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Abstract
We prove that for recurrent, reversible graphs, the following conditions are equivalent:
(a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of
harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-
endedness of the wired uniform spanning tree. In particular this gives a proof of the
anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also com-
plements and strengthens some results of Benjamini et al. (Ann Probab 29(1):1–65,
2001). Furthermore, we make progress towards a conjecture of Aldous and Lyons by
proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodu-
lar graphs. Finally, we discuss the behaviour of the random walk conditioned to never
return to the origin, which is well defined as a consequence of our results.
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1 Introduction

1.1 Background andmain result

Let (G, o) be a random unimodular rooted graph, which is almost surely recurrent
(with E(deg(o)) < ∞). The wired Uniform Spanning Tree (UST for short) on G
is defined to be the unique weak limit of the uniform spanning tree on any finite
exhaustion of the graph, with wired boundary conditions. The existence of this limit
is well known, see e.g. [30]. (In fact, since the graph is assumed to be recurrent, the
wired or free boundary conditions give the same weak limit). The UST is a priori a
spanning forest of the graph G, but since G is recurrent this spanning forest consists
in fact a.s. of a single spanning tree which we denote by T (see e.g. [33]). We say that
T is one-ended if the removal of any finite set of vertices A does not disconnect T
into at least two infinite connected components. Intuitively, a one-ended tree consists
of a unique semi-infinite path (the spine) to which finite bushes are attached.

The question of the one-endedness of the UST (or the components of the UST,
when the graph is not assumed to be recurrent) has been the focus of intense research
ever since the seminal work of Benjamini et al. [11]. Among many other results, these
authors proved (in Theorem 10.1) that on every unimodular vertex-transitive graph,
and more generally on a network with a transitive unimodular automorphism group,
every component is a.s. one-ended unless the graph is itself roughly isometric to Z

(in which case it and the UST are both two-ended). (This was extended by Lyons
et al. [29] to graphs that are neither transitive nor unimodular but satisfy a certain
isoperimetric condition slightly stronger than uniform transience). More generally, a
conjecture attributed to Aldous and Lyons is that every unimodular one-ended graph
is such that every component of the UST is a.s. one-ended. This has been proved in
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the planar case in the remarkable paper of Angel et al. [1] (Theorem 5.16) and in the
transient case by results of Hutchcroft [21, 22]. The conjecture therefore remains open
in the recurrent case, which is the focus of this article.

Let us motivate further the question of the one-enededness of the UST. It can in
some sense be seen as the analogue1 of the question of percolation at the critical value.
To see this, note that when the UST is one-ended, every edge can be oriented towards
the unique end, so that following the edges forward from any given vertex w, we have
a unique semi-infinite path starting from w obtained by following the edges forward
successively. Observe that this forward path necessarily eventually arrives at the spine
and moves to infinity along it. Given a vertex v, we may define the past Past(v) of v

to be the set of vertices w for which the forward path from w contains v; it is natural
to view Past(v) as the analogue of a connected component in percolation. From this
point of view, the a.s. one-endedness of the tree is equivalent to the finiteness of the
past (i.e., connected component in this analogy) of every vertex, as anticipated. We
further note that on a unimodular graph, the expected value of the size of the past
is however always infinite, as shown by a simple application of the mass transport
principle. This confirms the view that the past displays properties expected from a
critical percolation model. In fact, Hutchcroft proved in [23] that the two models have
same critical exponents in sufficiently high dimension.

In this paper we give necessary and sufficient conditions for the one-endedness of
the UST on a recurrent, unimodular graph. These are, respectively: (a) existence of
the potential kernel, (b) existence of the harmonic measure from infinity, and finally
(c) an anchored Harnack inequality. We illustrate our results by showing that they give
straightforward proofs of the aforementioned result of Benjamini, Lyons, Peres and
Schramm [11] in the recurrent case (which is one of the most difficult aspects of the
proof of the whole theorem, and is in fact stated as Theorem 10.6). We also apply our
results to some unimodular random graphs of interest such as the Uniform Infinite
Planar Triangulation (UIPT) and related models of infinite planar maps, for which we
deduce the Harnack inequality.

To state these results, we first recall the following definitions. Our results can be
stated for reversible environments or reversible random graphs, i.e., random rooted
graphs such that if X0 is the root and X1 the first step of the randomwalk conditionally
given G and X0 then (G, X0, X1) and (G, X1, X0) have the same law. As noted
by Benjamini and Curien in [5], any unimodular graph (G, o) with E(deg(o)) <

∞ satisfies this reversibility condition after biasing by the degree of o. Conversely,
any reversible random graph gives rise to a unimodular rooted random graph after
unbiasing by the degree of the root. This biasing/unbiasing does not affect any of the
results below since they are almost sure properties of the graph. Note also that again
by results in [5], a recurrent rooted random graph whose law is stationary for random
walk is in fact necessarily reversible. See also Hutchcroft and Peres [20] for a nice
discussion and Aldous and Lyons [2] for a systematic treatment.

For a nonempty set A ⊂ v(G) we define the Green function by setting for x ∈
v(G) \ A and y ∈ v(G):

1 We thank Tom Hutchcroft for this wonderful analogy.
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GA(x, y) = Ex

[TA−1∑
n=0

1{Xn=y}

]
, (1)

where TA denotes the hitting time of A, and GA(x, y) = 0 for x ∈ A. Let

gA(x, y) := GA(x, y)

deg(y)

denote the normalised Green function. (Note that due to reversibility, gA(x, y) =
gA(y, x).)

Let An be any (sequence) of finite sets of vertices such that d(An, o) → ∞ as
n → ∞. Here, by d(An, o), we just mean the minimal distance of any vertex in
An to o. It is natural to construct the potential kernel of the infinite graph G by an
approximation procedure; we set

aAn (x, y) := gAn (y, y) − gAn (x, y) (2)

In this manner, the potential kernel compares the number of visits to y, starting from x
versus y, until hitting the far away set An .We are interested in existence and uniqueness
of limits for aAn as n → ∞. In this case we call the unique limit the potential kernel
of the graph G. We will see that the existence and uniqueness of this potential kernel
turns out to be equivalent to a number of very different looking properties of the graph.
This definition of the potential kernel differs slightly from the one appearing in [28]
for Z2, because we work with a more convenient normalization for graphs that are
not transitive. A good example to keep in mind is the graph Z with nearest neighbor
edges. Here, the potential kernel is not uniquely defined: for eachm ≥ 1, the sequences
(An = {−n,mn})n≥1 will give rise to different limits as m varies.

We move on to harmonic measure from infinity. Let A be a fixed finite, nonempty
set of vertices. Let μn(·) denote the harmonic measure on A, started from An if we
wire all the vertices in An . The harmonic measure from infinity, if it exists, is the
limit of μn (necessarily a probability measure on A).

Now let us turn to Harnack inequality. We say that (G, o) satisfies an (anchored)
Harnack inequality (AHI) if there exists an exhaustion (VR)R≥1 of the graph (i.e.
VR is a finite subset of vertices and ∪R≥1VR = v(G)), and there exists a nonrandom
constant C > 0, such that the following holds. For every function h : v(G) → R+
which is harmonic except possibly at 0, and such that h(0) = 0:

max
x∈∂VR

h(x) ≤ C min
x∈∂VR

h(x). (3)

The word anchored in this definition refers to the fact that the exhaustion is allowed
to depend on the choice of root o, and the functions are not required to be harmonic
there. (As we show in Remark 6.16, a consequence of our results is that an anchored
Harnack inequality automatically implies the Elliptic Harnack inequality (EHI) on a
suitably defined sequence of growing sets.)

We now state the main theorem.
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Theorem 1.1 Suppose (G, o) is a recurrent reversible random graph (or equivalently
after unbiasing by the degree of the root, (G, o) is recurrent unimodular random graph
with E(deg(o)) < ∞). The following properties are equivalent.

(a) Almost surely, the pointwise limit of the truncated potential kernel aAn (x, y) exists
and does not depend on the choice of An.

(b) Almost surely, the weak limit of the harmonic measure μn from An exists and does
not depend on An.

(c) Almost surely, (G, o) satisfies an anchored Harnack inequality.
(d) The uniform spanning tree T is a.s. one-ended.

Furthermore, if any of these conditions hold, a suitable exhaustion for the anchored
Harnack inequality is provided by the sublevel sets of the potential kernel, see Sects.5
and 6.

1.2 Some applications

Strengthening of [11]. Before showing some applications of this result, let us point
out that Theorem 1.1 complements and strengthens some of the results of Benjamini,
Lyons, Peres and Schramm [11]. In that paper, the (easy) implication (d) implies (b)
was noted. We therefore in particular obtain a converse in the reversible case. One
can furthermore easily see using their results that on any recurrent planar graph with
bounded face degrees (e.g., any recurrent triangulation) (d) holds, i.e., the uniform
spanning tree is a.s. one-ended: indeed, for such a graph, there is a rough embedding
from the planar dual to the primal, which is assumed to be recurrent, and therefore the
planar dual must be recurrent too by Theorem 2.17 in [30]. By Theorem 12.4 in [11]
this implies that the uniform spanning tree (on the primal) is a.s. one-ended, and so (d)
holds. (In fact, Theorem 5.16 in [1] shows that the bounded face degree assumption
is not needed).

Applications to planar maps. Therefore, in combination with [11], Theorem 1.1
above applies in particular to unimodular, recurrent triangulations such as the UIPT,
or similar maps such as the UIPQ. This therefore implies that these maps have a well-
defined potential kernel, harmonic measure from infinity, and satisfy the anchored
Harnack inequality. As shown in Remark 6.16, this also implies the elliptic Harnack
inequality (for sublevel sets of the potential kernel, see Theorem 6.4 for a precise
statement). We point out that the elliptic Harnack inequality should not be expected
to hold on usual metric balls, but can only be expected on growing sequences of sets
which take into account the “natural conformal embedding” of these maps. This is
exactly what the potential kernel and its sublevel sets allows us to do.

More general implications. We already mention that the equivalence between (a)
and (b) is valid more generally, for instance for any locally finite, recurrent graph. The
implication (a) 	⇒ (c) to the Harnack inequality (c) is then valid under the additional
assumption that the potential kernel grows to infinity (something which we can prove
assuming unimodularity). We recall that (d) implies (b) is also true for deterministic
graphs, as proved in [11].
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492 N. Berestycki, D. van Engelenburg

Remark 1.2 Many of the arguments in this article are true for deterministic graphs. The
unimodularity (or reversibility) of the graph with respect to random walk is only used
in Lemma 5.4, whose main use is to show that the potential kernel, if it exists, diverges
to infinity along any sequence going to infinity (see Lemma 5.5). This property is used
for instance in both directions of the relations between (c) and (d), since both go via
(a). The unimodularity (or stationarity) is also used to prove that the walks conditioned
not to return to the origin satisfy the infinite intersection property, a key aspect of the
proof one-endedness. Finally this is also proved to show that if there is a bi-infinite
path in the UST then it must essentially be almost space-filling, which is the other
main argument of the proof of one-endedness.

Deterministic case of the Aldous–Lyons conjecture.As previously mentioned, The-
orem 1.1 can be applied to give a direct proof of the one-endedness of the UST for
recurrent vertex-transitive graphs not roughly equivalent to Z, which is essentially
Theorem 10.6 in [11].

Corollary 1.3 Suppose G is a fixed recurrent, vertex-transitive graph. If G is one-ended
then the UST is also a.s. one-ended. Otherwise G is roughly isometric to Z.

Proof Note that G must be unimodular, otherwise G is nonamenable and so cannot
be recurrent (see [38]). Note also that the volume growth of the graph is at most
polynomial (as otherwise the walk cannot be recurrent). By results of Trofimov [39],
the graph is therefore roughly isometric to a Cayley graph �. Since it is recurrent (as
recurrence is preserved under rough isometries, see Theorem 2.17 and Proposition
2.18 of [30]), we deduce by a classical theorem of Varopoulos (see e.g. Theorem 1
and its corollary in [40]) that � is a finite extension of Z or Z2 and is therefore (as is
relatively easily checked) roughly isometric to either of these lattices. Since either of
these lattices enjoy the ParabolicHarnack Inequality (PHI), which is, by a consequence
of a result proved by Grigoryan [19] and Saloff-Coste [37] independently, preserved
under rough isometries (see also [14]), we see that G itself satisfies PHI and therefore
also the EllipticHarnack Inequality (EHI): for any R > 1, if h is harmonic in themetric
ball B(2R) of radius 2R around the origin, then supB(R) h(x) ≤ C infB(R) h(x). (In
fact, by a deep recent result of Barlow and Murugan, EHI is now known directly to be
stable under rough isometries [12], but herewe can appeal to themuch simpler stability
of PHI. We recommend the following textbooks for related expository material: [25],
[4] and [42].)

Suppose that G is not roughly isometric to Z, therefore it is roughly isometric
to Z

2. Let us show that G satisfies the anchored Harnack inequality (3), with the
exhaustion sequence simply obtained by considering metric balls VR = B(R). Let h
be nonnegative harmonic on G except at 0. Since G is rough isometric to Z2, we can
cover ∂VR with a fixed number (say K ) of balls of radius R/10, such that the union of
these balls is connected (here we used two-dimensionality). Let x, y ∈ ∂VR , we can
find x = x0, . . . , xK = ywith d(xi , xi+1) ≤ R/10, and d(xi , o) > 2R/10. Exploiting
the EHI in each of the K balls B(xi , 2R/10) inductively (since h is harmonic in each
of these balls), we find that h(x) ≤ CKh(y). Since x, y are arbitrary in ∂VR , this
proves the anchored Harnack inequality (3). ��
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We also show that the one-endedness of the UST holds for unimodular recurrent
random graphs if we in addition assume that they are strictly subdiffusive; that is, we
settle the Aldous–Lyons conjecture in that case. (This encompasses many models of
random planar maps, but can of course hold on more general graphs, see in particular
[26], recalled also in Remark 4.2, for sufficient conditions guaranteeing this).

Theorem 1.4 Suppose (G, o) is reversible, almost surely recurrent and strictly subd-
iffusive (i.e., satisfies (SD) below). Then (G, o) satisfies (a)–(d).

This applies e.g. for high-dimensional incipient infinite percolation cluster, as
explained after Remark 4.2. The proof of Theorem 1.4 takes as an input the results of
Benjamini et al. [8] which shows that for strictly subdiffusive unimodular graphs there
are no nonconstant harmonic functions of linear growth, and the trivial observation that
the effective resistance between points is at most linear in the distance between these
points. We believe it should be possible to use the same idea to prove the result assum-
ing only diffusivity: to do this, it would suffice to prove that the effective resistance
grows strictly sublinearly, except on graphs roughly isometric to Z.

Random walk conditioned to avoid the origin. The existence of the potential kernel
allows us to define (by h-transform) a randomwalk conditioned to never touch a given
point (even though this is of course a degenerate conditioning on recurrent graphs).We
study some properties of the conditioned walk and show among other things that two
independent conditioned walks must intersect infinitely often, a fact which plays an
important role in the proof of Theorem 1.1 for the equivalence between (a) and (d).We
conclude the article with a finer study of this conditioned walk on CRT-mated random
planar maps. In this case we are able to show that the hitting probability of a point far
away from the origin by the conditioned walk remains bounded away from 1 in the
limit as the point diverges to infinity (and is bounded away from 0 for “almost all” such
points). See Theorem 9.1 for a precise statement. We also discuss a conjecture (see
(49)) which, if true, would show a significant difference of behaviours with respect
to the more standard case of Z2 (where these hitting probabilities converge to 1/2, as
surprisingly shown in [34]).

2 Background and notation

Before we begin with the proofs of our theorems, we need to introduce the main
notations that we will use throughout this text.

A graph G consists of a countable collection of vertices v(G) and edges e(G) ⊂
{{x, y} : x, y ∈ v(G)} and we will always assume that the vertex degrees are finite.
We will work with undirected graphs, but will sometimes take the directed edges

e(G) = {(x, y) : {x, y} ∈ e(G)}.

The graph G comes with a natural metric d(x, y), which is the graph distance, i.e.
the minimal length of a path between two vertices x and y. For n ∈ N, we will denote
by

B(y, n) = {x ∈ v(G) : d(x, y) ≤ n},
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themetric ball of radius n. For a set A ⊂ v(G), wewill write ∂A for its outer boundary
in v(G), that is

∂A = {x ∈ v(G) \ A : there exists a y ∈ A with x ∼ y}.
We will make extensive use of the graph Laplacian which we normalise as follows2:

� f (x) =
∑
y∼x

c(x, y)( f (y) − f (x)), (4)

for functions f : v(G) → R (here c(x, y) is the conductance of the edge (x, y), which
is typically equal to one in this paper, except in Sect. 7 where we consider random
walk conditioned to avoid the origin forever). A function h : v(G) → R is called
harmonic at x if (�h)(x) = 0.

Let X = (Xn)n≥0 denote the simple random walk on G, with its law written as
P and Px to mean P(· | X0 = x). For a set A ⊂ v(G), we define the hitting time
TA = inf{n ≥ 0 : Xn ∈ A} and Tx := T{x} whenever A = {x} consists of just one
element. We will write T+

A for the first return time to a set A. Suppose that G is a
connected graph. The effective resistance is defined through

Reff(x ↔ y) := Gx (y, y)

deg(y)
.

Recall the useful identity

Reff(x ↔ y) = 1

deg(y)Py(Tx < T+
y )

(5)

The proof is obvious from the definition of effective resistancewhenweuse the obvious
identity

Gx (y, y) = 1

Py(Tx < T+
y )

,

which can be seen by considering the number of excursions from y to y, which is a
geometric random variable by the Markov property.

For infinite graphs G, we will say that a sequence of subgraphs (Gn)n≥1 of G is
an exhaustion of G whenever Gn is finite for each n and v(Gn) → G as n → ∞.
Fix some exhaustion (Gn)n≥1 of an infinite graph G and define the graph G∗

n as Gn ,
together with the identification of Gc

n , where we have deleted all self-loops created in
the process. For two vertices x, y ∈ v(G) we recall that

Reff(x ↔ y) = lim
n→∞Reff(x ↔ y;G∗

n),

see for instance [30, Section 9.1]. As is well known, the effective resistance defines a
metric (see for instance exercise 2.67 in [30]).

2 A note of warning: we use the combinatorial convention of normalisation for the discrete Laplacian,
instead of the probabilistic one.
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Later, we will often work with the metric Reff(· ↔ ·) on v(G), instead of the
standard graph distance. We introduce the notation

Beff(x, R) = {y ∈ v(G) : Reff(x ↔ y) ≤ R} (6)

for the closed ball with respect to the effective resistancemetric. Notice that, in general,
this metric space is not a length space—making it somewhat inconvenient.

Another result that we will need to use a few times is the ‘last exit decomposition’,
or rather two versions thereof which can be proved similarly to [28, Proposition 4.6.4].

Lemma 2.1 (Last exit decomposition). Let G be a graph and A ⊂ B ⊂ v(G) finite.
Then for all x ∈ A and b ∈ ∂B we have

Px (XTBc = b) =
∑
z∈A

GBc (x, z)Pz(TBc < T+
A , XTBc = b).

Moreover, for x ∈ B we have

Px (TA < TBc) =
∑
z∈A

GBc (x, z)Pz(TBc < T+
A ).

3 Equivalence between (a) and (b)

3.1 Base case of equivalence

Wewill say that a sequence of finite sets of vertices (An)n≥1 ‘goes to infinity’whenever
d(An, o) → ∞ as n → ∞. Here, by d(An, o), we just mean the minimal distance of
any vertex in An to o. Recall the definition of aAn , which also satisfies

aAn (x, y) = gAn (y, y) − gAn (x, y) = 1

deg(y)

Px (TAn < Ty)

Py(TAn < T+
y )

. (7)

Clearly, both the numerator and the denominator tend to 0 as n tends to infinity by
recurrence of the underlying graphG.When a sequence of subsets An has been chosen
we will write an instead of aAn with a small abuse of notations.

The goal of this section is to prove the equivalence between (a) and (b) in Theo-
rem 1.1 (in the base case where the set A consists of two points; this will be extended to
arbitrary finite sets in Sect. 3.3). First, we show that subsequential limits of an always
exist.

Lemma 3.1 Let (An)n≥1 be some sequence of finite sets of vertices going to infinity.
There exists a subsequence (nk)k≥1 going to infinity such that for all x, y ∈ v(G) the
limit

a(x, y) := lim
k→∞ ank (x, y)
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exists in [0,∞). Moreover, a(x, y) > 0 precisely when the removal of y from G does
not disconnect x from Ank for all k large enough.

Proof Fix y ∈ v(G) and suppose first that for all u ∼ y we have Pu(TAn < Ty) > 0
for all n large enough (i.e., y does not disconnect a portion of the graph from infinity).

Let x ∈ v(G) and fix n so large that An does not contain y, x or any of the neighbors
of y. For each u ∼ y, we can force the random walk started from x to go through u
before touching An or y to get

Px (TAn < Ty) ≥ Px (Tu < TAn ∧ Ty)Pu(TAn < Ty). (8)

Upon taking u ∼ y such that it maximizes Pu(TAn < Ty) and by recurrence of G we
get the existence of c(x, y) > 0 for which

an(x, y) = Px (TAn < Ty)∑
u∼y Pu(TAn < Ty)

≥ Px (Tu < TAn ∧ Ty)

deg(y)
≥ c(x, y) > 0.

The same reasoning as in (8) but in the other direction gives

Px (TAn < Ty) ≤ Pu(TAn < Ty)

Pu(Tx < TAn ∧ Ty)
.

Hence, using again recurrence of G we get that there is some C(x, y) < ∞ such that
(upon taking the right u)

an(x, y) ≤ Pu(TAn < Ty)

Pu(Tx < TAn ∧ Ty)
∑

u∼y Pu(TAn < Ty)
≤ C(x, y) < ∞.

We deduce that for fixed x, y, subsequential limits of an(x, y) exist and the existence
of subsequential limits for all x, y simultaneously follows from diagonal extraction.

The existence of subsequential limits in the general case is the same as we can
always lower bound an(x, y) by 0 and the upper bound does not change.

Now, if x ∈ v(G) is such that the removal of y disconnects x from Ank , then
ank (x, y) = 0. Suppose thus that x is such that the removal of y does not disconnect
x from Ank for all k large enough. In this case, we can restrict ourselves to just
the component of G with y removed, in which both Ank and x are as the hitting
probabilities are the same in this case. Hence, we are back in the situation above and
ank (x, y) ≥ c(x, y) > 0. ��

We next present a result, which shows that any subsequential limit appearing in
Lemma 3.1 must satisfy a certain number of properties.

Proposition 3.2 Let a(x, y) be any subsequential limit as in Lemma 3.1. Then a :
v(G) → R+ satisfies

(i) for each y ∈ v(G)

�a(·, y) = δy(·) and a(y, y) = 0,
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where we recall that � is defined in (4) and is normalised so that � f (x) =∑
y( f (y) − f (x)).

(ii) for all x, y ∈ v(G) we have

a(x, y) = lim
k→∞PAnk

(Tx < Ty)Reff(x ↔ y),

where PA refers to the law of a random walk starting from A, when all of the
vertices in A have been wired together.

The equivalence between (a) and (b) of Theorem 1.1 (in the base case where the
finite set B on which we need to define harmonic measure consists of two points) is
then obvious, and we collect it here:

Corollary 3.3 Let G be a recurrent graph. Then

hmx,y(x) := lim
n→∞PAn (Tx < Ty)

exists for all x, y ∈ v(G) and is independent of the sequence (An)n if and only if the
potential kernel is uniquely defined. Furthermore, in this case,

a(x, y) = hmx,y(x)Reff(x ↔ y).

Proof of Proposition 3.2 The proof of item (i) is rather elementary. Fix y ∈ v(G) and
n ≥ 1. Since x �→ Px (TAn < Ty) is a harmonic function outside of y and An by the
simple Markov property, we get that x �→ an(x, y) is harmonic outside y and An , see
(7). It follows that x �→ a(x, y) is harmonic at least away from y. Furthermore, note
that an(y, y) = 0 by definition and

∑
u∼y

an(u, y) =
∑

u∼y Pu(TAn < Ty)∑
u∼y Pu(TAn < Ty)

= 1

so �an(·, y)|·=y = 1. This finishes the proof of (i).
For part (ii), we notice first that by properties of the electrical resistance,

∑
u∼y

Pu(TAn < Ty) = deg(y)Py(TAn < T+
y ) = 1

Reff(y ↔ An)
,

which allows us to write

an(x, y) = Reff(y ↔ An)Px (TAn < Ty). (9)

Identify the vertices in An and delete possible self-loops created in the process. The
resulting graph G ′

n is then still recurrent. Let Gy(·, ·) denote the Green function on
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this graph when the walk is killed at y. We can also express the effective resistance in
terms of the normalised Green function: that is,

Reff(y ↔ An) = Gy(An, An)

deg(An)

Using the Markov property and since G ′
n is reversible,

an(x, y) = Px (TAn < Ty)
Gy(An, An)

deg(An)

= Gy(x, An)

deg(An)

= Gy(An, x)

deg(x)
(10)

= PAn (Tx < Ty)Reff(x ↔ y;G ′
n)

by using the same argument in the other direction, and where the effective resistance
in the last line is calculated in G ′

n .
Since the graph G is recurrent, it follows that Reff(x ↔ y;G ′

n) converges to
Reff(x ↔ y;G) as n → ∞ (as the free and wired effective resistances agree). We
deduce that

a(x, y) = lim
k→∞PAnk

(Tx < Ty)Reff(x ↔ y),

which finishes part (ii). ��

Remark 3.4 We wish to point out that, in general, the potential kernels are not sym-
metric (even if they are uniquely defined).

3.2 Triangle inequality for the potential kernel

Before we start of the proof of the remaining implications, we need some preliminary
estimates on the potential kernel, showing that it satisfies a form of triangle inequality.
This plays a crucial role throughout the rest of this paper.We also need a decomposition
of the potential kernel in order to prove that for reversible graphs, the potential kernel
(if it is well defined) satisfies the growth condition.

We start with a simple andwell known application of the optional stopping theorem:

Lemma 3.5 Let A be some finite set and suppose that x, y ∈ A. Then

GAc (x, y)

deg(y)
= Ex [a(XTAc , y)] − a(x, y).
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Proof This is Proposition 4.6.2 in [28], but we include for completeness since its proof
if simple. Let x, y ∈ A and notice that

Mn := a(Xn, y) −
n−1∑
j=0

δy(X j )

deg(y)

is a martingale. Applying the optional stopping theorem at TAc ∧ n, we obtain

a(x, y) = Ex [M0] = Ex [a(Xn∧TAc , y)] − 1

deg(y)
Ex

⎡
⎣(n∧TAc )−1∑

j=0

δy(X j )

⎤
⎦ ,

Taking n → ∞, since A is finite, we deduce from dominated (resp. monotone) con-
vergence that

Ex [a(Xn∧TAc , y)] → Ex [a(XTAc , y)],
1

deg(y)
Ex

⎡
⎣(n∧TAc )−1∑

j=0

δy(X j )

⎤
⎦ → GAc (x, y)

deg(y)
,

showing the result. ��
Proposition 3.6 Let x, y, z ∈ v(G) be three vertices. We have the identity

Gz(x, y)

deg(y)
= a(x, z) − a(x, y) + a(z, y).

Proof Fix x, y, z ∈ v(G) and let (An)n≥1 be some sequence of finite sets of vertices
going to infinity3.

Glue together An on the one hand, and the vertices of B(o,m)c on the other hand.
Delete all self-loops created in the process and write ∂m for the vertex corresponding
to B(o,m)c. Let X̃k be the simple random walk on the graph obtained from gluing An

and ∂m . We define for w,w′ ∈ B(o,m) ∪ {∂m} the function

am,n(w,w′) := Reff({∂m, w′} ↔ An)Pw(TAn < Tw′ ∧ T∂m ).

By recurrence and (9), we have that am,n(w,w′) → an(w,w′) as m → ∞, for all
w,w′.

Fix n so large that x, y and z are not in An . Let m be so large that x, y, z and An

are in B(o,m). Define En,m = {An, z, ∂m}. Then, as in Lemma 3.5,

am,n(x, y) = Ex [am,n(X̃TEm,n
, y)] − GEm,n (x, y)

deg(y)
(11)

3 Although the proof here relies on the assumption that the limit of aAn does not depend on the choice
An , we note for future reference that it also applied if we replace a by any subsequential limit of aAn . See
also Remark 3.8.
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On the other hand, by definition of Em,n we have

Ex [am,n(XTEm,n
, y)] = Px (Tz < TAn ∧ T∂m )am,n(z, y)

+ Px (TAn < Tz ∧ T∂m )am,n(An, y)

+ Px (T∂m < TAn ∧ Tz)am,n(∂m, y),

where a priori the hitting probabilities are calculated on the graph where An and ∂m
are glued. However, as we are only interested in the first hitting time of either of these
sets, it does not matter and we can calculate the probabilities also for the random walk
on the graph G. Notice that, by definition, am,n(∂m, y) = 0. Plugging this back into
(11) we obtain

am,n(x, y) = Px (Tz < TAn ∧ T∂m )am,n(z, y) + Px (TAn < Tz ∧ T∂m )am,n(An, y)

−GEm,n (x, y)

deg(y)
.

We have already observed that am,n(w, y) → an(w, y) for each w as m → ∞. Then,
by recurrence of G and monotone convergence, we get

an(x, y) = Px (Tz < TAn )an(z, y) + Px (TAn < Tz)an(An, y) − G{An ,z}(x, y)
deg(y)

.

(12)

Next, we wish to take n → ∞. The left-hand side converges to a(x, y) as n → ∞,
by definition of the potential kernel. The first term on the right-hand side converges
to a(z, y) by the same argument and recurrence of the graph G. Using once more
monotone convergence, we find

G{An ,z}(x, y)
deg(y)

→ Gz(x, y)

deg(y)
(13)

as n goes to infinity. We are left to deal with the term Px (TAn < Tz)an(An, y), which
we claim converges to a(x, z).

From the definition of an , together with the representation in (9), we find

an(An, y) = Reff(y ↔ An)PAn (TAn < Ty) = Reff(y ↔ An).

Thus, using again the same representation of an(x, z), we see that

an(An, y)Px (TAn < Tz) = Reff(y ↔ An)Px (TAn < Tz)

= an(x, z)
Reff (y ↔ An)

Reff (z ↔ An)
.

123



Harnack inequality and one-endedness of UST... 501

Using the triangle inequality for the effective resistance, we notice that

Reff(y ↔ An)

Reff(z ↔ y) + Reff(y ↔ An)
≤ Reff(y ↔ An)

Reff(z ↔ An)
≤ Reff(y ↔ z) + Reff(z ↔ An)

Reff(z ↔ An)
.

By recurrence ofG, the left and right hand side converge to 1 as n → ∞. In particular,
we deduce that

an(An, y)Px (TAn < Tz) → a(x, z)

as n → ∞. Plugging this, together with (13) back into (12) we conclude:

a(x, y) = a(x, z) + a(z, y) − Gz(x, y)

deg(y)

as desired. ��
Remark 3.7 Proposition 3.6 is an extensions of results known for the lattice Z

2, see
Proposition 4.6.3 in [28] and the discussion thereafter. As far as we know, these proofs
are based on precise asymptotic behavior of the potential kernel, a tool we do not seem
to have.

Remark 3.8 The statement of Proposition 3.6 is also valid for an arbitrary subsequential
limit a(·, ·) of an(·, ·), even when a proper limit is not known to exist. In particular, it
shows that given such a subsequential limit a(·, y) there is a unique way to coherently
define a(·, z). For this reason, if limn→∞ an(x, y) is shown to exist for a fixed y and
all x ∈ v(G), it follows that this limit exists for all x, y ∈ v(G) simultaneously. This
will be used in Theorem 3.11.

Corollary 3.9 For each x, z ∈ v(G) and all ε > 0 there exists an N = N (ε, x, z) such
that for all y with d(x, y) ≥ N we have

|a(x, y) − a(z, y)| ≤ ε

and in particular limn→∞ a(x, yn)− a(z, yn) = 0 for any sequence (yn)n≥1 going to
infinity.

Notice that Corollary 3.9 does not say that a(yn, x) − a(yn, z) → 0 as n → ∞ in
general! Indeed, a similar argument shows thata(yn, x)−a(yn, z) → a(z, x)−a(x, z),
which is nonzero in general.

Proof Fix x, z ∈ v(G) and suppose by contradiction that there is some ε > 0, such
that for infinitely many n ≥ 1 (but in fact we can with a small abuse of notation
assume for all n ≥ 1 after taking a subsequence), there is some yn with d(x, yn) ≥ n
for which

|a(z, yn) − a(x, yn)| > ε.
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By Proposition 3.6 and deg(·)-reversibility of the Simple Random Walk we have

a(x, yn) − a(z, yn) = a(x, z) − Gz(x, yn)

deg(yn)
= a(x, z) − Gz(yn, x)

deg(x)
.

Take An = {yn} and recall (see e.g. (10)) that

an(x, z) = Gz(yn, x)

deg(x)
.

Therefore

a(x, yn) − a(z, yn) = a(x, z) − an(x, z).

Since this converges to zero as n → ∞, we get the desired contradiction. ��
We immediately deduce that the harmonic measures from infinity of {x, y} and

{z, y} are very similar if y is far away from x and z.

Corollary 3.10 Fix x, z ∈ v(G). For every ε > 0, there exists an N = N (x, z, ε) such
that for all y with d(x, y) ≥ N we have

|hmx,y(x) − hmz,y(z)| ≤ ε + Reff(z ↔ x)

Reff(x ↔ y)
.

Proof Fix x, z ∈ v(G) and ε > 0. Let N0 be so large that Corollary 3.9 holds, i.e. so
that for every y with d(x, y) ≥ N0,

|a(x, y) − a(x, z)| ≤ ε.

Recall from Corollary 3.3 the expression

a(x, y) = hmx,y(x)Reff(x ↔ y).

so that

hmx,y(x) − hmz,y(z) = a(x, y) − a(z, y)

Reff (x ↔ y)
+ hmz,y(z)(Reff (x ↔ y) − Reff (z ↔ y))

Reff (x ↔ y)
.

Last, using the triangle inequality for the effective resistance twice (and symmetry
Reff(x ↔ y) = Reff(y ↔ x)), we find

|Reff(x ↔ y) − Reff(z ↔ y)| ≤ Reff(x ↔ z).

Plugging this all together and defining N ≥ N0 so large that Reff(x ↔ y) ≥
1
ε
Reff(x ↔ z) for all y with d(x, y) ≥ N , gives that

|hmx,y(x) − hmz,y(z)| ≤ ε + ε,

which is the desired result. ��
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3.3 Gluing and harmonic measure

We suppose throughout this section that the potential kernel is well defined in the sense
that the subsequential limits appearing in Lemma 3.1 are all equal. By Corollary 3.3,
this implies that the harmonic measure from infinity is well defined for two-point sets.

Let B ⊂ v(G) be a set. Glue together all vertices in B and delete all self-loops that
were created in the process. We denote the graph induced by the gluing GB . Note that
GB need not be a simple graph, even when G was.

We will prove in this section that, if the potential kernel is well defined on G, it is
also well defined on GB , whenever B is a finite set. Furthermore, we will prove an
explicit expression of the potential kernel on the graph GB in the case where B is a
finite set. These results are an extension of results on the lattice Z2, see for instance
[28, Chapter 6], but we will use different arguments, following from the expression
for the potential kernel in terms of harmonic measure from infinity as in Corollary 3.3.

Theorem 3.11 (Gluing Theorem) Suppose a(x, y) = limn→∞ an(x, y) exists for all
x, y ∈ v(G) and does not depend on the choice of the sequence of sets An going
to infinity. Let B ⊂ v(G) be a finite set, whose removal does not disconnect G, and
suppose x ∈ B. Then

qB(w) := lim
n→∞Reff(B ↔ An)Pw(TAn < TB) (14)

exists and is given by

qB(w) = a(w, x) − Ew[a(XTB , x)]; w ∈ v(GB) \ {B}; qB(B) = 0. (15)

Extending qB to v(G) in the natural way (i.e., using (15) with w ∈ v(G)), we have

(�qB)(w) = hmB(w) := lim
z→∞Pz(XTB = w); w ∈ B (16)

where the Laplacian � is calculated on G via (4).

Note in particular, that in the expression (15) for qB , any choice of x ∈ B gives
the same value and so is irrelevant. We will prove this theorem in the two subsequent
subsections, proving first (14) and (15) in Sect. 3.3.1, and then (16) in Sect. 3.3.2.

Before we give the proof, we first state some corollaries. The first one is that the
harmonic measure from infinity is well defined for the arbitrary finite set B (subject
to the assumption that the removal of B does not disconnect G).

Corollary 3.12 Fix a finite set B ⊂ v(G) as in Theorem 3.11. Let An be a set of vertices
tending to infinity. Then for any x ∈ B,

hmB(x) = lim
n→∞PAn (XTB = x) (17)

exists and is positive for all x ∈ B such that the removal of B\{x} does not disconnect
x from infinity.
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Proof Fix w /∈ B, then arguing as in (9) and (10) we get

PAn (Tw < TB) = Reff(An ↔ B)Pw(TAn < TB)

Reff(w ↔ B;GAn )
→ qB(w)

Reff(w ↔ B)

as n → ∞. This limit is by definition the desired value of hmB∪{w}(w). Note further-
more that qB(w) is strictly positive by Lemma 3.1.

Applying the same reasoning but with B changed into B ′ = B\{x} (with x ∈ B)
and w = x , shows that the limit in (17) exists. Furthermore, if the removal of B ′ does
not disconnect x from ∞, we see that qB′(w) > 0 again, and so hmB(x) > 0. ��

Next, we show that the potential kernel can only be well defined if the graph G is
one-ended.

Corollary 3.13 If the potential kernel is well defined, G is one-ended.

Proof Intuitively, onmultiple-ended graphs there isn’t a single harmonicmeasure from
infinity since there are several ways of converging to infinity. SupposeG hasmore than
one end. Let x1, x2, . . . , xM be some finite number of vertices, such that removing
them from v(G) and looking at the induced graph, we have (at least) two infinite
components. Write Bn = B(o, n) and choose n large enough that x1, . . . , xM ∈ Bn .
Consider the graph GBn resulting from gluing Bn together as in the theorem. Clearly,
the removal of Bn creates at least two infinite components. Pick a vertex z of Bc

n and
suppose it is in one infinite component. Let ({wi })i≥1 be any sequence of vertices going
to infinity in an infinite component that does not contain z. Then Pwi (Tz < TBn ) = 0
(for each i), yet this converges by Corollary 3.12 to hmBn∪z(z) > 0 since the removal
of Bn does not disconnect z from infinity. This is the desired contradiction. ��

Theorem 3.11 a priori only shows that the potential kernel with ‘pole’ B is well
defined when B does not disconnect G. We can, however, extend it to arbitrary finite
sets B and to an arbitrary second variable y.

Corollary 3.14 Let B ⊂ v(G) be any finite set. The potential kernel aB : v(GB)2 →
R+ is well defined in the sense that the limit

aGB (w, y) = lim
n→∞Pw(TAn < Ty;GB)Reff(w ↔ y;GB),

exist for all w, y ∈ v(GB) and does not depend on the choice of sequence of sets An.
Here, the probability and effective resistance are calculated on the graph GB.

Proof We start with taking B̄ as the hull (in the sense of complex analysis, meaning
we “fill it in” with respect to the point at infinity) of B, defined by adding to B all the
points in v(GB) that belong to finite connected components of v(GB) \ B. Since G
is one-ended by Corollary 3.13, B̄ does not disconnect G. By Theorem 3.11, we have
that for any sequence of sets (An)n≥1 going to infinity, the limit

aGB̄ (w, B̄) := qB̄(w) = lim
n→∞Pw(TAn < TB̄)Reff(B̄ ↔ An)
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exists for each w ∈ v(GB̄) and does not depend on the choice of sequence of vertices
An going to infinity. Moreover, this limit also trivially exists (and is zero) if w is in
one of the finite components of v(G) \ B.

Hence we deduce that actually for all w ∈ v(GB) we have that the limit

aGB (w, B) = lim
n→∞Pw(TAn < TB)Reff(An ↔ B)

exists and does not depend on the choice of sequence of sets going to infinity An . Now,
by Proposition 3.6 (see Remark 3.8) we get that for all w, y ∈ v(GB) the limit

aGB (w, y) = lim
n→∞Pw(TAn < Ty;GB)Reff(An ↔ y;GB)

exists and does not depend on the choice of the sequence An . This is the desired result.
��

3.3.1 Proof of (14) and (15)

Proof Fix (An)n≥1 a sequence of finite sets of vertices going to infinity. For a finite
set B ⊂ v(G) and x ∈ B, we will define the function qB : v(GB) → R+ through

qB(w) = a(w, x) − Ew[a(XTB , x)],

and qB(B) = 0, whenever the potential kernel on G is well defined. We will prove
(14) using induction on the number of vertices m in B. To be more precise, we will
show that for any recurrent graph G for which the potential kernel is well defined (in
other words, limn→∞ aAn (x, y) = a(x, y) and does not depend on the sequence An)
for any set B ⊂ v(G) with |B| = m and v(G) \ B connected, we have that (14) holds.
The base case m = 1 holds trivially.

Letm ∈ N and suppose that for any recurrent graphG on which the potential kernel
is well defined and for any subset B ⊂ v(G) with |B| = m and v(G) \ B connected
we have that (14) and (15) are satisfied for each x ∈ B.

In this case,

qB(w) = lim
n→∞Pw(TAn < TB)Reff(B ↔ An)

by assumption exists and does not depend on the sequence (An)n≥1, so we also have
that aGB (·, B) = qB(·) by (9). Remark 3.8 then shows us that aGB (·, y) is well defined
for any y ∈ v(GB) and hence we know that the potential kernel is well defined on GB

too.
Induction. Let G be a recurrent graph for which the potential kernel is well defined
and let B ⊂ v(G) be a finite set such that |B| = m + 1 and v(G) \ B is connected.
Fix x ∈ B. We split into two cases, depending on x :
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(i) the removal of x from G disconnects all components of B \ {x} from infinity in
G or

(ii) it does not.

We begin with the easy case. Suppose we are in situation (i). We have that for all
w /∈ B (for n large enough)

PAn (Tw < Tx ) = PAn (Tw < TB) and Reff(w ↔ B) = Reff(w ↔ x).

The limit on the left-hand side exists as the potential kernel is well defined, see Corol-
lary 3.3, and hence limn→∞ PAn (Tw < TB)Reff(w ↔ B) exists and equals a(w, x).
Moreover, we also have

qB(w) = a(w, x) − Ew[a(XTB , x)] = a(w, x) − a(x, x) = a(w, x)

which proves the result for this choice of x .
We move on to the more interesting case (ii). Since we are not in case (i), we can

find a set B ′ ⊂ B with |B ′| = m and v(G)\B ′ connected (indeed, since we are not
in case (i), there is at least a path going from some vertex in B to infinity, without
touching x , and removing from B the last vertex in B visited by this path provides
such a set B ′). Take y to be the vertex such that {y} = B \ B ′.

Since |B ′| = m, we have by the induction hypothesis that the potential kernel
aGB′ (·, ·) is well defined. Pick w ∈ v(G) such that w /∈ B, which we can view also
as a vertex in GB and GB′ . Fix n so large that both B and w are not in An . Using (9)
we have that

a
GB′
An

(w, B ′) = Reff(B
′ ↔ An)Pw(TAn < TB′).

We focus on the probability appearing on the right-hand side. By the law of total
probability and the strong Markov property of the simple random walk, we have

Pw(TAn < TB′) = Pw(Ty < TAn < TB′) + Pw(TAn < Ty ∧ TB′)

= Pw(Ty < TAn ∧ TB′)Py(TAn < TB′) + Pw(TAn < TB′ ∧ Ty).

Since G (and hence GB′ ) is recurrent, we have that Reff(B ′ ↔ An) ∼ Reff(x ↔
An) ∼ Reff(B ↔ An) where an ∼ bn means an/bn → 1 as n → ∞. Taking
n → ∞ in the above identity after multiplying by Reff(B ′ ↔ An) and using once
more recurrence, we deduce that

aGB′ (w, B ′) = Pw(Ty < TB′)aGB′ (y, B ′) + lim
n→∞Pw(TAn < TB)Reff(An ↔ B),

because the potential kernel on GB′ is well defined by assumption. This implies in
particular that

lim
n→∞Pw(TAn < TB)Reff(B ↔ An) = aGB′ (w, B ′) − Pw(Ty < TB′)aGB′ (y, B ′)
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exists and does not depend on the sequence An and, thus, we deduce that aGB (w, B)

is well defined and satisfies

aGB (w, B) = aGB′ (w, B ′) − Pw(XTB = y)aGB′ (y, B ′). (18)

We are left to prove that qB(w) = aGB (w, B). By the induction hypothesis (because
x ∈ B ′) we know that

aGB′ (w, B ′) = qB′(w) = a(w, x) − Ew[a(XTB′ , x)].

Using this in (18) we get

aGB (w, B) = a(w, x) − Ew[a(XTB′ , x)] − Pw(XTB = y)
(
a(y, x) − Ey[a(XTB′ , x)]

)
= a(w, x) − Pw(XTB = y)a(y, x) −

∑
z∈B′

Pw(XTB′ = z)a(z, x)

+
∑
z∈B′

Pw(XTB = y)Py(XTB′ = z)a(z, x)

= a(w, x) −
∑
z∈B

Pw(XTB = z)a(z, x),

where in the last line we used for z ∈ B ′ the equality

Pw(XTB = z) = Pw(XTB′ = z) − Pw(XTB = y)Py(XTB′ = z),

which holds due to the strong Markov property for the random walk. But of course,
this is the same as

aGB (w, B) = a(w, x) − Ew[a(XTB , x)],

so indeed we have that aGB (w, B) = qB(w), which finishes the induction argument.
��

3.3.2 Proof of (16)

Let B ⊂ v(G) be a finite set, such that its removal does not disconnect G. So far, we
have shown that the potential kernel is well defined on the graph GB and hence that
the harmonic measure from infinity is well defined, see Corollary 3.12. In this section,
we will prove (16); the third statement of Theorem 3.11. First, let us introduce some
notation that will only be used here. If G is a graph and B ⊂ v(G) a (finite) set, then
we will write � for the Laplacian on G and �GB for the Laplacian on GB .

Proof of (16) Let G be a recurrent graph on which the potential kernel is well defined,
and suppose that B ⊂ v(G) is a finite set such that v(G) \ B is connected. Fix x ∈ B.
We split into two cases:
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(i) the removal of x disconnects B \ {x} from infinity in G or
(ii) is does not.

In the first case, we have that hmB(x) = 1 and also that qB(w) = a(w, x) for all
w ∈ B (indeed, for w /∈ B this follows immediately from (15) and for w ∈ B\{x} we
have that qB(w) = 0 = a(w, x) in this case). Hence, we deduce

δx (·) = �(a(·, x)) = �(qB(·)),

which shows the result in case (i).
In case (ii), take B ′ = B \ {x}. We will show that

�
GB′
w

(
aGB′ (w, B ′) − Pw(Tx < TB′)aGB′ (x, B ′)

) |w=x= hmB(x), (19)

where�
GB′
u is the Laplacian acting on the function with variable u. Let us first explain

how this shows the final result. As in (18) and (15) we know that (when qB is viewed
as a function on v(GB′))

qB(w) = aGB′ (w, B ′) − Pw(Tx < TB′)aGB′ (x, B ′).

Moreover, when w ∈ B, we have

qB(w) = a(w, x) − Ew[a(XTB , x)] = a(w, x) − a(w, x) = 0.

Hence, actually,

(�GB′qB)(x) =
∑
w∼x

w∈v(GB′ )

qB(w) =
∑
w∼x

w∈v(G)

qB(w) = (�qB)(x),

so that (19) implies the final result.
To prove (19), recall from (5) that4

∑
u∼x

u∈v(GB′ )

Pu(Tx < TB′) = 1

Reff(x ↔ B ′)
,

4 Of course, to be precise we would need to calculate the probabilities and effective resistances on the
graph GB′ , but since this makes no difference in the current setting, we skip the extra notation.
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and that �GB′ (aGB′ (·, B ′)) = δB′(·) by Proposition 3.2. Using these two facts, we get

�
GB′
w (aGB′ (w, x2) − Pw(Tx < TB′)aGB′ (x, B ′))

∣∣∣
w=x1

= −aGB′ (x, B ′)
∑
u∼x

u∈v(GB′ )

(Pu(Tx < TB′) − 1)

= aGB′ (x, B ′)
∑
u∼x

u∈v(GB′ )

Pu(TB′ < Tx )

= aGB′ (x, B ′)
Reff(x ↔ B ′)

= hmB′,x (x).

The last equality follows from Corollary 3.3, which allows us to write

aGB′ (x, B ′) = hmx,B′(x)Reff(x ↔ B ′).

This shows (16) and therefore concludes the proof of Theorem3.11. In turn this finishes
the proof that (a) is equivalent to (b) in Theorem 1.1 (see e.g. Corollary 3.12). ��

4 Proof of Theorem 1.4

Before proceeding with the remaining equivalences we give a proof that (a) holds
under the assumption of Theorem 1.4. Recall that a random graph (G, o) is strictly
subdiffusive whenever there exits a β > 2 such that

E[d(o, Xn)
β ] ≤ Cn. (SD)

We collect the following theorem of [8]. The main theorem from that paper shows
that, assuming subdiffusivity, strictly sublinear harmonic functions must be constant.
In fact, as already mentioned in that paper (see Example 2.10), the arguments in that
paper also show that assuming strict subdiffusivity, even harmonic functions of at
most linear growth must be constant. It is this extension which we use here, and which
we quote below.

Theorem 4.1 (Theorem 3 in [8]) Let (G, o, X1) be a strictly subdiffusive (SD), recur-
rent, stationary environment. A.s., every harmonic function on G that is of at most
linear growth is constant.

We now give the proof of Theorem 1.4 using this result.

Proof of Theorem 1.4 assuming Theorem 1.1. Let (G, o) be a unimodular graph that is
almost surely strictly subdiffusive (SD) and recurrent, satisfying E[deg(o)] < ∞.
Then degree biasing (G, o) gives a reversible environment and hence, almost surely,
all harmonic functions on (G, o, X1) that are at most linear are constant due to Theo-
rem 4.1. After degree unbiasing, the same statement is true for (G, o).

123



510 N. Berestycki, D. van Engelenburg

We will prove that this implies that statement (a) of Theorem 1.1 holds, which (by
assumption) implies (a)–(d) must be satisfied.

Let a1, a2 : v(G)2 → R+ be two potential kernels arising as subsequential limits
in the sense of Lemma 3.1. Fix y ∈ v(G). By Proposition 3.2 we have that ai (·, y) is
of the form

ai (x, y) = Reff(x ↔ y)Hi (x),

with 0 ≤ Hi (x) ≤ 1 for each x and i = 1, 2. Define next the map h : v(G) → R

through

h(x) = a1(x, y) − a2(x, y).

Clearly, h is harmonic everywhere outside y by choice of the ai ’s and linearity of
the Laplacian. Since �a1(·, y) = �a2(·, y) by Proposition 3.2, we also get that
�h(y) = 0 and we deduce that h is harmonic everywhere.

Next, we notice

|h(x)| ≤ |H1(x) − H2(x)|Reff(y ↔ x) ≤ 2d(y, x),

implying that h is (at most) linear. Thus h must be constant. Since h(y) = a1(y, y) −
a2(y, y) = 0, it follows that h(x) = 0 and hence we finally obtain a1(x, y) = a2(x, y)
for all x ∈ v(G). Since y ∈ v(G) was arbitrary, we deduce the desired result. ��
Remark 4.2 Strict subdiffusivity on the UIPQ was obtained by Benajmini and Curien
in the beautiful paper [6]. A result of Lee [26, Theorem 1.10] gives a more general
condition which guarantees strict subdiffusivity (essentially, the graph needs to be
planar with at least cubic volume growth). In particular, this applies to the UIPT.

As an example of application of Theorem 1.4 consider the Incipient Infinite perco-
lation Cluster (IIC) of Zd for sufficiently large d. By a combination of Theorem 1.2
in [24] and Theorem 1.1 in [27], one can check that the strict subdiffusivity (SD) is
satisfied in all sufficiently high dimensions. The recurrence is easier to check. (Note
that a weaker form of subdiffusivity can be deduced by combining [24] with [10]). In
fact, it was already checked earlier that in high dimensions the backbone of the IIC is
one-ended ([41]), implying also the UST is one-ended in this case.

We point out that the result should apply in dimension two (even for non-nearest
neighbour walk), or for the IIC of spread-out percolation, although we do not know if
strict subdiffusivity has been checked in that case.

5 The sublevel set of the potential kernel

Let (G, o) be some recurrent, rooted, graph for which the potential kernel is well
defined in the sense that an(x, y) obtains a limit and this does not depend on the
choice of the sequence (An)n≥1 of finite sets of vertices going to infinity.
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Fix z ∈ v(G) and R ∈ R+. Recall the notation in (6) for the ball with respect to
the effective resistance metric:

Beff(z, R) = {x ∈ v(G) : Reff(z ↔ x) ≤ R}

We also introduce the notation for the sublevel set of a(·, z) through

�a(z, R) = {x ∈ v(G) : a(x, z) ≤ R}.

In case z = o, we will drop the notation for z and write Beff(R),�a(R) for Beff(o, R),
�a(o, R) respectively. Although a(·, ·) fails to be a distance as it lacks to be sym-
metric, it is what we call a quasi-distance as it does satisfy the triangle inequality due
to Proposition 3.6. On 2-connected graphs (where the removal of any single vertex
does not disconnect the graph), we have that a(x, y) = 0 precisely when x = y. In
particular, this is true for triangulations.

Let us first explain why we care about the sublevel sets of the potential kernel and
why we will prefer it over the effective resistance balls. We will call a set A ⊂ v(G)

simply connected whenever it is connected (that is, for any two vertices x, y in A,
there exists a path connecting x and y, using only vertices inside A) andwhen removing
A from the graph does not disconnect a part of the graph from infinity. We make the
following observation, which holds because x �→ a(x, o) is harmonic outside of o.

Observation The set �a(R) is simply connected.

This is not true, in general, for Beff(R). Introduce the hull Beff(z, R) of Beff(z, R)

as the set Beff(z, R) together with the finite components of v(G) \ Beff(z, R). Even
though Beff(z, R) does not have any more “holes”, we notice that still, it is not evident
(or true in general) that Beff(z, R) is connected. See Fig. 1a for an example.

We do notice that Beff(z, R) ⊂ �a(z, R) as

a(x, z) = hmx,z(x)Reff(x ↔ z) ≤ Reff(x ↔ z),

by Corollary 3.3. See also Fig. 1b for a schematic picture.
We thus get that the sets �a(R) are more regular than the sets Beff(R) and if G is

planar, they correspond to Euclidean simply connected sets.
In this section, we are interested in some properties of �a(R), that we will need

to prove our Harnack inequalities. We now state the main result, which shows that
limz→∞ a(z, x) = ∞, under the additional assumption that the underlying rooted
graph is random and (stationary) reversible.

Proposition 5.1 Suppose (G, o) is a reversible random graph, that is a.s. recurrent
and for which the potential kernel is a.s. well defined. Almost surely, the sets�a(z, R)

are finite for each R ≥ 1 and all z ∈ v(G), and hence (�a(z, R))R≥1 defines an
exhaustion of G.

Although we expect this proposition to hold for all graphs where the potential
kernel is well defined, we do not manage to prove the general case. In addition, the
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Fig. 1 a Example of a graph where Beff (z, R) is not connected for each R: the effective resistance between
x and y equals 1/2, whereas the resistance between x and vi equals 5/8. b A schematic drawing. In dark
gray, we see the set Beff (R). The blue parts are Beff (R)\Beff (R). The red area (and everything inside) is
then the sublevel set �a(R)

proof actually yields something slightly stronger which may not necessarily hold in
full generality.

Note also that for all R ≥ 0 we have v(G)\�a(R) is non-empty because x �→
a(x, o) is unbounded (to see this, assume it is bounded and use recurrence and the
optional stopping theorem to deduce that a(x, o) would be identically zero, which is
not possible since the Laplacian is nonzero at o).We introduce the following definition,
that we will use throughout the remaining document.

Definition 5.2 Let δ ∈ [0, 1] and x ∈ v(G).

• We call x (δ, o)-good if hmo,x (x) ≥ δ. We will omit the notation for the root if it
is clear from the context.

• We call the rooted graph (G, o) δ-good if for all ε > 0, there exist infinitely many
(δ − ε, o)-good vertices.

• We call the rooted graph (G, o) uniformly δ-good if all vertices are (δ, o)-good.

Note that if the graph (G, o) is uniformly δ-good for some δ > 0, then actually
�a(δR) ⊂ Beff(R), so that the sets �a(δR) are finite for each R. It turns out that the
graph (G, o) being δ-good is also enough, which is the content of Lemma 5.5 below.

Although the definition of δ-goodness is given in terms of rooted graphs (G, o),
the next (deterministic) lemma shows that the definition is actually invariant under the
choice of the root, and hence we can can omit the root and say “G is δ-good” instead.

Lemma 5.3 Suppose δ > 0 is such that (G, o) is δ-good, then also (G, z) is δ-good
for each z ∈ v(G).

Proof Fix z ∈ v(G) and let δ > 0 be such that (G, o) is δ-good. Fix 0 < ε < δ and
denote by Gα,o the set of (α, o)-good vertices. Take ε1, ε2 > 0 such that ε1 + ε2 = ε.
Then Gδ−ε1,o has infinitely many points by assumption.
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ByCorollary 3.10, we can take R0 := R0(z, o, ε2) so large that for all x /∈ B(o, R0)

we have

|hmx,z(x) − hmx,o(x)| < ε2.

This implies that any vertex x ∈ Gδ−ε1,o ∩ B(o, R0)
c must in fact be (δ − ε, z)-good

since ε = ε1 + ε2. This shows the desired result as ε was arbitrary. ��
The next lemma shows the somewhat interesting result that reversible environments

are always δ-good, with δ arbitrary close to 1
2 .

Lemma 5.4 Suppose that (G, o, X1) is a recurrent reversible random rooted graph (
that is a.s. infinite) on which the potential kernel is a.s. well defined. Then a.s. (G, o)
is 1

2 -good.

Proof In this proof we will write P,E to denote probability respectively expectation
with respect to the law of the random rooted graph (G, o). In compliance with the rest
of the document, we will write P,E to denote the probability respectively expectation
w.r.t. the law of the simple random walk, conditional on (G, o).

By Lemma 5.3, we note that (G, o) being δ-good is independent of the root and
hence for each δ > 0, the event

Aδ = {(G, o) is δ-good}

is invariant under re-rooting, that is

(G, o) ∈ Aδ ⇐⇒ (G, x) ∈ Aδ for all x ∈ v(G).

A natural approach to go forward would be to use that any unimodular law is a mixture
of ergodic laws [2, Theorem 4.7]. We will not use this, as there is an even simpler
argument in this case.

We will use the invariance under re-rooting to prove that Aδ has probability one.
Suppose, to the contrary, that the eventAδ does not occur with probability one, so that
P(Aδ) ∈ [0, 1). Then we can condition the law P on Ac

δ to obtain again a reversible
law P(· | Ac

δ) (it is here that we use the invariance under re-rooting of Aδ , see for
example [15, Exercise 15] or [2]), under whichAδ has probability zero. However, we
will show that P(Aδ) > 0 always holds when δ < 1

2 , independent of what the exact
underlying reversible law P is—as long as the potential kernel is a.s. well defined and
the graph is a.s. recurrent. Now, this implies that we actually need to have P(Aδ) = 1,
which is the desired result.

Fix δ < 1
2 .We thus still need to prove thatP(Aδ) > 0,whichwedoby contradiction.

Assume henceforth that P(Aδ) = 0. By reversibility, we get for each n ∈ N the
equality

E[hmo,Xn (Xn)] = E[hmXn ,o(o)] = 1

2
,
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due to the fact that (G, o, Xn) has the same law as (G, Xn, o), which is reversibility
(here, the expectation is both with respect to the environment and the walk).

As P(Aδ) = 0, we can assume that a.s. there exists a (random) N = N (G, o) ∈ N,
such that for all x /∈ B(o, N ) we have

hmx,o(x) ≤ δ

Also, note that the environment is a.s. null-recurrent ( as is the case for any connected,
infinite recurrent graph, which follows e.g. by uniqueness of invariant of measures for
recurrent graphs, Theorem 1.7.6 in [32], in conjunction with Theorem 1.7.7 of [32]).
Hence we have that, (G, o)-a.s.

P(Xn in B(o, N )) → 0,

whenever n → ∞. Moreover, notice that for each n we have

E[hmo,Xn (Xn)] ≤ P(Xn not in B(o, N ))δ + P(Xn in B(o, N )).

Since hmo,Xn (Xn) ∈ [0, 1], we can apply Fatou’s lemma (applied to just the expec-
tation with respect to the law of (G, o), so that we can use the just found inequality)
from which we deduce that

1

2
= lim sup

n→∞
E[hmo,Xn (Xn)] ≤ δ,

which is a contradiction as δ < 1
2 . ��

We next show that for any δ-good (rooted) graph, the set �a(R) is finite for each
R ≥ 1. Combined with Lemma 5.4, this implies Proposition 5.1 in case of reversible
environments. However, Lemma 5.4 shows more than just this fact. Indeed, �a(R)

being finite need not imply that (G, o) is δ-good for some δ > 0.

Lemma 5.5 If (G, o) is δ-good for some δ > 0, then�a(o, R) is finite for each R ≥ 1.

Proof Let δ > 0 and suppose that G is δ-good. We will show that for each R ≥ 1,
there exists an M ≥ 1 such that for all x /∈ B(o, M) we have

a(x, o) ≥ δ2R

8
.

This implies the final result.
By assumption on δ-goodness, for each R ≥ 1 there exists a vertex xR /∈ Beff(o, R)

such that

hmxR ,o(xR) ≥ δ

2

This implies by Corollary 3.3 that a(xR, o) ≥ δ
2Reff(o ↔ xR) ≥ δR

2 .
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Fix R ≥ 1 and define the set BR = {o, xR}. By Theorem 3.11, we get for all x the
decomposition

a(x, o) = qBR (x) + Ex [a(XTBR
, o)],

where qBR (·) is the potential kernel on the graph GBR , which we recall is the graph
G, with BR glued together. Since potential kernels are non-negative, we can focus our
attention to the right-most term.

Take M = M(o, xR, δ) so large that for all x /∈ B(o, M)

|hmBR (xR) − Px (XTBR
= xR)| ≤ δ

4
,

which is possible as the potential kernel is well defined, see Proposition 3.2 and
Corollary 3.3. We deduce that for all x /∈ B(o, M)

a(x, o) ≥ Ex [a(XTBR
, o)] ≥ δ2R

8
,

as desired. ��

6 Two Harnack inequalities

We are now ready to prove the equivalence between (c) and (a). The first part of
this section deals with a classical Harnack inequality, whereas the second part of this
section provides a variation thereof, where the functions might have a single pole. The
first Harnack inequality (Theorem 6.4 below) does not involve Theorem 1.1.

Recall that �a(z, R) is the sublevel set {x ∈ v(G) : a(x, z) ≤ R} (for R not
necessarily integer valued) and that a(z, x) defines a quasi distance on G. Also recall
the notation Beff(z, R) = {x : Reff(z ↔ x) ≤ R}, for the (closed) ball with respect
to the effective resistance distance.

6.1 The standing assumptions

Throughout this section we will work with deterministic graphs G, which satisfy a
certain number of assumptions.

Definition 6.1 (Standing assumptions) We will say that G satisfies the standing
assumptions whenever it is infinite, recurrent, the potential kernel is well defined
and the level sets (�a(z, R))R≥1 are finite for some (hence all by Proposition 3.6)
z ∈ v(G).

We will not use that (G, o) is random reversible in this section, other than to verify
that is satisfies the standing Assumptions 6.1. The remainder of this section works for
all (deterministic) graphs that satisfy the standing assumptions.
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Lemma 6.2 Let (G, o) be a random unimodular graph graph with E[deg(o)] < ∞,
for which a.s. the potential kernel is uniquely defined. Then (G, o) a.s. satisfies the
standing assumptions.

Proof Proposition 5.1 implies that any unimodular randomgraphwithE[deg(o)] < ∞
that is a.s. recurrent and for which the potential kernel is a.s. well defined, the level
sets �a(z, R) are finite for all R and z ∈ v(G). ��
Remark 6.3 Note for instance that this implies that the UIPT/UIPQ therefore satisfies
the standing assumptions, see the discussion at the end of Sect. 4. A posteriori, this
also follows from our main Theorem (Theorem 1.1) and [1].

6.2 Elliptic Harnack inequality

We first show that under the standing assumptions (Definition 6.1), a version of the
elliptic Harnack inequality holds, where the constants are uniform over all graphs
that satisfy the standing assumptions. Recall the definition of the “hull” Beff(z, R)

introduced in Sect. 5.

Theorem 6.4 (Harnack Inequality) There exist M,C > 1 such that the following
holds. Let G be a graph satisfying the Standing Assumptions 6.1. For all z ∈ v(G),
all R ≥ 1 and all h : �a(z, MR) ∪ ∂�a(z, MR) → R+ that are harmonic on
�a(z, MR) we have

max
x∈Beff (z,R)

h(x) ≤ C min
x∈Beff (z,R)

h(x) (H)

Remark 6.5 In case the rooted graph (G, o) is in addition uniformly δ-good for some
δ (that is, hmx,o(x) ≥ δ for each x , see Definition 5.2), then we have that

�a(δR) ⊂ Beff(R) ⊂ �a(R),

and hence theHarnack inequality above becomes a standard “elliptic Harnack inequal-
ity” for the graph equipped with the effective resistance distance. (As will be discussed
below, we conjecture that many infinite models of random planar maps, including the
UIPT, satisfy the property of being δ-good for some nonrandom δ > 0.)

The harmonic exit measure

In the proof, we fix the root o ∈ v(G), but it plays no special role. Define for k ∈ N,
x ∈ �a(k) and b ∈ ∂�a(k) the “harmonic exit measure”

μk(x, b) = Px (XTk = b),

where Tk is the first hitting time of ∂�a(k). We will write

Gk(x, y) := G�a(k)c (x, y) (20)
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where we recall the definition of the Green function in (1). The following proposi-
tion shows that changing the starting points x, y ∈ Beff(R), does not significantly
change the exit measure μk(·, b). The Harnack inequality will follow easily from this
proposition (in fact, it is equivalent).

Proposition 6.6 There exist constants C̃, M > 1 such that for all G satisfying the
Standing Assumptions 6.1, all R ≥ 1 and all x, y ∈ ∂Beff(R) we have

1

C̃
μMR(y, b) ≤ μMR(x, b) ≤ C̃μMR(y, b)

for each b ∈ ∂�a(MR).

We first prove the following lemma, giving an estimate on the number of times the
simple random walk started from x visits y, before exiting the set �a(MR).

Lemma 6.7 For all M0 > 1 and all M ≥ M0 + 3 there exists C = C(M, M0) > 1
such that for all G satisfying the Standing Assumptions 6.1 and for all R ≥ 1 we
have

R

C
≤ GMR(x, y)

deg(y)
≤ CR

for all x ∈ ∂�a(M0R) and y ∈ ∂Beff(R).

Proof Fix M0 > 1 and let M ≥ M0 + 3. Let G be any graph satisfying the standing
assumptions 6.1. Let R ≥ 1, take x ∈ ∂�a(M0R) and y ∈ ∂Beff(R). Notice that, by
Lemma 3.5, we can write

GMR(x, y)

deg(y)
= Ex [a(XTMR , y)] − a(x, y). (21)

Let z ∈ �a(MR). Recalling that a(·, ·) is a quasi metric that satisfies the triangle
inequality due to Proposition 3.6, we have, by assumption on x and y and the expres-
sion for the potential kernel in terms of harmonic measure and effective resistance
(Corollary 3.3), that

a(z, y) ≤ a(z, o) + a(o, y) ≤ MR + Reff(o ↔ y) = (M + 1)R. (22)

Going back to (21) and upper-bounding −a(x, y) ≤ 0, we find the desired upper
bound:

GMR(x, y)

deg(y)
≤ (M + 1)R.

For the lower bound, fix again z ∈ ∂�a(MR). From Theorem 3.11 (and the fact
that Beff(R) ⊂ �a(R)) we obtain the equality

a(z, y) − Ez[a(XTR , y)] = a(z, o) − Ez[a(XTR , o)].
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It follows that

a(z, y) ≥ a(z, o) − Ez[a(XTR , o)] = (M − 1)R. (23)

On the other hand, invoking the triangle inequality (as in (22)), we have

a(x, y) ≤ a(x, o) + a(o, y) ≤ (M0 + 1)R.

The lower-bound now follows from (21) and (23) as

GMR(x, y)

deg(y)
≥ (M − 1)R − (M0 + 1)R = (M − M0 − 2)R.

Since M ≥ M0 + 3, we can take C = C(M, M0) depending only on M, M0 such that
we get the result. ��
Proof of Proposition 6.6 Take M0 > 1, M = M(M0) and C > 1 as in Lemma 6.7.
Let G be a graph satisfying the standing assumptions 6.1. Fix R ≥ 1 and let x, y ∈
∂Beff(R). For b ∈ �a(MR) we use the last-exit decomposition (Lemma 2.1) to see

μMR(x, b) =
∑

z∈∂�a(M0R)

GMR(x, z)

deg(z)
deg(z)Pz(XTMR = b; TMR < T+

M0R
).

By Lemma 6.7, we have for each z ∈ ∂�a(M0R)

GMR(z, x)

deg(x)
≤ CR ≤ C2GMR(z, y)

deg(y)
.

We thus get, defining C̃ = C2, and using deg(·)-reversibility of the simple random
walk that

μMR(x, b) ≤ C̃
∑

z∈∂�a(M0R)

GMR(y, z)

deg(z)
deg(z)Pz(XTMR = b; TMR < T+

M0R
)

= C̃μMR(y, b),

showing the final result. ��
Proof of Theorem 6.4 The proof of Theorem 6.4 is easy now. Indeed, let C, M > 1
large enough, as in Proposition 6.6 and take any graph G satisfying the standing
assumptions and R ≥ 1. Take h : �a(MR) ∪ ∂�a(MR) → R+ a function harmonic
on �a(MR). Using the maximum principle for harmonic functions, we deduce that it
is enough to prove

max
x∈∂Beff (R)

h(x) ≤ C min
x∈∂Beff (R)

h(x).
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Take x, y ∈ ∂Beff(R). By optional stopping and Proposition 6.6 we have

h(x) = Ex [h(XTMR )] =
∑

b∈∂�a(MR)

h(b)μMR(x, b)

≤ C̃
∑

b∈∂�a(MR)

h(b)μMR(y, b) = C̃h(y),

showing the result. ��

6.3 (a) implies (c): anchored Harnack inequality

Sometimes, one wants to apply a version of the Harnack inequality to functions that
are harmonic on a big ball, but not in some vertex inside this ball (the pole). Clearly,
we can only hope to compare the value of harmonic function in points that are “far
away” from the pole, say on the boundary of a ball centered at the pole.

This “anchored” inequality does not always follow from the Harnack inequality
as stated in Theorem 6.4. As an example, think of the graph Z with nearest neighbor
connections. Pick any two positive real numbers α, β satisfying α + β = 1. Then the
function h that maps x to α(−x) when x is negative and to βx when x is positive,
is harmonic everywhere outside of 0, with �h(0) = 1. This implies that no form of
“anchored Harnack inequality” can hold.

We next present a reformulation of (a) implies (c) in Theorem 1.1. We will use it
to prove results for the “conditioned random walk” as introduced in Sect. 7.

Theorem 6.8 (Anchored Harnack inequality) There exists a C < ∞ such that the
following holds. Let G be a graph satisfying the Standing Assumptions 6.1. For
z ∈ v(G), R ≥ 1 and all h : v(G) → R+ that are harmonic outside of z and satisfy
h(z) = 0, we have

max
x∈∂�a(z,R)

h(x) ≤ C min
x∈∂�a(z,R)

h(x). (aH)

Remark 6.9 Actually, we will prove that for each z ∈ v(G) and R ≥ 1, there
exists 
z(R) ≥ R such that for all harmonic functions h : �a(z, 
z(R)) ∪
∂�a(z, 
z(R)) → R+ that are harmonic on �a(z, 
z(R))\{z} and h(z) = 0, we
have

max
x∈∂�a(z,R)

h(x) ≤ C min
x∈∂�a(z,R)

h(x).

As before, if the graph is uniformly δ-good for some δ > 0, we can actually take

z(R) = MR for some M = M(δ) depending only on δ.

Proof of Theorem 6.8

The proof will be somewhat similar to the proof of Theorem 6.4. Again, we will prove
it for a given root vertex o to simplify our writing, but it will not matter which vertex
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we choose. For k ∈ N, we will write again Tk = T�a(k)c for the first time the random
walk exists the sublevel-set �a(k). Fix k ∈ N and x ∈ �a(k). Define, given a graph
G satisfying the standing assumptions 6.1 and a root vertex o the exit measure

νk(x, b) = Px (XTk = b, Tk < To),

for b ∈ ∂�a(k). We begin by showing that, taking x, y in �a(R), the exit measures
νk(x, ·) and νk(y, ·) are similar up to division by a(x, o), a(y, o) respectively, when
k is large enough. Although it might seem at first slightly counterintuitive that that
we need to divide by a(x, o), this actually means that the conditional exit measures
Pw(XTk = b | Tk < To) for w = x, y are comparable.

Proposition 6.10 There exists a C < ∞ such that for all graphs G satisfying the
Standing Assumptions 6.1with root o, for each R ≥ 1, there exists a constant
(R) ≥
R such that for all x, y ∈ �a(R)\�a(1) and all b ∈ ∂�a(
(R)) we have

ν
(R)(x, b)

a(x, o)
≤ C

ν
(R)(y, b)

a(y, o)
.

In order to prove this proposition, we will first prove a few preliminary lemmas.We
assume here that the underlying graphs satisfy the standing assumptions 6.1. The next
result offers bounds on the probability that the random walk goes “far away” before
hitting o in terms of the potential kernel.

Lemma 6.11 For each z ∈ v(G)\�a(1) and all M > a(z, o), we have

a(z, o)

M + 1
≤ Pz(TM < To) ≤ a(z, o)

M
.

Proof This is a straightforward consequence of the optional stopping theorem. Indeed,
since (a(Xn∧TM∧To , o))n≥0 is an a.s. bounded martingale,

a(z, o) = Ez[a(TM ∧ To, o)]

and because M ≤ a(w, o) ≤ M + 1 for each w ∈ ∂�a(M) and a(o, o) = 0, we find

a(z, o)

M + 1
≤ Pz(TM < To) ≤ a(z, o)

M
,

which are the desired bounds. ��
Lemma 6.12 For each R ≥ 1, there exist M > M0 > R such that for all x ∈ �a(R)

and z ∈ �a(M0),

1

10
≤ GBM (z, x)

deg(x)a(x, o)
≤ 2,

where BM = {o} ∪ �a(M)c.
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Proof Fix R ≥ 1 and x, y ∈ �a(R)\�a(0). Take M0 = M0(R) at least so large that
for all w /∈ �a(M0) and all z ∈ �a(R)\�a(0) we have

1

2
≤ Pw(Tz < To)

hmz,o(z)
≤ 2. (24)

This is possible because Pw(Tz < To) converges to hmz,o(z) for all z,�a(R) is finite,
and uniformity in w outside �a(M0) follows just as in Corollary 3.9 (otherwise, we
can construct a sequence wM of vertices going to infinity such that PwM (Tz < To)
does not converge to hmz,o(z)). Fix next M = 5M0 and BM = {o} ∪ �a(M)c.

Take z ∈ �a(M0). By choice of M and Lemma 6.11, we have

Pz(TM < To) ≤ M0

M
≤ 1

5
. (25)

Using the strong Markov property of the walk we get

GBM (z, x) = Go(z, x) − Pz(TM < To)
∑

b∈∂�a(M)

Pz(XTM = b | TM < To)Go(b, x). (26)

The definition of the Green function and Corollary 3.3 allow us to write

Go(z, x)

deg(x)
= Pz(Tx < To)Reff(x ↔ o) and a(x, o) = hmx,o(x)Reff(x ↔ o),

which implies that

Go(z, x)

deg(x)a(x, o)
= Pz(Tx < To)

hmx,o(x)
and

Go(b, x)

deg(x)a(x, o)
= Pb(Tx < To)

hmx,o(x)
,

for each b ∈ �a(M). Thus (26) is equivalent to

GBM (z, x)

deg(x)a(x, o)
= Pz(Tx < To)

hmx,o(x)
− Pz(TM < To)

∑
b∈∂�a(M)

Pz(XTM = b | TM < To)
Pb(Tx < To)

hmo,x (x)
. (27)

Hence, by (25) and using (24) twice with w = z and w = b respectively in (27) we
get

1

2
− 2

5
≤ Go,∂M (z, x)

deg(x)a(x, o)
≤ 2,

which is the desired result. ��
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Proof of Proposition 6.10. Just as in the proof of Proposition 6.6, we use the last-exit
decomposition to see

νM (x, b)

a(x, o)
=

∑
z∈∂�a(k)

Go,∂M (x, z)

a(x, o) deg(z)
deg(z)Pz(XTM = b; TM < T+

k ).

This implies that

νM (x, b)

a(x, o)
≤ 20

νM (y, b)

a(y, o)
.

We are left to define 
(R) = M and C = 20 (which thus does not depend on the
graph) to obtain the desired result. ��

Finishing the proof of Theorem 6.8 is now straightforward. Indeed, fix C > 1 as in
Proposition 6.10. Given a (rooted) graph G satisfying the standing assumptions 6.1,
take 
 also as in Proposition 6.10. Let R ≥ 1 and h : �a(
(R)) → R+ harmonic
outside o; with h(o) = 0. Fix x, y ∈ �a(R). By optional stopping, which holds as
�a(
(R)) is finite,

h(x) =
∫

∂�a(
(R))

h(b)ν
(R)(x, b)

≤ C
a(x, o)

a(y, o)

∫
∂�a(
(R))

h(b)ν
(R)(y, b) = C
a(x, o)

a(y, o)
h(y).

This shows the desired result when x, y ∈ ∂�a(R). ��

6.4 (c) implies (a)

Let (VR)R be any sequence of connected subsets of v(G) satisfying o ∈ VR ⊂ VR+1,
|VR | < ∞ for all R and ∪R≥1VR = v(G).

Proposition 6.13 Suppose that the (rooted) graph (G, o) satisfies the anchored Har-
nack inequalitywith respect to the sequence (VR)R≥1 and some (non-random) constant
C: for all h : v(G) → R+ harmonic outside possibly o and such that h(o) = 0,

max
x∈∂VR

h(x) ≤ C min
x∈∂VR

h(x).

In this case, the potential kernel a(x, o) is well defined.

We take some inspiration from [36], although the strategy goes back in fact to a
paper of Ancona [3]. Pick some sequence e = (eR)R≥1 on v(G) satisfying eR ∈ ∂VR .

Lemma 6.14 Suppose G satisfies the anchored Harnack inequality. Let R ≥ 1 and
suppose that h, g are two positive, harmonic functions on �a(
(R)) \ {o} vanishing
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at o. We have

max
x∈VR\{o}

h(x)

g(x)
≤ C2 h(eR)

g(eR)
.

Proof Fix R ≥ 1 and let h, g be as above. Write TR = T∂VR . By optional stopping,
h(o) = 0 and the Harnack inequality, we get

h(x) = Px (TR < To)Ex [h(XTR ) | TR < To] ≤ Ch(eR)Px (TR < To)

for all x ∈ VR \ {o}. Similarly, we obtain

g(x) ≥ 1

C
g(eR)Px (TR < To)

for x ∈ VR \ {o}. Combining this, we find

1

C

h(x)

h(eR)
≤ Px (TR < To) ≤ C

g(x)

g(eR)
,

showing the final result. ��
Proof of Proposition 6.13 We follow closely Section 3.2 in [36]. We will show that
whenever h1, h2 : v(G) → [0,∞) are harmonic functions on v(G)\{o}, vanishing
at o, such that h1(e1) = h2(e1), we have h1 = h2. The result then follows as we can
pick h1(·) and h2(·) to be two subsequential limits of aAn (·, o) (for possibly different
sequences (An) going to infinity), and rescaling so that they are equal at e1.

Consider h1, h2 : v(G) → [0,∞) harmonic functions on v(G) \ {o}, vanishing
at o. Assume without loss of generality that h1(e1) = h2(e1) = 1. By Lemma 6.14
we get that there is some appropriate (large) M which does not depend on h1, h2, for
which

1

M

h1(x)

h1(eR)
≤ h2(x)

h2(eR)
≤ M

h1(x)

h1(eR)
, (28)

for all x ∈ VR and R ≥ 1. It follows that (setting x = e1)

1

M
h1(eR) ≤ h2(eR) ≤ Mh1(eR).

Using this in (28) and letting R → ∞, we obtain

1

M2 ≤ h2(x)

h1(x)
≤ M2, (29)

for all x ∈ v(G) \ {o}. Define recursively, for i ≥ 3,

hi (x) = hi−1(x) + 1

M2 − 1
(hi−1(x) − h1(x)). (30)
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It is straightforward to check that hi is non-negative (as follows from an iterated
version of (29)) and harmonic outside o. Since M did not depend on h1, h2, and
because hi (e1) = 1 also, we obtain that

1

M2 ≤ hi (x)

h1(x)
≤ M2. (31)

On the other hand, it is straightforward to check that the recursion (30) can be solved
explicitly to get:

hi (x) =
(

M2

M2 − 1

)i−2

(h2(x) − h1(x)) + h1(x).

Unless h1(x) = h2(x), this grows exponentially, which is incompatible with (31).
Therefore h1(x) = h2(x). ��
Remark 6.15 The proof above makes it clear that if the potential kernel is uniquely
defined (i.e. if (a) holds), then any function h : v(G) → R+ satisfying �h(x) = 0 for
all x ∈ v(G)\{o} and for which h(o) = 0, is of the form αa(x, o) for some α ≥ 0.

Remark 6.16 If G is reversible, and satisfies the anchored Harnack inequality, then it
satisfies (a) as a consequence of the above. It therefore satisfies the standing assump-
tions: in particular, by Theorem 6.4 holds so it also satisfies the Elliptic Harnack
Inequality (EHI). We have therefore proved that anchored Harnack inequality (AHI)
	⇒ (EHI) at least for reversible random graphs, which is not a priori obvious.

7 Randomwalk conditioned to not hit the root

Let (G, o) be a rooted graph. We will assume throughout this section that it satisfies
the standing assumptions of Definition 6.1, i.e., it is recurrent, the potential kernel is
well defined and the potential kernel tends to infinity. In this section, we will define
what we call the conditioned random walk (CRW), which is the simple random walk
on G, conditioned to never hit the root o (or any other vertex). Of course, a priori
this does not make sense as the event that the simple random walk X will never hit o
has probability zero. However, we can take the Doob a(·, o)-transform and use this to
define the CRW. We make this precise below.

We apply some of the results derived earlier to answer some basic questions about
CRW. For example: is there a connection between the harmonic measure from infinity
and the hitting probability of points (and sets)? What is the probability that the CRW
will ever hit a givenvertex?Do the traces of two independent randomwalks intersection
infinitely often? Does the random walk satisfy a Harnack inequality? Does it satisfy
the Liouville property? The answers will turn out to be yes for all of the above, and
the majority of this section is devoted to proving such statements. These properties
play a crucial role in our proof of one-endedness in the next section.

In a series of papers studying the conditioned random walk ([13, 18, 35], see also
the lecture notes by Popov [34]), the following remarkable observation about the CRW
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(X̂t , t ≥ 0) on Z2 was made. Let

q̂(y) = P(X̂t = y for some t ≥ 0) = P(T̂y < ∞),

then limy→∞ q̂(y) = 1/2, even though asymptotically the conditioned walk X̂ looks
very similar to the unconditioned walk.

One may wonder if such a fact holds in the generality of stationary random graphs
for which the potential kernel is well defined. This question was in fact an inspiration
for the rest of the paper. Unfortunately, we are not able to answer this question in
generality, but believe it should not be true in general. In fact, on random planar
maps in the universality class of Liouville quantum gravity with parameter γ ∈ (0, 2)
(which includes the CRT-mated maps discussed below), we expect

0 < lim inf
y→∞ q̂(y) < 1/2 < lim sup

y→∞
q̂(y) < 1, (32)

with every possible value in the interval between lim inf y→∞ q̂(y) and
lim supy→∞ q̂(y) a possible subsequential limit. See also Conjecture 9.2. We will
prove the upper-bound of (32) and a form of the lower bound on CRT-mated maps
in Theorem 9.1. The fact that every possibly value between lim inf y→∞ q̂(y) and
lim supy→∞ q̂(y) will have a subsequential limit converging to it, holds in general
and will be proved in Proposition 7.7.

7.1 Definition and first estimates

Instead of the graph distance or effective resistance distance, we will work with the
quasi distance a(x, y). Recall the definition �a(y, R) := {x ∈ v(G) : a(x, y) ≤ R}
and �a(R) = �a(o, R). We will fix y = o, but we note that in the random setting, it
is of no importance that we perform our actions on the root (in that setting, everything
here is conditional on some realization (G, o)).

We can thus define the conditioned random walk (CRW), denoted by X̂ , as the so
called Doob h-transform of the simple random walk, with h(x) = a(x, o). To avoid
unnecessarily loaded notations, we will in fact denote a(x) = a(x, o) in the rest of
this section.

To be precise, let p(x, y) denote the transition kernel of the simple random walk
on G. Then the transition kernel of the CRW is defined as

p̂(x, y) =
{

a(y)
a(x) p(x, y), x �= 0

0, else
.

It is a standard exercise to show that p̂ indeed defines a transition kernel. To include
the root o as a possible starting point for the CRW, we will let X̂1 have the law
Po(X̂1 = x) = a(x), and then take the law of the CRW afterwards. In this case, we
can think of the CRW as the walk conditioned to never return to o.
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We now collect some preliminary results, starting with transience, and showing that
the walk conditioned to hit a far away region before returning to the origin converges
to the conditioned walk, as expected.

We will write T̂A for the first hitting time of a set A ⊂ v(G) by the conditioned
randomwalk, and T̂x when A = {x}. We will also denote T̂R = T̂v(G)\�a(R). We recall
that a(·, ·) satisfies a triangle inequality (see Proposition 3.6) and hence we have the
growth condition

a(x) ≤ a(y) + 1 (33)

for two neighboring sites x, y since a(x, y) ≤ 1 in this case.

Proposition 7.1 Let x ∈ v(G)\{o} and X̂ the CRW starting from x. Then

(i) The walk X̂ is transient.
(ii) The process n �→ 1/a(X̂n∧T̂N ) is a martingale, where N = {y : y ∼ o}

Proof The proof of (ii) is straightforward since 1/a(X̂n∧T̂N ) is the Radon–Nikdoym
derivative of the usual simple random walk with respect to the conditioned walk. (i)
then follows from the fact that a(y) → ∞ along at least a sequence of vertices. Indeed,
fix 2 < r < R large and y ∈ v(G)\�a(r + 1). By optional stopping (since 1/a(y) is
bounded)

1

a(y)
= Ey

[
1

a(X̂ T̂R∧T̂r )

]
≥ 1

r + 1
Py(T̂r < T̂R) + 1

R + 1
Py(T̂R ≤ T̂r ).

Rearranging gives

Py(T̂r < T̂R) ≤
1

a(y) − 1
R+1

1
r+1 − 1

R+1

. (34)

Taking R → ∞, we see that Py(T̂r < ∞) ≤ (r + 1)/(a(y)) < 1, showing that the
chain is transient. ��

We now check (as claimed earlier) that the conditioned walk X̂ can be viewed as
a limit of simple random walk conditioned on an appropriate event of positive (but
vanishingly small) probability.

Lemma 7.2 Uniformly over all choices of m ≥ 1 and paths ϕ = (ϕ0, . . . , ϕm) ⊂
�a(R), as R → ∞,

Px ((X0, . . . , Xm)

= (ϕ0, . . . , ϕm) | TR < T+
o ) = Px ((X̂0, . . . , X̂m)

= (ϕ0, . . . , ϕm))(1 + o(1)).
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Proof The proof is similar to [34, Lemma 4.4]. Assume here that x �= o for simplicity.
The proof for x = o follows after splitting into first taking one step and, comparing
this, and then do the remainder. Let us first assume that the end point ϕm of ϕ lies in
∂�a(R). Then

Px ((X̂0, . . . , X̂m) = ϕ) = a(ϕm)

a(ϕ0)
Px ((X0, . . . , Xm) = ϕ).

Since ϕm ∈ ∂�a(R), we know that a(ϕm) ∈ (R, R + 1] due to (33). By optional
stopping, we see

a(x) = Px (TR < To)Ex [a(XTR ) | TR < To],

and also a(XTR ) ∈ (R, R + 1]. We thus find that

Px (TR < To) = a(x)

R
(1 + oR(1)). (35)

Combining this, we get

Px ((X0, . . . , Xm) = ϕ | TR < To) = Px ((X0, . . . , Xm) = ϕ)

a(x)
R(1 + o(1)).

Now let ϕ be an arbitrary path in �a(R) starting from x , then by the Markov property,

Px ((X0, . . . , Xm) = ϕ | TR < To)

= Px ((X0, . . . , Xm) = ϕ)Pϕm (TR < To)/Px (TR < To)

= Px ((X0, . . . , Xm) = ϕ)a(ϕm)/a(x)(1 + o(1))

= Px ((X̂0, . . . , X̂m) = ϕ)(1 + o(1)),

as desired. ��
Remark 7.3 Note that in Lemma 7.2, the paths are allowed to depend on R and may
have a divergent length so long as they remain in �a(R). For an arbitrary exhaustion
(GR)R≥1 of G, we have the following slightly weaker statement: uniformly over all
paths ϕ of fixed length m,

Px ((X0, . . . , Xm) = ϕ | TGc
R

< To) = P((X̂0, . . . , X̂m) = ϕ)(1 + o(1)).

Indeed, if G satisfies the standing assumptions then infx :a(x,o) �=0 a(x) > 0. Take
AR = Gc

R which is a sequence of sets going to infinity. Then

aR(y, o)

aR(x, o)
= a(y, o)

a(x, o)
(1 + o(1))

holds uniformly in y and x , if R → ∞. From this, the statement above follows using
the last few lines of the proof of Lemma 7.2.
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The green function

We can find an explicit expression for the Green function associated to X̂ . To that end,
we define for x, y ∈ v(G)\{o}

Ĝ(x, y) = Ex

[ ∞∑
n=0

1X̂n=y

]
,

which is well defined as X̂ is transient (also, the well-definition would follow from
the proof below, which provides yet another way to see that the CRW is transient).

Proposition 7.4 Let x, y ∈ v(G) \ {o}. Then

Ĝ(x, y)

deg(y)
= a(y, o)

a(x, o)

Go(x, y)

deg(y)
= a(y, o)

a(x, o)

(
a(x, o) − a(x, y) + a(o, y)

)
.

Proof Fix x, y ∈ v(G) \ {o}. For definiteness we take the exhaustion �a(R) of G
here, but we need not to, any exhaustion would work. Define for R ≥ 1 the truncated
Green function:

ĜR(x, y) := Ex

⎡
⎣T̂R−1∑

n=0

1X̂n=y

⎤
⎦ .

We denote AR = (�a(R))c ∪ {o} and will show that

ĜR(x, y) = a(y)

a(x)
GAR (x, y), (36)

from which the result follows when R goes to infinity. Fix R ≥ 1 and notice the
following standard equality, which follows from the Markov property of the CRW:

ĜR(x, y) = Px (T̂y < T̂R)

Py(T̂
+
y < T̂R)

We first deal with the numerator. From the definition of the CRW we get

Px (T̂y < T̂R) = a(y)

a(x)
Px (Ty < TR ∧ To). (37)

Indeed, just sum over all paths ϕ taking x to y, and which stay inside �a(R) \ {o}.
Then each path has as endpoint y, and the probability that the simple random walk
will take any of these paths is nothing but Px (Ty < TR ∧ To).
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We can deal with the denominator in a similar fashion, only this time we note that
the beginning and end point are the same. Hence, the a(y)-terms cancel and we get

ĜR(x, y) = a(y)

a(x)

Px (Ty < To ∧ TR)

Py(T
+
y < To ∧ TR)

= a(y)

a(x)
GAR (x, y).

This shows the first equality appearing in Proposition 7.4 upon taking R → ∞. The
second statement follows from Proposition 3.6. ��

7.2 Hitting probabilities for conditioned walk

Suppose X̂ and Ŷ are two independent CRW’s. We will begin by describing hitting
probabilities of points and sets and use this to prove that the traces of X̂ and Ŷ intersect
infinitely often a.s.

We begin giving a description of the hitting probability of a vertex y by the CRW
started from x . Although it is a rather straightforward consequence of the expression
for the Green function of the CRW, it is still remarkably clean.

Lemma 7.5 Let x, y ∈ v(G) \ {o}, then

Px (T̂y < ∞) = hmy,o(y)Py(Tx < To)

hmx,o(x)
.

Proof Note that for x �= y we have

Ĝ(x, y) = Px (T̂y < ∞)Ĝ(y, y),

so that by Proposition 7.4 and Corollary 3.3 we find

Px (T̂y < ∞) = Ĝ(x, y)

Ĝ(y, y)
= a(y, o)

a(x, o)

Go(x,y)
deg(y)

a(y, o) + a(o, y)

=
hmy,o(y)Reff(o ↔ y)Go(x,y)

deg(y)

hmx,o(x)Reff(o ↔ x)Reff(o ↔ y)

= hmy,o(y)Py(Tx < To)

hmx,o(x)
,

as desired. ��
Since the potential kernel is assumed to be well defined, we also have that Py(Tx <

To) → hmo,x (x) as y → ∞ due to Corollary 3.3, and hence we deduce immediately
the next result.

Corollary 7.6 Write q̂(y) = Po(T̂y < ∞). We have that

lim inf
y→∞ q̂(y) = lim inf

y→∞ hmo,y(y)

123



530 N. Berestycki, D. van Engelenburg

and the same with ‘limsup’ instead of ‘liminf’.

In particular, it is true that on transitive graphs that are recurrent and for which the
potential kernel is well defined, by symmetry one always has q̂(y) → 1

2 . This gives
another proof to a result of [34] on the square lattice once it has been established
that the potential kernel is uniquely defined. There are multiple ways to show the
latter, including using the tools from this paper, e.g., by proving an anchored Harnack
inequality as in Corollary 1.3, or by showing that sublinear harmonic functions are
constant, and showing that the effective resistance grows sublinearly (in fact logarith-
mically).

We can now prove that the subsequential limits of the hitting probabilities q̂(y)
define an interval, as promised before. Note that this proposition is fairly general: it
does not require the underlying graphs to be unimodular, only for the graph to satisfy
the standing assumption (Definition 6.1, i.e. recurrence, existence of potential kernel
and convergence to infinity of the potential kernel).

Proposition 7.7 Let o ∈ V be fixed and q̂(y) = Po(T̂y < ∞).
For each q ∈ [lim inf y→∞ q̂(y), lim supy→∞ q̂(y)], there exists a sequence of

vertices (yn)n≥1 going to infinity such that

lim
n→∞ q̂(yn) = q.

Proof Assume that there exist q1 < q2 such that there are sequences (y1n)n≥1 and
(y2n )n≥1 going to infinity for which limn→∞ q̂(yin) = qi , but there does not exists a
sequence yn going to infinity for which q1 < limn→∞ q̂(yn) < q2. We will derive a
contradiction. We do so via the following claim.

Claim For each ε > 0, there exists an N = N (G, o, ε) such that for each neighboring
vertices x, y /∈ B(o, N ), we have

|̂q(x) − q̂(y)| < ε.

To see this claim is true, we use Lemma 7.5 and Corollary 3.10 to get the existence of
N1 such that

|̂q(z) − hmo,z(z)| <
ε

4
(38)

for all z /∈ B(o, N1). Next, pick N2 such that all z /∈ B(o, N2) haveReff(o ↔ z) > 4
ε
.

Let x, y /∈ B(o, N1 ∨ N2) be neighbors. Due to (33) we have a(x) − a(y) ≤ 1 and by
the triangle inequality for effective resistance also Reff(o ↔ y) ≤ Reff(o ↔ x) + 1.
Hence, using the expression a(x) = hmx,o(x)Reff(o ↔ x) of Corollary 3.3, we
deduce that

hmx,o(x)
Reff(o ↔ y) − 1

Reff(o ↔ y)
− hmy,o(y) ≤ a(x) − a(y)

Reff(y ↔ o)
≤ 1

Reff(o ↔ y)
,
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which implies by choice of N2 that in fact

hmx,o(x) − hmo,y(y) <
ε

2
. (39)

Thus, taking together equations (38) and (39) we obtain

q̂(x) − q̂(y) ≤ ε.

Since x, y are arbitrary neighbors, this implies the claim when taking N = N1 ∨ N2.
By Corollary 3.13, we know that the graph G is one-ended as the potential kernel is

assumed to be well defined. Take ε > 0 so small that q2 > q1 +3ε. By assumption on
q1, q2, we thus have that for each n large enough, there exist two neighboring vertices
x, y /∈ B(o, n) satisfying

q̂(y) > q2 − ε > q1 + 2ε > q̂(x) + ε,

so that q̂(y) > q̂(x) + ε, a contradiction. ��

7.3 Harnack inequality for conditioned walk

Notice that the conditioned randomwalk viewed as aDoob h-transformmay be viewed
as a random walk on the original graph G but with new conductances by

ĉ(x, y) = a(x)a(y)

for each edge {x, y} ∈ e(G). Indeed the symmetry of this function is obvious, as is
non-negativity, and since a is harmonic for the original graph Laplacian �,

π(x) :=
∑
y∼x

ĉ(x, y) =
∑
y∼x

a(y)a(x) = deg(x)a(x)2,

we get that the randomwalk associated with these conductances coincides indeed with
our Doob h-transform description of the conditioned walk.

We can thus consider the network (G, ĉ ), which is transient by Proposition 7.1. It
will be useful to consider the graph Laplacian �̂, associated with these conductances,
defined by setting

(�̂h)(x) =
∑
y∼x

ĉ(x, y)(h(y) − h(x)).

for a function h defined on the vertices of G, although h does not need to be defined
at o. We will say that a function h : v(G)\{o} → R is harmonic (w.r.t. the network
(G, ĉ )) whenever �̂h ≡ 0. This is of course equivalent to

h(x) = Ex [h(X̂1)]
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for each x ∈ v(G) \ {o}.
It might be of little surprise that the anchored Harnack inequality (Theorem 6.8)

implies (in fact, it is equivalent but this will not be needed) to an elliptic Harnack
inequality on the graph G with conductance function ĉ, at least when viewed from the
root (i.e., for exhaustion sequences centered on the root o).

Proposition 7.8 There exists a C > 1 such that the following holds. Suppose the
graph G satisfies the standing assumptions. Let ĥ : v(G)\{o} → R+ be harmonic
with respect to (G, ĉ ). Then for each R ≥ 1,

max
x∈∂�a(R)

ĥ(x) ≤ C min
x∈∂�a(R)

ĥ(x).

Alternatively, the max and the min could be taken over �a(R) instead of ∂�a(R).

Proof Since the graph follows the standing assumptions it satisfies the anchored Har-
nack inequality of Theorem 6.8. Furthermore, ĥ(x) is �̂-harmonic if and only if

h(x) =
{
a(x)ĥ(x) if x �= o

0 if x = o

is harmonic for � away from o. Thus we can apply Theorem 6.8 to it at z = o. Since
also |a(x) − R| ≤ 1 for x ∈ ∂�a(R), this anchored Harnack inequality implies the
anchoredHarnack inequality for ĥ immediately. Toobtain the corresponding inequality
where the extrema are taken on �a(R), we use the maximum principle (see Section
2.1 in [30]) with respect to the ĉ conductances; note that these extrema may not be
attained at o. ��

As a corollary we obtain the Liouville property for X̂ : (G, ĉ) does not carry
any non-constant, bounded harmonic functions. This implies in turn that the invariant
σ -algebra I of the CRW is trivial.

Corollary 7.9 The network (G, ĉ ) satisfies the Liouville property, that is: any function
h : v(G) \ {o} → R that is harmonic and bounded must be constant.

Proof Let h be a bounded, harmonic function with respect to (G, ĉ ). Define the
function

ĥ = h − inf
x∈v(G)

h(x),

which is non-negative and harmonic. Moreover, for each ε > 0, there exists an xε

such that ĥ(xε) ≤ ε. Take Rε so large that xε ∈ �a(Rε). By the Harnack inequality
(Proposition 7.8) we deduce that for all x ∈ �a(Rε),

0 ≤ ĥ(x) ≤ Cĥ(xε) ≤ Cε.

Since ε is arbitrary, and C does not depend on Rε nor ε, this shows the desired result.
��
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7.4 Recurrence of sets

We will say that a set A ⊂ v(G) is recurrent for the chain X̂ whenever there exist
x ∈ v(G) such that

Px (X̂n ∈ A i.o.) = 1,

where i.o. is short-hand for ‘infinitely often’. Since (G, ĉ ) satisfies the Liouville
property, such probabilities are 0 or 1, hence the definition of A being recurrent is
independent of the choice of x . If a set is not recurrent, it is called transient. Since
X̂ is transient, any finite set A is transient too. Notice, by the way, that the definition
above is equivalent to saying that A is recurrent whenever Px (T̂A < ∞) = 1 for all
x ∈ v(G).

We capture next some results, relating recurrence and transience of sets to the
harmonic measure from infinity. Recall Definition 5.2 of δ-good points: x is δ-good
whenever hmx,o(x) ≥ δ.

Lemma 7.10 If A has infinitely many δ-good points for some δ > 0, then A is recurrent
for X̂ .

Proof This follows from a Borel–Cantelli argument. Indeed, fix x ∈ v(G). Let δ be
as in the assumption. Take (gi )∞i=1 a sequence of δ-good points in A, with a(gi ) > i
(which we can clearly find as �a(i) is finite whereas A has infinitely many good
points).

We will define two sequences (Ri )i≥1 and (Mi )i≥1. Set M0 = 0 and R0 = 0.
Suppose we have defined Ri , Mi−1 already. Set ai = a(gRi ) and �i = �a(ai ), and
note that by definition gRi ∈ �i . Take Mi so large (and greater than Ri ) that

Pz(X̂ ever hits �i ) ≤ δ

4
, uniformly over z ∈ �a(Mi )

c (40)

This is possible since �i is finite and X̂ is transient by Proposition 7.1 and more
precisely the hitting probabilities of a finite set converge to zero (see (34)). Next, let
Ri+1 be so large (and greater than Mi ) that

Py(Tx < To)

hmo,x (x)
≥ 1/2, (41)

for y = gRi+1 and all x ∈ �a(Mi ). This is possible because �a(Mi ) is finite and
hitting probabilities converge to harmonic measure from infinity, by Corollary 3.3.
We can also require without loss of generality that gRi+1 ∈ �a(Mi )

c.
Suppose that x ∈ �a(Mi−1) is arbitrary. We first claim that from x it is reasonably

likely that the conditioned walk X̂ will hit y = gRi . Indeed, note that by Lemma 7.5,
and since y is δ-good and (41) holds,

Px (T̂y < ∞) = hmy,o(y)
Py(Tx < To)

hmx,o(x)
≥ δ/2
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On the other hand, conditionally on hitting y = gRi , the conditioned walk X̂ is very
likely to do so before exiting �a(Mi ) (let us call τi this time). Indeed, by the strong
Markov property at τi and (40),

Px (T̂y > τi , T̂y < ∞) ≤ sup
z∈�a(Mi )

c
Pz(X̂ ever hits �i ) ≤ δ/4.

Therefore,

Px (T̂y < τi ) ≥ δ

2
− δ

4
= δ

4
.

Let Ei be the above event, i.e., Ei = {T̂gRi < τi }. Since x ∈ �a(Mi−1) in the above
lower bound is arbitrary, it follows from the strong Markov property at time τi−1
that P(Ei |Fτi−1) ≥ δ/4, where (Fn)n≥0 is the filtration of the conditional walk. By
Borel–Cantelli we conclude immediately that Ei occurs infinitely often a.s. (for the
conditioned walk), which concludes the proof. ��

7.5 Infinite intersection of two conditioned walks

Wefinish this section by showing that two independent conditioned randomwalks have
traces that intersect infinitely often (for simplicity here the CRW’s are conditioned to
not hit the same root o). We manage to prove this under two (different) additional
assumptions. We start by adding the assumption that (G, o) is random and reversible.

Proposition 7.11 Suppose that (G, o) is a reversible random graph, such that a.s. it
is recurrent and a.s. the potential kernel is well defined. Let X̂ , Ŷ be two independent
CRW’s started from x, y ∈ v(G) respectively, avoiding o. Then a.s.

P(|{X̂n : n ∈ N} ∩ {Ŷn : n ∈ N}| = ∞) = 1.

Proof Suppose that (G, o) has infinitely many 1
3 -good vertices, and call the set of

such vertices A := A(G, o). Since there are various sources of randomness here, it is
useful to recall that P the underlying probability measure P is always conditional on
the rooted graph (G, o). Then by Lemma 7.10, we know that

P(|{X̂n : n ∈ N} ∩ A| = ∞) = 1.

Now, consider the set B = {X̂n : n ∈ N}∩A. By definition, every point in B is 1
3 -good.

Since Ŷ is independent of X̂ (when conditioned on (G, o)), we can use Lemma 7.10
again to see that on an event of P-probability 1,

P(|{Ŷn : n ∈ N} ∩ B| = ∞ | X̂) = 1

Taking expectation w.r.t. X̂ we deduce that the traces of X̂ and Ŷ intersect infinitely
often P-almost surely, conditioned on (G, o) having infinitely many 1

3 -good vertices.

123



Harnack inequality and one-endedness of UST... 535

However, Lemma 5.4 implies that, under our assumptions on (G, o), this happens with
P-probability one, showing the desired result. ��

A consequence of the infinite intersection property is that the (random) network
(G, ĉ ) is a.s. Liouville. Therefore we get a new proof of the already obtained (in
Corollary 7.9) Liouville property for the conditioned walk, but this time without using
the Harnack inequality. On the other hand, [7] proved that for planar graphs, the
Liouville property is in fact equivalent to the infinite intersection property and this
results extends without any additional arguments to the case of planar networks.

By Proposition 7.8 and Corollary 7.9 we thus also obtain as a corollary of [7] the
infinite intersection property for planar networks such that the potential kernel tends
to infinity.

Proposition 7.12 Suppose G is a (not necessarily random reversible) planar graph
satisfying the standing assumptions. Let X̂ and Ŷ be two independent CRW’s avoiding
o, started from x, y ∈ v(G) respectively. Then

P(|{X̂n : n ∈ N} ∩ {Ŷn : n ∈ N}| = ∞) = 1.

Remark 7.13 It will be useful for us to recall that the infinite intersection property
implies that one walk intersects the loop-erasure of the other:

P(|{LE(X̂)n : n ∈ N} ∩ {Ŷn : n ∈ N}| = ∞) = 1,

where LE(X̂) is the Loop Erasure of X̂ and X̂ , Ŷ are two independent CRW’s that
don’t hit the root o, started from x, y respectively. See [31] for this result.

8 (a) implies (d): one-endedness of the uniform spanning tree

In this section we show that the uniform spanning tree is one ended, provided that
the underlying graph is unimodular. In particular, we prove that (a) implies (d) in
Theorem 1.1.

Theorem 8.1 Suppose that (G, o) is a reversible, recurrent graph for which the poten-
tial kernel is a.s. well defined and such that a(x) → ∞ along any sequence x → ∞.
Then the uniform spanning tree is one-ended almost surely.

Before proving this theorem, we start with a few preparatory lemmas. We will
write T to denote the uniform spanning tree and begin by recalling the following
“path reversal” for the simple random walk, a standard result. In what follows, fix the
vertex o ∈ v(G), but it plays no particular role other than to simplify the notation.

Lemma 8.2 (Path reversal) Let o, u ∈ v(G). For any subset of paths P

Pu((Xn : n ≤ To) ∈ P | To < T+
u ) = Po((Xn : n ≤ Tu) ∈ P ′ | Tu < T+

o ),

where a path ϕ ∈ P ′ if and only if the reversal of the path is in P .
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See Exercise (2.1d) in [30]. The next result says that the random walk started from
o and stopped when hitting u, conditioned to hit u before returning to o looks locally
like a conditioned randomwalk when u is far away. This is an extension of Lemma 7.2
and its proof is similar.

Lemma 8.3 For each M ∈ N and ε > 0, there exists an L such that for all u /∈ �a(L)

and uniformly over all paths ϕ going from o to ∂�a(M),

Po((X0, . . . , XTM ) = ϕ | Tu < T+
o ) = Po((X̂0, . . . , X̂TM ) = ϕ) ± ε.

Proof Fix M ∈ N and ε > 0. Let ϕ be some path o to �a(M) not returning to o.
Denote by ϕend ∈ ∂�a(M) the endpoint of such a path. By the Markov property for
the simple walk

Po((Xo, . . . , XTM ) = ϕ, Tu < T+
o ) = Po((Xo, . . . , XTM ) = ϕ)Pϕend (Tu < To).

Now, take L so large that uniformly over x ∈ �a(M) with x �= o,

Px (Tu < To)

deg(o)Po(Tu < T+
o )

= a(x) ± ε

By definition, we have that

Po(X1 = ϕ1) = 1

deg(o)
,

yet Po(X̂1 = ϕ1) = a(ϕ1). Therefore, and by definition of the h-transform,

Po((Xo, . . . , XTM ) = ϕ, Tu < T+
o ) = Po((X̂o, . . . , X̂TM ))

1

deg(o)a(ϕend )
Pϕend (Tu < To),

so that after dividing both sides through Po(Tu < T+
o ), we have

Po((Xo, . . . , XTM ) = ϕ | Tu < T+
o ) = Po((X̂o, . . . , X̂TM ) = ϕ) ± ε

as desired. ��
We will say that the graph satisfies an infinite intersection property for the CRW

whenever

P(|{X̂n : n ∈ N} ∩ {LE(Ŷ )n : n ∈ N}| = ∞) = 1 (cIP)

where X̂ and Ŷ are independent.
Next, under the assumption (cIP) it holds that as u → ∞, a simple random walk

started at u is very unlikely to hit LE(Ŷ ) in o. This is the key property which gives
one-endedness of the UST.
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Lemma 8.4 Suppose (cIP) holds, then

lim sup
M→∞

sup
u /∈�a(M)

Pu(XTLE(Ŷ )
= o) = 0,

where X is a simple random walk started at u and Ŷ an independent conditioned walk
started at o.

Proof Let A be any simple path from o to infinity in G. Then

Pu(XTA = o) ≤ Pu({Xn : n ≤ To} ∩ A = {o} | To < T+
u ). (42)

To see this, it is useful to recall that the successive excursions (or loops) from u to
u forms a sequence (Z1, Z2, . . .) of i.i.d. paths (with a.s. finite length). Let N be the
index of the first excursion which touches o. Then the law of ZN , up to its hitting time
of o, is that of Pu(·|To < T+

u ). Furthermore, on the event {XTA = o} it is necessarily
the case that:

• Z1, . . . , ZN−1 avoid A.
• ZN touches A for the first time in o.

When we ignore the first point above, we therefore obtain the upper-bound (42).
By Lemma 8.2, the right hand side is equal to

Po({Xn : n ≤ Tu} ∩ A = {o} | Tu < T+
o ).

Therefore, it suffices to show that this converges uniformly to zero over u ∈ �a(M)c,
as M → ∞.

Let X̂ be a CRW, started at o. Fix ε > 0 and let M be some integer to be fixed later.
Take L = L(M, ε) large enough so that

Po({Xn : n ≤ TM } ∩ A = {o} | Tu < T+
o ) ≤ Po({X̂n : n ≤ TM } ∩ A = {o}) + ε

2
,

(43)

for all u /∈ �a(L), which is possible by Lemma 8.3 (note that L depends only on ε

and M , in particular does not depend on the choice of A). Next, take M so large that

P({X̂n : n ≤ TM } ∩ {LE(Ŷ )n : n ∈ N} �= {o}) ≥ 1 − ε

2
, (44)

where Ŷ is an independent CRW. This is possible by the intersection property (cIP)
as the expression in (44) is increasing in M . Hence for u /∈ �a(L), combining (43)
and (44), conditioning on LE(Ŷ ),

Pu(XTLE(Ŷ )
= o) ≤ ε

As ε was arbitrary, this shows the result. ��
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Wilson’s algorithm rooted at infinity

Recall Wilson’s algorithm for recurrent graphs: let I = (v0, v1, . . .) be any enumera-
tion of the vertices v(G). Fix E0 = {v0} and define inductively Ei+1 given Ei , to be
Ei together with the loop erasure of an (independent) simple random walk started at
vi+1 and stopped when hitting Ei . Set E = E(I ) = ∪i≥0Ei . ThenWilson’s algorithm
tells us that the spanning tree E is in fact a uniform spanning tree (i.e., its law is the
weak limit of uniform spanning trees on exhaustions) and in particular, its law does
not depend on I , see Wilson [43] for finite graphs and e.g. [30] for infinite recurrent
graphs.

Since the conditioned random walk is well defined, we can also start differently:
namely take again some enumeration I = (v0, . . .) of v(G). Define F0 = LE(X̂),
started at v0 say and let Fi+1 be Fi together with the loop erasure of a simple random
walk started at vi+1 and stoppedwhen hitting Fi . Define F = F(I ) = ∪i≥0Fi . It is not
hard to see that again, F is a spanning tree of G (the idea is that the loops formed by
the walk coming back to the origin are erased anyway, so one might as well consider
the conditioned walk). This is called “Wilson’s algorithm rooted at infinity”. A similar
idea was first introduced for transient graphs in [11] and later defined for Z2.

Lemma 8.5 (Wilson’s algorithm rooted at infinity) The spanning tree F is a uniform
spanning tree.

Proof Begin with o and let (zn)n≥0 be some sequence of vertices going to infinity in
G. Apply Wilson’s algorithm with the orderings In := (o, zn, v2, . . .) ≡ v(G), then
the law of the first branch E1 equals LE(Xzn→o) by construction, where Xzn→o is (the
trace of) a random walk started at zn and stopped when hitting o. This law converges
to LE(X̂) as i → ∞ due to first the path-reversal (Lemma 8.2) and them Lemma 8.3.
Since Wilson’s algorithm is independent of the ordering of v(G), the result follows. ��
Orienting the UST. When the UST is one-ended, it is always possible to unambigu-
ously assign a consistent orientation to the edges (from each vertex there is a unique
forward edge) such that the edges are oriented towards the unique end of the tree.
Although we do not of course know a priori that the UST is one-ended, it will be
important for us to show that the tree inherits such a consistent orientation from Wil-
son’s algorithm rooted at infinity. Furthermore, we need to show this orientation does
not depend on the ordering used in the algorithm. To see this, consider an exhaus-
tion Gn of the graph. Perform Wilson’s algorithm (with initial boundary given by
the boundary of Gn) and some given sequence of vertices. When adding the branch
containing the vertex x to the tree by performing a loop-erased walk starting from x ,
orient these edges uniquely from x to the boundary.

We point out that it is not entirely clear a priori that this orientation converges,
or that the limit of the orientation does not depend on the exhaustion (indeed on Z

the oriented tree converges but the orientation depends on the exhaustion, though the
UST itself doesn’t), nor is it immediately clear that the law of the oriented tree doesn’t
depend on the sequence of vertices. But this follows readily from the fact that the loops
at x from a random walk starting from x are all erased, so that the branch containing
x is obtained by loop-erasing a random walk conditioned to hit the boundary before
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returning to x , a process which has a limit as n → ∞, is transient, and does not depend
on the exhaustion used when we assume that the potential kernel is well defined. Thus
the law of this oriented tree, call it 
Tn , has a limit 
T as n → ∞. Obviously, 
T can
be described directly in the infinite graph by adding to the construction of Lemma 8.5
the orientation we get from Wilson’s algorithm. When seen like this, it might not be
immediately clear that the law of 
T doesn’t depend on the ordering of vertices for
Wilson’s algorithm. To see this, observe that the orientation of 
Tn is identical to the
one where all edges of Tn are oriented towards ∂Gn , and the law of Tn itself does
not depend on the ordering, as discussed before. Hence 
Tn does not depend on the
ordering of vertices, and taking limits, neither does 
T .

Note that if x, y are two vertices on a bi-infinite path of 
T , then it makes sense to
ask if y is in the past of x or vice-versa: exactly one of these alternatives must hold.

We are now ready to start with the proof of Theorem 8.1.

Proof of Theorem 8.1 Notice that if G is a graph satisfying the standing assumptions
(Definition 6.1) and ismoreover planar or randomandunimodular then (almost surely),
G satisfies the intersection property for CRW (cIP) due to Propositions 7.12 and 7.11
respectively.

Suppose (G, o) is reversible, and satisfies the standing assumptions a.s. For a vertex
x of G, consider the event A2(x) that there are two disjoint and simple paths from x
to infinity in the UST T , in other words there is a bi-infinite path going through x .
Note that it is sufficient to prove

P(A2(x)) = 0

for each x ∈ v(G) a.s., where we remind the reader that here P is conditional given
the graph (i.e., it is an average over the spanning tree T ). Indeed, for the tree T to
be more than one-ended, there must at least be some simple path in T which goes
to infinity in both directions. By biaising and unbiaising by the degree of the root to
get a unimodular graph, it is sufficient to prove that P(A2(o)) = 0 a.s. Therefore it
is sufficient to prove P(A2(o)) = 0, where we remind the reader that P is averaged
also over the graph. We first outline the rough idea before giving the details. Suppose
for contradiction that P(A2(o)) ≥ ε > 0. If this is the case then it is possible for both
A2(o) andA2(x) to hold simultaneously, for many other vertices – including vertices
far away from o. However, T is connected (since G is recurrent) and by Theorem
6.2 and Proposition 7.1 in [2], T is at most two-ended. Therefore the bi-infinite paths
going through x and omust coincide: essentially, the bi-infinite path containing omust
be almost space-filling.

Suppose x is in the past of o (which we can assume without loss of generality by
reversibility). UsingWilson’s algorithm rooted at infinity to sample first the path from
o and then that from x , the event A2(o) ∩ A2(x) requires a very unlikely behaviour:
namely, a random walk starting from x must hit the loop-erasure of the conditioned
walk starting from o exactly at o. This is precisely what Lemma 8.4 shows is unlikely,
because of the infinite intersection properties.

Let us now give the details. Given G, we sample k independent random walks
(X1, . . . , Xk) from o, independently of T , where k = k(ε) will be chosen below.
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Observe that by stationarity of (G, o), we have for every n ≥ 0,

P(A2(X
i
n)) = P(A2(o)) ≥ ε.

First we show that we can choose k such that for every n, there is i and j such that
A2(Xi

n) ∩A2(X
j
n) holds with P- probability at least ε/2. Indeed fix n ≥ 0 arbitrarily

for now, write Ei = A2(Xi
n). Then by the Bonferroni inequalities,

P(

k⋃
i=1

Ei ) ≥
k∑

i=1

P(Ei ) −
∑

1≤i �= j≤k

P(Ei ∩ E j )

so that

∑
1≤i �= j≤k

P(Ei ∩ E j ) ≥ kε − P(

k⋃
i=1

Ei ) ≥ kε − 1.

Choose k = �2/ε�, then we deduce that for some 1 ≤ i < j ≤ k,

P(Ei ∩ E j ) ≥
(
k

2

)−1

.

By stationarity (rerooting at the endpoint of the i th walk), and the Markov property
of the walk, this implies

P(A2(o) ∩ A2(X2n)) ≥
(
k

2

)−1

. (45)

When A2(o) ∩A2(X2n) occurs, both o and X2n are on some bi-infinite path, the two
paths must coincide. By symmetry (i.e., reversibility) and invariance of the oriented
tree 
T with respect to the ordering of vertices,

P(A2(o) ∩ A2(X2n); X2n ∈ Past(o)) ≥ δ := (1/2)

(
k

2

)−1

. (46)

Let Ŷ denote a conditioned walk starting from o and let LE(Ŷ ) denote its loop-erasure,
and let Z be a randomwalk starting fromadifferent vertex x . Now, pickM large enough
that for any x ∈ �a(M)c

Px (ZTLE(Ŷ )
= o) ≤ δ/3, (47)

which we may by Lemma 8.4. Even though M is random (depending only on the
graph), observe that as n → ∞,

P(X2n ∈ �a(M)) → 1
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sinceG is a.s. null recurrent (as is any recurrent infinite graph). Therefore by dominated
convergence,

P(X2n ∈ �a(M)) → 1.

It follows using (46) that we may choose n large enough that

P(A2(o) ∩ A2(X2n) ∩ {X2n ∈ Past(o)} ∩ {X2n /∈ �a(M)}) ≥ 2δ/3. (48)

To conclude, we pick n as above, and use Wilson’s algorithm rooted at infinity
(Lemma 8.5) by first sampling the path from o (which is nothing else by LE(Ŷ )

and then sampling the path in 
T from x = X2n , by loop-erasing a random walk Z
from this point, stopped at the time T where it hits LE(Ŷ ). As mentioned above, When
A2(x) andA2(o) occur and x is in the past of o, since T is at most two-ended (by [2]),
it must be that ZT = o. (If we do not specify that x ∈ Past(o) there might otherwise
also be the possibility that x itself was directly on the loop-erasure of the conditioned
walk). Hence, using (48) and (47),

2δ/3 ≤ P(A2(o) ∩ A2(X2n) ∩ {X2n ∈ Past(o)} ∩ {X2n /∈ �a(M)})
≤ E(1{ZT =o}1{X2n /∈�a(M)})
≤ E(PX2n (ZT = o)1X2n /∈�a(M)) ≤ δ/3,

after conditioning on X2n . This is a contradiction, and concludes the proof of Theo-
rem 8.1 (and hence also that (a) implies (d) in Theorem 1.1). ��

Furthermore, (d) is already known by [11, Theorem 14.2] to imply (b), which we
have already shown is equivalent to (a). This finishes the proof of Theorem 1.1.

9 Harmonic measure from infinity onmated-CRTmaps

Let P denote the law of the whole plane mated-CRT map G = G1 with parameter
γ ∈ (0, 2) and with root o. We will not give a precise definition of these maps here and
instead refer the reader for instance to [17] or [9]. Since E[deg(o)] < ∞, the potential
kernel is well defined (either because it is planar, or because it is strictly subdiffusive).
We now discuss a more quantitative statement concerning the harmonic measure from
infinity which underlines substantial differences with the usual square lattice.

We will write Beuc(x, n) for the ball of vertices z ∈ v(G) such that the Euclidean
distance between z and x (w.r.t. the natural embedding) is at most n.

Theorem 9.1 There exists a δ = δ(γ ) > 0 such that the following holds. Almost
surely, there exits an N ≥ 1 such that for all x /∈ Beuc(N ) we have that

hmo,x (x) ≤ 1 − δ.

123



542 N. Berestycki, D. van Engelenburg

In particular,

P
(
1

2
≤ lim sup

y→∞
q̂(y) ≤ 1 − δ

)
= 1.

In fact, we expect the following stronger result to hold:

Conjecture 9.2 For some (nonrandom) a, b > 0, almost surely

a = lim inf
y→∞ q̂(y) ≤ lim sup

y→∞
q̂(y) = 1 − b. (49)

In fact, sharp values for a, b can be conjectured by considering the minimal and
maximal exponents for the LQG volume of a Euclidean ball of radius ε in a γ -
quantum cone, which all decay polynomially as ε → 0 (see Lemma A.1 in [9]). We
also conjecture that this holds for other random planar maps in the universality class
of Liouville quantum gravity with parameter γ ∈ (0, 2), such as the UIPT.

Remark 9.3 It is interesting to askwhat happens for general unimodular random planar
maps forwhich the potential kernel is uniquely defined, but here the conjecture does not
hold in general. Take for example the canopy tree, i.e., the local limit in the Benjamini–
Schramm sense of a sequence of binary trees of height n, with uniformly chosen root
vertex. The canopy tree can be described as semi-infinite spine, fromwhich finite trees
hang at each vertex. Note that it is unimodular as a Benjamini–Schramm limit, and has
a uniquely defined harmonic measure from infinity. (This can for instance be deduced
from Theorem 1.1 since the graph is a tree, so the uniform spanning tree coincides
with the canopy tree itself, which is clearly one-ended, or can be seen directly in a
number of ways.) However, if we fix a vertex x not on the spine, and let y be on
the spine, removing y disconnects x from infinity, so hmx,y(x) = 0. This shows that
Conjecture 9.2 cannot hold for this example.

Based on this we conjecture thatmax(a, b) < 1/2. This would show a stark contrast
with the square lattice Z2 where we recall that a = b = 1/2 (see e.g. [34]). The upper
bound in (49) is of course stated in Theorem 9.1 so that the lower bound in (49) is what
we are asking about.While we are not able to prove this, wemay use the unimodularity
of the law P is unimodular, to prove a slightly weaker lower bound:

Corollary 9.4 Let δ > 0 as in the previous theorem. Then, almost surely, the asymptotic
fraction of δ-good points equals one or in other words, a.s.,

lim inf
n→∞

1

|B(n)| |{x ∈ B(n) : hmo,x (x) < δ}| = 0.

Proof Let P̃ denote the law P after degree biasing. We write (G̃, õ) for the random
graph with law P̃.

On the one hand, by reversibility of P̃, we know that

P̃(hmõ,Xn (Xn) > 1 − δ) = P̃(hmõ,Xn (o) > 1 − δ) = P̃(hmõ,Xn (Xn) < δ).
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On the other hand, by Theorem 9.1 and the reversed Fatou’s lemma, we have

lim sup
n→∞

P̃(hmõ,Xn (Xn) > 1 − δ) = 0,

thus

lim
n→∞ P̃(hmõ,Xn (Xn) < δ) = 0.

The result now follows by contradiction: indeed, suppose thatwith positive probability,
there is a positive asymptotic fraction of vertices x ∈ B(n) which have hmõ,x (x) < δ,
then the random walk will spend a positive fraction of time in these points, giving a
contradiction. ��

9.1 Preliminaries and known results

We collect some known results about mated-CRTmaps which are needed for the proof
of Theorem 9.1.

Lemma 9.5 There exist C = C(γ ) < ∞ and α = α(γ ) > 0, such that for all n ∈ N,

P
(
1

C
log(n) ≤ Reff(o ↔ ∂Beuc(o, n)) ≤ C log(n)

)
≥ 1 − 1

log(n)α
.

Proof This is Proposition 3.1 in [16]. ��
Lemma 9.6 There exists a C = C(γ ) < ∞ and α = α(γ ) > 0 such that with
P-probability at least 1 − n−α , for all x ∈ Beuc(3n) and all s ∈ [1/3, 1]

max
z∈∂Beuc(x,sn)

h(z) ≤ C min
x∈Beuc(x,sn)

h(z)

whenever h : Beuc(x, 3n) ∪ ∂Beuc(x, 3n) → R+ is harmonic outside of possibly x
and ∂Beuc(x, 3n).

Proof This is the content of Proposition 3.8 [9]. ��
Lemma 9.7 There exist C = C(γ ) < ∞ and α = α(γ ) such that with P-probability
at least 1 − n−α , for all x ∈ Beuc(3n),

Reff(x ↔ ∂Beuc(x, n)) ≥ 1

C
log(n).

Proof This follows from Lemma 4.2 in [9]. ��
Proposition 9.8 Let (G, o) have the law of the mated-CRT map with parameter γ .
There exist constants C = C(γ ) and α = α(γ ) > 0 such that
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P
( 1

C
log(n) ≤ a(x, o) ≤ C log(n) for all x ∈ Beuc(o, 2n) \ Beuc(o, n)

)
≥ 1 − 1

log(n)α
.

Proof of Proposition 9.8 By Lemma 3.5 we know that for each n ∈ N

Reff(o ↔ ∂Beuc(o, 2n)) = Eo[a(XT2n , o)]

(where we recall that Eo is the expectation solely on the random walk). Now, fix n and
let En be the intersection of both events in Lemmas 9.5 and 9.6, which are properties
of the graph only. Note that En holds with high probability over the mated-CRT maps
(possibly by suitably changing the values of the constants).

Then, as x �→ a(x, o) is harmonic outside o, conditional on E2n , we know that
whenever x ∈ Beuc(o, 2n)\Beuc(o, n),

1

C
a(XT2n , o) ≤ a(x, o) ≤ Ca(XT2n , o),

so that taking (random walk) expectations,

1

C2 log(n) ≤ a(x, o) ≤ C2 log(n).

This is the desired result. ��

9.2 Proof of Theorem 9.1

Take throughout the proof the constants C, α such that Lemmas 9.7, 9.6 and 9.5 and
Proposition 9.8 hold simultaneously with the same constants.

Proof The second statement follows immediately from the first statement, from the
identity

lim sup
y→∞

q̂(y) = lim sup
y→∞

hmy,o(y),

in Corollary 7.6, and from the fact that for each ε > 0, there are infinitely many
( 12 − ε)-good vertices by Lemma 5.4. We are thus left to prove the first statement.

To that end, fix N0 so large that for all n ≥ N0,

n2/α

(n − 1)2/α
≤ 3.

Define next for m ≥ 1 the event

Em the event that a(x, o) ≤ C log(m) for all x ∈ Beuc(m). (50)
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By Proposition 9.8, we know that P(Ec
m) ≤ log(m)−α and therefore,

∞∑
n=1

P(Ec
en2/α

) < ∞.

ByBorel–Cantelli, this implies that there is some (random) N1 = N1(G, o) < ∞ such
that E

en2/α
occurs for all n ≥ N1. Suppose without loss of generality that N1 ≥ N0

almost surely. In this case, it follows that

a(x, o) ≤ C log |x | for all x /∈ Beuc(o, N1). (51)

Next, define the events

Hm the event that for all x ∈ Beuc(3m) \ Beuc(m) and for all

h : v(G) → R+ harmonic outside of x,

max
z∈∂Beuc(x,|x |)

h(z) ≤ C min
z∈∂Beuc(x,|x |)

h(z)

and

Rm the event that for all x ∈ Beuc(3m),Reff(x ↔ ∂Beuc(x,m)) ≥ 1

C
log(m).

By Lemmas 9.6 and 9.7 respectively, it holds that P(Hc
m) ≤ m−α and P(Rm) ≤ m−α .

Therefore, using again a Borel–Cantelli argument, there exists some (random) N2 ≥
N1 ≥ N0 such that almost surely, for all n ≥ N2 the events Hn2/α and Rn2/α occur. In
particular, we know that almost surely,

Reff(x ↔ ∂Beuc(x, |x |)) ≥ 1

C
log |x | for all x /∈ Beuc(o, N2) (52)

and almost surely

For all x /∈ Beuc(o, N2), for all h : v(G) → R+ harmonic outside of x

max
z∈∂Beuc(x,|x |)

h(z) ≤ C min
z∈∂Beuc(x,|x |)

h(z). (53)

Take x /∈ Beuc(o, N2). Assume without loss of generality that hmo,x (x) ≤ 1
2 , as

otherwise we are done. Then

Reff(o ↔ x) ≤ 2hmo,x (x)Reff(o ↔ x) = 2a(x, o) ≤ 2C log |x |, (54)

where we used Corollary 3.3 in the equality and (51) in the last inequality.
Furthermore, as z �→ a(z, x) is harmonic outside of x , applying (53) first and then

(52) gives

a(o, x) ≥ 1

C
Ex [a(XTBeuc(x,|x |) , x)] = 1

C
Reff(x ↔ ∂Beuc(x, |x |)) ≥ 1

C2 log |x |.
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Combining the last equation with (54), we find

hmo,x (o) = a(o, x)

Reff(o ↔ x)
≥ 1

2C3 ,

which shows the final result. ��
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