitly assumed in our definition that the mapping
x �→ �x is measurable). Now, fix a deterministic continuous function h : R+ �→ R+.
The first step towards defining the Lévy snake consists in introducing a WE -valued
process referred as the snake driven by h with spatial motion ξ . In this direction, we
also fix a point x ∈ E and a path w ∈ WE,x . For every a, b such that 0 � a � ζw and
b � a, there exists a unique probability measure Ra,b(w, dw′) onWE,x satisfying the
following properties:

(i) Ra,b(w, dw′)-a.s., w′(s) = w(s) for every s ∈ [0, a].
(ii) Ra,b(w, dw′)-a.s., ζw′ = b.
(iii) Under Ra,b(w, dw′), (w′(s + a))s∈[0,b−a] is distributed as (ξs)s∈[0,b−a]

under �w(a).

Denoting the canonical process onWR+
E by (Ws)s�0, it is easy to see byKolmogorov’s

extension theorem that, for every w0 ∈ WE,x with ζw0 = h(0), there exists a unique

probability measure Qh
w0

onWR+
E satisfying that

Qh
w0

(

Ws0 ∈ A0,Ws1 ∈ A1, ...,Wsn ∈ An
)

= 1{w0∈A0}
∫

A1×A2×···×An

Rmh(s0,s1),h(s1)(w0, dw1) . . . Rmh(sn−1,sn),h(sn)(wn−1, dwn),

for every 0 = s0 � s1 � ... � sn and A0, ..., An Borel sets of WE . The canonical
process W in WR+

E under Qh
w0

is called the snake driven by h with spatial motion ξ
started from w0. The value Ws = (Ws(t) : t ∈ [0, h(s)]) of the Lévy snake at time s
coincideswithw0 for 0 � t � mh(0, s)while formh(0, s) � t � h(s), it is distributed
as the Markov process ξ started at w0(mh(0, s)) and stopped at time h(s)−mh(0, s).
Furthermore, informally, when h decreases, the path is erased from its tip and, when
h increases, the path is extended by adding “little pieces” of trajectories of ξ at the
tip. The term snake refers to the fact that, the definition of Qh

w0
entails that for every

s < s′ we have:

Ws(r) = Ws′(r), r ∈ [0,mh(s, s
′)], Qh

w0
-a.s. (2.12)

Note however that this property only holds for fixed s, s′ Qh
w0
-a.s. A priori, under Qh

w0
,

the process W does not have a continuousmodification with respect to themetric dWE ,
but it will be crucial for our work to find suitable conditions guaranteeing the existence
of such a modification. This question will be addressed in the following proposition.
We start by introducing some notation. First recall the convention [a,∞] := [a,∞)
for a < ∞. Next, consider a J – indexed family ai , bi ∈ R+ ∪ {∞}, J ⊂ N, with
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ai < bi and suppose that the intervals ([ai , bi ], i ∈ J ) are disjoint. A continuous
function h : R+ �→ R+ is said to be locally r -Hölder continuous in ([ai , bi ], i ∈ J )
if, for every n ∈ N, there exists a constantCn satisfying that |h(s)−h(t)| � Cn|s−t |r ,
for every i ∈ J and s, t ∈ [ai , bi ] ∩ [0, n]. We insist on the fact that the constant Cn

does not depend on the index i .

Proposition 2.2 Suppose that there exists a constant C� > 0 and two positive numbers
p, q > 0 such that, for every x ∈ E and t � 0, we have:

�x
(

sup
0�u�t

dE (ξu, x)p) � C� · tq . (2.13)

Further, consider a continuous function h : R+ �→ R+ and denote by ((ai , bi ) : i ∈
J ) the excursion intervals above its running infimum. If h is locally r-Hölder contin-
uous in ([ai , bi ] : i ∈ J ) with qr > 1 then, for every w ∈ WE with ζw = h(0), the
process W has a continuous modification under Qh

w.

Proof With the notation introduced in the statement of the proposition, we fix a contin-
uous driving function h : R+ �→ R+ locally r -Hölder continuous in ([ai , bi ] : i ∈ J ),
an initial condition w ∈ WE with ζw = h(0), and we consider an arbitrary n ∈ N.
By definition, for any s, t ∈ [ai , bi ] ∩ [0, n], we have |h(s) − h(t)| � Cn · |s − t |r
for a constant Cn that does not depend on i . Next, we consider W , the snake driven
by h under Qh

w(dW ). The first step of the proof consists in showing that the pro-
cess (Ws : s ∈ ⋃

i∈J [ai , bi ]) has a locally Hölder-continuous modification on
([ai , bi ] : i ∈ J ). In this direction, we remark that the definition of dWE gives:

Qh
w

(

dWE (Ws,Wt )
p) � 2p · Qh

w

(

sup
mh(s,t)�u

dE
(

Ws(u ∧ h(s)),Wt (u ∧ h(t))
)p
)

+ 2p · |h(s)− h(t)|p,

for every s, t ∈ [ai , bi ] ∩ [0, n]. Next, note that the first term on the right hand side
can be bounded above by:

Qh
w

(

sup
mh(s,t)�u

dE
(

Ws(u ∧ h(s)),Wt (u ∧ h(t))
)p
)

� 2p · Qh
w

(

sup
mh(s,t)�u

dE
(

Ws(u ∧ h(s)),Ws(mh(s, t))
)p
)

+ 2p · Qh
w

(

sup
mh(s,t)�u

dE
(

Wt (mh(s, t)),Wt (u ∧ h(t))
)p
)

� 2p · Qh
w

(

�Ws (mh(s,t))
(

sup
u�h(s)−mh(s,t)

dE (ξu, ξ0)
p)
)

+ 2p · Qh
w

(

�Wt (mh(s,t))
(

sup
u�h(t)−mh(s,t)

dE (ξ0, ξu)
p)
)

� 2pC� ·
(

∣

∣h(s)− mh(s, t)
∣

∣

q + ∣∣h(t)− mh(s, t)
∣

∣

q
)

,
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where in the second inequality we applied the Markov property at time mh(s, t), and
in the last one we used the upper bound (2.13). By our assumptions on h we derive
that, for every n > 0, there exists a constant C ′

n such that:

Qh
w

(

dWE (Ws,Wt )
p) � C ′

n · (|t − s|qr + |t − s|pr ),

for any s, t ∈ [ai , bi ] ∩ [0, n],

and we stress that the constant C ′
n does not depend on i . Recall that qr > 1. Moreover,

we can also assume that pr > qr > 1 since, by equipping the space WE with the
distance 1 ∧ dWE in place of dWE , we can take p as large as wanted.5 Now, fix
r0 ∈ (0, (qr − 1)/p). We deduce by a standard Borel-Cantelli argument, similar
to the proof of Kolmogorov’s lemma, that there exists a modification of (Ws : s ∈
[0, n]∩⋃i∈J [ai , bi ]), say (W ∗

s : s ∈ [0, n]∩⋃i∈J [ai , bi ]), satisfying that Qh
w– a.s.,

for every i ∈ J

dWE (W
∗
s ,W ∗

t ) � Kn|s − t |r0 , for every s, t ∈ [ai , bi ] ∩ [0, n], (2.14)

where the (random) quantity Kn does not depend on i . To simplify notation, set
V := R+\⋃i∈J [ai , bi ] and remark that if t ∈ V , then h(t) = inf{h(u) : u ∈ [0, t]}.
For every t ∈ V , we set W ∗

t := (w(u) : u ∈ [0, h(t)]) and we consider the process
(W ∗

t : t ∈ [0, n]). Notice that by the very construction of W ∗, we have Qh
w(Wt =

W ∗
t ) = 1 for every t ∈ [0, n], which shows that W ∗ is a modification of W in [0, n].
Let us now show that W ∗ is continuous on [0, n]. The continuity for t ∈ [0, n] ∩

⋃

i∈J (ai , bi ) follows by (2.14) andwe henceforth fix t ∈ Vn := [0, n]\⋃i∈J (ai , bi ).
In particular, we have h(t) = inf{h(u) : u ∈ [0, t]}. On the one hand, for every
sequence (sk : k ∈ N) in Vn converging to t , the continuity of w and h ensures that
(w(u) : u ∈ [0, h(sk)])→ W ∗

t with respect to dWE as k ↑ ∞. Therefore, we have:

lim
s→t
s∈Vn

dWE (W
∗
s ,W ∗

t ) = lim
s→t
s∈Vn

dWE

(

(

w(u) : u ∈ [0, h(s)]),W ∗
t

)

= 0. (2.15)

On the other hand, for every s ∈ [a j , b j ] ∩ [0, n] for some j ∈ J with s � t , we have

dWE (W
∗
s ,W ∗

t ) � dWE (W
∗
s ,W ∗

b j
)+ dWE

(

W ∗
b j
,W ∗

t

)

� Kn|s − b j |r0 + dWE

(

(

w(u) : u ∈ [0, h(b j )]
)

,W ∗
t

)

,

which goes to 0 as s ↑ t by (2.15) since W ∗
t = (w(u) : u ∈ [0, h(t)]). The case s � t

can be treated similarly by replacing bi with ai and it follows that dWE (W
∗
s ,W ∗

t )→ 0,
as s → t . Consequently, W ∗ is continuous on [0, n]. Since this holds for any n, we
can define a continuous modification of W in R+. ��
5 Since the metrics dWE

and 1∧dWE
are equivalent, a continuous modification with respect to 1∧dWE

would give a continuous modification with respect to dWE
.
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Under the conditions of Proposition 2.2, the measure Qh
w can be defined on the

Skorokhod space D(R+,WE ) ofWE -valued càdlàg functions, viz.WE -valued right-
continuous paths possessing left limits at every time t > 0, and with a slight abuse of
notation we still denote it by Qh

w.
6 From now on, we shall work under these conditions

and Qh
w will always be considered as a measure in D(R+,WE ). In particular, remark

that if we write W for the canonical process in D(R+,WE ), then W is Qh
w–a.s.

continuous. Finally, we point out that the regularity of W was partially addressed in
the proof of [11, Proposition 4.4.1], for initial conditions of the form x with x ∈ E ,
when working with paths w defined on the half open interval [0, ζw).
The Lévy snake with spatial motion ξ . The driving function h of the random snake
that we have considered so far was deterministic, and the next step consists in ran-
domising h. We writeM0

f for the subset of M f (R+) defined as

M0
f := {μ ∈ M f (R+) : H(μ) <∞ and supp μ = [0, H(μ)]} ∪ {0},

and we introduce

� := {(μ,w) ∈ M0
f ×WE : H(μ) = ζw

}

. (2.16)

Fix a Laplace exponent ψ satisfying (A1)–(A4), and set

ϒ := sup
{

r � 0 : lim
λ→∞ λ

−rψ(λ) = ∞}. (2.17)

In particular, by the convexity of ψ we must have ϒ � 1. For every μ ∈ M0
f , recall

that we write Pμ for the distribution of the exploration process started from μ in
D(R+,M f (R+)). With a slight abuse of notation we denote the canonical process
in D(R+,M f (R+)) by ρ and observe that, by property (i) in Sect. 2.1 and (2.8), the
process ρ under Pμ takes values in M0

f . Notice that H(ρ) under Pμ is continuous

since μ ∈ M0
f . We can now state the hypothesis we will be working with.

In the rest of this work, we will always assume that:

Hypothesis (H0). There exists a constant C� > 0 and two positive numbers
p, q > 0 such that, for every x ∈ E and t � 0, we have:

�x
(

sup
0�u�t

dE (ξu, x)p) � C� · tq , and q · (1− ϒ−1) > 1. (H0)

For instance, it can be checked that condition (H0) is fulfilled if the Lévy tree has
exponent ψ(λ) = λα for α ∈ (1, 2] and ξ is a Brownian motion. Let us discuss the
implications of (H0). Under Pμ, denote the excursion intervals of H above its running
infimum by (αi , βi ). Recall from (2.8) that (ρμt := [k−Itμ, ρt ] : t � 0), under P0, is
distributed according to Pμ, and note that Ht (ρ

μ) = H(k−Itμ) + H(ρt ), for t � 0.

6 We could work in the space of WE -valued continuous paths. However, it would be preferable to work
in D(R+,WE ), as we will later pair W with a càdlàg process.
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By [11, Theorem 1.4.4], under P0 the process H(ρ) is locally Hölder continuous
of exponent m for any m ∈ (0, 1 − ϒ−1). In particular, this holds for some m := r
verifyingqr > 1by the second condition in (H0). Since

(

H(k−Itμ) : t � 0
)

is constant
on each excursion interval (αi , βi ) and (H(ρt ) : t � 0) is locally r -Hölder continuous,
we deduce that H(ρμ) is locally r -Hölder continuous on ([αi , βi ] : i ∈ N). Said
otherwise, Pμ-a.s., the paths of H(ρ) satisfy the conditions of Proposition 2.2 and
we will henceforth assume that the condition is satisfied for every path, and not only
outside of a negligible set.

Finally, consider the canonical process (ρ,W ) in D(R+,M f (R+) × WE ), the
space ofM f (R+)×WE -valued càdlàg paths. By our previous discussion we deduce
that we can define a probability measure in D(R+,M f (R+)×WE ) by setting

Pμ,w(dρ, dW ) := Pμ(dρ) Q H(ρ)
w (dW ),

for every (μ,w) ∈ �. The process (ρ,W ) under Pμ,w is called theψ-Lévy snake with
spatial motion ξ started from (μ,w). We denote its canonical filtration by (Ft : t � 0)
and observe that by construction, Pμ,w–a.s., W has continuous paths. Now, the proof
of [11, Theorem 4.1.2] applies without any change to our framework and gives that
the process ((ρ,W ), (Pμ,w : (μ,w) ∈ �)) is a strong Markov process with respect
to the filtration (Ft+). It should be noted that assumption (H0) is the same as the one
appearing in [11, Proposition 4.4.1], for paths defined on [0, ζw) and started from
x ∈ E . In the particular case ψ(λ) = λ2/2, the path regularity of W was already
addressed in [20, Theorem 1.1].

Let us conclude our discussion concerning regularity issues by introducing the
notion of snake paths, which summarises the regularity properties of (ρ,W ) as well
as some related notation that will be used throughout this work. Recall thatM f (R+),
equipped with the topology of weak convergence, is a Polish space [18, Lemma 4.5].
We denote systematically the elements of the path space D(R+,M f (R+)×WE ) by:

(ρ, ω) = ((ρs, ωs) : s ∈ R+
)

,

and by definition, we have (ρs(ρ),Ws(ω)) = (ρs, ωs) for s ∈ R+. For each fixed
s � 0, ωs is an element ofWE with lifetime ζωs , and the R+-valued process ζ(ω) :=
(ζωs : s � 0) is called the lifetime process of ω. We will occasionally use the notation
ζs(ω) instead of ζωs , and in such cases we will drop the dependence on ω if there is
no risk of confusion.

Definition 2.3 A snake path started from (μ,w) ∈ � is an element (ρ, ω) ∈
D(R+,M f (R+) × WE ) such that the mapping s �→ ωs is continuous, and satis-
fying the following properties:

(i) (ρ0, ω0) = (μ,w).
(ii) (ρs, ωs) ∈ �, and in particular H(ρs) = ζ(ωs), for all s � 0.
(iii) ω satisfies the snake property: for any 0 � s � s′,

ωs(t) = ωs′(t) for all 0 � t � inf
[s,s′]

ζ(ω).
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A continuousWE -valued path ω satisfying (iii) is called a snake trajectory. We point
out that this notion had already been introduced in the context of the Brownian snake
[1, Definition 6]. However, in the Brownian case the process W is Markovian and
there is no need of working with pairs (ρ, ω) – this is the reason why we have to
introduce the notion of snake paths. We denote the collection of snake paths started
from (μ,w) ∈ � by Sμ,w and simply write Sx instead of S0,x . Finally, we set:

S :=
⋃

(μ,w)∈�
Sμ,w.

For any given (ρ, ω) ∈ S, we denote indifferently its duration by

σH(ρ) = σ(ω) = sup{t � 0 : ζωt �= 0}. (2.18)

Remark that, by continuity and the definition of Qh
w, the process ((ρ,W ), (Pμ,w :

(μ,w) ∈ �)) takes values in S – it satisfies the snake property by (2.12) and the
continuity of W . Said otherwise, Pμ,w-a.s., we have

ζs = H(ρs), for every s � 0,

and for any t � t ′

Wt (s) = Wt ′(s), for all s � m H (t, t
′).

We stress that when working on S the equivalent notations ζs , H(ρs) and Hs will
be used indifferently. The snake property implies that, for every t, t ′ � 0 such that
pH (t) = pH (t ′),wehaveWt = Wt ′ . In particular, for such times it holds that ̂Wt = ̂Wt ′
and hence (̂Wt : t � 0) can be defined on the quotient space TH . More precisely,
under Pμ,w, the function defined with a slight abuse of notation for all υ ∈ TH as

ξυ := ̂Wt , where t is any element of p−1
H (υ),

is well defined and leads us to the notion of tree indexed processes. When (μ,w) =
(0, x), the process (ξυ)υ∈TH is known as the Markov process ξ indexed by the tree TH

and started from x .7 In this work, we will need to consider the restriction of (ρ,W )
to different intervals and therefore, it will be convenient to introduce a formal notion
of subtrajectories.

Subtrajectories. Fix s < t such that Hs = Ht and Hr > Hs for all r ∈ (s, t). The
subtrajectory of (ρ,W ) in [s, t] is the process takingvalues inD(R+,M f (R+)×WE ),
denoted by (ρ′r ,W ′

r )r�0 and defined as follows: for every r � 0, set

〈ρ′r , f 〉 :=
∫

ρ(r+s)∧t (dh) f (h−Hs)1{h>Hs } and W ′
r (·) := W(r+s)∧t (Hs + · ).

7 With the terminology introduced in [1, Definition 7] the pair of processes (H , ̂W ) is called a treelike-path.
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In particular, we have

ζ(W ′
r ) = H(r+s)∧t − Hs = H(ρ′r ), for all r � 0.

Remark that if (ρ,W ) is a snake path, then the subtrajectory (ρ′,W ′) is also in S.
Informally, W ′ encodes the labels (ξv : v ∈ pH ([s, t])).

2.4 Excursionmeasures of the Lévy snake

Fix x ∈ E and consider theLévy snake (ρ,W ) underP0,x . By (2.6) and the fact that 0 is
a regular instantaneous point for the reflected process X− I , it follows that themeasure
0 is a regular instantaneous point for the Markov process ρ. This yields that (0, x) is
regular and instantaneous for theMarkov process (ρ,W ). Moreover, (−It : t � 0) is a
local time at 0 forρ andhence, it is a local time at (0, x) for (ρ,W ).We letNx denote the
excursion measure of (ρ,W ) away from (0, x) associated with the local time−I , and
note that the durationσ of (ρ,W ) coincideswith the stopping time inf{t > 0 : ρt = 0}.
We stress that Nx is a measure in the canonical space D(R+,M f (R+) × WE ). By
excursion theory of the Markov process (ρ,W ), if {(αi , βi ) : i ∈ N} stands for the
excursion intervals of (ρ,W ) and (ρi ,W i ) are the corresponding subtrajectories then,
under P0,x , the measure

∑

i∈N

δ(−Iαi ,ρ
i ,W i ), (2.19)

is a Poisson point measure with intensity 1[0,∞)(�)d� Nx (dρ, dω). Let us mention
that the enumeration can be taken measurably with respect to (ρ,W ). For instance, for
every k ∈ Z, one can consider the temporal enumeration of the atoms (−Iαi , ρ

i ,W i )

with lifetime σ(W i ) ∈ (2−(k+1), 2−k], and then re-rank all the atoms according to N;
this is always feasible since the countable union of countable sets remains a countable
set. More generally, for the point measures built in terms of (ρ,W ) that we consider
in this work, one can always assume that the enumeration of its atom is measurable
with respect to (ρ,W ). This can be invariably achieved by considering variations of
the enumeration we just described. The specific details will be systematically omitted
unless there is a new technical difficulty. Recalling the interpretation of the restrictions
Nx ( · |σ > ε) as the law of the first excursion with length greater than ε, it follows
that under Nx , W satisfies the snake property and (ρ,W ) ∈ S. In particular, we can
still make use of the definition of subtrajectories and (ξυ)υ∈TH under the excursion
measure Nx , and for simplicity we will use the same notation.

By the discussion at the end of Sect. 2.1, it is straightforward to verify that

Nx (dρ, dη, dW ) = N (dρ, dη) Q H(ρ)
x (dW ). (2.20)

Said otherwise, under Nx :

• The distribution of (ρ, η) is N (dρ, dη);
• The conditional distribution of W knowing (ρ, η) is Q H(ρ)

x .
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Remark that by construction and (2.11), under Nx we have

(

(ρt , ηt ,Wt ) : t ∈ [0, σ ]) (d)= (

(η(σ−t)−, ρ(σ−t)−,Wσ−t ) : t ∈ [0, σ ]), (2.21)

where we used that by continuity, we have Wσ−t = W(σ−t)− for every t ∈ [0, σ ].
Let us now discuss a variant of (2.19) that holds when starting from an arbitrary

(μ,w) ∈ �, that will be used frequently in our computations. In this direction, let
P
†
μ,w be the distribution of (ρ,W ) under Pμ,w killed at time inf{t > 0 : ρt = 0}.

In particular, observe that the lifetime of both ρ and H under P
†
μ,w is σ := sup{t �

0 : ρt �= 0}. We stress that this is consistent with (2.18) and that σ coincides with
inf{t > 0 : ρt = 0}. By the discussion following (2.8), under P

†
μ,w the process 〈ρ, 1〉

is a Lévy process started from 〈μ, 1〉 and stopped when reaching 0. Now assume that
μ �= 0, write

(

(αi , βi ) : i ∈ N
)

for the excursion intervals over the running infimumof

〈ρ, 1〉 under P
†
μ,w and denote the corresponding subtrajectory associated with [αi , βi ]

by (ρi ,W i ). If for t � 0 we write It := infs�t 〈ρs, 1〉 − 〈μ, 1〉, the measure

∑

i∈N

δ(−Iαi ,ρ
i ,W i ), (2.22)

is a Poisson point measure with intensity 1[0,〈μ,1〉](u) du Nw(H(κuμ))(dρ, dW ). More-
over, writing hi := Hαi = Hβi , we infer by (2.8) that hi = H(κ−Iαi

μ) and since the
image measure of 1[0,〈μ,1〉](u) du under the mapping u �→ H(κuμ) is precisely μ, we
deduce that under P

†
μ,w the measure

∑

i∈N

δ(hi ,ρ
i ,W i ) (2.23)

is a Poisson point measure with intensity μ(dh)Nw(h)(dρ, dW ). We refer to [11,
Lemma 4.2.4] for additional details.

We close this section by recalling a many-to-one formula that will be used frequently
to obtain explicit computations. We start with some preliminary notations: consider a
2-dimensional subordinator 8 (U (1),U (2)) defined on some auxiliary probability space
(�0,F0, P0) with Laplace exponent given by

− log E0
[

exp
(− λ1U (1)

1 − λ2U (2)
1

)

]

:=
{

ψ(λ1)−ψ(λ2)
λ1−λ2 − α if λ1 �= λ2

ψ ′(λ1)− α if λ1 = λ2,
(2.24)

where E0 stands for the expectation taken with respect to P0 and α is the drift coeffi-
cient in (2.1). Notice that in particular U (1) and U (2) are subordinators with Laplace
exponent λ �→ ψ(λ)/λ− α. Let (Ja, qJa) be the pair or random measures defined by

(Ja, qJa) :=
(

1[0,a](t) dU (1)
t ,1[0,a](t) dU (2)

t
)

,

8 Here the term 2-dimensional subordinator refers to a two-dimensional Lévy process such that each
coordinate is a subordinator.
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with the convention (J∞, qJ∞) := (1[0,∞)(t) dU (1)
t ,1[0,∞)(t) dU (2)

t ). The following
many-to-one equation will play a central role in all this work:

Lemma 2.4 For every x ∈ E and every non-negative measurable function � on
M f (R+)2 ×WE , we have:

Nx

(

∫ σ

0
ds�

(

ρs, ηs,Ws
)

)

=
∫ ∞

0
da exp

(− αa
) · E0 ⊗�x

(

�
(

Ja, qJa, (ξt : t � a)
)

)

, (2.25)

where α is the drift term appearing in (2.1).

Proof First, remark that we have

Nx

(

∫ σ

0
ds�

(

ρs, ηs,Ws
)

)

=
∫ ∞

0
ds Nx

(

1{s<σH }�
(

ρs, ηs,Ws
)

)

.

Next, we use (2.20) to write the previous display in the form:

∫ ∞

0
ds Nx

(

1{s<σH }�x

[

�
(

ρs, ηs,
(

ξr : r � H(ρs)
)

)])

= N
(

∫ σ

0
ds�x

[

�
(

ρs, ηs,
(

ξr : r � H(ρs)
)

)])

.

Since now �x
[

�
(

ρs, ηs, (ξr : r � H(ρs))
)]

is a functional of (ρs, ηs), it suffices to
establish (2.25) for a functional only depending on the pair (ρs, ηs). However, this is
precisely formula (18) in [12]. ��
For later use, observe that by an application of the many-to-one formula (2.25), for
every ε > 0 we have

N
(

∫ σ

0
ds 1{0�H(ρs )<ε}

)

=
∫ ε

0
da exp

(− αa
)

� ε. (2.26)

3 Special Markov property

In this section we state and prove the (strong) special Markov property for the Lévy
snake. This result was originally introduced in [21, Section 2] in the special case of
the Brownian motion indexed by the Brownian tree, viz. when the Lévy exponent of
the tree is of the form ψ(λ) = βλ2 and the spatial motion ξ is a Brownian motion.
This result plays a fundamental role in the study of Brownian motion indexed by the
Brownian tree, see for example [21, 24, 29, 30]. More recently, a stronger version was
proved in [24] still for ψ(λ) = βλ2 but holding for more general spatial motions ξ .
In this section we extend this result to an arbitrary exponent ψ of a Lévy tree. Even
if we follow a similar strategy to the one introduced in [24], general Lévy trees are
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significantly less regular than the Brownian tree – in particular the height process H
is not Markovian. The arguments need to be carefully reworked and for instance, the
existence of points with infinite multiplicity complicates the proof considerably.

We start by introducing some standard notation that will be used in the rest of the
section and recalling the preliminaries needed for our purpose. Fix x ∈ E and for an
arbitrary open subset D ⊂ E containing x and w ∈ WE,x , set

τD(w) := inf
{

t ∈ [0, ζw] : w(t) /∈ D
}

,

with the usual convention inf{∅} = ∞. Similarly, we will write τD(ξ) := inf{t �
0 : ξt /∈ D} for the exit time from D of the spatial motion ξ . When considering the
later, the dependency on ξ is usually dropped when there is no risk of confusion. In
the rest of the section, we will always assume that:

�x (τD <∞) > 0. (H1)

The special Markov property is roughly speaking a spatial version of the Markov
property. In order to state it, we need to properly define the notion of paths “inside D”
and “excursions outside D”, as well as a notion of measurability with respect to the
information generated by the trajectories staying inside of D. Section3.1 is devoted to
the study of paths inside D and to a fundamental functional of the Lévy snake, called
the exit local time. The study of the excursions outside D is postponed to Sect. 3.2.

3.1 The exit local time

Let us begin by introducing some useful operations and notation.

Truncation.We start by defining the truncation of a path (ρ, ω) ∈ D(R+,M f (R+)×
WE,x ) to D – we stress that we have ωs(0) = x for every s � 0. In this direction,
define the functional

V D
t (ρ, ω) :=

∫ t

0
ds 1{ζωs �τD(ωs )}, t � 0, (3.1)

measuring the amount of time spent byωwithout leaving D up to time t . Let us bemore
precise: at time s, wewill say thatωs does not leave D (or stays in D) ifωs([0, ζs)) ⊂ D
(notice that ω̂s might be in ∂D) and on the other hand, we say that the trajectory exits
D if ωs([0, ζs)) ∩ Dc �= ∅. Observe that a trajectory (ωs(t) : t ∈ [0, ζs]) might exit
the domain D and return to it before the lifetime ζs , but such a trajectory will not be
accounted by V D . Write YD(ρ, ω) := V D

σ(ω)(ρ, ω) for the total amount of time spent
in D, and for every s ∈ [0,YD(ρ, ω)) set

�D
s (ρ, ω) := inf

{

t � 0 : V D
t (ρ, ω) > s

}

,

with the convention �D
s (ρ, ω) := σ(ω), if s � YD(ρ, ω). The truncation of (ρ, ω)

to D is the element of D(R+,M f (R+) ×WE,x ) with lifetime YD(ρ, ω) defined as
follows:
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trD
(

ρ, ω
) := (ρ�D

s (ρ,ω)
, ω�D

s (ρ,ω)
)s∈R+ .

Indeed, observe that the trajectory (ρ�D , ω�D ) is càdlàg since ρ, ω and �D are càdlàg.
For simplicity, we set trD(ω) = (ω�D

s (ω)
)s∈R+ and we write trD(ω̂) for ω̂�D . Roughly

speaking, trD(ω) removes the trajectories ωs from ω leaving D, glues the remaining
endpoints, and hence encodes the trajectories ωs that stay in D. Let us stress that
when (ρ, ω) is an element of Sx , the truncation trD(ρ, ω) is still in Sx since trD(ω)

is a snake trajectory taking values in D ∪ ∂D by [1, Proposition 10], and condition
(ii) in Definition 2.3 is clearly satisfied. Recall that (ρ,W ) stands for the canonical
process in D(R+,M f (R+)×WE,x ), and that it takes values in Sμ,w under Pμ,w for
(μ,w) ∈ � and in Sy under Ny for y ∈ E . We will also need to introduce the sigma
field

FD := σ (trD(ρ,W )s : s � 0
)

(3.2)

in D(R+,M f (R+) ×WE ), which roughly speaking, contains the information gen-
erated by the trajectories that stay in D. The following technical lemma will be often
useful. It states that, under Nx , when a trajectory Ws exits the domain D, then the
measure ρs does not have an atom at level τD(Ws). More precisely:

Lemma 3.1 Let D be an arbitrary open subset D ⊂ E containing x. Then, Nx –a.e.

ρs({τD(Ws)}) = 0, for all s � 0.

Proof First, remark that the many-to-one formula (2.25) gives:

Nx

(

∫ σ

0
ds 1{τD(Ws )<∞}ρs({τD(Ws)})

)

=
∫ ∞

0
da exp(−αa)E0 ⊗�x

(

1{τD((ξu :u�a))<∞} Ja({τD(ξu : u � a)})
)

,

which vanishes by the independence between ξ and Ja . This shows that Nx–a.e., the
Lebesguemeasure of the set {s ∈ [0, σ ] : ρs({τD(Ws)}) �= 0} is null and nowwe claim
that this implies that Nx–a.e. ρs({τD(Ws)}) = 0 for all s � 0. We argue by contra-
diction to prove this claim. Suppose that for some s > 0, we have ρs({τD(Ws)}) > 0.
In this case, recalling that the exploration process ρ is càdlàg with respect to the total
variation distance, we must have

lim
ε↓0
∣

∣ρs({τD(Ws)})− ρs+ε({τD(Ws)})
∣

∣ � lim
ε↓0 sup

A∈B(R)

∣

∣ρs(A)− ρs+ε(A)
∣

∣ = 0.

We infer that for some δ > 0, it holds that ρu({τD(Ws)}) > 0 for all u ∈ [s, s + δ). In
particular, we have Hu � Hs for all u ∈ [s, s + δ). By the snake property, we deduce
that, for every u ∈ [s, s + δ), τD(Ws) = τD(Wu) and consequently:

ρu({τD(Wu)}) = ρu({τD(Ws)}) > 0.
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However, this is in contradiction with the first part of the proof and the desired result
follows. ��
Exit local time. As in classical excursion theory, we will need to properly index the
excursions outside D but we will also ask the indexing to be compatible with the order
induced by H . To achieve it, we will make use of the exit local time from D. We briefly
recall its definition and main properties and we refer to [11, Section 4.3] for a more
detailed account. By Propositions 4.3.1 and 4.3.2 in [11], under Nx and P0,x , the limit

L D
s (ρ,W ) := lim

ε→0

1

ε

∫ s

0
dr1{τD(Wr )<H(ρr )<τD(Wr )+ε}, (3.3)

exists for every s � 0, where the convergence holds uniformly on compact intervals
in L1(P0,x ) and L1(Nx ). As usual, when there is no risk of confusion, the dependence
on (ρ,W ) is omitted in L D(ρ,W ). This defines a continuous non-decreasing process
L D called the exit local time from D of (ρ,W ). We insist that, under Nx and P0,x ,
the process (ρ,W ) takes values in Sx which yields that Hs = ζs for every s � 0. The
following first-moment formula will be often used in our computations.

Lemma 3.2 For every non-negative measurable functional � on M f (R+)2 × WE ,
we have:

Nx

(∫ σ

0
dL D

s �(ρs, ηs,Ws)

)

= E0 ⊗�x

(

1{τD<∞} exp(−ατD)�
(

JτD ,
qJτD , (ξt : t � τD)

)

)

. (3.4)

When the function � only depends on (ρ,W ), this result was established in [11,
Proposition 4.3.2] and the same argument can be employed to establish (3.4). However,
the proof of [11, Proposition 4.3.2] is rather technical and for completeness we provide
a shorter argument.

Proof First, observe that by the approximation (3.3), up to considering a sub-sequence,
the family of measures ε−11{τD(Wr )<Hr<τD(Wr )+ε}dr for ε � 0 converge weakly as
ε ↓ 0 towards dL D

r . We now claim that, Nx -a.e., for every non-negative continuous
function � onM2

f (R+)×WE bounded above by 1 we have:

∫ σ

0
dL D

s �(ρs, ηs,Ws) = lim
ε→0

ε−1
∫ σ

0
dr �(ρr , ηr ,Wr )1{τD(Wr )<Hr<τD(Wr )+ε}.

To see it, we make a couple of observations. On the one hand, the approximation (3.3)
yields that the measure dL D

s isNx–a.e. supported on the set {s ∈ R+ : Hs = τD(Ws)}.
On the other hand, by Lemma 3.1 and the duality (2.21), it holds thatNx–a.e. for every
s � 0 we have ρs({τD(Ws)}) = ηs({τD(Ws)}) = 0. Putting these two facts together
yields that, under Nx , the function s �→ �(ρs, ηs,Ws) is continuous at dL D

s almost
every s � 0. The previous display now follows by Portemanteau’s theorem. Let us
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now deduce the statement of the lemma. In this direction, notice that an application
of Fatou’s lemma yields:

Nx

(∫ σ

0
dL D

s �(ρs, ηs,Ws)

)

� lim inf
ε→0

ε−1 · Nx

(∫ σ

0
dr �(ρr , ηr ,Wr )1{τD(Wr )<Hr<τD(Wr )+ε}

)

.

By (2.25) and the dominated convergence theorem, the right-side term of the previous
display can be written as:

lim inf
ε→0

ε−1 · E0 ⊗�x

[

1{τD<∞}
∫ τD+ε

τD

dr exp(−αr)�
(

Jr , qJr , (ξs : s � r)
)

]

= E0 ⊗�x

[

1{τD<∞} exp(−ατD)�
(

JτD ,
qJτD , (ξs : s � τD)

)

]

which gives the inequality:

Nx

(∫ σ

0
dL D

s �(ρs, ηs,Ws)

)

� E0 ⊗�x

[

1{τD<∞} exp(−ατD)�
(

JτD ,
qJτD , (ξs : s � τD)

)

]

. (3.5)

Moreover, as we mentioned before starting the proof, by [11, Proposition 4.3.2] we
have an equality in (3.5) when the functional� does not depend on η, and in particular
in the case � = 1. Therefore, if we combine the bound (3.5) with the same bound
obtained by considering 1−� instead of �, we obtain the desired equality (3.4). ��

Observe that as a straightforward consequence of (3.3) or (3.4), we have

supp dL D
s ⊆ {s � 0 : τD(Ws) = Hs}, Nx -a.e.

We stress that L D is constant at every interval at which Ws stays in D and in each
connected component of

{s � 0 : τD(Ws) < Hs}.

We call such a connected component an excursion interval from D. This family of
intervals will be studied in detail in the next section. The process L D is not measurable
with respect to FD , the informal reason being that it contains the information on the
lengths of the excursions from D. However, as we are going to show in Proposition 3.4,
the time-changed process

˜L D := (L D
�D

s

)

s∈R+

is FD-measurable – notice that we removed precisely from L D by means of the time
change the constancy intervals generated by excursions from D. This measurability
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property will be crucial for the proof of the special Markov property and the rest of
this section is devoted to its proof.

First remark that we have only defined the exit local time under the measures P0,x
and Nx for x ∈ D. In order to be able to apply the Markov property, we need to
extend the definition to more general initial conditions (μ,w) ∈ �. This construction
will also be essential for the results of Sect. 4. The precise statement is given in the
following proposition:

Proposition 3.3 Fix (μ,w) ∈ � such that w(0) ∈ D and suppose that μ({τD(w)}) =
0. Then, under Pμ,w there exists a continuous, non-decreasing process L D with asso-
ciated Lebesgue-Stieltjes measure dL D supported on {t ∈ R+ : ̂Wt ∈ ∂D}, such that,
for every t � 0

L D
t (ρ,W ) = lim

ε→0

1

ε

∫ t

0
ds 1{τD(Ws )<H(ρs )<τD(Ws )+ε}, (3.6)

where the convergence holds uniformly on compact intervals in L1(Pμ,w). Moreover:

(i) Under Pμ,w, if τD(w) < ∞, we have L D
t (ρ,W ) = 0 for every t � inf{s � 0 :

H(ρs) < τD(w)}.
(ii) Under P

†
μ,w, with μ �= 0, recall the definition of the random point measure

∑

i∈N
δ(hi ,ρ

i ,W i ) defined in (2.23). Then we have:

L D∞(ρ,W ) =
∑

hi<τD(w)

L D∞(ρi ,W i ), P
†
μ,w-a.s. (3.7)

Proof Let us start with preliminary remarks and introducing some needed notation.
Fix (μ,w) ∈ � with w(0) ∈ D satisfying μ({τD(w)}) = 0. We write

Tr := inf{t � 0 : Ht = r}, for every r � 0, and T+
0 := inf{t � 0 : 〈ρt , 1〉=0}.

By (3.3) and the strong Markov property, we already know that

ε−1
∫ T+

0 +t

T+
0

ds 1{τD(Ws )<Hs<τD(Ws )+ε} converges as ε ↓ 0 uniformly on compact

intervals in L1(Pμ,w) towards a non-decreasing continuous process supported on
{t � 0 : ̂WT+

0 +t ∈ ∂D}. Consequently, it suffices to prove the proposition under

P
†
μ,w with μ �= 0. In this direction, we set

I (t, ε) := 1

ε

∫ t

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε},

for every ε > 0. Recall now that underP
†
μ,w, the process 〈ρ, 1〉 is a killed Lévy process

started at 〈μ, 1〉 and stopped at its first hitting time of 0. Write ((αi , βi ) : i ∈ N),
for the excursion intervals of 〈ρ, 1〉 over its running infimum, and let (ρi ,W i ) be the
subtrajectory associated with the excursion interval [αi , βi ]. To simplify notation, we

123



The structure of the local time...

also set hi := H(αi ) and recall from (2.23) that the measure M :=∑i∈N
δ(hi ,ρ

i ,W i )

is a Poisson point measure with intensity μ(dh)Nw(h)(dρ, dW ).
We suppose first that τD(w) � ζw.We shall prove that the collection

(

I (t, ε), t � 0
)

for ε > 0 is Cauchy in L1(P
†
μ,w) uniformly on compact intervals as ε ↓ 0, viz.

lim
δ,ε→0

E
†
μ,w

[

sup
s�t

|I (s, ε)− I (s, δ)|] = 0. (3.8)

This implies directly the existence of L D defined as in (3.6) as well as point (i). We
shall then deduce (ii), and the remaining case τD(w) < ζw is treated afterwards. Let us
proceed with the proof of (3.8). Since the Lebesgue measure of {t ∈ [0, σ ] : 〈ρt , 1〉 =
infs�t 〈ρs, 1〉} is null, we can write

I (t, ε) = 1

ε

∑

i∈N

∫ βi∧t

αi∧t
ds 1{τD(Ws )<Hs<τD(Ws )+ε},

which yields that E
†
μ,w
[

sups�t |I (s, ε)− I (s, δ)|] is bounded by above by:

E
†
μ,w

[
∑

i∈N
sup
s�t

∣

∣

1

ε

∫ βi∧s

αi∧s
du 1{τD (Wu )<Hu<τD (Wu )+ε} −

1

δ

∫ βi∧s

αi∧s
du 1{τD (Wu )<Hu<τD (Wu )+δ}

∣

∣

]

� E
†
μ,w

[
∑

i∈N
sup

s�σ(W i )

∣

∣

1

ε

∫ s∧t

0
du 1{τD (W i

u )<H(ρi
u )<τD (W i

u )+ε} −
1

δ

∫ s∧t

0
du 1{τD (W i

u )<H(ρi
u )<τD (W i

u )+δ}
∣

∣

]

.

Since μ({τD(w)}) = 0, the last display is given by

∫

[0,τD(w))
μ(dh)Nw(h)

(

sup
s�t

|I (s, ε)− I (s, δ)|
)

. (3.9)

Let us now show that (3.9) converges towards 0 when ε, δ ↓ 0. Since for every
h ∈ [0, τD(w)) we have w(h) ∈ D, the term inside the integral in (3.9) converges
towards 0 as ε, δ ↓ 0 by the approximation of exit local times under the excursion
measure given in (3.3). Knowing that μ is a finite measure, it suffices to show that the
term,

Nw(h)

(

sup
s�t

|I (s, ε)− I (s, δ)|
)

,

can be bounded uniformly in ε, δ. However, still under Nw(h), we have the simple
upper bound:

sup
s�t

|I (s, ε)− I (s, δ)| � I (σ, ε)+ I (σ, δ),
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and by the many-to-one formula (2.25), we deduce that

Nw(h)
(

I (σ, ε)
) = ε−1E0 ⊗�w(h)

[

∫ ∞

0
da exp(−αa)1{τD(ξ)<H(Ja)<τD(ξ)+ε}

]

� 1,

for every ε > 0, where to obtain the previous inequality we use that H(Ja) = a
(this follows from the fact that J has a dense set of jump times). In particular, we have
Nw(h)

(

I (σ, ε)+I (σ, δ)
)

� 2 and (3.8) follows. Still under our assumption τD(w) � ζw

we now turn our attention to (3.7). We know that for any (hi ,W i , ρi ) ∈ M we have
the limit in probability:

L D
σi
(ρi ,W i ) = lim

ε→0
ε−1

∫ bi

ai

ds1{τD(Ws )<Hs<τD(Ws )+ε}.

It then follows from our definitions that for every r > 0,

L D
σ − L D

Tζw−r
=

∑

hi �ζw−r

L D
σi
(ρi ,W i ),

observing that the number of non-zero terms on the right-hand side is finite. By taking
the limit as r ↓ 0, we deduce (3.7) by monotonicity.

Let us now assume that τD(w) < ζw. To simplify notation, set a := τD(w) and
notice that

(ρTa ,WTa ) =
(

μ1[0,τD(w)], (w(h) : h ∈ [0, τD(w)])
)

,

where we recall that μ({τD(w)}) = 0. By our previous discussion and the strong
Markov property, we deduce that (I (t, ε) − I (Ta, ε) : t � Ta) converges as ε ↓ 0
uniformlyon compact intervals in L1(Pμ,w) towards a continuous process. To conclude
our proof, it suffices to show that:

lim
ε→0

1

ε
E
†
μ,w

[

∫ Ta

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε}

]

= 0.

To obtain the previous display, write

∫ Ta

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε} =

∑

hi �a

∫ βi

αi

ds 1{τD(Ws )<Hs<τD(Ws )+ε},

where we have hi �= a for every i ∈ N, since μ({a}) = 0. Moreover, for every i with
hi > a notice that τD(Ws) = a. This implies:

∫ Ta

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε} �

∑

a�hi �a+ε

∫ σ(W i )

0
ds 1{0<H(ρi

s )<ε},
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and we can now use that M is a Poisson point measure with intensity given by
μ(dh)Nw(h)(dρ, dW ) to obtain:

E
†
μ,w

[

∫ Ta

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε}

]

� μ([a, a + ε])N (
∫ σ

0
ds1{0�H(ρs )<ε}).

(3.10)

Finally, by (2.26), the previous display is bounded above by ε ·μ([a, a + ε]), giving:

lim sup
ε→0

1

ε
E
†
μ,w

[

∫ Ta

0
ds 1{τD(Ws )<Hs<τD(Ws )+ε}

]

� μ({a}) = 0,

where in the last equality we used that μ({a}) = 0 by assumption. ��
Now that we have defined the exit local time under more general initial condi-

tions, let us turn our attention to the measurabliliy properties of ˜L D . From now on,
when working under P0,x or Nx , the sigma field FD should be completed with the
P0,x -negligible and Nx -negligible sets respectively – for simplicity we use the same
notation.

Proposition 3.4 Under P0,x and Nx , the process ˜L D is FD-measurable.

In particular, the proposition implies that, under Nx , the total mass L D
σ = ˜L D∞ is

FD-measurable. The proof will mainly rely on the two following technical lemmas.

Lemma 3.5 Consider an open subset D ⊂ E containing x. Fix an arbitrary element
(μ,w) ∈ � with w(0) = x and satisfying μ({τD(w)}) = 0 if τD(w) <∞. Then, for
every K > 0, we have:

E
†
μ,w

[

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
]

=
∫ μ([0,τD(w)))

0
du E0 ⊗�w(H(κ〈μ,1〉−uμ))

(

1{τD<∞} exp(−ατD)1{〈JτD ,1〉�K−u}
)

.

Proof Recall that, under P
†
μ,w, the process 〈ρ, 1〉 is a Lévy process started at 〈μ, 1〉

and stopped at its first hitting time of 0. As usual, write {(αi , βi ) : i ∈ N} for the
excursion intervals of 〈ρ, 1〉 − 〈μ, 1〉 over its running infimum, that we still denote
by I . We write (ρi ,W i ) for the subtrajectory associated with [αi , βi ]. As explained
in (2.19), the measure:

∑

i∈N

δ(−Iαi ,ρ
i ,W i ),

is a Poisson point measure with intensity 1[0,〈μ,1〉](u)du Nw(H(κuμ))(dρ, dW ). Fur-
thermore, for every i ∈ N, we have H(κ−Iαi

μ) = Hαi = Hβi and to simplify notation
we denote this quantity by hi . Next, we notice that, by Proposition 3.3, we have
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∫ σ

0 dL D
s 1{〈ρs ,1〉−〈μ,1〉=Is } = 0 and L D

t = 0, for every t � inf{s � 0 : Hs < τD(w)}.
From our previous observations, we get:

∫ σ

0
dL D

s 1{〈ρs ,1〉�K } =
∑

hi<τD(w)

∫ βi

αi

dL D
s 1{〈ρs ,1〉�K }

=
∑

H(κ−Iαi
μ)<τD(w)

∫ βi−αi

0
dL D

s (ρ
i ,W i )1{〈ρi

s ,1〉�K−〈μ,1〉−Iαi },

where we used in the second identity that 〈ρs+αi , 1〉 = 〈ρi
s, 1〉 + 〈ραi , 1〉 = 〈ρi

s, 1〉 +
Iαi + 〈μ, 1〉, for every s ∈ [0, βi − αi ]. This implies that:

E
†
μ,w

[
∑

H(κ−Iαi
μ)<τD(w)

∫ βi−αi

0
dL D

s (ρ
i ,W i )1{〈ρi

s ,1〉�K−〈μ,1〉−Iαi }
]

=
∫ 〈μ,1〉

μ([τD(w),∞))
du Nw(H(κuμ))

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K−〈μ,1〉+u}
)

,

and the desired result now follows by performing the change of variable u �−→〈μ, 1〉−
u and applying the many-to-one formula (3.4). ��

Lemma 3.6 Consider an increasing sequence of open subsets (Dn : n � 1) containing
x, such that ∪n Dn = D and Dn ⊂ D. There exists a subsequence (nk : k � 0)
converging towards infinity, such that

lim
k→∞ sup

s∈[0,σ ]
|L Dnk

s − L D
s | = 0, Nx -a.e. (3.11)

Proof The proof of this lemma will be achieved by using similar techniques as in
[21, Proposition 2.3] in the Brownian setting. We start by showing that, for a suitable
subsequence, the total mass L Dn

σ converges towards L D
σ , Nx -a.e. The uniform conver-

gence will then be deduced by standard techniques. Notice however that in [21], this
is mainly done by establishing an L2(Nx ) convergence of L Dn

σ towards L D
σ , and that

we do not have a priori moments of order 2 in our setting. In order to overcome this
difficulty, we need to localize the tree by the use of a truncation argument. We start
by showing that, for any fixed K > 0, we have:

lim
n→∞

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K } =
∫ σ

0
dL D

s 1{〈ρs ,1〉�K }, in L2(Nx ). (3.12)
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In this direction, we write Nx

(

∣

∣

∫ σ

0 dL D
s 1{〈ρs ,1〉�K } −

∫ σ

0 dL Dn
s 1{〈ρs ,1〉�K }

∣

∣

2
)

in the

following form

Nx

(

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)2
)

+ Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
)2
)

− 2Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
) · (

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)

)

, (3.13)

and the proof of (3.12) will follow by computing each term separately and by taking
the limit as n ↑ ∞. First, we remark that

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)2 = 2

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
∫ σ

s
dL D

u 1{〈ρu ,1〉�K },

and the idea now is to apply the Markov property. For convenience, we let �D be
the subset of � of all the pairs (μ,w) satisfying the condition μ({τD(w)}) = 0 when
τD(w) <∞, and we define�Dn similarly replacing D by Dn . Notice that by Lemma
3.1, we have,Nx–a.e., (ρt ,Wt ) ∈ �D∩(∩n�1�Dn ) for every t � 0. For (μ,w) ∈ �D ,
we set

φD(μ,w) := E
†
μ,w

[

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
]

=
∫ μ([0,τD(w)))

0
du E0 ⊗�w(H(κ〈μ,1〉−uμ))

(

1{τD<∞} exp(−ατD)1{〈JτD ,1〉�K−u}
)

,

(3.14)

where in the second equality we used Lemma 3.5. Note that the dependence of φD on
K is being omitted to simplify the notation. By our previous discussion, the Markov
property followed by an application of (3.4) gives:

Nx

(

(∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)2
)

= 2Nx

(∫ σ

0
dL D

s 1{〈ρs ,1〉�K }φD(ρs ,Ws )

)

= 2E0 ⊗�x

(

1{τD<∞} exp(−ατD)1{〈JτD ,1〉�K }φD(JτD , ξ
τD )
)

,

(3.15)

where to simplify notation, we write ξτD := (ξt : 0 � t � τD). Observe
that (JτD , ξ

τD ) ∈ �D since by independence, it holds that
1{τD<∞} JτD ({τD}) = 0, P0 ⊗ �x–a.s. Replacing D by Dn , we also have
(JτDn

, ξ τDn ) ∈ �Dn and we obtain

Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
)2
)

= 2E0 ⊗�x

(

1{τDn<∞} exp(−ατDn )1{〈JτDn
,1〉�K }φDn (JτDn

, ξ τDn )
)

, (3.16)
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where for (μ,w) ∈ �Dn , we write

φDn (μ,w)=
∫ μ

([0,τDn (w))
)

0
du E0 ⊗�w(H(κ〈μ,1〉−uμ))

(

1{τDn<∞} exp(−ατDn )1{〈JτDn
,1〉�K−u}

)

.

(3.17)

Our goal now is to take the limit in (3.16) as n ↑ ∞ and to show that this limit is
precisely (3.15). In this direction, we remark that by definition ofφDn (μ,w)we always
have the bound φDn (μ,w) � μ

([0, τDn (w))
)

, and therefore on {〈JτDn
, 1〉 � K }, we

have φDn (JτDn
, ξ τDn ) � K . Thanks to the dominated convergence theorem, it is then

enough to show that, P0 ⊗�x -a.s., the following convergence holds:

lim
n→∞1{τDn<∞} exp(−ατDn )1{〈JτDn

,1〉�K }φDn (JτDn
, ξ τDn )

= 1{τD<∞} exp(−ατD)1{〈JτD ,1〉�K }φD(JτD , ξ
τD ).

In order to prove it, we start noticing that we always have τDn ↑ τD as n → ∞. In
particular, since 〈J∞, 1〉 = ∞, we see that the limit in the previous display is 0 on
the event {τD = ∞}. Let us focus now on the event {τD <∞}. First remark that for
every u � 〈JτDn , 1〉 we have

κ〈JτDn
,1〉−u JτDn

= κ〈JτD ,1〉−u JτD

and recall the definition of φD(μ,w) and φDn (μ,w) given in (3.14) and (3.17) respec-
tively. This combined with the independence between J and ξ ensures that, under
{τD < ∞}, the quantities 〈JτDn , 1〉 and φDn (JτDn

, ξ τDn ) converge respectively to
〈JτD, 1〉 and φD(JτD , ξ

τD ), giving the desired convergence under {τD <∞}. Conse-
quently, we get:

lim
n→∞Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
)2
)

= Nx

(

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)2
)

.

Turning our attention to the cross-term, we can apply similar steps and the Markov
property as before to obtain

Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
) · (

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)

)

= Nx

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
∫ σ

s
dL D

u 1{〈ρu ,1〉�K }
)

+ Nx

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
∫ σ

s
dL Dn

u 1{〈ρu ,1〉�K }
)

= E0 ⊗�x

(

1{τDn<∞} exp(−ατDn )1{〈JτDn
,1〉�K }φD(JτDn

, ξ τDn )
)

+ E0 ⊗�x

(

1{τD<∞} exp(−ατD)1{〈JτD ,1〉�K }φDn (JτD , ξ
τD )
)

,

123



The structure of the local time...

and using the same method as before we get:

lim
n→∞Nx

(

(

∫ σ

0
dL Dn

s 1{〈ρs ,1〉�K }
) · (

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)

)

= Nx

(

(

∫ σ

0
dL D

s 1{〈ρs ,1〉�K }
)2
)

.

Taking the limit as n ↑ ∞ in (3.13) we deduce the claimed L2(Nx ) convergence
(3.12). Now that the convergence of the truncated total mass has been established, to
derive the statement of the proposition we proceed as follows. First, we introduce the
processes

An
t :=

∫ t

0
dL Dn

s 1{〈ρs ,1〉�K } and At :=
∫ t

0
dL D

s 1{〈ρs ,1〉�K },

which are continuous additive functionals of the Markov process (ρ,W ). Then using
the Markov property, we get

Nx
(

An∞|Fs
) = An

s∧σ + φDn (ρs∧σ ,Ws∧σ ) and

Nx (A∞|Fs) = As∧σ + φD(ρs∧σ ,Ws∧σ ), (3.18)

since φDn (μ,w) = E
†
μ,w[An∞], φD(μ,w) = E

†
μ,w[A∞] and φDn (ρσ ,Wσ ) =

φD(ρσ ,Wσ ) = 0, Nx -a.e. To simplify notation, we denote respectively by Mn
s =

Nx (An∞|Fs) and Ms = Nx (A∞|Fs) for s � 0 the martingales in (3.18). Next, we
apply Doob’s inequality to derive:

Nx
(

sup
s>0

|Mn
s − Ms | > δ

)

� δ−2
Nx
(|An

σ − Aσ |2
)

. (3.19)

Indeed, even if Nx is not a finite measure, we can argue as follows: fix a > 0 and
observe that (Ma+t )t�0, (Mn

a+t )t�0 under Nx ( · |σ > a) are uniformly integrable
martingales, from which we obtain

Nx
(

sup
s�a

|Mn
s − Ms | > δ

∣

∣ σ > a
)

� δ−2
Nx
(|An

σ − Aσ |2
∣

∣ σ > a
)

,

and we deduce (3.19) by multiplying both sides by Nx (σ > a) and by taking the limit
as a ↓ 0 – using monotone convergence.

By (3.12), the right-hand side of (3.19) converges towards 0 as n ↑ ∞ and we
deduce that

lim
k→∞ sup

s>0
|Mnk

s − Ms | = 0, Nx -a.e.

for a suitable subsequence (nk : k � 1) increasing towards infinity. Since
lim

n→∞φDn (ρs,Ws) = φD(ρs,Ws), we obtain that Nx -a.e., for every t � 0,
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∫ t
0 dL

Dnk
s 1{〈ρs ,1〉�K } → ∫ t

0 dL D
s 1{〈ρs ,1〉�K } as k → ∞. By continuity, monotonic-

ity and the fact that σ <∞ Nx–a.e., we can apply Dini’s theorem to get:

lim
k→∞ sup

t>0

∣

∣

∫ t

0
dL

Dnk
s 1{〈ρs ,1〉�K } −

∫ t

0
dL D

s 1{〈ρs ,1〉�K }
∣

∣ = 0, Nx - a.e.

Consequently, we deduce that on the event {sups�0〈ρs, 1〉 � K } = {sup X � K }, the
Nx -a.e. uniform convergence (3.11) holds under a subsequence (nk), which depends
on K . Since this holds for arbitrary K , we can use a diagonal argument to find a
deterministic subsequence that we still denote by (nk : k � 1) converging towards
infinity such that

lim
k→∞ sup

t∈[0,σ ]
|L Dnk

t − L D
t | = 0, Nx - a.e.

��

We are now in position to prove that the process ˜L D is FD-measurable.

Proof of Proposition 3.4 Until further notice, we argue under P0,x . By (3.3) and mono-
tonicity, a diagonal argument gives that we can find a subsequence (εk : k � 1), with
εk ↓ 0 as k → ∞, such that:

L Dn
�D

s
= lim

k→∞
1

εk

∫ �D
s

0
dr1{τDn (Wr )<Hr<τDn (Wr )+εk },

for every n � 1 and s � 0. Our goal is now to show that:

L Dn
�D

s
= lim

k→∞
1

εk

∫ s

0
dr1{τDn (W�D

r
)<H

�D
r
<τDn (W�D

r
)+εk }, (3.20)

which will imply that (L Dn
�D

s
)s�0 is FD-measurable for every n ∈ N. In order to

establish (3.20) we argue for ω fixed and observe that for k large enough, we have:

1{τDn (Wr )<Hr<τDn (Wr )+εk } = 1{τDn (Wr )<Hr<τDn (Wr )+εk }1{Hr �τD(Wr )},
for all r ∈ [0, �D

s ].

To see it, remark that if the previous display did not hold, by a compactness argument
and continuitywewould have τDn (Wr0) = τD(Wr0) � Hr for some r0 in [0, �D

s ]. This
gives a contradiction since Dn ⊂ D and (Wr0(t))t∈[0,Hr0 ] is continuous. Recalling the
notation V D given in (3.1), we deduce that
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L Dn
�D

s
= lim

k→∞
1

εk

∫ �D
s

0
dr1{τDn (Wr )<Hr<τDn (Wr )+εk }

= lim
k→∞

1

εk

∫ �D
s

0
dV D

r 1{τDn (Wr )<Hr<τDn (Wr )+εk }

= lim
k→∞

1

εk

∫ s

0
dr1{τDn (W�D

r
)<H

�D
r
<τDn (W�D

r
)+εk },

giving us (3.20). The same arguments can be applied under Nx and, to complete the
proof of the proposition, it suffices to show that for every t � 0

lim
n→∞ sup

s∈[0,t]
|L Dn
�D

s
− L D

�D
s
| = 0, under P0,x and Nx , (3.21)

at least along a suitable subsequence. However, note that when working under Nx ,
this convergence follows by Lemma 3.6. Now, the result under P0,x is a standard
consequence of excursion theory. More precisely, recall that −I is the local time
of (ρ,W ) at (0, x) and, for fixed r > 0, set Tr := inf{t � 0 : − It > r}.
If we let TD := inf{t � 0 : τD(Wt ) < ∞}, by continuity there exists a finite
number of excursions (ρi ,W i ) of (ρ,W ) in [0, Tr ] satisfying TD(W i ) <∞, and their
distribution is Nx,0( · |TD <∞). Since Tr ↑ ∞, the approximation (3.21) under Px,0
now follows from the result under Nx,0. This completes the proof of Proposition 3.4.

��

3.2 Proof of special Markov property

Now that we have already studied the trajectories staying in D, we turn our attention to
the complementary side of the picture and we start by introducing formally the notion
of excursions from D.

Excursions from D. Observe that (2.25) and assumption (H1) imply that

Nx

(

∫ σ

0
ds 1{τD(Ws )<ζs } > 0

)

> 0.

Hence, the set
{

s ∈ [0, σ ] : τD(Ws) < ζs
}

is non-empty with non null measure under
Nx and P0,x . If we define

γ D
s := (ζs − τD(Ws)

)

+, s � 0,

it is straightforward to show by the snake property and the continuity of ζ that γ D is
continuous. Set

σ D
t := inf

{

s � 0 :
∫ s

0
dr1{γ D

r >0} > t
}

,
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and consider the process (ρD
t )t�0 taking values inM f (R+) defined, for any bounded

measurable function f : R+ → R+, by the relation:

〈ρD
t , f 〉 :=

∫

ρσ D
t
(dh) f

(

h − τD(Wσ D
t
)
)

1{h>τD(WσD
t
)}. (3.22)

Then, by Proposition 4.3.1 in [11], ρD and ρ have the same distribution under P0,x .
In particular, 〈ρD, 1〉 has the same law as the reflected Lévy process X − I and we
denote its local time at 0 by (�D(s) : s � 0). Moreover, it is shown in [11, Section
4.3] that the process L D is related to the local time �D by the identity:

L D
t = �D

(∫ t

0
ds 1{γ D

s >0}
)

. (3.23)

The proof of Proposition 4.3.1 in [11] shows that ρD can be obtained as limit of
functions which are independent of FD , implying that ρD is on its turn independent
of FD . Now, denote the connected components of the open set

{

t � 0 : τD(Wt ) < ζt
} = {t � 0 : γ D

t > 0
}

,

by
(

(ai , bi ) : i ∈ I
)

, where I is an indexing set that might be empty. By construction,
for any s ∈ (ai , bi ), the trajectory Ws is a trajectory leaving D. Remark that Hai =
Hbi < Hr for every r ∈ (ai , bi ) and let (ρi ,W i ) be the subtrajectory of (ρ,W )
associated with [ai , bi ] as defined in Sect. 2.3. Observe that in our setting, (ρi ,W i ) is
defined for each s � 0 and for any measurable function f : R+ �→ R+ as

〈ρi
s, f 〉 =

∫

ρ(ai+s)∧bi (dh) f (h − τD(Wai ))1{h>τD(Wai )}

and

W i
s = W(ai+s)∧bi (t + τD(Wai )) for t ∈ [0, ζ(ai+s)∧bi − τD(Wai )],

with respective lifetime process given by

ζ i
s = ζ(ai+s)∧bi − τD(Wai ),

where τD(Ws) = τD(Wai ) = ζai . We say that (ρi ,W i ) is an excursion of (ρ,W )
from D. Observe that W i

s (0) = W i
ai
(0) for all s ∈ [ai , bi ] by the snake property and

that we have W i
ai
(0) ∈ ∂D. This is the point of ∂D used by the subtrajectory W i to

escape from D.
In order to state the special Markov property we need to introduce one last notation.

Let θ be the right inverse of ˜L D , viz. the FD-measurable function defined as

θr := inf
{

s � 0 : L D
�D

s
> r
}

, for all r ∈ [0, L D
σ ).
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Recall that we are considering some fixed x ∈ D, the notation ((ρi ,W i ) : i ∈ I)
for the excursions outside D, and that we are working under the hypothesis (H1). We
are now going to state and prove the special Markov property under P0,x , and we will
deduce by standard arguments a version under the excursion measure Nx . Under P0,x
we use the same notation as under Nx , but observing that σH = ∞ and noticing that
P0,x -a.s., we have YD = ∫∞0 ds1{Hs�τD(Ws )} = ∞ and L D∞ = ∞. In particular, this
implies that �D

s and θs are finite for every s <∞.

Theorem 3.7 (Special Markov property) Under P0,x , conditionally on FD, the point
measure

∑

i∈I
δ(L D

ai
,ρi ,W i )(d�, dρ, dω)

is a Poisson point process with intensity

1[0,∞)(�) d� NtrD(̂W )θ�
(dρ, dω).

Recall that we have established in Proposition 3.4 that ˜L D is FD-measurable. It
might also be worth observing that if F = F(ρ, ω) is a measurable function, when
integrating with respect to the intensity measure 1[0,∞)(�) d� NtrD(̂W )θ�

(dρ, dω) we
can re-write the expression in the following more tractable form:

∫ ∞

0
d�N

trD (̂W )θ�
(F) =

∫ ∞

0
d˜L D

s NtrD(̂W )s (F) =
∫ ∞

0
dL D

s N
̂Ws
(F)

where in the last equality, we applied a change of variable for Lebesgue-Stieltjes
integrals using the fact that L D is constant on the excursion intervals [�D

s−, �D
s ] when

�D
s− < �D

s . Let us now prove Theorem 3.7.

Proof In this proof,weworkwith (ρ,W )underP0,x . Let us startwith somepreliminary
constructions and remarks. First, we introduce the Sx -valued process (ρ,W ∗) defined
at each t � 0 as

(

ρt ,W ∗
t (s)

) =
(

ρt (dh),Wt
(

s ∧ τD(Wt )
)

)

, for s ∈ [0, ζWt ],

and let FD∗ be its generated sigma-field on D(R+,M f (R+) × WE,x ). The snake
(ρ,W ∗) can be interpreted as the Lévy snake associated with (ψ, ξ∗), where ξ∗ is the
stopped Markov process (ξ∗t : t � 0) = (ξt∧τD(ξ) : t � 0). Since, for every t � 0,

(

ζWt − τD(Wt )
)

+ = (ζW ∗
t
− τD(W

∗
t )
)

+,

we derive that the process γ D
t = (ζWt −τD(Wt ))+ isFD∗ −measurable. Consequently,

we have FD ⊂ FD∗ since V D – the functional measuring the time spent in D defined

123



A. Riera, A. Rosales-Ortiz

in (3.1) – is FD∗ -measurable and by definition trD(ρ,W ) = trD(ρ,W ∗). Recalling
that

(

(ai , bi ) : i ∈ I
)

stands for the connected components of the open set

{t � 0 : τD(Wt ) < ζWt } = {t � 0 : γ D
t > 0},

wededuce by the previous discussion and the identity τD(Wai ) = ζai , that the variables

̂Wai = ̂W ∗
ai
, ζ i = ζ(ai+· )∧bi − ζai and a fortiori ρi are FD∗ − measurable.

Informally, FD∗ encodes the information of the trajectories staying in D and the tree
structure. We claim that conditionally on FD∗ , the excursions (W i : i ∈ I) are inde-
pendent, and that the conditional distribution of W i is Q

ζ i

̂W ∗
ai

, where we recall from

Sect. 2.3 that we denote the distribution of the snake driven by h started at x by Q
h
x .

In order to prove this claim, consider a collection of snake trajectories
(

W i,′ : i ∈ I
)

such that, conditionally on (ρ,W ∗), they are independent and each one is respectively
distributed according to the measure Q

ζ i

̂W ∗
ai

. Next let W ′ be the process defined as

follows: for every t such that γ D
t = 0 set W ′

t = W ∗
t , and if γ D

t > 0 we set:

W ′
t (s) =

{

W ∗
t (s) if s ∈ [0, τD(W ∗

t )]
W i,′

t−ai

(

s − τD(W ∗
t )
)

if s ∈ [τD(W ∗
t ), ζ(W

∗
t )],

where i is the unique index such that t ∈ (ai , bi ). By construction, (ρ,W ′) is in
D(R+,M f (R+) ×WE,x ) and a straightforward computation of its finite marginals
shows that its distribution is P0,x , proving our claim.

Notice that (3.3) implies that L D is constant on the intervals [�D
s−, �D

s ] when
�D

s− < �D
s . Hence, L D

s = ˜L D
V D

s
for all s � 0 and in particular L D

ai
= ˜L D

V D
ai
, the latter

being FD∗ -measurable. Consider now U a bounded FD-measurable random variable,
and remark that to obtain the desired result, it is enough to show that:

E0,x

[

U exp(−
∑

i∈I
F
(

L D
ai
, ρi ,W i )

)

]

= E0,x

[

U exp
(

−
∫ ∞

0
d� N

trD (̂W )θ�

(

1− exp(−F(�, ρ,W )
)

)]

,

for every non-negative measurable function F in R+ × D(R+,M f (R+)×WE ). In
order to prove this identity, we start by projecting the left term onFD∗ : by the previous
discussion and recalling that FD ⊂ FD∗ , we get

E0,x

[

U exp(−
∑

i∈I
F
(

L D
ai
, ρi ,W i )

)

]

= E0,x

[

U
∏

i∈I
Q
ζ i

̂W ∗
ai

(

exp(−F(L D
ai
, ρi ,W )

)

]

.
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Moreover, it is straightforward to see that

̂W ∗
ai
= ̂Wai = trD (̂W )θ

L D
ai

,

we omit the details of this identity since the argument used in (23) of [24, Theorem 20]
for the Brownian snake applies directly to our framework. Consequently, we have:

E0,x

[

U
∏

i∈I
Q
ζ i

̂W ∗
ai

(

exp(−F(L D
ai
, ρi ,W )

)

]

= E0,x

[

U
∏

i∈I
Q
ζ i

trD (̂W )θ
L D

ai

(

exp(−F(L D
ai
, ρi ,W )

)

]

.

Now, we need to take the projection on FD . Recalling that H(ρi ) = ζ i , observe that
for every i ∈ I,

Q
ζ i

trD (̂W )θ
L D

ai

(

exp(−F(L D
ai
, ρi ,W )

)

is a measurable function of the pair (L D
ai
, ρi ) and the process (trD(W )θr : r � 0),

the latter being FD-measurable. We are going to conclude by showing that the point
measure

∑

i∈I
δ(L D

ai
,ρi )

is a Poisson point measure with intensity 1[0,∞)(�)d� N (dρ) independent of FD .
Remark that once this has been established, an application of the exponential formula
for functionals of Poisson random measures yields

E0,x

[

U
∏

i∈N

Q
ζ i

trD (̂W )θ
L D

ai

(

exp(−F(L D
ai
, ρi ,W )

)

]

= E0,x

[

U exp
(

−
∫ ∞

0
d� N

trD (̂W )θ�

(

1− exp(−F(�, ρ,W )
)

)]

,

giving the desired result. In this direction, recall the definition of ρD given in (3.22),
and that �D stands for the local time of ρD at 0. We denote the connected components
of the open set {t � 0 : 〈ρD

t , 1〉 �= 0} = {t � 0 : H(ρD
t ) > 0} by ((c j , d j ) : j ∈ N

)

–
the latter equality holding since ρD

t ({0}) = 0 – and observe that these are precisely the
excursion intervals of 〈ρD, 1〉 from 0. It follows by (2.10) and the discussion before
the proof that

∑

j∈N

δ(�D(c j ), ρ
D
(c j+·)∧d j

)
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is a Poisson point measure with intensity 1[0,∞)(�)d� N (dρ) and observe that this
measure is independent of FD – since ρD is independent of FD . Furthermore, by
(3.23) we have:

L D
σ D

s
= �D

(

∫ σ D
s

0
dr 1{γ D

r >0}
)

= �D(s),

for every s � 0. It is now straightforward to deduce from our last observations that:

{

(L D
ai
, ρi ) : i ∈ I

} = {(�D(c j ), ρ
D
(c j+·)∧d j

) : j ∈ N
}

,

concluding the proof. ��
Setting TD = inf{t � 0 : τD(Wt ) < ∞}, we infer from our previous result a

version of the special Markov property holding under the probability measure

N
D
x := Nx ( · |TD <∞).

Observe that Nx (TD < ∞) is finite: if this quantity was infinite, by excursion the-
ory, the process (ρ,W ) under P0,x would have infinitely many excursions exiting
D on compact intervals, contradicting the continuity of its paths. Finally, note that
(ρ,W ) under N

D
x has the distribution of the first excursion exiting the domain D. As

a straightforward consequence of Theorem 3.7, this observation allows us to deduce:

Theorem 3.8 Under N
D
x and conditionally on FD, the point measure:

∑

i∈I
δ(L D

ai
,ρi ,W i )(d�, dρ, dω)

is a Poisson point process with intensity

1[0,L D
σ ](�) d� NtrD(̂W )θ�

(dρ, dω).

Recall that the measure dL D
s is supported on {s � 0 : ̂Ws ∈ ∂D} and consider a

measurable function g : ∂D → R+. Under Nx , we define the exit measure from D,
denoted by ZD as:

〈ZD, g〉 :=
∫ σ

0
dL D

s g(̂Ws).

The total mass of ZD is L D
σ and, in particular, ZD is non-null only in {TD < ∞}.

Again by a standard change of variable, we get

〈ZD, g〉 =
∫ σ

0
d˜L D

s g(trD(̂Ws)) =
∫ L D

σ

0
d� g(trD ̂Wθ�), Nx -a.e.
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and this implies that ZD is FD-measurable since L D
σ ∈ FD by Proposition 3.4. In

this work, we shall frequently make use of the following simpler version of the special
Markov property. By Theorem 3.8, we have

Corollary 3.9 Under N
D
x and conditionally on FD, the point measure

∑

i∈I
δ(ρi ,W i )(dρ, dω) (3.24)

is a Poisson random measure with intensity
∫

ZD(dy)Ny(dρ, dω).

Let us close this section by recalling some well-known properties of ZD that will
be needed, and by introducing some useful notations. Remark by (3.4) that, for any
measurable g : ∂D �→ R+ and for every y ∈ D, we have

Ny
(〈ZD, g〉) = �y

(

1{τD<∞} exp(−ατD)g(ξτD )
)

,

and for such g, we set:

u D
g (y) := Ny

(

1− exp(−〈ZD, g〉)), for all y ∈ D. (3.25)

Theorem 4.3.3 in [11] states that for every g : ∂D → R+ bounded measurable
function, u D

g solves the integral equation:

u D
g (y)+�y

(

∫ τD

0
dt ψ(u D

g (ξt ))
)

= �y
(

1{τD<∞}g(ξτD )
)

. (3.26)

By convention, we set u D
g (y) := g(y) for every y ∈ ∂D, and we stress that this

convention is compatible with (3.26).

4 Construction of a measure supported on {t ∈ R+ : ̂Wt = x}
From now on, we fix x ∈ E and we consider the random set:

{t ∈ R+ : ̂Wt = x}, as well as its image on the tree TH , viz. {υ ∈ TH : ξυ = x}.
(4.1)

In order to study the latter, we shall construct an additive functional A := (At )t∈R+
of the Lévy snake supported on {t ∈ R+ : ̂Wt = x}. The present section is devoted
to the construction of A and to develop the machinery needed for our analysis. The
study of {υ ∈ TH : ξυ = x} is delayed to Sect. 5 and will heavily rely on the results
of this section. Let us discuss now in detail the framework we will consider in the rest
of this work.
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Framework of Section 4 and 5: With the same notations as in previous sections,
consider a strong Markov process ξ taking values in E with a.s. continuous sample
paths and we make the following assumptions:

x is regular, instantaneous and recurrent for ξ, (H2)

and

∫ ∞

0
dt 1{ξt=x} = 0, �x − a.s. (H3)

Under (H2) the local time of ξ at x is well defined up to a multiplicative constant (that
we fix arbitrarily) and we denote it by L. If we denote by dL the Stieltjes measure of
L, the support of the measure dL is almost surely {t � 0 : ξt = x}, see e.g. [4, Chapter
4]. The recurrence hypothesis is assumed for convenience and we expect our results
to hold with minor modifications without it. Set E∗ := E\{x} and for w ∈ WE , with
the notation of Sect. 3 write

τE∗(w) = inf{h ∈ [0, ζw] : w(h) = x},

for the exit time of w from the open set E∗. Observe that since x is recurrent for ξ , we
have

�y(τE∗ <∞) = 1 (4.2)

for every y ∈ E∗, and in particular (H1) holds. This will allow us to make use of the
special Markov property established in the previous section. Assumption (H3) might
seem a technicality but it plays a crucial role in our study: it will ensure, under Ny and
P0,y , that the set of branching points of TH and {υ ∈ TH\{0} : ξυ = x} are disjoint.
We will explain properly this point after concluding the presentation of the section.

LetN be the excursion measure of ξ at x associated withL and, with a slight abuse
of notation, still write σξ for the lifetime of ξ under N . The pair

ξ s = (ξs,Ls), s � 0,

is a strong Markov process taking values in the Polish space E := E × R+ equipped
with the product metric dE . We set �y,r for its law started from an arbitrary point
(y, r) ∈ E . Recall that we always work under the assumptions (H0), which for (ψ, ξ)
takes the following form:

Hypothesis (H′
0). There exists a constant C� > 0 and two positive numbers

p, q > 0 such that, for every y ∈ E and t � 0, we have:

�y,0

(

sup
0�u�t

dE

(

(ξu,Lu), (y, 0)
)p
)

� C� · tq , and q · (1− ϒ−1) > 1, (H′
0)
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where we recall the definition of ϒ from (2.17). We will use respectively the notation
�, S for the sets defined as �, S in Sect. 2.3 but replacing the Polish space E by
E . It will be convenient to write the elements of WE as pairs w = (w, �), where
w ∈ WE and � : [0, ζw] �→ R+ is a continuous function. Recall that under (H′

0),
the family of measures (Pμ,w : (μ,w) ∈ �) are defined on the canonical space
D(R+,M f (R+) ×WE ) and we denote the canonical process by (ρ,W ,�), where
Ws : [0, ζs(W s)] �→ E and �s : [0, ζs(W s)] �→ R+. Said otherwise, for each
(μ,w) ∈ �, under Pμ,w the process

(ρs,Ws,�s), s � 0,

is the ψ-Lévy snake with spatial motion ξ started from (μ,w) and we simply write
W s := (Ws,�s). For every (y, r0) ∈ E , we denote the excursion measure of (ρ,W )
starting from (0, y, r0) by Ny,r0 .

Recall that under P0,y,r0 or Ny,r0 , for each s � 0 and conditionally on ζs , the pair

(Ws,�s) =
(

(Ws(h),�s(h)
) : h ∈ [0, ζs]

)

has the distribution of (ξ,L) under �y,r0 killed at ζs . In particular, the associated
Lebesgue-Stieltjesmeasure of�s is supported on the closure of {h ∈ [0, ζs) : Ws(h) =
x}, P0,y,r0 and Ny,r0–a.e. We will restrict our analysis to the collection of initial
conditions (μ,w) := (μ,w, �) ∈ � satisfying that:

(i) � is a non-decreasing continuous function and the support of its Lebesgue-Stieltjes
measure is

{

h ∈ [0, ζw) : w(h) = x
}

.

(ii) The measure μ does not charge the set {h ∈ [0, ζw] : w(h) = x}, viz.
∫

[0,ζw]
μ(dh)1{w(h)=x} = 0.

This subcollection of � is denoted by �x and we will work with the process
(

(ρ,W ), (Pμ,w : (μ,w) ∈ �x )
)

. Conditions (i) and (ii) are natural, since as a partic-
ular consequence of the next lemma, under P0,y,r0 and Ny,r0 the Lévy snake (ρ,W )
takes values in �x .

Lemma 4.1 For every (μ,w) ∈ �x and (y, r0) ∈ E, the process (ρ,W ) under Pμ,w
and Ny,r0 takes values in �x .
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Proof First, we argue that Ny,r0–a.e. the pair (ρt ,W t ) satisfies (i) and (ii) for each
t ∈ [0, σ ]. On the one hand, by formula (2.25), for every (y, r0) ∈ E we have:

Ny,r0

(∫ σH

0
dt 〈ρt , {h ∈ [0, Ht ] : Wt (h) = x}〉

)

=
∫ ∞

0
da exp(−αa) E0 ⊗�y,r0

[

∫ a

0
Ja(dh)1{ξh=x}

] = 0.

In the last equality we used that, by (H3) and the independence between ξ and J∞,
Campbell’s formula yields E0⊗�y,r0

[ ∫∞
0 J∞(dh)1{ξh=x}

] = 0. On the other hand,
by construction of the Lévy snake, for each fixed t � 0 the support of �t (dh) is the
closure of {h ∈ [0, Ht ) : Wt (h) = x} in [0, Ht ], Ny,r0–a.e. Consequently, Ny,r0–a.e. ,
we can find a countable dense set D ⊂ [0, σ ] such that we have

〈ρt , {h ∈ [0, Ht ] : Wt (h) = x}〉 = 0 and

supp �t (dh) is the closure of {h ∈ [0, Ht ) : Wt (h) = x},

for every t ∈ D. For instance, one can construct the setD by taking an infinite sequence
of independent uniform points in [0, σ ]. We now claim that ρ satisfies that Ny,r0–a.e.,
for every s < t , we have ρs1[0,m H (s,t)) = ρt1[0,m H (s,t)), where we recall the notation
m H (s, t) = min[s,t] H . Indeed, remark that for fixed s < t , this holds by the Markov
property and we can extend this property to all 0 � s < t � σ since ρ is càdlàg
with respect to the total variation distance. Now, by the snake property we deduce that
Ny,r0–a.e, for every t ∈ [0, σ ], we have

〈ρt , {h ∈ [0, Ht ) : Wt (h) = x}〉 = 0 and

{h ∈ [0, Ht ) : Wt (h) = x} = supp �t (dh) ∩ [0, Ht ). (4.3)

Taking the closure in the second equality we deduce that the closure of {h ∈ [0, Ht ) :
Wt (h) = x} is exactly supp �t (dh). However, to conclude that Ny,r0 -a.e.

〈ρt , {h ∈ [0, Ht ] : Wt (h) = x}〉 = 0, for all t ∈ [0, σ ], (4.4)

we still need an additional step. Arguing by contradiction, suppose that for some
t > 0 the quantity (4.4) is non-null. Then, by (4.3) we must have ρt ({Ht }) > 0 and
Wt (Ht ) = x . By right-continuity of ρ with respect to the total variation metric, we
get

lim
ε→0

|ρt ({Ht })− ρt+ε({Ht })| = 0,

andwe deduce that for ε small enough, ρu({Ht }) > 0 for all u ∈ [t, t+ε); in particular
H(ρu) � H(ρt ) for all u ∈ [t, t + ε). Since Wt (Ht ) = x , the snake property ensures
that Wu(Ht ) = x for all u ∈ [t, t +ε) and, since ρu({Ht }) > 0 for every u ∈ [t, t +ε),
we obtain a contradiction with the fact that 〈ρu, {h ∈ [0, Hu] : Wu(h) = x}〉 = 0 for
every u ∈ D.
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Let us now deduce this result under Pμ,w. First, observe that the statement of the
lemma follows directly under P0,y,r0 by excursion theory. Next, fix (μ,w) ∈ �x with
μ �= 0 and w(0) = (y, r0), consider (ρ,W ) under Pμ,w and set T+

0 := inf{t � 0 :
〈ρt , 1〉 = 0}. The strong Markov property gives us that ((ρT+

0 +t ,W T+
0 +t ) : t � 0) is

distributed according to P0,y,r0 and consequently, (ρT+
0 +t ,W T+

0 +t )t�0 takes values in

�x . To conclude, it remains to prove the statement of the lemma under P
†
μ,w. In this

direction, underP†
μ,w, consider

(

(αi , βi ) : i � 0
)

the excursion intervals of 〈ρ, 1〉 from
its running infimum. Then, write (ρi ,W

i
) for the subtrajectories of (ρ,W ) associated

with [αi , βi ] and set hi := Hαi . We recall from (2.23) that the measure:

∑

i∈N

δ
(hi ,ρ

i ,W
i
)
,

is a Poisson point measure with intensityμ(dh)Nw(h)(dρ, dW ). Since (μ,w) ∈ �x , it
follows by the result under the excursionmeasures (Ny,r0 : (y, r0) ∈ E) thatP†

μ,w–a.s.

the pair (ρt ,W t ) belongs to �x for every t ∈ [0, T+
0 ], as wanted. ��

Finally, recall that the snake property ensures that the function (̂Ws,̂�s)s�0 is well
defined on the quotient space TH . Hence, we can think of W as a tree-indexed process,
that we write with the usual abuse of notation as

(ξυ,Lυ)υ∈TH .

Main results of Section 4:Now that we have introduced our framework, we can state
the main results of this section. Much of our effort is devoted to the construction of a
measure supported on the set {t ∈ R+ : ̂Wt = x} and satisfying suitable properties.
In this direction, for every r � 0, we set τr (w) := inf{h � 0 : w(h) = (x, r)} and
remark that, for every (μ,w) ∈ �x , it holds that μ({τr (w)}) = 0,with the convention
μ(∞) = 0. We can now state the main result of this section:

Theorem 4.2 Fix (y, r0) ∈ E and (μ,w) ∈ �x . The convergence

At = lim
ε↓0

1

ε

∫ t

0
du
∫

R+
dr 1{τr (W u)<Hu<τr (W u)+ε}, (4.5)

holds uniformly on compact intervals in measure under Pμ,w and Ny,r0( · ∩ {σ > z})
for every z > 0. Moreover, (4.5) defines a continuous additive functional A = (At )

for the Lévy snake (ρ,W ) whose Lebesgue-Stieltjes measure dA is supported on
{t ∈ R+ : ̂Wt = x}.

We will give another equivalent construction of the additive functional A in Propo-
sition 4.10 but we are not yet in position to formulate the precise statement. Both
constructions will be needed for our work. Next, the second main result of the section
characterizes the support of the measure dA as follows:
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Theorem 4.3 Fix (y, r0) ∈ E, (μ,w) ∈ �x and denote the support of the Lebesgue-
Stieltjes measure of A by supp dA. Under Ny,r0 and Pμ,w, we have:

supp dA = {t ∈ [0, σ ] : ξpH (t) = x and pH (t) ∈ Multi2(TH ) ∪ {0}}. (4.6)

Observe that under Pμ,w with w(0) = x , the root of TH has infinite multiplicity
and this is why we had to consider it separately in the previous display. This result is
stated in a slightly different but equivalent form in Theorem 4.20. The identity (4.6)
can be also formulated in terms of constancy intervals of ̂�. More precisely, we will
also establish in Theorem 4.20 that under Ny,r0 and Pμ,w, we have:

supp dA = [0, σ ] \ {t ∈ [0, σ ] : sup
(t−ε,t+ε)

̂�s = inf
(t−ε,t+ε)

̂�s, for some ε > 0
}

.

(4.7)

We conclude the presentation of our framework with a consequence of Lemma 4.1.
Roughly speaking it states that, with the exception of the root under P0,x,0, the process
(ξυ)υ∈TH can not take the value x at the branching points of TH . The precise statement
is the following:

Proposition 4.4 For every (y, r0) ∈ E and (μ,w) ∈ �x , we have:

{

t ∈ [0, σ ] : ̂Wt = x and pH (t) ∈
(

Multi3(TH ) ∪Multi∞(TH )
) \ {0}} = ∅,

under Ny,r0 and Pμ,w.

Proof We start by proving our result under Ny,0. First, introduce the measure
N
•
y,0(dρ, dW , ds) supported on D(R+,M f (R+) × WE ) × R+ defined by N

•
y,0 =

Ny,0(dρ, dW ) ds1{s�σ } and write U : R+ �→ R+ for the identity function U (s) = s.
The law under N

•
y,0 of (ρ,W ,U ) is therefore given by

N
•
y,0

(

�(ρ,W ,U )
)

= Ny,0

(

∫ σ

0
ds�(ρ,W , s)

)

.

The measureN
•
y,0 can be seen as a pointed version ofNy,0. In particular, conditionally

on (ρ,W ), the random variable U is a uniform point in [0, σ ]. Under N
•
y,0 we still

write Xt := 〈ρt , 1〉 and Ht := H(ρt ). Furthermore, we set X•
t := XU+t − XU and

I •t := infs�t X•
s , for every t � 0, and we denote the excursion intervals over the

running infimum of X• by
(

(αi , βi ) : i ∈ N
)

. The dependence on U is dropped to
simplify notation. Finally, set

h•
i := H

(

κ−I •αi
ρU
)

,

and write (ρ•,i ,W
•,i
) for the corresponding subtrajectory associated with (αi , βi )

occurring at height h•
i . Under N

•
y,0, the Markov property applied at time U and (2.23)
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gives that, conditionally on (ρU ,WU ), the random measure

M• :=
∑

i∈N

δ
(h•i , ρ•,i ,W

•,i
)
,

is a Poisson point measure with intensity ρU (dh)NW U (h)
(dρ, dW ). In particular, the

functional

F(M•) = #
{

(h•
i , ρ

•,i ,W
•,i
) ∈ M• : W •,i (0) = x

}

,

conditionally on (ρU ,WU ), is a Poisson random variable with parameter
∫

ρU (dh)1{WU (h)=x}. However, by Lemma 4.1, we have
∫

ρU (dh)1{WU (h)=x} = 0
and we derive that, N

•
y,0 –a.e., F(M•) is null. Heuristically, the previous argument

shows that if we take – conditionally on σ – a point u uniformly at random in TH ,
there is no branching point υ with label x on the branch connecting the root to u. Let
us now show that this ensures that
{

t ∈[0, σ ] : ̂Wt = x
} ∩ {t ∈[0, σ ] : pH (t)∈Multi3(TH ) ∪Multi∞(TH )

}=∅, Ny,0-a.e.

Since N
•
y,0(�(ρ,W )) = Ny,0(σ · �(ρ,W )), it suffices to prove the previous dis-

play under N
•
y,0. Let (υi : i ∈ N) be an indexation of the branching points of

TH – an indexing measurable with respect to (H , X).9 Pick a branching point
υi ∈ Multi3(TH ) ∪ Multi∞(TH ) and let ti be the smallest element of p−1

H (υi ).
Arguing by contradiction, suppose that ̂WpH (ti ) = x . Still under N

•
y,0, since υi is

a branching point, we can find 0 � s∗ < t∗ � σ in p−1
H ({υi }) such that the

event {̂WpH (ti ) = x} ∩ {s∗ < U < t∗} is included in {F(M•) > 0}. However
F(M•) = 0, N

•
y,0–a.e. and we deduce that N

•
y,0

(

̂WpH (ti ) = x, s∗ < U < t∗
) = 0.

Next, since conditionally on (ρ,W ), the variable U is uniformly distributed on [0, σ ],
we conclude that N

•
y,0

(

̂WpH (ti ) = x
) = 0. The desired result now follows, since the

collection of branching points (υi : i ∈ N) is countable. Finally, we deduce the state-
ment under Ny,r0 by the translation invariance of the local time and under Pμ,w by
excursion theory – we omit the details since this is standard and one can apply the
method described in Lemma 4.1. ��
The section is organised as follows: In Sect. 4.1 we address several preliminary results
needed to prove Theorems 4.2 and 4.3 and our results of Sect. 5. More precisely,
Sect. 4.1 is essentially devoted to the study of a family of exit local times of (ρ,W )
that will be used as building block for our second construction of A. Then in Sect. 4.2
we shall prove Theorem 4.2 and establish our second construction of A in terms of
the family of exit times studied in Sect. 4.1. The rest of the section is dedicated to the
study of basic properties of A that we will frequently use in our computations. Finally,

9 Indeed, this can be done using the fact that pH realizes a bijection between the set of jump-times of X
and Multi∞(TH ), and between the set of times at which H attains a strict local minimum andMulti3(TH );
note that in particular this yields that the set of branching points of TH is countable. The first point was
discussed in Sect. 2.2 while the second follows from the definition of the metric dH and the quotient space
TH . We refer as well to Sect. 2.2 for details.
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in Sect. 4.3 we turn our attention to the study of the support of the measure dA and it
will lead us to the proof of Theorem 4.3 and the characterization (4.7).

4.1 Special Markov property of the local time

The first step towards constructing our additive functional A, with associated
Lebesgue-Stieltjes measure dA supported in {t ∈ R+ : ̂Wt = x}, consists in the
study of a particular family of [0,∞)-indexed exit local times of (ρ,W ). More pre-
cisely, for each r � 0, let Dr ⊂ E := E × R+ be the open domain

Dr := E \ {(x, r)} and recall the notation τr (w) := inf{h � 0 : w(h) = (x, r)},

for every w ∈ WE . Notice that τr (w) is the exit time from Dr and we write τr
instead of making use of the more cumbersome notation τDr . We also recall that since
τr (w) ∈ {h ∈ [0, ζw] : w(h) = x} as soon as τr (w) < ∞, for (μ,w) ∈ �x we
have μ({τr (w)}) = 0. Proposition 3.3 now yields that for any (μ,w) ∈ �x with
w(0) �= (x, r) we have

L Dr
t (ρ,W ) := lim

ε→0

1

ε

∫ t

0
ds 1{τr (W s )<Hs<τr (W s )+ε}, (4.8)

where the convergence holds uniformly on compact intervals in L1(Pμ,w) and
L1(Nw(0)). Let us be more precise: recalling the notation E∗ = E \ {x} as well
as w = (w, �), first remark that if �(0) < r , for any w(0) ∈ E we have
�w(0),�(0)(τr < ∞) = 1 and in consequence (H1) holds. On the other hand, if
r < �(0), we simply have L Dr = 0 since τr (W s) = ∞ for every s � 0. Finally,
if w(0) �= x and �(0) = r � 0, we have τDr (W s) = τE∗(Ws) for every s � 0,
and recalling (4.2) it follows that L Dr (ρ,W ) = L E∗(ρ,W ). It will be useful for our
purposes to extend the definition to the remaining case w(0) = (x, r), and that is
precisely the content of the following lemma:

Lemma 4.5 For r � 0, fix (μ,w) = (μ,w, �) ∈ �x with w(0) = (x, r). Then, the
limit (4.8) exists for every t � 0, where the convergence holds uniformly on compact
intervals in L1(Pμ,w) and L1(Nx,r ), and defines a continuous non-decreasing process

that we still denote by L Dr . Moreover, under P
†
μ,w and Nx,r , we have L Dr

σ = 0.

Proof We work under Pμ,w since the result under Nx,r follows directly by excursion
theory. For every a � 0 we set Ta := inf{t � 0 : Ht = a} and let T+

0 := inf{t �
0 : 〈ρt , 1〉 = 0}. Since τr (W s) = 0 for every s � 0, we have

∫ t

0
ds 1{τr (W s )<Hs<τr (W s )+ε} =

∫ t

0
ds 1{0<Hs<ε}

=
∫ T+

0 ∧t

Tε∧t
ds 1{0<Hs<ε} +

∫ t

T+
0 ∧t

ds 1{0<Hs<ε}.
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Furthermore, by the strong Markov property and (2.7), we already know that

ε−1
∫ T+

0 +t

T+
0

ds 1{0<Hs<ε} converges as ε ↓ 0 uniformly on compact intervals in

L1(Pμ,w). To conclude, it suffices to show that:

lim
ε→0

ε−1 · Eμ,w

[ ∫ T+
0

Tε
ds 1{0<Hs<ε}

]

= 0. (4.9)

Ifμ = 0 there is nothing to prove, thus from now on assume thatμ �= 0.Write (αi , βi )

for i ∈ N the excursion intervals of the killed process (〈ρt , 1〉 : t ∈ [0, T+
0 ]) over its

running infimum and let (ρi ,W
i
) be the subtrajectory associated with the excursion

interval [αi , βi ]. To simplify notation, we also set hi = H(αi ) and recall from (2.23)
that the measure M := ∑

i∈N
δ
(hi ,ρ

i ,W
i
)
is a Poisson point measure with intensity

μ(dh)Nw(h)(dρ, dW ). Next, notice that:

∫ T+
0

Tε
ds 1{0<Hs<ε} �

∑

0�hi �ε

∫ σ(W
i
)

0
ds 1{0<H(ρi

s )<ε},

and we can now use thatM is a Poisson point measure with intensityμ(dh)Nw(h)(dρ,
dW ) to get that:

Eμ,w

[ ∫ T+
0

Tε
ds 1{0<Hs<ε}

]

� μ([0, ε])N
(∫ σ

0
ds1{0<H(ρs )<ε}

)

.

Finally, by (2.26), the previous display is bounded above by ε ·μ([0, ε]), which gives:

lim sup
ε→0

ε−1 · E
†
μ,w

[

∫ T+
0

Tε
ds 1{0<Hs<ε}

]

= μ({0}).

Now (4.9) follows since we have μ({0}) = 0, which holds since w(0) = x and
(μ,w) ∈ �x . ��

Now, we give a regularity result for the double-indexed family (L Dr
s : (s, r) ∈ R

2+)
that will be needed in the next section.

Lemma 4.6 Let (μ,w) ∈ �x with w = (w, �). There exists a B(R+)⊗ B(R+)⊗ F-
measurable function (L r

t : (r , t) ∈ R
2+) satisfying the following properties:

(i) For every r � 0, the processes L Dr and L r are indistinguishables under Pμ,w.
(ii) Pμ,w almost surely, the mapping t �→ L r

t is continuous for every r � 0.

The result also holds under the measure Ny,r0 , for every (y, r0) ∈ E , by the same
type of arguments and we omit the details.
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Proof Fix an initial condition (μ,w) = (μ,w, �) ∈ �x . Since under Pμ,w,�, the
distribution of (ρ,W ,�− �(0)) is exactly Pμ,w,�−�(0), without loss of generality we
might assume that �(0) = 0. Next, by (4.8) and Lemma 4.5, for every r � 0 we have

lim
ε↓0 Eμ,w

[

sup
s�t

|L Dr
s − ε−1

∫ s

0
du1{τr (W u)<Hu<τr (W u)+ε}|

]

= 0,

and hence for any subsequence (εn) converging to 0, the sequence of processes

Yn(r , t) := ε−1
n

∫ t

0
du 1{τr (W u)<Hu<τr (W u)+εn}, t � 0,

converges uniformly on compact intervals in probability towards L Dr . Now, to simplify
notation write ω := (ρ, ω) for the elements of D(R+,M f (R+)×WE ). Remark now
that the mapping (u, r ,ω) �→ τr (W u(ω)) is jointly measurable since for each (u,ω) it
is càdlàg in r , while for each fixed r the mapping (u,ω) �→ τr (W u(ω)) is measurable.
Consequently, by Fubini, for every fixed t the application

(r ,ω) �→
∫ t

0
du 1{τr (W u)<Hu<τr (W u)+εn}(ω)

ismeasurablewhile for fixed (r ,ω) it is continuous in t , andwe deduce thatYn is jointly
measurable in (r , t,ω). It is now standard – see e.g. [34, Theorem 62] and its proof
– to deduce that there exits a jointly measurable process (r , t,ω) �→ Y (r , t,ω) such
that for every (r ,ω) ∈ R+ × D(R+,M f (R+)×WE ), the mapping t �→ Y (r , t,ω)
is continuous and for each fixed r � 0, Yn(r , ·) �→ Y (r , ·) as n ↑ ∞ uniformly on
compact intervals in probability. In particular for each r � 0, the process (Y (r , t) : t �
0) is indistinguishable from (L Dr

t : t � 0) and we shall write (L r
t : t � 0, r � 0)

instead of (Y (r , t) : t � 0, r � 0). ��
We now turn our attention to the Markovian properties of (L r

σ : r � 0) under the
excursion measure Nx,0. To simplify notation, for every y �= x , we set:

uλ(y) := Ny,0

(

1− exp(−λL 0
σ )
)

, for y ∈ E∗, (4.10)

and remark that with the notation of (3.25) we have uλ(y) = uE∗
λ (y). We shall use the

usual convention uλ(x) = λ.
Before stating our next result, we briefly recall from [22, Chapter II-1] that an R+–

valued Markov process with semigroup (Pt (y, dz) : t, y ∈ R+) is called a branching
process if its semigroup satisfies the branching property, viz. if for any y, y′ ∈ R+,
we have Pt (y, ·) ∗ Pt (y′, ·) = Pt (y + y′, ·). In order to fall in the framework of [22,
Chapter II- Theorem 1] we also assume that

∫

R+ Pt (y, dz)z � y for every t, y ∈ R+.
By the branching property it follows that for any t, y ∈ R+ the distribution Pt (y, dz)
is infinitely divisible and non-negative, and consequently, for every t, y ∈ R+, the
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Laplace transform of Pt (y, dz) takes the Lévy-Khintchine form:

∫

R+
Pt (y, dz) exp(−λz) = exp

(− yat (λ)
)

, for λ � 0,

for some function (at (λ) : t, λ � 0). By [22, Chapter II- Theorem 1], the function
(at (λ) : t, λ � 0) is the unique non-negative solution of the integral equation

at (λ)+
∫ t

0
du (au(λ)) = λ, (4.11)

for a function ( (λ) : λ � 0) of the form,

 (λ) = c1λ+ c2λ
2 +

∫

R+
ν(dy) (exp(−λy)− 1+ λy), for λ � 0,

where c1, c2 ∈ R+ and ν is a Lévy measure supported on (0,∞) satisfying
∫

(0,∞) ν(dy)(y ∧ y2) < ∞. By (4.11), it follows that at (λ) is the unique function
that satisfies

∫ λ

at (λ)

ds

 (s)
= t, t, λ � 0.

TheMarkov process with semigroup (Pt ) is then called a CSBPwith branching mech-
anism  , or in short a  -CSBP. A Lévy process with exponent  clearly fulfils (A1)
as well as (A3) by [4, Corollary 2]. So to fall in our framework, it only need to satisfy
(A4) – since as explained in the preliminaries (A4) implies (A2).

Proposition 4.7 Under Nx,0, the process (L r
σ : r > 0) is a continuous state branching

process with entrance measure νr (du) = Nx,0(L r
σ ∈ du), for r > 0, and branching

mechanism

˜ψ(λ) = N
(

∫ σ

0
dh ψ

(

uλ(ξh)
)

)

, for λ � 0, (4.12)

where we recall the definition of uλ from (4.10) and that we write N for the excursion
measure of ξ away from x. Moreover, a ˜ψ-Lévy process satisfies the assumptions
(A1)–(A4) introduced in Sect.2.1 and consequently we can associate to it a Lévy tree.

Our result is a particular case, in the terminology of Lévy snakes, of Theorem 4
in [5] stated in the setting of superprocesses. Theorem 4 in [5] is more general and
the family (L r

σ )r>0 in our result correspond precisely to the total mass process of the
superprocess considered in [5], for the same branching mechanism ˜ψ .

Proof The proof is structured as follows:we start by introducing a family of probability
kernels (Pt ) and by showing that they form a semigroup of operators associated with
a branching process. We then establish that (L r

σ : r > 0) is a Markov process
associated with the semigroup (Pt ), with entrance measure (νr : r > 0). Finally,
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we conclude the proof by establishing that its branching mechanism is ˜ψ and that it
fulfills (A4).

We stress that we are only interested in the finite-dimensional distributions of (L r
σ :

r > 0). Recalling the notation (3.25), for any r > 0 and λ � 0, we write

u Dr
λ (x, 0) = Nx,0

(

1− exp(−λL r
σ )
) =

∫

νr (dy) (1− exp(−λy)). (4.13)

Note that the function u Dr
λ (y, s) is defined for every pair (y, s)with s � r in the Polish

space E×R+, herewe simply replace in (3.25) the space E by E×R+.Moreover, since
Nx,0(L r

σ > 0) � Nx,0(sup̂� � r) < ∞, we have
∫

(0,∞) νr (dy)(1 ∧ y) < ∞, and

we deduce that the function λ �→ u Dr
λ (x, 0) is the Laplace exponent of an infinitely

divisible random variable with Lévy measure νr (· ∩ (0,∞)). Indeed, observe that
(4.13) is of the Lévy-Khintchine form. For each t > 0 and y ∈ R+ denote by Pt (y, dz)
the probability measure with Laplace transform

∫

Pt (y, dz) exp(−λz) = exp
(− y · u Dt

λ (x, 0)
)

, λ � 0. (4.14)

Remark now that the translation invariance of the local time of ξ implies that, under
P0,x,r (resp. Nx,r ) for r � 0, the distribution of (W ,�− r) is P0,x,0 (resp. Nx,0). In
particular, for every s, t � 0 and y ∈ E , we have

u Dt+s
λ (y, s) = u Dt

λ (y, 0). (4.15)

We deduce that the family (Pt (y, dz), t > 0, y ∈ R+) is a semigroup since, by the
special Markov property applied at the domain Ds , it holds that

∫

Pt+s(y, dz) exp(−λz) = exp
(

− y Nx,0

(

1− exp
(− λL t+s

σ

)

))

= exp
(

− y Nx,0

(

1− exp
(−L s

σ · u Dt+s
λ (x, s)

)

))

= exp
(

− y Nx,0

(

1− exp
(−L s

σ · u Dt
λ (x, 0)

)

))

= exp
(

− y · u Ds

u Dt
λ (x,0)

(

x, 0
)

)

,

which coincides with the Laplace transform of the measure
∫

u∈R+ Ps(y, du)Pt (u, dz).
SinceNx,0(L r

σ ) � 1 by (3.4) and 1−exp(−λL r
σ ) � λL r

σ , we deduce by dominated
convergence and (4.14) that

∫

R+ Pt (y, dz) z = y ·Nx,0(L r
σ ) � y.Since the semigroup

clearly fulfils the branching property, it follows that there exists a CSBP associated
with the semigroup (Pt ).

Recall the notation TDε := inf{t � 0 : τε(W t ) < ∞} as well as the definition of
the sigma field FDε from (3.2). We will now show that for any ε > 0, the process
(L ε+r

σ : r � 0) under the probability measure N
Dε
x,0 := Nx,0( · |TDε < ∞) has
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transition kernel (Pt ). Fix ε < a < b; by considering the point process of excursions
(3.24) outside Da , we deduce by an application of the special Markov property that

N
Dε
x,0

(

exp
(

−λL b
σ

)

∣

∣FDa
)

= exp
(

−L a
σ Nx,a

(

1− exp(−λL b
σ )
))

= exp
(

−L a
σ · u Db−a

λ (x, 0)
)

, N
Dε
x,0 -a.s.,

where in the last equality we used (4.15). We have obtained that, for every ε > 0,
(L r+ε

σ : r � 0) under N
Dε
x,0 is a CSBP with Laplace functional (u Dr

λ (x, 0) : r > 0)

and initial distribution N
Dε
x,0(L

ε
σ ∈ dx) with respect to the filtration (FDε+r : r � 0)

(recall that L r
σ is FDr -measurable by Proposition 3.4 and Lemma 4.6). Now, we

claim that for any 0 < r1 < · · · < rk and any collection of non-negative measurable
functions fi : R+ �→ R+,

Nx,0

(

k
∏

i=1

fi (L
ri
σ )

)

=
∫

R+
νr1(dz1) f1(z1)

∫

R+
Pr2−r1(z1, dz2) f2(z2)

. . .

∫

R+
Prk−rk−1(zk−1, dzk) fk(zk). (4.16)

This follows from the previous result, by observing that for any ε < r1 we have

Nx,0

⎛

⎝

k
∏

i=1

fi (L
ri
σ )1{TDε<∞}

⎞

⎠

= Nx,0

(

1{TDε<∞} f1(L
r1
σ )

∫

R+
Pr2−r1 (L

r1
σ , dz2) f2(z2) . . .

∫

R+
Prk−rk−1 (zk−1, dzk ) fk (zk )

)

,

and we conclude taking the limit as ε ↓ 0. The fact that the family (νt : t � 0) satisfies
that νt+s = νs Pt for t, s � 0 now follows from (4.16). Let us now identify ˜ψ . Recall
from our discussion in (4.11) that the Laplace exponent (u Dr

λ (x, 0) : r , λ � 0) is the
unique solution to the equation

u Dr
λ (x, 0)+

∫ r

0
du 

(

u Du
λ (x, 0)

) = λ, (4.17)

where  is the branching mechanism associated with (Pt ), and that it is defined in a
uniqueway by (4.17). In particular, characterizes completely the semigroup (Pt ). To
identify the branching mechanism we argue as follows: first, observe that the identity
(3.26) applied at the domain Dr yields

u Dr
λ (x, 0)+�x,0

(∫ τDr

0
dt ψ(u Dr

λ (ξt ,Lt ))

)

= λ, (4.18)
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for every λ � 0 and r > 0. Next, by excursion theory and (H3) we get:

�x,0

(∫ τDr

0
dt ψ(u Dr

λ (ξt ,Lt ))

)

=
∫ r

0
du N

(∫ σ

0
dt ψ

(

u Dr
λ (ξt , u)

)

)

=
∫ r

0
du N

(∫ σ

0
dt ψ

(

u Dr−u
λ (ξt , 0)

)

)

,

where in the last equality we used (4.15). Moreover, the special Markov property
applied at the domain D0 gives

u Dr
λ (y, 0) = uu Dr

λ (x,0)(y),

for every y ∈ E\{x} and λ � 0, and the identity also holds for y = x . Putting
everything together, by definition of ˜ψ , the identity (4.18) can be re-written as follows:

u Dr
λ (x, 0)+

∫ r

0
du ˜ψ(u Du

λ (x, 0)) = λ. (4.19)

Consequently, we deduce that the branching mechanism associated with the Laplace
functional u Dr

λ (x, 0) is ˜ψ . It remains to show that the conditions stated in Sect. 2.1
are satisfied by ˜ψ . As we already mentioned, it only remains to verify (A4). In this
direction and recalling the notation TDr = inf{t � 0 : ̂�t � r}, also by (4.19) we
obtain that f (λ, r) := u Dr

λ (x, 0) satisfies for every r ,

∫ λ

f (λ,r)

ds
˜ψ(s)

= r , (4.20)

where the limit f (∞, r) = Nx,0(L
Dr
σ > 0) is finite, since {L Dr

σ > 0} ⊂ {TDr < ∞}
and Nx,0(TDr < ∞) < ∞ by the same argument used before Theorem 3.8. Hence,
taking the limit as λ ↑ ∞ in (4.20), we infer that the following conditions are fulfilled:

˜ψ(∞) = ∞ and
∫ ∞

·
ds
˜ψ(s)

<∞.

To derive the exact form of (A4), recall that ˜ψ is convex and that we have ˜ψ(0) = 0
and ˜ψ ′(0+) � 0. ��

Now that we have established that ˜ψ is the Laplace exponent of a Lévy tree, let us
briefly introduce some related notation and a few facts that will be used frequently in
the upcoming sections. Fromnowon,we set ˜X a ˜ψ-Lévy process andwewrite˜I for the
running infimum of ˜X . We also denote the excursion measure of the reflected process
˜X − ˜I by ˜N – where the associated local time is −˜I . The usual notation introduced
in Sect. 2.1 applied to ˜X are indicated with a ∼. For instance, we denote the height
process and the exploration process issued from ˜X respectively by ˜H and ρ̃.
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By convexity and the fact that ˜ψ ′(0+) � 0, the only solution to ˜ψ(λ) = 0 is λ = 0.
This implies that the mapping λ �→ ˜ψ(λ) is invertible in [0,∞). By classical results in
the theory of Lévy processes, ˜ψ−1 is the Laplace exponent of the right-inverse of −˜I
and, since ˜X − ˜I does not spend time at 0, the former is a subordinator with no drift.
So, recalling the relation between excursion lengths and jumps of the right-inverse of
−˜I , we derive that:

˜ψ−1(λ) = ˜N (1− exp(−λσ)), λ � 0. (4.21)

For a more detailed discussion, we refer to Chapters IV and VII of [4].
We close this section with some useful identities in the same vein of (4.12), that

will be used frequently in our computations. These identities allow to express some
Laplace-like transforms concerning the process

(

ψ(uλ(ξt )) : t � 0
)

, under the
excursion measureN , in terms of ˜ψ . As an application of these computations, we will
identify the drift and Brownian coefficients of ˜ψ . We summarise these identities in
the following lemma.

Lemma 4.8 For every λ1, λ2 ∈ R+ with λ1 �= λ2, we have

N
(

1− exp
(

−
∫ σ

0
ds
ψ
(

uλ1(ξs)
)− ψ(uλ2(ξs)

)

uλ1(ξs)− uλ2(ξs)

)

)

=
˜ψ
(

λ1
)− ˜ψ(λ2

)

λ1 − λ2 .

(4.22)

Recalling the identities (2.24), remark that Lemma 8 allows to express the Laplace
exponent of (˜U (1), ˜U (2)) in terms of N and ψ .

Proof First note that the functions λ �→ uλ(y) and λ �→ ψ(uλ(y)) are non-decreasing.
So without loss of generality we can and will assume that λ1 > λ2. We set Tx :=
inf{t � 0 : ξt = x} and we write

N
(

1− exp
(

−
∫ σ

0
ds
ψ
(

uλ1 (ξs )
)− ψ(uλ2 (ξs )

)

uλ1 (ξs )− uλ2 (ξs )

))

= N
(

∫ σ

0
ds
ψ
(

uλ1 (ξs )
)− ψ(uλ2 (ξs )

)

uλ1 (ξs )− uλ2 (ξs )
· exp

(

−
∫ σ

s
dt
ψ
(

uλ1 (ξt )
)− ψ(uλ2 (ξt )

)

uλ1 (ξt )− uλ2 (ξt )

)

)

= N
(

∫ σ

0
ds
ψ
(

uλ1 (ξs )
)− ψ(uλ2 (ξs )

)

uλ1 (ξs )− uλ2 (ξs )
·�ξs

(

exp
(

−
∫ Tx

0
dt
ψ
(

uλ1 (ξt )
)− ψ(uλ2 (ξt )

)

uλ1 (ξt )− uλ2 (ξt )

)

))

where in the last equality we applied the Markov property. On the other hand, the
definition of ˜ψ given in (4.12) yields

˜ψ
(

λ1
)− ˜ψ(λ2

)

λ1 − λ2 = N
(

∫ σ

0
ds
ψ
(

uλ1(ξs)
)− ψ(uλ2(ξs)

)

λ1 − λ2

)

= N
(

∫ σ

0
ds
ψ
(

uλ1(ξs)
)− ψ(uλ2(ξs)

)

uλ1(ξs)− uλ2(ξs)
· uλ1(ξs)− uλ2(ξs)

λ1 − λ2

)

.
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Consequently, the lemma will follow as soon as we establish the identity:

uλ1(y)− uλ2(y)

λ1 − λ2 = �y

(

exp
(

−
∫ Tx

0
dt
ψ
(

uλ1(ξt )
)− ψ(uλ2(ξt )

)

uλ1(ξt )− uλ2(ξt )

))

.

In this direction, recall that under Ny,0 with y �= x the processes L 0(ρ,W ) and
L E∗(ρ,W ) are well defined and indistinguishables, and remark that

uλ1 (y)− uλ2 (y) = Ny,0

(

exp
(− λ2

∫ σ

0
dL 0

u
)− exp

(− λ1
∫ σ

0
dL 0

u
)

)

= (λ1 − λ2) · Ny,0

(

exp(−λ1
∫ σ

0
dL 0

u ) ·
∫ σ

0
dL 0

s exp
(

(λ1 − λ2)
∫ s

0
dL 0

u
)

)

= (λ1 − λ2) · Ny,0

(

∫ σ

0
dL 0

s exp
(− λ1

∫ s

0
dL 0

u
) · exp (− λ2

∫ σ

s
dL 0

u
)

)

.

Then, an application of the Markov property gives:

uλ1 (y)− uλ2 (y) = (λ1 − λ2) · Ny,0

(

∫ σ

0
dL 0

s exp
(− λ1L 0

s
) · E

†
ρs ,W s

[

exp
(− λ2L 0

σ

)]

)

.

We can now apply the duality identity
(

(ρ(σ−t)−, η(σ−t)−,W σ−t ) : t ∈ [0, σ ]) (d)=
(

(ηt , ρt ,W t ) : t ∈ [0, σ ]) under Ny,0, to get that the previous display is equal to

(λ1 − λ2) · Ny,0

(

∫ σ

0
dL 0

s exp
(− λ1

∫ σ

s
dL 0

t

) · E
†
ηs ,W s

[

exp
(− λ2L 0

σ

)]

)

= (λ1 − λ2) · Ny,0

(

∫ σ

0
dL 0

s E
†
ρs ,W s

[

exp
(− λ1L 0

σ

)] · E
†
ηs ,W s

[

exp
(− λ2L 0

σ

)]

)

.

Remark that (η,W ) takes values in �x by duality and right-continuity of η with
respect to the total variation distance. We are now in position to apply the many-to-
one equation (2.25). In this direction, for (μ,w) ∈ �x with w(0) = (y, 0) and y �= x
we notice that

E
†
μ,w

[

exp
(− λL 0

σ

)

]

= exp
(

−
∫ τD0 (w)

0
μ(dh) Nw(h)

(

1− exp(−λL 0
σ )
)

)

= exp
(

−
∫ τD0 (w)

0
μ(dh) uλ(w(h))

)

,

for every λ > 0. Consequently, (2.25) gives:

uλ1 (y)− uλ2 (y)

λ1 − λ2 = E0 ⊗�y

(

exp
(− αTx

)

exp
(

−
∫ Tx

0
J (ds) uλ1 (ξs )−

∫ Tx

0
qJ (ds) uλ2 (ξs )

))

.

Finally an application of (2.24) yields exactly the desired result (4.22). ��

123



The structure of the local time...

As an immediate consequence, we obtain two other useful identities taking λ2 = 0
and letting λ2 ↓ λ1 respectively. For every λ > 0, we have

N
(

1− exp
(

−
∫ σ

0
dh ψ

(

uλ(ξh)
)

/uλ(ξh)
))

= ˜ψ(λ)/λ and

N
(

1− exp
(

−
∫ σ

0
dh ψ ′(uλ(ξh))

))

= ˜ψ ′(λ), (4.23)

where for the first one we used that u0(y) = 0 since Ny(L
E∗
σ = ∞) = 0. We also

stress that (4.23) can be proved independently directly by the same arguments as the
ones applied in the proof of (4.22).

Since by Proposition 4.7 the exponent ˜ψ satisfies (A1)–(A4), it can be written in
the following form

˜ψ(λ) = α̃λ+ ˜βλ2 +
∫

R+
π̃(dx) (exp(−λx)− 1+ λx),

where α̃,˜β � 0 and π̃ is a measure on R+ satisfying
∫

π̃(dx)(x ∧ x2) < ∞. In the
following corollary, we identify the coefficients α̃ and ˜β.

Corollary 4.9 We have α̃ = N
(

1− exp(−ασ)) and ˜β = 0.

Proof To simplify notation, for λ � 0 set ψ∗(λ) := ψ(λ)/λ, ˜ψ∗(λ) := ˜ψ(λ)/λ.
Since ˜ψ satisfies (A1)–(A4), by Fubini we derive that ˜ψ∗ is the Laplace exponent of
a subordinator with exponent:

α̃ + ˜βλ+
∫

R+
dr π̃([r ,∞))(1− exp(−λr)

)

. (4.24)

Next, introduce the measureN ∗(dξ) := N (exp(−ασ)dξ) and observe that by (4.23),
˜ψ∗(λ) can also be written in the form

N
(

1− exp
(

−
∫ σ

0
dh ψ∗(uλ(ξh)

)

))

= N
(

1− exp(−ασ))+N ∗(1− exp
(

−
∫ σ

0
dh
(

ψ∗(uλ(ξh)
)− α)

))

.(4.25)

Comparing with (4.24), our result will follow by showing that the second term on the
right-hand side of (4.25) is the Laplace exponent of some pure-jump subordinator. In
this direction, introduce under E0⊗N ∗ and conditionally on (J∞, ξ), a Poisson point
measure

M(dh, dρ, dW ) =
∑

i∈N

δ
(hi ,ρ

i ,W
i
)
,

with intensity Jσ (dh)Nξ(h),0
(

dρ, dW
)

. This is always possible up to enlarging the
measure space and for simplicity we still denote the underlying measure by E0⊗N ∗.
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Next, define the functional
∑

i∈N
L 0
σ (ρ

i ,W
i
) and denote its distribution by ν(dx).

By definition, we have:

E0 ⊗N ∗(1− exp
(

− λ
∑

i∈N

L 0
σ (ρ

i ,W i )
))

= E0 ⊗N ∗(1− exp
(

−
∫ σ

0
Jσ (dh)uλ

(

ξ(h)
)

))

= N ∗(1− exp
(

−
∫ σ

0
dh
(

ψ∗(uλ(ξh)
)− α)

))

,

where in the last equality we used that J∞ is the Lebesgue-Stieltjes measure of a
subordinator with exponentψ∗(λ)−α. Since the latter expression is finite, we deduce
that ν is a Lévy measure satisfying

∫

ν(dr) (1∧ r) <∞, and that the second term on
the right-hand side of (4.25) is the Laplace exponent of a driftless subordinator with
Lévy measure given by ν. ��

4.2 Construction of the additive functional (At)

We are finally in position to introduce our additive function:

Proposition 4.10 Fix (y, r0) ∈ E and (μ,w) ∈ �x . Under Ny,r0 and Pμ,w, the process
defined as

At =
∫

R+
drL r

t , for t � 0,

is a continuous additive functional of the Lévy snake taking finite values. Furthermore,
we have

At = lim
ε↓0

1

ε

∫ t

0
du
∫

R+
dr 1{τr (W u)<Hu<τr (W u)+ε}, (4.26)

where the convergence holds uniformly on compact intervals in measure under Pμ,w
and Ny,r0( · ∩ {σ > z}) for every z > 0.

Proof We start proving the proposition under Pμ,w, where (μ,w) := (μ,w, �) ∈ �x .
Remark that by the translation invariance of the local time we might assume that
�(0) = 0 without loss of generality. For simplicity, we set y := w(0). Next, we write
̂�∗

t := sups�t
̂�s and we note that it suffices to show that for any t, K > 0

Eμ,w

[

sup
s�t

|
∫

R+
dr

1

ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −

∫

R+
drL r

s | · 1{̂�∗
t <K }

]

→ 0,
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as ε ↓ 0. In this direction, we remark that the previous expression is bounded above
by

∫

R+
dr Eμ,w

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s | · 1{̂�∗
t <K }

]

�
∫

(0,K ]
dr Eμ,w

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s |
]

,

since on the event {̂�∗
t < K }we haveL r = 0 for every r > K . Now, by Lemma 4.6,

it suffices to show that the expectation under Pμ,w in the previous display is uniformly
bounded on ε, r > 0 since the desired result then follows by dominated conver-
gence. To do so, we set T+

0 := inf
{

t � 0 : 〈ρt , 1〉 = 0
}

and we notice that by the
strong Markov property, under Pμ,w, the distribution of (ρT+

0 +s,W T+
0 +s : s � 0) is

P0,y,0(dρ, dW ). In particular we have the upper bound:

Eμ,w

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s |
]

� E
†
μ,w

[1

ε

∫ σ

0
du 1{τr (W u)<Hu<τr (W u)+ε} +L r

σ

]

+ E0,y,0

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s |
]

.

So to conclude we need to prove both:

(i) sup
ε>0

sup
r>0

E0,y,0

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s |
]

<∞;

(ii) sup
ε>0

sup
r>0

E
†
μ,w

[1

ε

∫ σ

0
du 1{τr (W u)<Hu<τr (W u)+ε} +L r

σ

]

<∞.

Let us start showing (i). We are going to apply similar techniques to the ones used in
the proof of Theorem 3.7. In this direction, we work under P0,y,0 and we fix r , ε > 0.
Now, recall the definition of γ Dr , σ Dr and ρDr introduced in Sect. 3.2 (keeping in
mind the fact that here we work with (ρ,W )) and set

RDr
t :=

∫ t

0
ds1{γ Dr

s >0}, for t � 0,

which is the right inverse of σ Dr . Next, for every r > 0, by definition we have
τr (ρt ,W t ) = τDr (ρt ,W t ) and we derive that

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} =

∫ RDr
s

0
du 1{0<H(ρDr

u )<ε},
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since on {u � 0 : H(ρ
σ

Dr
u
) > τr (W σ

Dr
u
)}, we have H(ρDr

u ) = H(ρ
σ

Dr
u
)−τr (W σ

Dr
u
).

Recall from (3.22) that 〈ρDr , 1〉 is distributed as 〈ρ, 1〉 underP0,y,0,which is a reflected
ψ-Lévy process, and that we denote its local time at 0 by �Dr . In particular, the
distribution of (〈ρDr , 1〉, �Dr ) is the same as

(

(Xt − It ,−It ) : t � 0
)

. Recalling

from (3.23) thatL r
t = �Dr (RDr

t ) and noticing that RDr
s � s, we derive the following

inequality:

E0,y,0

[

sup
s�t

|1
ε

∫ s

0
du 1{τr (W u)<Hu<τr (W u)+ε} −L r

s |
]

= E0,y,0

[

sup
s�t

|1
ε

∫ RDr
s

0
du 1{0<H(ρDr

u )<ε} − �Dr (RDr
s )|

]

� E0,y,0

[

sup
s�t

|1
ε

∫ s

0
du 1{0<H(ρDr

u )<ε} − �Dr (s)|
]

= E0,y,0

[

sup
s�t

|1
ε

∫ s

0
du 1{0<H(ρu)<ε} + Is |

]

,

where in the first line we used that for each fixed r > 0, the processesL r and L Dr are
indistinguishable. The latter quantity does not depend on r and by (2.7) it converges
to 0 as ε ↓ 0, giving (i).

We now turn our attention to the proof of (ii). On the one hand, by Proposition 3.3
- (ii) and (3.4), for every r > 0 we have

E
†
μ,w

[

L r
σ

] =
∫

(0,τr (w))
μ(dh) Nw(h)

(

L r
σ

)

=
∫

(0,τr (w))
μ(dh) E0 ⊗�w(h)

[

1{τr (ξ,L)<∞} exp
(− ατr (ξ,L)

)]

� 〈μ, 1〉.

On the other hand, the remaining term

E
†
μ,w

[1

ε

∫ σ

0
du 1{τr (W u)<Hu<τr (W u)+ε}

]

can be bounded similarly as we did in (3.10). To this end, notice that if μ = 0
there is nothing prove and therefore, from now on, we assume that μ �= 0. Then
consider, under P

†
μ,w, the random measure

∑

i∈N
δ
(hi ,ρ

i ,W
i
)
defined in (2.23), set

T := inf{t > 0 : Ht = τr (w)}, with the convention T = 0 if τr (w) = ∞, and remark
that for every s ∈ [0, T ] we have τr (W s) = τr (w). Recalling μ({τr (w)}) = 0, it
follows by considering the excursion intervals of H over its running infimum and our
previous remark, that the integral

∫ σ

0 du 1{τr (W u)<Hu<τr (W u)+ε} can be written as

∑

hi>τr (w)

∫ σ(W
i
)

0
du 1{τr (w)<hi+H(ρi

u )<τr (w)+ε} +
∑

hi<τr (w)

∫ σ(W
i
)

0
du 1{τr (W i

u )<H(ρi
u )<τr (W

i
u )}
,
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where the first term is now bounded above by
∑

hi>τr (w)

∫ σ(W
i
)

0 du 1{0<H(ρi
u)<ε}.

Consequently, by (2.25) we have

E
†
μ,w

[

∫ σ

0
du 1{τr (W u)<Hu<τr (W u)+ε}

]

� μ((τr (w),∞))N (
∫ σ

0
ds 1{0<H(ρs )<ε})

+
∫

(0, τr (w))
μ(dh)Nw(h)

(

∫ σ

0
ds 1{τr (W s )<Hs<τr (W s )+ε}

)

,

and by the many-to-one formula (2.25), the previous display is bounded by ε · 〈μ, 1〉.
Putting everything together we deduce the upper bound

E
†
μ,w

[1

ε

∫ σ

0
du 1{τr (W u)<Hu<τr (W u)+ε} +L r

σ

]

� 2 · 〈μ, 1〉,

which does not depend on the pair r , ε > 0 and concludes the proof of (ii).
Finally, we extend the result under the excursion measure Ny,r0 . Working under

P0,y,r0 fix z > 0 and denote by (ρ′,W
′
) = (ρ(g+·)∧d ,W (g+·)∧d) the first excursion

with length σ > z. By the previous result, the quantity

sup
s�t

∣

∣

∣ ε
−1
∫ s

0
du
∫

R+
dr1{τr (W ′

u)<H(ρ′u)<τr (W
′
u)+ε} −

∫

R+
drL r

s (ρ
′,W

′
)

∣

∣

∣

= sup
s�t∧(d−g)

∣

∣

∣ ε
−1
∫ g+s

g
du
∫

R+
dr1{τr (W u)<Hu<τr (W u)+ε} −

∫

R+
dr(L r

g+s −L r
g )

∣

∣

∣

converges in probability to 0, and it then follows that (4.26) holds in measure under
Ny,r0( · ∩ {σ > z}). ��
As a straightforward consequence of the definition of A we deduce the following
many-to-one formula:

Lemma 4.11 For any non-negative measurable function� on M f (R+)× M f (R+)×
WE and (y, r0) ∈ E, we have

Ny,r0

(∫ σ

0
dAs �

(

ρs, ηs,W s
)

)

=
∫ ∞

r0
dr E0 ⊗�y,r0

(

exp
(− ατr

) ·�(Jτr , qJτr , (ξt ,Lt : t � τr )
)

)

. (4.27)

Proof By the translation invariance of the local time it is enough to prove the Lemma
for r0 = 0. Now recall that, under Ny,0, for every fixed r � 0 the processes L r and
L Dr are indistinguishable. Consequently, the left-hand side of (4.27) can be written in
the form:
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∫ ∞

0
dr Ny,0

(∫ σ

0
dL Dr

s �
(

ρs, ηs,W s
)

)

,

and hence we arrive at (4.27) applying (3.4). ��
A first consequence of Lemma 4.11 is that for any (y, r0) ∈ E , we have

supp dA ⊂ {t ∈ R+ : ̂Wt = x}, Ny,r0 - a.e. (4.28)

Indeed, it suffices to observe that by (4.27), for any ε > 0, it holds that

Ny,r0

(

∫ σ

0 dAs1{dE (̂Ws ,x)>ε}
)

= 0, where we recall that dE stands for the metric

of E . Let us comment on a few useful identities that will be used frequently in our
computations:

Remark 4.12 Fix (y, r0) ∈ E with y �= x . Under Ny,r0 or P0,y,r0 , let (g, d) be an
interval such that Hs > Hg = Hd , for every s ∈ (g, d), and ̂�g = r0 – remark that
in particular we have pH (g) = pH (d). We denote the corresponding subtrajectory,
in the sense of Sect. 2.3, by (ρ′,W

′
) and its duration by σ ′ = σ(W ′). Since for any

q � r and s � 0:

H(g+s)∧d = Hg + H(ρ′s∧σ ′) and τq(W (g+s)∧d) = Hg + τq(W ′
s∧σ ′),

we deduce by the approximation (4.26) that the process (A(g+t)∧d − Ag : t � 0) only

depends on (ρ′,W
′
) and it will be denoted by (As(ρ

′,W
′
) : s � 0). Now we make

the following observations:

(i) Working under Ny,r0 or P0,y,r0 , we denote the connected components of the
open set {(Hs − τr0(W s))+ > 0} by ((αi , βi ) : i ∈ I) and we set σi := βi − αi its

duration. We also write (ρi ,W
i
) for the excursions from Dr0 corresponding to the

interval (αi , βi ). By (4.26) in Proposition 4.10, the measure dA does not charge the
set {s � 0 : Hs � τr0(W s)} and we derive that:

Aσ =
∑

i∈I

∫

(αi ,βi ]
dAs =

∑

i∈I
Aσi (ρ

i ,W
i
), Ny,r0 -a.e. and P0,y,r0 -a.s. (4.29)

(ii) We will now make similar remarks holding under P
†
μ,w, for (μ,w) ∈ �x with

μ �= 0. Under P
†
μ,w, denote the connected components of {s � 0 : Hs > inf [0,s] H}

by ((ai , bi ) : i ∈ I) and write (ρi ,W
i
) for the subtrajectory associated with [ai , bi ].

We also set hi = Hai , σi = bi −ai and recall that the measureM =∑i∈I δ(hi ,ρ
i ,W

i
)

is the Poisson point measure (2.23) associated with (ρ,W ). Moreover, we have:

E
†
μ,w

[|Aσ −
∑

i∈I
Aσi (ρ

i ,W
i
)|] �

∫

R+
dr E

†
μ,w

[|L r
σ −

∑

i∈I
L r
σi
(ρi ,W

i
)|].
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Consequently, by Proposition 3.3 - (ii), the previous quantity is null and it follows
that we still have

Aσ =
∑

i∈I
Aσi (ρ

i ,W
i
), P

†
μ,w - a.s. (4.30)

Recall now the definition (4.12) of ˜ψ and the notation uλ introduced in (4.10). The
following proposition relates the Laplace transform of the total mass Aσ under Ny,r0
and the Laplace exponent ˜ψ . This identity will be needed to characterize the support
of dA and will also play a central role in Sect. 5.

Proposition 4.13 For every r0, λ � 0 and y ∈ E, we have

Ny,r0

(

1− exp
(− λA∞

)

)

= u
˜ψ−1(λ)(y),

where we recall the convention uλ(x) = λ, for every λ � 0. Moreover, for every
(μ,w) ∈ �x , we have:

E
†
μ,w

[

exp
(− λA∞

)

]

= exp
(

−
∫

μ(dh) u
˜ψ−1(λ)(w(h))

)

.

The proposition has the following consequence: since ˜ψ−1(λ) = ˜N (1− exp(−λσ)),
the total mass A∞ under Nx,0 and σ under ˜N have the same distribution. This con-
nection is the tip of the iceberg of the results that will be established in the upcoming
section, where we establish that the tree structure of the set {υ ∈ TH : ξυ = x} is
encoded by a ˜ψ–Lévy tree.

Proof Under Ny,r0 with y �= x and r0 � 0, set

T ∗ := inf{t � 0 : τr0(W t ) <∞},

which is just the first hitting time of x by (̂Wt )t∈[0,σ ]. Notice that by (4.28), A∞
vanishes on {T ∗ = ∞} Ny,r0 -a.e.. We set Gλ := Nx,0(1− exp(−λA∞)), and remark
that the identity (4.29) and the special Markov property applied to the domain Dr0
yields:

Ny,r0

(

1− exp
(− λA∞

)

)

= Ny,r0

(

1− exp
(

−L r0
σ · Nx,r0

(

1− exp
(− λA∞

))

))

.

Next, by the translation invariance of the local time L, we derive that the previous
display is equal to:

Ny,0

(

1− exp
(

−L 0
σ · Nx,0

(

1− exp
(− λA∞

))

))

= uGλ(y).
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Moreover, for (μ,w) ∈ �x if we denote under P
†
μ,w the Poisson process introduced

in (2.23) by
∑

i∈I δ(hi ,ρ
i ,W

i
)
, we get:

E
†
μ,w

[

exp
(− λA∞

)

]

= E
†
μ,w

[

exp
(− λ

∑

i∈I
A∞(ρi ,W

i
)
)

]

= exp
(

−
∫

μ(dh) Nw(h)
(

1− exp
(− λA∞

))

)

= exp
(

−
∫

μ(dh) uGλ(w(h))
)

,

where in the first equality we applied (4.30), and in the second we used that
∑

i∈I δ(hi ,ρ
i ,W

i
)
is a Poisson point measure with intensity μ(dh)Nw(h)(dρ, dW ).

Consequently, the statement of the proposition will now follow if we establish that
Gλ = ˜ψ−1(λ). In this direction, for λ > 0, notice that the Markov property implies
that

Gλ = λ · Nx,0

(

∫ σ

0
dAs exp

(− λ
∫ σ

s
dAu

)

)

= λ · Nx,0

(

∫ σ

0
dAs E

†
ρs ,W s

[

exp
(− λ

∫ σ

0
dAu

)

])

.

By the previous discussion under P
†
μ,w and the many-to-one formula of A given in

Lemma 4.11, we get:

Gλ = λ
∫ ∞

0
dr E0 ⊗�x,0

(

exp
(− ατr

)

exp
(

−
∫ τr

0
Jτr (dh) uGλ

(

ξ(h)
)

))

= λ
∫ ∞

0
dr �x,0

(

exp
(

−
∫ τr

0
dh
ψ
(

uGλ(ξ(h))
)

uGλ

(

ξ(h)
)

))

,

where we recall that τr (ξ,L) := inf{s � 0 : Ls � r} and in the second equality we
used that J∞(dh) is the Lebesgue-Stieltjes measure of a subordinator with exponent
ψ(λ)/λ− α. Next, under �x,0, we consider (si , ti )i�1 the connected components of
{s � 0 : ξs �= x}, by (ξ i )i�1 the corresponding excursions, and we remark that:

∫ τr

0
dh
ψ
(

uGλ(ξ(h))
)

uGλ

(

ξ(h)
) =

∑

i�1,Lsi<r

∫ ti

si

dh
ψ
(

uGλ(ξ(h))
)

uGλ

(

ξ(h)
) ,
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since
∫∞
0 dh1{ξh=x} = 0 by assumption (H3). Consequently, if we denote by σξ i the

lifetime of the excursion ξ i , by Campbell’s formula we get:

�x,0

(

exp
(

−
∫ τr

0
dh
ψ
(

uGλ(ξ(h))
)

uGλ

(

ξ(h)
)

))

= �x,0

(

exp
(

−
∑

i�1,Lsi<r

∫ σ
ξ i

0
dh
ψ
(

uGλ(ξ
i (h))

)

uGλ

(

ξ i (h)
)

))

= exp
(

− r ·N
(

1− exp
(−

∫ σ

0
dh
ψ
(

uGλ(ξh))

uGλ(ξh)

)

))

,

and hence

Gλ = λ ·N
(

1− exp
(

−
∫ σ

0
dh
ψ
(

uGλ(ξh))

uGλ(ξh)

))−1
.

However, by the first identity in (4.23), we have

N
(

1− exp
(

−
∫ σ

0
dh
ψ(uGλ(ξh))

uGλ(ξh)

))

= ˜ψ(Gλ)

Gλ
,

and we derive that ˜ψ(Gλ) = λ for λ > 0 and equivalently Gλ = ˜ψ−1(λ). Finally,
since G0 = 0 the identity also holds for λ = 0. ��
Remark 4.14 We conclude this section with an informal discussion relating our addi-
tive functional Awith the so-called family of local times at y ∈ R of a one-dimensional
super-Brownian motion X = (Xt : t � 0) with branching mechanism ψ(λ) = 2λ2;
this remark was pointed out by one of the anonymous referees, to whom we are
thankful. To illustrate this, let N0,0 be the excursion measure away from (0, 0) of the
2λ2-Lévy snake with spatial motion the pair formed by a one-dimensional Brownian
motion and its local time at 0.10 For some arbitrary fixed r > 0, consider a Poisson
measure

∑

i∈N
δ
(ρi ,W

i
)
with intensity r · N0,0 where as usual, we use the notation

W
i = (W i ,�i ). Then, if for every t > 0, we write (Lt

s : s � 0) for the height process
at level t in the sense of [11, Definition 1.3.1], the measure-valued process defined by
the relation

〈Xt , f 〉 =
∑

i∈N

∫ σi

0
dLt

s(ρ
i ,W

i
) f (̂W i

s ), for t > 0,

for every non-negative measurable function f : R → R+, and X0 = r · δ0, is a
one-dimensional super-Brownian motion with branching mechanism ψ(λ) = 2λ2

10 We stress that we do not need to consider the local time of the Brownian motion to define the super-
Brownian motion. Nonetheless, we work here with the pair formed by a Brownian motion and its local time
at 0 in order to use our additive functional A.
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started at r · δ0. We denote its law by Prδ0 and we refer to [11, Theorem 4.2.1] for
background on this statement. It was proved in [36, Theorem 2] that there exists a
process (Y (t, y)) : 0 � t � ∞, y ∈ R) defined under Prδ0 and characterized, for
every non-negative measurable function f : R → R+, by the following occupation
formula

∫ t

0
ds 〈Xs, f 〉 =

∫

R

dy f (y)Y (t, y).

When t = ∞ and y = 0, using equation (18) in [28], we infer that Y (∞, 0) =
∑

i∈N
A∞(ρi ,W

i
), where A stands for the additive functional defined for the point

0. Furthermore, the special Markov property leads us to conjecture that we have

Y (t, 0) = ∫∞
0 dAs(ρ

i ,W
i
)1{Hs (ρi )�t}, for 0 < t < ∞, and that this relation holds

also for Y (t, y) for an arbitrary fixed y ∈ R; making use now of our additive functional
associated with the point y ∈ R. It is worth noting that these relations should also hold
for more general branching mechanisms and spatial motions. Specifically, when the
branching mechanism is stable and the spatial motion is a Brownian motion, the local
time process Y has already been defined and studied.11 For more details, we direct the
reader to [33] and the references therein. The aforementioned relations should extend
to this case.

4.3 Characterization of the support of dA

The rest of the section is devoted to the characterization, under Ny,r0 and Pμ,w, of the
support of the measure dA. Our characterization is given in terms of the constancy
intervals of̂�, and of a family of special times for theLévy snake thatwill be named exit
times from x . Before giving a precise statementwewill need several preliminary results
under Nx,0. First recall that under Nx,0, for every r > 0 the processes L r and L Dr

are indistinguishable – and in particular, by Proposition 3.4, L r
σ is FDr measurable.

Fix r > 0, recall the notation τr (ρt ,W t ) = τDr (ρt ,W t ) for t � 0, and denote the
connected components of the open set {t ∈ [0, σ ] : τr (W t ) < Ht } by {(ar

i , b
r
i ) : i ∈

Ir }. We write {(ρi,r ,W
i,r
) : i ∈ Ir } for the corresponding subtrajectories, where as

usual W
i,r = (W i,r ,�i,r ). Next, recall the notation �Dr

s := inf
{

t � 0 : V Dr
t > s

}

for V Dr defined by (3.1) and we set:

θr
u := inf

{

s � 0 : L r
�

Dr
s
> u

}

, for all u ∈ [0,L r
σ ).

Remark that trDr
̂(W ,�)θr

u
= (x, r), for every u ∈ [0,L r

σ ). An application of the

special Markov property applied at the domain Dr gives that, conditionally on FDr ,

11 The process Y can also be defined for a (1 + p)-stable mechanism when the spatial motion is a d-
dimensional Brownian motion with d < 2+ 2/p, see [33, 36]. We stress that in contrast with our additive
process A, the existence of Y does not require the existence of a local time for the underlying spatial motion.
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the point measure of the excursions from Dr

M(r) :=
∑

i∈Ir

δ
(L r

ar
i
,ρi,r ,W

i,r
)

is a Poisson point measure with intensity 1[0,L r
σ ](u)du Nx,r

(

dρ, dW
)

. For the sake
of clarity, let us outline the structure of this section. The first step for characteriz-
ing the support of the measure dA consists in establishing Lemma 4.15, where we
prove, under Nx,r for r � 0, that the points {0, σ } belong to supp dA. This result,
coupled with the special Markov property applied to the domains Dr for r > 0 and an
approximation argument, will yield the characterization for the support of the measure
dA. This characterization is stated in Theorem 4.20 and is the main result of the sec-
tion. The approximation argument relies on topological considerations and an explicit
description - of independent interest - for the sets supp dL r for r > 0, which is given
in Lemma 4.18.

Lemma 4.15 Nx,0–a.e., we have {0, σ } ∈ supp dA.

Proof We are going to show that for any ε > 0, we have Nx,0(Aε∧σ = 0) = 0 – the
Lemma will follow since the symmetric statement Nx,0(Aσ − A(σ−ε)∨0 = 0) = 0
will then hold by the duality identity (2.21). As previously we write

Gλ := Nx
(

1− exp
(− λA∞)

) = ˜ψ−1(λ),

where the second equality holds by Proposition 4.13 taking (y, r0) = (x, 0). For every
positive rational numbers r and q, we introduce the stopping time T r

q := inf
{

s � 0 :
L r

s > q
}

, with the convention T r
q = ∞, ifL r

σ � q. Let us prove that

Nx,0
(

AT r
q
= 0,L r

σ > 0
) = 0. (4.31)

In this direction, set N
r
x,0 := N

r
x,0(dρ, dW |L r

σ > 0) and using the fact that,

conditionally on FDr , the measure M(r) is a Poisson point measure with intensity
1[0,L r

σ ](u)du Nx,r
(

dρ, dW
)

, remark that

N
r
x,0

(

exp
(− λAT r

q

)

)

� N
r
x,0

(

exp
(−λ

∑

i∈Ir

Aσ (ρ
i,r ,W

i,r
)1{L r

ai
�q}
)

)

= N
r
x,0

(

exp
(

− (q ∧L r
σ )Nx,0

(

1− exp(−λA∞)
)

))

= N
r
x,0

(

exp
(− (q ∧L r

σ )Gλ
)

)

and hence:

N
r
x,0(AT r

q
= 0)+ N

r
x,0

(

exp
(− λAT r

q

)

1{AT r
q
>0}
)

� N
r
x,0

(

exp
(− (q ∧L r

σ ) · Gλ
))

.
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Now (4.31) follows taking the limit as λ ↑ ∞, since we are working under {L r
σ > 0}

and by Proposition 4.7 the function ˜ψ satisfies (A4), which gives that Gλ goes to ∞
when λ ↑ ∞. We stress that (4.31) holds for any positive rational numbers r and q.
Now fix ε > 0, and notice that by the monotonicity of A, we have

{

Aε∧σ = 0 ; T r
q < ε

} ⊂ {AT r
q
= 0 ; T r

q < ε ; L r
σ > 0

}

,

where the last set has null Nx,0 measure by (4.31). The identity Nx,0(Aε∧σ = 0) = 0
now will follow as soon as we show that, Nx,0-a.e. , there exists two positive rational
numbers r and q satisfying that T r

q < ε. Said otherwise, we need to establish that the
origin is an accumulation point of {T r

q : r , q ∈ Q
∗+}. Arguing by contradiction, write

�0 =
⋂

r ,q∈Q
∗+

{

T r
q � ε

} =
⋂

r∈Q
∗+

{

T r
q � ε : ∀q > 0

} =
⋂

r∈Q
∗+

{

L r
ε = 0

}

where in the last equality we used (4.31), and suppose that Nx,0(�0) > 0. To simplify
notation, set C(r) := inf{s � 0 : ̂�s > r}, and remark that the special Markov
property, as stated in Theorem 3.8, applied to the domain Dr gives {L r

ε = 0} =
{C(r) � ε}. We then derive that

0 < Nx,0

(
⋂

r∈Q
∗+

{C(r) � ε}
)

= Nx,0

(

̂�s = 0, ∀s ∈ [0, ε ∧ σ ]
)

.

However, recalling the definition (2.20) of the excursionmeasureNx,0 this is in contra-
diction with the fact that for every s ∈ (0, σ ), Nx,0 a.e., ̂�s > 0. Indeed, by definition
of the Lévy snake under Nx,0, for any fixed s � 0, conditionally on ζs , the process
((Ws(t),�s(t)) : t � ζs) has the distribution of a trajectory of the Markov process
((ξt ,Lt ) : t � 0) under �x,0 killed at ζs . We then have �s(t) > 0, for every t > 0,
since ζs = H(ρs) does not vanish on (0, σ ) and, �x,0– a.s., 0 is in the support of
dL; for a justification of the later fact, we refer to our discussion at the beginning of
Sect. 4. ��
Define:

C∗ :=
{

t ∈ [0, σ ] : sup
(t−ε,t+ε)∩[0,σ ]

̂� = inf
(t−ε,t+ε)∩[0,σ ]

̂� , for some ε > 0
}

,

and remark that – the closure of the – connected components of C∗ are exactly the
constancy intervals of ̂�. We will show that the support of dA is precisely the com-
plement of C∗. In this direction, our goal now is to give an equivalent definition of C∗
in terms of H and W , and for this purpose we introduce the notion of exit times.

Definition 4.16 (Exit times from x) A non negative number t is said to be an exit time
from the point x for the process (ρ,W ) if ̂Wt = x and there exists s > 0 such that

Ht < Ht+u, for all u ∈ (0, s).
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The collection of exit times from x is denoted by Exit(x).

Remark 4.17 Note that, for every t ∈ Exit(x), the point pH (t) corresponds by defini-
tion to a point of the Lévy tree with multiplicity bigger than 1 and in fact, recalling
the result of Proposition 4.4, pH (t) is a point of multiplicity 2 in TH . In particular, for
every t ∈ Exit(x), there exists a unique s > t such that pH (t) = pH (s) and satisfying
that:

̂Ws = x and Hs−u > Ht = Hs for all u ∈ (0, v),

for some v > 0 – in this case, we can take v := t − s. By analogy, we write � Exit(x)
for the collection of times in [0, σ ] satisfying the previous display. Remark that the
correspondence described above between Exit(x) and � Exit(x) defines a bijection. We
also stress that the inclusion Exit(x)∪ � Exit(x) ⊂ {t ∈ R+ : ̂Wt = x} is a priori strict
since we are excluding in our definition potential times that will be mapped by pH

into leaves with label x .

Let us now prove the following technical lemma:

Lemma 4.18 For every fixed r > 0, under Nx,0, we have:

supp dL r = {ar
i , b

r
i : i ∈ Ir } = Exit(x) ∩ {s ∈ [0, σ ] : ̂�s = r

}

, (4.32)

and the same identity holds if we replaceExit(x) by � Exit(x). In particular, the measure
dA gives no mass to the complement of Exit(x) (or � Exit(x)).

Proof First remark that if L r
σ = 0, by the special Markov property applied to the

domain Dr , all the sets appearing in (4.32) are empty. Hence, it suffices to show (4.32)
under N

r
x := Nx (· |L r

σ > 0). Moreover, notice that by definition we have:

{ar
i : i ∈ Ir } = Exit(x) ∩ {s ∈ [0, σ ] : ̂�s = r

}

,

and

{br
i : i ∈ Ir } = � Exit(x) ∩ {s ∈ [0, σ ] : ̂�s = r

}

.

To deduce (4.32), it is then enough to show that:

supp dL r = {ar
i : i ∈ Ir },

since the same equality will hold for {ar
i : i ∈ Ir } replaced by {br

i : i ∈ Ir }, using the
duality identity (2.21) under Nx,0.

So let us prove the previous display, andwe start showing the inclusion supp dL r ⊂
{ar

i : i ∈ Ir }. In this direction, consider s ∈ supp dL r . By the special Markov prop-
erty the set {L r

ar
i
: i ∈ Ir } is dense in [0,L r

σ ], which gives that for every ε > 0 there

exists i ∈ Ir such thatL r
(s−ε)+ < L r

ar
i
< L r

s+ε. This ensures that ar
i ∈ (s − ε, s + ε),
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due to the monotonicity of L r . As a result, the set supp dL r is contained in the
closure of {ar

i : i ∈ Ir }. We will now establish the reverse inclusion by proving that
for every j ∈ Ir , we have ar

j ∈ supp dL r . To this end, fix j ∈ Ir and note that,
given that the special Markov property ensures that all the values {L r

ar
i
: i ∈ Ir } are

distinct, it is enough to show that for every ε > 0, we can find some k ∈ Ir such that

0 < ar
j − ar

k < ε. To prove this, define Rt :=∑L r
ar
i
�t σ(W

i,r
) for t � 0 and observe

that it is a càdlàg process since R∞ � σ <∞. Now, note that by definition, for every
k ∈ Ir with ar

k < ar
j , we have:

ar
j − ar

k � RL r
ar

j
− − RL r

ar
k
− + θr

L r
ar

j

− θr
L r

ar
k
−.

Since θr is monotone, it has a countable number of discontinuities and it follows by
the special Markov property – using that θr is FDr -measurable – that all the points
{L r

ar
i
: i ∈ I} are continuity points of θr .12 Using once again the fact that the set

{L r
ar

i
: i ∈ Ir } is dense in [0,L r

σ ], it follows from our previous remark – coupled

with the fact that R is a càdlàg process – that for any ε > 0, we can find some k ∈ Ir

such that the right-hand side in the last display is bounded above by ε. This implies
that for every ε > 0 there exists k ∈ Ir such that ar

j − ε < ar
k < ar

j and we derive
that ar

j ∈ supp dL r , as wanted. As a consequence of (4.32), it follows that:

Nx,0

(∫ σ

0
dAs1s /∈Exit(x)

)

=
∫ ∞

0
dr Nx,0

(∫ σ

0
dL r

s 1s /∈Exit(x)
)

= 0,

and we deduce by duality that dA gives no mass to the complement of Exit(x) – the
same result holding for � Exit(x). ��

The next proposition establishes the connection between the constancy intervals of
̂�, the exit times from x and the excursion intervals from Dr . This is the last result
needed to characterize the support of dA.

Proposition 4.19 Nx,0–a.e., we have:

Exit(x) = � Exit(x) = {ar
i , b

r
i : r ∈ Q

∗+ and i ∈ Ir } = [0, σ ] \ C∗. (4.33)

Proof The first step consists in showing

Exit(x) ⊂ {ar
i , b

r
i : r ∈ Q

∗+ and i ∈ Ir }. (4.34)

Remark that by Lemma 4.18 the other inclusion is satisfied and still holds if we replace
Exit(x) by � Exit(x). In this direction, recall that by Lemma 4.1 the process (ρ,W )
takes values in �x . In particular, we have

Nx,0-a.e., for all q ∈ (0, σ ), {h < Hq : Wq(h) = x} = supp �q(dh), (∗)
12 Indeed, the intersection of a Poisson measure on R+ and a fixed countable subset of R+ is a.s. empty.
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where we recall that supp �q(dh) is precisely the set

{

t ∈ [0, ζq ] : �q(t + h) > �q(t) for any 0 < h < (Hq − t) or

�q(t) > �q(t − h) for any 0 < h < t
}

.

In what follows, we shall use implicitly at multiple instances the fact that a time
of right-increase (resp. left-increase) for ̂� must be a time of right-increase (resp.
left-increase) for H . We let �0 ⊂ D(R+,M f (R+) × WE ) be a measurable subset
with Nx,0(�

c
0) = 0 at which property (∗) holds for every (ρ, ω) ∈ �0 and we argue

for fixed (ρ, ω) ∈ �0. Fix t ∈ Exit(x); by definition, for any ε > 0 we can find
t < q < t + ε such that Ht < Hr for every r ∈ (t, q]. Observe that in particular,
by the snake property Wq(Ht ) = x and therefore Ht belongs to supp �q(dh). By our
choice of �0 and the identity in the previous display, it must hold either that:

(i) Ht is a time of right-increase for �q (and in particular ̂�q > �q(Ht ) = ̂�t ), or
(ii) Ht is not a time of right-increase for �q , (hence ̂�t = �q(Ht ) > �q(Ht − s),

for 0 < s < Ht ).

If (i) holds, set sk := sup{s ∈ [t, q] : ̂�s � 2−k�2k
̂�t� + 2−k} and remark that we

have sk ∈ ⋃r∈Q
∗+{ar

i , b
r
i : i ∈ Ir }, as soon as ̂�sk <

̂�q . However, this is satisfied
for k large enough. On the other hand, if (ii) holds we must have inf [t−ε,t] H < Ht

since t can not be a local infimum for H (otherwise, pH (t)would be a branching point
with label ̂Wt = x , in contradiction with Proposition 4.4). Now, the argument of case
(i) holds by working with s′k := sup{s ∈ [0, t] : ̂�s � 2−k�2k

̂�t�}. This implies
that t belongs to the closure of

⋃

r∈Q
∗+{ar

i , b
r
i : i ∈ Ir } giving (4.34). Moreover, by

duality the contention (4.34) holds replacing Exit(x) by � Exit(x), proving the first two
equalities in (4.33). Consequently, to conclude it is enough to show that:

{ar
i , b

r
i : r ∈ Q

∗+ and i ∈ Ir } ⊂ [0, σ ] \ C∗ ⊂ Exit(x) ∪ � Exit(x). (4.35)

In this direction, notice that for every r ∈ Q
∗+, under Nx,r , we have ̂�t > r for every

t ∈ (0, σ ). Now, an application of the special Markov property applied to the domain
Dr gives that:

{ar
i , b

r
i : i ∈ Ir } ⊂ [0, σ ] \ C∗, Nx,0 − a.e.,

for every r ∈ Q
∗+, and the first inclusion ⊂ in (4.35) follows. In order to obtain the

remaining inclusion, let t ∈ [0, σ ]\C∗. By definition, for every ε > 0 there exists
t − ε < t1 < t2 < t + ε such that ̂�t1 <

̂�t2 or ̂�t1 >
̂�t2 . If the first holds, then

sup{s ∈ [t − ε, t2] : ̂�s � ̂�t1} is an exit time and the other case follows by taking
inf{s ∈ [t1, t2] : ̂�s � ̂�t2}. This ensures that t is in the closure of Exit(x)∪ � Exit(x)
concluding our proof. ��
Now, we are in position to state and prove the main result of the section:
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Theorem 4.20 Fix (y, r0) ∈ E and (μ,w) ∈ �x . Under Pμ,w and Ny,r0 , we have

supp dA = Exit(x) = � Exit(x) = [0, σ ] \ C∗, (4.36)

where we recall the convention [0,∞] = [0,∞).
Proof Let us start with some simplifications, that will allow us to reduce the proof of
the theorem to establishing the result under Nx,0 and P0,x,0. First, notice that for every
r0 > 0 and y �= x , an application of the specialMarkov property applied to the domain
Dr0 , paired with the identity (4.29), entails that the desired result under P0,y,r0 orNy,r0
can be deduced directly from the same result under Nx,r0 or equivalently, under Nx,0.
Next, consider an arbitrary (μ,w) ∈ �x withμ �= 0 and set T0 := inf{t > 0 : ρt = 0}.
By the strong Markov property, the process ((ρT0+t ,W T0+t ) : t � 0) is distributed
according to P0,w(0). Therefore, the support of dA in [T0,∞) can be identified using
the characterization under P0,y,r0 for (y, r0) ∈ E . To study the support of dA on
[0, T0], recall that under P

†
μ,w the measure (2.23) is a Poisson measure with intensity

μ(dh)Nw(h)(dρ, dW ). Now, the support of dA in [0, T0] can be identified from our
result under Ny,r0 for y ∈ E , by making use of (4.30). Therefore, it suffices to prove
(4.36) under Nx,0 and P0,x,0.

To this end, we start by proving the theorem underNx,0 and remark that by Proposi-
tion4.19weonlyhave to establish thefirst equality in (4.36).Moreover, byLemma4.18
it only remains to show that under Nx,0:

supp dA ⊃ Exit(x). (4.37)

However, by Lemma 4.15 we know that Nx,0({0, σ } ∩ supp dA = ∅) = 0, and then
using that conditionally on FDr the measure M(r) is a Poisson point measure with
intensity 1[0,L r

σ ](�)d� Nx,r
(

dρ, dW
)

, we derive that:

Nx,0 − a.e., for all r ∈ Q
∗+, {ar

i , b
r
i : i ∈ Ir } ⊂ supp dA.

Consequently, Proposition 4.19 implies (4.37). Finally, let us briefly explain how
to obtain the result under P0,x,0. In this direction, under P0,x,0, denote the con-
nected components of {s ∈ R+ : Xs − Is �= 0} by

(

(αi , βi ) : i ∈ I
)

and
recall that the point measure (2.22) is a Poisson point measure with intensity
1[0,〈μ,1〉](u) du Nw(H(κuμ))(dρ, dW ). Excursion theory and our results under Nx,0,
give that, under P0,x,0, we have:

supp dA ∩ ∪i (αi , βi ) = Exit(x) ∩ ∪i (αi , βi )

= � Exit(x) ∩ ∪i (αi , βi )

= ([0, σ ] \ C∗) ∩ ∪i (αi , βi ),

αi ∈ supp dA∩Exit(x)∩([0,∞)\C∗) and βi ∈ supp dA∩ � Exit(x)∩([0,∞)\C∗) for
every i ∈ I. The desired result now follows since the set {αi : i ∈ I} and {βi : i ∈ I}
are dense in {s ∈ R+ : Xs − Is = 0}. ��
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5 The tree structure of {� ∈ TH : �� = x}
In this section, we work under the framework introduced at the beginning of Sect. 4.
Our goal now is to study the structure of the set {υ ∈ TH : ξυ = x} and to do so, we
encode it by the subordinate tree of TH with respect to the local time (Lυ : υ ∈ TH ).
In this direction, we need to briefly recall the notion of subordination of trees defined
in [24].

Subordination of trees by increasing functions. Let (T , dT , υ0) be an R-tree and
recall the standard notation �T and �T for the ancestor order and the first common
ancestor. Next, consider g : T → R+ a non-negative continuous function. We say
that g is non-decreasing if for every u, v ∈ T :

u �T v implies that g(u) � g(v).

When the later holds, we can define a pseudo-distance on T by setting

dg
T (u, v) := g(u)+ g(v)− 2 · g(u �T v), (u, v) ∈ T × T . (5.1)

The pseudo-distance dg
T induces the following equivalence relation on T : for u, v ∈ T

we write

u ∼g
T v ⇐⇒ dg

T (u, v) = 0,

and it was shown in [24] that T g := (T / ∼g
T , d

g
T , υ0) is a compact pointed R-tree,

where we still denoted the equivalency class of the root of T g by υ0. The tree T g is
called the subordinate tree of T with respect to g and we write pTg : T → T g for the
canonical projection which associates every u ∈ T with its ∼g

T –equivalency class.
Observe that any two points u, v ∈ T are identified if and only if g stays constant on
[u, v]T and consequently the subordinate tree is obtained from T by identifying in a
single point the components of T where g is constant.

Getting back to our setting, recall that under Nx,0, (Lυ : υ ∈ TH ) corresponds to
(̂�t : t � 0) in the quotient space TH = [0, σ ]/ ∼H . This entails that the local
time (Lυ : υ ∈ TH ) is a non-decreasing function on TH and we denote the induced
subordinate tree by T L

H . Recall that the exponent

˜ψ(λ) = N
(∫ σ

0
dh ψ(uλ(ξh))

)

, for λ � 0,

is the exponent of a Lévy tree by Proposition 4.7. Hence, a ˜ψ-Lévy process satisfies
(A1)–(A4) and by Corollary 4.9, the exponent ˜ψ can be written in the following form:

˜ψ(λ) := α̃λ+
∫

(0,∞)
π̃ (dx)(exp(−λx)− 1+ λx),
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where α̃ = N
(

1− exp(−ασ)) and π̃ is a sigma-finite measure on R+ \ {0} satisfying
∫

(0,∞) π̃ (dx)(x ∧ x2) <∞. We will also use the notation ˜H and ˜N introduced prior to

(4.21) for the height process and the excursion measure of a ˜ψ–Lévy tree. Finally, we
recall that A stands for the additive functional introduced in Proposition 4.10 and we
denote its right inverse by A−1

t := inf{s � 0 : As > t}, with the convention A−1
t = σ

for every t � A∞ = Aσ . Remark that the constancy intervals of A in [0, σ ] are the
connected components of [0, σ ]\supp dA, which by Theorem 4.20 are precisely the
connected components of C∗ – the constancy intervals of the process (̂�t : t ∈ [0, σ ]).
In particular, (̂�A−1

t
: t � 0) is a continuous non-negative process, with lifetime A∞.

We can now state the main result of this section:

Theorem 5.1 The following properties hold:

(i) Under Nx,0, the subordinate tree of TH with respect to the local time L, that
we denote by T L

H , is isometric to the tree coded by the continuous function
(̂�A−1

t
: t �0).

(ii) Moreover, we have the equality in distribution

(

(˜Ht : t � 0), under ˜N
)

(d)=
(

(

̂�A−1
t

: t � 0
)

, under Nx,0

)

. (5.2)

In particular, T L
H is a Lévy tree with exponent ˜ψ .

Remark 5.2 Let us mention that whenψ(λ) = λ2/2 and the underlying spatial motion
ξ is a Brownian motion in R, the previous theorem implies that under N0,0 the subor-
dinate tree of TH with respect to the local time L at 0 is a Lévy tree and – as a direct
consequence of the scaling invariance of the Brownian motion – its exponent is of the
form ˜ψ(λ) = cλ3/2, for some constant c > 0. This result was already obtained by
other methods in [24, Theorem 2].

We stress that the key result in (ii) is the identity in distribution (5.2): it entails
that not only the function (̂�A−1

t
: t � 0) encodes the subordinate tree, but it is also

the height process of a Lévy tree. The fact that T L
H is a ˜ψ-Lévy tree is then a direct

consequence of (i) and (5.2). By a straightforward application of excursion theory one
can deduce a version under P0,x,0 of Theorem 5.1, where now T L

H is a Lévy forest
with exponent ˜ψ . The details are left to the reader.

The rest of the section is organised as follows: The section is devoted to the proof
of Theorem 5.1. In Section 5.1 we start by showing (i) and we present the strategy
that we follow to prove (ii). The proof of (ii) relies in all the machinery developed in
previous sections combined with standard properties of Poisson point measures and
is the content of Sect. 5.2.

5.1 The height process of the subordinate tree

In this brief section, we establish the first claim of Theorem 5.1 and address some
essential aspects needed for the proof of the second part of Theorem 5.1. For every
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u ∈ TH , recall that Lu := ̂�s where s is any element of p−1
H ({u}) (note that the

definition is non-ambiguous by the snake property) and that L is non-decreasing on
TH . To simplify notation, we set:

H A
t := ̂�A−1

t
, t � 0,

which is a continuous process – as it was already mentioned in the discussion before
Theorem 5.1. Let us start with the proof of Theorem 5.1-(i).

Proof of Theorem 5.1-(i) Our goal is to show that, under Nx,0, the trees TH A and T L
H

are isometric. In this direction, we start by introducing the pseudo-distance:

˜d(s, t) := ̂�t + ̂�s − 2 · min
s∧t,s∨t

̂� , s, t ∈ [0, σ ],

and we write s ≈ t if and only if ˜d(s, t) = 0. By the snake property, we have s ≈ t
for every s ∼H t . Moreover, since L is increasing on TH , we get

˜d(s, t) = LpH (t) + LpH (s) − 2 · LpH (s)�TH pH (t),

for every s, t ∈ [0, σ ]. The right-hand side of the previous display is exactly the
definition of the pseudo-distance associated with the subordinate tree T L

H between
pH (s) and pH (t) given in (5.1). We deduce that ([0, σ ]/ ≈,˜d, 0) is isometric to T L

H .
It remains to show that ([0, σ ]/ ≈,˜d, 0) is also isometric to (TH A , dH A , 0). In order
to prove it, we notice that:

˜d(A−1
r1 , A−1

r2 ) = dH A (r1, r2),

for every r1, r2 ∈ [0, Aσ ]. Furthermore, for every t ∈ [0, σ ] there exists r ∈ [0, Aσ ]
such that A−1

r− � t � A−1
r since by Lemma 4.15 the points 0 and σ are in the support

of dA. Moreover we have ˜d(A−1
r , t) = 0, since by Theorem 4.20 the process ̂� stays

constant on every interval of the form [A−1
r−, A−1

r ]. This implies that [0, σ ]/ ≈ =
{A−1

r : r ∈ [0, A∞]}/ ≈ and we deduce by the previous display that ([0, σ ]/ ≈,˜d, 0)
and (TH A , dH A , 0) are isometric giving the desired result. ��

The main difficulty to establish Theorem 5.1 (ii) comes from the fact that ˜H is not
a Markov process. To circumvent this, we are going to use the notion of marked trees
embedded in a function.

Marked trees embedded in a function. A marked tree is a pair T := (T, {hv : v ∈
T}), where T is a finite rooted ordered tree and hv � 0 for every v ∈ T – the number hv
is called the label of the individual v. For completeness let us give the formal definition
of a rooted ordered tree. First, introduce Ulam’s tree:

U :=
∞
⋃

n=0

{1, 2, ...}n
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where by convention {1, 2, ...}0 = ∅. If u = (u1, ...um) and v = (v1, ..., vn) belong
to U , we write uv for the concatenation of u and v, viz. (u1, ...um, v1, ..., vn). In
particular, we have u∅ = ∅u = u. A (finite) rooted ordered tree T is a finite subset
of U such that:

(i) ∅ ∈ T;
(ii) If v ∈ T and v = u j for some u ∈ U and j ∈ {1, 2, ...}, then u ∈ T;
(iii) For every u ∈ T, there exists a number ku(T) � 0 such that u j ∈ T if and only if

1 � j � ku(T).

If u ∈ T can be written as u = v j for some v ∈ T, 1 � j � kv(T), we say that v is
the parent of u. More generally, if u = vy for some v ∈ T and y ∈ U with y �= ∅, we
say that v is an ancestor of u or equivalently that u is a descendant of v. On the other
hand, if u ∈ T satisfies that ku(T) = 0, u is called a leaf. The element ∅ is interpreted
as the root of the tree and if v is a vertex of T, the branch connecting the root and v is
the set of prefixes of v – considered with its corresponding family of labels.

Let us also introduce the concatenation of marked trees. If T1, ...,Tk are k marked
trees and h is a non-negative real number, we write [T1, ...,Tk]h for the marked tree
defined as follows. The label of∅ is h, k∅ = k, and for 1 � j � k the point ju belongs
to the tree structure of [T1, ...,Tk]h if and only if u ∈ T j and its label is the label of
u in T j . For convenience, we will identity a marked tree T := (T, {hv : v ∈ T}) with
the set {(v, hv) : v ∈ T}.
We are now in position to define the embedded marked tree associated with a continu-
ous function (e(t))t∈[a,b] and a given finite collection of times.We fix a finite sequence
of times a � t1 � . . . tn � b and we recall the notation me(s, t) = inf [s∧t,s∨t] e. The
embedded tree associated with themarks t1, . . . , tn and the function e, θ(e, t1, . . . , tn),
is defined inductively, according to the following steps:

• If n = 1, set θ(e, t1) = (∅, {e(t1)}).
• If n � 2, suppose that we know how to construct marked trees with less than

n marks. Let i1, . . . , ik be the distinct indices satisfying that me(tiq , tiq+1) =
me(t1, tn), and define the following restrictions for 1 � q � k − 1

e(0)(t) := (e(t) : t ∈ [t1, ti1 ]), e(q)(t) := (e(t) : t ∈ [tiq+1, tiq+1 ]),
e(k)(t) := (e(t) : t ∈ [tik+1, tn]).

Next, consider the associated finite labelled trees,

θ(e(0), t1, . . . , ti1), θ(e
(q), tiq+1, . . . , tiq+1), θ(e

(k), tik+1, . . . , tn),

for 1 � q � k − 1,

and finally, concatenate them with a common ancestor with label me(t1, tn), by
setting

θ(e, t1, . . . , tn) := [θ(e(0), t1, . . . , ti1), . . . , θ(e(k), tik+1, . . . , tn)]me(t1,tn),

and completing the recursion.
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We say that the label hv is the height of v in θ(e, t1, . . . , tn) = (T, {hv : v ∈ T}).
Let us justify this terminology. First assume that e(0) = 0 and consider Te the compact
R–tree induced by e. Then if v1, . . . , vn are the leaves of T in lexicographic order,
we have (hv1, . . . , hvn ) = (e(t1), . . . , e(tn)). Moreover, if we write vi �T v j for the
common ancestor of vi and v j in T, it holds that hv j �Tvi = inf [ti∧t j ,ti∨t j ] e.13

Statements and main steps for the proof of Theorem 5.1 (ii). Our argument relies
in identifying the distribution of the discrete embedded tree associated with (̂�A−1

t
:

0 � t � A∞)when the collection ofmarks are Poissonian. In this direction, we denote
the law of a Poisson process (Pt : t � 0) with intensity λ by Qλ and we work with
the pair (H A

t ,Pt )t�A∞ , under the product measure Nx,0 ⊗ Qλ. For convenience, we
denote the law of (ρ,W ,P·∧A∞) under Nx,0⊗ Qλ by N

λ
x,0 and we let 0 � t1 < · · · <

tM � A∞ be the jumping times of (Pt ) falling in the excursion interval [0, A∞],
where M := PA∞ . Finally, consider the associated embedded tree

TA := θ(H A, t1, . . . , tM
)

, under N
λ
x,0( · |M � 1).

Remark that the probability measure N
λ
x,0( · |M � 1) is well defined since by Propo-

sition 4.13 we have

N
λ
x,0 (M � 1) = Nx,0 (1− exp(−λA∞)) = ˜ψ−1(λ). (5.3)

Our goal is to show that TA is distributed as the discrete embedded tree of a ˜ψ-Lévy
tree associated with Poissonianmarks with intensity λ. To state this formally, recall the
notation ˜N for the excursion measure of a ˜ψ-Lévy process, and that ˜H stands for the
associated height process. We write ˜Nλ for the law of (ρ̃,P·∧σ

˜H
) under ˜N ⊗ Qλ and

remark that ˜M := Pσ
˜H
is the number of Poissonian marks in [0, σ

˜H ]. For simplicity,
we denote the jumping times of P under ˜Nλ by t1, . . . , t˜M .

Proposition 5.3 The discrete tree TA under N
λ
x,0( · |M � 1) has the same distribution

as

˜T := θ( ˜H , t1, . . . , t˜M
)

under ˜Nλ( · |˜M � 1).

The proof of Proposition 5.3 is rather technical and will be postponed to Sect. 5.2.
The reason behind considering Poissonian marks to identify the distribution of H A is
to take advantage of the memoryless of Poissonian marks; this flexibility will allow
us to make extensive use of the Markov property and excursion theory. Let us now
explain how to deduce Theorem 5.1 (ii) from Proposition 5.3.

Proof of Theorem 5.1 (ii) First remark that the fact that T L
H is a ˜ψ-Lévy tree is a direct

consequence of Theorem 5.1 (i) and (5.2). To conclude it remains to prove (5.2). In
this direction, recall from Proposition 4.13 and the discussion after it, that A∞ under
Nx,0 and σ

˜H under ˜N have the same distribution. This ensures that, up to enlarging

13 The definition of θ(e, t1, . . . , tn) is directly connected with the classical notion of marginals trees –
where the label of a point is the increment between its height and the height of its parent.
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the measure space, we can define the height process ˜H under the measureNx,0 in such
a way that its lifetime is precisely A∞, viz. σ

˜H = A∞. Then, for every λ > 0 and
under N

λ
x,0, we might and will consider the same Poisson point process (Pt : t � 0)

to mark ˜H and H A. Since M coincides with ˜M , we will no longer make use of the
latter notation. We stress that the marks t1, . . . , tM are now being used to mark both
processes H A and ˜H . In the rest of the proof, we work with this coupling. Our goal
now is to establish that for every measurable bounded function F : C(R+,R) �→ R+
we have

Nx,0
(

F(˜H)
) = Nx,0

(

F(H A)
)

(5.4)

whereC(R+,R) stands for the space of continuous functions fromR+ intoR endowed
with the topology of uniform convergence on compact sets. For every h ∈ C(R+,R),
we use the standard notation σh := sup{t � 0 : h(t) �= 0}. Since Lemma 4.15 entails
that Nx,0(A∞ = 0) = 0, the usual approximation arguments and an application of the
monotone convergence theorem yield that it suffices to prove (5.4) for an arbitrary
continuous function F vanishing in the complement of {h ∈ C(R+,R) : σh > ε},
for some arbitrary ε > 0. Let us now proceed with the proof of (5.4) under our
standing assumptions on F . To this end, fix an arbitrary λ > 0 and notice that, under
N
λ
x,0( · |M � 1), the marked trees TA, ˜T are ordered trees – the order of the vertices

being the one induced by the marks. Recall that for every 1 � i � M , the variables
H A
ti
, ˜Hti are the respective labels of the i-th leaf, with respect to the lexicographical

order, in TA and ˜T. Consequently, the identity TA (d)= ˜T under N
λ
x,0( · |M � 1) of

Proposition 5.3 yields the following equality in distribution under N
λ
x,0( · |M � 1),

(

M, ˜Ht1 , . . . ,
˜HtM

) (d)=
(

M, H A
t1
, . . . , H A

tM

)

.

Remark that, conditionally on A∞, (Pt : t � A∞) is independent of ˜H and H A,
and that the random variable M is Poisson with intensity (λA∞). Let (Ui : i � 1)
be a collection of independent identically distributed random variables uniformly dis-
tributed in [0, A∞], conditionally on (ρ,W , ˜H). By conditioning on A∞, we deduce
that for any m � 1 and any measurable function f : R

m �→ R+, we have

N
λ
x,0

(

f (˜HU m
(1)
, . . . , ˜HU m

(m)
)
(λA∞)m

m! exp
(− λA∞

)

)

= N
λ
x,0

(

f (H A
U m
(1)
, . . . , H A

U m
(m)
)
(λA∞)m

m! exp
(− λA∞

)

)

,

where (U m
(1), . . . ,U

m
(m)) stands for the order statistics of {U1, . . . ,Um}. By considering

a proper extension of the measure Nx,0 - to ensure the existence of the sequence
(Ui : i � 1) - the identity in the previous display still holds if we replace N

λ
x,0 by

Nx,0. Moreover, since such identity is satisfied for every λ > 0, it readily follows by
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injectivity of the Laplace transform that

(

A∞, ˜HU m
(1)
, . . . , ˜HU m

(m)

)

(d)=
(

A∞, H A
U m
(1)
, . . . , H A

U m
(m)

)

,

under Nx,0, for every m � 1. Denote the unique continuous function vanishing on
R+\(0, A∞) and linearly interpolating between the points {(A∞ · im−1, ˜H

U (m)
i
) : i ∈

{1, . . . ,m}}∪{(0, 0), (A∞, 0)} by (˜Hm
t : t � 0). Similarly, let H A,m be the analogous

function defined by replacing ˜H by H A. The identity in distribution in the last display
ensures that

Nx,0
(

F(˜Hm)
) = Nx,0

(

F(H A,m)
)

.

Furthermore, since for every fixed rational t ∈ [0, 1] we have the a.e. pointwise
convergenceU m�tm� → t A∞, we infer byDini’s theorem that sup{|U m�tm�−A∞·t | : t ∈
[0, 1]} → 0 a.e. It is now straightforward to derive by uniform continuity of H A and
˜H the a.e. convergences ˜Hm → ˜H and H A,m → H A as m ↑ ∞ in C(R+,R).
Finally, since F vanishes in the complement of the finite measure event {A∞ > ε},
an application of the dominated convergence theorem gives (5.4) by taking the limit
as m ↑ ∞ in the previous display. ��

5.2 Trees embedded in the subordinate tree

This section is devoted to the proof of Proposition 5.3. In short, the idea is to decompose
inductively˜T andTA starting from their respective “left-most branches” – viz. the path
connecting the root ∅ and the first leaf with the corresponding labels – and to show
that they have the same law. Next, if we remove the left-most branch of˜T and TA, we
are left with two ordered collections of independent subtrees and we shall establish
that they have respectively the same law as˜T and TA. This will allow us to iterate this
left-most branch decomposition in such a way that the branches discovered at step n
in˜T and TA have the same law. Proposition 5.3 will follow since this procedure leads
respectively to discover˜T and TA. In order to state this formally let us introduce some
notation.

IfT := (T, (hv : v ∈ T)) is a discrete labelled tree and n � 0, we letT(n) be the set of
all couples (u, hu) ∈ T such that u has at most n entries in {2, 3, ...}. In particularT(0)
is the branch connecting the root and the first leaf. Next, we introduce the collection

S(T) := ((hv, kv(T)− 1) : v is a vertex of T(0)
)

,

where the elements are listed in increasing orderwith respect to the height andwe recall
that kv(T) stands for the number of children of v. For simplicity, set R := #T(0)− 1,
write v1, ..., vR+1 for the vertices of T(0) in lexicographic order and observe that v1
is the root while vR+1 is the first leaf – in particular kvR+1(T) = 0. Heuristically, S(T)
– or more precisely the measure

∑

i (kvi (T) − 1)δhvi
– is a discrete version of the
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exploration process when visiting the first leaf of T and for this reason S(T) will be
called the left-most spine of T. Now, for every 1 � j � R, set

K j (T) :=
j
∑

i=1

(kvi (T)− 1),

with the convention K0(T) = 0 and remark that K (T) := K R(T) stands for the
number of subtrees attached “to the right” of T(0) in T. To define these subtrees when
K (T) � 1, we need to introduce the following: for every 1 � i � K R(T) = K (T),
let a(i) be the unique index such that Ka(i)−1(T) < i � Ka(i)(T). Then, we introduce
the marked tree

Ti :=
{

(u, h′
u) :

(

va(i)(Ka(i) + 2− i)u, hva(i) + h′
u

) ∈ T
}

. (5.5)

Remark that the labels in each subtree Ti have been shifted by their relative height in
S(T) and that the collection (Ti : 1 ≤ i � K (T)) is listed in counterclockwise order.

We now apply this decomposition to˜T and TA. For simplicity, we write ˜K := K (˜T)
(resp. K := K (TA)) for the number of subtrees attached to the right of ˜T(0) (resp.
TA(0)). When ˜K � 1 (resp. K � 1), we let˜Ti (resp. TA

i ) be the marked trees defined
by (5.5) using˜T (resp.TA). Proposition 5.3 can now be reduced to the following result:

Proposition 5.4 (i) We have

(

S(˜T) : ˜Nλ(·|˜M � 1)
)

(d)=
(

S(TA) : N
λ
x,0(·|M � 1)

)

.

(ii) Under ˜Nλ(· |˜M � 1, ˜K ) and conditionally on S(˜T), the subtrees ˜T1, . . .˜T˜K are
distributed as ˜K independent copies distributed as˜T under ˜Nλ(· |˜M � 1). Similarly,
under N

λ
x,0( · |M � 1, K ) and conditionally on S(TA), the subtrees TA

1 , . . . ,T
A
K are

distributed as K independent copies distributed as TA under N
λ
x,0( · |M � 1).

We stress that the notations ˜Nλ(· |˜M � 1, ˜K ), N
λ
x,0( · |M � 1, K ) stand for the

conditional expectation with respect to ˜K resp. K under the probability measures
˜Nλ( · |˜M � 1) resp. N

λ
x,0( · |M � 1). Let us explain why Proposition 5.3 is a conse-

quence of the previous result.

Proof of Proposition 5.3 We are going to show by induction that for every n � 0:

˜T(n) under ˜Nλ(· |˜M � 1) is distributed as TA(n) under N
λ
x,0(·|M � 1).

(5.6)

First notice that Proposition 5.4 - (i) gives the previous identity in the case n = 0.
Assume now that (5.6) holds for n � 0 and let us prove the identity for n + 1.
First, remark that it is enough to argue with ˜T(n + 1) under ˜Nλ(· |˜M � 1, ˜K ) and
TA(n + 1) under N

λ
x,0(·|M � 1, K ) – since by Proposition 5.4, the variable ˜K under
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˜Nλ(· |˜M � 1) is distributed as K under N
λ
x,0(·|M � 1). Next, we see that ˜T(n + 1)

can be obtained by gluing the trees ˜Ti (n) to ˜T(0) at their respective positions after
translating the labels by the associated heights. Moreover, these positions and heights
are precisely the entries of S(˜T). Since the same discussion holds when replacing ˜T
by TA, the case n + 1 follows by Proposition 5.4 and the case n. Finally, since the
trees˜T and TA are finite, (5.6) implies the desired result. ��

Our goal now is to prove Proposition 5.4. In this direction, we will first encode
the spines S(˜T),S(TA) as well as the corresponding subtrees ˜Ti , TA

i in terms of ρ̃,
(ρ,W ) and P . This will allow us to identify their law by making use of the machinery
developed in previous sections. While S(˜T) can be constructed directly in terms of
(ρ̃t1+t : t � 0) and the Poisson marks, the construction of S(TA) is more technical.
Roughly speaking, the strategy consists in defining in terms of (ρ,W ) the exploration
process for the subordinate tree at time t1, say ρ∗t1 , and then show – see Lemma 5.8
below – that ρ̃t1 and ρ

∗
t1
have the same distribution. Needless to say that this statement

is informal, since we have not yet shown that the subordinate tree is a Lévy tree. We
will then deduce (i) by considering S(˜T), S(TA) and conditioning respectively on ρ̃t1
and ρ∗t1 , Point (ii) will then follow easily by construction. For simplicity, from now on
we write t := t1.

We first start working under ˜Nλ(· |M � 1) and we introduce the following notation:
let
(

(̃αi ,˜βi ) : i ∈ N
)

be the connected components of the open set

{

s � t : ˜Hs > inf[t,s]
˜H
}

.

As usual, we write ρ̃ i for the associated subtrajectory of the exploration process in
the interval [̃αi ,˜βi ]. We also consider ˜Hi := (˜H(̃αi+s)∧˜βi

− ˜Hα̃i : s � 0), ˜P i :=
(˜P(̃αi+t)∧˜βi

− ˜Pα̃i : t � 0) and note that in particular we have H(ρ̃ i ) = ˜Hi . Write
˜hi := ˜H (̃αi ), and consider the marked measure:

˜M :=
∑

i∈N

δ(˜hi ,ρ̃
i ,˜P i ).

By the Markov property and (2.23), conditionally on Ft, the measure ˜M is a Poisson
point measure with intensity ρ̃t(dh)˜Nλ(dρ, dP). Now we can identify S(˜T) in terms
of functionals of ˜M and ˜Ht. First, set (˜h◦

p : 1 � p � ˜R) the collection of the different

heights – in increasing order – among (˜hi : i ∈ N) at which ˜P i
σ(ρ̃ i )

� 1. In particular,
˜R gives the number of different heights˜h j at which we can find at least one marked
excursion above the running infimum of (˜Ht+t : t � 0). Next, we write ˜M◦

p for the

number of atoms at level ˜h◦
p in ˜M with at least one Poissonian mark. Now, remark

that by construction we have:

S(˜T) = ((˜h◦
1,
˜M◦
1 ), . . . , (

˜h◦̃
R
, ˜M ◦̃

R
), (˜Ht,−1)

)

, (5.7)
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and in particular ˜K = ∑
˜R
i=1

˜M◦
i . Finally, for later use denote the corresponding

marked excursions arranged in counterclockwise order by ˜E := ((ρ̃q◦ , ˜Hq◦ , ˜Pq◦ ) : 1 �
q � ˜K ). Notice that the subtrees (˜Ti : 1 ≤ i � ˜K ) are precisely the respective
embedded marked trees associated with ((˜Hq◦ , ˜Pq◦ ) : 1 � q � ˜K ).

The main step remaining in our analysis under ˜Nλ(· |˜M � 1) consists in charac-
terizing the law of (˜Ht, ρ̃t), and this is the content of the following lemma. Since ˜M
conditionally onFt is a Poisson point measure with intensity ρ̃t(dh)˜Nλ(dρ, dP), this
will suffice to identify the distribution of S(˜T). In this direction, Corollary 4.9 ensures
that the measure ρ̃t is purely atomic and consequently by (2.4) it is of the form:

ρ̃t :=
∑

i∈N

˜�i · δ˜hi .

We stress that we have {˜hi : i ∈ N} = {˜hi : i ∈ N} – even though the latter set has
repeated elements.

Lemma 5.5 Under ˜Nλ(·| ˜M � 1), the random variable ˜Ht is exponentially distributed
with intensity λ/˜ψ−1(λ). Moreover, conditionally on ˜Ht, the measure

∑

δ(˜hi ,˜�i )
is a

Poisson point measure with intensity 1[0,˜Ht](dh)̃ν(dz), where ν̃(dz) is the measure
supported on R+ characterized by:

∫

ν̃(dz)
(

1− exp(−pz)
) = ˜ψ(p)− λ

p − ˜ψ−1(λ)
− λ

˜ψ−1(λ)
, p � 0. (5.8)

Proof Recall that by Proposition 4.13, we have ˜ψ−1(λ) = ˜N (1 − exp(−λσ)) =
˜Nλ(˜M � 1). Consider two measurable functions g : R+ �→ R+, F : M f (R+) �→
R+ and remark that

˜Nλ
(

g(˜Ht)F(ρ̃t)1{˜M�1}
) = λ · ˜N(

∫ σ

0
ds exp(−λs)g(˜Hs)F(ρ̃s)

)

.

By duality (2.21) and the Markov property, the previous expression can be written in
the form:

λ · ˜N(
∫ σ

0
ds g(˜Hs)F (̃ηs) exp(−λ(σ − s))

)

= λ · ˜N(
∫ σ

0
ds g(˜Hs)F (̃ηs)˜Eρ̃s [exp(−λσ)]

)

= λ · ˜N(
∫ σ

0
ds g(˜Hs)F (̃ηs) exp(−˜ψ−1(λ)〈ρ̃s, 1〉)

)

,

where in the last line we use the identity ˜ψ−1(λ) = ˜N (1 − exp(−λσ)). Consider
under P0 the pair of subordinators (˜U (1), ˜U (2))with Laplace exponent (2.24), defined
replacing ψ by ˜ψ , and denote its Lévy measure by γ̃ (du1, du2). We stress that since
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˜ψ does not have Brownian part, the subordinators (˜U (1), ˜U (2)) does not have drift.
The many-to-one formula (2.25) applied to ˜ψ gives:

˜Nλ
(

g(˜Ht)F(ρ̃t)
∣

∣ ˜M � 1
)

= λ

˜ψ−1(λ)

∫ ∞

0
da exp(−α̃a)g(a)E0[F(1[0,a]d˜U (1)) exp(−˜ψ−1(λ)˜U (2)

a )
]

. (5.9)

We shall now deduce from the later identity that the pair
(

˜Ht,
∑

δ(˜hi ,˜�i )

)

has the
desired distribution. In this direction, observe that since ρ takes values in Mp(R+) ⊂
M f (R+), the subspace of finite atomic measures in R+, we can and will consider
in the last display functionals F vanishing in the complement of Mp(R+).14 Now let
f : R

2+ → R+ be a measurable function satisfying f (h, 0) = 0, for every h � 0. By
(5.9) and our previous discussion, we derive that

˜Nλ
(

g(˜Ht) exp
(−

∑

i∈N

f (˜hi ,˜�i )
)|˜M � 1

)

= λ

˜ψ−1(λ)

∫ ∞
0

da g(a) exp(−α̃a)E0
[

exp
(

−
∑

h�a

(

f (h,�˜U (1)h )+ ˜ψ−1(λ)�˜U (2)h

)

)]

.

(5.10)

Moreover, by the exponential formula it follows that the expectation under E0 in the
previous display equals

exp
(

−
∫ a

0
dh
∫

γ̃ (du1, du2)
(

1− exp(− f (h, u1)− ˜ψ−1(λ)u2)
)

)

,

and notice that we can write:

∫

γ̃ (du1, du2)
(

1− exp(− f (h, u1)− ˜ψ−1(λ)u2)
)

=
∫

γ̃ (du1, du2) exp(−˜ψ−1(λ)u2)
(

1− exp(− f (h, u1))
)

+
∫

γ̃ (du1, du2)
(

1− exp(−˜ψ−1(λ)u2)
)

.

To simplify this expression, introduce the measure γ̃ ′(du1) := ∫

u2∈R
γ̃ (du1, du2)

exp(−˜ψ−1(λ)u2) and observe that (2.24) entails

∫

γ̃ (du1, du2)(1− exp(−˜ψ−1(λ)u2)) = λ

˜ψ−1(λ)
− α̃.

14 Mp(R+) is a measurable subset of M f (R+), see e.g. Lemma 1.6 in [18]. Moreover, observe that
the law of ρ in Mp(R+) characterizes its law in M f (R+) since Mp(R+) is equipped with the trace
sigma-field.
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We deduce that (5.10) can be written in the following form:

λ

˜ψ−1(λ)

∫ ∞
0

da g(a) exp(− λ

˜ψ−1(λ)
a) exp

(

−
∫ a

0
dh
∫

γ̃ ′(du1)
(

1− exp
(− f (h, u1)

)

))

,

and to conclude it suffices to remark that γ̃ ′ = ν̃, since by (2.24) we have

∫

γ̃ ′(du1)
(

1− exp(−pu1)
)

=
∫

γ̃ (du1, du2)
(

exp(−˜ψ−1(λ)u2)− exp(−pu1 − ˜ψ−1(λ)u2)
)

= ˜ψ(p)− λ
p − ˜ψ−1(λ)

− λ

˜ψ−1(λ)
,

for every p � 0. ��

We now turn our attention to the other side of the picture, and we now work under
N
λ
x,0(·|M � 1). The objective is to obtain analogue results for the spine S(TA). In this

direction, recall the notation Gλ := ˜ψ−1(λ) and we start with the following technical
lemma characterizing the law of (ρ,W ) at time A−1

t .

Lemma 5.6 For any non-negative measurable function f in M f (R+)×WE , we have:

N
λ
x,0

(

f (ρA−1
t
,W A−1

t
)1{M�1}

)

= λ
∫ ∞

0
da E0 ⊗�x

(

exp(−ατa) f (Jτa , (ξt ,Lt )t�τa ) exp
(−
∫ τa

0

qJτa (dh) uGλ(ξh)
)

)

.

Proof Since {M � 1} = {t � A∞}, we have:

N
λ
x,0

(

f (ρA−1
t
,W A−1

t
)1{M�1}

)

= λ · Nx,0

(

∫ A∞

0
ds f (ρA−1

s
,W A−1

s
) exp(−λs)

)

= λ · Nx,0

(∫ σ

0
dAs f (ρs ,W s) exp(−λAs)

)

,

and by a change of variable, the previous display equals

−λ · Nx,0

(

∫ σ

0
dAσ−s f (ρσ−s,W σ−s) exp(−λAσ−s)

)

.

Moreover, by time reversal (2.21) and the additivity of A, we know that:

(ρ(σ−s)−,W σ−s, Aσ−s : 0 � s � σ)
(d)= (ηs,W s, Aσ − As : 0 � s � σ),
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and we remark that {s ∈ [0, σ ] : ρs �= ρs−} ⊂ {s ∈ [0, σ ] : ρs({Hs}) > 0} which has
null dA measure Nx,0– a.e by the many-to-one formula of Lemma 4.11. This implies:

−Nx,0

(∫ σ

0
dAσ−s f (ρσ−s,W σ−s) exp(−λAσ−s)

)

= Nx,0

(∫ σ

0
dAs f (ηs,W s) exp(−λ

∫ σ

s
dAs)

)

.

Next, by making use of the strong Markov property, we derive that

N
λ
x,0

(

f (ρA−1
t
,W A−1

t
)1{M�1}

)

= λ · Nx,0

(∫ σ

0
dAs f (ηs,W s) exp

(− λ
∫ σ

s
dAs

)

)

= λ · Nx,0

(∫ σ

0
dAs f (ηs,W s)E

†
ρs ,W s

[

exp
(− λ

∫ σ

0
dAs

)

]

)

= λ · Nx,0

(∫ σ

0
dAs f (ηs,W s) exp

(

−
∫

ρs(dh) uGλ(Ws(h))
)

)

,

where in the last line we used Proposition 4.13. The statement of the lemma now

follows applying (4.27) and recalling that (J∞, qJ∞)
(d)= ( qJ∞, J∞), under P0. ��

For simplicity, in the rest of the section we write:

(ρA
t ,W

A
t ) := (ρA−1

t
,W A−1

t
),

and W
A
t := (W A

t ,�
A
t ) – remark that in particular we have H A

t = ̂�A
t . Let us now

decompose W
A
t in terms of its excursion intervals away from x . To be more precise,

we need to introduce some notation. For every r > 0 and w := (w, �) ∈ WE , we set:

τ+r (w) := inf
{

h � 0 : �(h) > r
}

.

Remark that since � is continuous, r �→ τ+r (w) is càdlàg in [0,̂�) and we write
τ+r−(w) for the left limit of τ+(w) at r ∈ [0,̂�], with the convention τ+0−(w) = τ+0 (w).
Moreover, τ(w) and τ+(w) are related by the relation τr (w) = τ+r−(w). Similarly
and with analogous conventions, under �y,0 for y ∈ E we will write τ+r (ξ) :=
inf{t � 0 : Lt > r} for every r � 0, and observe that a.s. for every r � 0 we have
τ+r−(ξ) = τr (ξ). The advantage of working with τ+(ξ) instead of τ(ξ) is that, under
�x,0, the process τ+(ξ) is a subordinator. Moreover, by Theorem 8 in [4, Chapter IV],
its Lévy-Itô decomposition is given by

τ+r (ξ) =
∑

s�r

�τ+s (ξ), r � 0,

123



A. Riera, A. Rosales-Ortiz

since (H3) ensures that the process τ+(ξ) does not have drift part – equivalently
τ+(ξ) is purely discontinuous. For simplicity, when there is no risk of confusion the
dependency on ξ is dropped. For background on the Lévy-Itô decomposition we refer
to Section 1 in [4, Chapter I].

Getting back to our discussion, under N
λ
x,0(· |M � 1), let (r j : j ∈ J ) be an

enumeration of the jumping times of the càdlàg process (τ+r (W
A
t ) : 0 � r < H A

t ) –

for technical reasons the indexing is assumed to be measurable with respect to W
A
t .

15

For each j ∈ J , set

W
A, j
t :=

(

(

W A
t

(

h + τr j (W
A
t )
)

,�A
t

(

h + τr j (W
A
t )
)−�A

t (τr j

(

W
A
t )
)) : h ∈ [0, τ+r j

(W
A
t )− τr j (W

A
t )]
)

,

and

〈ρA, j
t , f 〉 :=

∫

ρA
t (dh) f (h − τr j (W

A
t ))1{τr j (W

A
t )<h<τ+r j (W

A
t )}.

The first coordinates of the family (W
A, j
t : j ∈ J ) correspond to the excur-

sion of W A
t away from x while the second coordinate is identically zero. We

also stress that since (x, 0) ∈ �x , by Lemma 4.1 the support of ρA
t is

included in
⋃

j∈J (τr j (W
A
t ), τ

+
r j
(W

A
t )). Our goal now is to identify the law of

∑

j∈J δ(r j ,ρ
A, j
t ,W A, j

t )
. As we shall see, the restriction to the first and last coordinates

of this measure is, roughly speaking, a biased version of the excursion point mea-
sure of ξ under �x,0. More precisely, let (E0 ⊗ N )∗(dJ , dξ) be the measure on
M f (R+)⊗ D(R+, E) defined by

(E0 ⊗N )∗
[

F(J , ξ)
] := E0 ⊗N

[

exp
(−

∫

qJσ (dh)uGλ(ξh)− ασ
)

F(Jσ , ξ)
]

.

Lemma 5.7 Under N
λ
x,0(·|M � 1), the random variable H A

t is exponentially dis-

tributed with parameter λ/ψ−1(λ). Moreover, conditionally on H A
t , the measure:

∑

j∈J
δ
(r j ,ρ

A, j
t ,W A, j

t )
,

is a Poisson point measure with intensity 1[0,H A
t ](r)dr(E0 ⊗N )∗(dJ , dξ).

15 Observe that for every 0 < a < b � ∞, there is a finite number of excursions with duration falling in
(a, b], and therefore this collection can be enumerated using the temporal order.

123



The structure of the local time...

Proof First, we fix twomeasurable functions g : R+ �→ R+ and f : R+×M f (R+)×
D(R+, E) �→ R+. The statement of the lemma will follow by establishing that:

N
λ
x,0

(

g(H A
t ) exp(−

∑

j∈J
f (r j , ρ

A, j
t ,W A, j

t )) | M � 1
)

= λ

˜ψ−1(λ)

∫ ∞

0
dr exp

(− r · λ

˜ψ−1(λ)

)

g(r)

· exp
(

−
∫ r

0
ds (E0 ⊗N )∗

[

1− exp
(− f (s, J , ξ)

)]

)

. (5.11)

In this direction we recall from (5.3) the identity ˜ψ−1(λ) = N
λ
x,0

(

M � 1) and, to
simplify notation, for every μ ∈ M(R+) and a, b � 0, we write φ(μ, a, b) for the
measure ν defined by:

∫

ν(dh)F(h) =
∫

(a,b)
μ(dh)F(h − a).

Next, under �x,0, denote the excursion point measure of ξ by
∑

j δ(r j ,ξ
j ). Now an

application of Lemma 5.6 gives

N
λ
x,0

(

g(H A
t ) exp(−

∑

j∈J
f (r j , ρ

A, j
t ,W A, j

t )) | M � 1
)

= λ

˜ψ−1(λ)

∫ ∞

0
dr g(r)E0 ⊗�x,0

(

exp
(

− ατr −
∑

r j �r

f (r j , φ(J∞, τr j , τ
+
r j
), ξ j )−

∫

qJτr (dh)uGλ (ξh)
))

= λ

˜ψ−1(λ)

∫ ∞

0
dr g(r)E0 ⊗�x,0

(

exp
(

−
∑

r j �r

{

f
(

r j , φ(J∞, τr j , τ
+
r j
), ξ j )+

∫ τ+r j

τr j

qJ∞(dh)uGλ (ξh)+ασ(ξ j )
}))

,

where in first equality we used that for every fixed r � 0,�x,0–a.e. we have τ
+
r− = τ+r ,

and the last equality follows from the fact that τ+ is purely discontinuous and that
thanks to (H3), under P0 ⊗�x,0, we can write qJ∞(dh) =∑r j

qJ∞(dh)1[τr j ,τ
+
r j ](h).

We are going to conclude using standard techniques of excursion theory. First
remark that if we introduce an i.i.d. collection of measures (J j∞, qJ j∞) j∈N distributed
as (J∞, qJ∞) under P0, the previous display can be written in the form:

λ

˜ψ−1(λ)

∫ ∞

0
dr g(r)E0 ⊗�x,0

(

exp
(

−
∑

r j �r

{

f (r j , J j
σ(ξ j )

, ξ j )+
∫

qJ j
σ(ξ j )

(dh)uGλ (ξ
j

h )+ ασ(ξ j )
}))

.

(5.12)

Since by excursion theory
∑

r j �r δ(r j ,J
j∞, qJ j∞,ξ j )

is a Poisson point measure with inten-

sity1[0,r ](ds)E0⊗N (dJ∞, d qJ∞, dξ), we deduce that the expectation under E0⊗�x,0
in (5.12) can be written as:

exp
(

−
∫ r

0
ds E0 ⊗N

[

1− exp
(− f (s, Jσ , ξ)−

∫

qJσ (dh)uGλ(ξh)− ασ
)

])

.
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Next, we remark that the previous display equals:

exp
(

−
∫ r

0
ds (E0 ⊗N )∗

[

1− exp
(− f (s, J , ξ)

)

])

· exp
(

− r E0 ⊗N
[

1− exp
(−

∫

qJσ (dh)uGλ(ξh)− ασ
)

])

.

Moreover, by (2.24) the measure qJ∞ is the Lebesgue-Stieltjes measure of a subordi-
nator with Laplace exponent p �→ ψ(p)/p − α, which yields

E0 ⊗N
[

1− exp
(

−
∫

qJσ (dh)uGλ(ξh)− ασ
)]

= N
(

1− exp
(

−
∫ σ

0
dh
ψ(uGλ(ξh))

uGλ(ξh)

))

= λ

˜ψ−1(λ)
,

where in the first equality we applied (2.24) and in last one we used (4.23). Putting
everything together we obtain the desired identity (5.11). ��

To identify the law of S(TA), we now define the natural candidate of the exploration
process of the subordinate tree at time t – as we already mentioned, this statement is
purely heuristic. Let us start by introducing some notations. Still underN

λ
x,0(·|M � 1)

denote the connected components of the open set

{

s � A−1
t : Hs > inf

[A−1
t ,s]

H
}

by ((αi , βi ) : i ∈ N), and as usualwrite (ρi ,W
i
) := (ρi ,W i ,�i ) for the subtrajectory

associated with the excursion interval [αi , βi ]. Further, set hi := Hαi and consider the
measure:

∑

i∈N

δ
(hi ,ρ

i ,W
i
)
. (5.13)

By the strong Markov property and (2.23), conditionally on (ρA
t ,W

A
t ), the measure

(5.13) is a Poisson point measure with intensity ρA
t (dh)N

W
A
t (h)
(dρ, dW ). Next, for

every j ∈ J we set:

L j :=
∑

τr j (W
A
t )<hi<τ

+
r j (W

A
t )

L
r j
σ (ρ

i ,W
i
), (5.14)
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which is the total amount of exit local time from the domain Dr j generated by the

excursions glued on the right-spine of W
A
t at the interval

(

τr j (W
A
t ), τ

+
r j
(W

A
t )
)

. Finally,

we introduce the measure ρ∗t := ∑

j∈J
L j · δr j .

Lemma 5.8 We have the following identity in distribution:

(

(˜Ht, ρ̃t) : ˜Nλ(·|˜M � 1)
) (d)= (

(H A
t , ρ

∗
t ) : N

λ
x,0(·|M � 1)

)

.

In particular, Lemma 5.8 implies that H(ρ∗t ) = H A
t .

Proof We start noticing that, by Lemmas 5.5 and 5.7, we already have:

(

˜Ht : ˜Nλ(·|˜M � 1)
) (d)= (

H A
t : N

λ
x,0(·|M � 1)

)

.

Consequently, again by Lemma 5.5 the desired result will follow by showing that,
under N

λ
x,0(·|M � 1) and conditionally on H A

t , the measure

∑

j∈J
δ(r j ,L j )

is a Poisson point measure with intensity 1[0,H A
t ](dh)̃ν(dz), where the measure ν̃ is

characterized by (5.8). Observe that since ρ∗t takes values in Mp(R+), the same rea-
soning employed in the proof of Lemma 5.5 allows us to conclude that characterizing
the law of the measure in the previous display also characterizes the law of ρ∗t in
M f (R+). In this direction, we work in the rest of the proof under N

λ
x,0(·|M � 1) and

recall that, conditionally on (ρA
t ,W

A
t ), the measure (5.13) is a Poisson point measure

with intensity ρA
t (dh)N

W
A
t (h)
(dρ, dW ). In particular, (5.14) entails that conditionally

on (ρA
t ,W

A
t ), the random variables (L j : j ∈ J ) are independent. Moreover, since

by definition u p(y) = Ny,0(1− exp(−pL 0
σ )), the translation invariance of the local

time L gives

N
λ
x,0

(

exp(−pL j ) | ρA
t ,W

A
t ) = exp

(

−
∫ τ+r j

(W
A
t )

τr j (W
A
t )

ρA
t (dh)u p

(

W A
t (h)

)

)

= exp
(

−
∫

ρ
A, j
t (dh)u p

(

W A, j
t (h)

)

)

,

for every j ∈ J . It will be then convenient to introduce, for (μ,w) ∈ M f (R+)×WE ,
the measure mμ,w in R+ defined through its Laplace transform:

∫

mμ,w(dz) exp(−pz) = exp
(

−
∫

μ(dh)u p
(

w(h ∧ ζw)
)

)

.
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Notice that since u0(y) = 0 for every y ∈ E , the measure mμ,w is a probability
measure (take p = 0 in the previous display). Themap (μ,w) �→ mμ,w takes values in
M f (R+) and it is straightforward to see that it is measurable. Let us mention that only
the case H(μ) = ζ(w)will be of use and therefore we will have w(h ∧ ζw) = w(h) in
the previous equation. Next, remark that by our previous discussion, for every bounded
measurable function f : R

2 → R we have:

N
λ
x,0

(

G(H A
t ) exp(−

∑

j∈I
f (r j , L j )) | M � 1

)

= N
λ
x,0

(

G(H A
t )
∏

j∈I

∫

m
ρ

A, j
t ,W A, j

t
(dz) exp(− f (r j , z))

∣

∣

∣ M � 1
)

= N
λ
x,0

(

G(H A
t ) exp(−

∑

j∈J
f ∗(r j , ρ

A, j
t ,W A, j

t ))

∣

∣

∣ M � 1
)

,

where f ∗(r , μ,w) := − log
( ∫

mμ,w(dz) exp(− f (r , z))
)

. Now, we can apply
Lemma 5.7 to get:

N
λ
x,0

(

G(H A
t ) exp(−

∑

j∈I
f (r j , L j ))

∣

∣

∣ M � 1
)

= N
λ
x,0

(

G(H A
t ) exp

(

−
∫ H A

t

0
dr (E0 ⊗N )∗

[

∫

mJ ,ξ (dz)
(

1− exp
(− f (r , z)

)

)]

))

,

and it follows that conditionally on H A
t the measure

∑

δ(r j ,L j ) is a Poisson point
measure with intensity:

1[0,H A
t ](r)dr (E0 ⊗N )∗

[

mJ ,ξ (dz)].

To conclude, we need to show that the measure (E0 ⊗ N )∗
[

mJ ,ξ (dz)] is precisely
ν̃(dz). In this direction, remark that:

(E0 ⊗N )∗
[

∫

mJ ,ξ (dz)(1− exp(−pz))
]

= (E0 ⊗N )∗
[

1− exp(−
∫

J (dh)u p(ξ(h))
]

= E0 ⊗N
(

1− exp
(−

∫

Jσ (dh) u p(ξ(h))−
∫

qJσ (dh)uGλ(ξ(h))− ασ
)

)

− E0 ⊗N
(

1− exp
(−

∫

qJσ (dh)uGλ(ξ(h))− ασ
)

)

.
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Then, (2.24) entails that the previous display is equal to

N
(

1− exp
(−

∫ σ

0
dh
ψ(u p(ξ(h)))− ψ(uGλ(ξ(h)))

u p(ξ(h))− uGλ(ξ(h))
)
)

−N
(

1− exp
(−

∫ σ

0
dh
ψ(uGλ(ξ(h)))

uGλ(ξ(h))

)

)

.

However, by Lemma 4.8 the previous display is precisely (5.8). ��
We can now identify S(TA) in terms of our functionals. In this direction, for every

i ∈ N, we introduce (ρi,k,W i,k,�i,k)k∈Ki the excursions outside of D0 = E \
{(x, 0)} of (ρi ,W i ,�i −�i

0). In particular, the family (ρi,k,W
i,k
)k∈Ki is in one-to-

one correspondence with the connected components [ai,k, bi,k], k ∈ Ki , of the open

set {s ∈ [0, σ (W i
)] : τ�i

0
(W

i
s) < ζs(W

i
s)}, in such a way that (ρi,k,W i,k,�i,k +�i

0)

is the subtrajectory of (ρi ,W
i
) associated with the interval [ai,k, bi,k]. In the time

scale of ((ρs,W s) : s � 0), the excursion (ρi,k,W i,k,�i,k +�i
0) corresponds to the

subtrajectory associated with [αi,k, βi,k], where αi,k := αi +ai,k and βi,k := αi +bi,k .
Next, for each k ∈ Ki , we introduce the point processP i,k

t := P(Aαi,k +t)∧Aβi,k
−PAαi,k

and we set:

M :=
∑

i∈N

∑

k∈Ki

δ
(�i

0(0),ρ
i,k ,W

i,k
,P i,k)

.

An application of the Markov property at time A−1
t and the special Markov property

applied to the domain D0 shows that, conditionally on ρ∗t , the measureM is a Poisson
point measure with intensity ρ∗t (dr)Nλx,0(dρ, dW , dP). For every j ∈ J , consider

M j := #
{

(

�i
0(0), ρ

i,k,W
i,k
,P i,k) ∈ M : �i

0(0) = r j and P i,k

Aσ (W
i,k
)
� 1
}

,

and denote the elements of {(r j ,M j ), j ∈ J : M j � 1} arranged in increasing order
with respect to r j by

(

(r◦1 ,M◦
1 ), . . . , (r

◦
R,M◦

R)
)

.We now remark that by construction
we have:

S(TA) = ((r◦1 ,M◦
1 ), . . . , (r

◦
R,M◦

R), (H
A
t ,−1)

)

, (5.15)

and, in particular, K =∑R
p=1 M◦

p which is the number of atoms (�i
0(0), ρ

i,k,W
i,k
,

P i,k) ∈ M with at least one Poissonian mark. Finally, we write

E := ((ρq◦ ,W
q
◦ ,Pq◦ ) : 1 � q � K ).

for the collection of these marked excursions enumerated in counterclockwise order.
Remark that, for every 1 � q � K , TA

q is the embedded tree associated with ̂�q◦ –

time changed by A(ρq◦ ,W
q
◦) – and marked by Pq◦ . We are now in position to prove

Proposition 5.4.
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Proof of Proposition 5.4 For every h � 0 with ρ̃t({h}) > 0, we define the restricted
measure ˜M(h) := ˜M1{˜hi=h}. Similarly, for every r � 0 satisfying ρ∗t ({r}) > 0, we set

M(r) := M1{�i
0(0)=r}. We shall write respectively ˜M(h)(˜M � 1) andM(r)(M � 1)

respectively for the number of atoms in ˜M(h) and M(r) with at least one Poissonian
mark. Next, we introduce the following families respectively under ˜Nλ(·|˜M � 1) and
N
λ
x,0(·|M � 1):

{

(

h1{˜M(h)(˜M�1)�1}, ˜M
(h)(˜M � 1)

) : h � 0, ρ̃t({h}) > 0
}

∪
{

(˜Ht,−1)
}

,

(5.16)

and
{

(

r1{M(r)(M�1)�1}, M(r)(M � 1)
) : r � 0, ρ∗t ({r}) > 0

}

∪
{

(H A
t ,−1)

}

,

(5.17)

where by Lemma 5.8, we have respectively that H(ρA
t ) = H A

t , H(ρ̃t) = ˜Ht. Recall
that, under ˜Nλ(·|˜M � 1, ρ̃t), the measure ˜M is a Poisson point measure with inten-
sity ρ̃t(dh)˜Nλ(dρ, dP) and similarly, under N

λ
x,0(·|M � 1, ρ∗t ), the measure M

is a Poisson point measure with intensity ρ∗t (dr)Nλx,0(dρ, dW , dP). Consequently,
by restriction properties of Poisson measures, under ˜Nλ(·|˜M � 1, ρ̃t), the vari-
ables (˜M(h)(˜M � 1) : ρ̃t({h}) > 0

)

are independent Poisson random variables
with intensity ρ̃t({h})˜Nλ(M � 1) and, under N

λ
x,0(·|M � 1, ρ∗t ), the variables

(M(r)(M � 1) : ρ∗t ({r}) > 0
)

are also independent Poisson random variables, this
time with intensity ρ∗t ({r})Nλx,0(M � 1). Now, recall from Lemma 5.8 the identity

(

ρ̃t : ˜Nλ(·|˜M � 1)
) (d)= (

ρ∗t : N
λ
x,0(·|M � 1)

)

.

Since ˜Nλ(˜M � 1) = N
λ
x,0(M � 1), this ensures that the families (5.16) and (5.17)

have the samedistribution.Moreover, themeasures ρ̃t andρ∗t being atomic, the families
(5.7), (5.15) correspond respectively to the subset of elements of (5.16) and (5.17) with
non-null entries. This gives the first statement of the proposition.

To establish (ii), it suffices to show that conditionally on S(˜T), the marked excur-
sions ˜E are distributed as ˜K independent copies with law ˜Nλ(dH , dP|˜M � 1) and
that, conditionally on S(TA), the marked excursions E are distributed as K inde-
pendent copies with law N

λ
x,0(dW , dP|M � 1). Remark that our previous reasoning

already implies that ˜E and E satisfy the desired property if we do not take into account
the ordering. However, this is not enough and to keep track of the ordering we proceed
as follows:

We start studying ˜E under ˜Nλ(·|˜M � 1) andwe introduce ( ˜Is : s � t), the running
infimum of (〈ρ̃s, 1〉 − 〈ρ̃t, 1〉 : s � t). Next, we consider the measure

∑

i∈N

δ
(− ˜Iα̃i ,ρ̃

i ,˜P i )
, (5.18)
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and we stress that, by the strong Markov property and the discussion below
(2.22), conditionally on Ft this measure is a Poisson point measure with inten-
sity 1[0,〈ρ̃t,1〉](u)du ˜Nλ(dρ, dP). Moreover, its image by the transformation s �→
H(κs ρ̃t) on its first coordinate gives precisely ˜M. In particular, the collec-
tion

(

(˜h◦
1,
˜M◦
1 ), . . . , (

˜h◦̃
R
, ˜M ◦̃

R
), (˜Ht,−1)

)

only depends on ρ̃t and
(

˜Iα̃i : i �
0 with ˜P i

σ(ρ̃ i )
� 1

)

. Remark that the ordered marked excursions ˜E correspond pre-

cisely to the atoms H(ρ̃ i ) of (5.18) with ˜P i
σ(ρ̃ i )

� 1, when considered in decreasing

order with respect to − ˜Iα̃i . Since H(ρ̃t) = ˜Ht, we deduce by restriction properties
of Poisson measures that, conditionally on (ρ̃t, ˜K ), the collection ˜E is independent
of S(˜T) and formed by ˜K i.i.d. variables with distribution ˜Nλ(dρ, dP|˜M � 1), as
wanted.

Let us now turn our attention to the distribution of E under N
λ
x,0(·|M � 1). Sim-

ilarly, under N
λ
x,0(·|M � 1) we consider (Is : s � A−1

t ), the running infimum of

(〈ρs, 1〉 − 〈ρA−1
t
, 1〉 : s � A−1

t ) as well as the measure

∑

i∈N

δ(−Iαi ,ρ
i ,W i ). (5.19)

Once again, by the strong Markov property and (2.22), conditionally on FA−1
t
, the

measure (5.19) is a Poisson pointmeasurewith intensity1[0,〈ρA
t ,1〉](u)du N

λ

W
A
t (H(κuρ

A
t ))

(dρ, dW ). We now introduce the process:

Vt :=
∑

i∈N

L
�i

0
t∧βi−t∧αi

(ρi ,W
i
), t � 0,

where V∞ = 〈ρ∗t , 1〉 <∞ by Lemma 5.8. Recall that (ρi,k,W
i,k
)k∈Ki stands for the

excursions of (ρi ,W i ,�i − �i
0) outside D0 and we stress that in the time scale of

((ρs,W s) : s � 0), the excursion (ρi,k,W i,k,�i,k +�i
0) corresponds to the subtra-

jectory associated with [αi,k, βi,k], where αi,k := αi + ai,k and βi,k := αi + bi,k . To

simplify notation set Tr(ρi ,W
i
) for the truncation of (ρi ,W

i
) to the domain D�i

0
. An

application of the strongMarkov property combined with the special Markov property
in the form given in Theorem 3.8 implies that, conditionally on

∑

i
δ
(−Iαi ,Tr(ρ

i ,W
i
))
,

the measure:

∑

i∈N,k∈Ki

δ
(Vαi,k ,ρ

i,k ,W
i,k
,P i,k )

(5.20)

is a Poisson point measure with intensity 1[0,〈ρ∗t ,1〉](p)dp N
λ
x,0(dρ, dW , dP). The

conclusion is now similar to the previous discussion on ˜E , and therefore we will
only provide a condensed exposition. In this direction, we claim that the collection
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((r◦1 ,M◦
1 ), . . . , (r

◦
R,M◦

R), (H
A
t ,−1)) can be recovered from the pair

∑

i∈N

δ
(−Iαi ,Tr(ρ

i ,W
i
))

and
(

Vαi,k : i ∈ N, k ∈ Ki with P i,k

Aσ (W
i,k
)
� 1
)

,

by making use of the mapping r �→ ∑

(−Iαi )�r L
�i

0
σ (ρi ,W

i
) and the fact that

�i
0(0) can be read from Tr(ρi ,W

i
). This claim can be derived by a straightfor-

ward application of two key observations. Firstly, L
�i

0
σ (ρi ,W

i
) is measurable with

respect to Tr(ρi ,W
i
), as stated in Proposition 3.4. Secondly, we have the equality

H A
t = supi∈N�

i
0(0), which holds since the measure M, conditional on ρ∗t , is a

Poisson measure with intensity ρ∗t (dr)Nλx,0, and H(ρ∗t ) = H A
t by Lemma 5.8. In

the interest of brevity, we leave some of the details to the reader. Now notice that,
the ordered marked excursions E correspond precisely to the atoms of (5.20) with
P i,k

Aσ (W
i,k
)

� 1 in decreasing order with respect to the process V , since V is non-

decreasing and all the values {Vαi,k : i ∈ N, k ∈ Ki } are distinct. Putting everything
together, we deduce by restriction properties of Poisson measures that, conditionally
on
∑

i∈N

δ
(−Iαi ,Tr(ρ

i ,W
i
))
and K , the collectionE is independent ofS(TA) and composed

by K i.i.d. variables with distribution N
λ
x,0(dρ, dW , dP|M � 1). This completes the

proof of Proposition 5.4. ��
Notation index

• D(R+,M), for an arbitrary Polish space M , stands for the space of M-valued
càdlàg paths indexed by R+, endowed with the Skorokhod topology

• X canonical process in D(R+,R) (Sect. 2.1)
• ψ Laplace exponent of a Lévy process with Lévy-Khintchine triplet (α, β, π)
(Sect. 2.1)

• H height process (Sect. 2.1)

• M f (R+) set of finite measures on R+ (Sect. 2.1)

• H(μ) := sup supp μ for μ ∈ M f (R+) (Sect. 2.1)
• κaμ pruning operation for μ ∈ M f (R+) and a � 0 (Sect. 2.1)

• [μ, ν] concatenation of μ, ν ∈ M f (R+) with H(μ) <∞ (Sect. 2.1)

• 〈μ, f 〉 integral of a measurable f : R+ → R with respect to μ (Sect. 2.1)

• ρμ exploration process started from μ ∈ M f (R+) (Sect. 2.1)
• Pμ law of ρμ for μ ∈ M f (R+) (Sect. 2.1)
• η dual of the exploration process (Sect. 2.1)

• N excursion measure at 0 of the reflected Lévy process X − I (Sect. 2.1)

• σe = sup{t � 0 : e(t) �= 0} lifetime of e ∈ D(R+,R) (Sect. 2.1)
• Te tree coded by the continuous non-negative function e : R+ → R+ (Sect. 2.2)
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• de metric on Te (Sect. 2.2)

• me(s, t) infimum of e in the interval [s, t], for 0 � s � t <∞ (Sect. 2.2)

• pe canonical projection from R+ to Te (Sect. 2.2)

• Multi (Te) points of multiplicity i ∈ N in Te (Sect. 2.2)

• E a Polish space with metric dE (Sect. 2.3)

• ξ canonical process in C(R+, E), the space of continuous functions indexed by
R+ taking values in E (Sect. 2.3)

• �y law of an E-valued continuous Markov process started from y ∈ E (Sect. 2.3)

• WE space of finite E-valued paths (Sect. 2.3)

• ζw lifetime of w ∈ WE (Sect. 2.3)

• ŵ := w(ζw) for w ∈ WE (Sect. 2.3)

• (ρ,W ) canonical process in D(R+,M f (R+)×WE ) (Sect. 2.3)

• M0
f := {μ ∈ M f (R+) : H(μ) <∞ and supp μ = [0, H(μ)]}∪{0} (Sect. 2.3)

• � := {

(μ,w) ∈ M0
f × WE : H(μ) = ζw

}

subset of initial conditions for the
Lévy snake (Sect. 2.3)

• ζ(ω) = (ζωs : s � 0) lifetime process of a continuous WE -valued path ω
(Sect. 2.3)

• Pμ,w law in D(R+,M f (R+)×WE ) of the Lévy snake started from (μ,w) ∈ �
(Sect. 2.3)

• Ny excursion measure away from (0, y) ∈ M f (R+) × WE of the Lévy snake
(Sect. 2.3)

• Sμ,w subset of D(R+,M f (R+)×WE ) of snake paths started from (μ,w) ∈ �
(Sect. 2.3)

• S :=⋃(μ,w)∈� Sμ,w set of snake paths

• (U (1),U (2)) a two-dimentional subordinator with exponent (2.24) (Sect. 2.3)

• (Ja, qJa) := (

1[0,a](t) dU (1)
t ,1[0,a](t) dU (2)

t
)

Lebesgue-Stieltjes measure of
(U (1),U (2)) restricted to [0, a], for a � 0 (Sect. 2.3)

• τD(w) := inf
{

t ∈ [0, ζw] : w(t) /∈ D
}

exit time from the open set D of w ∈ WE

(Sect. 3)

• V D
t (ρ, ω) :=

∫ t
0 ds 1{ζωs �τD(ωs )} time spent by a path (ρ, ω) ∈ D(R+,M f (R+)×

WE ) in the open domain D ⊂ E up to time t � 0 (Sect. 3.1)

• �D
s (ρ, ω) := inf

{

t � 0 : V D
t (ρ, ω) > s

}

, s � 0, right-inverse of V D(ρ, ω)

(Sect. 3.1)

• trD
(

ρ, ω
) := (ρ�D

s (ρ,ω)
, ω�D

s (ρ,ω)
)s∈R+ truncationof (ρ, ω) ∈ D(R+,M f (R+)×

WE ) to D (Sect. 3.1)

• FD = σ(trD(ρ,W )s : s � 0) sigma-field generated by the paths of the Lévy
snake before they exit the open domain D (Sect. 3.1)
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• L D = (L D
t : t � 0) exit local time from D (Sect. 3.1)

• u D
g (y) := Ny

(

1− exp(−〈ZD, g〉)), for y ∈ D (Sect. 3.2)

• E∗ := E\{x} and E := E × R+ (Sect. 4)

• w = (w, �) elements ofWE (Sect. 4)

• � set of pairs (μ,w) ∈ M0
f ×WE (Sect. 4)

• �x subset of � satisfying conditions (i) and (ii) from Sect. 4 (Sect. 4)

• τr (w) := inf{h � 0 : w(h) = (x, r)} for w = (w, �) ∈ WE (Sect. 4)

• N excursion measure of ξ away from x (Sect. 4)

• Dr := E \ {(x, r)} for r � 0 (Sect. 4.1)

• ˜ψ Laplace exponent of a Lévy process defined by the relation (4.12), and with
Lévy-Khintchine triplet (̃α,˜β, π̃) (Sect. 4.1)
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