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Abstract
In this paper, we provide relations among the following properties:

(a) the tail triviality of a probability measure μ on the configuration space ϒ;
(b) the finiteness of a suitable L2-transportation-type distance d̄ϒ ;
(c) the irreducibility of local μ-symmetric Dirichlet forms on ϒ.

As an application, we obtain the ergodicity (i.e., the convergence to the equilibrium)
of interacting infinite diffusions having logarithmic interaction and arising from deter-
minantal/permanental point processes including sine2, Airy2, Besselα,2 (α ≥ 1), and
Ginibre point processes. In particular, the case of the unlabelled Dyson Brownian
motion is covered. For the proof, the number rigidity of point processes in the sense
of Ghosh–Peres plays a key role.

Keywords Ergodicity · Tail triviality · Optimal transport · Number rigidity

Mathematics Subject Classification 37A30 · 31C25 · 30L99 · 70F45 · 60G55

1 Introduction

The ergodicity (i.e., the convergence to the equilibrium) of interacting particle systems
is one of the significant hypotheses supporting the foundation of statistical physics.
In this paper, we study the ergodicity in terms of the theory of optimal transportation
and of the theory of point processes.
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584 K. Suzuki

Configuration spaces. The configuration space ϒ = ϒ(X) over a locally compact
Polish space X is the set of all locally finite point measures on X :

ϒ(X) :=
{

γ =
N∑
i=1

δxi : xi ∈ X , N ∈ N0 ∪ {+∞} , γ (K ) < ∞ K � X

}
.

The space ϒ is endowed with the vague topology τv defined by the duality of com-
pactly supported continuous functions on X , and with a Borel probability measure μ,
understood as the law of a proper point process on X .

Interacting diffusions.A system ofmany interacting diffusions on the base space X
can be thought of as a single diffusion on ϒ, provided the system does not condense
too much by itself in the sense that every compact set in X contains only finitely many
particles throughout the time evolution. There have been a large number of studies on
a diffusion in ϒ, in particular, on a system of infinite stochastic differential equations
on R

n , written ‘formally’ as

dXk
t = −β

2
∇�(Xk

t ) dt −
β

2

∑
i �=k

∇�(Xk
t , X

i
t ) dt + dBk

t , k ∈ N, (1.1)

whereby � is a free potential, � is an interaction potential between particles, β >

0 is a constant called inverse temperature, and
(
Bk
t

)
k∈N

are independent Brownian
motions on R

n . One approach addressing a solution to (1.1) is to construct a μ-
symmetric Dirichlet form

(
Eϒ,μ,Fϒ,μ

)
on L2(ϒ, μ), where μ is a (quasi-) Gibbs

measure corresponding to the potentials � and �, see, e.g., [4, 55] for Ruelle class
potentials; [14, 26, 38, 40, 42, 50, 52, 54] for more general interactions including
logarithmic potentials. Other approaches to tackle (1.1) have also been studied such
as the construction of time-correlation functions in [16, 29, 35]; the construction of
the unique strong solution to (1.1) in the case of the Dyson models in [53]. We refer
the readers to Röckner [48] and Osada [41] and also to Dello Schiavo and Suzuki [14,
Sect. 1.6] for more complete accounts and references.

Ergodicity.Regarding solutions to (1.1), the convergence to the equilibriummeasure
μ is characterised as the ergodicity of the L2(μ)-semigroup {Sϒ,μ

t } corresponding to(
Eϒ,μ,Fϒ,μ

)
, which is defined as

∫
ϒ

(
Sϒ,μ
t u −

∫
ϒ

u dμ

)2

dμ
t→∞−−−→ 0, u ∈ L2(μ).

An equivalent characterisation is the irreducibility (also called the L2-Liouville prop-
erty) of

(
Eϒ,μ,Fϒ,μ

)
, i.e.,

Eϒ,μ(u) = 0 	⇒ u ≡ const. μ-a.e..

See, e.g., Albeverio et al. [2, Proposition 2.3] for equivalent characterisations of the
ergodicity. Up to now, there were only few known examples, where one could show
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the ergodicity of {Sϒ,μ
t } in the case of infinite particle diffusions: one is a a class of

Ruelle-type Gibbs measures with a compactly supported interaction potential and a
small activity constant z [4, Corollary 6.2]; the other is a labelled particle system
corresponding to the sine2 process, which has been recently addressed in [44] by
relying upon the arguments of strong solutions to (1.1) developed in [43]. The case
of the unlabelled interacting diffusions corresponding to the sine2 process (i.e., the
unlabelled infinite Dyson Brownian motion) is addressed in this article as a particular
case. The same case is dealt with in [37], which has been uploaded to arXiv almost at
the same time as this article; however, Osada and Osada [37] deals with this particular
case only.

Optimal transport theory on ϒ. If the base space X is equipped with a metric d,
the configuration space ϒ is equipped with the L2-transportation (also called: L2-
Wasserstein, or L2-Monge–Kantorovich–Rubinstein) distance

dϒ(γ, η) := inf

(∫
X×2

d2(x, y) dq(x, y)

)1/2

,

where the infimum is taken over all measures q on X×2 with marginals γ and η. As
opposed to the case of the space of probability measures having finite second moment
(i.e., the L2-Wasserstein space), the function dϒ is not a distance function since it
attains the value +∞ (e.g., when the total masses of γ and η are different, or the tails
of γ and η are not close enough), and this happens often, in the sense that this occurs
on sets of positive measure for any reasonable choice of a reference measure on ϒ.
The function is, therefore, called extended distance. In this article, we use a variant of
dϒ defined as

d̄ϒ(γ, η) :=
{
dϒ(γ, η) if γEc = ηEc for some bounded set E,

+∞ otherwise.

Recent studies have revealed that the L2-transportation distance is the right object to
describe geometry, analysis and stochastic analysis in ϒ such as the curvature bounds
on ϒ [15, 17, 52], the consistency between metric measure geometry and Dirichlet
forms [14, 46], characterisations of BV functions and sets of finite perimeters on ϒ

[8] and the integral Varadhan short-time asymptotic [15, 56].

Theory of point processes. A probability measure μ on ϒ is said to be tail trivial
(T)2.6 if (see Definition 2.6)

μ(A) ∈ {0, 1} whenever A is a set in the tail σ -algebra.

From a probabilistic viewpoint, the tail triviality is in essence a form of 0–1 law. This
property has been originally discussed in relation to phase transition of Gibbs states
(i.e., non-uniqueness of Gibbs measures with a given potential) and it is equivalent to
the extremality in the convex set of Gibbs measures with a given potential (see [21,
Corollary 7.4]). The tail triviality has been extended also to determinantal/permanental
point processes by Lyons [30] and Shirai and Takahashi [51] independently. Since
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then, it has been further developed for a wider class of determinantal/permantental
processes both in continuous and discrete settings by various studies, see Example 2.7.
A probability measure μ on ϒ is said to be number rigid [Assumption (R)2.8] if the
following holds μ-almost surely for every bounded Borel set E :

γ �Ec= η �Ec 	⇒ γ (E) = η(E).

Namely, if two configurations γ and η coincide outside E , then the numbers of par-
ticles inside E for γ and η coincide. The study of this remarkable spatial correlation
phenomenon has been initiated by Ghosh [22, 23] and Ghosh and Peres [25] for sine2,
Ginibre and GAF point processes and it has been further developed for other point
processes, see Example 2.9 for further references.

Setting. In this article, we work in the following setting. Let X = R
n be the n-

dimensional Euclidean space and d be the Euclidean distance on R
n . Let (Br )r∈N be

a monotone increasing sequence of convex compact domains covering R
n andmr be

the Lebesgue measure restricted on Br . For E ⊂ R
n , define the projection prE : ϒ 

γ �→ γE := γ �E by the restriction of γ on E . For a Borel probability measure μ

on ϒ, define μ(· | ·Bc
r
= ηBc

r
) to be the regular conditional probability measure with

respect to the σ -algebra σ(prBc
r
) conditioned to be η ∈ ϒ. Define the corresponding

push-forward measure and its restriction on ϒk(Br ) := {γ ∈ ϒ(Br ) : γ (Br ) = k}
by

μη
r := (prBr )#μ(· | ·Bc

r
= ηBc

r
), μη,k

r := μη
r �ϒk (Br )

.

We denote by πmr the Poisson–Lebesgue measure onϒ(Br )with intensitymr and by
πk
mr

the restriction on ϒk(Br ). Let �ϒ(Br ) be the square field on ϒ(Br ) defined as

�ϒ(Br )(u) :=
∞∑
k=0

�ϒk (Br )(u) :=
∞∑
k=0

∣∣∣∇�ku|ϒk (Br )

∣∣∣2,
where ∇�k is the symmetric product of the gradient operator ∇ on R

n .

List of assumptions.We say that μ satisfies

• strong conditional absolute continuity (CAC’)3.1 if

μη,k
r ∼ πk

mr
, k ∈ Kη

r := {k ∈ N0 : μη
r (ϒ

k(Br )) > 0} r ∈ N μ-a.e. η

• conditional closability (CC)3.2 if the form

Eϒ(Br ),μ
η
r (u) =

∫
ϒ(Br )

�ϒ(Br )(u) dμη
r

is L2(μ
η
r )-closable on a certain core (see Definition 3.2) for μ-a.e. η and every

r ∈ N. We denote its closure by (Eϒ(Br ),μ
η
r ,D(Eϒ(Br ),μ

η
r ));
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• conditional irreducibility (CI)4.1 if

Eϒ,μ
η
r (u) = 0, u ∈ D(Eϒ(Br ),μ

η
r ) 	⇒ u|ϒk (Br )

≡ Cη,k
r μη,k

r -a.e.,

for μ-a.e. η, r ∈ N, k ∈ Kη
r , where C

η,k
r is a constant depending on r , η, k.

Under (CAC’)3.1 and (CC)3.2,we construct aDirichlet form
(
Eϒ,μ,D(Eϒ,μ)

)
in Propo-

sition 3.18. Let Fϒ,μ ⊂ D(Eϒ,μ) be any closed subspace satisfying the Markovian
property, i.e, Fϒ,μ is a closed subspace in D(Eϒ,μ) and it is also closed under unit
contraction [see (2.1)], which is called a Markovian subspace. We say that the form
(Eϒ,μ,Fϒ,μ) satisfies

• Rademacher-type property (Radd̄ϒ ,μ)3.21 if

Lipb(d̄ϒ , μ) ⊂ Fϒ,μ, �ϒ(u) ≤ Lipd̄ϒ
(u)2,

where Lipb(d̄ϒ , μ) is the space of bounded d̄ϒ -Lipschitz μ-measurable functions
on ϒ;

• quasi-regularity (QR)3.20 if

(Eϒ,μ,Fϒ,μ) is quasi-regular in (ϒ, τv),

see Sect. 2.2 for the definition of the quasi-regularity.

Main result.Wedefine the following function associatedwith the L2-transportation-
type distance d̄ϒ :

d̄
μ

ϒ(,�) := μ- essinf
γ∈

inf
η∈�

d̄ϒ(γ, η) ,� ⊂ ϒ.

We now state the main theorem, where we provide relations among the following three
properties:

(a) μ is tail trivial (T)2.6;
(b) d̄

μ

ϒ(A, B) < ∞ whenever A is μ-measurable, B is Borel and μ(A)μ(B) > 0;
(c) (Eϒ,μ,Fϒ,μ) is irreducible.

Theorem I (Theorem 4.6) Let μ be a Borel probability measure on ϒ. Then,

• (b) 	⇒ (a);
• if (R)2.8 holds, then (a) 	⇒ (b).

Suppose that μ satisfies (CAC’)3.1 and (CC)3.2, and Fϒ,μ ⊂ D(Eϒ,μ) is any closed
Markovian subspace. Then the following hold.

• if (CI)4.1, (QR)3.20 and (R)2.8 hold, then (b) 	⇒ (c);
• if (Radd̄ϒ ,μ)3.21 holds, then (c) 	⇒ (b).

We therefore have the following relation between the tail triviality and the irre-
ducibility.
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Corollary I (Tail triviality and Irreducibility, Corollary 4.7) Let μ be a Borel proba-
bility measure on ϒ satisfying (CAC’)3.1, (CC)3.2, and let Fϒ,μ ⊂ D(Eϒ,μ) be any
closed Markovian subspace. Then the following hold.

• If (CI)4.1, (QR)3.20 and (R)2.8 hold, then

μ is tail trivial 	⇒ (Eϒ,μ,Fϒ,μ) is irreducible

• If (Radd̄ϒ ,μ)3.21 holds for Fϒ,μ,

(Eϒ,μ,Fϒ,μ) is irreducible 	⇒ μ is tail trivial.

Applications. The first application of Theorem I as well as Corollary I is to con-
siderably enlarge the list of (long-range) interactions for which one can prove the
ergodicity of infinite particle systems. As an illustration, we will prove in Sect. 6 that
(Eϒ,μ,Fϒ,μ) is irreducible (i.e., {Sϒ,μ

t } is ergodic) for all the measures μ belonging
to sine2, Airy2, Besselα,2 (α ≥ 1), and Ginibre point processes. In particular, the
semigroup {Sϒ,μ

t } associated with the unlabelled Dyson Brownian motion is covered.
The second application is to show the finiteness of the L2-transportation distance

dϒ(A, B), as well as of d̄ϒ(A, B), between sets A, B ⊂ ϒ. As both dϒ and d̄ϒ take
value+∞ on sets of positive measure, it is not straightforward to answer the following
geometric question:

when are dϒ(A, B) and d̄ϒ(A, B) finite?

Theorem I tells us the finiteness of d̄ϒ(A, B) (thus, also the finiteness of dϒ(A, B) as
dϒ ≤ d̄ϒ by definition) only by checking the positivity of measures μ(A)μ(B) > 0,
due to the tail triviality (T)2.6 and the number rigidity (R)2.8 of μ.

Comparisonswith [4]. For a class ofGibbsmeasures ormeasures satisfying a certain
integration-by-parts formula (denoted by (IbP1) and (IbP2) in [4, Theorem 6.2, 6.5]),
relations between the ergodicity and the extremality of these measures have been
studied. We compare our result with theirs in the following three points:

• Choice of a core. Albeverio et al. [4] studies Dirichlet forms whose core consists
of cylinder functions while our Dirichlet forms have a flexibility for the choice
of a core, which for instance allows us not only to choose cylinder functions, but
also local functions as well as Lipschitz functions. This broadens the scope of
applications significantly as cores of Dirichlet forms corresponding to long-range
interactions constructed so far (e.g., [14, 26, 38, 40, 42, 50, 52]) are covered by
our setting, but not necessarily covered by the setting of cylinder functions.

• Extremality vs. tail-triviality. Albeverio et al. [4] proves that the extremality of
a class of Gibbs measures implies the ergodicity. The concept of the extremality
is equivalent to the tail triviality when Gibbs measures are considered, see [21,
Corollary 7.4]. However, the extremality is not necessarily defined beyond Gibbs
measures nor beyond measures satisfying (IbP1) and (IbP2), and many point
processes coming from random matrix theory are not always described as Gibbs
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measures nor do they satisfy (IbP1) and (IbP2). Rather they are described by
determinantal or permanental structures or by a scaling limit of eigenvalue distri-
butions of random matrices. In contrast, the tail triviality is a concept that can be
defined for arbitrary point processes, because of which Theorem I can be applied
also to the latter cases.

• Maximal domain vs. Rademacher-type property.Albeverio et al. [4] proves that the
irreducibility of the maximal Dirichlet form implies the extremality of Gibbs mea-
sures, which corresponds to (c) 	⇒ (a) in Thereom I. We however only assume
the Rademacher-type property (Radd̄ϒ ,μ)3.21 of our Dirichlet form, whose domain
is in general smaller than themaximal form.As the irreducibility of a larger domain
is a stronger statement, Theorem I proves the extremality of Gibbs measures (as
well as the tail triviality of general measures) under a weaker assumption.

Geometry and statistical physics. We would like to draw the reader’s attention to the
fact that the relation between (b) and (c) in Theorem I provides a relation between
the ergodicity of interacting diffusion processes and a quantitative information of
the optimal transport distance, where the ergodicity is a statistical-physical concept,
while the finiteness of the L2-transportation distance between μ-positive sets is a
purely geometric concept of the extended metric measure space (ϒ, d̄ϒ , μ).

We close this introduction by providing an outlook on further improvements. The
number rigidity (R)2.8 requires a strong spatial correlation to μ, which is, however,
not a necessary condition for the ergodicity. Indeed, Albeverio et al. [3, Theorem 4.3]
proved the ergodicity for the Poisson measures, which obviously do not posses the
number rigidity (R)2.8, since the laws of the Poisson point processes inside and outside
bounded sets are independent. A challenging question is whether we can prove the
ergodicity of Dirichlet forms for general tail trivial invariant measures without (R)2.8.

Organisation of the paper. In Sect. 2, we introduce necessary concepts and recall
results used for the arguments in later sections. In Sect. 3, we construct Dirichlet forms
on ϒ. In Sect. 4, we prove the main results. In Sect. 5, we give sufficient conditions
to verify the main assumptions of Theorem I. In Sect. 6, we confirm that Theorem I
can be applied to sine2, Airy2, Besselα,2 (α ≥ 1), and Ginibre point processes.

2 Preliminaries

2.1 Numbers, tensors, function spaces

We write N := {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}, N := N ∪ {+∞} and N0 := N0 ∪
{+∞}. The uppercase letter N is used for N ∈ N0, while the lowercase letter n is used
for n ∈ N0. We shall adhere to the following conventions:

• the superscript �×N (the subscript �×N ) denotes N -fold product objects;
• the superscript �⊗N (the subscript �⊗N ) denotes N -fold tensor objects;
• the superscript��N (the subscript��N ) denotes N -fold symmetric tensor objects.

Let (X , τ ) be a topological space with σ -finite Borel measure ν. A subset A ⊂ X is
called a domain if A is open and connected. A subset A ⊂ X is called a closed domain
if A is the union of a domain and all of its limit points. A subset A ⊂ X is called
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a compact domain if A is a closed domain and compact. Throughout this article, we
shall use the following symbols and phrases:

(a) L p(ν) (1 ≤ p ≤ ∞) for the space of ν-equivalence classes of real-valued func-
tions u so that |u|p is ν-integrable when 1 ≤ p < ∞, and u is ν-essentially
bounded when p = ∞; The L p(ν)-norm is denoted by ‖u‖pp = ‖u‖pL p(ν) :=∫
X |u|p dν for 1 ≤ p < ∞, and ‖u‖∞ = ‖u‖L∞(ν) := esssupX |u|; When p = 2,

the inner-product is denoted by (u, v)2 = (u, v)L2(ν) :=
∫
X uv dν;

(b) L p
s (ν⊗n) := {u ∈ L p(ν⊗n) : u is symmetric} where u is said to be symmetric

if u(x1, . . . , xk) = u(xσ(1), . . . , xσ(k)) for every element σ in the k-symmetric
group Sk ;

(c) B(X , τ ) for the Borel σ -algebra; B(X , τ )ν for the completion of B(X , τ ) with
respect to ν;B(X , τ )∗ for the universal σ -algebra, i.e., the intersection ofB(X)ρ

among all Borel probability measures ρ on X (we do not specify the topology
and simply write B(X),B(X)ν,B(X)∗ where the topology is clear from the
context); Measurable functions with respect toB(X),B(X)ν ,B(X)∗ are called
Borel measurable, ν-measurable, universally measurable respectively.

(d) Cb(X) for the space of τ -continuous bounded functions on X ; if X is locally com-
pact,C0(X) denotes the space of τ -continuous and compactly supported functions
on X ; C∞

0 (Rn) for the space of compactly supported smooth functions on the n-
dimensional Euclidean space R

n ;
(e) 1A for the indicator function on A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0

otherwise; δx for the Dirac measure at x , i.e., δx (A) = 1 if x ∈ A and δx (A) = 0
otherwise;

(f) A sequence (Br )r∈N of subsets in X is called an exhaustion if Br ⊂ Br ′ whenever
r ≤ r ′ and ∪r∈NBr = X ; If Br possesses a certain property P for every r ∈ N

(e.g., Br is compact, convex, or a domain), we call it P exhaustion (e.g., compact
exhaustion, compact convex exhaustion, domain exhaustion).

2.2 Dirichlet form

We refer the reader to Ma and Röckner [33] and Bouleau and Hirsch [5] for this
subsection. Throughout this article, a Hilbert space always means a separable Hilbert
space with inner product (·, ·)H taking values in R.

Dirichlet form. Given a bilinear form (Q,D(Q)) on a Hilbert space H , we write

Q(u) := Q(u, u) , Qα(u, v) := Q(u, v)+ α(u, v)H , α > 0.

Let (X , �, ν) be a σ -finite measure space. A symmetric Dirichlet form on L2(ν) is
a non-negative definite densely defined closed symmetric bilinear form (Q,D(Q))

on L2(ν) satisfying the Markov property (i.e., the closedness under unit contraction)

u0 := 0 ∨ u ∧ 1 ∈ D(Q) and Q(u0) ≤ Q(u) , u ∈ D(Q). (2.1)

We note that (2.1) is equivalent to the closedness under normal contraction [18, Theo-
rem 1.4.1]. Namely, if u ∈ D(Q) and v is a normal contraction of u, then v ∈ D(Q).
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Here v is a normal contraction of u if there exists a ν-measurable version ṽ (resp. ũ) of
v (resp. u) so that |ṽ(x)| ≤ |ũ(x)| for every x ∈ X and |ṽ(x)− ṽ(y)| ≤ |ũ(x)− ũ(y)|
for every x, y ∈ X .

Throughout this article, Dirichlet form always means symmetric Dirichlet form. A
subspace F ⊂ D(Q) is called Markovian subspace if (2.1) holds for every u ∈ F . If
not otherwise stated, D(Q) is always regarded as a Hilbert space with norm

‖ · ‖D(Q) := Q1( · )1/2 :=
√
Q( · )+ ‖ · ‖2L2(ν)

.

To distinguish Dirichlet forms defined in different base spaces with different reference
measures, we write QX ,ν to specify the base space X and the reference measure ν.
We denote the extended domain of D(Q) by D(Q)e defined as

D(Q)e :={u : X → R : ν-measurable, |u| < ∞ν-a.e.

∃{un}n∈N ⊂ D(Q) Q-Cauchy s.t. un → u ν-a.e.} (2.2)

Square field. A Dirichlet form (Q,D(Q)) admits square field � if there exists a
dense subspace H ⊂ D(Q) ∩ L∞(ν) so that for every u ∈ H , there exists v ∈ L1(ν)

so that

2Q(uh, u)− Q(h, u2) =
∫
X
hv dν h ∈ D(Q) ∩ L∞(ν).

In this case, v is unique, and denoted by �(u). The square field � can be uniquely
extended to an operator on D(Q)×D(Q) → L1(ν) [5, Theorem I.4.1.3].

Resolvent, semigroup and generator.We refer the reader to [33, Chapter I, Sect. 2]
for this paragraph. Let (Q,D(Q)) be a symmetric closed form on a Hilbert space H .
The infinitesimal generator (A,D(A)) corresponding to (Q,D(Q)) is the unique
densely defined closed operator on H satisfying the following integration-by-parts
formula:

−(u, Av)H = Q(u, v) ∀u ∈ D(Q), v ∈ D(A).

The resolvent operator. {Rα}α>0 is the unique bounded linear operator on H satisfying

Qα(Rαu, v) = (u, v)H ∀u ∈ H v ∈ D(Q).

The semigroup. {Tt }t>0 is the unique bounded linear operator on H satisfying

Gαu =
∫ ∞

0
e−αt Ttu dt u ∈ H .

Irreducibility. Let (Q,D(Q)) be a Dirichlet from on L2(ν) and {Tt }t>0 be the
corresponding L2(ν)-semigroup. A ν-measurable set A ⊂ X is {Tt }t>0-invariant if
Tt (1Au) = 1ATtu for every u ∈ L2(ν) and t > 0. We say that {Tt }t>0 is irreducible
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if every {Tt }t>0-invariant set A satisfies either ν(A) = 0 or ν(X \ A) = 0. If the total
mass of ν is finite, the following are equivalent (see e.g., [2, Proposition 2.3]):

(i) {Tt }t>0 is irreducible;
(ii) (Q,D(Q)) possesses the L2-Liouville property:

Q(u) = 0 	⇒ u ≡ const. ν-a.e. ; (2.3)

(iii) {Tt }t>0 is ergodic:∫
X

(
Ttu −

∫
X
u dν

)2

dν
t→∞−−−→ 0, u ∈ L2(ν).

Following the convention of Albeverio et al. [2], we call (Q,D(Q)) irreducible
if (2.3) holds and ν(X) < ∞.

Locality. Let (Q,D(Q)) be a Dirichlet form on L2(ν). It is called local if for every
F,G ∈ C∞

c (R) and u ∈ D(Q),

supp[F] ∩ supp[G] = ∅ 	⇒ Q(F0 ◦ u,G0 ◦ u) = 0,

where F0(x) := F(x)− F(0) and G0(x) := G(x)−G(0) (see [5, Definition 5.1.2 in
Chapter I]).

Quasi-notion. Let (X , τ ) be a Polish space and ν be a σ -finite Borel measure on X
and (Q,D(Q)) be a Dirichlet form on L2(ν). For any A ∈ B(X), define

D(Q)A := {u ∈ D(Q) : u = 0 ν-a.e. on X \ A} .

A sequence (An)n∈N ⊂ B(X) is a Borel nest if ∪n∈ND(Q)An is dense in D(Q). A
closed (resp. compact) nest is a Borel nest consisting of closed (resp. compact) sets. A
set N ⊂ X is exceptional if there exists a closed nest (Fn)n∈N so that N ⊂ X\ ∪n Fn .
It is a standard fact that any exceptional set N is ν-negligible (see, e.g., [33, Exe. 2.3]).
A property (px ) depending on x ∈ X holds quasi-everywhere (in short: q.e.) if there
exists a polar set N so that (px ) holds for every x ∈ X \ N . For a closed nest (Fn)n∈N,
define

C((Fn)n∈N) := {u : A → R : ∪n≥1Fn ⊂ A ⊂ X , u|Fn is continuous for every n ∈ N}.

A function u defined quasi-everywhere on X is quasi-continuous if there exists a
closed nest (Fn)n∈N so that u ∈ C((Fn)n∈N).

A Dirichlet form (Q,D(Q)) on L2(ν) is quasi-regular if the following conditions
hold:

(QR1) there exists a compact nest (An)n∈N;
(QR2) there exists a dense subspace D ⊂ D(Q) so that every u ∈ D has a quasi-

continuous ν-version ũ;
(QR3) there exists {un : n ∈ N} ⊂ D(Q) and a polar set N ⊂ X so that every un has

a quasi-continuous ν-version ũn and {ũn : n ∈ N} separates points in X \ N .
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Maximal function. Let (Q,D(Q)) be a local Dirichlet form on L2(ν) with 1 ∈
D(Q) having a square field �Q . Define

D0 := {u ∈ D(Q) ∩ L∞(ν) : �Q(u) ≤ 1}.
By Hino and Ramírez [27, Theorem 1.2], for a ν-positive measure set A ⊂ X , there
exists a unique ν-measurable function d̄ν,A called maximal function satisfying

(a) d̄ν,A ∧ c ∈ D0 for every c ≥ 0;
(b) d̄ν,A = 0 ν-a.e. on A;
(c) d̄ν,A is the largest function satisfying the previous two properties, i.e., if there

exists a function v satisfying (a) and (b), then

v ≤ d̄ν,A ν-a.e.. (2.4)

2.3 Extendedmetric space

Let X be any non-empty set. A function d : X×2 → [0,∞] is called an extended
distance if it is symmetric, satisfying the triangle inequality and not vanishing outside
the diagonal in X×2, i.e.d(x, y) = 0 iff x = y; adistance if it is finite, i.e.,d(x, y) < ∞
for every x, y ∈ X . A space X equipped with an extended distance d is called an
extended metric space (X ,d). Let ν be a measure on a σ -algebra � on X . Define

d(·, B) := inf
y∈B d(·, y), dν(A, B) := ν- essinf

A
inf
y∈B d(·, y), A, B ∈ �ν, (2.5)

the latter of which is well-defined whenever inf y∈B d(·, y) is ν-measurable (i.e., �ν-
measurable).

Lipschitz algebra. A function f : X → R is called d-Lipschitz if there exists a
constant L > 0 so that

∣∣u(x)− u(y)
∣∣ ≤ L d(x, y) , x, y ∈ X . (2.6)

The smallest constant L satisfying (2.6) is called the (global) Lipschitz constant of u,
denoted by Lipd(u). For any non-empty set A ⊂ X , define Lip(A,d), resp. Lipb(A,d)

as the space of all d-Lipschitz functions, resp. bounded d-Lipschitz functions on A.
For simplicity of notation, we omit specifying the base space X and simply write
Lip(d) :=Lip(X ,d), resp. Lipb(d) :=Lipb(X ,d) if no confusion can occur. Define
also Lipα(d) := {u ∈ Lip(d) : Lipd(u) ≤ α} and Lipα

b (d) := Lipα(d) ∩ Lipb(d).

For a measure ν on X defined on a σ -algebra � and a topology τ on X , we define
respectively

Lip(d, ν) := {u ∈ Lip(d) : u is ν-measurable},
Lip(d, τ ) := {u ∈ Lip(d) : u is τ -continuous},

and we further define Lipb(d, ν), Lipα
b (d, ν), Lipb(d, τ ) and Lipα

b (d, τ ) for the corre-
sponding subspaces of ν-measurable functions (resp. τ -continuous functions).
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Let ν be a finite measure on X and let (Q,D(Q)) be a local Dirichlet form on
L2(ν) having a square field �Q . We say that the Rademacher-type property holds for
Lipb(d, ν) (resp. Lipb(d, τ )) if

Lipb(d, ν) ⊂ D(Q), �Q(u) ≤ Lipd(u)2, (Radd,ν)

Lipb(d, τ ) ⊂ D(Q), �Q(u) ≤ Lipd(u)2, (Radd,τ )

respectively.

2.4 Configuration space

A configuration on a locally compact Polish space X is anN0-valuedRadonmeasure γ

on X , which is expressed by γ = ∑N
i=1 δxi for N ∈ N0, where xi ∈ X for every i

and γ ≡ 0 when N = 0. The configuration space ϒ = ϒ(X) is the space of all
configurations over X . The space ϒ is equipped with the vague topology τv, i.e., the
topology generated by the duality of the space C0(X) of continuous functions with
compact support.Wewrite the restriction γA := γ �A for A ∈ B(X) and the restriction
map is denoted by

γ �−→ prA(γ ) := γA. (2.7)

The N -particle configuration space is denoted by

ϒN (X) := {γ ∈ ϒ : γ (X) = N } , N ∈ N0.

LetSk be the k-symmetric group. It can be readily seen that the k-particle configuration
space ϒk is isomorphic to the quotient space X×k/Sk :

ϒk(X) ∼= X�k := X×k/Sk, k ∈ N0. (2.8)

The associated projection map from X×k to the quotient space X×k/Sk is denoted
by Pk . For η ∈ ϒ and E ∈ B(X), we define

ϒ
η
E := {γ ∈ ϒ : γEc = ηEc }. (2.9)

Conditional probability. For a Borel probability measure μ on ϒ and E ∈ B(X),

μ( · | prEc (·) = ηEc)

denotes the regular conditional probability of μ conditioned to be η ∈ ϒ with respect
to the σ -algebra generated by the projection map γ ∈ ϒ �→ prE (γ ) = γE ∈ ϒ(E)

(see e.g., [14, Definition 3.32]). Let μη
E be the probability measure on ϒ(E) defined

as

μ
η
E := (prE )#μ( · | prEc(·) = ηEc ), (2.10)
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and its restriction on the k-particle configuration space ϒk(E) is denoted by μ
η,k
E :=

μ
η
E �ϒk (E).

Remark 2.1 The conditional probabilityμ( · | prEc(·) = ηEc) is a probability measure
on ϒ whose support is contained in ϒ

η
E while μ

η
E is a probability measure on ϒ(E).

For every fixed η, we identify the two of them without loss of information in the sense
that

prE : ϒη
E → ϒ(E) is a bi-measure-preserving bijection. (2.11)

Namely, the projection map prE is bijective with the inverse map pr−1E defined
as pr−1E (γ ) := γ + ηEc , and both prE and pr−1E are measure-preserving between
the two measures μ( · | prEc (·) = ηEc) and μ

η
E .

For a measurable function u : ϒ → R, E ∈ B(X) and η ∈ ϒ, we define

uη
E (γ ) := u(γ + ηEc) γ ∈ ϒ(E). (2.12)

By the property of the conditional probability, it is straightforward to see that for every
u ∈ L1(μ),

∫
ϒ

u dμ =
∫

ϒ

[∫
ϒ(E)

uη
E dμη

E

]
dμ(η). (2.13)

See, e.g., [14, Proposition 3.44]. For� ∈ B(ϒ), E ∈ B(X) and η ∈ ϒ, define�
η
E ⊂

ϒ(E) as

�
η
E := {γ ∈ ϒ(E) : γ + ηEc ∈ �}. (2.14)

By applying the disintegration formula (2.13) to u = 1�, we obtain

μ(�) =
∫

ϒ

μ
η
E (�

η
E ) dμ(η). (2.15)

Poisson measure. Let (X , τ, ν) be a locally compact Polish space endowed with a
non-atomic Radonmeasure ν satisfying ν(X) < ∞. The Poissonmeasureπν onϒ(X)

with intensity ν is defined in terms of the symmetric tensor measures {ν�k : k ∈ N}
as follows:

πν(·) := e−ν(X)
∞∑
k=1

ν�k(· ∩ϒk(X)
) = e−ν(X)

∞∑
k=1

1

k! (Pk)#ν
⊗k(· ∩ϒk(X)

)
,

πk
ν (·) := πν(·)�ϒk (X) . (2.16)

In the case that ν isσ -finite, take an exhaustion (Br )r∈N so that ν(Br ) < ∞ for every
r ∈ N. The Poisson (random) measure πν with intensity ν is the unique probability
measure on ϒ satisfying
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(prBr )�πν = πνBr
, r ∈ N. (2.17)

The measure πν does not depend on the choice of (Br )r∈N.

L2-transportation distance. Let (X ,d) be a locally compact complete separable
metric space. For i = 1, 2 let proji : X×2 → X denote the projection to the i th

coordinate for i = 1, 2. For γ, η ∈ ϒ, let Cpl(γ, η) be the set of all couplings of γ

and η, i.e.,

Cpl(γ, η) :=
{
q ∈M (X×2) : proj1�q = γ , proj2�q = η

}
. (2.18)

HereM (X×2) denotes the space of all Radonmeasures on X×2. The L2-transportation
extended distance on ϒ(X) is

dϒ(γ, η) := inf
q∈Cpl(γ,η)

(∫
X×2

d2(x, y) dq(x, y)

)1/2

, inf ∅ = +∞. (2.19)

We refer the reader to e.g., [14, Proposition4.27, 4.29,Theorem 4.37, Proposition5.12]
and [46, Lemma 4.1, 4.2] for details regarding the L2-transportation extended distance
dϒ and examples of dϒ -Lipschitz functions. It is important to note that dϒ is an
extended distance in general, attaining the value +∞. Moreover, dϒ is lower semi-
continuous with respect to the product vague topology τ×2

v but not necessarily τ×2
v -

continuous.
We introduce a variant of the L2-transportation extended distance, called L2-

transportation-type extended distance d̄ϒ defined as

d̄ϒ(γ, η) :=
{
dϒ(γ, η) if γBc

r
= ηBc

r
for some r > 0 ,

+∞ otherwise,
(2.20)

where (Br )r∈N is a compact exhaustion. The definition (2.20) does not depend on the
choice of an exhaustion. By definition, dϒ ≤ d̄ϒ on ϒ and dϒ = d̄ϒ on ϒ(E) for
every compact subset E ⊂ X . In particular, we have

Lip(ϒ,dϒ) ⊂ Lip(ϒ, d̄ϒ), Lipd̄ϒ
(u) ≤ Lipdϒ

(u), u ∈ Lip(ϒ,dϒ). (2.21)

It can be readily seen readily that

d̄ϒ(γ, η) < ∞ ⇐⇒ γBc
r
= ηBc

r
,γ (Br ) = η(Br ) for some r > 0. (2.22)

Proposition 2.2 The map d̄ϒ : ϒ×2 → R isB(ϒ×2, τ×2
v )-measurable.

Proof According to (2.20), we can write

d̄ϒ = dϒ1A +∞1Ac , (2.23)
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where

A := {(γ, η) ∈ ϒ×2 : ∃r > 0 s.t. γBc
r
= ηBc

r
} = ∪r∈N{(γ, η) ∈ ϒ×2 : γBc

r
= ηBc

r
}.

(2.24)

Let Ar := {(γ, η) ∈ ϒ×2 : γBc
r
= ηBc

r
}, which is τ×2

v -closed. As A is a countable
union of closed sets, we obtain A ∈ B(ϒ×2, τ×2

v ). Noting that dϒ is τ×2
v -lower semi-

continuous ( [46, (vi) Lem.4.1], see also [14, (vii) Proposition 4.27]), the function dϒ

is in particular B(ϒ×2, τ×2
v )-measurable, thus, the expression (2.23) concludes the

B(ϒ×2, τ×2
v )-measurablility of d̄ϒ . � 

The following universal measurability of the distance function from a set will be
used in Theorem 4.6.

Proposition 2.3 Let � ∈ B(ϒ, τv) and

d̄ϒ(γ,�) := inf
η∈�

d̄ϒ(γ, η). (2.25)

The map ϒ  γ �→ d̄ϒ(γ,�) is universally measurable (i.e., B(ϒ, τv)
∗-

measurable).

Proof It suffices to show that every sub-level set �r := {γ ∈ ϒ : d̄ϒ(γ,�) ≤ r} is
universally measurable. Define I : ϒ(X×2) → R as

α �→
∫
X×2

d(x, y) dα(x, y).

The map I is lower semi-continuous in ϒ(X×2) ([46, (i) Lemma 4.1], see also [14,
(ii) Proposition 4.27]). The following set Br is, therefore, closed in ϒ(X×2):

Br :=
{
α ∈ ϒ(X×2) : I (α) ≤ r2

}
.

Notingϒ×2 ⊂ ϒ(X×2) is a Borel subset, the Borel set A ∈ B(ϒ×2) defined in (2.24)
can be thought of as a Borel set in ϒ(X×2). Define B̃r := Br ∩ A ∈ B(ϒ(X×2)).
By (2.20),

�r = {proj1#α : α ∈ B̃r ,proj2#α ∈ �} = proj1#
(
B̃r ∩ (proj2#)

−1(�)
)
, (2.26)

where proji has been defined just before (2.18). As the map proji# : ϒ(X×2) → ϒ is
continuous, the set B̃r ∩ (proj2#)

−1(�) is a Borel set in ϒ(X×2). Noting the fact that a
continuous image of a Borel set in a Polish space is Suslin (e.g., [28, Theorem 21.10]),
we conclude by (2.26) that �r is a Suslin set in ϒ, therefore, universally measurable
(see, e.g., [19, 431B Corollary]). � 

We present a lemma, which states that the operation (·)ηE defined in (2.12) maps
from Lip(ϒ, d̄ϒ) to Lip(ϒ(E),dϒ) and contracts Lipschitz constants.
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Lemma 2.4 Let u ∈ Lip(ϒ, d̄ϒ) and E ⊂ X be a Polish subset. Then, uη
E ∈

Lip(ϒ(E),dϒ) and

Lipdϒ
(uη

E ) ≤ Lipd̄ϒ
(u), η ∈ ϒ. (2.27)

Proof Let γ, ζ ∈ ϒ(E) and η ∈ ϒ. Then,

|uη
E (γ )− uη

E (ζ )| = |u(γ + ηEc )− u(ζ + ηEc)| ≤ Lipd̄ϒ
(u)d̄ϒ(γ + ηEc , ζ + ηEc)

= Lipd̄ϒ
(u)dϒ(γ, ζ ).

The proof is completed. � 
Remark 2.5 By the same proof, one can replace d̄ϒ with dϒ in the statement of
Lemma 2.4 and obtain

Lipdϒ
(uη

E ) ≤ Lipdϒ
(u), η ∈ ϒ. (2.28)

2.5 Tail triviality

Let (Br )r∈N be a compact exhaustion. Let σ( prBc
r
) denote the σ -algebra generated

by the projection map ϒ  γ �→ prBc
r
(γ ) = γBc

r
∈ ϒ(Bc

r ). We set T (ϒ) :=
∩r∈Nσ( prBc

r
) and call it tail σ -algebra. By the definition of the tail σ -algebraT (ϒ),

every non-empty set  ∈ T (ϒ) satisfies the following condition:

 = ϒ(Br )+ prBc
r
(), r ∈ N. (2.29)

For a set  ⊂ ϒ, define TBr () := ( prBc
r
)−1 ◦ prBc

r
(). By definition,  ⊂ TBr (),

and TBr () ⊂ TBr ′ () whenever r ≤ r ′. Define the tail set of  by

T () := ∪r∈NTBr (). (2.30)

The tail set T () of  does not depend on the choice of the exhaustion (Br ). It can
be readily shown that T () ∈ T (ϒ) and  ⊂ T ().

Definition 2.6 (Tail triviality) A Borel probability measure μ on ϒ(X) is called tail
trivial (T)2.6 if

μ() ∈ {0, 1} whenever  ∈ T (ϒ). (T)2.6

Example 2.7 The tail triviality has been verified for a wide class of point processes.

(i) (Determinantal point processes) Let X be a locally compact Polish space. Then,
all determinantal point processes whose kernel are locally trace-class positive
contraction satisfy the tail triviality (see [31, Theorem 2.1] and [7, 36, 51]). In
particular, sine2, Besselα,2, Airy2 and Ginibre point processes are tail trivial.
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(ii) (Extremal Gibbs measure) A canonical Gibbs measure μ is tail trivial iff μ is
extremal (see [21, Corollary 7.4]). In particular, Gibbsmeasures of the Ruelle type
with sufficiently small activity constants are extremal (see [47, Theorem 5.7]).

2.6 Number-rigidity

The following definition of the number rigidity on the configuration space ϒ over
a locally compact Polish space X is an adaptation of the number rigidity originally
introduced by Ghosh–Peres [25] in the setting of the configuration space over the
complex plane.

Definition 2.8 (Number rigidity: cf. Ghosh–Peres [25, Theorem 1])A Borel probabil-
ity measure μ on ϒ has the number rigidity (in short: (R)2.8) if, for every bounded
Borel set E ⊂ X , there exists � ⊂ ϒ so that μ(�) = 1 and, for every γ, η ∈ �

γEc = ηEc implies γ (E) = η(E). (R)2.8

Example 2.9 The number rigidity has been verified for a variety of point processes:
Ginibre and GAF [25], sineβ [23, Theorem 4.2], [10, 13], Airy, Bessel, and Gamma
[9], and Pfaffian [6] point processes. We refer the readers also to the survey [24].

3 Construction of Dirichlet forms

In this section, we construct a Dirichlet form on ϒ = ϒ(Rn). Let (Br )r∈N be a
compact convex domain exhaustion inR

n .Wefirst construct aDirichlet formonϒ(Br )
called conditioned form with invariant measure μ

η
Br
. We then lift it onto ϒ, which is

called truncated form, whose gradient operator is truncated on Br . Finally we take the
monotone limit of the truncated forms as r → ∞ and construct the limit Dirichlet
form on ϒ.

Notation. Hereinafter, we use the following notation.

• m, mr for the Lebesgue measure on R
n and its restriction on Br respectively;

• d(x, y) := |x − y| for the Euclidean distance in R
n ;

• μ
η
r := μ

η
Br

for a probability measure μ on ϒ, defined in (2.10);
• uη

r := uη
Br

for a function u : ϒ → R, defined in (2.12).

3.1 Conditioned Dirichlet forms on7(Br)

Let W 1,2
s (m⊗k

r ) be the space of m⊗k
r -classes of symmetric (1, 2)-Sobolev functions

on the product space B×k
r , i.e.,

W 1,2
s (m⊗k

r ) :=
{
u ∈ L2

s (m
⊗k
r ) :

∫
B×k
r

|∇⊗ku|2 dm⊗k
r < ∞

}
,
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where ∇⊗k denotes the distributional derivative on (Rn)×k : ∇⊗ku := (∂1u, . . . , ∂ku).
As the spaceW 1,2

s (m⊗k
r ) consists of symmetric functions, the projection Pk : B×k

r →
ϒk(Br ) ∼= B×k

r /Sk acts on W 1,2
s (m⊗k

r ) and the resulting quotient space is denoted
by W 1,2(m�k

r ):

W 1,2(m�k
r ) :=

{
u ∈ L2(m�k

r ) :
∫

ϒk (Br )
|∇�ku|2 dm�k

r < ∞
}
,

where∇�k is the quotient operator of the distributional gradient operator∇⊗k through
the projection Pk and m�k

r is the symmetric product measure defined as

m�k
r := 1

k! (Pk)#m
⊗k
r .

Definition 3.1 (Conditional absolute continuity) A Borel probability measure μ on ϒ

is conditionally absolutely continuous (to πm) if

μη,k
r " πmr �ϒk (Br )

r ∈ N, k ∈ N0, μ-a.e. η. (CAC)3.1

Let Kη
r := {k ∈ N0 : μη

r (ϒ
k(Br )) > 0}. We say that μ satisfies (CAC’)3.1 if

μη,k
r ∼ πmr �ϒk (Br )

r ∈ N, μ-a.e. η, k ∈ Kη
r . (CAC’)3.1

For u, v : ϒ(Br ) → R satisfying u|ϒk (Br )
, v|ϒk (Br )

∈ W 1,2(m�k
r ) for every k ∈ N,

set

�ϒ(Br )(u, v) :=
∞∑
k=0

〈
∇�ku|ϒk (Br )

,∇�kv|ϒk (Br )

〉
, �ϒ(Br )(u) := �ϒ(Br )(u, u).

(3.1)

Let us define the following algebra of functions:

LIPb(ϒ(Br ),dϒ) := {u : ϒ(Br ) → R bounded :
u|ϒk (Br )

∈ Lipb(ϒ
k(Br ),dϒ),k ∈ N}.

Note that the Lipschitz constant Lipdϒ
(u|ϒk (Br )

) may not be bounded in k for u ∈
LIPb(ϒ(Br ),dϒ), thus

Lipb(ϒ(Br ),dϒ) � LIPb(ϒ(Br ),dϒ).

The quadratic functional associated with μ
η,k
r is denoted by

Eϒ(Br ),μ
η,k
r (u) :=

∫
ϒ(Br )

|∇�ku|2 dμη,k
r , (3.2a)
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Eϒ(Br ),μ
η
r (u) :=

∫
ϒ(Br )

�ϒ(Br )(u) dμη
r , u ∈ LIPb(ϒ(Br ),dϒ). (3.2b)

Definition 3.2 (Conditional closability) Let μ be a Borel probability measure on ϒ

satisfying (CAC)3.1. We say that μ satisfies the conditional closability (CC)3.2 if the
form

Eϒ(Br ),μ
η
r (u, v) =

∫
ϒ(Br )

�ϒ(Br )(u, v) dμη
r , (CC)3.2

u, v ∈ LIPb(ϒ(Br ),dϒ) ∩ {u : ϒ(Br ) → R : Eϒ(Br ),μ
η
r (u) < ∞}.

is closable on L2
(
ϒ(Br ), μ

η
r
)
for every r ∈ N and μ-a.e. η ∈ ϒ.

Remark 3.3 We give two remarks on (CC)3.2.

(i) The Rademacher theorem on convex domains in the Euclidean space implying

Lipb(ϒ(Br ),dϒ)|ϒk (Br )
⊂ W 1,∞(m�k

r ),∣∣∣∇�ku|ϒk (Br )

∣∣∣ ≤ Lipdϒ
(u) on ϒk(Br ), k ∈ N, (3.3)

the following bound follows:

�ϒ(Br )(u) ≤ Lipdϒ
(u)2, u ∈ Lipb(ϒ(Br ),dϒ), (3.4)

which shows

Lipb(ϒ(Br ),dϒ) ⊂ LIPb(ϒ(Br ),dϒ) ∩ {u : ϒ(Br ) → R : Eϒ(Br ),μ
η
r (u) < ∞}.

thus, the form (3.2b) is well-posed on Lipb(ϒ(Br ),dϒ).
(ii) A simple sufficient condition for (CC)3.2 is

φη,k
r := dμη

r

dπmr

∣∣∣
ϒk (Br )

∈ Cb(ϒ
k(Br )) r , k ∈ N.

In this case, the closability of the form Eϒ(Br ),μ
η,k
r is a standard consequence

of the Hamza-type argument by Ma and Röckner [32] and Fukushima [20]. For
an accessible reference, see, e.g., [33, pp. 44–45]. The closability of the form

Eϒ(Br ),μ
η
r then follows as it is a countable sum of the closable forms Eϒ(Br ),μ

η,k
r

over k ∈ N0 (see e.g., [33, Proposition 3.7]). All examples we shall discuss in
Sect. 6 fall into this case.

Definition 3.4 (Conditioned form) Under (CAC)3.1 and (CC)3.2, the closure of (3.2b)
is called conditioned form and denoted by

(
Eϒ(Br ),μ

η
r ,D(Eϒ(Br ),μ

η
r )

)
. (3.5)
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The corresponding L2(μ
η
r )-resolvent operator and the L2(μ

η
r )-semigroup are denoted

respectively by

{
Gϒ(Br ),μ

η
r

α

}
α>0 and

{
Tϒ(Br ),μ

η
r

t
}
t>0.

The square field �ϒ(Br ) naturally extends to the domain D(Eϒ(Br ),μ
η
r ), which is

denoted by the same symbol �ϒ(Br ).

3.2 Truncated Dirichlet forms

In this subsection, we construct the truncatedDirichlet form onϒ.We start this section
by giving an operator mapping functions on ϒ to functions on R

n .

Definition 3.5 ([34, Lemma 1.2], see also [14, Lemma 2.16]) For u : ϒ → R,
define Uγ,x (u) : R

n → R by

Uγ,x (u)(y) := u
(
1X\{x} · γ + δy

)− u
(
1X\{x} · γ

)
, γ ∈ ϒ, x ∈ γ. (3.6)

We now define a square field operator on ϒ truncated to particles inside Br .

Definition 3.6 (Truncated square field on ϒ) Whenever ∇Uγ,x (u)|Br makes sense
mr -a.e. for u : ϒ → R, the truncated square field �ϒ

r is defined as

�ϒ
r (u)(γ ) :=

∑
x∈γBr

|∇Uγ,x (u)|2(x). (3.7)

Thanks to Lemma A.1, Formula (3.7) is well-defined for μ-a.e. γ . Indeed, as the
weak gradient ∇Uγ,x (u) is well-defined pointwise on a measurable set � ⊂ Br with
mr (�

c) = 0, by applying Lemma A.1, Formula (3.7) is well-defined on a set �(r) of
μ-full measure.

Based on the truncated square field �ϒ
r , we introduce the truncated form on ϒ

defined on a certain core.

Definition 3.7 (Core) Let {Cr }r∈N be a sequence of algebras ofμ-classes ofmeasurable
functions so that Cr ⊃ Cr ′ for r ≤ r ′ and the following hold for every r ∈ N:

(a) Cr ⊂ L∞(μ) and Cr ⊂ L2(μ) is dense;
(b) �ϒ

r (u) is well-defined μ-a.e. for every u ∈ Cr ;
(c) the following integral is well-defined and finite for every u ∈ Cr :

uη
r ∈ D(Eϒ(Br ),μ

η
r ) μ-a.e. η, Eϒ,μ

r (u) :=
∫

ϒ

Eϒ(Br ),μ
η
r (uη

r ) dμ(η) < ∞,

(3.8)

and (Eϒ,μ
r , Cr ) is Markovian.
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Example 3.8 We have several choices of {Cr }r∈N. In each of the following examples,
we take a certain common core C and take Cr = C for every r > 0.

(a) Cylinder functions. Take Cr = C = FϒC∞b for every r ∈ N, where FϒC∞b is the
space of cylinder functions defined as

FϒC∞b :=
{
u : ϒ → R : u = F

(
γ ( f1), γ ( f2), . . . , γ ( fk)

)
,F ∈ C∞b (Rk),

f1, . . . , fk ∈ C∞
0 (Rn), k ∈ N0

}
,

(3.9)

where γ ( f ) := ∫
R
n f dγ . We say that μ satisfies (mμ) if the intensity measure

mμ is locally finite, viz.

mμE :=
∫

ϒ

γ (E) dμ(γ ) < ∞, E ⊂ R
n compact. (mμ)

Under (mμ), (CAC)3.1 and (CC)3.2, all the conditions ofDefinition 3.7 are satisfied
(see [14, Lemma 2.15, Proposition 3.45, Theorem 3.48]).

(b) Lipschitz functions. Take Cr = C for every r ∈ N, where C is equal to either

Lipb(d̄ϒ , μ),Lipb(dϒ , μ),Lipb(d̄ϒ , μ) ∩ Cb(τv),or Lipb(dϒ , μ) ∩ Cb(τv).

(3.10)

As Lipb(dϒ , μ) ⊂ L2(μ) is dense (e.g., [1, Proposition 4.1]) and Lipb(dϒ , μ) ⊂
Lipb(d̄ϒ , μ) by (2.21), Lipb(d̄ϒ , μ) ⊂ L2(μ) is dense as well. The density of
Lipb(dϒ , μ) ∩ Cb(τv) follows e.g., by [49, Lemma 2.27] combined with the fact
[14, Proposition 4.30] that (ϒ,dϒ , τv) is an extended metric-topological space.
This therefore implies the density of Lipb(d̄ϒ , μ)∩Cb(τv) as well. Thanks to the
Lipschitz contraction property of (·)ηr by Lemma 2.4 and of Uγ,x [52, Lemma 4.1]
and by (3.4), the formula (3.8) readily follows. The Markov property follows
from the Markov property of (Eϒ(Br ),μ

η
r ,D(Eϒ(Br ),μ

η
r )) by (3.8). Thus, all the

conditions of Definition 3.7 are satisfied under (CAC)3.1 and (CC)3.2.
(c) C1-local functions (e.g. [11, Definition II.8]) Let �∗ := {(x, γ ) ∈ R

n × ϒ :
x ∈ γ } and we equip �∗ with the relative topology of the product topology in
R
n ×ϒ. Let C1

b(ϒ) be defined as the space of bounded τv-continuous functions
u satisfying

(i) the map y �→ Uγ,x (u)(y) is differentiable at x for every (x, γ ) ∈ �∗.
(ii) the map �∗  (x, γ ) �→ ∇Uγ,x (x) is continuous.

A function u : ϒ → R is called local if u is σ(prBr )-measurable for some r > 0,
where σ(prBr ) is the σ -algebra generated by the map prBr . Define

C1
b,loc(ϒ) := {u ∈ C1

b(ϒ) : u is local, lim sup
r→∞

Eϒ,μ
r (u) < ∞}. (3.11)
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Assume (mμ), (CAC)3.1 and (CC)3.2, and take Cr = C = C1
b,loc(ϒ) for every

r ∈ N.
Then all the conditions of Definition 3.7 are satisfied.

The following proposition relates the two square fields �ϒ
r and �ϒ(Br ).

Proposition 3.9 (Truncated formcf. [52, Proposition4.7])Assume (CAC)3.1 and (CC)3.2
and take {Cr }r∈N as in Definition 3.7. The following relations hold for u ∈ Cr for every
r ∈ N:

�ϒ(Br )(uη
r )(γ ) = �ϒ

r (u)(γ + ηBc
r
), μ-a.e. η, μη

r -a.e. γ ∈ ϒ(Br ),

Eϒ,μ
r (u) :=

∫
ϒ

Eϒ(Br ),μ
η
r (uη

r ) dμ(η) =
∫

ϒ

�ϒ
r (u) dμ. (3.12)

As a consequence, the form (Eϒ,μ
r , Cr ) is a densely defined closable Markovian form

and the closure (Eϒ,μ
r ,D(Eϒ,μ

r )) is a local Dirichlet form on L2(μ). The L2(μ)-
semigroup and resolvent corresponding to (Eϒ,μ

r ,D(Eϒ,μ
r )) is denoted by {Tϒ,μ

r ,t }t>0

and {Gϒ,μ
r ,α }α>0 respectively.

Furthermore, if Lipb(d̄ϒ , μ) ⊂ Cr , then

�ϒ
r (u) ≤ Lipd̄ϒ

(u)2, u ∈ Lipb(d̄ϒ , μ). (3.13)

Proof Although the idea of the proof is similar to Suzuki [52, Proposition 4.7], the
core chosen there is different from the core Cr here. We therefore give the proof below
for the sake of completeness.

We first prove (3.12). As the second line of (3.12) is an immediate consequence of
the first line and the disintegration formula (2.13),we only give the proof of the first line
of (3.12). Let u ∈ Cr . Then, the RHS of (3.12) is well-defined on a measurable set �
of μ-full measure by (b) in Definition 3.7. Let �η

r be the section as defined in (2.14),
which is ofμη

r -full measure forμ-a.e. η ∈ � by (2.15). Asμ
η
r is absolutely continuous

with respect to the Poisson measure πmr by (CAC)3.1 and the Poisson measure does
not have multiple points almost everywhere, we may assume that every γ ∈ �

η
r does

not have multiple points, i.e., γ ({x}) ∈ {0, 1} for every x ∈ Br . Let γ ∈ �
η
r ∩ϒk(Br ).

Then,

�ϒ
r (u)(γ+ηBc

r
)=

∑
x∈γ

∣∣∣∇(
u
(
1X\{x} · (γ + ηBc

r
)+ δ•

)− u
(
1X\{x} · (γ + ηBc

r
)
))∣∣∣2(x)

=
∑
x∈γ

∣∣∣∇(
uη
r

(
1X\{x} · γ + δ•

)− uη
r

(
1X\{x} · γ

))∣∣∣2(x)
=

∑
x∈γ

∣∣∇uη
r

(
1X\{x} · γ + δ•

)∣∣2(x)
=

∣∣∣∇�k(uη
r

)∣∣∣2(γ )

= �ϒ(Br )(uη
r )(γ )
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where the first equality is the definition of the square field �ϒ
r ; the third equality

holds as uη
r
(
1X\{x} · γ

)
does not depend on the variable denoted as • on which the

weak gradient ∇ operates; the fourth equality follows from the definition of the sym-
metric gradient operator ∇�k , for which we used the fact that γ ∈ �

η
r does not

have multiple points. As this argument holds for arbitrary k ∈ N0, (3.12) has been
shown. The local property follows immediately by (3.12) and the local property of

(Eϒ(Br ),μ
η
r

r ,D(Eϒ(Br ),μ
η
r

r )). The Markov property of (Eϒ,μ
r , Cr ) follows by Defini-

tion 3.7(c).
We now show the closability. Noting that Eϒ(Br ),μ

η
r is closable for μ-a.e. η

by (CC)3.2, the superposition form (Ēϒ,μ
r ,D(Ēϒ,μ

r )), which shall be defined below
in Definition 3.10, is closed by [5, Proposition V.3.1.1]. As the two forms (Eϒ,μ

r , Cr )
and (Ēϒ,μ

r ,D(Ēϒ,μ
r )) coincide on Cr by definition and Cr ⊂ D(Ēϒ,μ

r ) by construction,
the closability of (Eϒ,μ

r , Cr ) is inherited from the closedness of the superposition form
(Ēϒ,μ

r ,D(Ēϒ,μ
r )). As Cr ⊂ L2(μ) is dense by Definition 3.7(a), the form (Eϒ,μ

r , Cr )
is densely defined. As the Markov property extends to the closure (e.g., [18, Theo-
rem 3.1.1]), the form (Eϒ,μ

r ,D(Eϒ,μ
r )) is Markovian as well.

We now prove (3.13). By the Rademacher-type property of Eϒ(Br ),μ
k,η
r , we have

that

�ϒ(Br )(u) ≤ Lipdϒ
(u)2, u ∈ Lip(ϒ(Br ),dϒ) r > 0. (3.14)

In view of the relation between �ϒ
r and �ϒ(Br ) in (3.12) and the Lipschitz contractiv-

ity (2.27) of the operator (·)ηr , we concluded (3.13). � 

3.3 Superposition form

Definition 3.10 (Superposition Dirichlet form, e.g., [5, Proposition V.3.1.1])
Assume (CAC)3.1 and (CC)3.2.

D(Ēϒ,μ
r ) :=

{
u ∈ L2(μ) :

∫
ϒ

Eϒ(Br ),μ
η
r (uη

r ) dμ(η) < ∞
}
,

Ēϒ,μ
r (u) :=

∫
ϒ

Eϒ(Br ),μ
η
r (uη

r ) dμ(η). (3.15)

It is known that (Ēϒ,μ
r ,D(Ēϒ,μ

r )) is a Dirichlet form on L2(μ) [5, Proposition
V.3.1.1]. The L2(μ)-semigroup and the infinitesimal generator corresponding to
(Ēϒ,μ

r ,D(Ēϒ,μ
r )) are denoted by {T̄ϒ,μ

r ,t }t>0 and ( Āϒ,μ
r ,D( Āϒ,μ

r )) respectively.

The resolvent {Ḡϒ,μ
r ,α }α>0 and the semigroup {T̄ϒ,μ

r ,t }t>0 corresponding to the

superposition form Ēϒ,μ
r can be obtained as the superposition of the resol-

vent {Gϒ(Br ),μ
η
r

α }α>0 and the semigroup {Tϒ(Br ),μ
η
r

t }t>0 associated with the form
Eϒ(Br ),μ

η
r . The following proposition shows that the semigroup (resp. resolvent) corre-
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sponding to the superposition form is identifiedwith the superposition of the semigroup
(resp. resolvent), which has been proved byDello Schiavo [12] in a general framework.

Proposition 3.11 (cf. [12, (iii) Proposition 2.13]) Assume (CAC)3.1 and (CC)3.2. The
following holds:

Ḡϒ,μ
r ,α u(γ ) = Gϒ(Br ),μ

γ
r

α uγ
r (γBr ), T̄ϒ,μ

r ,t u(γ ) = Tϒ(Br ),μ
γ
r

t uγ
r (γBr ) , (3.16)

for μ-a.e. γ ∈ ϒ, every t > 0.

Remark 3.12 The proof of Dello Schiavo [12, (iii) Proposition 2.13] has been given
in terms of direct integral. As the measure μ

η
r can be identified to the conditional

probability μ(· | ·Bc
r
= ηBc

r
) by a bi-measure-preserving isomorphism as remarked

in (2.11), our setting can be identified with a particular case of direct integrals in [12].

As the former form is constructed as the smallest closed extension of (Eϒ,μ
r , Cr ),

it is clear by definition that

Eϒ,μ
r = Ēϒ,μ

r on Cr , D(Eϒ,μ
r ) ⊂ D(Ēϒ,μ

r ).

We introduce a condition for the domain D(Eϒ,μ
r ).

Assumption 3.13 We say that (D)3.13 is satisfied if

(Eϒ,μ
r ,D(Eϒ,μ

r )) = (Ēϒ,μ
r ,D(Ēϒ,μ

r )) r ∈ N. (D)3.13

Remark 3.14 (i) For a suitable choice of {Cr }r∈N, Assumption (D)3.13 has been ver-
ified for a Dirichlet form whose invariant measure is sineβ for every β > 0, see
[52, Theorem 4.11];

(ii) (D)3.13 will be used only for (ii) in Theorem 4.3 below.

Under Assumption 3.13, Proposition 3.11 provides the superposition formula
for the resolvent {Gϒ,μ

r ,α }α>0 and the semigroup {Tϒ,μ
r ,t }t>0 in terms of the resol-

vent {Gϒ(Br ),μ
η
r

α }α>0 and the semigroup {Tϒ(Br ),μ
η
r

t }t>0 respectively.

Corollary 3.15 (Coincidence of semigroups) Assume (CAC)3.1, (CC)3.2 and (D)3.13.
The following three operators coincide:

Gϒ,μ
r ,α u(γ ) = Ḡϒ,μ

r ,α u(γ ) = Gϒ(Br ),μ
γ
r

α uγ
r (γBr ), (3.17)

Tϒ,μ
r ,t u(γ ) = T̄ϒ,μ

r ,t u(γ ) = Tϒ(Br ),μ
γ
r

t uγ
r (γBr ) , (3.18)

for μ-a.e. γ ∈ ϒ, every t > 0.
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3.4 Monotone limit form

The following proposition follows immediately from the definitions of the square
field �ϒ

r and the core Cr .

Proposition 3.16 (Monotonicity)Assume (CAC)3.1 and (CC)3.2. The form (Eϒ,μ
r ,D(Eϒ,μ

r ))

and the square field �ϒ
r are monotone increasing as r ↑ ∞, viz.,

�ϒ
r (u) ≤ �ϒ

s (u), Eϒ,μ
r (u) ≤ Eϒ,μ

s (u), D(Eϒ,μ
s ) ⊂ D(Eϒ,μ

r ) r ≤ s.

Proof As Cr is a core of the form (Eϒ,μ
r ,D(Eϒ,μ

r )) and Cs ⊂ Cr by Definition 3.7, it
suffices to check that �ϒ

r (u) ≤ �ϒ
s (u) on Cs , which is a immediate consequence of

the definition (3.7). The proof is complete. � 
Definition 3.17 (Monotone-limit form) The form (Eϒ,μ,D(Eϒ,μ)) is defined as the
monotone limit:

D(Eϒ,μ) := {u ∈ ∩r>0D(Eϒ,μ
r ) : Eϒ,μ(u) = lim

r→∞ Eϒ,μ
r (u) < ∞},

Eϒ,μ(u) := lim
r→∞ Eϒ,μ

r (u). (3.19)

The form (Eϒ,μ,D(Eϒ,μ)) is a Dirichlet form on L2(μ) as it is the monotone limit
of Dirichlet forms (e.g., by Ma and Röckner [33, Exercise 3.9]). Note that the limit
form does not depend on the choice of the exhaustion (Br )r∈N. The square field �ϒ

is defined as the monotone limit of �ϒ
r as well:

�ϒ(u) := lim
r→∞�ϒ

r (u) u ∈ D(Eϒ,μ). (3.20)

We now show that the form (Eϒ,μ,D(Eϒ,μ)) is a local Dirichlet form on L2(μ)

and satisfies the Rademacher-type property with respect to the L2-transportation-type
distance d̄ϒ .

Proposition 3.18 Assume (CAC)3.1 and (CC)3.2. The form (Eϒ,μ,D(Eϒ,μ)) is a local
Dirichlet form on L2(μ). Furthermore, if Lipb(d̄ϒ , μ) ⊂ Cr for every r ∈ N, then
(Eϒ,μ,D(Eϒ,μ)) satisfies Rademacher-type property:

Lipb(d̄ϒ , μ) ⊂ D(Eϒ,μ), �ϒ(u) ≤ Lipd̄ϒ
(u)2. (3.21)

Proof The local property of (Eϒ,μ,D(Eϒ,μ)) follows from (3.20). We show the
Rademacher-type property. Since �ϒ is the limit square field of �ϒ

r as in (3.20),
it suffices to show

�ϒ
r (u) ≤ Lipd̄ϒ

(u)2, u ∈ Lip(d̄ϒ , μ) r > 0,

which has been already proven in Proposition 3.9. We verified (Radd̄ϒ ,μ)3.21. The
proof is complete. � 
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The L2-resolvent operators and the L2-semigroups corresponding to the form (3.8)
and the form (3.19) are denoted respectively by

{
Gϒ,μ

r ,α

}
α>0,

{
Tϒ,μ
r ,t

}
t>0 and

{
Gϒ,μ

α

}
α>0,

{
Tϒ,μ
t

}
t>0.

Proposition 3.19 Assume (CAC)3.1 and (CC)3.2. The semigroup {Tϒ,μ
t }t≥0 is the

L2(μ)-strong operator limit of the semigroups {Tϒ,μ
r ,t }t≥0, viz.,

L2(μ)– lim
r→∞Gϒ,μ

r ,α u=Gϒ,μ
α u, L2(μ)– lim

r→∞ Tϒ,μ
r ,t u=Tϒ,μ

t u u∈ L2(μ), t > 0.

Proof The statement follows from the monotonicity of (Eϒ,μ
r ,D(Eϒ,μ

r ) as r ↑ ∞
proven in Proposition 3.16 and [45, Sect. 14, p. 373]. � 

3.5 Quasi-regularity

In this subsection, we discuss a sufficient condition for the quasi-regularity.

Assumption 3.20 (Quasi-regularity) Let Fϒ,μ ⊂ D(Eϒ,μ) be any closed Markovian
subspace. We call (QR)3.20 for Fϒ,μ if

(Eϒ,μ,Fϒ,μ) is quasi-regular in (ϒ, τv). (QR)3.20

In the following, we introduce another monotone-limit form having a (pos-
sibly) smaller domain. Recall that the Rademacher-type property (Radd̄ϒ ,τv

) for

τv-continuous d̄ϒ -Lipschitz functions has been defined in Sect. 2.3.

Proposition 3.21 (Smaller domain) Assume (CAC)3.1 and (CC)3.2. Let (Cr )r∈N be a
sequence of algebras in Definition 3.7. Then, the form (Eϒ,μ, C) defined as

C := {u ∈ ∩r∈NCr : lim
r→∞ Eϒ,μ

r (u) < ∞},
Eϒ,μ(u) := lim

r→∞ Eϒ,μ
r (u), (3.22)

is closable. Let (Eϒ,μ,Fϒ,μ) be the closure (Eϒ,μ, C). Then, (Eϒ,μ,Fϒ,μ) is a local
Dirichlet form on L2(μ). Furthermore, if either of the following holds for every r ∈ N

Lipb(d̄ϒ , μ) ⊂ Cr , resp. Lipb(dϒ , μ) ⊂ Cr , Lipb(d̄ϒ , τv) ⊂ Cr ,
Lipb(dϒ , τv) ⊂ Cr ,

then (Eϒ,μ,Fϒ,μ) satisfies Rademacher-type property

Lipb(d̄ϒ , μ) ⊂ Fϒ,μ, �ϒ(u) ≤ Lipd̄ϒ
(u)2, (Radd̄ϒ ,μ)3.21

(resp. (Raddϒ ,μ), (Radd̄ϒ ,τv
) and (Raddϒ ,τv)).
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Proof As C ⊂ D(Eϒ,μ) by definition, the closability of C follows by the closed-
ness of D(Eϒ,μ) proven in Proposition 3.18. The local property of Fϒ,μ is inherited
fromD(Eϒ,μ). The Markov property of (Eϒ,μ, C) follows by the Markov property of
(Eϒ,μ

r , Cr ) and (3.22). As the Markov property is inherited to the closure by e.g., [18,
Theorem 3.1.1], we concluded that Fϒ,μ is Markovian. The rest of the arguments
follows by the same proofs as in Proposition 3.18. � 
Corollary 3.22 Assume (CAC)3.1 and (CC)3.2. If Cr = C (r ∈ N) is either one of the
following:

C = Lipb(d̄ϒ , τv) or C = Lipb(dϒ , τv), (3.23)

andFϒ,μ is the closure C, then (Eϒ,μ,Fϒ,μ) is a quasi-regular local Dirichlet form.

Proof First of all, the form is closable on C by Proposition 3.21 and the fact that C
satisfies Definition 3.7 as seen in (b) Example 3.8. Furthermore, (Eϒ,μ,Fϒ,μ) is a
local Dirichlet form and the Rademacher-type property (Radd̄ϒ ,τv

) (resp. (Raddϒ ,τv))
holds by Proposition 3.21. Thus, we conclude the quasi-regularity (QR)3.20 by the
proof of [14, Corollary 6.3]. � 
Remark 3.23 (A different core) Another sufficient condition for (QR)3.20 has been
studied in [38, Theorem 1] by taking a core Cr = D∞ in Definition 3.7, where D∞
is a space of smooth local functions (see, [38, (0.3)]) and take the domain to be the
closure ofD∞. We note that functions in the core C in (3.23) are not necessarily local
functions. The domain Fϒ,μ defined as the closure of C in Corollary 3.22 is therefore
not necessarily the same as the domain constructed as the closure of D∞ in [38].

4 Tail-triviality, finiteness of d̄7 and irreducibility

4.1 Irreducibility and tail-triviality

Recall that
(
Eϒ,μ,Fϒ,μ

)
is irreducible if every u ∈ Fϒ,μ with Eϒ,μ(u) = 0 is equal

to a constant μ-almost everywhere, see (2.3). The following definition corresponds to
the irreducibility of the conditioned form (3.5). Let (Br ) be a compact convex domain
exhaustion in R

n .

Definition 4.1 (Conditional irreducibility) We say that the conditional irreducibility
(in short: (CI)4.1) holds if, for every r ∈ N, μ-a.e. η ∈ ϒ and k ∈ Kη

r ,

if u ∈ D(Eϒ(Br ),μ
η
r ) and Eϒ(Br ),μ

η
r (u) = 0, then u �ϒk (Br )

= Cη,k
r μη,k

r -a.e.,

(CI)4.1

where Cη,k
r is a constant depending on r , η and k.

Remark 4.2 (a) In terms of the corresponding diffusion process, Assumption (CI)4.1
can be understood as the ergodicity of the finite interacting particles in ϒ(Br )
conditioned to be ηBc

r
outside Br .
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(b) Assumption (CI)4.1 can be verified for a wide class of invariant measuresμ such as
Gibbs measures including Ruelle measures, and determinantal/permanental point
processes, including sineβ , Airyβ , Besselα,β , Ginibre, which will be discussed in
Sect. 6.

The main theorem of this section is the following:

Theorem 4.3 Let μ be a Borel probability measure on ϒ satisfying (CAC)3.1
and (CC)3.2, and Fϒ,μ ⊂ D(Eϒ,μ) be any closed Markovian subspace.

(i) Suppose (D)3.13. Then(
Eϒ,μ,D(Eϒ,μ)

)
is irreducible 	⇒ μ is tail trivial ((T)2.6)

(ii) Suppose (CAC’)3.1, (CI)4.1, (QR)3.20 of Fϒ,μ and (R)2.8. Then

μ is tail trivial ((T)2.6) 	⇒ (Eϒ,μ,Fϒ,μ) is irreducible

In the following subsections, we give the proof of Theorem 4.3.

4.2 Proof of (i)

Recall that
(
Eϒ,μ,D(Eϒ,μ)

)
is irreducible if and only if {Tϒ,μ

t }t>0-invariant sets are
trivial (see, e.g., [2, Proposition 2.3 and Appendix]), i.e., every  ⊂ ϒ satisfying

Tϒ,μ
t (1u) = 1T

ϒ,μ
t u, u ∈ L2(μ),

satisfies either μ() = 1 or μ() = 0. Therefore, it suffices to show that every set
 ∈ T (ϒ) is {Tϒ,μ

t }t>0-invariant. By Proposition 3.19, we obtain T
ϒ,μ
r ,t u → Tϒ,μ

t u
in L2(μ) as r ↑ ∞ for every u ∈ L2(μ). Thus, it suffices to show that

every tail set  ∈ T (ϒ) is {Tϒ,μ
r ,t }t>0-invariant for every r > 0. (4.1)

Indeed, if it is true, then

Tϒ,μ
t 1u = L2(μ)- lim

r→∞ Tϒ,μ
r ,t 1u = L2(μ)- lim

r→∞ 1T
ϒ,μ
r ,t u = 1T

ϒ,μ
t u.

We now show (4.1). By (2.29), every non-empty set  ∈ T (ϒ) has the following
expression:

 = ϒ(Br )+ prBc
r
(), for every r ∈ N. (4.2)

By Proposition 3.15, for u ∈ L2(μ),

Tϒ,μ
r ,t u(γ ) = Tϒ(Br ),μ

γ
r

t uγ
r (γBr ), μ-a.e. γ.
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By (4.2), the function (1)
γ
r ≡ 1 on ϒ(Br ) if γ ∈  and (1)

γ
r ≡ 0 otherwise, which

leads to

Tϒ(Br ),μ
γ
r

t (u1)
γ
r (γBr ) = 1(γ )Tϒ(Br ),μ

γ
r

t uγ
r (γBr ).

Therefore, for every r ∈ N

Tϒ,μ
r ,t 1u(γ ) = Tϒ(Br ),μ

γ
r

t (1u)
γ
r (γBr ) = 1T

ϒ(Br ),μ
γ
r

t uγ
r (γBr ) = 1T

ϒ,μ
r ,t u(γ ),

for μ-a.e. γ . The proof of (i) is complete. � 

4.3 Proof of (ii)

By the number rigidity (R)2.8,we can take ameasurable set�r
rig ⊂ ϒ so thatμ(�r

rig) =
1 and if γ, η ∈ �r

rig with γBc
r
= ηBc

r
, then γ (Br ) = η(Br ). Let �rig = ∩r∈N�r

rig,

which is of μ-full measure as well. Let u ∈ Fϒ,μ be so that �ϒ(u) = 0. By the
monotonicity (3.20), we have �ϒ

r (u) = 0. By the formula (3.12) and the same proof
as [14, Proposition 5.14], for every r ∈ N, there exists �r

0 ⊂ ϒ so that μ(�r
0) = 1

and

�ϒ(Br )(uη
r ) = 0 μη

r -a.e., η ∈ �r
0.

By Assumption (CI)4.1, for r ∈ N, there exists a measurable set �r
rig, ic ⊂ �r

0 ∩ �rig

of full μ-measure so that, for every η ∈ �r
rig, ic, there exists k = k(η) ∈ N0 and a

constant Cη,k
r satisfying

uη
r ≡ Cη,k

r μη
r -a.e.. (4.3)

Note that the measureμ
η
r is fully supported onϒk(η)(Br ) by the number rigidity (R)2.8

and (CAC’)3.1. Let �rig, ic := ∩r∈N�r
rig, ic with μ(�rig, ic) = 1.

By the quasi-regularity (QR)3.20, there exists a quasi-continuous μ-version ũ of u
(see [33, Proposition 3.3 in Chapter IV]). Therefore, we can take a closed nest (Km)m
so that ũ is τv-continuous on Km for every m ∈ N. Define �qc := ∪m∈NKm , which
is of μ-full measure since �c

qc is an exceptional set with respect to
(
Eϒ,μ,Fϒ,μ

)
.

Up to relabelling Km , we may therefore assume that μ(Km) > 1 − 1
2m . Let �m :=

�rig, ic∩Km form ∈ N. Since ũ is τv-continuous on�m , the function ũ
η
r is continuous

on (�m)
η
r for every η ∈ �m and r ∈ N where (�m)

η
r is the section defined in (2.14).

By Proposition 2.13, we have that

μ(�m) =
∫

ϒ

μη
r

(
(�m)ηr

)
dμ(η). (4.4)
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Thus, by noting that μ(�m) > 1 − 1
2m and that the integrand of the r.h.s. of (4.4) is

non-negative and bounded from above by 1, there exists�m,r ⊂ ϒ so thatμ(�m,r ) >

1− 1
2m and

μη
r

(
(�m)ηr

)
> 0 ∀η ∈ �m,r . (4.5)

Define�r
m := �m∩�m,r . Asμ(�m,r ), μ(�m) > 1− 1

2m , by the Inclusion-Exclusion
formula, it holds that

μ(�r
m) > 1− 1

m
, m ∈ N. (4.6)

Combining (4.3) and (4.5) with the fact that μ
η
r �ϒk (Br )

is fully supported in ϒk(Br )

and ũ is τv-continuous on (�m)
η
r , we obtain that

ũr ,η ≡ Ck
r ,η everywhere in (�m)ηr for every η ∈ �r

m . (4.7)

By Lemma A.2 in the Appendix applied to �r
m in (4.6), we can take n �→ mn ∈ N

withmn ≤ mn′ for n ≤ n′ so that, by taking � = lim supn→∞∩n
r=1�r

mn
, it holds that

μ(�) = 1.

We now prove that

ũ is constant μ-a.e. on �. (4.8)

Claim 1 The statement (4.8) holds if the following statement is true: for every
1, 2 ⊂ � with μ(1)μ(2) > 0, there exist γ 1 ∈ 1 and γ 2 ∈ 2 so that

ũ(γ 1) = ũ(γ 2). (4.9)

Proof of Claim 1 Assume that the statement (4.9) is true. Take 1 = {ũ > a} and
2 = {ũ ≤ a} for a ∈ R. If there exists a ∈ R so that μ(1)μ(2) > 0, then this
contradicts (4.9). Thus, there is no such a ∈ R, which means μ(1)μ(2) = 0 for
every a ∈ R. This concludes that ũ is constant μ-a.e. on �. � 

We thus only have to prove (4.9). We may assume μ(1) > 0, otherwise there
is nothing to prove. Since μ is tail trivial, μ(1) > 0 and 1 ⊂ T (1), it holds
that μ(T (1)) = 1, where T (1) is the tail set of 1 as defined in (2.30). Thus,
μ(T (1)∩2) > 0, andT (1)∩2 is non-empty. Take an element γ 2 ∈ T (1)∩2.
By the definition (2.30) of the tail set T (1) and since � ⊂ �rig, there exists r0 ∈ N

and γ 1 ∈ 1 so that

γ 1
Bc
r0
= γ 2

Bc
r0

, γ 1(Br0) = γ 2(Br0). (4.10)

Claim 2 γ 1
Bj

, γ 2
Bj
∈ (�m j )

γ 2

j for some j ∈ N.
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Proof of Claim 2 Recall

� = lim sup
n→∞

∩n
r=1�r

mn
:=

⋂
n≥1

⋃
j≥n

j⋂
r=1

�r
m j

. (4.11)

As γ 1, γ 2 ∈ �, there exist j1, j2 ∈ N with j1, j2 ≥ r0 so that

γ 1 ∈
j1⋂

r=1
�r

m j1
, γ 2 ∈

j2⋂
r=1

�r
m j2

, in particular, γ 1 ∈ �
j1
m j1

γ 2 ∈ �
j2
m j2

.

Wemayassumewithout loss of generality j1 ≤ j2.As�
j1
m j1

⊂ �m j1
and�

j2
m j2

⊂ �m j2
by definition, and the monotonicity �m j1

⊂ �m j2
by construction, we have

γ 1 ∈ �
j1
m j1

⊂ �m j1
⊂ �m j2

, γ 2 ∈ �
j2
m j2

⊂ �m j2
. (4.12)

As j2 ≥ r0, (4.10) implies

γ 1
Bc
j2
= γ 2

Bc
j2
, γ 1(Bj2) = γ 2(Bj2) =: k. (4.13)

By (4.12) and (4.13), we obtain

γ 1
Bj2

, γ 2
Bj2

∈ (�m j2
)
γ 2

j2
. (4.14)

� 
We now resume the proof of (4.9). In view of (4.7) and (4.14), we conclude

ũ(γ 1)= ũ(γ 1
Bj2

+ γ 1
Bc
j2
)= ũγ 2

j2
(γ 1

Bj2
)=Cγ 2,k

j2
= ũγ 2

j2
(γ 2

Bj2
) = ũ(γ 2

Bj2
+ γ 2

Bc
j2
) = ũ(γ 2),

which proves (4.9). The proof is complete. � 
For a closedMarkovian subspaceFϒ,μ ⊂ D(Eϒ,μ), let Sϒ,μ

t be the corresponding
L2(μ)-semigroup and (Lϒ,μ,D(Lϒ,μ)) be the infinitesimal generator respectively.

Corollary 4.4 Let μ be a Borel probability measure on ϒ and Fϒ,μ ⊂ D(Eϒ,μ) be
any closedMarkovian subspace. Suppose (CAC’)3.1, (CC)3.2, (CI)4.1, (QR)3.20 ofFϒ,μ,
(R)2.8 and (T)2.6. Then, the following hold:

(i)
(
Eϒ,μ,Fϒ,μ

)
is irreducible;

(ii) {Sϒ,μ
t } is irreducible, i.e., every  ∈ B(τv)

μ with

Sϒ,μ
t (1 f ) = 1S

ϒ,μ
t f , f ∈ L2(μ)

satisfies either μ() = 1 or μ() = 0;
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(iii) {Sϒ,μ
t } is ergodic, i.e.,

∫
ϒ

(
Sϒ,μ
t u −

∫
ϒ

u dμ

)2

dμ
t→∞−−−→ 0, u ∈ L2(μ);

(iv) Lϒ,μ-harmonic functions are trivial, i.e.,

If u ∈ D(Lϒ,μ) and Lϒ,μu = 0, then u = const..

Proof The statement (i) is the consequence of Theorem4.3. The equivalences (i) ⇐⇒
(ii) ⇐⇒ (iii) ⇐⇒ (iv) are standard in functional analysis. We refer the readers to,
e.g., [2, Proposition 2.3 and Appendix]. � 

Let (Xt ,Pγ ) be the Markov process properly associated with the quasi-regular
Dirichlet form

(
Eϒ,μ,Fϒ,μ

)
(see [33, Theorem 3.5 in Chapt. IV]). We write Pν for∫

ϒ Pγ (·)dν(γ ) for a bounded Borel measure ν onϒ. Recall thatFϒ,μ
e is the extended

domain of Fϒ,μ defined in (2.2).

Corollary 4.5 Let μ be a Borel probability measure on ϒ and Fϒ,μ ⊂ D(Eϒ,μ) be
any closedMarkovian subspace. Suppose (CAC’)3.1, (CC)3.2, (CI)4.1, (QR)3.20 ofFϒ,μ,
(R)2.8, (T)2.6 and 1 ∈ Fϒ,μ

e .
Then, the following hold:

(i) for every Borel measurable μ-integrable function u, it holds Pμ-a.s. that

lim
t→∞

1

t

∫ t

0
u(Xs)ds =

∫
ϒ

u dμ; (4.15)

(ii) for every non-negative bounded function h, (4.15) holds in L1(Ph·μ);
(iii) the convergence (4.15) holds Pγ -a.s. for Eϒ,μ-q.e. γ .

Proof The form
(
Eϒ,μ,Fϒ,μ

)
is irreducible by Theorem 4.3. Furthermore, it is recur-

rent as 1 ∈ Fϒ,μ
e and Eϒ,μ(1) = 0, see Fukushima [18, Theorem 1.6.3]. Therefore,

by Fukushima [18, Theorem 4.7.3], the proof is complete (although Fukushima [18,
Theorem 4.7.3] assumes the local compactness of the state space, the same proof
applies verbatim).

4.4 Finiteness of d̄7

Recall that d̄
μ

ϒ(,�) has been defined in (2.5) for ,� ⊂ ϒ. In this subsection, we
investigate relations among the tail triviality (T)2.6, the irreducibility, and the finiteness
d̄

μ

ϒ(,�) < ∞. Namely, we discuss relations among the following statements:

(a) μ is tail trivial (T)2.6;
(b) d̄

μ

ϒ(,�) < ∞ whenever  ∈ B(τv)
μ,� ∈ B(τv) and μ(),μ(�) > 0;

(c)
(
Eϒ,μ,Fϒ,μ

)
is irreducible.
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Theorem 4.6 Let μ be a Borel probability measure on ϒ. Then,

• (b) 	⇒ (a);
• if (R)2.8 holds, then (a) 	⇒ (b).

Suppose that μ satisfies (CAC’)3.1 and (CC)3.2, and Fϒ,μ ⊂ D(Eϒ,μ) is any closed
Markovian subspace. Then the following hold:

• if (CI)4.1, (QR)3.20 and (R)2.8 hold, then (b) 	⇒ (c);
• if (Radd̄ϒ ,μ)3.21 holds, then (c) 	⇒ (b).

Proof (b) 	⇒ (a). We argue by contradiction. Assume (b) and suppose that μ is not
tail trivial. Then, there exists a tail-measurable set  ∈ T (ϒ) so that μ(),μ(c) >

0. Note that ∈ B(τv) asT (ϒ) ⊂ B(τv) by construction. Also note that T () = 

and T (c) = c as,c ∈ T (ϒ), where T () is the tail set of defined in (2.30).
By (b), we have

d̄
μ

ϒ(,c) < ∞. (4.16)

By (2.22), this implies that there exist γ 1 ∈ , γ 2 ∈ c and r ∈ N so that

γ 1
Bc
r
= γ 2

Bc
r
, γ 1(Br ) = γ 2(Br ).

This however means that γ 1, γ 2 ∈ T () ∩ T (c) =  ∩ c = ∅, which is a
contradiction.

(a) 	⇒ (b). We argue by contradiction. Assume (a) and suppose that (b) does not
hold. Then, there exist ,� ⊂ ϒ with μ(),μ(�) > 0 so that d̄

μ

ϒ(,�) = ∞. By
modifying a μ-negligible set in  (without relabelling ), we have that

d̄ϒ(·,�) = ∞ everywhere on . (4.17)

Let �rig be the set defined in the proof of (ii) of Theorem 4.3. Let �̃ := �∩�rig. As
�̃ ⊂ �, we have

∞ = d̄ϒ(·,�) ≤ d̄ϒ(·, �̃) everywhere on . (4.18)

By (a), we have μ(T ()) = μ(T (�̃)) = 1 as μ(),μ(�̃) > 0,  ⊂ T () and
�̃ ⊂ T (�̃). Therefore, μ(T () ∩ �̃) > 0 and T () ∩ �̃ �= ∅. Take γ ∈ T () ∩ �̃.
By the definition of the tail-operation T and (R)2.8, there exist η ∈  and r ∈ N so
that

γBc
r
= ηBc

r
, γ (Br ) = η(Br ).

Thus, by (2.22), we obtain d̄ϒ(γ, η) < ∞, which contradicts (4.18).
(b) 	⇒ (c). By (b) 	⇒ (a) and (a) 	⇒ (c) by (ii) of Theorem 4.3, we

conclude (c).
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(c) 	⇒ (b). By (Radd̄ϒ ,μ)3.21, Proposition 2.3 and d̄ϒ(·,�) ∧ c ∈ Lip1b(d̄, μ), it
holds that

d̄ϒ(·,�) ∧ c ∈ Fϒ,μ, �ϒ,μ(d̄ϒ(·,�) ∧ c) ≤ 1, c > 0.

Let d̄μ,� be the maximal function associated with
(
Eϒ,μ,Fϒ,μ

)
defined in (2.4). By

the definition of the maximal function d̄μ,�, we obtain that

d̄ϒ(·,�) ∧ c ≤ d̄μ,� ∧ c μ-a.e..

Passing to the limit c →∞, we obtain

d̄ϒ(·,�) ≤ d̄μ,�, � ∈ B(τv). (4.19)

which leads to

d̄
μ

ϒ(,�) ≤ μ- essinf


d̄μ,�.

By Hino and Ramírez [27, Lemma 2.16], (c) implies μ- essinf d̄μ,� < ∞, which
concludes (b). � 

Corollary 4.7 Letμ be a Borel probability measure onϒ satisfying (CAC’)3.1, (CC)3.2,
and letFϒ,μ ⊂ D(Eϒ,μ) be any closedMarkovian subspace. Then the following hold.

• If (CI)4.1, (QR)3.20 and (R)2.8 hold, then

μ is tail trivial 	⇒ (Eϒ,μ,Fϒ,μ) is irreducible

• If (Radd̄ϒ ,μ)3.21 holds for Fϒ,μ,

(Eϒ,μ,Fϒ,μ) is irreducible 	⇒ μ is tail trivial.

Remark 4.8 We proved the implication (c) 	⇒ (b) in Theorem 4.3 under (D)3.13
with the domain D(Eϒ,μ). The same implication was proved in Corollary 4.7 under
a different assumption (Radd̄ϒ ,μ)3.21 with a smaller domain Fϒ,μ. The assumption

(D)3.13 is a condition for the truncated forms Eϒ,μ
r while (Radd̄ϒ ,μ)3.21 is a condi-

tion for (Eϒ,μ,Fϒ,μ). We do not have a simple comparison of these two different
conditions: as the irreducibility with a smaller domain is a weaker statement than that
with a larger domain, Corollary 4.7 looks providing the tail-triviality under a weaker
assumption than Theorem 4.3. However, we do not know whether (Radd̄ϒ ,μ)3.21 is
weaker than (D)3.13. For the verification, Corollary 4.7 is more convenient as will be
seen in Sect. 5.
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5 Verifications of themain assumptions

In this section, we provide sufficient conditions for the verification of themain assump-
tions in Theorems 4.3, 4.6. See Examples 2.7, 2.9 for the tail triviality (T)2.6 and the
number rigidity (R)2.8, and see Sect. 3.5 for the quasi-regularity (QR)3.20.

Quasi-Gibbs measures. We recall the definition of quasi-Gibbs measures. Several
slightly different (possiblynon-equivalent) definitions for this conceptwere introduced
by H. Osada, see e.g. [40, Definition 2.1], [42, Dfn. 3.1], [41, Definition 5.1], or [43,
Definition 2.2].

Let � : R
n → R be B(τv)-measurable, and by � : (Rn)×2 → R be B(τv)

⊗2-
measurable and symmetric. The function � will be called the free potential, and �

the interaction potential. These potentials define a Hamiltonian Hr : ϒ → R as

Hr : γ �−→ ��γBr + 1
2�

�
(
γ ⊗2
Br

)
, γ ∈ ϒ.

Recall that Kη
r := {k ∈ N0 : μη

r (ϒ
k(Br )) > 0} has been defined in Definition 3.1.

Definition 5.1 (Quasi-Gibbs measures, cf. [43, Definition 2.2]) We say that a Borel
probabilityμ onϒ is a (�,�)-quasi-Gibbsmeasure if there exists a sequence {Br }r∈N

of compact monotone increasing domains covering R
n so that, for μ-a.e. η ∈ ϒ,

every r ∈ N, every k ∈ Kη
r , there exists a constant cr ,η,k > 0 so that

c−1r ,η,k e
−Hr · πmr �ϒk (Br )

≤ μη,k
r ≤ cr ,η,k e

−Hr · πmr �ϒk (Br )
. (5.1)

For quasi-Gibbs measures, (CAC’)3.1 follows immediately by (5.1).

Remark 5.2 (a) The definition of quasi-Gibbs measures in [43, Definition 2.2] looks
slightly different from Definition 5.1 as we assume (5.1) only for k ∈ Kη

r in place
of k ∈ N. These two definitions are, however, equivalent since the definitions
of μ

η,k
r in this article is the restriction on ϒk(Br ):

μη,k
r := μη

r �ϒk (Br )
,

while the corresponding measure in [43, Definition 2.2] has been defined as the
measure conditioned on ϒk(Br ).

(b) “μ belongs to (�,�)-quasi-Gibbs measures” does not necessarily mean that
μ is governed by the free potential � in the sense of the DLR equation. The
symbol � here just plays a role as representative of the class of (�,�)-quasi-
Gibbs measures modulo perturbations by adding locally finite free potentials.
To be more precise, noting that the constant cr ,η,k can depend on r , η, k, if μ is
(�,�)-quasi-Gibbs, then μ is (�+�′, �)-quasi-Gibbs as well whenever �′|Br
is bounded for every r ∈ N. Therefore, in this case, we may write (0, �)-quasi-
Gibbs instead of (�,�)-quasi-Gibbs.

Example 5.3 (See [41]) The class of quasi-Gibbs measures includes all canonical
Gibbs measure, and the laws of some determinantal/permnental point processes, as
for instance:
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(1) mixed Poisson measures;
(2) canonical Gibbs measures;
(3) the laws of some determinantal/permanental point processes and related point

processes, e.g., sineβ , Besselα,β , Airyβ (β = 1, 2, 4) and Ginibre point processes.

5.1 Assumption (CC)3.2

According to Remark 3.3 and (5.1), The Conditional Closability (CC)3.2 holds if

e−Hr |ϒk (Br )
∈ Cb

(
ϒk(Br )

)
k ∈ N0 r ∈ N. (5.2)

Remark 5.4 While (5.2) is sufficient to cover all the examples discussed in Sect. 6, it
is not necessary for (CC)3.2. Condition (CC)3.2 holds true if μ satisfies super-stability
and lower regularity in the sense of Ruelle [39, 47], or the existence of upper semi-
continuous bounds (�0, �0) such that

c�0 ≤ � ≤ c−1�0, c�0 ≤ � ≤ c−1�0

for some constant c > 0, see [40, Eq. (A.3), p. 8]) and also [38, 39].

5.2 Assumptions (CI)4.1

In this subsection, we verify Assumptions (CI)4.1.

Assumption 5.5 Letμ be a quasi-Gibbsmeasure onϒ satisfying (CC)3.2, and suppose

(1) there exists a closed m-negligible set F ⊂ R
n so that the free potential � of μ

satisfies � ∈ L∞loc(R
n\F,m);

(2) there exists a closed m⊗2-negligible set F [2] ⊂ R
n × R

n so that the interaction
potential � of μ satisfies � ∈ L∞loc

(
R
n × R

n\F [2],m⊗2
)
.

Proposition 5.6 (Sufficient conditions for (CI)4.1 [14, Proposition 7.13]) Under
Assumption 5.5, (CI)4.1 holds.

Proof Noting that (CI)4.1 follows from the conditional Sobolev-to-Lipschitz property
proven in [14, Proposition 7.13], we conclude the statement. � 

5.3 Markovian subspace with (QR)3.20 and (Radd̄7,�)3.21

The quasi-regularity (QR)3.20 follows if Fϒ,μ is chosen to be the closure of either:

• Lipb(d̄ϒ , τv) or Lipb(dϒ , τv) by Corollary 3.22;
• smooth local functions D∞ (see [38, Theorem 1]).

In the first case, Proposition 3.21 provides (Radd̄ϒ ,μ), (Raddϒ ,μ) respectively. For all

these cores, the Markovian property of Fϒ,μ has been proven in Proposition 3.21.

Corollary 5.7 (Corollary 3.22, Proposition 3.21) Let μ be a quasi-Gibbs measure.
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(i) If either C = Lipb(d̄ϒ , τv), or C = Lipb(dϒ , τv), then Fϒ,μ = C is Markovian
and

(QR)3.20 holds for Fϒ,μ

(ii) If C = Lipb(d̄ϒ , μ) (resp. C = Lipb(dϒ , μ)), then Fϒ,μ = C is Markovian and

(Radd̄ϒ ,μ)3.21(resp. (Raddϒ ,μ)) holds for Fϒ,μ.

6 Examples

Based on verifying the sufficient conditions provided in the previous section, we
provide several examples to which our main results (Theorems 4.3, 4.6) applies. In the
following, we discuss four classes of examples: sine2, Airy2, Besselα,2 (α ≥ 1), and
Ginibre point processes. They belong to the class of quasi-Gibbsmeasures as explained
below, in particular, (CAC’)3.1 holds true.As all the examples discussed in the following
are determinantal point processes, the tail triviality (T)2.6 is a consequence of e.g., [31,
Theorem 2.1] (see Example 2.9 for more complete references).

As noted in (b) in Remark 5.2, the class of (�,�)-quasi-Gibbs measures is stable
under perturbations of � in terms of adding locally bounded free potentials. As seen
in [40, Theorem 2.2], [42, Theorem 5.6] and [40, Theorem 2.3], the free potentials
� representing the classes of quasi-Gibbs measures in the cases of sine2, Airy2, and
Ginibre are locally bounded, therefore � can be reduced to the representative

� ≡ 0.

Thus, we only discuss the interaction potentials � for the cases below.

Example 6.1 (sine2) By Osada [40, Theorem 2.2], the sine2 ensemble belongs to the
class of (0, �)-quasi-Gibbs measures with the interaction potential

�(x, y) := −2 log |x − y|, x, y ∈ R.

Assumption (CC)3.2 follows from (5.2). Assumptions (CI)4.1 can be verified imme-
diately by Proposition 5.6 by noting that Assumption 5.5 is satisfied by taking
F [2] = {(x, y) ∈ R

×2 : x = y} as � ∈ L∞loc(R
×2\F [2],m⊗2). The number rigid-

ity (R)2.8 has beenprovedbyGhosh [23,Theorem4.2] andChhaibi andNajnundel [10].
A Markovian subspace Fϒ,μ having the quasi-regularity (QR)3.20 and (Radd̄ϒ ,μ)3.21
has been constructed in Corollary 5.7. We remark that the quasi-regularity (QR)3.20
with respect to Fϒ,μ = D∞ has been shown by a combination of Osada [40, Corol-
lary 4.1] and [38, Theorem 1].

Example 6.2 (Airy2) By Osada [42, Theorem 4.7], the Airy2 ensemble belongs to the
class of (0, �)-quasi-Gibbs measures with the interaction potential

�(x, y) := −2 log |x − y|, x, y ∈ R.
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Thus the same arguments as in Example 6.1 apply to (CC)3.2, (CI)4.1 and (QR)3.20.
The number rigidity (R)2.8 has been proved in [9].

Example 6.3 (Besselα,2, α ≥ 1) By Honda and Osada [26, Theorem 2.4], the class of
measures Besselα,2 (α ≥ 1) belongs to the class of (�,�)-quasi-Gibbs measures with
potentials (the sign of the potentials in [26, Theorem 2.4] is opposite)

�(x) = −α log x, �(x, y) := −2 log |x − y|, x, y ∈ R.

Assumption (CC)3.2 follows from (5.2). Assumptions (CI)4.1 can be verified immedi-
ately by Proposition 5.6 by the same argument in Example 6.1 for�. For�, it suffices
to take F := {0} in (i) in Assumption 5.5, with which� belongs to L∞loc(R\F,m). The
number rigidity (R)2.8 has been proved in [9]. AMarkovian subspaceFϒ,μ having the
quasi-regularity (QR)3.20 and (Radd̄ϒ ,μ)3.21 has been constructed in Corollary 5.7. We

remark that the quasi-regularity (QR)3.20 with respect toFϒ,μ = D∞ has been shown
by combination of Honda and Osada [26, Theorem 2.4], Osada [40, Lemma 2.1] and
[38, Theorem 1].

Example 6.4 (Ginibre) By Osada [40, Theorem 2.3], the class of measures Ginibre
belongs to the class of (�,�)-quasi-Gibbs measures with the interaction potential

�(z1, z2) := −2 log |z1 − z2|, z1, z2 ∈ R
×2.

Assumption (CC)3.2 follows from (5.2). Assumptions (CI)4.1 can be verified imme-
diately by Proposition 5.6. Note that Assumption 5.5 is satisfied since (ii) of
Assumption 5.5 follows by taking F [2] = {(x, y) ∈ (R2)×2 : x = y}, with
which � ∈ L∞loc((R

2)×2\F [2],m⊗2). The number rigidity (R)2.8 has been proved
by Ghosh and Peres [25, Theorem 1.1]. A Markovian subspace Fϒ,μ having the
quasi-regularity (QR)3.20 and (Radd̄ϒ ,μ)3.21 has been constructed by Corollary 5.7.

We remark that the quasi-regularity (QR)3.20 with respect to Fϒ,μ = D∞ has been
shown by combination of Osada [40, Corollary 4.1] and [38, Theorem 1].
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Appendix A

Lemma A.1 [52, Lemma A.1] Let μ be a Borel probability on ϒ satisfying that μη
r is

absolutely continuous with respect to the Poisson measure πmr for r > 0 andμ-a.e. η.
Let � ⊂ Br so that mr (�

c) = 0. Let �(r) := {γ ∈ ϒ : γ� = γBr }. Then,

μ
(
�(r)

) = 1 r > 0.

Let (�,F , P) be a probability space. Recall that, for a sequence (An) of sets in F ,
we define the limit superior of sets as

lim sup
n→∞

An :=
⋂
n≥1

⋃
j≥n

A j .

By a simple application of the reverse Fatou’s lemma to the indicator function 1Ac
n
,

we see

P(lim sup
n→∞

An) ≥ lim sup
n→∞

P(An).

Lemma A.2 Let (�,F , P) be a probability space. Let {�r
m}m,r∈N ⊂ F satisfy that,

for any ε > 0, there exists mε so that for every m ≥ mε and r ∈ N,

P(�r
m) ≥ 1− ε.

Then, there exists n �→ mn ∈ N with mn ≤ mn′ for n ≤ n′ so that

P
(
lim sup
n→∞

∩n
r=1�r

mn

) = 1.

Proof Define�n,ε := ∩n
r=1�r

mε
. Then, by a simple applicationof Inclusion–Exclusion

formula and the hypothesis P(�r
mε

) ≥ 1− ε for every r ∈ N, it holds that

P(�n,ε) ≥ 1− c(n)ε,

where c(n) is a constant monotone increasing in n. LetC(n) be a monotone increasing
sequence so that c(n)/C(n) < 1 and c(n)/C(n) ↓ 0 as n → ∞. Take εn := 1

C(n)
,

and �n := �n,εn . By the upper semi-continuity of probability measures regarding the
limit superior of sets, we obtain

P
(
lim sup
n→∞

�n) ≥ lim sup
n→∞

P
(
�n) = lim sup

n→∞
P

(
�n,εn

) ≥ lim
n→∞ 1− c(n)

C(n)
= 1.

The proof is complete. � 
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