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Abstract
In this paper we introduce the critical variational setting for parabolic stochastic evolu-
tion equations of quasi- or semi-linear type. Our results improve many of the abstract
results in the classical variational setting. In particular, we are able to replace the usual
weak or local monotonicity condition by a more flexible local Lipschitz condition.
Moreover, the usual growth conditions on the multiplicative noise are weakened con-
siderably. Our new setting provides general conditions under which local and global
existence and uniqueness hold. In addition, we prove continuous dependence on the
initial data. We show that many classical SPDEs, which could not be covered by
the classical variational setting, do fit in the critical variational setting. In particular,
this is the case for the Cahn–Hilliard equation, tamed Navier–Stokes equations, and
Allen–Cahn equation.
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1 Introduction

The variational approach to stochastic evolution equations goes back to the work of
[13, 38, 46]. Detailed information on the topic can also be found in the monographs
[41, 53]. Further progress was made in the papers [16, 30], where the Lévy and the
semimartingale case were considered respectively. Other forms of extensions of the
variational setting have been proposed in several papers, and the reader is referred to
[11, 12, 25, 40, 42, 54, 55] and references therein. Recently, in the papers [29, 45] a
new type of coercivity condition has been found which gives sufficient conditions for
L p(�)-estimates as well.

As usual we assume that (V , H , V ∗) is a triple of spaces such that V ↪→ H ↪→ V ∗,
where we use the identification of the Hilbert space H and its dual, and where V ∗ is
the dual with respect to the inner product of H . In the classical framework V can be a
Banach space, but since wewill be dealing with non-degenerate quasi-linear equations
only, it will be natural to assume V is a Hilbert space as well. The stochastic evolution
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The critical variational setting for stochastic evolution equations 959

equation we consider can be written in the abstract form:

{
du(t) + A(t, u(t)) dt = B(t, u(t)) dW (t),

u(0) = u0.
(1.1)

Here A : R+ × � × V → L(V , V ∗) and B : R+ × � × V → L2(U , H), and
we assume the structure stated in (1.5) (see also Assumption 3.1). Moreover W is a
U -cylindrical Brownian motion, where U is a separable Hilbert space.

One of the advantages of the variational approach is that it gives global well-
posedness for a large class of stochastic evolution equations. Other approaches
typically only give local well-posedness and sometimes (after a lot of hard work)
global well-posedness under additional conditions.

1.1 The classical variational setting

In the variational setting there are several conditions on the nonlinearities (A, B). The
most important one is: for θ, M > 0

〈A(t, v), v〉 − 1
2‖B(t, v)‖2L2(U ,H) ≥ θ‖v‖α

V − |φ(t)|2 − M‖v‖2H (Coercivity),
(1.2)

which allows to use Itô’s formula to deduce a priori bounds for the solution. Moreover,
in the proof of these bounds, but also at other places, one needs some boundedness
properties of (A, B):

‖A(t, v)‖
α

α−1
V ∗ ≤ KA(|φ(t)|2 + ‖v‖α

V )(1 + ‖v‖β
H ) (Boundedness of A), (1.3)

‖B(t, v)‖2L2(U ,H) ≤ |φ(t)|2 + KB‖v‖2H + Kα‖v‖α
V (Boundedness of B). (1.4)

In many cases the leading order part of A is linear or quasi-linear and uniformly
elliptic, and in that case, the coercivity condition usually forces one to take α = 2,
in which case B needs to be of linear growth. Moreover, the growth condition on A
becomes

‖A(t, v)‖2V ∗ ≤ KA(|φ(t)|2 + ‖v‖2V )(1 + ‖v‖β
H ).

From an evolution equation perspective it seems more natural to have a symmetric
growth condition in terms of intermediate spaces between H and V for the non-leading
part of A, which is exactly what we assume later on.

In many examples a problematic requirement is the local monotonicity condition:

− 2〈A(t, u) − A(t, v), u − v〉 + ‖B(t, u) − B(t, v)‖2L2(U ,H)

≤ K (1 + ‖v‖α
V )(1 + ‖v‖β

H )‖u − v‖2H (Local Monotonicity).
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960 A. Agresti, M. Veraar

One of the difficulties with this is that the “one-sided Lipschitz constant” on right-hand
side can only grow as ‖v‖β

H (or equivalently ‖u‖β
H ), but not in ‖u‖β

H and ‖v‖β
H at the

same time. Typically it fails whenever spatial derivatives of u appear in a nonlinear
way. Examples of nonlinearities for which local monotonicity fails are

• the Cahn–Hilliard nonlinearity �( f (u)), where f (y) = ∂y[ 14 (1 − y2)2];
• the (tamed) Navier–Stokes nonlinearity (u · ∇)u in three dimensions;
• the Allen–Cahn nonlinearity u − u3 in two or three dimensions;
• systems of SPDEs with nonlinearities such as ±u1u2.

For the (tamed) Navier–Stokes and Allen–Cahn equations the strong setting V = H2

and H = H1 is required, for which local monotonicity does not hold. Each of the
above cases contains a product term, which does not satisfy local monotonicity.

The local monotonicity conditions is further weakened in [41, Section 5.2], where
also some of the above examples are considered. However, therein global well-
posedness is only obtained for equations with additive noise. In what follows, we
introduce a new setting in which we can remove such restrictions.

Finally, we would like to mention that of course not all SPDEs can be studied
with the variational method, due to the lack of coercivity. Equations for which (1.2)
does not hold include the stochastic primitive equations [3] and certain systems of
reaction-diffusion equations [8].

1.2 The critical variational setting

In this paper we introduce a new variational setting which we call the critical vari-
ational setting. We show that under mild structural restrictions on (A, B), one can
replace the local monotonicity condition by a local Lipschitz condition, which does
hold for the above mentioned examples. The Lipschitz constants can have arbitrary
dependence on ‖u‖H and ‖v‖H , and moreover they can grow polynomially in ‖u‖Vβ

and ‖v‖Vβ , where Vβ = [V ∗, V ]β is the complex interpolation space and β < 1. A
restriction on the nonlinearities (A, B) is that they are of quasi-linear type:

A(t, v) = A0(t, v)v − F(t, v) and B(t, v) = B0(t, v)v + G(t, v), (1.5)

where v ∈ V . The parts (A0, B0) and (F,G) are the quasi-linear and semi-linear parts
of (A, B), respectively. Of course many of the classical SPDEs fit into this setting, and
actually in many important cases A0 and B0 are linear differential operators, which
requires α = 2 in the coercivity condition (1.2).

To give an idea what to expect we give a special case of the local Lipschitz condition
on F and G we will be assuming: for all n ≥ 1 there exists a Cn such that, for all
u, v ∈ V with ‖u‖H ≤ n and ‖v‖H ≤ n,

‖F(t, u) − F(t, v)‖V ∗ ≤ Cn(1 + ‖u‖ρ
Vβ

+ ‖v‖ρ
Vβ

)‖u − v‖Vβ ,

‖G(t, u) − G(t, v)‖L2(U ,H) ≤ Cn(1 + ‖u‖ρ
Vβ

+ ‖v‖ρ
Vβ

)‖u − v‖Vβ .
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The critical variational setting for stochastic evolution equations 961

Here β ∈ (0, 1) and ρ ≥ 0 satisfy 2β ≤ 1 + 1
ρ+1 , together with an associated

growth condition involving the same parameters β and ρ. In case 2β = 1 + 1
ρ+1 the

nonlinearity is called critical. It is central in the theory that this case is included as
well, as often it has the right scaling properties for SPDEs. In examples, the Sobolev
embedding usually dictates which β one can use. Then the corresponding ρ, gives the
growth of the Lipschitz constant which one can allow.

Another feature of our theory is that we can also weaken the linear growth condition
on the B-term in front of the noise term (i.e. (1.4) in case α = 2). In principle we
can have arbitrary growth, but in order to ensure global well-posedness, the coercivity
condition usually leads to some natural restrictions on the growth order of B.

Finally, we mention that the classical variational setting also covers several degen-
erate nonlinear operators A such as the p-Laplace operator and the porous media
operator (see [41]). At the moment we cannot treat these cases since [6, 7] requires a
strongly elliptic/parabolic quasi-linear structure. It would be interesting to see whether
the latter can be adjusted to include these cases as well. This could lead to a com-
plete extension of the variational setting where the local monotonicity condition is
replaced by local Lipschitz conditions. After the first version of the current paper was
uploaded to the arXiv, the manuscript [50] appeared on the arXiv. In the latter it was
shown that the classical variational framework can also be extended to a fully nonlin-
ear framework under very general local monotonicity conditions in the special case
the embedding V ↪→ H is compact, by applying Yamada-Watanabe theory. Of course
the approaches and conditions are completely different, but there is some overlap in
the potential applications.

1.3 Main results

In the paper we prove well-posedness for (1.1) in the critical variational setting, i.e.
assuming (1.5), a coercivity condition, and a local Lipschitz condition. The main
results for the abstract stochastic evolution equation (1.1) are

• global existence and uniqueness (Theorems 3.4 and 3.5);
• continuous dependency on the initial data (Theorem 3.8).

The abstract results are applied to the following examples:

• stochastic Cahn–Hilliard equation (Sect. 5.1);
• stochastic tamed Navier–Stokes equations (Sect. 5.2);
• generalized Burgers equations (Sect. 5.3);
• Allen–Cahn equation (Sect. 5.4);
• a quasi-linear equations of second order (Sect. 5.5);
• stochastic Swift-Hohenberg equation (Sect. 5.6).

Some of these equations have been considered in the literature before using different
methods. However, the classical variational framework was not applicable. In any case
the proofs we present are new and lead to new insights. Our new variational setting
avoids local monotonicity and boundedness, and thus leads to less restrictions. Many
more applications could be considered, but to keep the paper at a reasonable length,
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962 A. Agresti, M. Veraar

we have to limit the number of applications. We kindly invite the reader to see what
the new theory brings for his/her favorite SPDEs.

Our method of proof differs from the classical variational setting which is based on
Galerkin approximation. Local well-posedness is an immediate consequence of our
paper [6], which is the stochastic analogue of the theory of critical evolution equations
recently obtained in [39, 48, 49]. In our previouswork [7]weprovided several sufficient
conditions for global well-posedness in terms of blow-up criteria. In the current paper
we present a consequence of one of these blow-up criteria, and we check it via the
coercivity condition and Itô’s formula. This leads to global well-posedness for the
variational setting considered here. Continuous dependence on the initial data turns
out to be a delicate issue, and is proved via maximal regularity techniques combined
with a local Gronwall lemma (see Appendix 1).

1.4 Embedding into Lp(Lq)-theory

In follow-up papers we will also present other examples which require L p(Lq)-theory
(L p in time and Lq in space). Choosing p and q large, Sobolev embedding results
become better, and more nonlinearities can be included. In many cases the L2(L2)-
setting can be transferred to a L p(Lq)-setting using the new bootstrap methods of [7,
Section 6]. Often this also leads to global well-posedness in an L p(Lq)-setting.

An example where the latter program is worked out in full detail can be found in
[5]. Here we proved higher order regularity of local solutions to the stochastic Navier–
Stokes equations on the d-dimensional torus. In the special case of d = 2, these results
hold globally and are proved using such a transference and bootstrapping argument,
by going from an L2(L2)-setting to an L p(Lq)-setting.

There is a price to pay in L p(Lq)-theory. It is usually much more involved, and
moreover, the classical coercivity conditions are often not enough or not even known.
Exceptions where coercivity conditions in L p(Lq) are well-understood are:

• second order equations on R
d [37, 47];

• second order equations on the torus T
d [4];

• weighted spaces on domains [33, 34].

It is of major importance to further extend the latter linear theory as it is the key in the
stochastic maximal regularity (SMR) approach to SPDEs obtained in [6, 7]. In future
papers we expect that the variational setting considered in the current paper will play
a crucial role in establishing global L p(Lq)-theory, which in turn also leads to higher
order regularity of the solution.

Notation

For a metric space (M, d), B(M) denotes the Borel σ -algebra.
For a measure space (S,A, μ), L0(S; X) denotes the space of strongly measurable

functions from S into a normed space X . Here and below we identify a.e. equal
functions. For details on strong measurability the reader is referred to [31]. For p ∈
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The critical variational setting for stochastic evolution equations 963

(0,∞) let L p(S; X) denote the subset of L0(S; X) for which

‖ f ‖L p(S;X) :=
( ∫

S
‖ f (s)‖p dμ(s)

)1/p
< ∞.

Finally, let L∞(S; X) denote the space of functions for which

‖ f ‖∞ = ‖ f ‖L∞(S;X) = ess sup
s∈S

‖ f (s)‖X < ∞.

In case A0 is a sub-σ -algebra of A, L p
A0

(S; X) denotes the subspace of strongly
A0-measurable functions in L p(S; X).

Let R+ = [0,∞). For an interval I ⊆ [0,∞] we write C(I ; X) for the continuous
functions from I ∩ R+ into X . The space Cb(I ; X) is the subspace of C(I ; X) of
functions such that ‖ f ‖∞ = ‖ f ‖Cb(I ;X) = supt∈I | f (t)| < ∞.

We write L p
loc(I ; X) for the space of functions f : I → X such that f |J ∈

L p(J ; X) for all compact intervals J ⊆ I .
For a Hilbert spaces U and H , let L(U , H) denote the bounded linear operators

from U into H , and L2(U , H) the Hilbert-Schmidt operators from U into H .
Given Hilbert spaces V0 and V1, Vβ = [V0, V1]β denotes complex interpolation at

β ∈ (0, 1). For x ∈ Vβ and R ∈ L2(U , Vβ), we write

‖x‖β = ‖x‖Vβ , and |||R|||β = ‖R‖L2(U ,Vβ).

However, in case β ∈ {0, 1/2, 1} we sometimes write ‖x‖V ∗ , ‖x‖H , ‖x‖V , |||R|||V ∗ ,
|||R|||H and |||R|||V instead.

By the notation A �p B we mean that there is a constant C depending only on p
such that A ≤ CB.

2 Preliminaries

2.1 Variational setting

To start with we recall the variational setting for evolution equations. For unexplained
details on real and complex interpolation and connections to Hilbert space methods
the reader is referred to [10, Section 5.5.2], [18], and [36, Section IV.10]. The real
interpolation method is denoted by (·, ·)θ,2 and the complex interpolation method
by [·, ·]θ for θ ∈ (0, 1). When interpolating Hilbert spaces, the latter two methods
coincide (see [31, Corollary C.4.2]).

In the variational setting for evolution equations one starts with two real Hilbert
spaces (V , (·, ·)V ) and (H , (·, ·)H ) such that V ↪→ H , where the embedding is dense
and continuous. Identifying H with its dual we can define an imbedding j : H → V ∗
by setting 〈 jh, v〉 = (v, h)H for v ∈ V and h ∈ H . In this way we may view H
as a subspace of V ∗, and one can show that the embedding H ↪→ V ∗ is dense and
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964 A. Agresti, M. Veraar

continuous. Moreover, one can check that (V ∗, V ) 1
2 ,2 = [V ∗, V ] 1

2
= H (see [10,

Section 5.5.2]).
A converse to the above construction can also be done. Given Hilbert spaces V0 and

V1 such that V1 ↪→ V0, where the embedding is dense and continuous, define another
Hilbert space H by setting H = (V0, V1) 1

2 ,2 = [V0, V1] 1
2
. Let (·, ·)H denote the inner

product on H . Then the embeddings V1 ↪→ H ↪→ V0 are dense and continuous.
Identifying H with its dual, one can check that V ∗

1 = V0 isomorphically.
Next we collect two basic examples of the above construction. Below Hs(O)

denotes the Bessel potential spaces of order s ∈ R on an open setO ⊆ R
d . Moreover,

Hs
0 (O) := C∞

c (O)
Hs (O)

.

Example 2.1 (Weak setting). LetO ⊆ R
d be open. In case of second order PDEs with

Dirichlet boundary conditions (cf. Sect. 5.3), the weak setting is obtained by letting
H = L2(O), V = H1

0 (O) and V ∗ = H−1(O) := H1
0 (O)∗. In case the domain is C1

the celebrated result of Seeley [56] yields

[H , V ]θ =
{
H θ
0 (O) if θ ∈ ( 12 , 1),

H θ (O) if θ ∈ (0, 1
2 ).

The case θ = 1
2 is more complicated to describe and not needed below. Without any

regularity conditions on O, due to the boundedness of the zero-extension operator,
one always has [H , V ]θ ↪→ H θ (O).

Example 2.2 (Strong setting). Let O be a bounded C2-domain. In the case of second
order PDEs with Dirichlet boundary conditions, the strong setting obtained by letting
H = H1

0 (O), V = H2(O) ∩ H1
0 (O) and V ∗ = L2(O). To show that V ∗ = L2(O) it

is suffices to note that H ↪→ V ∗ is dense, that one has unique solvability in V of the
elliptic problem:

�u = ϕ ∈ L2(O), and u|∂O = 0,

and that 〈·, ·〉 : V ∗ × V → R satisfies 〈u, v〉 = ∫
O ∇u · ∇v dx for all u, v ∈ H . As in

the previous example, [56] implies that

[H , V ]θ =
{
H1+θ (O) ∩ H1

0 (O) if θ ∈ ( 12 , 1),
H1+θ
0 (O) if θ ∈ (0, 1

2 ).

As before the case θ = 1
2 is more complicated to describe.

Note that the choice V = H2
0 (O) in Example 2.2 would lead to a larger space for

V ∗, and would also lead to Dirichlet and Neumann boundary conditions at the same
time, which is unnatural in many examples, and actually leads to problems.

Finally, if in above examples O is replaced by either R
d or the periodic torus

T
d , then the above examples extend verbatim by noticing that Hs

0 (O) = Hs(O) if
O ∈ {Td , R

d}.
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Examples 2.1 and 2.2 can also be extended to the case of Neumann boundary
conditions. In the weak setting this leads to H = H1(O) and V = L2(O). In the
strong setting this leads to V = {u ∈ H2(O) : ∂nu|∂O = 0} and H = H1(O).
Extensions to higher order operators can be considered as well.

2.2 Stochastic calculus

For details on stochastic integration in Hilbert spaces the reader is referred to [20, 41,
53], and for details on measurability and stopping times to [32]. For completeness we
introduce the notation we will use.

Let H be a Hilbert space. Let (�,F , P) be a probability space with filtration
(Ft )t≥0. An H -valued random variable ξ is a strongly measurable mapping ξ : � →
H .

A process � : R+ × � → H is a strongly measurable function. It is said to be
strongly progressively measurable if for every t ≥ 0, �|[0,t]×� is strongly B([0, t])⊗
Ft -measurable. The σ -algebra generated by the strongly progressively measurable
processes is denoted by P . For a stopping time τ we set [0, τ ) × � := {(t, ω) : 0 ≤
t < τ(ω)}. Similar definitions hold for [0, τ ] × �, (0, τ ] × � etc. If τ is a stopping
time, then � : [0, τ ) × � → H is called strongly progressively measurable if the
extension to R+ × � by zero is strongly progressively measurable.

For a real separable Hilbert space U , let (W (t))t≥0 be a U -cylindrical Brownian
motion with respect to (Ft )t≥0, i.e. W ∈ L(L2(R+;U ), L2(�)) is such that for all
t ∈ (0,∞) and f , g ∈ L2(R+;U ) one has

(a) W f has a normal distribution with mean zero and E(W f Wg) = ( f , g)L2(R+;U );
(b) W f isFt measurable if supp ( f ) ⊆ [0, t];
(c) W f is independent of Ft if supp ( f ) ⊆ [t,∞).

If � : R+ × � → L2(U , H) is strongly progressively measurable and
� ∈ L2

loc(R+;L2(U , H)) a.s., then one can define the stochastic integral process∫ ·
0 �(s) dW (s), which has a version with continuous paths a.s., and for each interval
J ⊆ [0,∞) the following two-sided estimate holds

C−1
p E‖�‖p

L2(J ;L2(U ,H))
≤ E sup

t∈J

∥∥∥ ∫
J∩[0,t]

�(s) dW (s)
∥∥∥p

H
≤ CpE‖�‖p

L2(J ;L2(U ,H))
,

where p ∈ (0,∞) and Cp > 0 only depends on p. The latter will be referred to as
the Burkholder-Davis-Gundy inequality.

3 Main results

As in Sect. 2.1 let V0, V1 and H be Hilbert spaces such that V1 ↪→ V0 and H =
[V0, V1]1/2. Moreover, we set Vθ = [V0, V1]θ for θ ∈ [0, 1]. By reiteration for the
real or complex interpolation method (see [14, p. 50 and 101]) one also has that

V 1+θ
2

= [H , V1]θ = (H , V1)θ,2. (3.1)
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966 A. Agresti, M. Veraar

The following short-hand notation will be used frequently: For x ∈ Vβ and R ∈
L2(U , Vβ),

‖x‖β = ‖x‖Vβ and |||R|||β = ‖R‖L2(U ,Vβ),

where β ∈ (0, 1) and U is the Hilbert space for the cylindrical Brownian motion
W . However, in case β ∈ {0, 1/2, 1} we prefer to write ‖x‖V ∗ , ‖x‖H , ‖x‖V , |||R|||V ∗ ,
|||R|||H and |||R|||V instead. The following interpolation estimate will be frequently used
for β ∈ (1/2, 1),

‖u‖β ≤ C‖u‖2−2β
H ‖u‖2β−1

V , u ∈ V . (3.2)

As explained in Sect. 2.1 wewill also write V = V1 and V ∗ = V0, where the duality
relation is given by

〈h, v〉 = (v, h)H , h ∈ H and v ∈ V ,

and extended to a mapping 〈·, ·〉 : V ∗ × V → R by continuity.

3.1 Setting

Let W be a U -cylindrical Brownian motion (see Sect. 2.2). Consider the following
quasi-linear stochastic evolution equation:

{
du(t) + A(t, u(t)) dt = B(t, u(t)) dW (t),

u(0) = u0.
(3.3)

The following conditions will ensure local existence and uniqueness.

Assumption 3.1 Suppose that the following conditions hold:

(1) A(t, v) = A0(t, v)v − F(t, v)− f and B(t, v) = B0(t, v)v +G(t, v)+ g, where

A0 : R+ × � × H → L(V , V ∗) and B0 : R+ × � × H → L(V ,L2(U , H))

are P ⊗ B(H)-measurable, and

F : R+ × � × V → V ∗ and G : R+ × � × V → L2(U , H)

are P ⊗B(V )-measurable, and f : R+ ×� → V ∗ and g : R+ ×� → L2(U , H)

are P-measurable maps such that a.s.

f ∈ L2
loc([0,∞); V ∗) and g ∈ L2

loc([0,∞);L2(U , H)).
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(2) For all T > 0 and n ≥ 1, there exist θn > 0 and Mn > 0 such that a.s.

〈A0(t, v)u, u〉 − 1

2
|||B0(t, v)u|||2H ≥ θn‖u‖2V − Mn‖u‖2H ,

where t ∈ [0, T ], u ∈ V , and v ∈ H satisfies ‖v‖H ≤ n.
(3) Let ρ j ≥ 0 and β j ∈ (1/2, 1) be such that

2β j ≤ 1 + 1

ρ j + 1
, j ∈ {1, . . . ,mF + mG}, (3.4)

wheremF ,mG ∈ N, and suppose that ∀n ≥ 1 ∀T > 0 there exists a constantCn,T

such that, a.s. for all t ∈ [0, T ] and u, v, w ∈ V satisfying ‖u‖H , ‖v‖H ≤ n,

‖A0(t, u)w‖V ∗ + |||B0(t, u)w|||H ≤ Cn,T ‖w‖V ,

‖A0(t, u)w − A0(t, v)w‖V ∗ ≤ Cn,T ‖u − v‖H‖w‖V ,

|||B0(t, u)w − B0(t, v)w|||H ≤ Cn,T ‖u − v‖H‖w‖V ,

‖F(t, u) − F(t, v)‖V ∗ ≤ Cn,T

mF∑
j=1

(1 + ‖u‖ρ j
β j

+ ‖v‖ρ j
β j

)‖u − v‖β j ,

‖F(t, u)‖V ∗ ≤ Cn,T

mF∑
j=1

(1 + ‖u‖ρ j+1
β j

),

|||G(t, u) − G(t, v)|||H ≤ Cn,T

mF+mG∑
j=mF+1

(1 + ‖u‖ρ j
β j

+ ‖v‖ρ j
β j

)‖u − v‖β j ,

|||G(t, u)|||H ≤ Cn,T

mF+mG∑
j=mF+1

(1 + ‖u‖ρ j+1
β j

).

Here (2) means that the linear part (A0(·, v), B0(·, v)) is a usual coercive pair with
locally uniform estimates for ‖v‖H ≤ n. Moreover, the quasi-linearities x �→ A0(·, x)
and x �→ B0(·, x) are locally Lipschitz. In the semi-linear case, i.e. when A0 and B0
do not depend on x , the conditions on A0 and B0 in (3) become trivial.

The nonlinearities F and G satisfy a local Lipschitz and growth estimate, which
contains several tuning parameters β j and ρ j such that (3.4) holds, or equivalently
(2β j −1)(ρ j +1) ≤ 1. UsuallymF = mG = 1, so that the sums on the left-hand side
disappear. The case of equality in (3.4) for some j leads to so-called criticality of the
corresponding nonlinearity. The growth in the H -norm can be arbitrary large and this
is contained in the constant Cn,T . These types of conditions have been introduced for
deterministic evolution equation in [39, 48, 49], and in the stochastic framework in
[6, 7] in a Banach space setting.

Definition 3.2 (Solution). Let Assumption 3.1 be satisfied and let σ be a stopping time
with values in [0,∞]. Let u : [0, σ )×� → V be a strongly progressively measurable
process.
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968 A. Agresti, M. Veraar

• u is called a strong solution to (3.3) (on [0, σ ] × �) if a.s. u ∈ L2(0, σ ; V ) ∩
C([0, σ ]; H),

F(·, u) ∈ L2(0, σ ; V ∗), G(·, u) ∈ L2(0, σ ;L2(U , H)),

and the following identity holds a.s. and for all t ∈ [0, σ ),

u(t) − u0 +
∫ t

0
A(s, u(s)) ds =

∫ t

0
1[0,σ )×�B(s, u(s)) dW (s). (3.5)

• (u, σ ) is called a local solution to (3.3), if there exists an increasing sequence
(σn)n≥1 of stopping times such that limn↑∞ σn = σ a.s. and u|[0,σn ]×� is a strong
solution to (3.3) on [0, σn]×�. In this case, (σn)n≥1 is called a localizing sequence
for (u, σ ).

• A local solution (u, σ ) to (3.3) is called unique, if for every local solution (u′, σ ′)
to (3.3) for a.a.ω ∈ � and for all t ∈ [0, σ (ω)∧σ ′(ω)) one has u(t, ω) = u′(t, ω).

• A unique local solution (u, σ ) to (3.3) is called amaximal (unique) solution, if for
any other local solution (u′, σ ′) to (3.3), we have a.s. σ ′ ≤ σ and for a.a. ω ∈ �

and all t ∈ [0, σ ′(ω)), u(t, ω) = u′(t, ω).
• A maximal (unique) local solution (u, σ ) is called a global (unique) solution if

σ = ∞ a.s. In this case we write u instead of (u, σ ).

Note that, if (u, σ ) is a local solution to (3.3) on [0, σ ]×�, then u ∈ L2(0, σ ; V )∩
C([0, σ ]; H) a.s. and by Assumption 3.1

A0(·, u)u ∈ L2(0, σ ; V ∗) a.s. and B0(·, u)u ∈ L2(0, σ ;L2(U , H)) a.s. (3.6)

In particular, the integrals appearing in (3.5) are well-defined.
Maximal local solutions are always unique in the class of local solutions. This

seems to be a stronger requirement compared to [6, Definition 4.3]. However, due
to the coercivity condition on the leading operator (A0, B0), i.e. Assumption 3.1(2),
stochastic maximal L2-regularity holds by Lemma 4.1 below. Thus [7, Remark 5.6]
shows that Definition 3.2 coincide with the one in [6, Definition 4.3].

Under Assumption 3.1 the following local existence and uniqueness result holds,
which will be proved in Sect. 4.

Theorem 3.3 (Local existence, uniqueness and blow-up criterion). Suppose that
Assumption 3.1 holds. Then for every u0 ∈ L0

F0
(�; H), there exists a (unique)

maximal solution (u, σ ) to (3.3) such that a.s. u ∈ C([0, σ ); H) ∩ L2
loc([0, σ ); V ).

Moreover, the following blow-up criteria holds

P

(
σ < ∞, sup

t∈[0,σ )

‖u(t)‖2H +
∫ σ

0
‖u(t)‖2V dt < ∞

)
= 0. (3.7)
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Clearly, (3.7) is equivalent to

P

(
σ < T , sup

t∈[0,σ )

‖u(t)‖2H +
∫ σ

0
‖u(t)‖2V dt < ∞

)
= 0 for all T ∈ (0,∞).

The blow-up criterion (3.7) is a variant of our results in [7]. In the semi-linear case
the result is already contained in [7, Theorem 4.10(3)].Wewill use this result to obtain
global well-posedness in several cases below.

3.2 Global existence and uniqueness

Under a coercivity condition we obtain two analogues of the existence and uniqueness
result in the classical variational framework. In combination with Theorem 3.8 below,
global well-posedness follows.

Theorem 3.4 (Global existence and uniqueness I). Suppose that Assumption 3.1 holds,
and for all T > 0, there exist η, θ, M > 0 and a progressively measurable φ ∈
L2((0, T ) × �) such that, for any v ∈ V and t ∈ [0, T ],

〈A(t, v), v〉 − ( 12 + η)|||B(t, v)|||2H ≥ θ‖v‖2V − M‖v‖2H − |φ(t)|2. (3.8)

Then for every u0 ∈ L0
F0

(�; H), there exists a unique global solution u of (3.3) such
that a.s.

u ∈ C([0,∞); H) ∩ L2
loc([0,∞); V ).

Moreover, for each T > 0 there is a constant CT > 0 independent of u0 such that

E‖u‖2C([0,T ];H) + E‖u‖2L2(0,T ;V )
≤ CT (1 + E‖u0‖2H + E‖φ‖2L2(0,T )

). (3.9)

In the above result we do not assume any growth conditions on A and B besides the
local conditions in Assumption 3.1. The additional η > 0 in the coercivity condition
(3.8) can be arbitrary small and in most examples it does not create additional restric-
tions. Setting η = 0 in the coercivity condition (3.8), it reduces to the standard one
in the variational approach to stochastic evolution equations (see (1.2) or [41, Section
4.1]). From a theoretical perspective it is interesting to note that we can also allow
η = 0.

Theorem 3.5 (Global existence and uniqueness II). Suppose that Assumption 3.1
holds, and for all T > 0, there exist θ, M > 0 and a progressively measurable
φ ∈ L2((0, T ) × �) such that, for any v ∈ V and t ∈ [0, T ],

〈A(t, v), v〉 − 1
2 |||B(t, v)|||2H ≥ θ‖v‖2V − M‖v‖2H − |φ(t)|2. (3.10)
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Then for every u0 ∈ L0
F0

(�; H), there exists a unique global solution u of (3.3) such
that a.s.

u ∈ C([0,∞); H) ∩ L2
loc([0,∞); V ),

and the following estimates hold:

E

∫ T

0
‖u(t)‖2V dt ≤ CT (1 + E‖u0‖2H + E‖φ‖2L2(0,T )

), (3.11)

sup
t∈[0,T ]

E‖u(t)‖2H ≤ CT (1 + E‖u0‖2H + E‖φ‖2L2(0,T )
), (3.12)

E sup
t∈[0,T )

‖u(t)‖2γH + E

∣∣∣ ∫ T

0
‖u(t)‖2V dt

∣∣∣γ ≤ Cγ,T (1 + E‖u0‖2γH + E‖φ‖2γ
L2(0,T )

),

(3.13)

for every γ ∈ (0, 1).

The latter result shows that the full statement of the classical variational setting can
be obtained in our setting (seeAssumption 3.1) without assuming the growth condition
(1.3) and without the local monotonicity condition.

Remark 3.6 (Variants of the coercivity condition). The coercivity condition (3.8) can
be replaced by the following weaker estimate

〈A(t, v), v〉 − 1

2
|||B(t, v)|||2H − η

‖B(t, v)∗v‖2U
‖v‖2H

≥ θ‖v‖2V − M‖v‖2H − |φ(t)|2, v ∈ V .

(3.14)

To see this, one can easily adapt the proof of Theorem 3.5whichwill be given under the
more restrictive condition (3.8). Since it does not give more flexibility in the examples
we consider, we prefer to work with (3.8). A variant of condition (3.14) with η = p−2

2
with p > 2 is considered in [29], where it is used to establish bounds on higher order
moments of the solution.

In case (3.8) holds with η = 0 and

‖B(t, v)‖L2(U ,H) ≤ C(φ(t) + ‖v‖V ), v ∈ V , (3.15)

then (3.8) also holds for some η > 0 and a slightly worse θ > 0. Moreover, (3.15)
can even be weakened by replacing L2(U , H) by L(U , H) if one uses the weaker
condition (3.14) instead. Note that (3.15) is usually assumed to hold in the classical
framework (see (1.4) with α = 2).

Remark 3.7 (�-localization of (u0, φ)). The function φ is used to take care of the
possible inhomogeneities f and g (see Assumption 3.1(1)). We have only considered
the case that φ ∈ L2((0, T )×�) for all T > 0. However, by a standard stopping time
argument and using the uniqueness of solutions to (3.3), one can also consider the case
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The critical variational setting for stochastic evolution equations 971

that for all T > 0 a.s. φ ∈ L2(0, T ). Moreover, the estimates of Theorems 3.4-3.5 can
be used to prove tail estimates for u. For instance, (3.9), the uniqueness of u and the
Chebychev inequality readily yield, for all R, r > 0,

P
(‖u‖2C([0,T ];H) + E‖u‖2L2(0,T );V )

> r
) ≤ CT (1 + R + E‖u0‖2H )

r
+P(‖φ‖2L2(0,T )

> R).

For more details see the proof of Lemma A.1 where a similar argument is employed.
A similar argument can also be employed to obtain tail estimates in case u0 ∈

L0
F0

(�; H).

3.3 Continuous dependence on initial data

Now that we also have global existence and uniqueness of solutions, we can consider
the questionwhether one has continuous dependence on the initial data (in otherwords,
global well-posedness of (3.3)). This indeed turns out to be the case in the setting of
both of the above results. In the case where the monotonicity

−2〈A(t, u) − A(t, v), u − v〉 + ‖B(t, u) − B(t, v)‖2L2(U ,H) ≤ K‖u − v‖2H
holds, continuous dependence is immediate from Itô’s formula (see [41, Proposition
4.2.10]). The following result requires no monotonicity conditions at all, and only
assumed the conditions we already imposed for global existence and uniqueness:

Theorem 3.8 (Continuous dependence on initial data). Suppose that the conditions of
Theorem 3.4 or 3.5 hold. Let u and un denote the unique global solutions to (3.3)
with strongly F0-measurable initial values u0 and u0,n, respectively. Suppose that
‖u0,n − u0‖H → 0 in probability as n → ∞. Let T ∈ (0,∞). Then

‖u − un‖C([0,T ];H) + ‖u − un‖L2(0,T ;V ) → 0 in probability as n → ∞.

If additionally supn≥1 E‖u0,n‖2H < ∞, then for any q ∈ (0, 2)

E‖u − un‖qC([0,T ];H)
+ E‖u − un‖qL2(0,T ;V )

→ 0 as n → ∞.

Remark 3.9 (Feller property). Suppose that the assumptions of Theorem 3.4 (resp. 3.5)
hold and let uξ be the global solution to (3.3) with data ξ ∈ H . As usual, one defines
the operator

(Ptϕ)(ξ) := E[ϕ(uξ (t))]
for t ≥ 0, ξ ∈ H and ϕ ∈ Cb(H). Theorem 3.8 shows that Pt : Cb(H) → Cb(H).
This is usually referred as Feller property and this is the starting point for investigating
existence and uniqueness of invariant measures for (3.3). However, this is not the topic
of this paper.
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4 Proofs of themain results

In several cases we need an a priori estimate for the solution to the linear equation

{
du + Ã(t)u(t) dt = f (t) dt + (B̃(t)u(t) + g(t)) dW (t),

u(λ) = uλ,
(4.1)

where λ is a stopping time with values in [0, T ] and ( Ã, B̃) are linear operators
satisfying the boundedness and the variational conditions: there exists θ, M > 0 such
that, a.e. on R+ × � and for all v ∈ V ,

‖ Ãv‖V ∗ + |||B̃v|||H ≤ M‖v‖V , (4.2)

〈v, Ãv〉 − 1

2
|||B̃v|||2H ≥ θ‖v‖2V − M‖v‖2H . (4.3)

Finally, uλ : � → H is strongly Fλ-measurable where Fλ denotes the σ -algebra of
the λ-past. If ( Ã, B̃) are progressively measurable, then a solution to (4.1) is defined
in a similar way as in Definition 3.2.

The following estimate is well-known in case λ is non-random (see [41, Theorem
4.2.4] and its proof). The random case can be obtained by approximation by simple
functions (see [7, Proposition 3.9]).

Lemma 4.1 (Stochastic maximal L2-regularity). Let Ã : [0, T ]×� → L(V , V ∗) and
B̃ : [0, T ]×� → L(V ,L2(U , H)) be strongly progressivelymeasurable and suppose
that there exist M, θ > 0 for which (4.2) and (4.3) hold. Let f ∈ L2((0, T ) × �; V ∗)
and g ∈ L2((0, T ) × �;L2(U , H)) be strongly progressively measurable and let
uλ ∈ L2

Fλ
(�; H). Then (4.1) has a unique solution

u ∈ L2(�;C([λ, T ]; H)) ∩ L2(�; L2(λ, T ; V )),

and there is a constant C independent of ( f , g, u0) such that

E‖u‖2C([λ,T ];H) + E‖u‖2L2(λ,T ;V )

≤ C
(
E‖uλ‖2H + E‖ f ‖2L2(λ,T ;V ∗) + E‖g‖2L2(λ,T ;L2(U ,H))

)
.

By [7, Proposition 3.9 and 3.12], if the stochastic maximal L2-regularity estimate
holds on some stochastic interval [λ, T ], then it also holds on [τ, T ] for all stopping
time τ ∈ [λ, T ].Moreover, the constant in the estimate canbe chosen to be independent
of τ .

4.1 Proof of Theorem 3.3: local existence, uniqueness and blow-up criterion

The proof of Theorem 3.3 consists of two parts. First we show local existence and
uniqueness via our recent result [6, Theorem 4.7].
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Proof of Theorem 3.3: local existence and uniqueness Let n ≥ 1 and set u0,n =
1{‖u0‖H≤n}u0. For strongly progressively measurable f0 ∈ L2((0, T ) × �; V ∗) and
g0 ∈ L2((0, T ) × �;L2(U , H)) consider the following linear equation:

{
dv + A0(t, u0,n)v(t) dt = f0(t) dt + (B0(t, u0,n)v(t) + g0(t)) dW (t),

v(0) = 0.
(4.4)

ByAssumption 3.1(2) (A0(t, u0,n), B0(t, u0,n)) satisfies the conditions of Lemma 4.1.
Therefore, (4.4) has a unique solution v and

E‖v‖2L2(0,T ;V )
+ E‖v‖2C([0,T ];H) ≤ CnE‖ f0‖2L2(0,T ;V ∗) + CnE‖g0‖2L2(0,T ;L2(U ,H))

.

(4.5)

It follows that (A0, B0) satisfies the SMR•
2,0(0, T )-condition of [6, Theorem 4.7].

By Assumption 3.1 all other conditions of [6, Theorem 4.7] are satisfied as well
(with p = 2, κ = 0, Fc = F and Gc = G). Therefore, we obtain a (unique) maximal
solution (uT , σ T ), where σ T takes values in [0, T ]. Considering T = m, m ∈ N, we
can obtain the required maximal solution (u, σ ) as explained in [7, Section 4.3]. ��
Remark 4.2 In Theorem 3.3 instead of Assumption 3.1(2) one could assume the
SMR•

2,0(0, T )-condition (4.5) on each (A0(·, u0,n), B0(·, u0,n)).
Next we prove the blow-up criteria (3.7) of Theorem 3.3 via our recent result [7,

Theorem 4.9].

Proof of Theorem 3.3: blow-up criterion It suffices to consider u0 ∈ L∞
F0

(�; H) (see
[7, Proposition 4.13]). Fix T ∈ (0,∞) and set

Wsup =
{
σ < T , sup

t∈[0,σ )

‖u(t)‖H +
∫ σ

0
‖u(t)‖2V dt < ∞

}
,

Wlim =
{
σ < T , lim

t↑σ
u(t) exists in H and

∫ σ

0
‖u(t)‖2V dt < ∞

}
.

For n ≥ 1 define the stopping times σn by

σn = inf
{
t ∈ [0, σ ) : ‖u(t) − u0‖H +

∫ t

0
‖u(t)‖2V dt ≥ n

}
∧ T ,

where we set inf ∅ = σ ∧ T . By definition of Wsup and σn , we have

lim
n→∞ P(Wsup ∩ {σn = σ }) = P(Wsup). (4.6)

Define Ã : [0, T ] × � → L(V , V ∗) and B̃ : [0, T ] × � → L(V ,L2(U , H)) by

Ã(t)v = A0(t, 1[0,σn)(t)u(t))v, and B̃(t)v = B0(t, 1[0,σn)(t)u(t))v.
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By Assumption 3.1(2), ( Ã, B̃) satisfy the conditions of Lemma 4.1. Let f̃ (t) =
F(t, 1[0,σn)u(t)) and g̃(t) = G(t, 1[0,σn)u(t)). Note that, by the interpolation inequal-

ity (3.2), it follows that ‖v‖(ρ j+1)
β j

� ‖v‖(2−2β j )(ρ j+1)
H (1 + ‖v‖V ) for all v ∈ V

and j ∈ {1, . . . ,mF + mG}, where (β j , ρ j ,mF ,mG) are as Assumption 3.1(3). The
definition of σn shows that ( f̃ , g̃) are progressively measurable,

f̃ ∈ L2((0, T ) × �; V ∗) and g̃ ∈ L2((0, T ) × �;L2(U , H)).

Thus Lemma 4.1 implies that the equation

{
dv + Ã(t)v(t) dt = f̃ (t) dt + (B̃(t)v(t) + g̃(t)) dW (t)

v(0) = u0.

has a unique solution v ∈ L2(�;C([0, T ]; H)) ∩ L2(�; L2(0, T ; V )). From the
definition of ( Ã, B̃) we see that (v, σn) is a local solution to (3.3). Therefore, by
uniqueness u ≡ v on [0, σn) a.s. In particular, we obtain

lim
t↑σ

u(t) = lim
t↑σn

u(t) = lim
t↑σn

v(t) = v(σn) in H a.s. on {σn = σ < T } (4.7)

Since σ < T on Wsup, it remains to note that

P(Wsup)
(4.6)= lim

n→∞ P({σn = σ } ∩ Wsup)
(4.7)≤ lim

n→∞ P(Wlim) = 0,

where in the last step we applied [7, Theorem 4.9(3)]. ��

4.2 Proof of Theorem 3.4: global existence and uniqueness

We first prove the following global energy estimates. In the proof of Theorem 3.4 we
will see that σ = ∞ in the result below.

Proposition 4.3 Suppose that Assumption 3.1 holds, and for all T > 0, there exist
η, θ, M > 0 and a progressively measurable φ ∈ L2((0, T ) × �) and for any v ∈ V
and t ∈ [0, T ],

〈A(t, v), v〉 − ( 12 + η)|||B(t, v)|||2H ≥ θ‖v‖2V − M‖v‖2H − |φ(t)|2. (4.8)

Let u0 ∈ L2
F0

(�; H). Let (u, σ ) be the maximal solution to (3.3) provided by The-
orem 3.3. Then for every T > 0 there is a constant CT > 0 independent of u0 such
that

E sup
t∈[0,σ∧T )

‖u(t)‖2H + E

∫ σ∧T

0
‖u(t)‖2V dt ≤ CT (1 + E‖u0‖2H + E‖φ‖2L2(0,T )

).

(4.9)
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Proof Fix T ∈ (0,∞). Let (τk)k≥1 be a localizing sequence for (u, σ ∧ T ). Then in
particular u ∈ C([0, τk]; H) ∩ L2(0, τk; V ) a.s. For all k ≥ 1, let

σk := inf
{
t ∈ [0, τk] : ‖u(t) − u0‖H ≥ k and

∫ t

0
‖u(s)‖2V ds ≥ k

}

where inf ∅ := τk . Then (σk)k≥1 is a localizing sequence as well. Letting uk(t) =
u(t ∧ σk) we have uk ∈ L2(�;C([0, T ]; H)) ∩ L2(�; L2(0, τk; V )). It suffices to
find a C > 0 independent of (k, u0) such that for all t ∈ [0, T ],

E sup
s∈[0,t]

‖uk(s)‖2H + E

∫ t

0
1[0,σk ](s)‖u(s)‖2V ds

≤ C
(
1 + E‖u0‖2H + E‖φ‖2L2(0,T )

+ E

∫ t

0
‖uk(s)‖2H ds

)
.

(4.10)

Indeed, from the latter Gronwall’s lemma first gives

E sup
t∈[0,T ]

‖uk(t)‖2H ≤ CeCT
(
1 + E‖u0‖2H + E‖φ‖2L2(0,T )

)
.

This combined with (4.10) implies

E

∫ t

0
1[0,σk ](s)‖u(s)‖2V ds ≤ C ′(1 + E‖u0‖2H ).

It remains to let k → ∞ in the latter two estimates. The proof of (4.10) will be divided
into two steps.

Step 1: Proof of the estimates (4.11)–(4.12) below. By Itô’s formula (see [41,
Theorem 4.2.5]) applied to 1

2‖ · ‖2H we obtain

1

2
‖uk(t)‖2H +

∫ t

0
1[0,σk ](s)Eu(s) ds

= 1

2
‖u0‖2H +

∫ t

0
1[0,σk ](s)B(s, u(s))∗u(s) dW (s),

where

Eu(t) = 〈A(t, u(t)), u(t)〉 − 1

2
|||B(t, u(t))|||2H .
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976 A. Agresti, M. Veraar

Therefore, by (4.8)

1

2
‖uk(t)‖2H +

∫ t

0
1[0,σk ](s)

(
θ‖u(s)‖2V + η|||B(s, u(s))|||2H

)
ds

≤ 1

2
‖u0‖2H + M

∫ t

0
1[0,σk ](s)‖u(s)‖2H ds + ‖φ‖2L2(0,t)

+
∫ t

0
1[0,σk ](s)B(s, u(s))∗u(s) dW (s).

(4.11)

Taking the expected value on both sides of (4.11), we have

E

∫ t

0
1[0,σk ](s)

(
θ‖u(s)‖2V + η|||B(s, u(s))|||2H

)
ds

≤ 1

2
E‖u0‖2H + E‖φ‖2L2(0,T )

+ ME

∫ t

0
1[0,σk ](s)‖u(s)‖2H ds.

(4.12)

In particular, this proves the V -term part of the estimate (4.10) as u = uk on [0, σk].
Step 2: Estimating the martingale part on the RHS(4.11). Set

Su(t) :=
∫ t

0
1[0,σk ](s)B(s, u(s))∗u(s) dW (s).

The Burkholder–Davis–Gundy inequality implies

E sup
s∈[0,t]

|Su(s)| ≤ CE

( ∫ t

0
1[0,σk ](s)‖B(s, u(s))∗u(s)‖2U ds

)1/2

≤ CE
[(

sup
s∈[0,t]

‖uk(s)‖2H
)1/2( ∫ T

0
1[0,σk ](s)|||B(s, u(s))|||2H ds

)1/2]

≤ 1

4
E sup

s∈[0,t]
‖uk(s)‖2H + CE

∫ t

0
1[0,σk ](s)|||B(s, u(s))|||2H ds

≤ 1

4
E sup

s∈[0,t]
‖uk(s)‖2H + C(E‖u0‖2H + E‖φ‖2L2(0,T )

)

+ CME

∫ t

0
1[0,σk ](s)‖u(s)‖2H ds,

where in the last step we applied (4.12). Taking E[sups∈[0,t] | · |] in (4.11) and using
the above estimate we obtain

E sup
s∈[0,t]

‖uk(s)‖2H ≤ C ′(1 + E‖u0‖2H + E‖φ‖2L2(0,T )
+ E

∫ t

0
‖uk(s)‖2H ds

)
.

��
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The energy estimate of Proposition 4.3 allows us to prove Theorem 3.4 via the
blow-up criteria (3.7) of Theorem 3.3.

Proof of Theorem 3.4 The proof is divided into two steps.
Step 1: Proof of σ = ∞. We claim that for every T > 0

sup
t∈[0,σ∧T )

‖u(t)‖H < ∞ and
∫ σ∧T

0
‖u(t)‖2V dt < ∞ a.s. (4.13)

Set u0, j = 1{‖u0‖H≤ j}u0. Let (v j , σ j ) denote the maximal solution to (3.3) with
initial condition u0, j . By localization (see [6, Theorem 4.7]) v j = u and σ j = σ on
{‖u0‖H ≤ j}. Since by Proposition 4.3

sup
t∈[0,σ∧T )

‖v j (t)‖H < ∞ and
∫ σ∧T

0
‖v j (t)‖2V dt < ∞ a.s.,

we see that (4.13) holds on {‖u0‖H ≤ j}. It remains to let j → ∞.
From the claim (4.13) and the blow-up criteria (3.7) it follows that

P(σ < T ) = P

(
σ < T , sup

t∈[0,σ∧T )

‖u(t)‖H < ∞ and
∫ σ∧T

0
‖u(t)‖2V dt < ∞

)
= 0.

Therefore, σ ≥ T a.s., and since T was arbitrary, we obtain σ = ∞ a.s.
Step 2: A priori bounds. The estimate (3.9) follows from (4.9) and σ = ∞ a.s. ��

4.3 Proof of Theorem 3.5

First we obtain global estimates under the sharper coercivity estimate. As above, in
Theorem 3.5 we will see that σ = ∞ in the results below.

Proposition 4.4 Suppose that Assumption 3.1 holds, and for all T > 0, there exist
θ, M > 0 and a progressively measurable φ ∈ L2((0, T ) × �) and for any v ∈ V
and t ∈ [0, T ],

〈A(t, v), v〉 − 1
2 |||B(t, v)|||2H ≥ θ‖v‖2V − M‖v‖2H − |φ(t)|2.

Let u0 ∈ L2
F0

(�; H). Let (u, σ ) be the maximal solution to (3.3) provided by The-
orem 3.3. Then for every T > 0 and γ ∈ (0, 1) there are constants CT ,Cγ,T > 0
independent of u0 such that

E

∫ σ∧T

0
‖u(t)‖2V dt ≤ CT (1 + E‖u0‖2H + E‖φ‖2L2(0,T )

), (4.14)

E sup
t∈[0,σ∧T )

‖u(t)‖2γH + E

∣∣∣ ∫ σ∧T

0
‖u(t)‖2V dt

∣∣∣γ ≤ Cγ,T (1 + E‖u0‖2γH + E‖φ‖2γ
L2(0,T )

).

(4.15)
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The estimate (4.15) can be improved if B has linear growth (see Remark 3.6).

Proof We begin by repeating the localization argument used in the proof of Proposi-
tion 4.3. Throughout the proof we fix T ∈ (0,∞). Let (τk)k≥1 be a localizing sequence
for (u, σ ∧T ), cf. Definition 3.2. Then in particular, u ∈ C([0, τk]; H)∩ L2(0, τk; V )

a.s. Let

σk = inf
{
t ∈ [0, τk] : ‖u(t) − u0‖H ≥ k and

∫ t

0
‖u(s)‖2V ds ≥ k

}
,

where we set inf ∅ = τk . Then (σk)k≥1 is a localizing sequence for (u, σ ) as well.
Letting uk(t) = u(t ∧σk)we have uk ∈ L2(�;C([0, T ]; H))∩ L2(�; L2(0, τk; V )).

The idea will be to eventually apply a stochastic Gronwall lemma. To this end we
set uk(t) = u(t ∧ σk) for t ∈ [0, T ] and k ≥ 1. Then a.s. for all t ∈ [0, T ],

uk(t) = u0 −
∫ t

0
1[0,σk ](s)A(s, uk(s)) ds +

∫ t

0
1[0,σk ](s)B(s, uk(s)) dW (s).

Step 1: Proof of the estimate (4.16) below. By Itô’s formula (see [41, Theorem
4.2.5]) applied to 1

2‖ · ‖2H we obtain

1

2
‖uk(t)‖2H +

∫ t

0
1[0,σk ](s)Euk (s) ds = 1

2
‖u0‖2H +

∫ t

0
1[0,σk ](s)B(s, uk(s))∗u dW (s),

where

Euk (t) = 〈A(t, uk(t)), uk(t)〉 − 1

2
|||B(t, uk(t))|||2H .

Therefore, by the coercivity condition we find that

1

2
‖uk(t)‖2H + θ

∫ t

0
1[0,σk ](s)‖uk(s)‖2V ds

≤ 1

2
‖u0‖2H + M

∫ t

0
1[0,σk ](s)‖uk(s)‖2H ds +

∫ t

0
|φ(s)|2L2(0,t) ds

+
∫ t

0
1[0,σk ](s)B(s, uk(s))∗uk(s) dW (s).

(4.16)

Step 2: u ∈ L2(�; L2(0, τ ; V )) and the estimate (4.21) below holds. Taking
expectations in (4.16) gives that for all t ∈ [0, T ],

1

2
E‖uk(t)‖2H + θE

∫ t

0
1[0,σk ]‖uk(s)‖2V ds

≤ 1

2
E‖u0‖2H + ME

∫ t

0
1[0,σk ]‖uk(s)‖2H ds + E‖φ‖2L2(0,t).

(4.17)
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Therefore, by the classical Gronwall inequality applied to t �→ E‖uk(t)‖2H ,

sup
t∈[0,T ]

E‖uk(t)‖2H ≤ CT (E‖φ‖2L2(0,T )
+ E‖u0‖2H ). (4.18)

Thus also

E

∫ t

0
1[0,σk ](s)‖uk(s)‖2H ds ≤

∫ t

0
E(‖uk(s)‖2H ) ds

≤ TCT (E‖φ‖2L2(0,T )
+ E‖u0‖2H ). (4.19)

Applying (4.18) and (4.19) in (4.17) also yields the estimate

E

∫ t

0
1[0,σk ]‖u(s)‖2V ds ≤ C ′

T (E‖φ‖2L2(0,T )
+ E‖u0‖2H ). (4.20)

Letting k → ∞ in (4.19) and (4.20), by Fatou’s lemma we obtain that

E

∫ σ∧T

0
‖u(s)‖2V ds ≤ C ′′

T (E‖u0‖2H + E‖φ‖2L2(0,T )
). (4.21)

In particular (4.14) follows.
Step 3: Conclusion. From (4.16) and the stochastic Gronwall lemma of [43, Theo-

rem 2.1] with Zt = sups∈[0,t] ‖u(s)‖2H + ∫ t
0 ‖u(s)‖2V ds (also see [24, Theorem 4.1])

we obtain that, for all γ ∈ (0, 1), there exists Cγ,T > 0 independent of k ≥ 1 such
that

E

∣∣∣ ∫ σk∧T

0
‖u(t)‖2V dt

∣∣∣γ + E sup
t∈[0,T ]

‖uk(t)‖2γH ≤ Cγ,T (1 + E‖u0‖2γH + E‖φ‖2γ
L2(0,T )

).

Letting k → ∞ we obtain that

E

∣∣∣ ∫ σ∧T

0
‖u(t)‖2V dt

∣∣∣γ + E sup
t∈[0,T ]

‖u(t)‖2γH ≤ Cγ,T (1 + E‖u0‖2γH + E‖φ‖2γ
L2(0,T )

).

Thus (4.15) follows. ��
By the estimates of Proposition 4.4 we can check the blow-up criteria (3.7):

Proof of Theorem 3.5 The proof is divided into two steps.
Step 1: Proof of σ = ∞. Reasoning as in Step 1 in the proof of Theorem 3.4, by a

localization argument, Proposition 4.4 shows that

sup
t∈[0,σ∧T )

‖u(t)‖H < ∞ and
∫ σ∧T

0
‖u(t)‖2V dt < ∞ a.s. (4.22)
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From (4.22) and the blow-up criteria (3.7) it follows that

P(σ < T ) = P

(
σ < T , sup

t∈[0,σ∧T )

‖u(t)‖H < ∞ and
∫ σ∧T

0
‖u(t)‖2V dt < ∞

)
= 0.

Therefore, σ ≥ T a.s., and since T was arbitrary, we obtain σ = ∞ a.s.
Step 2: A priori bounds. The bounds (3.11) and (3.13) are immediate from (4.14)

and (4.15). To prove, (3.12) note that we can replace all σk’s by T in the proof of
Proposition 4.4, and thus the required bound follows from (4.18). ��

4.4 Proof of Theorem 3.8: continuous dependence on initial data

In this section we use the notation Z := C([0, T ]; H) ∩ L2(0, T ; V ). The following
tail estimate is the key to the proof of the continuous dependency.

Proposition 4.5 Suppose that the conditions of Theorem 3.5 hold. Let u and v denote
the solution to (3.3) with initial values u0 and v0 in L0

F0
(�; H), respectively, and

where ‖u0‖L∞(�;H) + ‖v0‖L∞(�;H) ≤ r for some r > 0. Then for every T > 0
there exist ψ1, ψ2 : [r ,∞) → (0,∞) both independent of u0 and v0 such that
limR→∞ ψ2(R) = 0 and for all ε > 0 and R ≥ r

P(‖u − v‖Z ≥ ε) ≤ ε−2ψ1(R)E‖u0 − v0‖2H + ψ2(R)(1 + E‖u0‖2H + E‖v0‖2H )

where Z = C([0, T ]; H) ∩ L2(0, T ; V ).

Proof Let Zb
a := C([a, b]; H) ∩ L2(a, b; V ). Let w = u − v. Then w is the solution

to {
dw + A0(·, u)w dt = fw dt + (B0(·, u)w + gw) dW (t),

w(0) = u0 − v0,

where fw = f1 + f2 and gw = g1 + g2 are given by

f1 = (A0(·, v) − A0(·, u))v, f2 = F(·, u) − F(·, v),

g1 = (B0(·, u) − B0(·, v))v, g2 = G(·, u) − G(·, v).

In order to derive an a priori estimate for w, we want to apply Lemma 4.1 to the
pair (A0(·, u), B0(·, u)). In order to check (4.3) we will use Assumption 3.1(2) and a
suitable stopping time argument to ensure ‖u‖H + ‖v‖H ≤ R, where R ≥ r . Let

τR := inf
{
t ∈ [0, T ] : ‖u(t)‖H + ‖v(t)‖H ≥ R

}
, where inf ∅ := T .

Note that {τR = T } = {supt∈[0,T ] ‖u(t)‖H + ‖v(t)‖H ≤ R}. Thus

P(‖w‖Z ≥ ε) ≤ P(‖w‖Z τR
0

≥ ε, τR = T ) + P(τR < T )
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≤ P
(‖w‖Z τR

0
≥ ε

) + CT

R
(1 + E‖u0‖2H + E‖v0‖2H + E‖φ‖2L2(0,T )

),

where we used (3.13) with γ = 1/2 in the last step.
It remains to estimate P

(‖w‖Z τR
0

≥ ε
)
. To do so we apply the stochastic Gronwall

Lemma A.1. Let 0 ≤ λ ≤ � ≤ τR be stopping times. Let w̃ be the solution to

{
dw̃ + A0(·, uτR )w̃ dt = 1[λ,�] fw dt + (B0(·, uτR )w̃ + 1[λ,�]gw) dW (t),

w̃(λ) = u(λ) − v(λ).
(4.23)

As above uτR = u(· ∧ τR) which is well-defined as u ∈ C([0,∞); H). By
uniqueness of solutions to the linear system (4.23), we have w̃ = w on [λ,�].
Since (A0(·, uτR ), B0(·, uτR )) satisfies (4.3) with constant θR and MR , the maximal
regularity Lemma 4.1 applied to (4.23) on [λ, T ] gives

E‖w‖2
Z�

λ

= E‖w̃‖2
ZT

λ

≤ CR

(
E‖u(λ) − v(λ)‖2H + E‖ fw‖2L2(λ,�;V ∗) + E‖gw‖2L2(λ,�;L2(U ,H))

)
,

(4.24)

where the constant CR in (4.24) is independent of (λ,�) (see below Lemma 4.1).
Next we estimate the fw and gw term in terms of u, v and w by using Assump-

tion 3.1(3). Without loss of generality (by increasing ρ j if necessary) we can assume
2β j = 1 + 1

ρ j+1 for every j ∈ {1, . . . , n}. Then

‖A0(·, x)z − A0(·, y)z‖V ∗ + |||B0(·, x)z − B0(·, y)z|||H ≤ CR‖x − y‖H‖z‖V ,

‖F(t, x) − F(t, y)‖V ∗ + |||G(t, x) − G(t, y)|||H

≤ CR

mF+mG∑
j=1

(1 + ‖x‖ρ j
β j

+ ‖y‖ρ j
β j

)‖x − y‖β j ,

for all x, y ∈ V such that ‖x‖H , ‖y‖H ≤ R, z ∈ V and t ∈ [0, T ]. From the

interpolation estimate ‖x‖β j ≤ C‖x‖2−2β j
H ‖x‖2β j−1

V , we obtain

‖x‖ρ j
β j

‖z‖β j ≤ [
C1+ρ j ‖x‖(2−2β j )ρ j

H ‖x‖(2β j−1)ρ j
V ‖z‖2−2β j

H

]‖z‖2β j−1
V

≤ Cδ‖x‖ρ j
H ‖x‖V ‖z‖H + δ‖z‖V ,

where we used Young’s inequality with exponents 1/(2− 2β j ) and 1/(2β j − 1), and

the fact that
(2β j−1)ρ j
2−2β j

= 1. Therefore,

‖F(t, x) − F(t, y)‖V ∗ + |||G(t, x) − G(t, y)|||H
≤ CR,δ(1 + ‖x‖V + ‖y‖V )‖x − y‖H + (mF + mG)δ‖x − y‖V .
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Adding the (A, B)-estimate, we can conclude that

‖ fw‖V ∗ + |||gw|||H ≤ CR(1 + ‖u‖V + ‖v‖V )‖w‖H + (mF + mG)δ‖w‖V .

Combining this with (4.24) and choosing δR > 0 small enough we find that

E‖w‖2
Z�

λ

≤ C ′
RE‖u(λ) − v(λ)‖2H + C ′

RE

∫ �

λ

(1 + ‖u‖2V + ‖v‖2V )‖w‖2H dt .

Since u, v ∈ L2(0, T ; V ) a.s. and C ′
R is independent of (λ,�), we can apply the

stochastic Gronwall Lemma A.1 with R replaced by C ′
R R, to find a constant KR such

that

P
(‖w‖Z τR

0
≥ ε

) ≤ ε−2KRE‖u0 − v0‖2H +P

(
T + ‖u‖2L2(0,T ;V )

+‖v‖2L2(0,T ;V )
≥ R

)
.

≤ ε−2KRE‖u0 − v0‖2H +
T + E‖u‖2

L2(0,T ;V )
+ E‖v‖2

L2(0,T ;V )

R

≤ ε−2KRE‖u0 − v0‖2H + CT

R
(T + E‖u0‖2H + E‖v0‖2H ),

where we used (3.11). Thus the required estimate follows. ��
After these preparation we can now prove the continuous dependence result.

Proof of Theorem 3.8 It suffices to prove the result under the conditions of Theorem 3.5
as they are weaker than the conditions of Theorem 3.8. In Step 1 we deal with the
uniformly bounded case, and in Step 2 we reduce to this case. Below we fix T > 0
and recall that Z = C([0, T ]; H) ∩ L2(0, T ; V ).

Step 1: Case of uniformly bounded initial data. Suppose that there exists a constant
r > 0 such that ‖u0,n‖H + ‖u0‖H ≤ r a.s. for all n ≥ 1. We will show that for every
ε > 0,

lim sup
n→∞

P(‖u − un‖Z ≥ ε) = 0. (4.25)

Let ε > 0. By Proposition 4.5 we obtain that for all R ≥ r

P(‖u − un‖Z ≥ ε) ≤ ε−2ψ1(R)E‖u0 − u0,n‖2H + ψ2(R)(1 + E‖u0‖2H + E‖u0,n‖2H )

Therefore,

lim sup
n→∞

P(‖u − un‖Z ≥ ε) ≤ ψ2(R)(1 + 2E‖u0‖2H ).

Since ψ2(R) → 0 as R → ∞, (4.25) follows.
Step 2: General case. Wewill show that un → u in Z in probability. By considering

subsequences we may additionally suppose that u0,n → u0 in H a.s. Let δ > 0. By
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Egorov’s theorem we can find �0 ∈ F0 and k ≥ 1 such that P(�0) ≥ 1 − δ and
‖u0,n‖H ≤ k on �0.

Let uk and ukn denote the solutions to (3.3) with initial data uk0 = 1�0u0 and
uk0,n = 1�0u0,n , respectively. By �-localization (i.e. [6, Theorem 4.7]), uk = u and

ukn = un on �0. Therefore,

P(‖u − un‖Z > ε) = P({‖u − un‖Z > ε} ∩ �0) + P(�c
0)

≤ P(‖uk − ukn‖Z > ε) + δ
(4.26)

Since uk0,n → uk0 in L2(�; H) and are uniformly bounded in H , Step 1 implies

lim supn→∞ P(‖uk − ukn‖Z ≥ ε) = 0. Therefore, (4.26) gives lim supn→∞ P(‖un −
u‖Z > ε) ≤ δ. Since δ > 0 was arbitrary, this implies the required result.

Step 3: It remains to prove the Lq -convergence. Fix q0 ∈ (q, 2). Let C0 :=
supn≥1 ‖u0,n‖L2(�;H) < ∞. By Fatou’s lemma we see that u0 ∈ L2(�; H) with
‖u0‖L2(�;H) ≤ C0. From either (3.9) or (3.13), we see that

E‖un‖q0C([0,T ];H)
+ E‖un‖q0L2(0,T ;V )

≤ CT (1 + C0),

and the same holds for u. Therefore, ξn := ‖u − un‖C([0,T ];H) +‖u − un‖L2(0,T ;V ) is
uniformly bounded in Lq0(�). Since ξn → 0 in probability, from [32, Theorem 5.12]
it follows that ξn → 0 in Lq(�) for any q ∈ (0, 2). ��

5 Applications to stochastic PDEs

Throughout this section (wn
t : t ≥ 0)n≥1 denotes a sequence of standard Brownian

motions on a probability space (�,F , P) with respect to a filtration (Ft )t≥0. To such
sequence one can associate an �2-cylindrical Brownian motion by setting W�2( f ) :=∑

n≥1

∫
R+ fn(t)dwn

t for f = ( fn)n≥1 ∈ L2(R+; �2).

5.1 Stochastic Cahn–Hilliard equation

The stochastic Cahn–Hilliard equation was considered in many previous works, and
the reader is for instance referred to [17, 19] for the case of multiplicative and additive
noise, respectively.

On an open and bounded C2-domainO ⊆ R
d consider the Cahn–Hilliard equation

with trace class gradient noise term:

⎧⎨
⎩
du + �2u dt = �( f (u)) dt + ∑

n≥1 gn(u,∇u) dwn
t , on O,

∇u · n = 0 and ∇(�u) · n = 0, on ∂O,

u(0) = u0, on O.

(5.1)

Unbounded domains could also be considered using a variation of the assumptions
below.
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984 A. Agresti, M. Veraar

We make the following assumptions on f and g:

Assumption 5.1 Let d ≥ 1 and ρ ∈ [0, 4
d ]. Suppose that f ∈ C1(R) and g : [0,∞)×

� × O × R
1+d → �2 is P ⊗ O ⊗ B(R1+d)-measurable and there are constants

L,C ≥ 0 such that a.e. on R+ × � × T
d and for all y, y′ ∈ R and z, z′ ∈ R

d

| f (y) − f (y′)| ≤ L(1 + |y|ρ + |y′|ρ)|y − y′|,
| f (y)| ≤ L(1 + |y|ρ+1),

f ′(y) ≥ −C,

‖g(·, y, z) − g(·, y′, z′)‖�2 ≤ L(|y − y′| + |z − z′|),
‖(g(·, y, z))n≥1‖�2 ≤ L(1 + |y| + |z|).

The standard example f (y) = y(y2 − 1) = ∂y[ 14 (1 − y2)2] (double well potential)
satisfies the above conditions for d ∈ {1, 2}. Note that in this case the nonlinear-
ity � f (u) does not satisfy the classical local monotonicity condition for stochastic
evolution equations, and therefore there are difficulties in applying the classical vari-
ational framework to obtain well-posedness for (5.1). In the case of additive noise,
well-posedness was studied in [41, Example 5.2.27 and Remark 5.2.28]. Our set-
ting applies in the setting of multiplicative noise under the same conditions on the
nonlinearity � f (u).

Let

H2
N (O) = {u ∈ H2(O) : ∂nu|∂O = 0},

where ∂nu = ∇u · n and n denotes the outer normal vector field on ∂O.

Theorem 5.2 (Global well-posedness). Suppose that Assumption 5.1 holds. Let u0 ∈
L0
F0

(�; L2(O)). Then (5.1) has a unique global solution

u ∈ C([0,∞); L2(O)) ∩ L2
loc([0,∞); H2

N (O)) a.s.

and for every T > 0 there exists a constant CT independent of u0 such that

E‖u‖2C([0,T ];L2(O))
+ E‖u‖2L2(0,T ;H2(O))

≤ CT (1 + E‖u0‖2L2(O)
). (5.2)

Finally, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = L2(O) and V = H2

N (O).

Proof We first formulate (5.1) in the form (3.3). Let H = L2(O) and V = H2
N (O).

By (3.1) for θ ∈ (0, 1) one has

V 1+θ
2

= [H , V ]θ ↪→ [L2(O), H2(O)]θ = H2θ (O),

where in the last step we used the smoothness of O and standard results on complex
or real interpolation.
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Let A = A0 + F , where we define A0 ∈ L(V , V ∗) and F : V → V ∗ by

〈A0u, v〉 = (�v,�u)L2 , and 〈F(u), v〉 = (�v, f (u))L2 = −(∇v,∇( f (u)))L2 .

Let B = B0 +G, where B0 = 0 and G : [0,∞)×�×V → L2(U , H) is defined by

(Gn(t, u))(x) = gn(t, x, u(x),∇u(x)).

In order to apply Theorem 3.4 we check Assumption 3.1. By the smoothness of O
and standard elliptic theory for second order operators (see [27, Theorem 8.8]) there
exist θ, M > 0 such that for all u ∈ V

‖u‖2H2(O)
≤ θ‖�u‖2L2(O)

+ M‖u‖2L2(O)
.

Hence, for all u ∈ V ,

〈A0u, u〉 = ‖�u‖2L2(O)
≥ θ‖u‖2V − M‖u‖2H . (5.3)

Note that

‖F(u) − F(v)‖V ∗

� ‖ f (·, u) − f (·, v)‖L2(O)

� ‖(1 + |u|ρ + |v|ρ)(u − v)‖L2(O) (by Assumption 5.1)

� (1 + ‖u‖ρ

L2(ρ+1)(O)
+ ‖v‖ρ

L2(ρ+1)(O)
)‖u − v‖L2(ρ+1)(O) (by Hölder’s inequality)

� (1 + ‖u‖ρ

H4β−2(O)
+ ‖v‖ρ

H4β−2
0 (O)

)‖u − v‖H4β−2(O) (by Sobolev embedding).

In the Sobolev embedding we need 4β − 2 − d
2 ≥ − d

2(ρ+1) . Therefore, the condition

(3.4) leads to ρ ≤ 4
d . Moreover, we can consider the critical case 2β = 1 + 1

ρ+1 .
One easily checks that G satisfies Assumption 3.1(3) with ρ2 = 0. Indeed,

‖G(t, u) − G(t, v)‖L2(O;�2) � ‖u − v‖L2(O) + ‖∇u − ∇v‖L2(O)

� ‖u − v‖
H

4β2−2
0 (O)

,

where β2 = 3/4. The growth estimate can be checked in the same way:

‖G(t, u)‖L2(O;�2) � 1 + ‖u‖L2(O) + ‖∇u‖L2(O) � 1 + ‖u‖
H

4β2−2
0 (O)

,

where we used |O| < ∞.
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Finally concerning the coercivity condition (3.8) note that interpolation estimates
give that for every ε > 0 there exists a Cε such that

〈F(u), u〉 = −(∇u,∇( f (u)))L2

≤ −
∫
O

f ′(u)|∇u|2 dx (5.4)

≤ C‖∇u‖2L2(O)
≤ ε‖u‖2V + Cε‖u‖2L2(O)

.

Similarly, ‖G(t, u)‖2
L2(O;�2) ≤ ε‖u‖2V + Cε(1 + ‖u‖2

L2(O)
). Therefore, combining

this with (5.3) and (5.4), we obtain that for κ := 1
2 + η (with η > 0 arbitrary)

〈A(u), u〉 − κ|||B(·, u)|||2H
= 〈A0u, u〉 − 〈F(u), u〉 − κ|||G(·, u)|||2H
≥ θ‖u‖2V − M‖u‖2H − ε‖u‖2V − Cε‖u‖2L2(O)

− κCε(1 + ‖u‖2L2(O)
) − κε‖u‖2V

= (θ − (1 + κ)ε)‖u‖2V − M̃‖u‖2H .

Thus taking ε > 0 small enough, the result follows from Theorems 3.4 and 3.8. ��

Remark 5.3 It is also possible to add a noise term of the form:

B0(t)u(x) =
∑
n≥1

∑
|α|=2

bn,α(t, x)∂αu(x).

where we need the stochastic parabolicity condition: for some λ > 0 and all u ∈ V ,

∫
O

|�u(x)|2 dx − 1

2

∑
n≥1

∫
O

∣∣∣ ∑
|α|=2

bn,α(·, x)∂αu(x)
∣∣∣2 dx ≥ λ

∫
O

|�u(x)|2 dx .

Depending on the precise form of f , one can allow superlinear g as well. The only
requirement is

( 12 + η)

∫
O

∑
n≥1

|gn(t, x, u,∇u)|2 dx ≤
∫
O

f ′(u)|∇u|2 dx + ‖�u‖2L2

+C‖u‖2L2 + C (5.5)

for some η > 0. However, for constant functions u, the right-hand side only grows
quadratically. If f (u) = y(y2−1), then it would be possible to consider nonlinearities
of the form g(u,∇u) = (4 − 2η)u∇u as well. Using Theorem 3.5 instead one can
even take η = 0 if ‖�u‖2

L2 is replaced by ε‖�u‖2
L2 for some ε < 1 in (5.5). However

the estimate (5.2) needs to be replaced by (3.11)–(3.13).
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5.2 Stochastic tamed Navier–Stokes equations

In [51] the stochastic tamed Navier–Stokes equations with periodic boundary con-
ditions were considered. In [15] the problem was studied on R

3. Both these papers
construct martingale solutions and prove pathwise uniqueness. Below we show that
one can argue more directly using our framework. We will consider the problem on
the full space, but the periodic case can be covered by the same method. Remarks
about the case of Dirichlet boundary conditions can be found in Remark 5.6.

On R
3 consider the tamed Navier–Stokes equations with gradient noise:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
du = [

�u − (u · ∇)u − φN (|u|2)u − ∇ p
]
dt

+∑
n≥1

[
(bn · ∇)u − ∇ p̃n + gn(·, u)

]
dwn

t , on R
3,

div u = 0, on R
3,

u(0) = u0 on R
3.

(5.6)

Here u := (uk)dk=1 : [0,∞) × � × R
3 → R

3 denotes the unknown velocity field,
p, p̃n : [0,∞) × � × R

3 → R the unknown pressures,

(bn · ∇)u :=
( 3∑

j=1

b j
n∂ j u

k
)3
k=1

and (u · ∇)u :=
( 3∑

j=1

u j∂ j u
k
)3
k=1

.

The function φN : [0,∞) → [0,∞) is a smooth function such that

φN (x) = 0 for x ∈ [0, N ], φN (x) = x − N for x ≥ N + 1 and 0 ≤ φ′
N ≤ 2.

In the deterministic setting the motivation to study (5.6) comes from the fact if u is a
strong solution to the usual Navier–Stokes equations and ‖u‖2

L∞((0,T )×R3)
≤ N , then

it is also a solution to (5.6) for N large enough. On the other hand, it is possible to
give conditions under which (5.6) has a unique global strong solution.

Assumption 5.4 Let d = 3. Let b j ∈ W 1,∞(R3; �2) and set σ i j = ∑
n≥1 b

i
nb

j
n for

i, j ∈ {1, 2, 3}, and suppose that a.e. on R+ × � × R
3

3∑
i, j=1

σ i jξiξ j ≤ |ξ |2 for all ξ ∈ R
d . (5.7)

Suppose that there exist M, δ > 0 such that for all j ∈ {1, 2, 3} a.s. for all t ∈ R+,

‖b j (t, ·)‖W 1,∞(R3;�2) ≤ M .

Themapping g : R+×�×R
3×R

3 → �2(N; R
3) isP⊗B(R3)⊗B(R3)-measurable.

Moreover, assume that for each t ≥ 0, g(t, ·) ∈ C1(R3 × R
3) and there exists C ≥ 0
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such that a.e. on R+ × � × R
3 and for all y, y′ ∈ R

3,

‖g(·, y) − g(·, y′)‖�2 + ‖∇g(·, y) − ∇g(·, y′)‖�2 ≤ C |y − y′|, (5.8)

‖g(t, ·, 0)‖L2(R3;�2) + ‖∇g(t, ·, 0)‖L2(R3;�2) ≤ C, (5.9)

where the gradient is taken with respect to (x, y) ∈ R
3 × R

3.

Note that, as in previous works on (5.6), our stochastic parabolicity condition (5.7)
is not optimal. This is due to the fact that the taming term −φN (|u|2)u needs to be
handled as well.

Let U = �2, V = H
2, H = H

1 and V ∗ = L
2, where for k ∈ {0, 1, 2} we set

H
k = {u ∈ Hk(R3; R

3) : div u = 0 in D ′(R3)} and L
2 := H

0.

Let

(u, v)H = (u, v)L2 + (∇u,∇v)L2 , u, v ∈ H ,

〈u, v〉 = (u, v)L2 − (u,�v)L2 = (u, v − �v)L2 , u ∈ V ∗, v ∈ V .

Let P ∈ L(Hk(R3; R
3)) be theHelmholtz projection, i.e. the orthogonal projection

onto H
k for k ∈ {0, 1, 2}. After applying the Helmholtz projection, (5.6) can be

rewritten as (3.3) where

A(u) = A0u − F1(u) − F2(u) := −P�u + P[(u · ∇)u] + P[φN (|u|2)u],
B(t, u)n = (B0(t)u)n + (G(t, u))n := P[(bn · ∇)u] + Pgn(u). (5.10)

From Theorem 3.4 we will derive the following result.

Theorem 5.5 (Global well-posedness). Suppose that Assumption 5.4 holds. Then for
every u ∈ L0

F0
(�, H

1), (5.6) has a unique global solution

u ∈ C([0,∞); H
1) ∩ L2

loc([0,∞); H
2) a.s.,

and for every T > 0 there exists a constant CT independent of u0 such that

E‖u‖2C([0,T ];H1)
+ E‖u‖2L2(0,T ;H2)

≤ CT (1 + E‖u0‖2H1(R3)
).

Finally, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = H

1 and V = H
2.

Proof To economize the notation, we write L2 instead of L2(R3; R
3) etc.

Step 1: Assumption 3.1(2) holds. Let ε > 0 be fixed. Then

〈A0u, u〉 = (−�u, u − �u)L2 ≥ ‖�u‖2L2 − ‖u‖L2‖�u‖L2

≥ (1 − ε)‖�u‖2L2 − Cε‖u‖L2 .
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Since ‖P‖L(L2) ≤ 1 and commutes with derivatives, for the B0-part we can write

|||B0u|||2H ≤
∑
n≥1

‖(bn · ∇)u‖2L2 + ‖∇[(bn · ∇)u]‖2L2 .

By (5.7) the first summand satisfies

∑
n≥1

‖(bn · ∇)u‖2L2 =
3∑

i, j=1

∫
R3

σ i, j∂i u · ∂ j u dx ≤ ‖∇u‖2L2 .

The second summand is of second order term and satisfies∑
n≥1

‖∇[(bn · ∇)u]‖2L2 ≤ Cε

∑
n≥1

∥∥|∇bn| |∇u|∥∥2L2 + (1 + ε)T2.

The Cε-term is again of first order:

Cε

∑
n≥1

∥∥|∇bn| |∇u|∥∥2L2 ≤ Cε‖b‖2W 1,∞(�2)
‖∇u‖2L2 .

For the second order term T2, by (5.7), we can write

T2 =
3∑

i, j,k,�=1

∫
R3

σ i, j∂�∂i u
k∂�∂ j u

k dx ≤
3∑

j,k,�=1

∫
R3

|∂ j∂�u
k |2 dx .

For later purposes we note that this gives

|||B0(t, u)|||H ≤ C(1 + ‖u‖V ).

On the other hand, by integration by parts (and approximation)

‖�u‖2L2 =
3∑

i, j,k=1

∫
R3

∂2i u
k∂2j u

k dx =
3∑

j,k=1

∫
R3

|∂i∂ j u
k |2 dx .

Therefore, collecting terms and choosing ε > 0 small enough we obtain that

〈A0u, u〉 − 1 + ε

2
|||B0u|||2H ≥ 1 − 2ε

2
‖u‖2V − Cε,δ,b‖u‖2H . (5.11)

Step 2: F1, F2 and G in (5.10) satisfy Assumption 3.1. For u, v ∈ V with ‖u‖H ≤ n
and ‖v‖H ≤ n, we have

‖F1(u) − F1(v)‖V ∗ ≤ ‖(u · ∇)u − (v · ∇)v‖L2

≤ ‖(u · ∇)(u − v)‖L2 + ‖((u − v) · ∇)v‖L2 .
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≤ ‖u‖L12‖∇(u − v)‖L12/5 + ‖u − v‖L12‖∇v‖L12/5

≤ (‖u‖
H

5
4 ,2 + ‖v‖

H
5
4 ,2)‖u − v‖

H
5
4 ,2 ,

where we used Hölder’s inequality with 1
2 = 1

12 + 5
12 , and Sobolev embedding with

5
4 − 3

2 = − 3
12 and 5

4 − 3
2 = 1 − 3

12
5
. Setting β1 = 5

8 we find that

‖F1(u) − F1(v)‖V ∗ ≤ (‖u‖β1 + ‖u‖β2)‖u − v‖β1 .

Therefore, we can set ρ1 = 1 and thus the required condition in Assumption 3.1 since
2β1 ≤ 1 + 1

ρ1+1 .
For F2 note that for u, v ∈ V with ‖u‖H ≤ n and ‖v‖H ≤ n we have

‖F2(u) − F2(v)‖V ∗ ≤ ‖(φN (|u|2) − φN (|v|2))u‖L2 + ‖φN (|v|2)(u − v)‖L2

≤ 2‖(|u|2 − |v|2)u‖L2 + 2‖|v|2(u − v)‖L2

≤ 4‖(|u|2 + |v|2)(u − v)‖L2

(i)≤ 4(‖u‖2L6 + ‖v‖2L6)‖u − v‖L6

(i i)≤ C(‖u‖2H + ‖v‖2H )‖u − v‖H
≤ 2n2C‖u − v‖H ,

where we used Hölder’s inequality in (i), and Sobolev embedding in (i i). Thus F2
satisfies the required condition in Assumption 3.1 with any β2 ∈ ( 12 , 1) and ρ2 = 0,
so in particular we could take β2 = β1 and ρ2 = ρ1 as before.

For G let u, v ∈ V with ‖u‖H ≤ n and ‖v‖H ≤ n, and note that

|||G(t, u) − G(t, v)|||2H ≤ ‖g(t, ·, u) − g(t, ·, v)‖L2(R3)

+ ‖∂x g(t, ·, u) − ∂x g(t, ·, v)‖L2(R3)

+ ‖∂yg(t, ·, u)∇u − ∂yg(t, ·, v)∇v‖L2(R3)

By (5.8) the first two terms can be estimated by Lg‖u − v‖L2(R3). Concerning the last
term we note that by (5.8)

‖∂yg(t, ·, u)∇u − ∂yg(t, ·, v)∇v‖L2

≤ ‖∂yg(t, ·, u)(∇u − ∇v)‖L2 + ‖(∂yg(t, ·, u) − ∂yg(t, ·, v))∇v‖L2

≤ Lg‖∇u − ∇v‖L2 + L ′
g‖u − v‖L∞‖∇v‖L2

≤ Cn‖u − v‖β3 ,

where in the last stepweused‖∇v‖L2 ≤ n andSobolev embeddingwithβ3 ∈ (3/4, 1).
Similarly, by using (5.9), one can check

|||G(t, u)|||H ≤ |||G(t, u) − G(t, 0)|||H + |||G(t, 0)|||H ≤ C(‖u‖H + 1). (5.12)
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Step 3: (3.8) holds. By (5.11), (5.12), and the elementary estimate (x + y)2 ≤
(1 + ε)x2 + Cε y2, it is enough to show that

〈F(u), u〉 ≤ 1

4
‖u‖2V + M(‖u‖2H + 1). (5.13)

Recall that F1 and F2 are as in (5.10). For F1 we have

〈F1(u), u〉 ≤ ‖u‖V ‖F1(u)‖V ∗ ≤ 1

4
‖u‖2V + ‖F1(u)‖2V ∗ ≤ 1

4
‖u‖2V +

∫
R3

|u|2|∇u|2 dx .

For F2, using that φN (x) ≥ x − N for all x ≥ 0 gives

〈F2(u), u〉 = −〈u, φN (|u|2)u〉
= −

∫
R3

|u|2φN (|u|2) dx +
∫
R3

u · �[u φN (|u|2)] dx

= −
∫
R3

|u|2φN (|u|2) dx −
∫
R3

|∇u|2φN (|u|2) dx

− 2
∫
R3

|u|2|∇u|2φ′
N (|u|2) dx

≤ −
∫
R3

|∇u|2(|u|2 − N ) dx

where we used that φN (x) = x − N for x ≥ N + 1. Combining the estimates for F1
and F2, we obtain (5.13). It remains to apply Theorems 3.4 and 3.8. ��
Remark 5.6 One can also try to consider Dirichlet boundary conditions. When work-
ing with unweighted function spaces, this leads to serious difficulties as the noise
needs to map into the right function spaces with boundary conditions (after apply-
ing the Helmholtz projection), which leads to strange assumptions. Moreover, the
Helmholtz does not commute with the differential operators, which make the analysis
more involved. Also the spaces are more involved since for V one needs to take the
divergence free subspace of H2(O) ∩ H1

0 (O) and for H the divergence free subspace
of H1

0 (O). In that way V ∗ can be identified with the divergence free subspace of
L2(O). Note that the divergence free subspace of C∞

c (O) is not dense in V , and the
dual (with respect to H ) of the closure of the later space of test functions is not the
divergence free subspace of L2(O) (cf. Example 2.2).

Remark 5.7 By estimating the F1 term as

〈u, F1(u)〉 ≤ (1 − δ)‖u‖2V + 1

4(1 − δ)

∫
R3

|u|2|∇u|2 dx,

for suitable δ ∈ (0, 1), and strengthening the stochastic parabolicity condition (5.7),
one can also consider g with quadratic growth in the y-variable (see Sect. 5.4 for a
related situation).
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Remark 5.8 In Assumption 5.4, the condition b j ∈ W 1,∞(R3; �2) can be weakened
to b j ∈ W 1,∞(Rd ; �2) + W 1,3+δ(R3; �2) for some δ > 0. The reader is referred to
the proof of Theorem 5.17 below for details.

5.3 Stochastic second order equations

Below we consider a second order problem with a gradient noise term, and nonlin-
earities f and g which does not need to be of linear growth. These type of equations
have been considered in many previous works, and below we merely indicate how far
one can get using our improved variational framework. In particular, with our tech-
niques one can extend the class of examples in [41, Example 5.1.8] in several ways.
We will only deal with the weak setting (see Example 2.1). The strong setting (see
Example 2.2) will be considered in Sects. 5.4 and 5.5 to treat the Allen–Cahn equation
for d ∈ {2, 3, 4} and a quasi-linear problem for d = 1.

On an open and bounded domain O ⊆ R
d , we consider

⎧⎪⎪⎨
⎪⎪⎩
du = [

div(a · ∇u) + f (·, u) + div( f (·, u))
]
dt

+∑
n≥1

[
(bn · ∇)u + gn(·, u)

]
dwn

t , on O,

u = 0, on ∂O,

u(0) = u0, on O,

(5.14)

where (wn
t : t ≥ 0)n≥1 are independent standard Brownian motions.

Assumption 5.9 Suppose that

ρ1 ∈

⎧⎪⎨
⎪⎩

[0, 3] if d = 1,
[0, 2) if d = 2,[
0, 4

d

]
if d ≥ 3,

and ρ2, ρ3 ∈
[
0,

2

d

]
,

and

(1) a j,k : R+ × � × O → R and b j := (b j
n)n≥1 : R+ × � × O → �2 are

P ⊗ B(Td)-measurable and uniformly bounded.
(2) There exists ν > 0 such that a.e. on R+ × � × O,

d∑
j,k=1

(
a j,k(t, x) − 1

2

∑
n≥1

b j
n(t, x)b

k
n(t, x)

)
ξ jξk ≥ ν|ξ |2 for all ξ ∈ R

d .

(3) The mappings f : R+ × � × O × R → R, f : R+ × � × O × R → R
d and

g := (gn)n≥1 : R+ × � ×O × R → �2, are P ⊗ B(O) ⊗ B(R)-measurable, and
there is a constant C such that a.e. on R+ × � × O and y ∈ R,

| f (·, y) − f (·, y′)| ≤ C(1 + |y|ρ1 + |y′|ρ1)|y − y′|,
| f (·, y) − f (·, y′)| ≤ C(1 + |y|ρ2 + |y′|ρ2)|y − y′|,
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‖g(·, y) − g(·, y′)‖�2 ≤ C(1 + |y|ρ3 + |y′|ρ3)|y − y′|,
| f (·, y)| ≤ C(1 + |y|ρ1+1),

| f (·, y)| ≤ C(1 + |y|ρ2+1),

‖g(·, y)‖�2 ≤ C(1 + |y|)ρ3+1.

(4) There exist M,C ≥ 0 and η > 0 such that a.e. in R+ × � for all u ∈ C∞
c (O)

(a∇u,∇u)L2(O) + ( f (·, u),∇u)L2(O) − ( f (·, u), u)L2(O)

− ( 12 + η)
∑
n≥1

‖(bn · ∇)u + gn(·, u)‖2L2(O)
≥ θ‖∇u‖2L2(O)

− M‖u‖2L2(O)
− C .

Condition (4) is technical, but can be seen as a direct translation of the coercivity
condition (3.8). Simpler sufficient conditions will be give in Examples 5.13 and 5.15
below. Moreover, some simplification will also be discussed in Lemma 5.12.

In order to formulate (5.14) as (3.3) we set U = �2, H = L2(O), V = H1
0 (O)

and V ∗ = H−1(O). Note that for β ∈ [1/2, 1), Vβ = [V , V ∗]β ↪→ H2β−1(O) (see
Example 2.1).

Let A0 : R+ × � → L(V , V ∗) and B0 : R+ × � → L(V ,L2(U , H)) are given
by

A0(t)u = div(a(t, ·) · ∇u),

(B0(t)u)n = (bn(t, ·) · ∇)u.

Let F = F1 + F2, where F1, F2 : R+ × � × V → V ∗ and G : R+ × � × V →
L2(U , H) be given by

F1(t, u)(x) = f (t, x, u(x)), F2(t, u)(x) = div[ f (t, x, u(x))],
(G(t, u))n(x) = gn(t, x, u(x)).

We say that u is a solution to (5.14) if u is a solution to (3.3) with the above definitions.
In order to prove global well-posedness we check the conditions of Theorem 3.4.

It is standard to check that Assumption 3.1(1)–(2) are satisfied. To check (3) we only
consider the local Lipschitz estimates, since the growth conditions can be checked in
the same way. Note that for F1 we have

‖F1(t, u) − F1(t, v)‖V ∗

� ‖F1(t, u) − F1(t, v)‖Lr (O) (by Sobolev embedding)

� ‖(1 + |u|ρ1 + |v|ρ1)(u − v)‖Lr (O) (by Assumption 5.9)

� (1 + ‖u‖ρ1

Lr(ρ1+1)(O)
+ ‖v‖ρ1

Lr(ρ1+1)(O)
)‖u − v‖Lr(ρ1+1)(O) (by Hölder’s inequality)

� (1 + ‖u‖ρ1
β1

+ ‖v‖ρ1
β1

)‖u − v‖β1 (by Sobolev embedding).
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First let d ≥ 3. In the first Sobolev embedding we choose r ∈ (1,∞) such that
− d

r = −1− d
2 . The second Sobolev embedding requires 2β1 − 1− d

2 ≥ − d
r(ρ1+1) =

− 1
ρ1+1 − d

2(ρ1+1) . In Assumption 3.1(3), we need 2β1 ≤ 1 + 1
ρ1+1 and hence

d

2
− 1

ρ1 + 1
− d

2(ρ1 + 1)
≤ 1

ρ1 + 1
.

The latter is equivalent to ρ1 ≤ 4
d . If d = 1, then we can take r = 1, and this leads to

3

2
− 1

ρ1 + 1
≤ 2β1 ≤ 1 + 1

ρ1 + 1
,

which holds if ρ1 ≤ 3. If d = 2, we can take r = 1 + δ for any δ > 0, and this leads
to ρ1 < 2. In all cases we can take 2β1 = 1 + 1

ρ1+1 .

To prove the estimates for f we argue similarly:

‖F2(t, u) − F2(t, v)‖V ∗

� ‖ f (t, ·, u) − f (t, ·, v)‖L2(O)

� ‖(1 + |u|ρ2 + |v|ρ2)(u − v)‖L2(O) (by Assumption 5.9)

� (1+‖u‖ρ2

L2(ρ2+1)(O)
+‖v‖ρ2

L2(ρ2+1)(O)
)‖u−v‖L2(ρ2+1)(O) (by Hölder’s inequality)

� (1 + ‖u‖ρ2
β2

+ ‖v‖ρ2
β2

)‖u − v‖β2 (by Sobolev embedding).

In the Sobolev embedding we need 2β2 − 1 − d
2 ≥ − d

2(ρ2+1) . In Assumption 3.1(3),

the condition 2β2 ≤ 1+ 1
ρ2+1 leads to ρ2 ≤ 2

d . Moreover, we can consider the critical

case 2β2 = 1 + 1
ρ2+1 .

To prove the estimates for G we argue similarly:

‖G(t, u) − G(t, v)‖L2(O;�2)
� ‖(1 + |u|ρ3 + |v|ρ3)(u − v)‖L2(O) (by Assumption 5.9)

� (1 + ‖u‖ρ3

L2(ρ3+1)(O)
+ ‖v‖ρ3

L2(ρ3+1)(O)
)‖u − v‖L2(ρ3+1)(O) (by Hölder’s inequality)

� (1 + ‖u‖ρ3
β3

+ ‖v‖ρ3
β3

)‖u − v‖β3 (by Sobolev embedding).

As before we need 2β3 − 1 − d
2 ≥ − d

2(ρ3+1) and ρ3 ≤ 2
d . Moreover, we can take

2β3 = 1 + 1
ρ3+1 .

Finally we note that the coercivity condition (3.8) coincides with Assump-
tion 5.9(4). Therefore, Theorem 3.4 gives the following:
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Theorem 5.10 (Global well-posedness). Suppose that Assumption 5.9 holds. Let u0 ∈
L0
F0

(�; L2(O)). Then (5.14) has a unique global solution

u ∈ C([0,∞); L2(O)) ∩ L2
loc([0,∞); H1

0 (O)) a.s. (5.15)

and for every T > 0 there is a constant CT independent of u0 such that

E‖u‖2C([0,T ];L2(O))
+ E‖u‖2

L2(0,T ;H1
0 (O))

≤ CT (1 + E‖u0‖2L2(O)
). (5.16)

Moreover, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = L2(O) and V = H1

0 (O).

Remark 5.11 If Assumption 5.9 holds with η = 0, then a version of Theorem 5.10 still
holds, but with (5.16) replaced by (3.11), (3.12), and (3.13). Indeed, instead one can
apply Theorem 3.5.

In the next lemma we further simplify some of the terms appearing in Assump-
tion 5.9(4) in special cases.

Lemma 5.12 Suppose that Assumption 5.9 holds. Suppose that f and g only depends
on (t, ω, y), and b only depends on (t, x, ω) and additionally div(b) = 0 in
distributional sense. Then for al u ∈ C∞

c (O)

(1) ( f (·, u),∇u)L2(O) = 0;
(2) ((bn · ∇)u, gn(·, u))L2(O) = 0.

Therefore, Assumption 5.9(4) holds if there exist M,C ≥ 0 and η > 0 such that a.e.
in R+ × � for all y ∈ R,

( f (·, y), y) + ( 12 + η)‖g(·, y)‖2
�2

≤ M |y|2 + C . (5.17)

Proof By extending u as zero we may assume that O is an open ball. In particular,
this gives that O is a smooth domain.

(1): Let

F(t, y) :=
∫ y

0
f (t, y′) dy′, y ∈ R.

Since f is continuous, by the chain rule we obtain that for u ∈ C∞
c (O)

divx
[F(u(x))

] = f (u(x)) · ∇u

By the divergence theorem and the fact that u = 0 on ∂O , we obtain∫
O

f (u(x)) · ∇u dx =
∫
O
divx

[F(u(x))
]
dx =

∫
∂O

F(u(x)) · n(x) dS(x) = 0.

Therefore the stated result follows.
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(2): We use a similar idea. Set

Gn(t, y) :=
∫ y

0
gn(t, y

′) dy′, y ∈ R.

Then the chain rule gives that

∂x j
[Gn(·, x, u(x))

] = gn(·, x, u(x))∂ j u(x).

Integrating by parts and arguing as before, we find that ((bn · ∇)u, gn(·, u))L2(O) can
be written as∫

∂O
bn · n Gn(·, u(x)) dS(x) −

∫
O
div(bn)Gn(·, u(x)) dx = 0

where in the last equality we used div bn = 0 that Gn(·, u(x))|∂O = 0 as u|∂O = 0
and G(·, 0) = 0.

For the final assertion note that by (1) and (2), Assumption 5.9(4) becomes

(a∇u,∇u)L2(O) − ( 12 + η)‖(bn · ∇)u‖2L2(O;�2)
− ( f (·, u), u)L2(O) − ( 12 + η)‖g(·, u)‖2L2(O;�2) ≥ θ‖∇u‖2L2(O)

− M‖u‖2L2(O)
− C .

By Assumption 5.9 for η small enough we can find θ > 0 such that

(a∇u,∇u)L2(O) − ( 12 + η)‖(bn · ∇)u‖L2(O;�2) ≥ θ‖∇u‖L2(O).

Thus it remains to check

−( f (·, u), u)L2(O) − ( 12 + η)‖g(·, u)‖2L2(O;�2) ≥ −M‖u‖2L2(O)
− C .

The latter follows from (5.17). ��
Next we specialize to the setting of the generalized Burgers equation of [41, Exam-

ple 5.1.8]. It turns out that our setting leads tomore flexibility under themild restriction
that the nonlinearities are locally Lipschitz with some polynomial growth estimate on
the constants. Basically the natural restriction in our setting is given in (5.19) below
which says that y f (y) ≤ M(1 + |y|2) which is weaker than the usual one-sided Lip-
schitz condition used for the local monotonicity. Moreover, we can allow a gradient
noise term. Further comparison can be found in Remark 5.14 below. For convenience
we only consider coefficients which are independent of (t, ω, x), but in principle this
is not needed.

Example 5.13 Let d ≥ 1 and let O be a bounded C1-domain. Consider the problem

⎧⎨
⎩
du = [�u + f (u) + div( f (u))] dt + ∑

n≥1

[
(bn · ∇)u + gn(u)

]
dwn

t , on O,

u = 0 on ∂O,

u(0) = u0, on O.

(5.18)
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Table 1 Our setting ρi ;
variational setting ρi

d = 1 d = 2 d = 3

ρ1 3 < 2 4
3

ρ1 2 < 2 4
3

ρ2 2 1 2
3

ρ2 2 0 0

Here (bn)n≥1 are real numbers such that stochastic parabolicity condition holds:

θ := 1 − 1

2
‖(bn)n≥1‖2�2 > 0.

For the nonlinearities we assume that there is a constant C ≥ 0 such that

| f (y) − f (y′)| ≤ C(1 + |y|ρ1 + |y′|ρ1)|y − y′|,
| f (y) − f (y′)| ≤ C(1 + |y|ρ2 + |y′|ρ2)|y − y′|,

| f (y)| ≤ C(1 + |y|ρ1+1),

| f (y)| ≤ C(1 + |y|ρ2+1),

‖g(y) − g(y′)‖�2 ≤ C |y − y′|,
‖(gn(y))n≥1‖�2 ≤ C(1 + |y|),

where ρ1 ∈ [0,min{ 4d , 3}] if d �= 2, ρ1 ∈ [0, 2) if d = 2, and ρ2 ∈ (0, 2
d ] (cf.

Assumption 5.9). Suppose that the following dissipativity condition holds: there is an
M ≥ 0 such that

y f (y) ≤ M(1 + |y|2). (5.19)

In particular, if d ∈ {1, 2}, Burgers type nonlinearities are included: take f (y) = y2.
Moreover, if d = 1, Allen–Cahn type nonlinearities such as f (y) = y − y3 are
included as well (see Sect. 5.4 for d ∈ {2, 3, 4}).

One can check that Assumption 5.9 is satisfied (see Lemma 5.12). Thus Theo-
rem 5.10 implies that for every u0 ∈ L0

F0
(�; L2(O)), there exists a unique global

solution u to (5.18) which satisfies (5.15) and (5.16).

Remark 5.14 For comparison let us note that the usual local monotonicity condition
would require b = 0, and the more restrictive one-sided Lipschitz estimate

( f (y) − f (y′))(y − y′) ≤ C(1 + |y′|s)(y − y′)2, x, y ∈ R.

Note that setting y′ = 0, the latter implies (5.19). Concerning the growth rate at infinity
of order | · |ρi+1 in our setting and say the | · |ρi+1 in the classical variational setting
(see [41, Example 5.1.8]), we make a comparison in Table 1. In particular, in d = 2
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the Burgers equation is included in our setting, but not in the classical variational
framework.

The coercivity condition of Assumption 5.9(4) can be seen as a combined dissi-
pativity condition on the nonlinearities f and g: better f gives less restrictions on
g. Below, we give an explicit case in which it applies, where for simplicity we take
f = 0 and bn = 0.

Example 5.15 Let d ≥ 1 and suppose that ρ ∈ [0,min{ 4d , 3}] if d �= 2 and ρ ∈ [0, 2)
if d = 2. Let λ > 0. Consider the problem

⎧⎨
⎩
du = [

�u − λ|u|ρu]
dt + ∑

n≥1 gn(u) dwn
t , on O,

u = 0 on ∂O,

u(0) = u0, on O.

(5.20)

Let f (y) = −λ|u|ρu, and suppose g : R → �2 is such that for some η,C > 0

‖g(y) − g(y′)‖2
�2

≤ C(1 + |y|ρ + |y′|ρ)|y − y′|2,
( 12 + η)‖g(y)‖2

�2
≤ C(1 + |y|2) + λ|y|ρ+2, (5.21)

where y, y′ ∈ R. Then Theorem 5.10 implies that (5.20) has a unique global solution
u as in (5.15) and (5.16) holds. Indeed, Assumptions 5.9(1),(2),(3) are clearly satisfied
with ρ1 = ρ and ρ3 = ρ/2. For (4) it remains to note that one has, a.e. onR+×�×O,

−( 12 + η)
∑
n≥1

|gn(·, y)|2 − y f (y) ≥ −C(1 + |y|2), and for all y ∈ R.

In case η = 0, one can use Remark 5.11 to obtain well-posedness. Here something
special occurs in the case d = 1 and ρ ∈ (2, 3]. In the latter case, (5.21) can be
replaced by: there exists a C > 0 such that

‖g(y)‖2
�2

≤ C(1 + |y|2) + C |y|4.

5.4 Stochastic Allen–Cahn equation

The Allen–Cahn equation is one of the well-known reaction–diffusion equations of
mathematical physics, and it is used to describe phase transition processes. It is consid-
ered by many authors (see for instance [52, 57]). Quite often it is considered without
gradient noise, but it seems natural to add (see the discussion in [9, Section 1.3]).

Here we consider the following stochastic Allen–Cahn equation with transport
noise on T

d :

{
du = (

�u + u − u3
)
dt + ∑

n≥1

[
(bn · ∇)u + gn(·, u)

]
dwn

t , on T
d ,

u(0) = u0, on T
d .

(5.22)
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The arguments below also apply if the term u − u3 is replaced by a more general non-
linearity f (u) which behaves like u − u3. See Remark 5.20 for some comments. The
main novelty in our result is that we can consider gradient noise and a quadratic diffu-
sion term g, and that the equations fits into our variational framework for dimensions
d ≤ 4.

Table 1 in Remark 5.14 shows that (5.22) cannot be considered in the weak setting
(i.e. H = L2, V = H1, and ρ1 = 2) if d ≥ 2. In the current section we show that one
can treat the stochastic Allen–Cahn equation for 2 ≤ d ≤ 4 by considering the strong
setting instead (i.e. V = H2 and H = H1). In this setting local monotonicity does
not holds, but fortunately local Lipschitz estimates are satisfied.

Assumption 5.16 Let b j = (b j
n)n≥1 : R+ ×�×T

d ×R → �2 for j ∈ {1, . . . , d}, and
g = (gn)n≥1 : R+×�×T

d×R→�2 beP⊗B(Td)- andP⊗B(Td)⊗B(R)-measurable
maps, respectively. Assume that

(1) Suppose that there exist ν ∈ (0, 2) such that a.e. on R+ × � × T
d ,

∑
n≥1

d∑
i, j=1

binb
j
nξiξ j ≤ ν|ξ |2 for all ξ ∈ R

d .

(2) There exist M, δ > 0 such that for all j ∈ {1, . . . , d} a.s. for all t ∈ R+,

‖b j (t, ·)‖W 1,d+δ(Td ;�2) ≤ M .

(3) the mapping (x, y) �→ g(·, x, y) is C1(Td × R) a.e. on R+ × �.
(4) There exists C ≥ 0 such that a.e. on R+ × � × T

d and for all y, y′ ∈ R,

‖∇x g(·, y)‖�2 + ‖g(·, y)‖�2 ≤ C(1 + |y|2),
‖∇x g(·, y) − ∇x g(·, y′)‖�2 + ‖g(·, y) − g(·, y′)‖�2 ≤ C(1+|y|+|y′|)|y−y′|,

‖∂yg(·, y)‖�2 ≤ C(1 + |y|),
‖∂yg(·, y) − ∂yg(·, y′)‖�2 ≤ C |y − y′|.

(5) There exist C, η, θ > 0 such that for all v ∈ C∞(Td) and a.e. on R+ × �,

( 12 + η)
∑
n≥1

‖(bn · ∇)v + gn(·, v)‖2H1 ≤
∫
Td

(|v|4 + 3|v|2|∇v|2) dx

+(1 − θ)

∫
Td

|�v|2 dx+C(‖v‖2H1 + 1).

Some remarks on Assumption 5.16may be in order. (2) and the Sobolev embedding
H1,d+δ(�2) ↪→ L∞(�2) show that‖bk‖L∞(�2) � M . The quadratic growth assumption
on g is optimal from a scaling point of view [9, Section 1]. (5) is equivalent to the
coercivity condition (3.10). Note that the conditions (4) and (5) are compatible as the
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RHS of the estimate in (5) allows for quadratic growth of g. To check (5) it is also
convenient to use that

∑
j,k=1

∫
Td

|∂2j,kv|2 dx =
∫
Td

|�v|2 dx for all v ∈ H2(Td). (5.23)

The above follows by approximation by smooth functions, and integration by part
arguments.

As remarked above, Assumption 5.16(5) allows g with quadratic growth. In special
cases, one can even obtain explicit description of constants. For instance, if b = 0 and
g is x-independent, then one can check that (5) holds if

( 12 + η)‖g(y)‖2
�2

≤ |y|4 + C and ( 12 + η)‖∂yg(y)‖2�2 ≤ 3|y|2 + C .

The main result of this subsection reads as follows.

Theorem 5.17 (Globalwell-posedness). Let 2 ≤ d ≤ 4. Suppose that Assumption5.16
holds. Let u0 ∈ L0

F0
(�; H1(Td)). Then (5.22) has a unique global solution

u ∈ C([0,∞); H1(Td)) ∩ L2
loc([0,∞); H2(Td)) a.s.

Moreover, for all T ∈ (0,∞), there exists CT > 0 independent of u0 such that

E

∫ T

0
‖u(t)‖2H2(Td )

dt ≤ CT (1 + E‖u0‖2H1(Td )
), (5.24)

E

[
sup

t∈[0,T ]
‖u‖2H1(Td )

]
≤ CT (1 + E‖u0‖2H1(Td )

), (5.25)

Finally, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = H1(Td) and V = H2(Td).

Remark 5.18 In case Assumption 5.16(5) holds with η = 0, the above theorem still
holds. However, the estimate (5.25) has to be replaced by the weaker bounds (3.11)–
(3.13) with H = H1(Td) and V = H2(Td). The proof is the same as below, but one
has to use Theorem 3.5 instead of Theorem 3.4.

As mentioned at the beginning of this subsection, the deterministic nonlinearity in
(5.22) does not satisfy the classical local monotonicity condition for stochastic evolu-
tion equations, and therefore there are difficulties in applying the classical framework
to obtain well-posedness for (5.22).

Proof As usual, we view (5.22) in the form (3.3) by setting U = �2, H = H1(Td),
V = H2(Td) and, for v ∈ V ,

A0v = −�v, B0v = ((bn · ∇)v)n≥1,

F(·, v) = v − v3, G(·, v) = (gn(·, v))n≥1.
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As usual, H is endowed with the scalar product ( f , g)H = ∫
Td ( f g + ∇ f · ∇g) dx .

Therefore,V ∗ = L2 and 〈 f , g〉 = ∫
Td f g−(� f )g dx (cf. Example 2.2). In particular,

〈A0v, v〉 =
∫
Td

(|∇v|2 + |�v|2) dx, v ∈ H2(Td). (5.26)

The claim of Theorem 5.17 follows from Theorem 3.4 provided we check the
assumptions. Note that (3.8) follows from Assumption 5.16(5). It remains to check
Assumption 3.1. To begin we check Assumption 3.1(2). In the proof below we write
|||·|||L2(Td ) = ‖ · ‖L2(�2;L2(Td )) = ‖ · ‖L2(Td ;�2). Note that for all v ∈ V and ε > 0,

1

2
|||∇B0v|||2L2(Td )

≤ 1 + ε

2

∑
n≥1

d∑
k=1

∫
Td

∣∣∣ d∑
j=1

b j
n∂

2
j,kv

∣∣∣2 dx + Cε max
j

∫
Td

‖∇b j‖2
�2

|∇v|2 dx

(i)≤ (1 + ε)
ν

2

∑
j,k=1

∫
Td

|∂2j,kv|2 dx + Cε max
j

‖∇b j‖2Ld+δ(�2)
‖∇v‖2Lr (Td )

(i i)≤ (1 + ε)
ν

2
‖�v‖2L2(Td )

+ CεM
2‖∇v‖2Lr (Td )

.

In (i) we used Assumption 5.16(1) for the first term, and Hölder’s for the second term
with exponents 1

d+δ
+ 1

r = 1
2 (where δ is as in Assumption 5.16(2)). In (i i) we used

(5.23) and Assumption 5.16((2)).
Since r ∈ (2, 2d

d−2 ), there exists μ ∈ (0, 1) such that Hμ(Td) ↪→ Lr (Td) by
Sobolev embedding. Thus by standard interpolation inequalities, for every γ > 0

‖∇v‖2Lr (Td )
≤ C0‖∇v‖2Hμ(Td )

≤ μ‖�v‖2L2(Td )
+ Cμ‖∇v‖2L2(Td )

.

Thus, by choosing μ > 0 small enough we obtain

1

2
|||∇B0v|||2L2 ≤ (1 + 2ε)

ν

2
‖�v‖2L2(Td )

+ Cε,νM
2‖v‖2H1(Td )

.

Since H1,d+δ(Td) ↪→ L∞(Td), we also have |||B0v|||2
L2 ≤ CM2‖v‖2

H1 . Therefore,
choosing ε > 0 such that θ := 1 − (1 + 2ε) ν

2 > 0, (5.26) give

〈A0v, v〉 − 1

2
|||∇B0v|||H1(Td ) ≥ θ‖�v‖2L2(Td )

− C ′
ε,νM

2‖v‖2H1 .

By (5.23), this implies Assumption 3.1(2).
Finally, we check Assumption 3.1(3). For u, v ∈ V note that

‖F(·, u) − F(·, v)‖L2 � ‖(1 + |u|2 + |v|2)|u − v|‖L2 (5.27)

� (1 + ‖u‖2L6 + ‖v‖2L6)‖u − v‖L6
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1002 A. Agresti, M. Veraar

� (1 + ‖u‖2β1 + ‖v‖2β1)‖u − v‖β1

where β1 = 2
3 and we used that H2β(Td) ↪→ L6(Td) since d ≤ 4. Setting mF = 1

and ρ1 = 2, the condition (3.4) follows for j = 1.
To estimate G, first observe that for all u, v ∈ H2(Td) by Hölder’s inequality and

Sobolev embedding (using d ≤ 4), for k ∈ {0, 1},
∥∥|∂kj u||v|∥∥L2(Td )

≤ ‖u‖H1,8/3(Td )‖v‖L8(Td ) � ‖u‖H3/2(Td )‖v‖H3/2(Td ). (5.28)

Note that for u, v ∈ H2(Td)

|||G(u) − G(v)|||2H1(Td )
≤ ‖g(u) − g(v)‖2L2(Td ;�2) +

d∑
j=1

‖∂ j [g(u) − g(v)]‖2L2(Td ;�2).

Assumption 5.16(5) and (5.28) imply that

‖g(u) − g(v)‖L2(Td ;�2) � ‖1 + |u| + |v|(u − v)‖L2(Td )

� (1 + ‖u‖H3/2(Td ) + ‖v‖H3/2(Td ))‖u − v‖H3/2(Td ).

For the derivative term we can write

‖∂ j [g(u) − g(v)]‖�2 ≤ ‖∂x j g(u) − ∂x j g(v)‖�2 + ‖∂yg(u)∂ j u − ∂yg(v)∂ jv‖�2 .

By Assumption 5.16(5), the first term can be estimated as before. For the second term
Assumption 5.16(5) gives

‖∂yg(u)∂ j u − ∂yg(v)∂ jv‖�2 ≤ ‖∂yg(u)(∂ j u − ∂ jv)‖�2 + ‖(∂yg(u) − ∂yg(v))∂ jv‖�2

� (1 + |u|)|u − v| + (1 + ∂ jv)|u − v|.

Therefore, taking L2(Td)-norms and applying (5.28) we find that

‖∂yg(u)∂ j u − ∂yg(v)∂ jv‖L2(Td ;�2) � (1 + ‖u‖H3/2(Td ) + ‖v‖H3/2(Td ))‖u − v‖H3/2(Td ).

The growth estimate can be proved in a similar way, and thus Assumption 3.1(2) holds
with mG = 1, ρ2 = 1 and β2 = 3

4 , where we note that (3.4) holds for j = 2 ��
Example 5.19 Suppose that gn(·, v) = (γnv

2)n≥1 where γ = (γn)n≥1 ∈ �2. For
convenience we set bn ≡ 0. It is immediate to see that Assumption 5.16(4) holds. One
can readily check that Assumption 5.16(5) is satisfied with η > 0 if ‖γ ‖2

�2
< 3

2 , and

it is satisfied with η = 0 if ‖γ ‖2
�2

= 3
2 (see Remark 5.18).

Remark 5.20 As in the previous subsections, we may replace the nonlinearity u − u3

by a more general one f (u). Indeed, inspecting the above proof it is enough to assume
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The critical variational setting for stochastic evolution equations 1003

that F(·, v) := f (·, v) satisfies (5.27) and that the term
∫
Td (|v|4 + 3|v|2|∇v|2) dx on

the RHS in the condition of Assumption 5.16(5) is replaced by

−
∫
Td

[
f ′(u)|∇u|2 + f (u)u

]
dx .

Remark 5.21 (Kraichnan’s noise). In the study of fluid flows transport noise (bn ·∇)u is
typically used to model turbulence, see e.g. [21, 23, 35, 44]. In Kraichnan’s theory, it is
important to choose b as rough as possible. In this respect, Assumption 5.16(2) allows
us to cover only regular Kraichnan’s noise (see e.g. [26, Section 5] and the references
therein). For the irregular case (e.g. b ∈ Cε(�2) for ε > 0 small), Theorem 5.17 cannot
be applied. However, by using L p-theory one can show that global well-posedness for
(5.22) still holds, see [8].

5.5 A stochastic quasi-linear second order equation

In this section we give a toy example of a quasi-linear SPDE in one dimension to
which our setting applies. Due to the quasi-linear structure we are forced to work with
the strong setting V = H2 and H = H1, since we need H ↪→ L∞. In case one would
use Lq -theory, then one can actually handle higher dimensions, since the Sobolev
embeddings theorems become better for q large. However, Lq -theory is outside the
scope of the current paper.

On R consider the problem:

{
du = [

a(u)u′′ + f (u)
]
dt + ∑

n≥1

[
bn(u)u′ + gn(u)

]
dwn

t , on R,

u(0) = u0, on R.
(5.29)

Assumption 5.22 Suppose that a : R → R, b : R → �2, f : R → R and g : R → �2

are mappings for which there exist θ > 0, C ≥ 0 such that for all x, y ∈ R

a(y) − 1

2

∑
n≥1

|bn(y)|2 ≥ θ, b, g ∈ C1(R; �2),

a, b, b′, f , g, g′ are locally Lipschitz, and f (0) = 0, g(0) = 0.

It is also possible to consider (t, ω) and space-dependent coefficients (a, b, f , g).
In that case the conditions f (0) = 0 and g(0) = 0 can be weakened to an integrability
condition.

In order to reformulate (5.29) as (3.3), we need some smoothness in the space H
in order to deal with the quasi-linear terms. Therefore, let U = �2, H = H1(R),
V = H2(R) and V ∗ = L2(R). Here we use (u, v)H = (u, v)L2 + (u′, v′)L2 and for
the duality between V ∗ and V we set 〈u, v〉 = (u, v)L2 − (u, v′′)L2 .

In order to prove local existence and uniqueness we reformulate (5.29) in the form
(3.3). Let

A0(u)v = −a(v)u′′, B0(v)u = b(v)u′, F(u) = f (u), G(u) = (gn(u))n≥1.
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1004 A. Agresti, M. Veraar

and set A(u) = A0(u)u − F(u), and B(u) = B0(u)u +G(u). For local existence and
uniqueness, it remains to check that Assumption 3.1 holds.

The following estimates will be used below:

‖u‖Cb ≤ K‖u‖H1 , ‖u‖L4 ≤ K‖u‖H1/4 . (5.30)

Assumption 3.1(1) is simple to verify. To check condition Assumption 3.1(2) note that
for all u ∈ H with ‖u‖H ≤ m and v ∈ V ,

〈A0(u)v, v〉 − 1

2
|||B0(u)v|||2H

= −(a(u)v′′, v)L2 + (a(u)v′′, v′′)L2 − 1

2

∑
n≥1

‖(bn(u)v′)′‖2L2 + ‖bn(u)v′‖2L2

=
([
a(u) − 1

2

∑
n≥1

|bn(u)|2]v′′, v′′)
L2

− R

≥ θ‖v‖2V − θ‖v‖2H − R, (5.31)

where, by Assumption 5.22, for all ε > 0 the rest term R satisfies

R = (a(u)v′′, v)L2 + 1

2

∑
n≥1

(‖b′
n(u)u′v′‖2L2 + (b′

n(u)u′v′, bn(u)v′′)L2 + ‖bn(u)v′‖2L2

)
≤ Cm(‖v‖V ‖v‖V ∗ + ‖v‖2H + ‖v‖H‖v‖V + ‖v‖2H )

≤ ε‖v‖2V + Cε,m‖v‖2H .

In the above we used (5.30) and ‖u‖H ≤ m. Taking ε ∈ (0, θ), Assumption 3.1(2)
follows.

To check Assumption 3.1(3) let u, v ∈ V be such that ‖u‖H , ‖v‖H ≤ m and
w ∈ V . Then, by (5.30) and Assumption 5.22,

‖A0(u)w − A0(v)w‖V ∗ = ‖(a(u) − a(v))w′′‖L2

≤ ‖a(u) − a(v)‖L∞‖w‖V
�m ‖u − v‖L∞‖w‖V �m K‖u − v‖H‖w‖V .

The growth estimate is proved in the same way. Analogously,

|||B0(u)w − B0(v)w|||H ≤ ‖(b(u) − b(v))w′‖L2(�2) + ‖[(b(u) − b(v))w′]′‖L2(�2)

≤ ‖(b′(u) − b′(v))u′w′‖L2(R;�2) + ‖b′(u)(u′ − v′)w′‖L2(�2)

+ ‖(b(u) − b(v))w′′‖L2(�2) + ‖(b(u) − b(v))w′‖L2(�2)

�m ‖u − v‖L∞‖u′‖L2‖w′‖L∞ + ‖u′ − v′‖L2‖w′‖L∞

+ ‖u − v‖L∞(‖w′′‖L2 + ‖w′‖L2)

�m ‖u − v‖H‖w‖V .
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The critical variational setting for stochastic evolution equations 1005

The growth estimate is similar. To estimate F note that for all u, v ∈ V with
‖u‖H , ‖v‖H ≤ m

‖F(u) − F(v)‖V ∗ ≤ C f ,m‖u − v‖L∞ ≤ Cm‖u − v‖H ,

where we used (5.30). The required growth estimate follows as well since F(0) = 0.
Finally, as for the B0-term, for G we can write

|||G(u) − G(v)|||H ≤ ‖g(u) − g(v)‖L2(�2) + ‖g′(u)u′ − g′(v)v′‖L2(�2).

The first term is clearly �m ‖u − v‖L2 by (5.30). From the latter inequality and
Assumption 5.22, the second term can be estimated as

‖g′(u)u′ − g′(v)v′‖L2(�2) ≤ ‖g′(u)(u′ − v′)‖L2(�2) + ‖(g′(u) − g′(v))u′‖L2(�2)

�m ‖u′ − v′‖L2 + ‖u − v‖L∞‖u′‖L2

�m ‖u − v‖H .

Again, the growth estimate follows by the above asG(0) = 0 due to Assumption 5.22.
From the above and Theorem 3.3 we obtain the following result.

Theorem 5.23 (Local existence, uniqueness and blow-up criterion). Suppose Assump-
tion 5.22 holds. Let u0 ∈ L0

F0
(�; H1(R)). Then there exists a (unique) maximal

solution (u, σ ) of (5.29) such that u ∈ C([0, σ ); H1(R)) ∩ L2
loc([0, σ ); H2(R)) a.s.

Moreover,

P

(
σ < ∞, sup

t∈[0,σ )

‖u(t)‖2H1(R)
+

∫ σ

0
‖u(t)‖2H2(R)

dt < ∞
)

= 0.

The next condition will ensure global well-posedness.

Assumption 5.24 Suppose that b(u) is constant in u, f ∈ C1(R) and there exists
C ≥ 0 such that

|a(x)| ≤ C, x f (x) ≤ C(|x |2 + 1), f ′(x) ≤ C and ‖g′(x)‖�2 ≤ C x ∈ R.

We do not know if the assumption on b can be avoided. As the proof below shows,
Assumption 5.24 can be weakened to a joint condition on (a, b, f , g), cf. Assump-
tion 5.16(5) for a similar situation. Note that the condition on f holds for the important
class of functions of the form

f (x) = −c|x |hx + φ(x),

where c, h > 0, and φ ∈ C1(R) is such that φ(x) ≤ C(1 + |x |h+1−δ) and φ′(x) ≤
C(1 + |x |h−δ) for some C ≥ 0 and δ ∈ (0, h).
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Theorem 5.25 (Global well-posedness). Suppose that Assumptions 5.22 and 5.24
hold. Let u0 ∈ L0

F0
(�; H1(R)). Then (5.29) has a unique global solution

u ∈ C([0,∞); H1(R)) ∩ L2
loc([0,∞); H2(R)) a.s.

and for every T > 0 there exists a constant CT independent of u0 such that

E‖u‖2C([0,T ];H1(R))
+ E‖u‖2L2(0,T ;H2(R))

≤ CT (1 + E‖u0‖2H1(R)
).

Finally, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = H1(R) and V = H2(R).

Proof By Theorem 3.4 it remains to check (3.8). Using that b is independent of u and
the boundedness of a, taking u = v in (5.31), one can check that R can be estimated
independently of m, and thus in the same way as before for η > 0 small enough

〈A0(v)v, v〉 − (1
2

+ η
)|||B0v|||2H ≥ θ ′‖v‖2V − C ′

ε‖v‖2H .

Concerning the F-term we have

〈F(v), v〉 = ( f (v), v)L2 − ( f (v), v′′)L2

= ( f (v), v)L2 + ( f ′(v)v′, v′)L2

≤ C(1 + ‖v‖2L2) + C‖v′‖L2

≤ C(1 + ‖v‖2H ),

and forG-term it is suffices to note that |||G(v)|||H ≤ C(1+‖v‖H ) byAssumption 5.24
and G(0) = 0 (cf. Assumption 5.22). Putting the estimates together we see that

〈v, A(t, v)〉 − (1
2

+ η
)|||B(t, v)|||2H = 〈A0(v)v, v〉 − ( 12 + η)|||B0v|||2H

− 〈F(v), v〉 − ( 12 + η)|||G(v)|||2H − (G(v), B0(v))

≥ θ ′‖v‖2V − C ′(1 + ‖v‖2H ) − (1 + 2η)(G(v), B0(v)).

By Cauchy-Schwarz’ inequality for the L2(U , H)-inner product we obtain that for
every δ > 0, (G(v), B0(v)) ≤ δ|||B0(v)|||2H + Cδ|||G(v)|||2H , and hence (3.8) follows.

For the continuous dependence it remains to apply Theorem 3.8. ��

5.6 Stochastic Swift–Hohenberg equation

The stochastic Swift-Hohenberg equation has been studied by several authors using
different methods (see [22] and references therein).
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The critical variational setting for stochastic evolution equations 1007

On an open bounded C2-domain O ⊆ R
d consider

⎧⎨
⎩
du = [−�2u − 2�u + f (·, u)] dt + ∑

n≥1 gn(·, u) dwn
t , on O,

u = 0, and �u = 0, on ∂O,

u(0) = u0, on O.

(5.32)

Unbounded domains could also be considered using a variation of the assumptions
below.

Assumption 5.26 Let d ≥ 1, and

ρ ∈

⎧⎪⎪⎨
⎪⎪⎩

[
0, d+4

d

]
if d ∈ {1, 2, 3},

[0, 2) if d = 4,[
0, 8

d

]
if d ≥ 5.

Suppose that f ∈ C1(R) and g : [0,∞)×�×O×R
1+d → �2 areP×O×B(R1+d)

and there exist constants C, η > 0 such that a.s. for all t ∈ R+, x ∈ O, y, y′ ∈ R,
z, z′ ∈ R

d

| f (y) − f (y′)| ≤ C(1 + |y|ρ + |y′|ρ)|y − y′|,
| f (y)| ≤ C(1 + |y|ρ+1),

‖g(t, x, y, z) − g(t, x, y′, z′)‖�2 ≤ C(1 + |y| ρ
2 + |y′| ρ

2 )|y − y′| + C |z − z′|,
‖(g(t, x, y, z))n≥1‖�2 ≤ C(1 + |y| ρ

2 + |y′| ρ
2 )(1 + |y|) + C(1 + |z|),

f (y)y + ( 12 + η)‖g(t, x, y, z)‖2
�2

≤ C(1 + |y|2 + |z|2).

The classical Swift–Hohenberg nonlinearity f (y) = cy − y3 with ρ = 2 satisfies
the above condition in the physical dimensions d ∈ {1, 2, 3}. Local monotonicity and
(1.4) hold if g has linear growth, but not in the case g has quadratic growth which we
also allow.

Theorem 5.27 (Globalwell-posedness).Suppose that Assumption5.26holds. Let u0 ∈
L0
F0

(�; L2(O)). Then (5.32) has a unique global solution

u ∈ C([0,∞); L2(O)) ∩ L2
loc([0,∞); H2(O) ∩ H1

0 (O)) a.s., (5.33)

and for every T > 0 there exists a constant CT independent of u0 such that

E‖u‖2C([0,T ];L2(O))
+ E‖u‖2L2(0,T ;H2(O))

≤ CT (1 + E‖u0‖2L2(O)
).

Finally, u depends continuously on the initial data u0 in probability in the sense of
Theorem 3.8 with H = L2(O) and V = H2(O) ∩ H1

0 (O).
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Proof We formulate (5.32) in the form (3.3). Let H = L2(O) and V = H2(O) ∩
H1
0 (O). Then by (3.1) for θ ∈ (0, 1) one has

V 1+θ
2

= [H , V ]θ ↪→ [L2(O), H2(O)]θ = H2θ (O),

where in the last step we used the smoothness of O and standard results on complex
or real interpolation.

Let A = A0 + F where, we define A0 ∈ L(V , V ∗) and F : V → V ∗ by

〈A0u, v〉 = (�u,�v)L2 + 2(∇u,∇v)L2 and 〈F(u), v〉 = −( f (u), v)L2 .

Let B = B0 +G, where B0 = 0 and G : [0,∞)×�×V → L2(U , H) is defined by

G(t, u)n(x) = gn(t, x, u(x),∇u(x)).

We check Assumption 3.1(2). By the smoothness and boundedness of O and stan-
dard elliptic theory for second order operators (see [27, Theorem 8.8]) there exist
θ > 0 such that for all u ∈ V

〈u, A0u〉 = ‖�u‖2L2(O)
≥ θ‖u‖2V .

In order to check Assumption 3.1(3) we start with F . We focus on the local Lipschitz
estimate, since the growth condition can be proved in the same way. One has

‖F(u) − F(v)‖V ∗

(i)
� ‖ f (·, u) − f (·, v)‖Lr (O)

� ‖(1 + |u|ρ + |v|ρ)(u − v)‖Lr (O) (by Assumption 5.26)

� (1 + ‖u‖ρ

Lr(ρ+1)(O)
+ ‖v‖ρ

Lr(ρ+1)(O)
)‖u − v‖Lr(ρ+1)(O) (by Hölder’s inequality)

(i i)
� (1 + ‖u‖ρ

H4β1−2(O)
+ ‖v‖ρ

H4β1−2(O)
)‖u − v‖H4β1−2(O) (by Sobolev embedding).

In the Sobolev embedding in (i) we need

−d

r
≥ −2 − d

2
and r ∈ [1, 2],

where r ∈ (1, 2] if − d
r = −2 − d

2 . In the Sobolev embedding in (i i) we need

4β1 − 2 − d

2
≥ − d

r(ρ + 1)
(5.34)

ByAssumption 3.1(3),we also need 2β1 ≤ 1+ 1
ρ+1 . In order to have asmuchflexibility

as possible we take r small and set 2β1 = 1 + 1
ρ+1 .
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For d ≥ 5 taking r such that − d
r = −2 − d

2 , (5.34) leads to

2

ρ + 1
− d

2
= 4β1 − 2 − d

2
≥ − d

r(ρ + 1)
= − 2

ρ + 1
− d

2(ρ + 1)
,

which is equivalent to ρ ≤ 8
d . For d ∈ {1, 2, 3} setting r = 1, (5.34) leads to

2

ρ + 1
− d

2
= 4β1 − 2 − d

2
≥ − d

ρ + 1
.

which is equivalent to ρ ≤ d+4
d . For d = 4, we can take r = 1 + ε. The same

calculation leads to ρ < 2 by taking ε > 0 small enough.
For G we have

‖G(t, u) − G(t, v)‖L2(O;�2)
� ‖(1 + |u|ρ/2 + |v|ρ/2)(u − v)‖L2(O) + ‖∇u − ∇v‖L2(O)

≤ (1 + ‖u‖ρ

Lρ+2(O)
+ ‖v‖ρ

Lρ+2(O)
)‖u − v‖Lρ+2(O) + ‖u − v‖H1

� (1 + ‖u‖ρ/2
H4β2−2(O)

+ ‖v‖ρ/2
H4β2−2(O)

)‖u − v‖H4β2−2(O) + ‖u − v‖H1 ,

wherewe used Sobolev embeddingwith 4β2−2− d
2 ≥ − d

ρ+2 . Setting 2β2 = 1+ 1
ρ2+1

with ρ2 = ρ/2, the condition on β2 is equivalent to ρ ≤ 8
d , which always holds. A

similar growth condition can be checked for ‖G(t, u)‖L2(O;�2). Setting β3 = 3
4 and

ρ3 = 0, it follows that Assumption 3.1(3) holds.
In order to check the coercivity condition (3.8) it remains to note that the

assumptions give

〈A0u, u〉 − 〈F(u), u〉 − ( 12 + η)‖G(t, u)‖2
�2

≥ θ‖u‖2V − C(1 + ‖u‖2H + ‖u‖23
4
)

≥ θ̃‖u‖2V − C̃(1 + ‖u‖2H ),

where we used ‖u‖ 3
4

≤ ε‖u‖V + Cε‖u‖H for every ε > 0.
Now the required result follows from Theorem 3.4. ��

Remark 5.28 A version of Theorem 5.27 also holds in the case η = 0 in Assump-
tion 5.26 and follows from Theorem 3.5 instead. However, the estimate for the
L2-moment in the maximal inequality has to be replaced by the weaker estimates
(3.11)–(3.13).
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Appendix A: A stochastic Gronwall lemma

In this appendix we present a stochastic variant of the classical Gronwall’s lemma. The
following is a variant of [28, Lemma 5.3] with tail estimates probability. The lemma
was already applied in the papers [1, 2]. Alternatively, one can often use the stochastic
Gronwall inequalities of [24, Theorem 4.1] and [43, Theorem 2.1].

Lemma A.1 (Stochastic Gronwall lemma). Let s ≥ 0, and let τ be a stopping time with
values in [s,∞). Let X ,Y , f : [s, τ ) × � → [0,∞) are progressively measurable
processes such that a.s. X has increasing and continuous paths, a.s. Y ∈ L1

loc([s, τ )),
and a.s. f ∈ L1(s, τ ). Suppose that there exist constants η ≥ 0 and C ≥ 1 such that
for all stopping times s ≤ λ ≤ � ≤ τ

E[X(�)] + E

∫ �

λ

Y (t) dt ≤ C(E[X(λ)] + η) + E

[
(X(�) + η)

∫ �

λ

f (t) dt
]
,

(A.1)

whenever the right-hand side is finite. Then one has

X(τ ) +
∫ τ

s
Y (t) dt < ∞ a.s., (A.2)

where we set X(τ ) = limt↑τ X(t). Moreover, for all γ, R > 0

P

(
X(τ ) +

∫ τ

s
Y (t) dt ≥ γ

)
≤ 4C

γ
e4CR(E[X(0)] + η) + P

( ∫ τ

s
f (t) dt ≥ R

)
.

(A.3)

The proof below shows that for (A.2) to hold, it is enough to prove (A.1) for all �
such that X(�) + ∫ �

s Y (t) dt ≤ K , where K is an arbitrary deterministic constant.

Remark A.2 • Choosing R(γ ) = 1−ε
4C ln γ for ε ∈ (0, 1) and γ large, (A.3) shows

that the tail probability of X(τ ) + ∫ τ

s Y (t) dt converges to 0 as γ → ∞ in a
quantitative way.
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• Usually Gronwall’s inequality is formulated under the condition that

E[X(�)] + E

∫ �

λ

Y (t) dt ≤ C(E[X(λ)] + η) + E

[ ∫ �

λ

(X(t) + η) f (t) dt
]
,

that is stronger than (A.1).
• Lemma A.1 is very close to the deterministic result. Indeed, let X and f be deter-
ministic and Y ≡ 0, C = 1, η = 0, and s = 0. Taking R := ∫ τ

0 f (t) dt and (A.3)
gives

X(τ ) ≤ 4Ce(4C
∫ τ
0 f (t) dt)X(0).

The latter would also follows from the standard Gronwall lemma with a more
precise bound on the constant.

Proof of LemmaA.1 Without loss of generality we can assume s = 0. Since
limR→∞ P(

∫ τ

0 f (t) dt ≥ R) = 0 by assumption, one can check that (A.2) follows
from (A.3) by first letting γ → ∞ and then R → ∞.

Hence, it remains to prove (A.3). First suppose that η = 0. We will prove the
following slightly stronger estimate with constant 2C :

P

(
X(τ ) +

∫ τ

0
Y (t) dt ≥ γ

)
≤ 2C

γ
e2CR

E[X(0)] + P

( ∫ τ

0
f (t) dt ≥ R

)
. (A.4)

for all R, γ > 0. To this end, fix γ, R > 0 and let

τR := inf
{
t ∈ [0, τ ) :

∫ t

0
f (s) ds ≥ R

}
, where inf ∅ := τ.

Then τR is a stopping time since f is progressive measurable. Note that

P

(
X(τ ) +

∫ τ

0
Y (t) dt ≥ γ

)

≤ P

(
X(τ ) +

∫ τ

0
Y (t) dt ≥ γ,

∫ τ

0
f (t) dt < R

)
+ P

( ∫ τ

0
f (t) dt ≥ R

)

≤ P

(
X(τR) +

∫ τR

0
Y (t) dt ≥ γ

)
+ P

( ∫ τ

0
f (t) dt ≥ R

)
,

where in the last inequality we used that τ = τR on {∫ τ

0 f (t) dt < R}. Hence, to prove
(A.3), it remains to show that

P

(
X(τR) +

∫ τR

0
Y (t) dt ≥ γ

)
≤ 2C

γ
e2CR

E[X(0)] (A.5)
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To this end we use (A.1). For each k ≥ 1 define the stopping time μk by

μk := inf
{
t ∈ [0, τR) : X(t) +

∫ t

0
Y (s) ds ≥ k

}
where inf ∅ := τR .

Then μk ≤ τR and limk→∞ μk = τR a.s. By the monotone convergence theorem it
suffices to prove (A.5) with τR replaced by μk .

Fix k ≥ 1. We define a suitable random partition of the interval [0, μk] on which
the integral of f is small. For this we recursively define the stopping times (λm)m≥0
by λ0 = 0 and for each m ≥ 1,

λm := inf
{
t ∈ [λm−1, μk] :

∫ t

λm−1

f (s) ds ≥ 1

2

}
where inf ∅ := μk .

Since
∫ μk
0 f (s) ds ≤ ∫ τR

0 f (s) ds ≤ R a.s., we have λM = μk a.s. with M := �2R�
independent of k (where we set �n� := n + 1 for n ∈ N).

By the assumption (A.1) and the fact that
∫ λm
λm−1

f (s) ds ≤ 1
2 , we find that

E[X(λm)] + E

∫ λm

λm−1

Y (s) ds ≤ CE[X(λm−1)] + 1

2
E[X(λm)],

for every m ∈ {1, . . . , M}. Since E[X(λm)] ≤ E[X(μk)] ≤ k, the above gives

E[X(λm)] + E

∫ λm

λm−1

Y (s), ds ≤ 2CE[X(λm−1)]

Iterating the latter (and using that C ≥ 1) we find that

E[X(λM )] + E

∫ λM

0
Y (s) ds ≤ 2CE[X(λM−1)] + E

∫ λM−1

0
Y (s) ds

≤ (2C)2E[X(λM−2)] + E

∫ λM−2

0
Y (s) ds

≤ . . . ≤ (2C)ME[X(0)]
≤ 2Ce2R ln(2C)

E[X(0)] ≤ 2Ce2RCE[X(0)],

wherewe usedM ≤ 2R+1 and ln(2C) ≤ C . Since λM = μk , Chebychev’s inequality
implies (A.5) with τR replaced by μk . This completes the proof of (A.4).

If η > 0, then we can add η on both sides of (A.1) and replace C by 2C . It remains
to apply (A.4) to the pair (X + η,Y ). ��
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37. Krylov, N.V.: An Analytic Approach to SPDEs. In: Stochastic Partial Differential Equations: Six
Perspectives, Volume 64 of Math. Surveys Monogr., pp. 185–242. Amer. Math. Soc., Providence, RI
(1999)

38. Krylov, N.V., Rozovskiı̆, B.L.: Stochastic evolution equations. In: Current Problems in Mathematics,
Vol. 14 (Russian), pp. 71–147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii,
Moscow (1979)

39. LeCrone, J., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted L p-spaces
II. J. Evol. Equ. 14(3), 509–533 (2014)

40. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal.
259(11), 2902–2922 (2010)

41. Liu,W., Röckner,M.: Stochastic Partial Differential Equations: an Introduction. Universitext. Springer,
Cham (2015)

42. Marinelli, C., Scarpa, L.: A variational approach to dissipative SPDEs with singular drift. Ann. Probab.
46(3), 1455–1497 (2018)

43. Mehri, S., Scheutzow, M.: A stochastic Gronwall lemma and well-posedness of path-dependent SDEs
driven by martingale noise. ALEA Lat. Am. J. Probab. Math. Stat. 18(1), 193–209 (2021)

44. Mikulevicius, R., Rozovskii, B.: Stochastic Navier–Stokes equations for turbulent flows. SIAM J.
Math. Anal. 35(5), 1250–1310 (2004)

45. Neelima, Šiška, D.: Coercivity condition for higher moment a priori estimates for nonlinear SPDEs
and existence of a solution under local monotonicity. Stochastics 92(5), 684–715 (2020)

46. Pardoux, E.: Équations aux dérivées partielles stochastiques nonlinéares monotones: étude de solutions
fortes de type Itô. PhD thesis, Université Paris-Orsay (1975)

47. Portal, P., Veraar, M.C.: Stochastic maximal regularity for rough time-dependent problems. Stoch.
Partial Differ. Equ. Anal. Comput. 7(4), 541–597 (2019)

48. Prüss, J., Simonett, G., Wilke, M.: Critical spaces for quasilinear parabolic evolution equations and
applications. J. Differ. Equ. 264(3), 2028–2074 (2018)

49. Prüss, J., Wilke,M.: Addendum to the paper “On quasilinear parabolic evolution equations in weighted
L p-spaces II”. J. Evol. Equ. 17(4), 1381–1388 (2017)

50. Röckner, M., Shang, S., Zhang, T.: Well-posedness of stochastic partial differential equations with
fully local monotone coefficients (2022). arXiv:2206.01107

51. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equations: existence, uniqueness and
ergodicity. Probab. Theory Relat. Fields 145(1–2), 211–267 (2009)

52. Röger, M.,Weber, H.: Tightness for a stochastic Allen–Cahn equation. Stoch. Partial Differ. Equ. Anal.
Comput. 1(1), 175–203 (2013)

53. Rozovskiı̆, B.L.: Stochastic evolution systems, volume 35 of Mathematics and its Applications (Soviet
Series). Kluwer Academic Publishers Group, Dordrecht (1990). Linear theory and applications to
nonlinear filtering, Translated from the Russian by A. Yarkho

54. Scarpa, L., Stefanelli, U.: Doubly nonlinear stochastic evolution equations. Math. Models Methods
Appl. Sci. 30(5), 991–1031 (2020)

123

http://arxiv.org/abs/2203.15307
http://arxiv.org/abs/2206.01107


The critical variational setting for stochastic evolution equations 1015

55. Scarpa, L., Stefanelli, U.: Doubly nonlinear stochastic evolution equations II. Stoch. Partial Differ.
Equ., Anal. Comput., 11(1), 307–347 (2023)

56. Seeley, R.: Interpolation in L p with boundary conditions. Stud. Math. 44, 47–60 (1972)
57. Shardlow, T.: Stochastic perturbations of the Allen–Cahn equation. Electron. J. Differ. Equ. 47, 19

(2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The critical variational setting for stochastic evolution equations
	Abstract
	1 Introduction
	1.1 The classical variational setting
	1.2 The critical variational setting
	1.3 Main results
	1.4 Embedding into Lp(Lq)-theory
	Notation

	2 Preliminaries
	2.1 Variational setting
	2.2 Stochastic calculus

	3 Main results
	3.1 Setting
	3.2 Global existence and uniqueness
	3.3 Continuous dependence on initial data

	4 Proofs of the main results
	4.1 Proof of Theorem 3.3: local existence, uniqueness and blow-up criterion
	4.2 Proof of Theorem 3.4: global existence and uniqueness
	4.3 Proof of Theorem 3.5
	4.4 Proof of Theorem 3.8: continuous dependence on initial data

	5 Applications to stochastic PDEs
	5.1 Stochastic Cahn–Hilliard equation
	5.2 Stochastic tamed Navier–Stokes equations
	5.3 Stochastic second order equations
	5.4 Stochastic Allen–Cahn equation
	5.5 A stochastic quasi-linear second order equation
	5.6 Stochastic Swift–Hohenberg equation

	Acknowledgements
	Appendix A: A stochastic Gronwall lemma
	References




