
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-023-01255-z

On theWiener chaos expansion of the signature of a
Gaussian process

Thomas Cass1 · Emilio Ferrucci2

Received: 16 November 2022 / Revised: 27 September 2023 / Accepted: 4 December 2023
© The Author(s) 2024

Abstract
We compute the Wiener chaos decomposition of the signature for a class of Gaussian
processes, which contains fractional Brownian motion (fBm) with Hurst parameter
H ∈ (1/4, 1). At level 0, our result yields an expression for the expected signature
of such processes, which determines their law (Chevyrev and Lyons in Ann Probab
44(6):4049–4082, 2016). In particular, this formula simultaneously extends both the
one for 1/2 < H -fBm (Baudoin and Coutin in Stochast Process Appl 117(5):550–
574, 2007) and the one for Brownianmotion (H = 1/2) (Fawcett 2003), to the general
case H > 1/4, thereby resolving an established open problem.Other processes studied
include continuous and centred Gaussian semimartingales.

Mathematics Subject Classification 60L10 · 60H07

Introduction

The signature of a path X : [0, T ] → R
d ,

S(X)0T :=
∞∑

n=0

∫

0<u1<...<un<T
dXu1 ⊗ · · · ⊗ dXun ∈ T ((Rd)), (1)

is a series of tensors which, up to “retracings”, determines the image of X [6, 22]. The
probabilistic counterpart to this result states that, in many cases of interest, the law of
a stochastic process is determined by its expected signature [13], which is therefore
seen to play a role for processes analogous to that of moments for random variables.
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The best-known example of an explicit formula for the expected signature of a
stochastic process occurs in the case of Brownian motion: calling {e1, . . . , ed} the
canonical basis of R

d , we have

ES(X)st = exp

(
t − s

2

d∑

γ=1
e⊗2
γ

)
=

∞∑

n=0

(t − s)n

2nn!
d∑

γ1,...,γn=1
e⊗2
γ1
⊗ · · · ⊗ e⊗2

γn
. (2)

This identity was first shown by [16, 31], and later proved in a variety of different
ways [2, 20]. The expected signature of Brownian motion has also been studied in the
case in which the process is stopped upon hitting the boundary of a domain [5, 27,
29].

In [3] the authors derive an integral expression for the expected signature of frac-
tional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1). This result was
extended in [4, 7] to a more general class of Gaussian Volterra processes with sample
paths that are more regular than Brownian motion, with the formula for the expected
signaturewritten in terms of theVolterra kernel. Themethod used involves a piecewise-
linear interpolation of the paths of the process X , which reduces the calculation to that
of a sum of mixed Gaussian moments, to which Wick’s theorem applies, followed by
a convergence argument. The expression in [3] does not, however, yield the correct
prediction for the case of Brownian motion H = 1/2. When H < 1/2 it involves
integrals that do not converge at all, and new ideas are needed to obtain a formula.
On a technical level, the reason for these differences can be seen by considering the
expression for the expected signature of a scalar 1/2 < H -fBm X at level 2: calling
R(s, t):=E[Xs Xt ] the covariance function of X , the formula states that

ES(X)
(2)
st =

∫

s<u<v<t
R(du, dv) = H(2H − 1)

∫

s<u<v<t
(v − u)2H−2dudv. (3)

Integrating either of the two variables generates an evaluation (v−u)2H−1|u=v , which
is only finite when H > 1/2 and indeterminate when H = 1/2. In fact, approximating
X with a sequence of piecewise linear processes (X�)�∈N one obtains a sequence of
integrals (actually finite sums)

∫
s<u<v<t E[Ẋ�

u Ẋ�
v]dudv which converges to the above

double integral when H > 1/2, to (t − s)/2 when H = 1/2 (as predicted by (2)), and
continues to converge to (t− s)2H /2 for 1/4 < H ≤ 1/2. When H ≤ 1/4 the iterated
integrals (in particular the Lévy area) of smooth approximations of X do not converge
in mean square, and other techniques (e.g. [36]) must be relied upon to define a rough
path, and hence a signature. These rough paths present a number of differences with
the canonical one defined for H > 1/4, and are therefore not considered in this paper.

What is needed to obtain a formula for the expected signature that also works in
the case of negatively-correlated increments 1/4 < H < 1/2 is a way of expressing
the indeterminacy “∞−∞” explained in Fig. 1. The trick for doing this is simple to
describe: integrate out the first variable in (3) and, calling R(t):=R(t, t) the variance
function of X , note that for H > 1/2 we have
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Fig. 1 Here we compare the two behaviours, corresponding to H > 1/2 and H < 1/2, of∫
0<u<v<1 E[Ẋ�

u Ẋ�
v]dudv with X� the sequence piecewise linear interpolations of X on a partition. On

the left we have chosen H = 2/3, and the sequence of integrals converges to a finite improper integral,
whereas on the right H = 1/3 and the on- and off-diagonal contributions diverge to opposite infinities. (The
plots are oriented in different ways and the z-axis is rescaled, both for improved visibility.) This graphic
has been created using Wolfram Mathematica

∫

s<u<v<t
∂12R(u, v)dudv

=
∫ t

s

[
∂2R(v, v)− ∂2R(s, v)

]
dv =

∫ t

s

[ 1
2 R′(v)− ∂2R(s, v)

]
dv. (4)

We have replaced ∂2R(v, v) with 1
2 R′(v), which can be done by symmetry of R:

R′(v) = d

dv
R(v, v) = ∂1R(v, v)+ ∂2R(v, v) = 2∂2R(v, v). (5)

This is relevant to the case of (1/4, 1/2) � H -fBm since, while ∂2R(v, v) or
∂1R(v, v) is the infinite evaluation discussed earlier, the last integral in (4) is per-
fectly well defined. These integrands can be chained together on simplices, e.g.∫

s<u<v<t [ 12 R′(u) − ∂2R(s, u)][ 12 R′(v) − ∂2R(u, v)]dudv, and combined with the
other types of integrand ∂12R(w, z), to yield a formula that is very similar to that
of [3], but continues to be convergent for 1/4 < H < 1/2 and agrees with (2) for
H = 1/2.

Showing that the formula obtained by such substitution actually coincides with
the expected signature for X in a broad class of Gaussian processes—essentially
those Gaussian rough paths introduced in [15, 19, 30] with the imposition of a few
additional smoothness and regularity requirements on the (co)variance function—is
the main focus of this paper. In fact, our main result will prove a formula for the full
Wiener chaos expansion of S(X), the 0th level of which is the expectation. As far
as we know, the expression for the positive chaos projections of the signature is not
to be found in the literature even in the classical case of Brownian motion. While
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the expression of the positive levels of Wiener chaos is very similar in spirit to that
of the 0th, it requires us to use some Malliavin calculus in the setting of 1-parameter
Gaussian processes, and results in technical complications in the proof of convergence.
The main additional ingredients needed are Stroock’s formula for the m-th Wiener
chaos projection and a novel definition of multiple Wiener integral of a function.
For the latter, it should be noted that while multivariate, deterministic integrands for
Gaussian noise naturally live in a certainHilbert space (which for fBmcan be identified
with a Sobolev space), we are interested in integrating functions of multiple times,
i.e.

∫
[0,T ]m f (t1, . . . , tm)dXγ1

t1 · · · dXγm
tm in a Skorokhod-type sense: this is achieved

by approximating f with elementary integrands, and showing independence of the
approximation. Computing theWiener chaos projections of the signature of aGaussian
process X has the benefit of expressingS(X) as a sumof terms that are orthogonal in L2,
something that has the potential to be used for various types of numerical calculations,
e.g. estimates of Euler expansions for Gaussian rough differential equations. It should
be mentioned that, while (in the cases considered) the expected signature already
determines the law of X and therefore that of the Wiener chaos projections of S(X), it
does not appear obvious how one may obtain the latter from the former directly. While
fBm is themain example of a process for which our calculation is novel, we briefly also
consider centred, continuous Gaussian semimartingales, such as the Brownian bridge
returning to the origin and centred Ornstein–Uhlenbeck processes with deterministic
initial condition.

As in the main reference article [3], the technique that underlies our proof is
piecewise-linear approximation of X . The arguments needed to prove the result are
however much more involved, for three essential reasons. First is the fact that we
must perform and justify the substitution (4), which requires novel arguments for con-
vergence; even proving finiteness of the integrals in the main formula requires more
sophisticated bounds in the 1/4 < H < 1/2 case than it does in the H > 1/2 case (see
Fig. 2 for the simplest example of an observation that must be made when H < 1/2).
Second is that Malliavin derivatives are involved for positive levels of the Wiener
chaos and third is that our arguments must accommodate a wider class of Gaussian
processes.

While the substitution (4)may seem very natural, it does not emerge obviously from
the proof that we have given here, and must instead be guessed in advance. Indeed, it
is worth mentioning that the way in which we first derived the statement of the main
result involved an entirely different approach, whichmade use of the Skorokhod-rough
integral conversion formula [10, 11], applied recursively to the RDE for the signature.
The outline of this proof can be found in the second named author’s PhD thesis [17,
Ch. 5].While this approach has the drawback of generating further technical problems,
reason for which it is not the one presented here, it has the advantage of leading up
constructively to the main formula.

This paper is organised as follows: in Sect. 1 we briefly introduce the class of
Gaussian processes considered and the Malliavin calculus framework for them; we
then use this language to identify functions as multiple Wiener integrands. In Sect. 2
we state the main result Theorem 2.3 and discuss a few consequences and examples
that follow; in Sect. 3 we prove the main result; in Conclusions and further directions
we outline some aspects that could be tackled in further research. Finally, it should
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Fig. 2 A graphic representing the contour plot of (t − s)2H−2 on {0 < s < t < 1} (on the left) and
{0 < s < u < t < 1} with u ∈ [0, 1] fixed (on the right): the integral of the former is improper on the
whole diagonal, while that of the later only at a point: when 0 < H < 1/2, only the latter converges. This
graphic has been created using Wolfram Mathematica

be mentioned that in [3], in addition to the expected signature of 1/2 < H -fBm, the
authors also compute the expected signature at levels 2 and 4 for 1/4 < H -fBm in
a manner that does not obviously generalise to different processes or higher levels;
while not necessary in our proofs, it is sensible to verify that our main result agrees
with this calculation: this check is performed in “Appendix A”.

1 Background onMalliavin calculus for Gaussian processes

In this sectionwe introduce the class of Gaussian processes towhich this paper applies,
establish some notation, and give a brief overview of the tools of Malliavin calculus
that are necessary in the proof of the main result. We follow [34, 35] for the general
Malliavin calculus framework, [23] for its aspects that pertain to Gaussian processes
indexed by a time parameter, and [9–11] for aspects regarding the rough path lifts of
such processes.

Throughout this paper we will be working with a Gaussian process with i.i.d.
components X : � × [0, T ] → R

d where � = C([0, T ], R
d), Xt (ω):=ω(t),

Ft :=σ(Xs : 0 ≤ s ≤ t). We assume X to be centred, i.e. EX ≡ 0, and for it to
have deterministic initial condition X0 = 0. We will write Xst :=Xt − Xs for the
increments of X . By Gaussianity, the probability measure P on � is characterised by
the covariance function of X

R : [0, T ]2 → R
d ⊗ R

d , R(s, t):=E[Xs ⊗ Xt ]. (6)

Wewill denote R( · ) the variance function of X , i.e. R(t):=R(t, t). The independence
hypothesis implies that R is a diagonalmatrix Rαβ = δ

αβ Rαα , and the fact that they are
identically distributed, Rαβ = δ

αβ R11 will be determined by a single scalar function,
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which by abuse of notationwewill also call R. Although our results can be conjectured
to continue to hold in the case in which the components are not identically distributed,
our proof will make essential use of this assumption. We define

R(
(s, t)):=R(t)− R(s)

R(
(s, t), v):=R(t, v)− R(s, v) = E[Xst ⊗ Xv]
R(
(s, t),
(u, v)):=R(t, v)+ R(s, u)− R(t, u)− R(s, v) = E[Xst ⊗ Xuv]

(7)

for u, v, s, t ∈ [0, T ]. Note that R(
(s, t)) 
= R(
(s, t),
(s, t)).
We assume X and R satisfy the conditions that make it possible to consider the

signature of X , S(X), defined by the limit in L2 of Stieltjes iterated integrals of smooth
or piecewise-linear approximations of X , and carry out Malliavin calculus: these are
existence of rough path lift and complementary Cameron-Martin regularity [9, Condi-
tions 2] and non-degeneracy of R [9, Conditions 3]. More elementary conditions that
imply these may be found, for instance, in [10, 11]. The expected signatures of such
processes characterise their law, i.e. if Y is any other process with a well-defined sig-
nature S(Y )0T (as a G(Rd)-valued random variable) and ES(X)0T = ES(Y )0T , then
X and Y are equal in law: see [13, Example 6.7], a consequence, among other things,
of the greedy estimate [12]. We refer the reader to [14] for a treatment of the theory
in the case of more general processes, whose expected signatures may not directly
characterise the law of the process.

We will denote SN (X) the signature of X truncated at level N (i.e. its projection
onto

⊕N
n=0(Rd)⊗n) and S(X)(n) the n-th level of the signature (i.e. its projection onto

(Rd)⊗n). The signature of a process, as that of a path, satisfies two important algebraic
relations. The first is the Chen identity, namely that S(X)su ⊗ S(X)ut = S(X)st . The
second is the shuffle identity: letting {e1, . . . , ed} denote the canonical basis of R

d ,
and using coordinate notation, i.e. Sγ1...γn :=〈eγ1 ⊗ · · · ⊗ eγn , S〉 for S ∈ T ((Rd)) and
γ1, . . . , γn ∈ [d]:={1, . . . , d} (and extending linearly), for 0 ≤ s ≤ t ≤ T it holds
that

S(X)
α1...αm
st S(X)

β1...βn
st = S(X)

(α1...αm )�(β1...βn)
st (8)

where� denotes “shuffling” the tuples α1 . . . αm and β1 . . . βn , i.e. summing over all
ways of permuting their concatenation α1 . . . αmβ1 . . . βn whilst preserving the order
of each. For further details see, for example, [28].

In addition to the standard conditions on R, we will have to assume a certain
amount of smoothness of R together with bounds on its derivatives; the reasons for
such hypotheseswill bemade clear in due course.We assume R( ·, · ) isC2 on the open
simplex 
[s, t]:={0 < s < t < T } and continuous on [0, T ]2, and that R( · ) is C1

on (0, T ). The lack of smoothness assumptions of R( ·, · ) on the diagonal {s = t} is
crucial for the inclusion of (1/4, 1/2] � H -fBm, which does not even have first partial
derivatives on it. Furthermore, we assume there exists an H ∈ (0, 1)with the property
that the sample paths of X are either H -Hölder, or are K -Hölder for all K < H ;
for fBm H will coincide with the Hurst parameter, but the letter H will be used for
more general processes to denote the Hölder exponent/supremum of exponents. This

123



On the Wiener chaos expansion of the signature of a…

the rough path above X will be of finite 1/H -variation or of finite p-variation for all
p > 1/H .

We also need some quantitative estimates on the derivatives of R. Here and through-
out the paper, the constant of proportionality implied by the use of�may only depend
on T , H and other general characteristics of the process X . We require

|∂12R(s, t)| � (t − s)2H−2 on 
[0, T ] (9)
∣∣ 1
2 R′(t)− ∂2R(s, t)

∣∣ � (t − s)2H−1 on [0, T ]2 \ {s = t} (10)

|R′(t)| � t2H−1 on (0, T ] (11)

where ∂2 denotes partial differentiation w.r.t. the second component and ∂12 denotes
second-order mixed partial differentiation. Since R is not smooth on the diagonal,
the following estimate for on-diagonal square increments of the covariance function,
which already appeared in [15], must be required separately:

R(
(s, t),
(s, t)) � (t − s)2H (12)

We move onto the treatment of Malliavin calculus for X . We let H be the Hilbert
space given by the completion of the following R-linear span of elementary functions
[0, T ] → R

d , or equivalently [0, T ] × [d] → R:

E:= spanR{1γ

[0,t) | t ∈ [0, T ], γ = 1, . . . , d} (13)

w.r.t. the inner product

〈1α
[0,s),1

β

[0,t)〉H:=Rαβ(s, t). (14)

Because of independence of components, H is equal to an orthogonal direct sum
H1 ⊕ . . .⊕Hd , and because of equal distribution the direct summands are all equal.
Elements ofH should be viewed as admissible deterministic integrands for dX , which
are represented as Cauchy sequences of elementary integrands in E. This framework
allows us to view the process as an isometry

X : H→ L2�, 1
γ

[0,t) �→ Xγ
t (15)

often called an isonormal Gaussian process.
The multiple Wiener integral

δm : H�m → L2� (16)

is the operator defined by the adjoint property (which more generally characterises the
divergence operator, when required on random arguments f )

∀Z ∈ D
m,2 E[Zδm( f )] = E[〈Dm Z , f 〉H⊗m ] (17)
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where

Dm : D
m,2 → L2(�,H�m) (18)

is the mth Malliavin derivative, defined as

Dm f (Xγ1
t1 , . . . , Xγn

tn ):=
n∑

k1,...,km=1
∂k1,...,km f (Xγ1

t1 , . . . , Xγn
tn )1

γk1
[0,tk1 ) ⊗ · · · ⊗ 1

γkn
[0,tkn )

(19)

for f ∈ C∞(Rn) with derivatives (including the 0th) of polynomial growth, and
extended as a closed operator to a certain domain D

m,2. H�m denotes the subspace
of H⊗m (the tensor product taken in the category of Hilbert spaces) of symmetric
tensors.Dm takes a square-integrable random variable and returns a random element
of H�m , which in case of membership to E�m (or otherwise a function member of
H�m in the sense of Definition 1.1 below) will be a function of m (time,index) pairs.
Note that, while δ is symmetric in the sense that it is left invariant by permuting
(time,index) jointly, it is not symmetric if only time variables or indices are permuted
(e.g. it is possible to use δ to define a Lévy area—see Example 2.6 below). When
Dm Z is a function, as in the case (19), we denote its evaluation on m (time,index)
pairsD(u1,γ1),...,(um ,γm )Z ; occasionally it maymakemore sense to suppress the indices
in the notation, in which case we can just write Du1,...,um Z . We may extend δ to a
map δm :=H⊗m → L2� by pre-composing with symmetrisation, and we have for
f , g ∈ H⊗m

E[δm( f )δn(g)] = mn
δ

∑

σ∈Sm

〈 f , σ∗g〉H⊗m . (20)

This implies that multiple Wiener integration defines an isometry

δ• :
∞⊕

m=0
H�m ∼=−→ L2� (21)

where the source is given the degree-wise rescaled inner product ( f , g) �→
m!〈 f , g〉H⊗m for f , g of the same degree and zero otherwise, and � is endowed with
the sigma algebra generated by the process Xt∈[0,T ]. The image of the m-th Wiener
integral operator, the space of the random variables δm( f ) with f ranging in H�m ,
is called the m-th Wiener chaos of X . We denote it Wm and the m-th Wiener chaos
projection wm : L2� � Wm . Note that w0 = E with values in W0 = R, while
W1 is given by linear functionals of X . We thus have the Wiener chaos decomposi-
tion L2� = ⊕∞

m=0 Wm which means it is possible to represent any random variable
in L2� (measurable w.r.t. to the sigma-algebra generated by X ) as an L2-absolutely
convergent series
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L2� � Z =
∞∑

m=0
wm Z , ‖Z‖2L2 =

∞∑

m=0
‖wm Z‖2L2 =

∞∑

m=0
m!‖ f m‖2H⊗m (22)

where f m = (δm)−1 ◦ wm(Z). The map (δm)−1 ◦ wm admits an expression in terms
of the Malliavin derivative: this is Stroock’s formula, which states that for Z ∈ D

m,2

(δm)−1 ◦ wm(Z) = 1

m!E[D
m Z ]. (23)

As a consequence, if Z ∈ D
∞,2:=⋂∞

m=0 D
m,2 we can write its Wiener chaos decom-

position as the series

Z =
∞∑

m=0

1

m!δ
m

E[Dm Z ]. (24)

We continue calling elements of E⊗m elementary functions, in light of the fact that
they can be identified with functions ([0, T ] × [d])m → R by the mapping

1
γ1
[0,t1) ⊗ · · · ⊗ 1

γm
[0,tm ) �→ 1

γ1,...,γm
[0,t1)×···×[0,tm ). (25)

This is the map given by the product of the Kronecker deltas δ
γ1· · · · δγm· and the

indicator function on them-cube [0, t1)×· · ·×[0, tm), each δ pairedwith the respective
time variable. Since E⊗m is dense in H⊗m , elements of the latter may be identified
as equivalence classes of Cauchy sequences in E⊗m . While H⊗m is not, in general,
a space of functions, it is possible to uniquely associate elements of H⊗m to certain
measurable functions ([0, T ] × [d])m → R as follows:

Definition 1.1 (Functions as elements of H⊗m). For a function f : ([0, T ]×[d])m →
R we will write f ∈ H⊗m if there exist a Cauchy sequence ( fn)n ⊂ E⊗m , uniformly
bounded as a sequence of functions (according to the identification (25)), with fn → f
a.e. In this case we will say that f represents lim fn ∈ H⊗m . If f represents φ,ψ ∈
H⊗m then φ = ψ : this is an immediate consequence of the following

Lemma 1.2 Let ( fn)n be as in the above definition with f = 0. Then fn → 0 in H⊗m.

Proof Let

fn =
d∑

γ1,...,γm=1
fn;γ1,...,γm1

γ1,...,γm

with fn;γ1,...,γm : [0, T ]m → R. Then fn → 0 a.e. if and only if fn;γ1,...,γm → 0 a.e.
for each (γ1, . . . , γm) ∈ [d]m . Keeping in mind that H ∼= (H1)

⊕
d we may therefore

assume d = 1 and suppress indices. Following [23, p. 588], we test the sequence with

elementary functions: letting fn = ∑
sn
1 ,...,sn

m
f

sn
1 ,...,sn

m
n 1[0,sn

1 )×...×[0,sn
m ) and E⊗m � g =
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∑
t1,...,tm gt1,...,tm1[0,t1)×...×[0,tm ) with f

sn
1 ,...,sn

m
n , gt1,...,tm ∈ R uniformly bounded (and

the sums finite) we have that

〈 fn, g〉H⊗m

=
∑

sn
1 ,...,sn

m
t1,...,tm

f
sn
1 ,...,sn

m
n gt1,...,tm R(sn

1 , t1) · · · R(sn
m, tm)

=
∑

t1,...,tm

gt1,...,tm

∫

((0,T ]\{t1})×···×((0,T ]\{tm })
fn(s1, . . . , sm)∂1R(s1, t1) · · · ∂1R(sm, tm)ds1 · · · dsm .

(10) and (11) imply that the integrands are absolutely and uniformly bounded by
[|t1 − s1|2 H−1 ∨ s2 H−1

1 ] · · · [|tm − sm |2 H−1 ∨ s2 H−1
m ] (up to a constant), which

is integrable on ((0, T ]\{t1}) × · · · × ((0, T ]\{tm}). By dominated convergence
〈φ, g〉H⊗m = lim〈 fn, g〉H⊗m = 0, where φ:= lim fn in H⊗m , and φ = 0 follows
from the fact that g ranges in a dense set. ��

In light of the aforementioned non-degeneracy condition on X , we also expect
the converse to hold: if φ ∈ H⊗m is represented by the functions f , g in the above
sense, then f = g a.e. An example of a degenerate stochastic process, for which
this property would not hold, is given by taking any process X and concatenating it
with itself path by path; the resulting covariance function R would be invariant under
transposing the intervals [0, T ) and [T , 2T ). We also note that, in specific cases, it
is possible to describe H explicitly: if X is a fractional Brownian motion with Hurst
parameter H ∈ (0, 1), the identity on E induces an isomorphism between H and the
Sobolev space W 1/2−H ,2 [24], which is a space of functions for H ∈ (0, 1/2] but not
for H ∈ (1/2, 1).

Wewillmostly be consideringWiener integrals on simplices, which has the effect of
quotienting out symmetry of the operator δm . We will often resort to integral notation,
e.g. if 1αβ


[s,t] ∈ H⊗2 (the function that maps ((u, γ ), (v, δ)) �→ δ
αγ

δ
βδ 1s<u<v<t ) in

the sense of Definition 1.1, we will write δ2(1
αβ

[s,t])=:

∫
s<u<v<t δXα

u δXβ
v to be the

limit in L2 of δ2( fn). Wiener integrals of elements of E⊗m , on the other hand, can be
computed explicitly by using the adjoint property (17): for example, it can be checked
that

δ2(1α
[s,t) ⊗ 1

β

[u,v)) = Xα
st Xβ

uv − Rαβ(
(s, t),
(u, v)).

Themore general formula involvesmultivariate analogues of the Hermite polynomials
(see [34, §2.7.2] and [17, p.244]).When X is aGaussianmartingale (but not necessarily
if it is only a semimartingale), multiple Wiener integration on the simplex coincides
with iterated Wiener-Itô integration.

123



On the Wiener chaos expansion of the signature of a…

2 Themain result, some consequences

We begin this section with some more notation. We denote [n]:={1, . . . , n} the set
with n elements. We will be concerned with iterated integrals on the n-simplex

n[s, t]:={(u1, . . . , un) | s < u1 < . . . < un < t}. Because such integrals will
involve the covariance function, integration variables will sometimes come in pairs.
For m, n ∈ N we denote Pn

m the collection of partitions of subsets of [n] of car-
dinality n − m into sets of cardinality 2. Note that this means Pn

m = ∅ whenever
n 
= m (mod 2) or m > n, but Pn

n has precisely one element, ∅: the empty set
admits the empty collection of subsets as a partition, which vacuously belongs to
Pn

n . For example, Q:={{1, 4}, {3, 8}, {5, 6}} ∈ P8
2 viewed as a partition of the set

{1, 3, 4, 5, 6, 8} ⊆ [8]. For P ∈ Pn
m we will denote P :=[n]\ ∪ P (in the partition of

the above example, Q = {2, 7}).
It will convenient to use graphical notation to denote such objects, and for reasons

that will become apparent shortly, for a pair {i, j} with i ≤ j we will distinguish
between the consecutive case j = i + 1 and the non-consecutive one j > i + 1. The
partition Q ∈ P8

2 above is represented by

Q = . (26)

We will refer to such graphics as diagrams. We have drawn one node for each i ∈ [n]
that is not paired with a consecutive integer, and one node for each consecutive pair
(in this case only {5, 6}); when counting nodes, a node corresponding to such a pair
should be thought as having double weight. In our example, the 5th node actually
counts for positions 5 and 6.With this convention, for each non-consecutive pair {i, j}
we have drawn an arc connecting the two nodes of positions i and j , and for each node
corresponding to a consecutive pair we have drawn a line going upwards. Nodes that
do not have a line or arc entering them correspond to elements of P , and we will call
them single. Note that, by construction, there is never an arc between two consecutive
nodes: this will be critical for convergence of the associated integrals described below.
In the next section, we will be particularly concerned with maximal sequences of
consecutive pairings, i.e. collections of pairings {k, k+1}, . . . , {k+ l, k+ l+1} ∈ P
with l ≥ 0 and s.t. {k − 2, k − 1}, {k + l + 2, k + l + 3} /∈ P .

Now, given P ∈ Pn
m , 0 ≤ s ≤ t ≤ T and γ1, . . . , γn ∈ [d] we associate to it

a continuous function Pγ1,...,γn
st : 
m[s, t] × [d]m → R by integrating over as many

variables as there are non-single nodes in the diagram that represents P: call this
number, which equals twice the number of non-consecutive pairs in P plus the number
of consecutive ones, #P . This explains our choice for the above notation: each node
either corresponds to an integration variable or to a free variable, i.e. a variable of
which Pγ1,...,γn

st is a function. We use the shorthands

R(dui , du j ):=∂12R(ui , u j )duidu j

1
2 R(duh+1)− R(uh−1, duh+1):=

[ 1
2 R′(uh+1)− ∂2R(uh−1, uh+1)

]
duh+1,

(27)
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and the former will only be used when j > i+1. Crucially, we are defining the second
case as 1

2 R(duh+1)−R(uh−1, duh+1), not as R(uh+1, duh+1)−R(uh−1, duh+1), since
this would be ill-defined in many cases (including 1/2 > H -fBm) because R( ·, · )
may not admit partial derivatives on the diagonal. On the other hand, we are assuming
that the variance function R( · ) is differentiable.
Definition 2.1 (Pγ1,...,γn

st ) For γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T and P ∈ Pn
m define

Pγ1,...,γn
st (uk | k ∈ P):=

∏

k∈P

1γk ·
∫


#P [s,t]

∏

{i, j}∈P
| j−i |>1

Rγi γ j (dui , du j )

·
∏

{h,h+1}∈P

[ 1
2 Rγhγh+1(duh+1)− Rγhγh+1(uh−1, duh+1)

]

(28)

as a function ([0, T ] × [d])m → R extended with the value 0 outside 
m[s, t].
The variables uk with k ∈ P are supplied as arguments, so in fact this is an integral

over a disjoint union of up to m + 1 simplices (fewer if some of the elements of P
are consecutive). The kth index in [d]n is given as argument to 1γk as a Kronecker
delta: this means that Pγ1,...,γn

st vanishes on all but one element of [d]m . The reason
why we still consider Pγ1,...,γn

st as a function on [d]m is that this is necessary to view it
as an element of H⊗m ; nevertheless, when the indices are fixed it will sometimes be
convenient to just think of it as a function of m times. If m = 0, Pγ1,...,γn

st is just a real
number.

Remark 2.2 The presence of the second type of integrand in Definition 2.1 is the
reason for the smoothness assumptions on the variance and covariance functions,
which are not to be found in most of the literature on these topics: this is because it
would be difficult to define integrals such as

∫
s<u<v<t

[ 1
2 R(du)−R(s, du)

][ 1
2 R(dv)−

R(u, dv)
]
as iterated Young integrals, without taking derivatives, since the variable

u in its undifferentiated form appears after the integrator 1
2 R(du)− R(s, du); this of

course is no longer an issue under our smoothness hypotheses, thanks to which the
above integral is defined as the Lebesgue integral on the simplex

∫
s<u<v<t

[ 1
2 R′(u)−

∂2R(s, u)
][ 1

2 R′(v)− ∂2R(u, v)
]
dudv.

When P is represented by a diagram, we will decorate the nodes with labels. For
example, the integral associated to (26) with labelling α, . . . , ϑ is given by

(
α β γ δ εζ η ϑ

)st

= 1βη

∫


7[s,t]
Rαδ(du1, du4)Rγϑ (du3, du8)

[ 1
2 Rεζ (du6)− Rεζ (u4, du6)

]

= 1
βη


2[s,t](u2, u6)

∫
s<u1<u2

u2<u3<u4<u6<u7
u7<u8<t

∂12Rαδ(u1, u4)∂12Rγϑ (u3, u8)
[ 1
2 Rεζ ′(u6)− ∂2Rεζ (u4, u6)

]

du1du3du4du6du8 .
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This is viewed as a function of the variables u2, u6 ranging on the simplex 
2[s, t],
each paired with an index variable, which must respectively be equal to β, η for the
expression not to vanish. The variable u5 has been skipped, since it is the first term
in the consecutive pair {5, 6}. We will show that integrals defined in this fashion are
a.e. limits of Cauchy sequences in E⊗m , which therefore uniquely represent elements
of H⊗m according to Definition 1.1. When taking multiple Wiener integrals of them,
the indices corresponding to the nodes that represent free variables will become the
coordinate processes that are being integrated against, e.g.

δ2(
α β γ δ εζ η ϑ

)st

=
∫

s<u2<u7<t

[ ∫
s<u1<u2

u2<u3<u4<u6<u7
u7<u8<t

∂12Rαδ(u1, u4)∂12Rγϑ (u3, u8)
[ 1
2 R′εζ (u6)− ∂2Rεζ (u4, u6)

]

du1du3du4du6

]
δXβ

u2 δXη
u7 .

We are now ready to state the main theorem.

Theorem 2.3 (Wiener chaos expansion of the signature of a Gaussian process). Given
m, n ∈ N, P ∈ Pn

m, γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T , it holds that Pγ1,...,γn
st ∈ H⊗m

in the sense of Definition 1.1, and the mth Wiener chaos projection of the signature of
X is given by

wmS(X)
γ1,...,γn
st =

∑

P∈Pn
m

δm Pγ1,...,γn
st . (29)

In particular, notice that wmS(X)
γ1,...,γn
st can only be non-zero when m ≤ n and

m ≡ n ( mod 2). The most important case of this result is when m = 0:

Corollary 2.4 (Expected signature of a Gaussian process). With notation as above, we
have

ES(X)
γ1,...,γn
st =

∑

P∈Pn
0

Pγ1,...,γn
st . (30)

Remark 2.5 (Eliminating variables).While convergence rules out always considering
integrands of the first type in (27) (which would mean allowing diagrams with arcs
between consecutive nodes), one may wonder whether it is possible to only consider
integrands of the second type, i.e. by integrating out one variable per pair and thus
simplifying the presentation of the formula. This, however, is not possible in general,
because of the additional constraint that requires two consecutive variables not to be
both integrated out (for the expression to make sense as an integral). It is not difficult
to see, for example, that in the following diagram

at most two variables can be integrated out (unless the remaining integral can be
solved or simplified analytically). Luckily, the only case in which it is necessary for
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convergence to integrate out certain variables (as specified in the second case of (27)),
is when there are consecutive pairs: this is always possible, even when more than one
pair in a row is consecutive, since we may always pick the first variable to integrate
out (as done here—one could equivalently have chosen the second). Of course, there
is always some number of additional variables that can be eliminated, but we do not
immediately see a way of doing this in a maximal way that is canonical.

Example 2.6 (The Wiener chaos decomposition of S3(X)st ). We give the explicit
expression for the Wiener chaos expansion of the signature truncated at level 3. These
terms are especially significant, considering that they are the ones that define the
rough path when 1/4 < H ≤ 1/3: higher signature terms can be derived in a pathwise
fashion by Lyons’s extension theorem without involving probability. We represent
each signature term as a sum of their Wiener chaos projections in ascending order; in
particular the sum of all non-random terms constitutes the expectation of the left hand
side.

S(X)
∅

st = ∅st = 1, S(X)
γ
st = δ(

γ
)st = δ(1

γ

[s,t)) = Xγ
st

S(X)
αβ
st =

αβ
+ δ2(

α β
)

= Rαβ(s)+ Rαβ(t)

2
− Rαβ(s, t)+

∫

s<u<v<t
δXα

u δXβ
v

S(X)
αβγ
st = δ(

αβ γ
)st + δ(

α βγ
)st + δ(

α β γ
)st + δ3(

α β γ
)st

=
∫ t

s

(
Rαβ(s)+ Rαβ(u)

2
− Rαβ(s, u)

)
δXγ

u

+
∫ t

s

(
Rβγ (u)+ Rβγ (t)

2
− Rβγ (u, t)

)
δXα

u

+
∫ t

s
Rαγ (
(s, u),
(u, t))δXβ

u +
∫

s<u<v<w<t
δXα

u δXβ
v δXγ

w

In particular, notice how the expected signature of level 2 is given by the difference
between the average of the variances and the covariance:

ES(X)
αβ
st =

Rαβ(s)+ Rαβ(t)

2
− Rαβ(s, t) (31)

and that the statement that “the Itô and Stratonovich Lévy areas are equal” carries over
to the Gaussian Wiener-rough setting, in the sense that

1

2

(
S(X)

αβ
st − S(X)

βα
st

) = 1

2

∫

s<u<v<t
δXα

u δXβ
v − δXβ

u δXα
v (32)

by symmetry of the covariance function.
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Example 2.7 (ES(X)(4)). Corollary 2.4 at level 4 is given by

ES(X)
αβγ δ
st = (

αβ γδ
)st + (

α βγ δ
)st + (

α β γ δ
)st

=
∫

s<u<v<t

[ 1
2 Rαβ(du)− Rαβ(s, du)

][ 1
2 Rγ δ(dv)− Rγ δ(u, dv)

]

+
∫

s<u<v<w<t
Rαδ(du, dw)

[ 1
2 Rβγ (dv)− Rβγ (u, dv)

]

+
∫

s<u<v<w<z<t
Rαγ (du, dw)Rβδ(dv, dz).

(33)

Using a clever transformation, [3, Theorem 34] are able to compute ES(X)
(2)
01 and

ES(X)
(4)
01 for 1/4 < H -fBm. Their formulae are specific to the cases n = 2, 4 and X

a fBm, and are quite different to those given by Theorem 2.3. That the two coincide
is immediate at level 2 by (31), and in “Appendix A” we perform this check at level 4.

The following example shows howTheorem2.3 has the potential to generate insight
into numerics of numerical schemes for rough differential equations driven by Gaus-
sian signals.

Example 2.8 (Itô–Taylor expansions for solutions to RDEs driven by Gaussian sig-
nals). Assume

dY = V (Y )dX, Y0 = y0

is an RDE (rough differential equation) driven by the Gaussian rough path X (defined
by the first 1, 2 or 3 levels ofS(X), depending on how rough X is). Proceeding formally,
and denoting by Vγ1 · · · Vγn composition of vector fields (and using Einstein notation),
we can then expand the solution Y as

Yt =
∞∑

n=0
Vγ1 · · · Vγn (y0)S(X)

γ1,...,γn
0t

=
∞∑

n=0
Vγ1 · · · Vγn (y0)

∑

0≤m≤n
m≡n mod 2

wmS(X)
γ1,...,γn
0t

=
∞∑

n=0
Vγ1 · · · Vγn (y0)

∑

0≤m≤n
m≡n mod 2

∑

P∈Pn
m

δm Pγ1,...,γn
0t

=
∞∑

m=0

∞∑

n≥m
n≡m mod 2

Vγ1 · · · Vγn (y0)
∑

P∈Pn
m

δm Pγ1,...,γn
0t .
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The expansion on the first line can be viewed as the extension to the Gaussian case of
Stratonovich–Taylor series, the one on the last line can be viewed as that of Itô–Taylor
series [25]. The latter has the advantage that its terms fit in well with theWiener chaos
decomposition of Yt , although it should be observed that wmYt is represented as an
infinite series, namely the second sum in the last line above. Also, this expansion
cannot be expected to coincide with the Wiener chaos decomposition of Yt if it is
performed at times other than 0, with Y0 = y0 deterministic. This is because, unless
X is a martingale, the Wiener chaos isometries will not hold conditionally on Fs .

Remark 2.9 (Stationarity and joint stationarity of increments). X is stationary if
and only if we may write

R(s, t) = R(t − s) (34)

for some function R : [0, T ] → R
d×d . In this case we have

∂12R(s, t) = −R′′(t − s), R′(t) = 0, ∂2R(s, t) = R′(t − s)

�⇒ 1
2 R′(t)− ∂2R(s, t) = −R

′
(t − s).

(35)

An example of a centred stationary Gaussian process is the stationary Ornstein–
Uhlenbeck process e−t/2Wet where W is a Brownian motion and t ∈ [0, T ]: its
covariance function is R(s, t) = e−(t−s)/2 for s ≤ t . This process however, strictly
speaking, is not among those considered here, as it has random initial condition.

There is a much weaker property that results in a similar simplification. We will say
that a stochastic process X has jointly stationary increments if for all s1 ≤ t1, . . . , sn ≤
tn the distribution of the random vector of increments (Xs1t1 , . . . , Xsntn ) only depends
on the differences t1 − s1, . . . , tn − sn and s2 − s1, . . . , sn − sn−1 (if n = 1 the
latter condition vanishes, and ordinary stationarity of increments is recovered). If X
is Gaussian this need only be required for n = 2, and if it holds we may write

R(
(s, u),
(t, v)) = E[Xsu ⊗ Xtv] = R̂(u − s, v − t, t − s) (36)

for some function R̂ : [0, T ]3 → R
d×d . This property is satisfied by fBm, since if H

is the Hurst parameter we have

R(
(s, u),
(t, v))

= 1

2

[
(t − u)2H + (v − s)2H − (t − s)2H − (v − u)2H ]

= 1

2

[(
(t − s)− (u − s)

)2H + (
(v − t)+ (t − s)

)2H

− (
t − s

)2H − (
(v − t)+ (t − s)− (u − s)

)2H ]
.

If X has jointly stationary increments

∂12R(s, t) = lim
u→s
v→t

R(
(s, u),
(t, v))

(v − t)(u − s)
= ∂12 R̂(0, 0, t − s). (37)
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Although similar simplifications are not available for ∂2R(s, t) and R′(t) individually
(as they are in the stationary case), they are for their difference: indeed, using that
R( ·, 0) ≡ 0, we have

1
2 R(t + h)− 1

2 R(t)− (
R(s, t + h)− R(s, t)

)

= 1
2

[
R(
(s, t),
(t, t + h))+ R(
(s, t + h),
(t, t + h))

]

which implies

1
2 R′(t)− ∂2R(s, t) = 1

2∂h |h=0
[
R̂(t − s, h, t − s)+ R̂(t + h − s, h, t − s)

]

= 1
2∂1 R̂(t − s, 0, t − s)+ ∂2 R̂(t − s, 0, t − s).

We therefore conclude that joint stationarity of increments, though a much more gen-
eral property than stationarity, results in the same simplifications that are of relevance
to Theorem 2.3, namely that ∂12R(s, t) and 1

2 R′(t)− ∂2R(s, t) only depend on t − s.
This can be of aid in simplifying the expression of the integrals in the formula for
wmS(X), since it is possible to perform substitutions of the form vi j = u j − ui . It
does not, however, guarantee that these integrals become analytically solvable, as sim-
ple examples show (e.g. the integral

∫ 1
0 v2 H−1(1−v)2 H−1dv appearing in “Appendix

A”).

We now consider a few examples of Gaussian processes to which our results apply;
in all cases, X will have i.i.d. components, and we will use R to denote the scalar
covariance function of each component. Arguably the most important example of a
stochastic process for which the signature has not yet been computed is fractional
Brownian motion in the regime of negatively-correlated increments:

Example 2.10 ((1/4, 1/2) � H -fBm).Fractional Brownian motionwithHurst param-
eter H ∈ (0, 1) (H-fBm), introduced in [32], is a scalar centred Gaussian process with
covariance function

R(s, t) = 1

2
(t2H + s2H − (t − s)2H ), s ≤ t . (38)

It is not a semimartingale unless H = 1/2, in which case it is Brownian motion. Here
we consider the case H ∈ (1/4, 1/2): this is well known to satisfy the preliminary
hypotheses required in Sect. 1, and the smoothness conditions and bounds are simple
to verify. Indeed, the integrands of interest for the formula of Theorem 2.3 are given
by (s ≤ t)

∂12R(s, t) = H(2H − 1)(t − s)2H−2
1
2 R′(t)− ∂2R(s, t) = H(t − s)2H−1.

(39)

As predicted by Remark 2.9, these both are functions of t − s.
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Remark 2.11 ((1/2, 1) � H -fBm, [3]). If R( ·, · ) is once differentiable on the diago-
nal, then

R′(t) = d

dt
R(t, t) = 2∂2R(t, t)

and we have

∫ t

s

[ 1
2 R′(v)− ∂2R(s, v)

]
dv

=
∫ t

s

[
∂2R(v, v)− ∂2R(s, v)

]
dv =

∫

s<u<v<t
∂12R(u, v)dudv.

By performing this substitution in Corollary 2.4 for the case of 1/2 < H -fBm (this
means always applying the first case in (27), i.e. allowing arcs between consecutive
nodes, which replace lines), we recover the formula of [3, Theorem 31] (note that
the symmetry factor—meant to factor out permutations of pairings and transpositions
within each pair—is not present in our case, since we are summing over pairings and
not permutations). Other examples of processes in a similar regularity regime are those
Gaussian Volterra processes with strictly regular kernels considered in [7].

The following is another example of a fractional, non-semimartingale process.

Example 2.12 (The Riemann–Liouville process). Another centred continuous Gaus-
sian process, originally introduced in [26] and subsequently in [32], is the Riemann–
Liouville process with Hurst parameter H ∈ (0, 1) (sometimes called “type-II fBm”),
is a centred Gaussian process with covariance function [33, pp. 116–117]

R(s, t) =
s<t

1

2

[
t2H + s2H − 2H(t − s)2H

(
1

2H
+

∫ s/(t−s)

0

(
(1+ u)H−1/2 − u H−1/2)2du

)

︸ ︷︷ ︸
=R(
(s,t),
(s,t))

]
.
(40)

Like fBm, this process specifies to Brownian motion when H = 1/2 and is other-
wise not a semimartingale. Their main difference between the two is that fBm has
jointly stationary increments while for the Riemann–Liouville process not even single
increments are stationary. We were not able to find a satisfactory expression for the
derivatives of the covariance function of this process, and thus were not able to deter-
minewhether (for H > 1/4) it satisfies the conditions necessary for applying Theorem
2.3. However, we believe that examples such as this provide strong motivation for not
confining our study to fBm and to allow for more general processes.

Another important restriction of the main result is the following case:

Remark 2.13 (Gaussian martingales, [16]). When X is a continuous Gaussian mar-
tingale, its quadratic variation coincides with its variance function (as can be seen by
the fact that X2

t − R(t) is a martingale). The Dubins-Schwarz theorem then implies
that X can be represented as the deterministically-reparametrised Brownian motion
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WR(t). Assuming equal distribution of components, we can use this and the formula
for the expected signature of Brownian motion (2) to compute

ES(X)
γ1,...,γ2n
st = R(
(s, t))n

2nn!
γ1γ2
δ · · · γ2n−1γ2n

δ . (41)

Since by martingality ∂12R(s, t) = 0 = ∂2R(s, t) on s < t , Theorem 2.3 reduces
to a sum of iterated integrals that only involve 1

2 R′, which coincides with the above
formula.

We conclude with two examples of centred, continuous Gaussian semimartingales
which are not martingales and do not have stationary increments.

Example 2.14 (Brownian bridge returning to the origin). The Brownian Bridge
returning to the origin at time T is a process whose law is given by disintegrating the
Wiener measure on the event WT = 0, where W is a d-dimensional Brownian motion
starting at the origin. It can be written either as

Xt = Wt − t

T
WT , t ∈ [0, T ]

or adaptedly as

Xt = (T − t)
∫ t

0

dWs

T − s
, t ∈ [0, T )

(and XT = 0). Its covariance function is given by

R(s, t) = s
(
1− t

T

)
, s ≤ t (42)

and the integrands of interest are thus

∂12R(s, t) = − 1

T
1
2 R′(t)− ∂2R(s, t) = 1

2
− t − s

T
.

(43)

It should be mentioned that X , as a process defined on [0, T ], fails the non-degeneracy
condition [9, p.2125]. This is, however, not a problem, as we can view it as defined
on the interval [0, T − ε] and obtain the signature terms S(X)sT through a limiting
argument. The bounds of (9), which in this example and the one below only involve
linear terms, are easily checked (and indeed the first is not even sharp). Note that the
iterated integrals of (43) can all be solved explicitly as polynomials.

Example 2.15 (Centred Ornstein–Uhlenbeck processes started at 0). We consider
an Ornstein–Uhlenbeck process with zero mean and deterministic initial condition,
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given by the Wiener-Itô integral

Xt = σ

∫ t

0
e−θ(t−u)dWu

with σ, θ ∈ (0,+∞). Its covariance function is given by

R(s, t) = σ 2

2θ

(
e−θ(t−s) − e−θ(s+t)), s ≤ t (44)

and ∂12R(ds, dt), 1
2 R′(t)− ∂2R(s, t) can be computed directly. Once again, all con-

ditions are satisfied (see [9, p2138]).

3 Proof of themain result

Recall that we are using � to denote inequalities whose constant of proportionality
may only depend on T , H and other properties of a fixed process X . Since most of
the arguments presented in this section only concern bounds and convergence, we will
suppress indices (i.e. treat the scalar case) most of the time, so as not to clutter the
notation. Given P ∈ Pn

m , denote |P|st the function
m[s, t] → R defined analogously
to Definition 2.1, but replacing each integrand ∂12R(u, v) with (v− u)2 H−2 and each
integrand 1

2 R′(v)− ∂2R(u, v) with (v− u)2H−1. For example, if Q is the diagram of
(26)

|Q|st = 1
2[s,t](u2, u7)∫
s<u1<u2

u2<u3<u4<u6<u7
u7<u8<t

(u4 − u1)
2H−2(u8 − u3)

2H−2(u6 − u4)
2H−1du1du3du4du6du8.

The following proposition guarantees that all the integrals considered in the main
theorem are convergent.

Proposition 3.1 (Finite improper integrals). For m ≤ n and P ∈ Pn
m

|P|st � (t − s)(n−m)H (45)

uniformly over 
m[s, t].

Proof We proceed by induction on n−m. When P only has single nodes (m = n) the
statement is trivial. We will proceed by considering several cases for the last node in
P; the simplest of these occurs when it is single: the statement follows immediately
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from the inductive hypothesis. For the next case, we will need the following bound:

∫


n [s,t]
(u1 − s)2H−1 · · · (un − un−1)2H−1du1 · · · dun

�
∫


n−1[s,t]
(u1 − s)2H−1 · · · (un−1 − un−2)2H−1(t − un−1)2Hdu1 · · · dun−1

≤ (t − s)2H
∫


n−1[s,t]
(u1 − s)2H−1 · · · (un−1 − un−2)2H−1du1 · · · dun−1

� · · · � (t − s)2nH .

For a diagram C whose last node is the right endpoint of an arc, using the bound above
we have

|C . . .

n

|st

=
∫


n+1[s,t]
|C |′su0(u1 − u0)

2H−1 · · · (un − un−1)2H−1du0 · · · dun

=
∫ t

s
|C |′su0

∫


n [u0,t]
(u1 − u0)

2H−1 · · · (un − un−1)2H−1du1 · · · dun du0

�
∫ t

s
|C |′su0(t − u0)

2nHdu0

≤ (t − s)2nH
∫ t

s
|C |′su0du0

≤ (t − s)2nH |C |st

where |C |′su0 equals the integral representing |C |su0 with the only difference that we
are not integrating w.r.t. the variable u0 in (u0− r)2 H−2, which represents the arc that
terminates at the last node of C . Similarly, if the last node in C is single, we have

|C . . .

n

|st

= |C |su0

∫


n [u0,t]
(u1 − u0)

2H−1 · · · (un − un−1)2H−1du1 · · · dun

� |C |su0(t − s)2nH

≤ |C |st (t − s)2nH

where C is not differentiated since it terminates in a node representing a free variable,
u0. We now consider arcs: assume there are i arcs/lines within A, j within B, and that
there are k arcs between nodes in A and nodes in B (collectively represented below
by the dashed arc). Let A◦ and B◦ denote the diagrams given by eliminating such
arcs from A and B: the nodes that have become single as a result now represent free
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variables, which we call w1, . . . , wk , z1, . . . , zk . We first consider the case in which
j > 0:

|A B |st

=
∫

s<u<v<t

∫


k [s,u]×
k [u,v]
|A◦|su |B◦|uv(z1 − w1)

2H−2 · · · (zk − wk )
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

�
∫

s<u<v<t

∫


k [s,u]×
k [u,v]
(u − s)2i H (v − u)2 j H (z1 − w1)

2H−2 · · · (zk − wk )
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

≤ (t − s)2i H
∫

s<u<v<t
(v − u)2 j H+2H−2

∫

[s,u]k×[u,v]k
(z1 − w1)

2H−2 · · · (zk − wk )
2H−2dw1dz1 · · ·

· · · dwkdzk dudv

� (t − s)2i H
∫

s<u<v<t
(v − u)2( j+1)H−2|(v − u)2H + (u − s)2H − (v − s)2H |kdudv

� (t − s)2(i+k)H
∫

s<u<v<t
(v − u)2( j+1)H−2dudv

≤ (t − s)2(i+ j+k)H

where we have used 2H( j + 1) − 1 ≥ 4H − 1 > 0 since H > 1/4. Note that the
absolute values in the third-last expression can be removed by separately considering
the cases H > 1/2 and H < 1/2. Assume instead j = 0: this means B must contain
at least one node that is either single or paired with a node in A; it cannot be that
B = ∅ or the diagram would contain an arc between two consecutive nodes, which is
ruled out. The case in which there is a node in B which is single (see Fig. 2) does not
require H > 1/4: letting r denote the free variable represented by such a node, and
proceeding similarly to the above, we have

|A B |st

=
∫

s<u<r<v<t

∫


k [s,u]×
k [u,v]
|A◦|su(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

� (t − s)2(i+k)H
∫

s<u<r<v<t
(v − u)2H−2dudv

� (t − s)2(i+k)H |(t − r)2H + (r − s)2H − (t − s)2H |
� (t − s)2(i+k+1)H .

Finally, consider the case in which j = 0 and k > 0 (and B may have no single
nodes):
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| A B |st

� (t − s)2i H
∫

s<u<v<t

∫

[s,u]k×
k [u,v]
(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

� (t − s)2i H
∫

s<u<z1<...<zk<t
|(z1 − u)2H−1 − (z1 − s)2H−1| · · · |(zk − u)2H−1 − (zk − s)2H−1|

|(t − u)2H−1 − (zk − u)2H−1|dudz1 · · · dzk

� (t − s)2(i+k−1)H
∫

s<u<zk<t
|(zk − u)2H−1 − (zk − s)2H−1||(t − u)2H−1 − (zk − u)2H−1|dudzk .

Once again, the absolute values distinguish between H ≶ 1/2. Expanding the product,
we observe that three of the integrals feature products of different terms, each to the
power of 2H − 1: in these, at least one of zk or u only appears once, which means this
variable may be integrated out and the resulting term bounded (up to a constant) by
(t − s)2H , with the remaining integral solved similarly. The fourth integral instead is∫

s<u<z<t (z − u)4 H−2dudz which is finite again thanks to H > 1/4. This shows that
we have � (t − s)2(i+k+1)H in the above expression and concludes the proof. ��

Remark 3.2 (Modified |P|). We have stated the previous proposition under in the most
natural manner; in particular note how, in the prototypical case of fBm, the integrals
|P|st are multiples of Pst . We will, however, additionally need a slightly modified
version of this result, in which the definition of |P| is changed as follows: maximal
sequences

∫


k [u,v]
(w1 − u)2H−1 · · · (wk − wk−1)2H−1dw1 · · · dwk

occurring in the middle of the expression for |P|, are replaced with their bound (v −
u)2k H , and each integrand (v − u)2H−2 is replaced with ((v − u) ∧ 1/2)2H−2. That
the statement continues despite these modifications to hold is obvious for the first, and
for the second it follows from the facts that all integrals are still convergent (by the
same proof) and the 1/2 can be replaced with 1/2 ∧ T and absorbed in the constant
of proportionality.

Just like in [3], we approximate X piecewise linearly. Let X� be a sequence of
piecewise linear approximations of X along partitions π� on [0, T ] with step size that
vanishes as � →∞. It will be helpful to assume that the intervals in the mesh π� all
have the same length ��; this simplifying assumption can be made because it is only
necessary to show convergence along a sequence of such approximations, since it is
known that the limit does not depend on the particular choice of π� (or indeed on the
type of piecewise smooth approximation in a broad class of these) [21, Ch. 15]. For
t ∈ [0, T ] we will write t−� and t+� to respectively denote the endpoints a and b of the
interval of π� s.t. t ∈ [a, b). Explicitly, X� and its piecewise-defined derivative are
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given by

X�
t = Xt−�

+ �−1� (t − t−� )Xt−� t+�
Ẋ�

t = �−1� Xt−� t+�

(46)

where, as usual, Xab:=Xb − Xa denotes the increment. In order to use Stroock’s
formula (23), we will be considering Malliavin derivatives of the signature of the
piecewise-linear interpolations of X ,

S(X�)
γ1,...,γn
st =

∫


n [s,t]
Ẋ�;γ1

u1 · · · Ẋ�;γn
un du1 · · · dun ,

which in turn requires us to consider those of the single factors:

Dv Ẋ�;γ
u = �−1� 1

γ

[u−� ,u+� )
(v) = �−1� 1

γ

[v−� ,v+� )
(u). (47)

For P ∈ Pn
m , we provide a discretised analogue to Definition 2.1:

Definition 3.3 (P�;γ1,...,γn
st ). For γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T and P ∈ Pn

m define

P�;γ1,...,γn
st (vk | k ∈ P)

:=
∫


n [s,t]

∏

{i, j}∈P

E[Ẋ�;γi
ui Ẋ

�;γ j
u j ]duidu j ·

∏

k∈P

�−1� 1
γk

[v−k;�v+k;�)
(uk)duk .

(48)

as an element of E⊗m , whose arguments are given to the functions 1
γk

[u−k;�u+k;�)
with

k ∈ P .

Note how the above definition, unlike Definition 2.1 does not distinguish between
consecutive and non-consecutive pairings: this will only become important in the limit.
Moreover, we are integrating over all n variables, including the uk with k ∈ P: this
is because the time arguments of the function, vk , are supplied separately, with the
respective index variables supplied as arguments to δγk , k ∈ P . The functions P�

st are
summands in the expression of which we want to compute the limit:

Lemma 3.4 (Expected Malliavin derivatives of signature approximations).

EDmS(X�)
γ1,...,γn
st = m!

∑

P∈Pn
m

P�;γ1,...,γn
st ∈ E�m (49)

Proof This is a consequence of (46), (47), the (iterated) Leibniz rule for the Malliavin
derivative and Wick’s formula for the mixed moments of a Gaussian vector (as it was
already used in [2, Theorem 31]). The details are a matter of simple combinatorics;
in particular note how, instead of summing over m! terms corresponding to the ways
of permuting the m derivatives (for a fixed P ∈ Pn

m), we are only including the term
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corresponding to the identity permutation and multiplying by m!, which identifies the
same element of E⊗m up to symmetry. ��

In order to prove convergence, it is unfortunately not possible to argue by dominated
convergence applied to Definition 3.3: this is because the factors in the integrand given
by consecutive pairings E[Ẋ�;γi

ui Ẋ�;γi+1
ui+1 ] converge to non-integrable functions (e.g.

(v−u)2H−2 on
2[s, t] for fBm) and the ones corresponding to Malliavin derivatives
�−1� 1

γk

[v−k;�v+k;�)
(uk)duk do not converge at all (in fact they converge, as distributions,

to Dirac deltas δvk ). The reason that convergence holds is that all these quantities are
integrated. To successfully exploit this, we will write each integral P�

st as a nested
integral, distinguishing between the three types of integrands:

∫
(non-consecutive pairings)

∫
(Malliavin derivatives)

∏

maximal
sequences

∫
(consecutive pairings). (50)

The outer integral contains the product of all terms E[Ẋ�;γi
ui Ẋ

�;γ j
u j ] with | j − i | > 1.

These aremultiplied with the second integral, which integrates all factors coming from
Malliavin derivatives. Finally, we partition the remaining integrands E[Ẋ�;γh

uh Ẋ�;γh+1
uh+1 ]

into maximal sequences and integrate each individually: these integrals are integrands
in the second integral, alongside theMalliavin derivatives. The operations of exchang-
ing the order of integrals are all justified by Fubini’s theorem, considering that all
integrals are actually finite sums. We illustrate all of this with a simple example:
consider the diagram (suppressing indices)

P:= ∈ P6
2.

According to Definition 3.3, we have

P�
st (v1, v2)

=
∫


6[s,t]
�−2� 1[v−2;�,v+2;�)(u2)1[v−3;�,v+3;�)(u3)E[Ẋ�

u1 Ẋ�
u6 ]E[Ẋ�

u4 Ẋ�
u5 ]du1du4du5du6.

Re-organising this expression as described in (50) we obtain

∫

s<u1<u6<t
E[Ẋ�

u1 Ẋ�
u6 ]

[ ∫

u1<u2<u3<u6
�−2� 1[v−2;�,v+2;�)(u2)1[v−3;�,v+3;�)(u3)

[ ∫

u3<u4<u5<u6
E[Ẋ�

u4 Ẋ�
u5 ]du4du5

]
du2du3

]
du1du6.
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Note that the domain of integration of the innermost integral can be described in terms
of variables of the two outer integrals: this extends to the case in which there is more
than one maximal sequence, by maximality, and is crucial for the factorisation into
integrals over maximal sequences to be possible.

The reason for the nested rewriting of (50) is that it will be possible to show
convergence of the integrals over maximal sequences, then by a separate argument
infer the convergence of the middle integral, and finally by dominated convergence
conclude that the outer integrals converge. We preface the proof of convergence with
a few lemmas; the first of these considers the case of a single consecutive pairing, and
will form the base case of an induction that handles maximal sequences of arbitrary
length.

Lemma 3.5 (One consecutive pairing).

lim
�→∞

∫

s<u<v<t
E[Ẋ�

u Ẋ�
v]dudv = 1

2
E[X2

st ] =
∫ t

s

[ 1
2 R′(v)− ∂2R(s, v)

]
dv

and the convergents are uniformly bounded by � (t − s)2H .

Proof Considering that Ẋ� is a piecewise-constant, and that the integral on the right
is therefore a finite sum, we can write

∫

s<u<v<t
E[Ẋ�

u Ẋ�
v]dudv = E

∫

s<u<v<t
Ẋ�

u Ẋ�
vdudv

= 1

2
E[(X�

st )
2]

�→∞−−−→ 1

2
E[X2

st ]

= 1

2
R(
(s, t),
(s, t))

= R(s)+ R(t)

2
− R(s, t)

=
∫ t

s

[ 1
2 R′(v)− ∂2R(s, v)

]
dv

where we have used that (X�
st )

2 �→∞−−−→ X2
st in L2. For the second statement, we rely on

the first two identities above and distinguish between the cases s−� = t−� and s−� < t−� :
in the former we have, using (12)

|E[(X�
st )

2]| = |E[�−2� (t − s)2X2
s−� s+�

]| � �2H−2
� (t − s)2 ≤ (t − s)2H

since

( t − s

��

)2−2H ≤ 1
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by H < 1 and t − s ≤ ��. Let now s−� < t−� :

|E[(X�
st )

2]| = |E[(X�

ss+�
+ X�

s+� t−�
+ X�

t−� t
)2]|

=
∣∣∣E

[(
�−1(s+� − s)X�

ss+�
+ Xs+� t−�

+ �−1(t − t−� )Xt−� t

)2]∣∣∣

� �−2(s+� − s)2E[X2
ss+�
] + E[X2

s+� t−�
] + �−2(t − t−� )2E[X2

t−� t
]

� (s+� − s)2H + (t−� − s+� )2H + (t − t−� )2H

� (t − s)2H

by l2-Jensen’s inequality, the previous case, and again (12). ��
The case of several consecutive pairings is more difficult to handle, and in Proposi-

tion 3.9 convergence of these terms will be bootstrapped from terms that only contain
shorter sequences of consecutive pairings, and the above single case, by means of an
inductive argument. It is worth remarking that the plausible strategy of handling these
integrands together with the others by integrating only one of the variables fails:

Remark 3.6 (Lack of convergence of E[X�
uv Ẋ�

v]). One way of dealing with sequences
of consecutive pairings is by rewriting them as

∫

s<u1<v1<...<un<vn<t
E[Ẋ�

u1 Ẋ�
v1
] · · ·E[Ẋ�

un
Ẋ�

vn
]du1dv1 · · · dundvn

=
∫


n [s,t]
E[X�

sv1 Ẋ�
v1
]E[X�

v1v2
Ẋ�

v2
] · · ·E[X�

vn−1vk
Ẋ�

vn
]dv1 · · · dun .

(51)

This has the benefit of expressing the convergents as integrals over n, and not 2n,

variables. The problem with this strategy is that it does not hold that E[X�
uv Ẋ�

v] �→∞−−−→
1
2 R′(v)− ∂2R(u, v): a simple calculation reveals

E[X�
uv Ẋ�

v]
= �−1�

[(
1− �−1� (v − v−� )

)
R(v−� , 
(v−� , v+� ))+ �−1� (v − v−� )R(v+� ,
(v−� , v+� ))

]

− �−1�

[(
1− �−1� (u − u−� )

)
R(u−� ,
(v−� , v+� ))+ �−1� (u − u−� )R(u+� ,
(v−� , v+� ))

]
.

While the second term converges to ∂2R(u, v) (e.g. by the intermediate value theorem
applied on the interval [v−� , v+� ]), the first does not converge in general. To see why,
it suffices to take X to be Brownian motion and π� to by a diadic sequence: the first
term on the right above is then equal to �−1� (v − v−� ) which is indeterminate in view
of the fact that for v in a set of full Lebesgue measure its decimal expansion contains
infinitely many 00’s and 11’s. The fractional case with H < 1/2 appears even worse
behaved, i.e. divergent in a possibly indeterminate fashion.

We now move outward in (50) and prove a lemma that will guarantee convergence
of the middle integral, conditional on the convergence of the inner ones.
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Lemma 3.7 Let f� : [0, T ]m → R be a uniformly bounded sequence of functions that
are continuous and piecewise smooth on the mesh π�. Assume that f� converges to
f : [0, T ]m → R uniformly. Then

∫


m [s,t]
f�(u1, . . . , um)�−m

�

m∏

k=1
1[v−k;�,v+k;�)(uk)du1, . . . , dum

�→∞−−−→ 1
m [s,t](v1, . . . , vm) f (v1, . . . , vm)

where the convergence is a.e. in the variables (v1, . . . , vm) ∈ [0, T ]m. Moreover, the
convergents are uniformly bounded by sup�‖ f�‖∞.

Proof The second statement holds by uniform boundedness of f� and the fact that

∫


m [s,t]
�−m

�

m∏

k=1
1[v−k;�,v+k;�)(uk)du1, . . . , dun ≤ 1.

We will prove pointwise convergence on the subset

[0, T ]m∗ :={(v1, . . . , vm) ∈ [0, T ]m | vi 
= v j for i 
= j}

of [0, T ]m of full Lebesguemeasure. For (v1, . . . , vm) ∈ [0, T ]m∗ , wemay,without loss
of generality, start the sequence when � is already large enough so that [v−i;�, v+i;�) ∩
[v−j;�, v+j;�) = ∅ for i 
= j , where we are including v0:=s and vm+1:=t in this
requirement. By the mean value theorem applied individually to each uk , there exist
wk;� ∈ (v−k;�, v

+
k;�) s.t.

∫


m [s,t]
f�(u1, . . . , um)�−m

�

m∏

k=1
1[v−k;�,v+k;�)(uk)du1, . . . , dum

= 1
m [s,t](v1, . . . , vm) f�(w1;�, . . . , wm;�)

and

|1
m [s,t](v1, . . . , vm) f�(w1;�, . . . , wm;�)− 1
m [s,t](v1, . . . , vm) f (v1, . . . , vm)|
≤ 1
m [s,t](v1, . . . , vm)

[| f�(w1;�, . . . , wm;�)− f (w1;�, . . . , wm;�)|
+ | f (w1;�, . . . , wm;�)− f (v1, . . . , vm)|]

≤ 1
m [s,t](v1, . . . , vm)
[‖ f� − f ‖∞ + ω

f
(v1,...,vm )(��)

]

where ω
f
(v1,...,vm ) is the modulus of continuity of f at the point (v1, . . . , vm). Both

summands on the right hand side above vanish in the limit of � → ∞, the first by
uniform convergence and the second by continuity of the uniform limit of continuous
functions. ��
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The next two results constitute the core of our argument. They both rely on the same
induction used to reduce the length of consecutive pairings, the base case of which is
provided by Lemma 3.5. To illustrate it at level 4, letting Y be a stochastic process
(which below will be taken to be X� and X ) we have for α 
= β

2ES(Y )
ααββ
st = ES(Y )αα

st · ES(Y )
ββ
st − 2ES(Y )

αβαβ
st − 2ES(Y )

αββα
st

by the shuffle property (8), using identical distribution of components to group together
2ES(Y )

ααββ
st = ES(Y )

ααββ
st + ES(Y )

ββαα
st (and similar on the right hand side), and

using independence of components to writeE[S(Y )αα
st S(Y )

ββ
st ] = ES(Y )αα

st ·ES(Y )
ββ
st .

While the left hand side contains a sequence of two consecutive pairs, only sequences
of consecutive pairs of length one appear on the right.

Lemma 3.8 (Dominating function). For P ∈ Pn
m it holds that the integrand of the

outermost integral of P�
st expressed in the nested form (50), is absolutely bounded by

an integrable function, uniformly in � and on 
m[s, t], so that |P�
st | � (t− s)2(n−m)H ′

for any 1/4 < H ′ < H.

Proof We begin by bounding expectations corresponding to non-consecutive pairings.
As done in the proof of [3, Theorem 31], we now consider the terms

E[Ẋ�
u Ẋ�

v] = �−2� R(
(u−� , u+� ),
(v−� , v+� ))

in three different cases: for u−� = v−�

|E[Ẋ�
u Ẋ�

v]| � �2H−2
� ≤ (v − u)2H−2.

By Cauchy-Schwarz the same estimate as above holds in the case u+� = v−� , with a
constant in the second inequality given by the fact that v − u ≤ 2��. Let u+� < v−� :
we have, by (9) and for any H ′ as in the statement

|E[Ẋ�
u Ẋ�

v]| = �−2�

∣∣∣∣
∫

[u−� ,u+� ]×[v−� ,v+� ]
∂12R(u, v)dudv

∣∣∣∣

� �−2�

∫

[u−� ,u+� ]×[v−� ,v+� ]
(v − u)2H−2dudv

≤ (v−� − u+� )2H−2

� ((v+� − u−� ) ∧ 1/2)2H ′−2

≤ ((v − u) ∧ 1/2)2H ′−2

In the second-last inequality we have used that there exists some L s.t. for all � ≥ L

ϑ2H−2 ≤ (ϑ + 2��)
2H ′−2

for all ϑ ∈ [��, 1/2].
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We now consider terms corresponding to maximal sequences of consecutive pair-
ings, i.e.

∫

s<u1<v1<...<uk<vk<t
E[Ẋ�

u1 Ẋ�
v1
] · · ·E[Ẋ�

uk
Ẋ�

vk
]du1dv1 · · · dukdvk . (52)

It is always possible (e.g. by Kolmogorov’s extension theorem) to add independent
components to X . With this in mind, by Wick’s theorem we may write the above
integral as ES(X�)

α1α1...αkαk
st with αi 
= α j for all i 
= j . By the shuffle identity (8) we

have

n∑

h=0
S(X�)

α1α1...αhαhββαh+1αh+1...αkαk
st

= S(X�)
α1α1...αkαk
st S(X�)

ββ
st −

∑

0≤i< j≤k

S(X�)
α1α1...αi αi βαi+1αi+1...α j α j βα j+1α j+1...αkαk
st

−
∑

0≤i< j≤k

S(X�)
α1α1...αi αi βαi+1αi+1...α j+1βα j+1...αkαk
st

−
∑

0≤i< j≤k

S(X�)
α1α1...αi βαi ...α j α j βα j+1α j+1...αkαk
st

−
∑

0≤i< j≤k

S(X�)
α1α1...αi βαi ...α j βα j ...αkαk
st

−
k∑

h=0

(
S(X�)

α1α1...αhβαhβαh+1αh+1...αkαk
st + S(X�)

α1α1...αh−1αh−1βαhβαh ...αkαk
st

)
.

(53)

When shuffling we have separated the cases in which all αhαh and ββ occur as con-
secutive pairs, from those in which at least one such pair is separated. We now take
expectations: note that both independence and equal distribution of components are
used.

(k + 1)ES(X�)
α1α1...αkαkββ
st = ES(X�)

α1α1...αkαk
st · 12E[(X�)2st ] −

∑

Q

Q�
st (54)

where we are summing over a finite number of diagrams Q whose longest sequence
of consecutive pairings contains k pairs or fewer.

We nowprove the statement in the case inwhich P has no single nodes, by induction
on n. For n = 0, P�

st = ∅
�
st ≡ 1 there is nothing to show. Let n ≥ 1, and assume

we have rewritten the integral according to (50) (where the middle integral may be
skipped, since there are no Malliavin derivatives). If P is not given by a sequence
of n/2 consecutive pairs, all maximal sequences of consecutive pairs in P consist of
fewer than n pairs, and that thus the inductive hypothesis applies to them: this means
that for each such sequence Q with k pairs, |Q�

uv| � (v−u)2k H ′
. Using the bounds for

the first two types of integrand derived in the first part of this proof, the statement for P
then follows from Proposition 3.1 applied in the modified case of Remark 3.2 and with
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exponent H ′. Assume now n = 2(k+1) and let P be given by the diagram consisting
of k + 1 consecutive pairs: the only thing needed to conclude the induction is the
bound. This follows from (54) thanks to the inductive hypothesis and the boundedness
statement of Lemma 3.5.

Finally, we consider the general case in which P may have single nodes. This
follows again by writing P�

st in nested form, bounding terms corresponding to non-
consecutive pairings as done above, and bounding the middle integral in (50) thanks to
the boundedness statement of Lemma 3.7. When invoking this lemma, f� is going to
be a product of terms of the form (52) (with the extrema s and t replaced with variables
ui and u j already integrated in the outer or middle integral), which as already proved
is bounded by � (t − s)2H ′k : this yields the required bound overall. ��
Proposition 3.9 (Convergence). The functions [0, T ]m → R of Definition 3.3 individ-
ually converge a.e. to those of Definition 2.1: for P ∈ Pn

m it holds that

P�
st

�→∞−−−→ Pst . (55)

Moreover |Pst | � |P|st (the integrals of Proposition 3.1) uniformly on 
m[s, t].
Proof The inequality is an absolute estimate of Pst using (9) and (10). The structure
of the proof of the first statement closely mirrors that of the previous lemma: we first
consider the case in which P does not have single nodes. For u−� < v−�

E[Ẋ�
u Ẋ�

v] = �−2� R(
(u−� , u+� ),
(v−� , v+� )) = ∂12R(u, v)

for some u ∈ (u−� , u+� ), v ∈ (v−� , v+� ), by the intermediate value theorem applied
twice. Pointwise convergence E[Ẋ�

u Ẋ�
v] → ∂12R(u, v) then holds by continuity of

∂12R and thanks to the fact that for any u < v there exists L s.t. u−� < v−� for all
� ≥ L . This takes care of convergence of terms corresponding to non-consecutive
pairings (of course, the same holds for consecutive pairings, but is not useful since
∂12R(u, v) may not be integrable in this case).

We now proceed by induction on n. For n = 0 there is nothing to prove, so let
n ≥ 1 and first consider the case in which P is not given by a sequence of n/2
consecutive pairs: the statement follows by dominated convergence applied to the
outer integral in (50), by the above and the inductive hypothesis applied to sequences
of consecutive nodes of length less than n, in conjunction with Lemma 3.8. Let now
n = 2(k + 1) and let P be given by the diagram consisting of k + 1 consecutive
pairs: recalling the argument (and indexing notation) of the previous proof, we have
P�

st = ES(X�)
α1α1...αkαkββ
st , which is convergent since S(X�)st → S(X)st in L2. By

the same calculation of (53) applied to X instead of to X�, and taking expectations
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(k + 1) lim
�→∞ P�

st

= (k + 1)ES(X)
α1α1...αkαkββ
st

= ES(X)
α1α1...αkαk
st · 12E[(X)2st ]

−
∑

0≤i< j≤k

ES(X)
α1α1...αi αi βαi+1αi+1...α j α j βα j+1α j+1...αkαk
st

−
∑

0≤i< j≤k

ES(X)
α1α1...αi αi βαi+1αi+1...α j+1βα j+1...αkαk
st

−
∑

0≤i< j≤k

ES(X)
α1α1...αi βαi ...α j α j βα j+1α j+1...αkαk
st

−
∑

0≤i< j≤k

ES(X)
α1α1...αi βαi ...α j βα j ...αkαk
st

−
k∑

h=0

(
ES(X)

α1α1...αhβαhβαh+1αh+1...αkαk
st + ES(X)

α1α1...αh−1αh−1βαhβαh ...αkαk
st

)
.

(56)

We now expand the product: by the inductive hypothesis and Lemma 3.5, and using
Fubini’s theorem we have (setting u0 = s = w0)

ES(X)
α1α1...αkαk
st · E[X2

st ]
=

∫

s<u1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(uk)− ∂2R(uk−1, uk)
]
du1 · · · duk

·
∫ t

s

[ 1
2 R′(v)− ∂2R(s, v)

]
dv

=
∫

s<u1<...<uk<t
s<v<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(uk)− ∂2R(uk−1, uk)
]

· [ 12 R′(v)− ∂2R(s, v)
]
du1 · · · dukdv

=
k∑

j=0

∫

s<u1<...<u j <v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(uk)− ∂2R(uk−1, uk)
]

· [ 12 R′(v)− ∂2R(s, v)
]
du1 · · · dukdv.

Note that the use of Fubini’s theorem is justified in view of (10) applied to absolutely
bound each integral above, and Proposition 3.1. Writing

∂2R(
(x, y), z):=∂2R(y, z)− ∂2R(x, z) =
∫ y

x
∂12R(w, z)dw,

we expand each summand:

∫

s<u1<...<u j <v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(uk )− ∂2R(uk−1, uk )
]

· [ 12 R′(v)− ∂2R(s, v)
]
du1 · · · dukdv
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=
∫

s<u1<...<u j <v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(u j )− ∂2R(u j−1, u j )
]

· [ 12 R′(v)− ∂2R(u j , v)+∑ j−1
i=0 ∂2R(
(ui , ui+1), v)

]

· [ 12 R′(u j+1)− ∂2R(v, u j+1)+ ∂2R(
(u j , v), u j+1)
]

· [ 12 R′(u j+2)− ∂2R(u j+1, u j+2)
] · · · [ 12 R′(uk )− ∂2R(uk−1, uk )

]
du1 · · · dukdv

=
∫

s<u1<...<u j <v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(v)− ∂2R(u j , v)
]

· [ 12 R′(u j+1)− ∂2R(u j+1, v)
] · · · [ 12 R′(uk )− ∂2R(uk−1, uk )

]
du1 · · · dukdv

+
∫

s<u1<...<u j <r<v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

] · · · [ 12 R′(u j )− ∂2R(u j−1, u j )
]

· [ 12 R′(v)− ∂2R(r , v)+ ∂2R(
(u j , r), v)
]
∂12R(r , u j+1)du1 · · · dukdrdv

+
j−1∑

i=0

∫

s<u1<...<ui <q<ui+1<...<u j <v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

]

· · · ∂12R(q, v)
[ 1
2 R′(ui+1)− ∂2R(q, ui+1)+ ∂2R(
(ui , q), ui+1)

]

· · · [ 12 R′(u j+1)− ∂2R(v, u j+1)
]

· · · [ 12 R′(uk )− ∂2R(uk−1, uk )
]
du1 · · · dukdqdv

+
j−1∑

i=0

∫

s<u1<...<ui <q<ui+1<...<u j <r<v<u j+1<...<uk<t

[ 1
2 R′(u1)− ∂2R(u0, u1)

]

· · · ∂12R(q, v)
[ 1
2 R′(ui+1)− ∂2R(q, ui+1)+ ∂2R(
(ui , q), ui+1)

] · · · ∂12R(r , u j+1)
· · · [ 12 R′(uk )− ∂2R(uk−1, uk )

]
du1 · · · dukdqdrdv

= ( . . .

k+1
)st + ( . . .

j

. . .

k− j−1
)st + ( . . .

j

. . .

k− j−1
)st

+
j−1∑

i=0
( . . .

i

. . .

j−i

. . .

k− j

)st +
j−1∑

i=0
( . . .

i

. . .

j−i−1
. . .

k− j

)st

+
j−1∑

i=0
( . . .

i

. . .

j−i

. . .

k− j−1
)st

+
j−1∑

i=0
( . . .

i

. . . . . .

j−i−1 k− j−2
)st

= (k + 1)Pst + ES(X)
α1α1...α j α j βα j+1α j+1βα j+2α j+2...αkαk
st

+ ES(X)
α1α1...α j α j βα j+1βα j+1...αkαk
st

+
j−1∑

i=0
S(X)

α1α1...αi αi βαi+1αi+1...α j α j βα j+1α j+1...αkαk
st

+
j−1∑

i=0
S(X)

α1α1...αi+1βαi+1...α j α j βα j+1α j+1...αkαk
st
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+
j−1∑

i=0
S(X)

α1α1...αi αi βαi+1αi+1...α j+1βα j+1...αkαk
st

+
j−1∑

i=0
S(X)

α1α1...αi+1βαi+1...α j+1βα j+1...αkαk
st .

It now follows by substitution into the sum
∑k

j=0 and simplifying in (56) that

lim� P�
st = Pst .

Finally, we consider diagrams that contain single nodes. In order to invoke Lemma
3.7wemust argue that f� → f uniformly (uniform boundedness holds by the previous
lemma). This again follows from the fact that f� can bewritten as a product of expected
signatures of X�, each of which converges uniformly in � as a function of its extrema:
recalling the notations for truncation and projection introduced in Sect. 1 and the
definition of inhomogeneous p-variation distance [21, §8.1.2], we have

sup
u<v

|ES(X)(n)
uv − ES(X�)(n)

uv | ≤ E sup
u<v

|S(X)(n)
uv − S(X�)(n)

uv |
≤ ‖ρp-var(S

"p#(X�), S"p#(X))‖L1

�→∞−−−→ 0

for p > (1/H)∨ n, where we have used [18, Theorem 1]. The statement now follows
once again by dominated convergence and Fubini’s theorem. ��

We are ready to put it all together:

Proof of Theorem 2.3

wmS(X)
γ1,...,γn
st = 1

m!δ
m(

EDmS(X)
γ1,...,γn
st

)
(57)

= 1

m!δ
m lim

�→∞
(
EDmS(X�)

γ1,...,γn
st

)
(58)

= δm
∑

P∈Pn
m

lim
�→∞ P�;γ1,...,γn

st (59)

=
∑

P∈Pn
m

δm Pγ1,...,γn
st (60)

In (57) we have used Stroock’s formula (23), which is possible since S(X)
γ1,...,γn
st ∈

D
∞,2: this is because S(X�)st → S(X)st in

⊕
k≤n Wk which is closed in L2�. In

(58) we have used that convergence of S(X�)st actually holds in D
∞,2, since the norm

of D
∞,2 is dominated by the L2 norm in bounded Wiener chaos [35, Proposition

1.2.2]. (59) uses Lemma 3.4 and (60) is just the statement (required by our definition
of membership of a function to H⊗m Definition 1.1) that P�;γ1,...,γn

st converges a.e.
boundedly to P�

st , which holds by Proposition 3.9 and Lemma 3.8. As argued in the
previous two proofs, Pγ1,...,γn

st can always be expressed as the expected signature
evaluated on a word, up to augmenting X with independent copies of itself: this can
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be used to infer that each Pγ1,...,γn
st —not just their sum—belongs to D

∞,2(H⊗m). This
concludes the proof of the main result. ��

4 Conclusions and further directions

Byproviding a single formula for the expected signature of fractionalBrownianmotion
that holds for any Hurst parameter H ∈ (1/4, 1), this article closes a gap in the liter-
ature left open by [3]. Along the way, we have had opportunity to consider numerous
other aspects of our computation, such as similar formulae for higher levels of the
Wiener chaos expansion of the signature, and other examples of Gaussian processes.

We believe this work recommends a variety of applications and further investiga-
tions. First and foremost, it would be interesting to write stochastic Taylor expansions
as suggested by Example 2.8, under precise conditions on the vector fields, and by
providing bounds on the mean square error. Making this calculation rigorous and
providing precise asymptotic estimates such as those in [37] would be an interesting
result, which could be applied to approximation problems for Gaussian RDEs onman-
ifolds such as those considered in [1] for SDEs (although for this precise problem,
the joint signature S(X , t) would have to be considered). A further step would involve
proving conditional versions of the results in this paper, which would make it possible
to estimate the error generated by multiple steps in an Euler scheme.

The fact that (e.g. for fBm) the integral ES(X)
α1α1···αkαk
st with αi 
= α j is actually

convergent for any H > 0 raises the question of whether something can be said about
the sequence S(X�)

α1α1···αkαk
st , i.e. by considering the particular word on which S(X�),

which is not convergent in probability for H ≤ 1/4, is evaluated.
It would be interesting to express the expected signature of a Gaussian process as

the exponential of a formal series of tensors, thus computing its signature cumulants
[8]: this is how the expected signature of Brownian motion (2) is usually presented
(with the series a finite sum), but the analogous formulation for Gaussian processes
that are not martingales appears more difficult to write down.

Amore computational goal, though not one that appears trivial, is to explicitly com-
pute Theorem 2.3 for certain semimartingales, such as the Brownian bridge, for which
the integrals are all analytically solvable. An interesting question is how the relation-
ship between Brownian motion and Brownian bridge is reflected by their expected
signatures. It would also be helpful to see whether similar formulae to ours can be
made available for non-centred Gaussian processes, e.g. general Ornstein–Uhlenbeck
processes. Finally, it would be interesting to try to apply the main theorem to the
Riemann–Liouville process Example 2.12.
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A Equivalence with [3] for the expected signature of fBm at level 4

In [3, Theorem 34] the authors check that the explicit integral expressions forES(X)
(n)
01

with n = 2, 4, previously derived for X a fractional Brownian motion of Hurst param-
eter H ∈ (1/2, 1), continue to be valid for H ∈ (1/4, 1). This is done by performing
transformations onES(X�)01 before passing to the limit. This calculation is specific to
levels 2 and 4 and to fBm, and for this reason the expression for the expected signature
is not immediately comparable to that obtained as a special case of Theorem 2.3. We
devote this appendix to checking that the two agree.

Level 2 is easy to check, since (31) reduces to δ
αβ/2. Referring to Example 2.7, we

consider level 4 using (39): starting with the first integral above, we have

∫

0<u<v<1

[ 1
2 R(du)− R(s, du)

][ 1
2 R(dv)− R(u, dv)

]
dudv

= H2
∫

0<u<v<1
u2H−1(v − u)2H−1dudv

= H2
∫ 1

0
u2H−1

[
(v − u)2H−1

2H

]1

u=0
du

= H2

2

∫ 1

0
u2H−1

[
(v − u)2H

2H

]1

v=u
du

= H

2

∫ 1

0
u2H−1(1− u)2Hdu

= H

4

∫ 1

0
u2H−1(1− u)2H−1du

where the last identity can be verified by showing that the difference of the two
integrands is odd about the point u = 1/2, which in turn is seen by observing that
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H

4
u2H−1(1− u)2H−1 − H

2
u2H−1(1− u)2H

+H

4
(1− u)2H−1u2H−1 − H

2
(1− u)2H−1u2H

has zero derivative and vanishes at u = 1/2. This shows equality with [3, coefficient of
the first term of �2

H in Corollary 33]. We proceed with the second integral in Example
2.7:

∫

s<u<v<w<t
R(du, dw)

[ 1
2 R(dv)− R(u, dv)

]
dudvdw

= H2(2H − 1)
∫

0<u<v<w<1
(w − u)2H−2(v − u)2H−1dudvdw

= H2
∫

0<u<v<1

[
(1− u)2H−1(v − u)2H−1 − (v − u)4H−2]dudv

=
(

H

2
− H2

4H − 1

) ∫ 1

0
(1− u)4H−1du

= 2H − 1

8(4H − 1)
.

For the third integral we have
∫

0<u<v<w<z<1
R(du, dw)R(dv, dz)

= H2(2H − 1)2
∫

0<u<v<w<z<1
(w − u)2H−2(z − v)2H−2dudvdwdz

= H2(2H − 1)
∫

0<u<v<z<1

[
(z − u)2H−1(z − v)2H−2 − (v − u)2H−1(z − v)2H−2]dudvdz

= H(2H − 1)

2

∫

0<v<z<1

[
z2H (z − v)2H−2 − (z − v)4H−2 − v2H (z − v)2H−2]dvdz

= H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H )(z − v)2H−2dvdz − H(2H − 1)

4H − 1

∫ 1

0
(1− v)4H−1dv

= H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H )(z − v)2H−2dvdz − 2H − 1

4(4H − 1)

= H

2

∫ 1

0
(1− v2H )(1− v)2H−1dv − H2

∫

0<v<z<1
z2H−1(z − v)2H−1 − 2H − 1

4(4H − 1)

= H

4(4H − 1)
− H

4

∫ 1

0
v2H−1(1− v)2H−1dv.

In the integration by parts we have used that limz→v+(z2 H − v2 H )(z − v)2 H−1 = 0
which can be shown by using that for 1/4 < H < 1/2

0 ≤ (z2H − v2H )(z − v)2H−1 ≤ (z − v)4H−1 z→v+−−−→ 0

since z2 H − v2 H < (z − v)2 H for 0 < v < z and H < 1/2. In the last identity
we have used a similar symmetry argument as the one used in the first calculation,
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solved trivial integrals and rearranged terms. Note how this calculation would have
been simpler if H ≥ 1/2 since it would not have been necessary to integrate by parts
to avoid integrating (z − v)2H−2 (cf. [3, Lemma 32]).
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