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Abstract
The times of Brownian local minima, maxima and their union are three distinct exam-
ples of local, stationary, dense, random countable sets associated with classicalWiener
noise.Being localmeans, roughly, determined by the local behavior of the sample paths
of the Brownian motion, and stationary means invariant relative to the Lévy shifts of
the sample paths. We answer to the affirmative Tsirelson’s question, whether or not
there are any others, and develop some general theory for such sets. An extra ingre-
dient to their structure, that of an honest indexation, leads to a splitting result that is
akin to the Wiener–Hopf factorization of the Brownian motion at the minimum (or
maximum) and has the latter as a special case. Sets admitting an honest indexation are
moreover shown to have the property that no stopping time belongs to them with pos-
itive probability. They are also minimal: they do not have any non-empty proper local
stationary subsets. Random sets, of the kind studied in this paper, honestly indexed
or otherwise, give rise to nonclassical one-dimensional noises, generalizing the noise
of splitting. Some properties of these noises and the inter-relations between them are
investigated. In particular, subsets are connected to subnoises.

Keywords Random countable set · Two-sided Brownian motion · Locality ·
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1 Introduction

1.1 Motivation and focus

Random, dense, countable sets, like the set of times at which a two-sided Brownian
path attains a local minimum, are usually considered to be pathological objects [17,
29]. There is no good measurable structure on the space of such sets, meaning that
there are no interesting events to be described concerning such a random set: “Could
you imagine a function of the set of all Brownian local minimizers that gives a non-
degenerate random variable?” [27, p. 189].

One way around the measurability issue is to use some enumeration of the points
belonging to the random set in question, by a countable family of random vari-
ables. For the case of (here and always: the times of) the Brownian local minima
we may indeed set, for each Brownian path ω : R → R, and for rational p < q,
X p,q(ω) := argmin{ω(t) : t ∈ [p, q]}. With probability one with respect to
Wiener measure, X p,q(ω) is well-defined for every pair (p, q), and a.s. the set
M(ω) := {X p,q(ω) : (p, q) ∈ Q

2, p < q} is precisely the set of times at which
ω attains a local minimum. Note the X p,q(ω) do not take distinct values, and we do
not require this of our enumeration. The countable dense set M is local in that for
all real s < t we have that M ∩ (s, t) may be enumerated by a sequence of random
variables each of which is measurable with respect to the increments of the Brownian
path between times s and t . M is also stationary in that for any real h, for almost
every ω with respect to Wiener measure, the set M(ω) − h is almost surely equal to
M(�hω), where �h(ω) := ω(h + ·) − ω(h) is the Lévy shifted path.

Brownian local maxima give another example of a random, dense, countable set
“of the Wiener noise1” which is local and stationary. A third example is obtained by
taking the union of these two. Tsirelson asked [27, Question 2e3] (and again in [29,
Remark 9.11]), are there any others. By giving further examples, we show that the
answer to this question is to the affirmative and that, moreover, there are at least a
continuum many of them, all pairwise a.s. disjoint.

In the light of our additional examples, we see that such sets are not as rare as might
have been originally thought, and we wish to explore their general properties in more
depth. Random dense countable subsets have been treated in the literature previously,
namely in [17, 29], but in these works the focus is on intrinsic properties of the sets,
whereas we wish to study a coupling between a random set and a Brownian motion.
Thus, the Brownian maxima, minima and extrema are different objects for us, whereas
according to the definition and main result of [29] they are all equal in distribution;
evidently so for the maxima and minima, more surprisingly for the extrema.

1 The designation “Wiener noise” will be explained in technical terms in Sect. 7. It will not be relevant for
us to do so before then.
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Stationary local random countable sets over the Wiener noise 1065

Returning to Tsirelson’s question, the initial motivation for the introduction of
stationary local random countable sets was to obtain new one-dimensional noises in
the sense of [27, 28]. One such (nonclassical) noise is got by attaching independent
equiprobable random signs to each Brownian local minimum, which leads toWarren’s
noise of splitting [31]. “New examples [of stationary local random countable sets]
could lead to new noises” [27, just after Question 2e3]. A similar construction applies
generally and we explore these noises in relative detail as well.

1.2 Article structure, highlights and roadmap to results

Section 2 contains some definitions and notation related to two-sided Brownian
motion. Then, in Sect. 3 we begin by formally defining random countable sets with
various properties. We observe that a stationary, local, random countable set must be
either dense or empty (Proposition 3.14) and then apply the main result of Tsirelson,
[29], to establish that

(1) all dense such sets are equal in law to the realization of the range of an i.i.d.
sequence of random variables whose law is equivalent to Lebesgue measure
(Proposition 3.15);

(2) any event concerning such a set has probability zero or one (Proposition 3.19).

This makes plain the pathological character of stationary local random countable sets
alluded to above. In particular it renders useless any approach to random countable
sets based on hitting probabilities and intensity measures [12].

On the “positive” side we establish in Proposition 3.17 the important technical fact
that any stationary random countable setM admits a version that is perfectly stationary
in the sense that M = h+M(�h) for all h ∈ R. It allows us to deduce that any station-
ary local random countable set is a.s. equal to the visiting set {t ∈ R : �t ∈ A} by the
process of the Lévy shifts (�t )t∈R of some measurable event A of path space, which
belongs to the germ σ -field around zero (the A, naturally, depends onM). For instance,
in the case of the Brownian local minima A = {0 is a (time of) local minimum}. The-
orem 3.31 has the precise statement. However we have not been able to identify any
good criteria for determining whether a given set A belonging to the germ σ -field
generates a non-empty countable random set; this remains a natural open question.

In Sect. 4, which can be read largely independently of Sect. 3, we settle Tsirelson’s
question, referred to in Sect. 1.1, by providing a family (M (d))d∈(0,2) of stationary local
random countable sets over the Wiener noise satisfying M (d1) ∩ M (d2) = ∅ a.s. for
d1 �= d2 from (0, 2) (Propositions 4.3 and 4.9). Specifically, for each d ∈ (0, 2), M (d)

comes from collecting the last zeros of squared Bessel processes Z (d) of dimension
d, started at every rational point p of the real line and driven by the post-p increments
of the underlying Brownian motion. The case d = 1 corresponds to Z (1) being the
square of the Brownian motion reflected in its running infimum and gives for M (d)

the local minima of the Brownian motion.
The examples of Sect. 4 suggest the study of an extra property (which all the M (d),

d ∈ (0, 2), share) of a random set M admitting what we call an honest indexation,
extending the notion of an honest time, see [8, Chapter XX]. Namely, an honest
indexation for a randomsetM consists of a family of randomvariables (τs,t ) indexedby
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real numbers s < t with the following properties: (i) the τs,t , s < t rational, precisely
exhaust M a.s.; (ii) each τs,t takes values in (s, t) and is measurable relative to the
increments of theBrownianmotion between times s and t ; (iii) τh+s,h+t = h+τs,t (�h)

a.s. for all real h and s < t ; and (iv) τs,t = τu,v a.s. on {τs,t ∈ (u, v)} for all real
s ≤ u < v ≤ t . For random sets admitting an honest indexation we can say much
more about their general structure. We explore this in Sect. 5. Two significant results,
described only informally here, are

(1) a splitting into independent pieces at an exponentially sampled honest indexator,
generalization of the Wiener–Hopf factorization at the minimum before an inde-
pendent exponential random time in the case of the local minima (Theorem 5.7);

(2) the fact that honestly indexed sets a.s. do not meet the graph of any stopping time
(Theorem 5.9).

The first of these properties leads to the establishment of the fact that honestly indexed
random sets are minimal in that they do not contain any proper dense stationary local
random countable subset. Minimality is the subject of Sect. 6 and the preceding result
the reader will find in Corollary 6.4. A simple consequence of Corollary 6.4 is that
the local extrema, unlike the local minima and the local maxima, cannot be honestly
indexed.

Finally, in Sect. 7 we turn to the theory of noises. Every dense local stationary ran-
dom countable set M engenders a non-classical one-dimensional noise NM . Loosely
speaking, NM consists of attaching to each point in M an independent equiprobable
random sign. The classical (stable) part and the first superchaos of NM are identified
(Proposition 7.9). In Theorem 7.11 we characterize when two such noises are isomor-
phic and are able to conclude that the noises attached to the M (d), d ∈ [1, 2), are
pairwise non-isomorphic. Subnoises of an NM are shown to correspond to stationary
local random countable subsets of M (Theorem 7.17). Together with the results on
minimality it entails that the noises attached to the M (d), d ∈ (0, 2), have for their
only proper non-void subnoise the classical Wiener noise. In particular this is true of
Warren’s noise of splitting mentioned above.

1.3 Miscellaneous general notation

We agree to denote byA/B the set ofA/B-measurable maps. Also, to writeQ[. . .] for
the expectationEQ[. . .] and Z�Q for the law of a random element Z under a probability
Q relative to a σ -field on the codomain of Z that shall be mentioned explicitly or will
be understood from context. More generally, μ[g], resp. g · μ = (A �→ μ[g; A]),
will denote the definite (resp. indefinite) integral of a measurable numerical g against
a measure μ. ↑ (resp. ↓) means nondecreasing (resp. nonincreasing). (2X )fin are the
finite subsets of a set X and [n] := {1, . . . , n} (= ∅ when n = 0) for n ∈ N0. A
process Z stopped at a random time S is written Z S , as usual. For a topological space
X , BX is its Borel σ -field. Lastly, given a map g into a measurable space (E, E) we
write g−1(E) := {g−1(F) : F ∈ E} or just σ(g) := g−1(E) (E being then understood
from context) for the pull-back of E along g (the generated σ -field).
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Stationary local random countable sets over the Wiener noise 1067

2 Preliminaries

The base sample space shall be �0 := {ω ∈ R
R : ω(0) = 0 and ω is continuous}

endowed with the completed (two-sided) Wiener measure W. Thus the domain of
W, which we denote G, is the completion under Wiener measure of the Borel σ -
field B�0 on �0 for the locally uniform topology. We may recall that B�0 is also
generated by the family B = (Bt )t∈R of the canonical projections on �0. To dispel
any lingering doubts as to the meaning of “two-sided Wiener measure”: B|[0,∞) and
B−·|[0,∞) are independent standard Brownian motions under W, which specifies W
uniquely. For extended-real s < t , Fs,t will denote the sigma-field generated by the
increments of B between the times s and t and by W−1({0, 1}), the W-trivial sets.
The family F = (Fs,t )(s,t)∈[−∞,∞]2,s<t is the so-called (noise-)factorization of the
Wiener process B. Two “one-sided” subfamilies thereof, F→ := (F−∞,t )t∈[0,∞) and
F0,→ := (F0,t )t∈[0,∞) will be used quite often. The symbol l shall denote Lebesgue
measure on the Borel sets of R. For extended-real a ≤ 0 ≤ b, a �= b, we write
�0|(a,b) := {ω|(a,b) : ω ∈ �0} endowed with the σ -field of evaluation maps that we
shall designate B�0|(a,b) ; similarly for �0|[a,b) and �0|(a,b].

On occasion—especially when “taming the continuum” using stopping times—it
will serve us well to work with the one-sided usualWiener space�0 := {ω ∈ R

[0,∞) :
ω continuous and ω(0) = 0}, endowedwith the completionH of its Borel σ -fieldB�0

under the completed Wiener measure P, canonical process C = (Ct )t∈[0,∞), and P-
completed natural filtration U = (Ut )t∈[0,∞) of C . Then the symbol L will be used
to denote Lebesgue measure on the Borel sets of [0,∞). However, by and large, the
two-sided setting shall be more natural for us to work in.

For the reader’s convenience of recollection of notation later on, let us display the
more significant objects pertaining to one and to the other landscape described above,
side by side:

((�0,G,W); B,F) and l vis-à-vis ((�0,H, P);C,U) and L .

Some further concepts that we shall find useful throughout follow.

Definition 2.1 For u ∈ R, the map �u : �0 → �0 is the Lévy shift: �u(ω)(t) :=
ω(u + t) − ω(u) for t ∈ R, ω ∈ �0. We write � := (�u)u∈R for short. When u ∈
[0,∞) by an abuse of notation we shall use the same symbol�u for the corresponding
map on �0: �u(ω)(t) := ω(u + t) − ω(u) for t ∈ [0,∞), ω ∈ �0.

Since B is just the identity on �0, �u = �u B (similarly, �u = �uC when u ≥ 0)
and we will be quite liberal as to which of the two we shall find more convenient to
use.

Remark 2.2 The Lévy shifts are measure-preserving for W by stationary independent
increments of B and the fact that B0 = 0 (the same for P, C in lieu of W, B). Note
also the identities �u ◦ �v = �u+v for real u and v and �0 = id�0 = B (the same
with just nonnegative u, v and �0 = id�0 = C for the space �0). Thus we have an
indexed group (�u)u∈R of W-preserving bi-measurable bijections (just a semigroup
of P-preserving measurable maps in the case of �0).
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1068 M. Vidmar, J. Warren

Definition 2.3 A subset A ⊂ �0 is shift-invariant if �−1
v (A) = A for all v ∈ R. A

subset A ⊂ �0 is shift-closed if A ⊂ �−1
v (A) for all v ∈ [0,∞).

To get some feeling for the concepts of Definition 2.3 we give a couple of examples
and make some elementary observations.

Example 2.4 The event {limt→∞ Bt = ∞} is shift-invariant and W-almost certain.

Example 2.5 The event E := {0 is a local minimum} is W-negligible and not shift-
invariant, in fact∪h∈R�−1

h (E) is equal to the set of paths each of which has at least one
local minimum and this set has full W-measure. For F := {B|[0,ε) ≤ 0 or B|(−ε,0] ≤
0 for some ε > 0}, which is stillW-negligible we even have ∪h∈R�−1

h (F) = �0.

(1) Suppose A ⊂ �0 is closed for the Lévy shifts �t , t ∈ R, i.e. suppose that
A ⊂ �−1

t (A) for all t ∈ R. Let t ∈ R. Then A ⊂ �−1
t (A) but also A ⊂

�−1−t (A) = �t (A), hence �−1
t (A) ⊂ A and thus A = �−1

t (A). Therefore A is
shift-invariant.

(2) If A ⊂ �0 is shift-closed (resp. and P-almost certain), then (B|[0,∞))
−1(A) is

closed for the Lévy shifts �t , t ∈ [0,∞) (resp. and W-almost certain). This is
because (�t B)|[0,∞) = �t (B|[0,∞)) for all t ∈ [0,∞) (note, the �t on the left-
hand side acts on �0, the one on the right-hand side—on �0), resp. and because
(B|[0,∞))�W = P.

(3) Suppose A ⊂ �0 is closed for the Lévy shifts �t , t ∈ [0,∞) [or just t belong-
ing to [0, ε) for some ε > 0, leaving the argument in this case to the reader],
and W-almost certain. Then D := ∩n∈Z�−1

n (A) is W-almost certain and is
contained in A. Furthermore, for t ∈ R, ω ∈ D and then for all n ∈ Z,
�n�tω = �t−�t��n+�t�ω ∈ A, viz. �tω ∈ D. By (1) we deduce that D is
shift-invariant.

Remark 2.6 By independent increments of B, trivially, limu→±∞ W(�−1
u (A)∩ A′) =

W(A)W(A′) (the limitmaybeonly over some set ofu ∈ R that is unbounded)whenever
A and A′ are two events depending only on the increments of B in a bounded interval.
By approximation and the fact that the Lévy shifts�u , u ∈ R, are measure-preserving
forW, the limit prevails for all A and A′ from G. If an A ∈ G is shift-invariant andmore
generally if merely A = �−1

v (A) a.s.-W for a non-zero v ∈ R (so that A = �−1
nv (A)

a.s.-W for all n ∈ Z), then taking A′ = �0\A shows thatW(A) ∈ {0, 1}: the zero-one
law for shift-invariant events.

3 Random countable sets over theWiener noise: locality and
stationarity

3.1 Major concepts

We will want to measurably enumerate our random sets. Because we do not wish
a priori to insist that the sets are non-empty, but still want to list them through a
countably infinite sequence of random variables, we introduce for convenience a coffin
state † /∈ R, whose value is ignored when the range of such a sequence is considered
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Stationary local random countable sets over the Wiener noise 1069

as a subset of R. Such a coffin state also comes in handy when we “localize” an
enumeration. To wit:

Definition 3.1 For s < t from [−∞,∞], (s, t)† := (s, t) ∪ {†} is endowed with the
σ -fieldB(s,t)† := σ(B(s,t) ∪{{†}}), whereB(s,t) are the Borel sets of the interval (s, t).
We understand u±† := †±u := † for u ∈ R. For a sequence s = (si )i∈N with values
in R

†: [s] := {s(i) : i ∈ N}\{†} is the effective range of s; for extended-real a < b,
the sequence s|(a,b) = (s|(a,b)(i))i∈N given by s|(a,b)(i) := s(i) if s(i) ∈ (a, b) and
s|(a,b)(i) := † otherwise, is s localized to the interval (a, b) of R.

We now define random countable sets over the Wiener noise, their locality and
(various concepts of) stationarity, indicating the presence of these notions in (some of
the) existent literature en route.

Definition 3.2 Let M : �0 → 2R—a random set—and let A be a sub-σ -field of G.
A (resp. A-) measurable enumeration for M is a sequence S = (Si )i∈N of (resp. A-)
measurable random variables with values in R

†, which satisfies M = [S] a.s.-W. Such
an enumeration is said to be perfect if the a.s.-W qualifier can be dropped. M is a
random countable set if it admits a measurable enumeration. If M and M ′ : �0 → 2R

are both random countable sets, then we say they have the same law provided there
exist an enumeration S for M , an enumeration S′ for M ′ and a coupling R of S�W
and S′

�W such that for R-a.e. (s, s′) one has [s] = [s′] (cf. [29, Definition 2.2], given
there for (0, 1), not R, as the ambient set, which does not really matter). A random
countable set M is said to be:

(a) dense (resp. empty), if M is dense (resp. empty) W-a.s.;
(b) local, if for all extended-real s < t , M ∩ (s, t) admits anFs,t -measurable enumer-

ation (cf. [27, Definition 2e2, first display]);
(c) stationary, if for all u ∈ R,W-a.s.M = u+M(�u) (cf. [27, Definition 2e2, second

line of second display], but note the typo: the left-hand side should be offset by h
to the right), perfectly so, ifW-a.s. can be dropped;

(d) stationary-in-law, if for all u ∈ R the sets M and u + M have the same law, i.e. if
for all u ∈ R there exist measurable enumerations T and Tu of M and a coupling
R of T�W and (Tu)�W such that, for R-a.e. (x, xu) one has u + [x] = [xu] (we
connect it to the “stationarity” of [29, Definition 6.8] in Proposition 3.10);

(e) hit-or-miss stationary, if for all events A from the so-called hit-or-miss σ -algebra
h := σ2R({2R\E : E ∈ BR}) the map (R � x �→ W(x + M ∈ A)) is constant (just
“stationary” in [17, Definition 2.5(i)]);

(f) hit-or-miss quasi-stationary ifW(x + M ∈ A) is either = 0 or > 0 simultaneously
for all x ∈ R for any fixed A ∈ h (just “quasi-stationary” in the terminology of
[17, Definition 2.5(ii)]).

For M ′ : �0 → 2R we also say that M ′ is a version of M when {M = M ′} ∈ G
(automatic if M and M ′ are random countable sets) andW(M = M ′) = 1.

Several immediate comments are in order.
As indicated in the Introduction, it is locality together with stationarity (without

further qualification, to be understood always in the sense of Definition 3.2(c)) that

123



1070 M. Vidmar, J. Warren

will be the primary interest of our study. Nevertheless, we shall find it worthwhile, at
least at first, to give some results holding the two notions separate and/or employing,
in lieu of stationarity, one of its weaker forms thereof delineated above. This will serve
to better emphasize the relevance of the individual properties.

Of considerable importance is

Remark 3.3 Let M : �0 → 2R. We may see M as a subset of �0 × R in the natural
way (namely, as the set �M� := {(ω, t) ∈ �0 × R : t ∈ M(ω)}); vice versa, a subset
of�0×R is viewed canonically as a map�0 → 2R (carrying a point from�0 onto its
section of the subset in question).Wewill usually not make the distinction between the
two explicit, leaving it to context to determinewhich is intended. By [17, Theorem 3.2]
[9, # 117], if M ∈ G⊗BR, then the property of M being a random countable set (in our
sense; “constructively countable” in the sense of [17, Definition 3.2]) is equivalent to
M being a.s. countable (“weakly countable” in the sense of [17, Definition 3.1]). Note
also that, for any sub-σ -fieldA of G, ifM admits a perfectA-measurable enumeration,
then M ∈ A ⊗ BR; dropping “perfect” in the antecedent, the consequent may fail,
however. A random countable set allows for “mischievous” behaviour on a null set.

Two sets having the same law clearly are hit-or-miss stationary simultaneously
either both, or simultaneously both not so. The same is true for hit-or-miss quasi-
stationarity (again it is immediate) and stationarity-in-law, in which latter case it
follows from the fact that equality in law is transitive [29, Remark 2.3]. We stress
that, by contrast, stationarity itself (or its absence) is not necessarily shared by two
sets having the same law. See e.g. Example 3.9 to follow.

Some observations on the role of exceptional sets in Definition 3.2. The property of
S being an enumeration for M is not affected if we change S or M on aW-negligible
set. Thus, in the definition of locality, Item (b) above, we could just as well have asked
for M ∩ (s, t) to admit an enumeration measurable relative to the increments of B
on (s, t) (but it is usually more convenient to work with the completed σ -field Fs,t ).
Except for perfect stationarity the properties listed in (a)-(f) above remain unaffected if
M is changed on aW-negligible set. In particular, a random countable set may, despite
its name, be uncountable on a W-negligible set. By contrast, the value of a perfectly
stationary random countable set is determined already by specifying its value on one
member of each equivalence class of �0 w.r.t. the equivalence relation ∼ specified
according to ω1 ∼ ω2 ⇔ ∃u ∈ R(ω1 = �u(ω

2)) for {ω1, ω2} ⊂ �0. It is plain
that this is sensitive to changes on W-negligible sets. Nevertheless, we may change
a perfectly-shift invariant set on a shift-invariant W-negligible set to the empty set,
say, and it does not affect the perfect stationarity property. If a random countable set
admits anA-measurable enumeration, is countable with certainty (not justW-a.s.) and
W−1({0, 1}) ⊂ A, then it admits anA-measurable perfect enumeration (becauseW is
complete).

In general the reader will come to find, as he/she progresses through this paper, that
there is little to no place to hide herein when it comes to considerations of exceptional
(negligible) sets. The presence or indeed absence of a.s. qualifiers should not be taken
lightly.

Remark 3.4 Prima facie it may seem that a stationary random countable set M should
admit an enumeration S that is stationary, i.e. one for which S = h + S(�h) a.s.-W
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Stationary local random countable sets over the Wiener noise 1071

for all h ∈ R; however, it is impossible, unless M is empty. In fact there can be no
map Q ∈ G/BR† , real-valued with positiveW-probability, such that Q = h + Q(�h)

a.s.-W for all h ∈ R: if such a map did exist, then, for all h ∈ R, since �h preserves
W, Q�W|{Q∈R} = (h + ·)�(Q�W|{Q∈R}), which is clearly absurd.

All of the notions ofDefinition 3.2make sense beyond the setting ofW beingWiener
measure,F the (noise-)factorization of B and� themeasure-preserving group of Lévy
shifts. Very naturally, the probabilityW could, for instance, be replaced by the law of
any two-sided (= indexed by the real line, vanishing at zero) Lévy process, mutatis
mutandis; and still more generally, one could workwith a one-dimensional noise in the
sense of [27, Definition 3d1] (it gives us all the ingredients: the probability, the (noise-)
factorization and the group of measure-preserving maps; satisfying certain conditions
between them, of course). However, we have restricted, and shall in what follows
continue to restrict our attention to Wiener noise, leaving the eventual extensions for
future work.

3.2 General properties

We expose now the salient features of the various types of stationary and of local
random countable sets, and investigate some of the inter-relations between them.

First, three simple (counter)examples, to get us going.

Example 3.5 The rational numbers are a local dense random countable set, however
they are not stationary. More generally, any deterministic non-empty countable subset
of R (dense or not) is a local random countable set, which is not stationary in any of
the senses of Definition 3.2.

Example 3.6 A random countable set can be stationary and dense without being local,
indeed translating a dense stationary random countable set by any deterministic quan-
tity is again a dense stationary random countable set, while locality will not be
preserved by such a translation.

Example 3.7 Let M be the local minima of B on the set �′ := {ω ∈ �0 :
ω hits (0,∞) immediately after time 0} and let M be the empty set off �′. Then M
is a local dense stationary random countable set, which is not perfectly stationary. In
fact, the property that M = h + M(�h) for all h ∈ R fails a.s.-W.

Here is the connection between stationarity and stationarity-in-law.

Proposition 3.8 Let M be a random countable set with a measurable enumeration T .
The following are equivalent.

(A) M is stationary.
(B) M is stationary-in-law, moreover, in Definition 3.2(d) one can take Tu = T and

R = (T , T (�−u))�W for all u ∈ R.

Proof Fix u ∈ R. By Remark 2.2, (T , T (�−u))�W is a coupling of T�W with itself.
Thus the property of Definition 3.2(d) with Tu = T and R = (T , T (�−u))�W is
equivalent to u + [T ] = [T (�−u)] a.s.-W, i.e. to M = −u + M(�−u) a.s.-W. ��
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1072 M. Vidmar, J. Warren

Stationarity is not implied by stationarity-in-law, even when coupled with locality;
it is a (much) stronger condition.

Example 3.9 Let M be the local minima of B on the positive half-line and the local
maxima of B on the negative half-line. Then M is equal in law to the local minima
of B (and hence also equal in law to the local maxima of B), is local and stationary-
in-law, but is not stationary. The locality and non-stationarity of M are evident. Since
the local minima are stationary and therefore stationary-in-law the same must be true
of M , provided the stipulated equality in law does indeed hold true. It does, because
we can enumerate the local minima of B on the positive half-line with the Sk , k ∈ N

odd, and the local maxima of B on the negative half-line with the Sk , k ∈ N even;
then take the coupling (S, S̃)�W, where S̃ is equal to S on the odd natural numbers,
but equal to S ◦ (−B) on the even natural numbers (so that S̃ is an enumeration of the
local minima).

We bring our definition of stationarity-in-law in line with [29, Definition 6.8],
modulo of course the natural changes that need to be made to go from (0, 1) of
[29] to the real line R as the ambient set. Note that our locality trivially implies the
“independence” of [29, Definition 4.2]. Thus it is not surprising that assuming the set
to be also local makes it possible to strengthen the property of [29, Definition 6.8] to
one which works with “local enumerations” (the “moreover” part below).

Proposition 3.10 Suppose the random countable set M is stationary-in-law. For all
extended-real s < t [not just s = −∞ and t = ∞] and all real u, u + M ∩ (s, t) and
M ∩ (s + u, t + u) have the same law; if M is local, then, moreover, there exist an
Fs,t -measurable enumeration S′ of M ∩ (s, t), an Fs+u,t+u-measurable enumeration
S′
u of M ∩ (s + u, t + u), and a coupling P ′ of S′

�W and (S′
u)�W such that for P ′-a.e.

(x ′, x ′
u) one has u + [x ′] = [x ′

u].

Proof Let T , Tu and R be as in Definition 3.2(d). Then S := T |(s,t) is a measurable
enumeration of M ∩ (s, t), while Su := Tu |(s+u,t+u) is a measurable enumeration of
M ∩ (s+u, t +u). Furthermore P := (pr1|(s,t), pr2|(s+u,t+u))�R is a coupling of S�W
and (Su)�W such that for P-a.e. (x, xu) one has u + [x] = [xu]. This gives the first
statement. To get its strengthening, we assume M is local and remedy the coupling as
follows.

Using locality, let S′ be an Fs,t -measurable enumeration of M ∩ (s, t) and let S′
u

be an Fs+u,t+u-measurable enumeration of M ∩ (s + u, t + u). Put Q := (S′, S)�W
and Qu := (Su, S′

u)�W. Let

Q(d(x ′, x)) =: q(dx ′, x)W(S ∈ dx), (x ′, x) ∈ ((s, t)†)N × ((s, t)†)N,

be a disintegration of Q against the second marginal; likewise let

Qu(d(xu, x
′
u)) =: W(Su ∈ dxu)qu(xu, dx

′
u),

(xu, x
′
u) ∈ ((s + u, t + u)†)N × ((s + u, t + u)†)N,
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be a disintegration of Qu against the first marginal. Then define

P ′(d(x ′, x ′
u)) :=

∫
q(dx ′, x)q(xu, dx

′
u)P(d(x, xu)),

(x ′, x ′
u) ∈ ((s, t)†)N × ((s + u, t + u)†)N,

which is a coupling of (S′)�W and of (S′
u)�W; for instance, the computation

W(S′
u ∈ dx ′

u) = Qu(((s + u, t + u)†)N × dx ′
u) =

∫
qu(xu, dx

′
u)W(Su ∈ dxu)

=
∫

qu(xu, dx
′
u)P(d(x, xu))

=
∫ ∫

q(dx ′, x)qu(xu, dx ′
u)P(d(x, xu))

= P ′(((s, t)†)N × dx ′
u), x ′

u ∈ ((s + u, t + u)†)N,

shows that P ′ has the correct second marginal. Furthermore, note that because [S′] =
M ∩ (s, t) = [S] a.s.-W, we have [x ′] = [x] for Q-a.e. (x ′, x), so [x ′] = [x] a.e.-
q(dx ′, x) for S�W-a.e. x . Likewise [xu] = [x ′

u] a.e.-qu(xu, dx ′
u) for (Su)�W-a.e. xu .

Letting now p1, resp. p2, be a disintegration of P against the first, resp. second
marginal, we see, putting A := {(x ′′, x ′′

u ) ∈ ((s, t)†)N×((s+u, t+u)†)N : u+[x ′′] =
[x ′′

u ]}, that

P ′(A) =
∫

P(d(x, xu))
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x ′, x ′

u)

=
∫

W(S ∈ dx)
∫

p1(x, dxu)
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x ′, x ′

u)

=
∫

W(S ∈ dx)
∫

q(dx ′, x)
∫

p1(x, dxu)
∫

qu(xu, dx
′
u)𝟙A(x ′, x ′

u)

=
∫

W(S ∈ dx)
∫

q(dx ′, x)
∫

p1(x, dxu)
∫

qu(xu, dx
′
u)𝟙A(x, x ′

u)

=
∫

W(S ∈ dx)
∫

p1(x, dxu)
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x, x ′

u)

=
∫

P(d(x, xu))
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x, x ′

u)

=
∫

W(Su ∈ dxu)
∫

p2(dx, xu)
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x, x ′

u)

=
∫

W(Su ∈ dxu)
∫

qu(xu, dx
′
u)

∫
p2(dx, xu)

∫
q(dx ′, x)𝟙A(x, x ′

u)

=
∫

W(Su ∈ dxu)
∫

qu(xu, dx
′
u)

∫
p2(dx, xu)

∫
q(dx ′, x)𝟙A(x, xu)

=
∫

W(Su ∈ dxu)
∫

p2(dx, xu)
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x, xu)
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=
∫

P(d(x, xu))
∫

q(dx ′, x)
∫

qu(xu, dx
′
u)𝟙A(x, xu)

=
∫

P(d(x, xu))𝟙A(x, xu) = P(A) = 1,

the last equality being true due to the very nature of P . With these S′, S′
u and P ′ the

proof is complete. ��
A hit-or-miss stationary set is trivially hit-or-miss quasi-stationary. Less obvious is

the implication of

Proposition 3.11 If the random countable set M is stationary-in-law, then M is hit-
or-miss stationary.

Proof Take u ∈ R and E ∈ BR and let T , Tu and R be as in Definition 3.2(d).
Then W(M ∩ E = ∅) = W([T ] ∩ E = ∅) = W(([T ] + u) ∩ (E + u) = ∅) =
R(([pr1]+u)∩ (E +u) = ∅) = R([pr2]∩ (E +u) = ∅) = W([Tu]∩ (E +u) = ∅) =
W(M∩(E+u) = ∅). It remains to note that the constancy property ofDefinition 3.2(e)
is a Dynkin system in A ∈ 22

R

containing the h-generating π -system consisting of
the “miss-events” {· ∩ E = ∅} = 2R\E , E ∈ BR. ��

Let us explore how locality and stationarity affect the probability of inclusion of a
deterministic real number into the random countable set under inspection.

Proposition 3.12 A local random countable set M satisfiesW(x ∈ M) ∈ {0, 1} for all
except at most denumerably many x ∈ R. If M is hit-or-miss quasi-stationary, then
W(x ∈ M) = 0 for all x ∈ R.

Proof Consider the first statement. By locality the family of events ({x ∈ M})x∈R
is an independency. Since (the domain of) W is essentially separable, the first claim
follows (otherwise one could construct, by centering the indicators of those events
{x ∈ M}, x ∈ R, which are non-trivial, an uncountable orthogonal family of non-zero
vectors in the separable Hilbert space L2(W), which cannot be). Suppose now M is
hit-or-miss quasi-stationary. Then by definition W(x ∈ M) = W({x} ∩ M �= ∅) =
W({0}∩ (M − x) �= ∅) is = 0 or > 0, one or the other simultaneously for all x ∈ R. It
cannot be the latter, because if S = (Sk)k∈N is a measurable enumeration of M , then
in order for W(x ∈ M) = W(x ∈ [S]) to be > 0, x must be an atom of one of the
(Sk)�(W|{Sk∈R}), k ∈ N, and there can be only countably many such atoms (of course,
in consequence, there are in fact none). ��
Example 3.13 Recall Example 3.6. For an instance of a dense stationary random count-
able set that is not a deterministic translate of a local set, we may proceed as follows.
Take two stationary dense local random countable sets M1 and M2, two distinct
real numbers, h1 and h2, notice that by enumerability, locality, and the conclusion
of Proposition 3.12 in the stationary part, (h1 + M1) ∩ (h2 + M2) is empty, and
form M̃ := (h1 + M1) ∪ (h2 + M2). M̃ is evidently a stationary dense random
countable set, but it is not a deterministic translate of a local set. Suppose indeed
there were an h ∈ R and a local random countable set M such that h + M = M̃ ,
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Stationary local random countable sets over the Wiener noise 1075

i.e. M = (h1 − h + M1) ∪ (h2 − h + M2). Inspecting the latter on (−ε, ε) for
ε ∈ (0, (|h1−h|∨|h2−h|)/2) yields an immediate contradiction with enumerability,
locality, density and the conclusion of Proposition 3.12 in the stationary part (again).

Combining locality with hit-or-miss stationarity we get the property of the conclu-
sion of

Proposition 3.14 Let M be local and hit-or-miss stationary. Then M is dense or empty.

A related but trivial fact is that a stationary random countable set is either empty or
W-a.s. not empty. This is just because for v ∈ R, �−1

v ({M = ∅}) = {M(�v) = ∅} =
{v + M(�v) = ∅} = {M = ∅} a.s.-W, so one can apply Remark 2.6.

Proof Since M is hit-or-miss stationary the quantity f (a) := W(M ∩ (h, h+ a) = ∅)

depends on the real parameters h and a ≥ 0 through a only; by locality and because
of Proposition 3.12, f (a + b) = f (a) f (b) for {a, b} ⊂ [0,∞). By monotonicity
of f : [0,∞) → [0, 1] it follows that f (a) = e−λa for all a ∈ (0,∞) for some
λ ∈ [0,∞]. If λ = 0 it means that a.s. M is empty; suppose λ > 0. Then M being
dense a.s. will follow if we can show that λ = ∞. Suppose per absurdum that λ < ∞.
Let S := inf{h ∈ (0,∞) : M ∩ (0, h) �= ∅}, which is exponentially distributed with
parameter λ by the preceding and anF0,→-stopping time by locality of M . Moreover,
the process (𝟙{S≤t}−λ(S∧t))t∈[0,∞) is a discontinuous realmartingale in theBrownian
filtration F0,→: for all real s ≤ t a.s.-W,

W[𝟙{S≤t} − λ(S ∧ t)|Fs]
= 𝟙{S≤s}(1 − λS) + 𝟙{s<S}W[𝟙{S≤t} − λ(S ∧ t)|Fs]
= 𝟙{S≤s}(1 − λS) + 𝟙{s<S}W[𝟙{M∩(s,t) �=∅}

− λ((s + inf{h ∈ (0,∞) : M ∩ (s, s + h) �= ∅}) ∧ t)|Fs]
= 𝟙{S≤s}(1 − λS) + 𝟙{s<S}W[𝟙{M∩(s,t) �=∅}

− λ((s + inf{h ∈ (0,∞) : M ∩ (s, s + h) �= ∅}) ∧ t)]
= 𝟙{S≤s}(1 − λS)

+ 𝟙{s<S}
(
1 − e−λ(t−s) − λ

(
s +

∫ ∞

0
λe−λu(u ∧ (t − s))du

))

= 𝟙{S≤s}(1 − λS)

+ 𝟙{s<S}

(
1 − e−λ(t−s) − λ

(
s + 1 − e−λ(t−s)

λ

))

= 𝟙{S≤s}(1 − λS) − 𝟙{s<S}λs
= 𝟙{S≤s} − λ(S ∧ s).

But this cannot be. (Incidentally, here is one of a legion of instances in this paper when
one can ask oneself, “are you careful enough?” Indeed, one is tempted to assert that
(|M ∩ (0, t]| − λt)t∈[0,∞) in the preceding should be a compensated homogeneous
Poisson process. Is it true? For sure, we had arrived at a contradiction, so anything
in principle could have went. Could it have been argued “directly”? We feel that no,
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not even if we had assumed stationarity in lieu of hit-or-miss stationarity, at least not
until one has armed oneself with nice versions of such M , which allow for arguments
involving stopping times and the strong Markov property, cf. Proposition 3.21 to
follow.) ��

So, a hit-or-miss stationary, in particular a stationary, local random countable set
over the Wiener noise that is not trivial (empty) is automatically dense. As it happens,
in the non-trivial (dense) case we cannot tell two local stationary random countable
sets apart based solely on their laws: they are all the same as far as couplings of
enumerations can see.

Proposition 3.15 Suppose M1 and M2 are two dense random countable sets, both
of them local, both of them stationary-in-law. Then M1 and M2 have the same law.
Moreover, for any probability law L on the Borel sets of R equivalent to l and for any
measurable enumeration S of M1 there exists a coupling R of L×N and S�W such that
[x] = [y] for R-a.e. (x, y).
Proof From Proposition 3.10 and the comments preceding it, we know that for each
k ∈ Z, the sets M1 ∩ (k, k + 1)− k and M2 ∩ (k, k + 1)− k satisfy the “independence
condition” and are “stationary” in the sense of [29]. Therefore, being also dense by
assumption, according to [29, Theorem 6.9] they have the same law. By a routine
diagonal argument, taking into account also the stationary part of Proposition 3.12,
we deduce that M1 has the same law as M2. Furthermore, from the part of [29, The-
orem 6.9] having to do with the “uniform distribution” and from [29, Lemma 1.2,
Definition 2.4] the second claim follows. ��

We establish next that any stationary random countable set admits a version that is
perfectly stationary.

Lemma 3.16 Let A1 ⊂ R and A2 ⊂ R be two co-negligible sets w.r.t. l. Then A2 −
A1 = R.

Proof Let m ∈ R. By the translation invariance of l and because the union of two
null sets is null, for l-a.e., and a fortiori for some a ∈ R, we have a ∈ A1 and also
a + m ∈ A2, therefore m ∈ A2 − A1. ��
Proposition 3.17 Every stationary random countable set admits a version that is per-
fectly stationary, countable with certainty and that belongs to B�0 ⊗ BR.

Not even in the dense case can we ask the version to be countably infinite with
certainty, since on the zero path any perfectly stationary version must be empty or the
whole of the real line.

Proof The proof is inspired by the technique of perfecting crude cocycles in the theory
of random dynamical systems, see e.g. [2, Section 1.3].

Let M be a stationary random countable set. Changing M on a W-negligible set
we may and do ask that there is a B�0 -measurable enumeration S thereof such that
M = [S] with certainty (not just a.s.-W), a perfect B�0 -measurable enumeration.
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Define:

R := {(s, ω) ∈ R × �0 : M(ω) = s + M(�sω)},
�1 := {ω ∈ �0 : (s, ω) ∈ R for l-a.e. s ∈ R} and
�2 := {ω ∈ �0 : �uω ∈ �1 for l-a.e. u ∈ R}.

By measurably enumerating M through S we see that R ∈ BR ⊗ B�0 . By the sta-
tionarity of M and Tonelli we have that �1 ∈ B�0 and W(�1) = 1. Noting that for
ω ∈ �0,

ω ∈ �2 ⇔
∫

𝟙�0\�1(�uω)l(du) = 0,

by Tonelli again, and because the Lévy shifts preserve the probabilityW, we obtain that
also �2 ∈ B�0 andW(�2) = 1. Besides, �2 is shift-invariant because l is translation
invariant.

Define now, for ω ∈ �0,

M̃(ω) :=
{
s + M(�sω) for any s ∈ R for which �sω ∈ �1, if ω ∈ �2;
∅ if ω /∈ �2.

We must check at once that M̃ is well-defined. Let then ω ∈ �2 and {s, u} ⊂ R

be such that {�sω,�uω} ⊂ �1. Then for l-a.e. v ∈ R we have s + M(�sω) =
s + v + M(�s+vω) and at the same time for l-a.e. w ∈ R we have u + M(�uω) =
u + w + M(�u+wω). By Lemma 3.16 we obtain s + M(�sω) = u + M(�uω). On
the other hand, if ω ∈ �2 then �sω ∈ �1 even for l-a.e. s ∈ R, in particular for some
s ∈ R. Thus M̃ is well-defined.

Since M is countable with certainty, so too is M̃ .
We now check that M̃ ∈ B�0 ⊗ BR. Indeed, the set

Q := {(s, t, ω) ∈ R × R × �0 : t ∈ s + M(�s(ω))}

belongs toBR⊗BR⊗B�0 . By the preceding, forω ∈ �2,
∫ 1
0 𝟙Q(s, t, ω)l(ds) is equal

to 1 if t ∈ M̃(ω) and is equal to 0 for t ∈ R\M̃(ω). Therefore, by Tonelli, the asserted
measurability of M̃ in the tensor product follows.

Next, turn to proving perfect stationarity. If ω ∈ �0\�2, then because �2 is shift-
invariant we have M̃(ω) = ∅ = u + M̃(�uω) for all u ∈ R. On the other hand, let
ω ∈ �2 and u ∈ R. By shift-invariance of �2 again, �uω ∈ �2 also. Therefore for
some s ∈ R such that �sω ∈ �1 and for some v ∈ R such that �u+vω ∈ �1 we have

M̃(ω) = s + M(�sω) and u + M̃(�uω) = u + v + M(�u+vω).

In turn, for l-a.e. z ∈ R and for l-a.e. z′ ∈ R,

s + M(�sω) = s + z + M(�s+zω) and

u + v + M(�u+vω) = u + v + z′ + M(�u+v+z′ω),

which by Lemma 3.16 entails that M̃(ω) = u + M̃(�uω). We see thus that M̃ has
perfect stationarity. 123
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Finally, let us check that M̃ = M on �1 ∩ �2 rendering M̃ a version of M .
Take ω ∈ �1 ∩ �2. Then because ω ∈ �2 certainly, by the very definition of M̃ ,
M̃(ω) = s + M(�sω) for l-a.e. s, while s + M(�sω) = M(ω) for l-a.e. s ∈ R

because ω ∈ �1; for some (indeed l-a.e.) s ∈ R both of the preceding equalities
prevail and so M̃(ω) = s + M(�sω) = M(ω). ��

Thus, at least in some sense, perfect stationarity is merely an added technicality
over and above stationarity, which is fundamental. Nevertheless, the fact that a set can
be perfected in this way is non-trivial and we will find occasion to apply it before long.

We continue our collage of properties of stationary and local sets by discussing in
technical terms the somewhat lax assertion from the Introduction that “there are no
interesting events to be described concerning such a [dense] random [countable] set.”

The following simple technical truth will be used.

Lemma 3.18 Let � be any set and (An)n∈N a nonincreasing sequence of σ -fields on
�. Let also X : � → � be any map. Then

X−1(∩n∈NAn) = ∩n∈NX−1(An).

In particular, for every �′ ∈ 2� ,

(∩n∈NAn)|�′ = ∩n∈N(An|�′).

In plain(er) terms: nonincreasing intersections of σ -fields and pull-backs, the trace
operation in particular, commute.

Proof The inclusion ⊂ is trivial. For the reverse inclusion, take an A from the
r.h.s. of the stipulated equality. For each n ∈ N there is An ∈ An such that
A = X−1(An). Then lim supn→∞ An ∈ ∩n∈NAn (∵ An is nonincreasing in n ∈ N)
and X−1(lim supn→∞ An) = lim supn→∞ X−1(An) = A. For the special case take
X = id�′ : �′ → �. ��
Proposition 3.19 Assume that M is a local random countable set that is stationary-
in-law. Let A ⊂ 2R be such that {M ∈ A} ∈ G. Then W(M ∈ A) ∈ {0, 1}.

In other words, the W-law of M on its final σ -field {A ∈ 22
R : {M ∈ A} ∈ G} is

trivial.

Proof From Propositions 3.11 and 3.14 we get that M is empty or dense. The case
when M is empty is trivial, so we focus on the case when M is dense. Then we
may and do further assume that M admits a B�0 -measurable perfect injective real-
valued enumeration S (just by changing M on a W-negligible set if necessary, using
completeness of W). Fix �1 ∈ B�0 of W-probability one such that {M ∈ A} ∩ �1 =
{[S|�1] ∈ A} ∈ B�0 |�1 (it exists because {M ∈ A} is from theW-completion of B�0 ).

Apply Proposition 3.15. Fixing a probability law L on BR equivalent to l there
exists a coupling R of L×N and of S�W such that [x] = [y] for R-a.e. (x, y). Let

W(dω) =:
∫

(S�W)(dy)w(y, dω), ω ∈ �0,
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be a disintegration of W against S�W; then put

P(d(x, ω)) :=
∫

R(d(x, y))w(y, dω), (x, ω) ∈ R
N × �0,

which is a coupling of L×N and of W satisfying [x] = [S(ω)] for P-a.e. (x, ω). The
spaceR

N×�0 endowedwith theσ -field (BR)⊗N⊗B�0 , onwhich lives P , is Blackwell
in the sense ofMeyer [19, D III.15], indeed it is the measurable space of a Polish space
(a Polish space endowed with its Borel σ -field is Blackwell [19, T III.16]). Restricting
P to to the P-almost certain set

�′ := {(x, ω) ∈ R
N × �1 : x injective and [x] = [S(ω)]} ∈ (BR)⊗N ⊗ B�0

we get P ′ whose underlying σ -field P is still Blackwell (the trace [on a measurable
set] preserves the Blackwell property which is immediate from the definition [19,
D III.15]).

Denoting by (X ′,W ′) the coordinate projections on �′ we see that

{[X ′] ∈ A} = {[S(W ′)] ∈ A} = (RN × {[S|�1] ∈ A}) ∩ �′ ∈ P

and

W(M ∈ A) = W({M ∈ A} ∩ �1) = W([S|�1] ∈ A) = P(RN × {[S|�1] ∈ A})
= P ′((RN × {[S|�1] ∈ A}) ∩ �′)
= P ′([X ′] ∈ A).

It remains to establish that P ′([X ′] ∈ A) ∈ {0, 1}.
Then set, for n ∈ N0 ∪ {∞},

En := {E ∈ (BR)⊗N|(RN) �= : ω ∈ E

⇒ ω ◦ p ∈ E for all permutations p of N that restrict to the identity on N>n}.

Thus E∞ = ∩n∈N0En is the exchangeable σ -field (traced on (RN) �= := the space
of injective real sequences). It is elementary to verify that, for all n ∈ N0, En is a
countably generated σ -field (its elements are indeed in a bijective correspondence
with the Borel subsets of {s ∈ (RN) �= : s1 < · · · < sn}) whose atoms are given by

{s′ ∈ (RN) �= : s′|N>n = s|N>n and [s′] = [s]}, s ∈ (RN) �=.

(On the other hand, it would not be straightforward to see and is perhaps [probably]
not true that E∞ is separable.) Still holding the n ∈ N0 fixed we see that {[X ′] ∈ A}
is a union of the atoms of the separable sub-σ -field X ′−1

(En) of P. It follows by
Blackwell’s theorem [19, T III.17] that {[X ′] ∈ A} ∈ X ′−1

(En). This being true for
all n ∈ N0 we deduce from Lemma 3.18 that {[X ′] ∈ A} ∈ X ′−1

(E∞).
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We conclude by applying the Hewitt–Savage zero-one law (which delivers the P ′-
triviality of X ′−1

(E∞)). ��
It may be mentioned that Kendall [17, Theorem 4.3] proves (when applied to our

setting) that theW-law of M on h is trivial assuming only that M is hit-or-miss quasi-
stationary and dense. In [17, Eq. (10), Theorem 5.1], the W-triviality of M−1(h) is
extended to theW-triviality of ∩σ(S), where S runs over all measurable enumerations
of M , albeit we have not managed to fully understand the proof sketched there. In
any event, even the σ -field ∩σ(S) is not completely definitive (vis-á-vis establishing
that all events of M are trivial), whereas the final σ -field of M (as rendered trivial by
Proposition 3.19) absolutely is so.

Local stationary random countable sets (we no longer bother to separate the two
properties or intervene with weaker forms of stationarity in lieu of stationarity) are
actually determined by their restrictions to (0,∞) as we proceed to demonstrate.

Definition 3.20 For a random set N : �0 → 2(0,∞) and B a sub-σ -field ofH say that
N admits the B-measurable [just measurable when B is H] enumeration S (resp. is a
random countable set, is local, is stationary, perfectly stationary) when S is a sequence
of B-measurable random variables with values in (0,∞)†, which satisfies N = [S]
a.s.-P (resp. N admits a measurable enumeration, for all s < t from [0,∞] the random
set N ∩ (s, t) admits a σ(Cu −Cs : u ∈ (s, t))-measurable enumeration (the bar over
σ indicating completion w.r.t. P), N ∩ (h,∞) = h + N (�h) a.s.-P for all h ∈ [0,∞),
N ∩ (h,∞) = h + N (�h) for all h ∈ [0,∞)).

These are just the natural analogues of our notions in the one-sided setting. For
reasonswhichwill become clear in due course it is somewhatmore natural toworkwith
subsets of (0,∞) rather than [0,∞). The perfect stationarity property is reminiscent
of the “homogeneity” property for N in theMarkovian setting, whereby N∩(h,∞) =
h + N (θh) for all h ∈ [0,∞) with θ = (θh)h∈[0,∞) being the usual Markov shifts on
�0, see e.g. [18, (2.2)]. As in the two-sided landscape we shall not care much about
distinguishing between N : �0 → 2(0,∞) and its associated subset �N� := {(ω, t) ∈
�0 × (0,∞) : t ∈ N (ω)} of �0 × (0,∞). Since there is some potential conflict as to
what we intend when we say “random (countable) set”—it may be a map from R

�0 or
indeed from (0,∞)�0—we agree that in absence of further qualification the meaning
of it being a random set living on �0 (not �0) shall prevail.

Proposition 3.21 The following are equivalent for a random set M : �0 → 2R.

(A) M is a stationary local random countable set.
(B) M ∩ (u,∞) = u + N (�u |[0,∞)) a.s.-W for all u ∈ R for some local stationary

random countable set N : �0 → 2(0,∞).

For a given M the set N is P-a.s. unique and may be chosen to be perfectly stationary,
fromB�0 ⊗B(0,∞) and countable with certainty. In particular, always, N ∩ (U ,∞) =
U + N (�U ) a.s.-P on {U < ∞} for any U-stopping time U.

Definition 3.22 We denote (any version of) N from the preceding proposition by M̂ .
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Proof Remark that B|[0,∞) = �0|[0,∞) and that the push-forward ofW under the latter
map, and moreover under any of the G/H-measurable maps �u |[0,∞), u ∈ R, is P.

Condition (B) is necessary for (A). For, by locality of M , M ∩ (0,∞) admits an
F0,∞-measurable enumeration. It means that there is a sequence S = (Si )i∈N of H-
measurable random variables with values in (0,∞)†, which satisfies M ∩ (0,∞) =
[S(B|[0,∞))] a.s.-W. Setting N := [S]weget a randomcountable set N : �0 → 2(0,∞)

satisfyingM∩(0,∞) = N (�0|[0,∞)) a.s.-W. Then, by stationarity ofM , for all u ∈ R,
a.s.-W, M ∩ (u,∞) = u + ((M − u) ∩ (0,∞)) = u + (M(�u) ∩ (0,∞)) = u +
N (�u |[0,∞)); in particular N (�0|[0,∞))∩(h,∞) = M∩(h,∞) = h+N (�h |[0,∞)) =
h + N (�h(�0|[0,∞))) a.s.-W for all h ∈ [0,∞), i.e. N ∩ (h,∞) = h + N (�h)

a.s.-P for all h ∈ [0,∞), so that N is stationary. Also, for s < t from [0,∞],
N (�0|[0,∞))∩(s, t) = M∩(s, t) a.s.-W, whichmeans, by locality ofM , that there is a a
sequence T = (Ti )i∈N of Fs,t -measurable random variables such that N (�0|[0,∞)) ∩
(s, t) = [T ] a.s.-W, in other words N ∩ (s, t) admits a σ(Cu − Cs : u ∈ (s, t))-
measurable enumeration. Therefore N is local.

Condition (B) is sufficient for (A). Indeed, for extended-real t > s > −∞, M ∩
(s, t) = (M ∩ (s,∞)) ∩ (s, t) = s + [N (�s |[0,∞)) ∩ (0, t − s)] a.s.-W. But N
is local. Therefore there is a σ(Cv : v ∈ (0, t − s))-measurable sequence S =
(Sk)k∈N with values in (0,∞)† such that N ∩ (0, t − s) = [S] a.s.-P. In other words,
N (�s |[0,∞))∩(0, t−s) and hence M∩(s, t) admits anFs,t -measurable enumeration.
It means (letting s ↓ −∞ over the integers, say) thatM is a local random countable set.
As for stationarity, let u ∈ R. For all v ∈ R we have, a.s.-W, (u+M(�u))∩ (v,∞) =
u + (M(�u) ∩ (v − u,∞)) = u + (v − u + N (�v|[0,∞))) = v + N (�v|[0,∞)) =
M ∩ (v,∞). Letting v ↓ −∞ over the integers, say, shows that u + M(�u) = M
a.s.-W, as required.

For the uniqueness of N just note that M ∩ (0,∞) = N (�0|[0,∞)) a.s.-W. That
N may be chosen perfectly stationary, countable with certainty and belonging to
B�0 ⊗ B(0,∞) follows by the following adaptation of the proof of Proposition 3.17,
which we will keep more brief in the parts which are essentially verbatim the same
to the two-sided case. The argument is valid for any stationary random countable set
N : �0 → 2(0,∞).

Changing N on a P-negligible set wemay and do ask that there is aB�0 -measurable
enumeration S thereof such that N = [S] with certainty (not just P-a.s.), a perfect
enumeration. Define:

R := {(s, ω) ∈ [0,∞) × �0 : N (ω) ∩ (s,∞) = s + N (�sω)},
�1 := {ω ∈ �0 : (s, ω) ∈ R for L -a.e. s ∈ [0,∞)} and
�2 := {ω ∈ �0 : �uω ∈ �1 forL -a.e. u ∈ [0,∞)}.

Then R ∈ B[0,∞) ⊗ B�0 , �1 ∈ B�0 , P(�1) = 1, �2 ∈ B�0 is shift-closed and
P(�2) = 1.

Define, for ω ∈ �0,

(0, ∞) ⊃ Ñ (ω)

:=
{
s+N (�sω) on (s, ∞) for any s∈[0, ∞) for which �sω∈�1, if ω∈�2;
∪v∈(0,∞),�vω∈�2 (v + Ñ (�vω)) if ω /∈ �2
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(the empty union is understood as being equal to ∅, of course). Since for ω ∈ �2,
�sω ∈ �1 for L -a.e. s ∈ [0,∞), hence for arbitrarily small s ∈ (0,∞), thus
there is at most one Ñ (ω) ⊂ (0,∞) satisfying the above. To see that there is at
least one, let {s, u} ⊂ [0,∞) be such that {�sω,�uω} ⊂ �1. Then (*) for L -a.e.
v ∈ [0,∞) we have s + N (�sω) = s + v + N (�s+vω) on (s + v,∞); at the
same time for L -a.e. w ∈ [0,∞) we have u + N (�uω) = u + w + N (�u+wω) on
(u + w,∞). Without loss of generality u ≤ s; then (**) for L -a.e. v ∈ [0,∞) we
have u + N (�uω) = u + (s − u) + v + N (�u+(s−u)+vω) on (u + (s − u) + v,∞).
Combining (*) and (**) we get that for L -a.e. v ∈ [0,∞) and thus for arbitrarily
small v ∈ (0,∞) we have s + N (�sω) = s + v + N (�s+vω) = u + N (�uω) on
(s + v,∞), whence s + N (�sω) = u + N (�uω) on (s,∞). Thus Ñ is well-defined.

Let ω ∈ �2 and u ∈ [0,∞); of course then �uω ∈ �2 also. For arbitrarily small
s ∈ (0,∞) and v ∈ (0,∞) we have �sω ∈ �1, �u+vω ∈ �1 and

Ñ (ω) = s + N (�sω) on (s,∞) and

u + Ñ (�uω) = u + v + N (�u+vω) on (u + v,∞).

In turn, fixing such s and v, for L -a.e. z ∈ [0,∞) and forL -a.e. z′ ∈ [0,∞),

s + N (�sω) = s + z + N (�s+zω) on (s + z,∞) and

u + v + N (�u+vω) = u + v + z′ + N (�u+v+z′ω) on (u + v + z′,∞).

From the latter it follows that s+N (�sω) = u+v +N (�u+vω) on (s∨ (u+v),∞).
Therefore Ñ (ω) = u + Ñ (�uω) on (s ∨ (u + v),∞). Letting s and v descend to
zero we conclude that Ñ (ω) = u + Ñ (�uω) on (u,∞). This is the stationarity of
Ñ on �2. On the other hand, let ω ∈ �0\�2 and still u ∈ [0,∞). If �uω ∈ �2
then u > 0 and trivially by definition and by the stationarity of Ñ on �2, Ñ (ω) ∩
(u,∞) = u + Ñ (�uω); if �uω /∈ �2, then �vω /∈ �2 for all v ∈ [0, u] and hence
u + Ñ (�uω) = u + ∪v∈(0,∞),�v+uω∈�2(v + Ñ (�v+uω)) = ∪v∈(u,∞),�vω∈�2(v +
Ñ (�vω)) = ∪v∈(0,∞),�vω∈�2(v+ Ñ (�vω)) = Ñ (ω) = Ñ (ω)∩ (u,∞). We see thus
that Ñ has perfect stationarity.

N being countable with certainty, so is Ñ .
Next, set

Q := {(s, t, ω) ∈ [0,∞) × (0,∞) × �0 : t ∈ s + N (�s(ω))},

which belongs to B[0,∞) ⊗ B(0,∞) ⊗ B�0 . Let h ∈ (0,∞). Then for ω ∈ �2,

h−1
∫ h
0 𝟙Q(s, t, ω)L (ds) is equal to 1 if t ∈ Ñ (ω) ∩ (h,∞) and is equal to 0 for

t ∈ (h,∞)\Ñ (ω). Therefore, by Tonelli, we deduce that Ñ ∩ (�2 ∩ (h,∞)) ∈ B�2 ⊗
B(h,∞). Lettingh ↓ 0over a sequence it follows that Ñ∩(�2∩(0,∞)) ∈ B�2⊗B(0,∞).
Since Ñ ⊂ (0,∞) on �2 and since �2 is closed for the Lévy shifts we have

Ñ (ω) = ∪v∈Q∩(0,∞),�vω∈�2(v + Ñ (�vω)), ω ∈ �0\�2,
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i.e., setting N equal to Ñ on �2 and to ∅ on �0\�2,

Ñ = ∪v∈Q∩(0,∞)(v + N (�v)) = ∪v∈Q∩(0,∞){(�v, id(0,∞) − v) ∈ N }
on �0\�2 ≡ (�0\�2) × (0,∞),

wherewe have been very relaxed indeed about not distinguishing betweenmaps�0 →
2(0,∞) and their associated subsets of �0 × (0,∞). It now follows easily that Ñ ∈
B�0 ⊗ B(0,∞).

It remains to check that Ñ = N on �1 ∩ �2 rendering Ñ a version of N . Take
ω ∈ �1 ∩ �2. Then because ω ∈ �2 certainly, by the very definition of Ñ , Ñ (ω) =
s + N (�sω) on (s,∞) for L -a.e. s ∈ [0,∞), while s + N (�sω) = N (ω) on
(s,∞) for L -a.e. s ∈ [0,∞) because ω ∈ �1; for arbitrarily small (indeed L -a.e.)
s ∈ (0,∞) both of the preceding equalities prevail, concluding the argument.

Lastly, to see that N∩(U ,∞) = U+N (�U ) a.s.-P on {U < ∞} pass to a perfectly
stationary version of N (for which it holds with certainty) and then back, recalling
that (�U )�P(·|U < ∞) = P by the strong Markov property of C under P at the time
U (unless P(U < ∞) = 0, but the latter case is trivial). ��

It appears the statement of Proposition 3.21 cannot be improved to a version in
which, ceteris paribus, we would allow 0 to belong to N , replace (u,∞) with [u,∞)

and in the perfect stationarity of Definition 3.20 ask for N ∩ [h,∞) = h + N (�h),
at least not with only trivial modifications to the proof. The reason being that such
trivial modifications would presumably still not use properties ofW beyond stationary
independent increments, and such conclusion is clearly false in the Lévy setting, since
the jump times of a two-sided (resp. and infinite activity) Lévy process give an example
of a stationary local (resp. and dense) random countable set M , whose corresponding
one-sided set M̂ is exhausted by the graphs of stopping times, a property that would be
precluded under the above stipulated modifications (for, given those, we would also
have {U ∈ M̂} = {0 ∈ M̂(�U )} ∩ {U < ∞} a.s.-P, which has probability zero by the
strong Markov property for any U-stopping time U ). This begs, however,

Question 3.23 For a local stationary random countable set N : �0 → 2(0,∞), can we
have P(U ∈ N ) > 0 for some U-stopping time U or even that N is enumerated by a
sequence of stopping times?

Apartial answer to this (to the negative!) is given inTheorem5.9.Another important
observation we make into

Remark 3.24 The proof of Proposition 3.21 has shown that any stationary random
countable set N : �0 → 2(0,∞) admits a version that is perfectly stationary, countable
everywhere and belongs to B�0 ⊗ B(0,∞). When N has the first two of the preceding
properties we can construct O := ∪h∈R(h + N (�h |[0,∞))) : �0 → 2R, which
manifestly is a perfectly stationary random countable set having the property that for
each a ∈ R, O ∩ (a,∞) = a + N (�a |[0,∞)) admits a (�a |[0,∞))

−1(H)-measurable
perfect enumeration. If N has even all three of the preceding properties then we get in
addition that O ∩ (a,∞) ∈ (�a |[0,∞))

−1(B�0) ⊗ BR for all a ∈ R and in particular
O ∈ B�0 ⊗ BR.
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Definition 3.25 We denote O from the preceding remark by

̂

N .

Corollary 3.26 Any local stationary random countable set M : �0 → 2R has a version
which is perfectly stationary, countable with certainty and for which each M ∩ (a,∞)

admits a (�a |[0,∞))
−1(H)-measurable perfect enumeration (a priori it has only an

Fa,∞-measurable enumeration), this for all a ∈ R.

Proof Choose a perfectly stationary everywhere countable version of M̂ , call it E , and

then take

̂

E . ��
It would not have escaped the reader that had we not proved the “two-sided” Propo-

sition 3.17, earlier, then it would follow at once by the preceding technique from the
“one-sided” version, which was proved independently (recall Remark 3.24). But, the
two-sided variant is somewhat easier to digest, and so we felt it justifiable to give that
one first. We will have occasion to apply Corollary 3.26 in due course. The added
value thereof, versus Proposition 3.17, is that one has the perfect stationarity property
combined with the fact that M ∩ (0,∞) admits a (B|[0,∞))

−1(H)-measurable perfect
enumeration.

We close this section by establishing that local stationary random countable sets
are precisely the visiting times of a measurable set A ⊂ �0 belonging to the germ
σ -field around zero by the path-valued process �, all of this in a sense that we make
precise at once.

Definition 3.27 For A ⊂ �0 put

MA := {t ∈ R : �t ∈ A} = {� ∈ A}

for the visiting set to A of the process �.

Example 3.28 Taking A := {0 a local minimum} (resp. A := {0 a local maximum},
A := {0 a local extremum}) yields for MA the local minima (resp. maxima, extrema).

Remark 3.29 MA is perfectly stationary. If {A1, A2} ⊂ 2�0 and A1 = A2 off a shift-
invariant W-negligible set R, then MA1 = MA2 off R, hence a.s.-W. More generally,
for {A1, A2} ⊂ 2�0 , MA1 = MA2 a.s.-W iff A1!A2 is “polar” for (is a.s.-W not
visited by) �.

Definition 3.30 We let G := ∩ε∈(0,∞)σ (B|(−ε,ε)) ⊂ B�0 (no completions!) denote
the germ σ -field around zero.

Theorem 3.31 Let M : �0 → 2R. The following are equivalent.

(A) M is a local stationary random countable set.
(B) There exists an A ∈ G such that M A is countable a.s.-W and such that M = MA

a.s.-W.

Remark 3.32 In Item (B), since A ∈ G, byKolmogorov’s zero-one law,W(A) ∈ {0, 1}.
Only the case whenW(A) = 0 is actually possible. For, ifW(A) = 1, then by Tonelli
and the fact that the Lévy shifts aremeasure-preserving forW, a.s.-W for l-almost every
(therefore, for uncountably many) t ∈ R, �t ∈ A (which contradicts the stipulation
of (B) that MA be countable W-a.s.).
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Proof First, the easy direction: (B) ⇒ (A). We may just as well assume that M =
MA with certainty (since the properties of (A) are not affected by changing M on
a W-negligible set). Then, since MA may be viewed as the preimage of A under
the (B�0 ⊗ BR)/B�0 -measurable map (ω, t) �→ �t (ω) we get that MA is B�0 ⊗
BR-measurable. By Remark 3.3 MA is a random countable set. As already noted in
Remark 3.29, directly by construction MA is (even perfectly) stationary. Further, for
extended real s < t , and then any h ∈ (0,∞) for which s + h < t − h, we may pick
an A′ ∈ B�0|(−h,h)

such that A = (B|(−h,h))
−1(A′); viewing MA ∩ (s + h, t − h) as

the pre-image of A′ under the (σ (�s |(0,t−s))⊗B(s+h,t−h))/B�0|(−h,h)
-measurable map

(ω, u) �→ �u(ω)|(−h,h) we get by the very same token of [17, Theorem 3.2] employed
in Remark 3.3 thatMA∩(s+h, t−h) admits anFs,t -measurable enumeration. Taking
union over a sequence of h descending to zero allows to conclude thatMA is also local.
So, all in all, MA is a stationary local random countable set.

Now for the difficult part: (A) ⇒ (B). Return to the construction of the perfectly
stationary version of M of the proof of Proposition 3.17. Fix a a sequence (hn)n∈N in
(0,∞) descending to 0. Just before introducing R we ask in addition (as we may, by
further changes to M on aW-negligible set) that M ∩ ({hn,−hn : n ∈ N} ∪ {0}) = ∅
and that for all n ∈ N, M∩[(−hn,−hn+1)∪(hn+1, hn)] admits a perfect enumeration
measurable relative to the σ -field generated by the increments of B on (−hn,−hn+1)

and by its increments on (hn+1, hn) (no completions!). Note that as a consequence,
for each n ∈ N, M ∩ (−hn, hn) admits a perfect enumeration measurable relative
the increments of B on (−hn, hn). With this extra requirement having been made,
continue to introduce R, �1, �2 and M̃ exactly as in the proof of Proposition 3.17.
Then recall that M̃ is perfectly stationary and belongs to B�0 ⊗ BR, besides, �2 is
shift-invariant and W-almost certain. Furthermore, for each n ∈ N and then for every
ε ∈ (0, hn/2),

Qε := {(s, t, ω) ∈ (−ε, ε) × (−hn + 2ε, hn − 2ε) × �0 : t ∈ s + M(�s(ω))}

belongs to B(−ε,ε) ⊗ B(−hn+2ε,hn−2ε) ⊗ σ(B|(−hn ,hn)); and, for ω ∈ �2, 1
2ε

∫ ε

−ε

𝟙Qε (s, t, ω)l(ds) is equal to 1 if t ∈ M̃(ω) ∩ (−hn + 2ε, hn − 2ε) and is equal
to 0 for t ∈ (−hn + 2ε, hn − 2ε)\M̃(ω). Accordingly, by Tonelli, M restricted to
�2 × (−hn + 2ε, hn − 2ε) belongs to σ(B|(−hn ,hn))|�2 ⊗ B(−hn+2ε,hn−2ε). Letting
ε ↓ 0 over a sequence we deduce that M restricted to �2 × (−hn, hn) belongs to
σ(B|(−hn ,hn))|�2 ⊗ B(−hn ,hn).

With this nice version of M̃ in hand, assume without loss of generality that M = M̃
to begin with, and put

A0 := {�tω : (ω, t) ∈ �0 × R � t ∈ M(ω)}.

Then M = MA0
even with certainty. For, let ω ∈ �0. Clearly MA0

(ω) ⊃ M(ω).
For the reverse inclusion take t ∈ MA0

(ω). Since �tω ∈ A0, there are ω′ ∈ �0 and
a t ′ ∈ M(ω′) such that �tω = �t ′ω′, i.e. ω = �t ′−tω

′. But by perfect stationarity
M(ω′) = t ′− t+M(�t ′−tω

′) = t ′− t+M(ω). Thus t+ t ′ ∈ t+M(ω′) = t ′+M(ω).
Therefore t ∈ M(ω).
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Next, since M ∈ B�0 ⊗ BR we get that A0 = {0 ∈ M}, the zero-time section of
M , belongs to B�0 . Hence E := A0 ∩ �2 ∈ B�2 . Fix n ∈ N. For {ω1, ω2} ⊂ �2
belonging to the same atom of σ(B|(−hn ,hn))|�2 , for all t ∈ R, ω1 is from the t-
time section of M ∩ (−hn, hn) iff ω2 is from the t-time section of M ∩ (−hn, hn)
(∵ M restricted to �2 × (−hn, hn) belongs to σ(B|(−hn ,hn))|�2 ⊗ B(−hn ,hn)). Thus
[M ∩ (−hn, hn)](ω1) = [M ∩ (−hn, hn)](ω2). Therefore ω1 ∈ A0 iff ω2 ∈ A0. So,
E is a union of the atoms of the separable sub-σ -field σ(B|(−hn ,hn))|�2 of B�2 . By
Blackwell’s theorem [19,T III.17]we infer that E ∈ σ(B|(−hn ,hn))|�2 (the definitionof
aBlackwell space [19,D III.15] entails that not only is (�0,B�0)Blackwell [as aPolish
space [19, T III.16]], but so is its trace (�2,B�2) on �2 ∈ B�0 ). This being true for
all n ∈ N, we get E ∈ ∩n∈N[σ(B|(−hn ,hn))|�2 ]. But ∩n∈N[σ(B|(−hn ,hn))|�2 ] = G|�2

by Lemma 3.18. Hence there is A ∈ G such that A ∩ �2 = E . It remains to note that
MA0 = ME = MA a.s.-W (recall Remark 3.29). ��

Bywayof a check (of the sort: does it imply something,which is obviously false),we
may notice that the proof of Theorem 3.31, namely the part concerning the perfection
of M , has—essentially, modulo elementary extra considerations, which we leave to
the reader—shown, that a local stationary random countable set M : �0 → 2R admits
a version M̃ ∈ B�0 ⊗ BR that is perfectly stationary, countable with certainty and
for which there is a shift-invariant �2 ∈ B�0 of full W-measure such that for all
extended-real s < t ,

M̃ ∩ (�2 × (s, t)) ∈ σ(�s |(0,t−s))|�2 ⊗ B(s,t).

It is perfect stationarity, combined with a kind of almost perfect locality (“almost”,
since �2 is not necessarily �0; “kind of”, since it is to do with measurability in the
tensor product, not enumerations). Can we “believe it”? If we trust the proof, we
had better. Still, being prudent is the mother of all virtues. So, is it true for M =
{local minima of B}? Indeed it is, for one can take for �2 the set of paths from �0,
which satisfy the property that at no two distinct local minima does B take the same
value (which belongs to B�0 by “rational exhaustion” and is known to be W-almost
certain). On this shift-invariant �2 all of the local minima are strict, hence one may
further take M̃ equal to the local minima on �2 and to ∅ off �2. Such M̃ is evidently
countable with certainty and perfectly stationary, but also satisfies the locality property
of the above display.

4 New examples of stationary local random countable sets over the
Wiener noise

Weprocure in this section a positive answer to Tsirelson’s question as announced in the
Introduction. Before doing so let us first mention somewould-be “obvious candidates”
of exceptional times of B, which would—in view of Theorem 3.31, (B) ⇒ (A)—give
new examples of dense stationary local random countable sets, were it not for the fact
that they fail to be W-a.s. countably infinite.
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• (Points of increase.) For A = {∃ε > 0 � infs∈[0,ε] Bs ∧ (−B−s) ≥ 0} it was shown
in [10] that MA is empty.

• (Fast points.) Let α ∈ [0,∞). For A = {lim suph↓0
B(h)√

2h log h−1
≥ α} it was shown

in [26] that MA is a.s.-W of full Lebesgue measure (∴ of cardinality continuum, ∴
uncountable), empty or of positive Hausdorff measure (∴ uncountable) according
as α = 1, α > 1 or α < 1. (The case α ≤ 1 is anyway automatically precluded
from being interesting for us by the fact that W(A) = 1 in such case, by the law
of the iterated logarithm (recall Remark 3.32).)

• (Slow points.) Let α ∈ [0,∞). For A = {∃ε > 0 � |B(h)| ≤ α
√
h for h ∈ [0, ε]}

the set MA is empty when α ≤ 1 [3] and of positive Hausdorff measure (∴
uncountable) a.s.-W when α > 1 [21, Corollary 3, Proposition 1(a-b)].

We feel that the odds are stacked against us. Nevertheless, we shall be able to
construct new examples of stationary local random countable sets from the zero sets
of solutions to some stochastic differential equations (SDEs). The argument leading
from the second to the first can be made general and we record this first; � below
corresponds to such a zero set.

In the formulation of the next couple of results we do something unusual in that we
indicate in part what is used in the proof already in the statements themselves. We do
so to stress the relevance of the individual properties.

Lemma 4.1 Let � ⊂ �0 × [0,∞) satisfy the following:

(a) it W-a.s. contains 0;
(b) it is W-a.s. closed in the upper limit topology;
(c) it is progressive in F0,→;
(d) it is “coalescent” in the sense that for all real u ≥ 0 a.s.-W for all s, if s ∈

� ∩ [u,∞), then � = u + �(�u) on [s,∞).

For real s ≤ t put

gs,t := s + sup(�(�s) ∩ [0, t − s]) ∈ [s, t] (sup∅ := 0).

We have the following assertions.

(i) For all real s ≤ t a.s.-W the supremum in the definition of gs,t is attained (because
of (a)-(b)).

(ii) For all real s ≤ t the random variable gs,t is Fs,t -measurable (because of (c)).
(iii) For all real s1 ≤ s2 ≤ t2 ≤ t1 a.s.-W, if gs1,t1 ∈ [s2, t2], then gs2,t2 = gs1,t1

(because of (d)).

Remark 4.2 If � is W-a.s. closed also in the lower limit topology, then “for all s, if
s ∈ � ∩ [u,∞), then � = u + �(�u) on [s,∞)” of Item (d) can be replaced by the
more succinct “� = u + �(�u) on [inf(� ∩ [u,∞)),∞)” (inf ∅ := ∞).

Proof (i). WithW-probability one, 0 ∈ � and � is closed in the upper limit topology.
Since �s is measure-preserving for W, the same is true with �(�s) replacing �. (ii).
�−1

s (F0,t−s) = Fs,t so progressivemeasurability of� yields�(�s)∩(�0∩[0, t−s])
∈ Fs,t ⊗ B[0,t−s]. We may apply the Début theorem (recall that W is complete). (iii).
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1088 M. Vidmar, J. Warren

We use (d) with u = s2 − s1 together with the fact that �s1 is measure-preserving
for W to obtain that W-a.s. the following holds on {gs1,t1 ∈ [s2, t2]}. Because, by (i),
gs1,t1 − s1 ∈ �(�s1)∩ [s2 − s1,∞), then also gs1,t1 − s1 − (s2 − s1) ∈ �(�s2−s1�s1),
i.e. gs1,t1 − s2 ∈ �(�s2). Because further (gs1,t1 − s1, t1 − s1]∩�(�s1) = ∅, then also
(gs1,t1−s1, t1−s1]∩((s2−s1)+�(�s2−s1�s1)) = ∅, i.e. (gs1,t1−s2, t1−s2]∩�(�s2) =
∅ and a fortiori (gs1,t1 − s2, t2 − s2] ∩ �(�s2) = ∅. Therefore gs2,t2 = gs1,t1 . ��
Proposition 4.3 Retain the setting of Lemma 4.1 and put

M := {gs,t : (s, t) ∈ Q
2, s < t, gs,t ∈ (s, t)}.

We have the following assertions.

(i) For all extended-real s < t one has that W-a.s. M ∩ (s, t) = {gp,q : (p, q) ∈
Q

2, s ≤ p < q ≤ t, gp,q ∈ (p, q)} (because of Lemma 4.1(iii)); therefore the
random countable set M is local (because of Lemma 4.1(ii)).

(ii) Because of Lemma 4.1(iii), M is stationary.

Proof Only the second assertion requires further explanation. Let u ∈ R. It suffices to
show thatM ⊃ u+M(�u) a.s.-W (because then, by this very tokenwith u � −u, also
M ⊃ −u + M(�−u) a.s.-W, i.e. we get the reverse inclusion /upon recalling that �u

is measure-preserving forW/). Fix (p, q) ∈ Q
2, p < q. We are to show thatW-a.s., if

gp,q(�u) ∈ (p, q), then u+gp,q(�u) ∈ M . Now, if gp,q(�u) ∈ (p, q), then for some
rational pair (s, t) satisfying p+ u < s < t < q + u, we have s < u + gp,q(�u) < t .
On the other hand, for any rational pair (s, t) satisfying p + u < s < t < q + u,
by Lemma 4.1(iii), (s, t) � u + gp,q(�u) = u + gs−u,t−u(�u) a.s.-W on {s <

u + gp,q(�u) < t}, while from the very definitions u + gs−u,t−u(�u) = gs,t . Hence
u + gp,q(�u) ∈ M a.s.-W on {gp,q(�u) ∈ (p, q)}. ��
Example 4.4 The random set � = {B|[0,∞) − B|[0,∞) = 0} (the underline signifies the
running infimum) satisfies the conditions of Lemma 4.1 andW-a.s. the associatedM of
Proposition 4.3 is the set of the local minima of B. Similarly we get the local maxima
(taking � = {B|[0,∞) − B|[0,∞) = 0}, the overline signifying the running supremum).
Finally, for � = {(B|[0,∞) − B|[0,∞))(B|[0,∞) − B|[0,∞)) = 0} the corresponding set
M are the local extrema. Though, the latter � is not coalescent.

Example 4.5 The random sets � = �0 ×{0} and � = �0 ×[0,∞) trivially satisfy the
conditions of Lemma 4.1, however the associated M of Proposition 4.3 is also trivial,
empty.

We proceed now to the promised construction of new examples of stationary local
random countable sets. To this end fix a d ∈ [0,∞), and recall [22, Section XI.1] that
the squared Bessel SDE (for the unknown Z = (Z(t))t∈[0,∞))

Z(t) = 2
∫ t

0

√
Z(s)dB(s) + dt, t ∈ [0,∞), (4.1)

admits an a.s.-W unique continuous, [0,∞)-valued, F0,→-adapted (i.e. pathwise
unique, strong) solution. The solution Z is said to have the law of the squared Bessel
process of dimension d.

123



Stationary local random countable sets over the Wiener noise 1089

Example 4.6 For d = 1 we get Z = (B|[0,∞) − B|[0,∞))
2 a.s.-W (by Itô for the

continuous semimartingale B|[0,∞) − B|[0,∞)). The case d = 0 is trivial: Z = 0.

Consider next real times s1 ≤ s2, and the a.s.-W unique continuous, [0,∞)-valued,
resp. (Fs1,t )t∈[s1,∞)- and (Fs2,t )t∈[s2,∞)-adapted processes Z1 = (Z1(t))t∈[s1,∞) and
Z2 = (Z2(t))t∈[s2,∞) solving

Zi (t) = 2
∫ t

si

√
Zi (s)dB(s) + d(t − si ), t ∈ [si ,∞), i ∈ {1, 2}.

We identify Z1(s1 + ·) = Z(�s1) and Z2(s2 + ·) = Z(�s2) a.s.-W. Notice that
S := inf{t ∈ [s2,∞) : Z1(t) = Z2(t)} is a stopping time of (Fs1,t )t∈[s2,∞) so by
the strong Markov property Z1 = Z2 on [S,∞) a.s.-W. Because the paths of Z2 and
Z1 are nonnegative and continuous and since W(Z2(s2) = 0) = 1 we see that also
W(Z2 ≤ Z1 on [s2,∞)) = 1. Hence, S ≤ inf{t ∈ [s2,∞) : Z1(t) = 0} a.s.-W. It
follows, on taking s1 = 0 and s2 = u, that the random set

� := {Z = 0}

—viz. the zero set of the solution to (4.1)— satisfies (d) of Lemma 4.1, while the
remaining conditions of this lemma are also clearly satisfied. (Incidentally, the preced-
ing shouldmake it clear whywe felt it appropriate to call the property of Lemma 4.1(d)
“coalescence”.) As a consequence, Proposition 4.3 implies that the set M thereof is a
stationary local random countable set, empty when d ≥ 2 since in that case 0 is polar
for Z [22, p. 442, Item (ii)], empty for d = 0 also. We retain until the end of this
section the notation of Lemma 4.1 and Proposition 4.3 for � = {Z = 0}; in particular,
for real s ≤ t ,

gs,t = s + sup(�(�s) ∩ [0, t − s])

and

M = {gs,t : (s, t) ∈ Q
2, s < t, gs,t ∈ (s, t)}.

It appears that Proposition 4.3 is quite widely applicable despite its facile nature:

Remark 4.7 In arguing the properties of the set � (hence that M is a stationary local
random countable set) we only used the fact that the SDE (4.1) of the type

dZt = μ(Zt )dt + σ(Zt )dBt , Z0 = 0 (4.2)

(μ and σ Borel, Z continuous adapted) has a nonnegative pathwise unique strong
solution. More precisely, what was used (for instance) is that the process Z is: a.s.-W
nonnegative, continuous and vanishing-at-zero; adapted toF0,→; and coalescent in the
sense that, for realu ≥ 0, setting S := inf{t ∈ [u,∞) : Z(t) = Z(�u)(t−u)}, thenW-
a.s. Z = Z(�u)(·−u) on [S,∞). More generally, it would have been enough to have
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that Z is: W-a.s. vanishing at zero and left-continuous; adapted to F0,→; coalescent
at zero in the sense that for all real u ≥ 0 W-a.s. for all s, if s ∈ {Z = 0} ∩ [u,∞),
then Z = Z(�u)(· − u) on [s,∞).

Suppose henceforth that d ∈ (0, 2). It is known that in this case the distribution
of gs,t is diffuse and carried by the open interval (s, t) for all real s < t . One way
to see the latter is by noting that (i) 0 is regular for Z , which follows for instance
from the construction of a weak solution to (4.1) via a spatio-temporal transformation
of reflecting Brownian motion [23, Paragraph V.48.6] and that (ii) the laws of Zt ,
t ∈ (0,∞), have no atoms at zero [22, Corollary XI.1.4]. So M is not empty, and is
in fact dense. Besides, we may now write more succinctly

M = {gs,t : (s, t) ∈ Q
2, s < t} a.s.-W.

Remark 4.8 More generally, if for the pathwise unique strong solution of the SDE (4.2)
0 is regular for Z and Z has no atoms at zero at positive times, then the M associated
to � = {Z = 0} is dense.
In the following we write M (d) instead of M to express the dependence on d and
similarly g(d)

s,t etc., retaining these pieces of notation also for later on. Note that M (1)

are the local minima (recall Example 4.6).
At this point, for all we know, the M (d), d ∈ (0, 2), could still all be but versions of

M (1), say. The following proposition finally settles the question of Tsirelsonmentioned
in the Introduction. Local minima and maxima (and their union) are not the only
examples of stationary local dense random countable sets over the Wiener noise. In
fact there are at least continuum many.

Proposition 4.9 For any distinct d1, d2 ∈ (0, 2) we have that M (d1) ∩ M (d2) is empty.

In order to establish this result we combine the comparison principle for SDEs
with the following property of the path of the solution of (4.1) after its last zero in an
interval.

Lemma 4.10 Let (Z(t))t∈[0,∞) be a solution to (4.1) with d ∈ (0, 2), let T ∈ (0,∞)

and set g := sup{u ∈ [0, T ] : Z(u) = 0}. Then

lim
ε↓0

1

log(1/ε)

∫ T

g+ε

ds

Z(s)
= 1

2 − d
a.s.-W.

Proof Set Z̃ to be the scaled post-g path:

Z̃(t) := 1

T − g
Z(g + (T − g)t) for t ∈ [0, 1]. (4.3)

It is known, see e.g. [7, Lemma2.2(2)] coupledwith [22, PropositionXI.1.6], that Z̃ has
a distribution that is absolutely continuous with respect to the law of a squared Bessel
process of dimension 4−d starting from zero. But if Ẑ denotes the latter process, then
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it is also known — see e.g. [32, Theorem 1.1], coupled with time inversion (namely,
with the fact that (t2 Ẑ(1/t))t∈(0,∞) is again a squared Bessel process of dimension
4− d [25, Theorem 3.1]), and by applying the Markov property of Z̃ at time 1—that

lim
ε↓0

1

log(1/ε)

∫ 1

ε

ds

Ẑ(s)
= 1

2 − d
,

a.s., which concludes the proof after a trivial transposition back to Z . ��
Proof of Proposition 4.9 Assume without loss of generality that d1 < d2. It suffices to
show that for arbitrary pairs of rational times s1 < t1 and s2 < t2 we haveW(g(d1)

s1,t1 �=
g(d2)
s2,t2) = 1. Using Lemma 4.1(iii) we can assume that s1 = s2 and t1 = t2. By temporal

homogeneity; that is to say, by the fact that �s1 is measure-preserving forW, we may
further assume s1 = 0, and we write t1 =: T . Consider the a.s.-W unique continuous,
[0,∞)-valued, F0,→-adapted solutions Zi to

Zi (t) = 2
∫ t

0

√
Zi (s)dB(s) + di t, t ∈ [0,∞), i ∈ {1, 2}.

By the comparison theorem [22, Theorem IX.3.7] Z1(t) ≤ Z2(t) for all t ≥ 0 a.s.-W,
and consequently g1 := g(d1)

0,T ≥ g(d2)
0,T =: g2, but also

1

log(1/ε)

∫ T

g1+ε

ds

Z1(s)
≥ 1

log(1/ε)

∫ T

g1+ε

ds

Z2(s)
for ε ∈ (0, T − g1) a.s.-W.

By Lemma 4.10 the left-hand side tends to 1/(2 − d1) as ε ↓ 0 a.s.-W. But the same
lemma also implies that on the event {g1 = g2} the right-hand side tends to 1/(2−d2)
as ε ↓ 0 a.s.-W. Since 1/(2 − d1) < 1/(2 − d2) it must be that W(g1 = g2) = 0. ��

Wemake somefinal remarks concerningpossible generalizations of Proposition 4.9.
Let Zi , i ∈ {1, 2}, be two solutions to theSDE (4.2) eachwith its owndrift andvolatility
coefficient. Assume they are both nonnegative strong pathwise unique solutions with
zero regular and not an atom at positive times. For i ∈ {1, 2} let Mi be associated to
Zi as M is to Z . As discussed above (Remarks 4.7 and 4.8) M1 and M2 are then both
stationary dense local random countable sets.

(1) It is clear from the Bessel examples that, in order for W(M1 ∩ M2 = ∅) = 1, it
is not necessary that the two-dimensional process (Z1, Z2) never hit the origin
(after time zero) with probability one. On the other hand, it is also clear, from the
proof of Proposition 4.9, that this condition is sufficient. A neccesary and sufficient
condition is that (Z1, Z2) on last exit from the coordinate axes (before any given
deterministic time T > 0) does so a.s. from a point other than the origin.

(2) In order thatW(M1 = M2) = 1 it is sufficient that the drift and volatility functions
of Z1 and Z2 agree on a neighborhood of the origin. This is just because, in the
obvious notation,

Mi = {gis,t : (s, t) ∈ Q
2, 0 < t − s < ε}

a.s.-W for all ε > 0, i ∈ {1, 2}.
123



1092 M. Vidmar, J. Warren

(3) Let d1 < d2 be from (0, 2). If Z1 is a solution to (4.2) for the drift-volatility pair
(μ1, σ ) and Z2 is the same but for the pair (μ2, σ ), with μ1 ≤ d1 < d2 ≤ μ2 and
with σ the volatility function for the Bessel SDE (4.1), then by the comparison
theorem and the findings of the proof of Proposition 4.9 the sets M1 and M2 are
a.s. disjoint. It is a (slightest) generalization outside the confines of the Bessel
class of Proposition 4.9.

5 Honest indexations

The following definition is modeled on the construction of the random sets M (d),
d ∈ (0, 2), of Sect. 4.

Definition 5.1 Let M : �0 → 2R be a random set. An honest indexation for M is a
family τ = (τs,t )(s,t)∈R2,s<t from F−∞,∞/BR† , such that: (inclusion) τs,t ∈ M a.s.-
W for all real s < t ; (exhaustion) M = {τs,t : (s, t) ∈ Q

2, s < t} a.s.-W; (locality)
τs,t is a.s.-W valued in (s, t) and Fs,t -measurable for all real s < t ; (stationarity)
τs+h,t+h = h + τs,t (�h) a.s.-W for all real h and s < t ; (nestedness) τs,t = τu,v

a.s.-W on {τs,t ∈ (u, v)} for all real s ≤ u < v ≤ t .

The combination of nestedness and locality reminds us of the so-called honest times
in a filtration (Gt )t∈[0,∞), being those times L for which for each t ∈ (0,∞) there
exists a Gt -measurable Lt satisfying L = Lt on {L < t} [8, Chapter XX, Section 1,
# 18]; whence the naming “honest indexation”.

A random set admitting an honest indexation is automatically a dense stationary
local random countable set. Changing each member of an honest indexation on a
W-negligible set retains the honest indexation property. For real s < t , u, and for
an honest indexation τ of M , W(τs,t = u) ≤ W(u ∈ M) = 0 by inclusion and
Proposition 3.12. If A ⊂ R is dense, then each member of an honest indexation τ is
determined W-a.s. by the restriction of the family τ to those members both of whose
indexing endpoints lie in A; besides,M = {τs,t : (s, t) ∈ A2, s < t} a.s.-W. Due to the
first of these two properties one could, in principle, work instead with the concept of
an honest indexation indexed only by the times belonging to A, e.g. A = Q. However,
the definition would then become less clear-cut (e.g. the stationarity does not restrict
naturally to h ∈ A, but we need it for all h ∈ R, not just h ∈ A). Besides, it will
be advantageous to work with a version of τ0,t indexed by, and possesing some nice
properties as a function of the continuous parameter t ∈ (0,∞). For these two reasons
we take already in the definition an indexation over the (pairs of) real times.

Example 5.2 For each d ∈ (0, 2), (g(d)
s,t )(s,t)∈R2,s<t is an honest indexation of M (d).

Honest indexations are not unique when they exist.

Example 5.3 For each κ ∈ R the τ = (τs,t )(s,t)∈R2,s<t , which has, for real s < t , τs,t
equal a.s.-W to a minimum of (Bt + κt)t∈R on (s, t), is an honest indexation of the
local minima of B (apply e.g. the Paley, Wiener and Zygmund result on the failure of
differentiability of Brownian paths [20, Theorem 1.30]). The indexation with κ = 0
we will call standard for the local minima (analogously for the local maxima).
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5.1 Regularization and splitting at an honest indexator

The main goal of the present subsection is, for an honest indexation τ , to deliver a
kind ofWiener–Hopf splitting statement at τ0,e, where e is an independent exponential
random time (Theorem 5.7). In order to make proper sense of this, and also for the
eventual proof of the splitting, we require a sufficiently regular version of the process
(τ0,t )t∈(0,∞), which is the subject of

Lemma 5.4 Let M be a random countable set admitting an honest indexation τ . Then
we may change each τ0,t , t ∈ (0,∞), on a set of W-measure zero (therefore, with-
out affecting the “honest indexation” property of τ ) in such a way that (τ0,t )t∈(0,∞)

becomes [0,∞)-valued, (B|[0,∞))
−1(H)-measurable, right-continuous, nondecreas-

ing, majorized by id(0,∞) and has the “perfect honest indexation property”: on a
W-a.s. set closed for (�u)u∈[0,∞) one has for all t ∈ [0,∞), T ∈ (0,∞) that
τ0,T+t = t + τ0,T (�t ) on {τ0,T+t ∈ (t,∞)}. Furthermore, any such version of
the process (τ0,t )t∈(0,∞) is W-a.s. constant on its excursions away from the diagonal
(in particular, when it jumps, it jumps to the diagonal), i.e. τ0,τ0,t = τ0,t (implicitly,
τ0,t > 0) for all t ∈ (0,∞) a.s.-W.

Proof For each t ∈ (0,∞) choose an H-measurable, (0, t)-valued τ̂0,t such that
τ̂0,t (B|[0,∞)) = τ0,t a.s.-W. We improve (τ̂0,t )t∈(0,∞) in three steps.

First, pass to a version (τ̂ ′
0,t )t∈(0,∞) of (τ̂0,t )t∈(0,∞) that is right-continuous, non-

decreasing, [0,∞)-valued and majorized by id(0,∞), by putting

τ̂ ′
0,t := inf{τ̂0,p : p ∈ Q ∩ (t,∞)}, t ∈ (0,∞).

The right-continuity and nondecreasingness are evident as is the fact that τ̂ ′
0,· is

majorized by id(0,∞) and [0,∞)-valued.We argue that we have a version, namely, that
for all t ∈ (0,∞), τ̂ ′

0,t = τ̂0,t a.s.-P. By nestedness this is certainly true on the event
A that τ̂0,p ∈ (0, t) for some [sufficiently small] rational p ∈ (t,∞), since thereon
τ̂0,q = τ̂0,p a.s.-P for q ∈ [t, p), while τ̂0,q ≥ τ̂0,p a.s.-P for all q ∈ [p,∞). Off A
we have a.s.-P for rational p ∈ (t, 2t), that t ≤ τ̂0,p = τ̂p−t,p = p − t + τ̂0,t (�t−p),
hence also a.s.-P, for rational p ∈ (t, 2t), that 2t − p ≤ τ̂0,t , which forces τ̂0,t ≥ t
a.s.-P. But that can only mean that �0\A is actually P-negligible.

Second, change (τ̂ ′
0,t )t∈(0,∞) on a P-negligible set to the identity map on (0,∞) to

obtain ( ˜̂τ0,t )t∈(0,∞), which is (0,∞)-valued everywhere.
Third, define:

R := {(s, ω)∈[0,∞) × �0 : for all t ∈(0,∞) if ˜̂τ0,s+t (ω)∈(s,∞)

then ˜̂τ0,s+t (ω)=s + ˜̂τ0,t (�sω)},�1:={ω∈�0 : (s, ω)∈R forL -a.e. s∈[0,∞)} and
�2 := {ω ∈ �0 : �uω ∈ �1 for L -a.e. u ∈ [0,∞)}.
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1094 M. Vidmar, J. Warren

By right-continuity and nondecreasingness of ( ˜̂τ0,t )t∈(0,∞) we get

R = ∩t∈Q∩(0,∞){(s, ω) ∈ [0,∞) × �0 :
˜̂τ0,s+t (ω) ∈ (s,∞) ⇒ ˜̂τ0,s+t (ω) = s + ˜̂τ0,t (�sω)} ∈ B[0,∞) ⊗ H;

and then in consecutive order that �1 ∈ H, P(�1) = 1, �2 ∈ H is shift-closed and
P(�2) = 1.

Before proceeding further we make the following observation. Let ω ∈ �0, t ∈
(0,∞), {s1, s2} ⊂ [0, t), {�s1ω,�s2ω} ⊂ �1, s1 ≤ s2. Since �s1ω ∈ �1 then for
L -a.e. u ∈ [0,∞),

˜̂τ0,(u+s2−s1)+(t−s2)(�s1ω) > u + s2 − s1 ⇒
˜̂τ0,(u+s2−s1)+(t−s2)(�s1ω) = u + s2 − s1 + ˜̂τ0,t−s2(�(u+s2−s1)+s1ω),

i.e.

˜̂τ0,u+t−s1(�s1ω) > u + s2 − s1 ⇒
˜̂τ0,u+t−s1(�s1ω) = u + s2 − s1 + ˜̂τ0,t−s2(�u+s2ω).

If further for arbitrarily small u ∈ [0,∞), ˜̂τ0,u+t−s1(�s1ω) ≤ u+s2−s1, then by right-
continuity of ˜̂τ0,·(�s1ω) we get ˜̂τ0,t−s1(�s1ω) ≤ s2 − s1 ≤ s2 + ˜̂τ0,t−s2(�s1ω) − s1,
which renders

s1 + ˜̂τ0,t−s1(�s1ω) ≤ s2 + ˜̂τ0,t−s2(�s2ω).

In the opposite case we have forL -a.e. small enough u ∈ [0,∞),

s1 + ˜̂τ0,u+t−s1(�s1ω) = u + s2 + ˜̂τ0,t−s2(�u+s2ω);

and assume this now. Since �s2ω ∈ �1 and ˜̂τ0,t−s2(�s2ω) > 0, then for all small
enough u ∈ [0,∞), ˜̂τ0,u+t−s2(�s2ω) > u, hence forL -a.e. small enough u ∈ [0,∞),

s2 + ˜̂τ0,u+t−s2(�s2ω) = s2 + u + ˜̂τ0,t−s2(�s2+uω).

Combining the preceding two displayed conclusions we infer that

s2 + ˜̂τ0,u+t−s2(�s2ω) = s1 + ˜̂τ0,u+t−s1(�s1ω)

forL -a.e. small enough u ∈ [0,∞); and further by right continuity of ˜̂τ0,· that

s2 + ˜̂τ0,t−s2(�s2ω) = s1 + ˜̂τ0,t−s1(�s1ω).

Altogether we have deduced that in any case

s1 + ˜̂τ0,t−s1(�s1ω) ≤ s2 + ˜̂τ0,t−s2(�s2ω)
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[even with equality if s2 < infs∈[0,t),�sω∈�1(s + ˜̂τ0,t−s(�sω)), since the latter gives
˜̂τ0,t−s1(�s1ω) > s2−s1 and hence ˜̂τ0,u+t−s1(�s1ω) > u+s2−s1 for all small enough
u ∈ [0,∞) in the above (the “opposite” case), but we shall not need this].

Armed with the preceding observation we put, for t ∈ (0,∞),

τ̂ 0,t (ω)

:=
{
infs∈[0,t),�sω∈�1 (s+ ˜̂τ0,t−s(�sω))=↓-lim0≤s↓0,�sω∈�1 (s+ ˜̂τ0,t−s(�sω)) if ω∈�2,

t if ω∈�0\�2,

stressing that, contrary to the default standard interpretation, the limit in the first line
may include 0: it includes it iff ω ∈ �1. Directly from the definition and the apposite
properties of ˜̂τ it is plain that τ̂ is [0,∞)-valued, majorized by id(0,∞), nondecreasing

and right-continuous. Also direct from the definition is the fact that τ̂ = ˜̂τ on�1∩�2,
which is P-almost sure, so we have a version.

To check the perfect honest indexation property of τ̂ 0,· on�2 letω ∈ �2, t ∈ [0,∞)

(so, �tω ∈ �2 also), T ∈ (0,∞) and suppose that τ̂ 0,T+t (ω) ∈ (t,∞). We compute

τ̂ 0,T+t (ω) = inf
s∈[0,T+t),�sω∈�1

(s + ˜̂τ0,T+t−s(�sω))

=
(

inf
s∈[0,t),�sω∈�1

(s + ˜̂τ0,T+t−s(�sω))

)

∧
(

inf
s∈[t,T+t),�sω∈�1

(s + ˜̂τ0,T+t−s(�sω))

)

=
(

inf
s∈[0,t),�sω∈�1

(s + ˜̂τ0,T+t−s(�sω))

)

∧
(
t + inf

s∈[0,T ),�s�tω∈�1
(s + ˜̂τ0,T−s(�s�tω))

)

=
(

inf
s∈[0,t),�sω∈�1

(s + ˜̂τ0,T+t−s(�sω))

)
∧
(
t + τ̂ 0,T (�tω)

)
.

Let s ∈ [0, t),�sω ∈ �1; it remains to check that s+˜̂τ0,T+t−s(�sω) ≥ t+τ̂ 0,T (�tω).
Since τ̂ 0,T+t (ω) > t we know that s + ˜̂τ0,T+t−s(�sω) > t . Therefore, as �sω ∈ �1,
forL -a.e. small enough u ∈ [0,∞),

s + ˜̂τ0,T+t−s+u(�sω) = s + (t − s + u) + ˜̂τ0,T (�t+uω) = t + u + ˜̂τ0,T (�t+uω)

≥ t +
(
u + ˜̂τ0,T−u(�u�tω)

)
.

Since �tω ∈ �2, by definition of τ̂ 0,T (�tω), taking limit u ↓ 0 over L -a.e. small
enough u we get the sought for inequality.

The version of (τ0,t )t∈(0,∞) stipulated by the lemma is got by taking finally
τ̂ 0,·(B|[0,∞)).
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The final assertion of the lemma concerning the relation of τ0,· to the diagonal
id(0,∞) follows easily from nestedness by “rational exhaustion”. ��

The reader will have noticed that, likewith Proposition 3.21, there is the subtle point
of the perfect honest indexation property of Lemma5.4 holdingwith {τ0,T+t ∈ (t,∞)}
rather than {τ0,T+t ∈ [t,∞)}. Again it is our impression that one cannot improve to
the latter from the former in a trivial way, because the proof is good in the Lévy setting,
and such an improvement cannot prevail there. Consider indeed a two-sided infinite
activity subordinator whose measure has for its support the set { 1n : n ∈ N}. For s < t
from R let τs,t be: the first jump of size 1 on the interval (s, t), if any; otherwise, the
first jump of size 1

2 on the interval (s, t), if any, etc.; † if none occur (which happens
only with probability zero). The family (τs,t )(s,t)∈R2 is an honest indexation of the
jump times. But clearly the indicated would-be “improvement” fails by considering
e.g. the first jump time of size 1, call it J : we would have, for any T ∈ (0,∞), a.s.
τ0,T+J = J + τ0,T (�J ) > J but also τ0,T+J = J , which is absurd.

A second ingredient in the proof of Theorem 5.7 that we prepare beforehand is the
technical

Lemma 5.5 Let T be an F→-stopping time, W(T < ∞) > 0. Then, on {T <

∞}, F→
T is W-independent of (�T |[0,∞))

−1(H), and �T �W(·|T < ∞) = W on
(B|[0,∞))

−1(H). Consequently, if A ∈ F→
T and g ∈ (B[0,∞)⊗(B|[0,∞))

−1(H))/B[0,∞],
then

W[g(T ,�T ); A, T < ∞] =
∫

[0,∞)

W[g(t, B)]W(A, T ∈ dt).

It is basically the strong Markov property with some careful book-keeping of the null
sets. We can couch it in a slightly different, but equivalent form: on {T < ∞}, under
W, F→

T is independent of (�T B)|[0,∞), which has the distribution P thereon. Here
we could, and did view (�T B)|[0,∞) as a random element in (�0,H); we did not
work, and could not have worked with �T B, viewing it as an element of (�0,F0,∞)

(indeed, the preimage of aW-negligible set under �T need not beW-negligible at all:
for instance, consider the first hitting time of 1 by B|[0,∞) as T and take for the set the
collection of paths which are nonpositive on a left neighborhood of 0)!

Proof That F→
T is independent of (�T |[0,∞))

−1(B�0) on {T < ∞} is just the usual
strong Markov property for the Brownian motion B|[0,∞) in the filtration F→. Since
(also by the usual strongMarkov property) the law of�T |[0,∞) (relative toB�0 ) under
W(·|T < ∞) is P|B�0

we see that, on {T < ∞},

(�T |[0,∞))
−1(H) =(�T |[0,∞))

−1(H)

=(�T |[0,∞))
−1(B�0) ∨ (�T |[0,∞))

−1(P−1({0, 1}))
⊂(�T |[0,∞))

−1(B�0) ∨ W−1({0, 1}),

hence F→
T is independent even of (�T |[0,∞))

−1(H) (by an application of Dynkin’s
lemma, say). Similarly we convince ourselves that �T �W(·|T < ∞) = W on
(B|[0,∞))

−1(H).
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As for the second statement, whenever we have a probability Q, Q-independent
random elements Y and Z and a nonnegative measurable map h of this pair, then
Q[h(Y , Z)] = ∫

Q[h(y, Z)](Y�Q)(dy) (brief argument: combine Tonneli, the image
measure theorem and the fact that the law of an independent pair of random elements
is the product of their laws). Applying the latter withQ = W(·|T < ∞), Y = (𝟙A, T ),
Z = �T (viewed as taking values in (�0, (B|[0,∞))

−1(H))) and

h((i, t), z) := 𝟙{1}(i)g(t, z), ((i, t), z) ∈ ({0, 1} × [0,∞)) × �0,

we obtain

W[g(T ,�T ); A, T < ∞] = W[h((𝟙A, T ),�T )|T < ∞]W(T < ∞)

=
∫

[0,∞)

W[g(t,�T )|T < ∞]W(A, T ∈ dt)

=
∫

[0,∞)

W[g(t, B)]W(A, T ∈ dt),

which concludes the argument. ��
As final preparation for the forthcoming “Wiener–Hopf” splitting result we specify

some extra notation.

Definition 5.6 Let r := (�0 � ω �→ (R � t �→ ω(−t))) be the reflection of time.
For an honest indexation τ for M define its dual τ̂ = (τ̂s,t )(s,t)∈R2,s<t by setting
τ̂s,t := −τ−t,−s ◦ r for real s < t (−† := †).

The reflection of time r is measure-preserving forW. For s ∈ R, �s ◦ r = r ◦ �−s ,
in particular r ◦ �s is its own inverse—the reflection about, subsequent to centering
at s. τ̂ is an honest indexation of −M ◦ r and τ̂0,t = t − τ0,t ◦ r ◦ �t for real t . Also,̂̂τ = τ .

Theorem 5.7 Fix λ ∈ (0,∞). Suppose the stationary local random countable set M
admits an honest indexation τ . Let M ′ be another stationary local random count-
able set. Set W̃ := W × Exp(λ) (Exp(λ) being the exponential law of mean λ−1 on
B(0,∞)), letting e be the second coordinate of W̃, while for the copies of the random
elements/objects supported byWwe do not introduce new notation, retaining the same
by an abuse. Write τt := τ0,t , t ∈ (0,∞); as well as τ̂t := τ̂0,t , t ∈ (0,∞), for the
dual indexation. We insist that ((0,∞) × �0 � (t, ω) �→ τt (ω) ∈ [0, t]) ∈ (B(0,∞) ⊗
G)/B[0,∞) and ((0,∞) × �0 � (t, ω) �→ τ̂t (ω) ∈ [0, t]) ∈ (B(0,∞) ⊗ G)/B[0,∞)

(note: according to Lemma 5.4 a version of τ exists for which this is true). Put
F−∞,τe := σ(Zτe : Z a bounded real left-continuous F→-adapted process).

(i) F−∞,τe , in particular the pair (τe, Bτe), is independent of (e − τe,�τe |[0,∞))

under W̃.
(ii) The event {τe ∈ M ′} is W̃-trivial.
(iii) (e − τe,�τe |[0,∞))�W̃ = (τ̂e, (r ◦ �τ̂e)|[0,∞))�W̃.
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In the case of M being the local minima (resp. maxima) of B with τs,t a minimizer
(resp. maximizer) of B on (s, t) for real s < t , Items (i) and (iii) give the usual splitting
at the minimum (resp. maximum) before an independent exponential random time,
which underlies the Wiener–Hopf factorization [11]. Via Example 5.3 we extend this
observation to drifting Brownian motion.

Clearly the statement of the theorem does not go through in its entirety with, ceteris
paribus, e a deterministic random time from (0,∞). For instance, if M are the local
minima of B and, for real s < t , τs,t is a minimizer of B on (s, t), then clearly τ0,t is
independent of t − τ0,t for no t ∈ (0,∞) (vis-á-vis Item (i)). This is not to say that
perhaps one could not prove Item (ii) in such case, namely that {τt ∈ M ′} isW-trivial
for t ∈ (0,∞), however at least the structure of the proof which follows does not
seem to allow for this. On the other hand, Item (iii)—the equality in law of the pre-τ̂e
increments looked backwards together with τ̂e and of the post-τe increments together
with e − τe—certainly implies (taken for all λ ∈ (0,∞)) its “e is deterministic”
version, as is readily verified.

Proof Changing the process τ· := (τt )t∈(0,∞) to any (jointly) measurable version
thereof, satisfying τt ∈ [0, t] for all t ∈ (0,∞), changes τe only on a W̃-negligible
set. The same for τ̂· := (τ̂t )t∈(0,∞). Therefore we may and do just as well assume
that τ· has all the properties stipulated by Lemma 5.4, the perfect honest indexation
property in particular. Likewise for τ̂·.

Pass also to the nice version of M ′ guaranteed to exist by Corollary 3.26. The
main gain from this is that we have perfect stationarity combined with M ′ ∩ (0,∞)

being measurable w.r.t. B|[0,∞) and possibly its null sets, i.e. M ′ ∩ (0,∞) having a
(B|[0,∞))

−1(H)-measurable perfect enumeration; the intervention of the null sets of
the whole of B is not needed. This, together with the (B|[0,∞))

−1(H)-measurability
of τ·, will be instrumental in applying Lemma 5.5 below.

Next, set, for l ∈ [0,∞),

Tl := inf{t ∈ (0,∞) : τt > l}.

We have that Tl is an F0,→-stopping time (∵ by locality the process τ· is
(F0,t )t∈(0,∞)-adapted), W-a.s. (l,∞)-valued (∵ τl ≤ l (even with certainty),
W(τl = l) = 0, τ· is ↑ and right-continuous), having τTl = Tl a.s.-W (∵
with W-probability one τ· only increases on the diagonal) and satisfying, for all
t ∈ (0,∞), {Tl ≤ t} = {τt > l} a.s.-W (∵ W(τt = l) = 0) and τt ≥ Tl
a.s.-W on {Tl ≤ t} (∵ τ· is ↑ so that τt ≥ τTl = Tl a.s.-W).

Since the filtration F0,→ is Brownian, hence predictable, we may also, and do
prepare a sequence (T n)n∈N of F0,→-stopping times satisfying T n ↑ Tl as n → ∞
and T n < Tl for all n ∈ N a.s.-W. Since W(Tl > l) = 1 we may and do ask that
T n ≥ l for all n ∈ N (by passing to (T n ∨ l)n∈N in lieu of (T n)n∈N if necessary).

With these preparations in hand, take {l, r} ⊂ [0,∞), L ∈ F−∞,l , H ∈ B�0 and
compute as follows:

W̃(L, l < τe, τe ∈ M ′, τe < e − r ,�e−r |[0,∞) ∈ H)

=
∫ ∞
0

dtλe−λtW(L, l < τt , τt ∈ M ′, τt < t − r ,�t−r |[0,∞) ∈ H)
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(just the independence of e & B and Tonelli)

=
∫ ∞
0

dtλe−λtW(L, Tl ≤ t, τt ∈ M ′, τt < t − r ,�t−r |[0,∞) ∈ H)

(since {Tl ≤ t} = {l < τt } a.s.-W)

= lim
n→∞

∫ ∞
0

dtλe−λtW
(
L, T n ≤ t, T n + τt−T n (�T n ) ∈ T n + (M ′ ∩ (0,∞))(�T n ),

T n + τt−T n (�T n ) < t − r , (�(t−T n−r)∨0|[0,∞))(�T n ) ∈ H
)

(by dominated convergence, perfect stationarity of M ′

and by perfect honest indexation of τ·,
using τt ≥ Tl > T n for all n ∈ N a.s.-W on {Tl ≤ t})

= lim
n→∞

∫ ∞
0

dtλe−λt

∫
[0,t]

W(L, T n ∈ dh)W(τt−h ∈ M ′, τt−h < t − h − r ,�t−h−r |[0,∞) ∈ H)

(by Lemma 5.5 for the F→-stopping time T n,

noting that L ∈ F−∞,l , l ≤ T n and exploiting

τ·being (resp. M ′ ∩ (0, ∞) having a)

(B|[0,∞))
−1(H)-measurable (resp. perfect enumeration))

= lim
n→∞

∫
[0,∞)

W(L, T n ∈ dh)e−λh

∫ ∞
h

dtλe−λ(t−h)W(τt−h ∈ M ′, τt−h < t − h − r ,�t−h−r |[0,∞) ∈ H) (Tonelli)

= lim
n→∞ W̃(L, T n < e)
∫ ∞
0

dtλe−λtW(τt ∈ M ′, τt < t − r ,�t−r |[0,∞) ∈ H) (elementary substitution of

t − h � h: it is here where the memoryless property of the

exponential distribution intervenes crucially, yielding the factorization)

= W̃(L, Tl ≤ e)
∫ ∞
0

dtλe−λtW(τt ∈ M ′, τt < t − r ,�t−r |[0,∞) ∈ H) (continuity of W̃)

= W̃(L, l < τe)

∫ ∞
0

dtλe−λtW(τt ∈ t + M ′(�t ), τt < t − r ,�t−r |[0,∞) ∈ H)

(using stationarity of M ′

and the fact that {Tl ≤ e} = {l < τe} a.s.-W̃ /by independence of e and B/)

= W̃(L, l < τe)

∫ ∞
0

dtλe−λtW(t − τt ∈ −M ′(�t ), r < t − τt ,�t−r |[0,∞) ∈ H)

(just a slight rearrangement)

= W̃(L, l < τe)

∫ ∞
0

dtλe−λtW(τ̂t (r ◦ �t ) ∈ (−M ′ ◦ r)(r ◦ �t ), r < τ̂t (r ◦ �t ),

((r ◦ �r )|[0,∞))(r ◦ �t ) ∈ H)

(since t − τt = τ̂t (r ◦ �t ), r ◦ r = id�0 and r ◦ �r = �−r ◦ r)
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= W̃(L, l < τe)

∫ ∞
0

dtλe−λtW(τ̂t ∈ −M ′ ◦ r, r < τ̂t , (r ◦ �r )|[0,∞) ∈ H)

(r ◦ �t is measure-preserving forW)

= W̃(L, l < τe)W̃((r ◦ �r )|[0,∞) ∈ H , r < τ̂e, τ̂e ∈ −M ′ ◦ r)

(independence of e & B and Tonelli /bis/) (5.1)

= W̃(L, l < τe)W̃(r < τ̂e, (r ◦ �r )|[0,∞) ∈ H)W̃(τe ∈ M ′), (5.2)

where in the last line we have used the fact that −M ′ ◦ r (resp. −M ◦ r) is also a
shift-invariant local random countable set (resp. of which τ̂ is an honest indexation,
nice in the sense of Lemma 5.4), while {(r ◦ �r )|[0,∞) ∈ H} ∈ F−∞,r , so that (5.1)
can be recycled according to the following substitutions:

r � 0, H � �0, M � −M ◦ r, M ′ � −M ′ ◦ r, l � r ,

L � {(r ◦ �r )|[0,∞) ∈ H}, τ· � τ̂·,

noting finally that ̂̂τ = τ , W̃(0 < τe) = 1 and −(−M ′ ◦ r) ◦ r = M ′ (this “trick” just
saves us from having to redo a computation that really we have already done, albeit
subject to the preceding substitutions). Taking l = 0, L = �0, M ′ = M in (5.2) we
get (since /by inclusion and independence/ W̃(τe ∈ M) = 1)

W̃(τe < e − r ,�e−r |[0,∞) ∈ H) = W̃(r < τ̂e, (r ◦ �r )|[0,∞) ∈ H); (5.3)

plugging (5.3) back into (5.2) we conclude that

W̃(L, l < τe, τe ∈ M ′, r < e − τe,�e−r |[0,∞) ∈ H)

= W̃(L, l < τe)W̃(τe ∈ M ′)W̃(r < e − τe,�e−r |[0,∞) ∈ H).

By approximation, linearity and bounded convergence it follows that

W̃[Zτe; τe ∈ M ′, r < e − τe,�e−r |[0,∞) ∈ H ]
= W̃[Zτe ]W̃(τe ∈ M ′)W̃(r < e − τe,�e−r |[0,∞) ∈ H)

for all bounded real left-continuousF→-adapted processes Z . By functionalmonotone
class we deduce that

W̃(L, τe ∈ M ′, r < e − τe,�e−r |[0,∞) ∈ H)

= W̃(L)W̃(τe ∈ M ′)W̃(r < e − τe,�e−r |[0,∞) ∈ H),

which is to say

W̃(L, τe ∈ M ′, r < e − τe,�e−τe−r (�τe |[0,∞)) ∈ H)

= W̃(L)W̃(τe ∈ M ′)W̃(r < e − τe,�e−τe−r (�τe |[0,∞)) ∈ H),
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this for all L ∈ F−∞,τe . Besides, the class of sets

{{(t, ω) ∈ [0,∞) × �0 : r < t, �t−r (ω) ∈ H} : (r , H) ∈ [0,∞) × B�0

} ⊂ 2[0,∞)×�0

is a π -system that generates B[0,∞) ⊗ B�0 on [0,∞) × �0. By an application of
Dynkin’s lemma (“it is enough to check independence on generating π -systems”) we
get (i) and in fact the joint independence of the following triplet:

F−∞,τe; {τe ∈ M ′}; (e − τe,�τe |[0,∞)).

Since F−∞,τe and (e− τe,�τe |[0,∞)) generate the whole of the σ -field of W̃ we infer
at once (ii). Finally, as probability laws are uniquely determined by their values on
a generating π -system (which, incidentally, follows again from Dynkin’s lemma) we
deduce from a rewriting of (5.3), namely

W̃(r < e − τe,�e−τe−r (�τe |[0,∞)) ∈ H) = W̃(r < τ̂e,�τ̂e−r ((r ◦ �τ̂e)|[0,∞)) ∈ H),

also the validity of (iii). ��
Call an honest indexation τ of a random countable set M symmetric if τ̂0,t =

τ0,t a.s.-W for all t ∈ (0,∞). For such an indexation Theorem 5.7(iii) becomes
(e − τe,�τe |[0,∞))�W̃ = (τe, (r ◦ �τe)|[0,∞))�W̃.

Question 5.8 Examples of symmetric honest indexations include the standard index-
ation of the local minima (that of Example 5.3 with κ = 0) and the corresponding
standard indexation of the local maxima. Are there any others?

5.2 Thickness, local times and excursions

Return to Question 3.23. In our second substantial result of this section, let us show
that for random sets admitting an honest indexation, no stopping time can belong to
them with positive probability. In the terminology of [1, Definition 5.1] such sets are
thick.

Theorem 5.9 Let M be a random set admitting an honest indexation τ and let S be an
(F−∞,t )t∈R-stopping time (meaning: S is [−∞,∞]-valued and {S ≤ a} ∈ F−∞,a

for all a ∈ R). Then W(S ∈ M) = 0.

By reflection of time W(S ∈ M) = 0 for any (Ft,∞)t∈R-reverse stopping time S
(meaning: S is [−∞,∞]-valued and {S ≥ a} ∈ Fa,∞ for all a ∈ R), just the same.
Theorem 5.9 and the preceding statement also generalize trivially to any M which is
merely a countable union of random sets, each admitting its own honest indexation.

Proof Suppose per absurdum W(S ∈ M) > 0. By stationarity we reduce at once to
the case when S is (0,∞)-valued and we assume this henceforth.

First we pass to a nice version of τ that will be ideally suited to the problem at
hand. Let Q := { k

2n : (k, n) ∈ Z × N0} be the dyadic numbers. We may and do insist
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1102 M. Vidmar, J. Warren

that τp,q is [p, q]-valued for each pair p < q from Q. The family τ |Q×Q is a.s.-W
nondecreasing in both its “coordinates”. We may and do ask further then that it is
nondecreasing in both its “coordinates” with certainty (by setting e.g. τp,q = p+q

2 for
p < q from Q on the exceptional set on which it fails). Put next

τ̂u,v := sup{τp,q : (p, q) ∈ Q2, p < q, p < u, q < v}, (u, v) ∈ R
2, u < v.

Then τ̂ := (τ̂u,v)(u,v)∈R2,u<v is jointly left-continuous, nondecreasing and τu,v ∈
[u, v] for all real u < v by construction. Furthermore, τ̂u,v = τu,v a.s.-W for all
real u < v: certainly τ̂u,v ≤ τu,v a.s.-W; for the reverse inequality note that a.s.-W,
τu,v = τu,q for some q ∈ Q ∩ (u, v) and then up to a Lévy shift and a reflection
of time r, both of which are measure-preserving for W, the argument reduces to the
observation that τ̂ ′

0,· is a version of τ̂0,· in the proof of Lemma 5.4 (the · here and in the
continuation of the proof below runs over values in (0,∞)). We may and do assume
then that τ was jointly left-continuous, nondecreasing and that τu,v ∈ [u, v] for all
real u < v to begin with.

Second, notice that for a deterministic random time T , (�T )−1(F0,∞) is W-
independent of F−∞,T and (�T )�W = W on F0,∞, which extends, on {T ∈ R},
to an arbitrary (F−∞,t )t∈R-stopping time T that assumes at most countably many
values with W-probability one (notation: F−∞,T := {A ∈ F−∞,∞ : A ∩ {T ≤ t} ∈
F−∞,t for all t ∈ R}). This—let us call it the simple Markov property—will be used
below in conjunction with the fact that τ0,· is F0,∞-measurable.

Since the filtration F→ is Brownian, therefore predictable, there is a sequence of
F→-stopping times (Tn)n∈N that is nondecreasing to S and such that Tn < S for
all n ∈ N. For each n ∈ N there is then a F→-stopping time Sn valued in Q such
that Tn ≤ Sn ≤ Tn + 2−n and such that W(Sn > S) ≤ 2−n . By Borel–Cantelli it
follows that Sn > S for at most finitely many n ∈ N a.s.-W, hence by left-continuity
of τ we have that limn→∞ τSn ,Sn+t = τS,S+t for all t ∈ (0,∞) a.s.-W. At the same
time, for each n ∈ N, since Sn assumes only countably many values, we have that
τSn ,Sn+·−Sn = τ0,·(�Sn ) a.s.-W andhence by the simpleMarkovproperty τSn ,Sn+·−Sn
has the same law as τ0,· under W. So, the W-law of τS,S+· − S is that of τ0,· too. In
particular, τS,S+t > S for all t ∈ (0,∞) a.s.-W.

Now, on the event that {S ∈ M}, a.s.-W, for some pair p < q from Q, p < S =
τp,q < q and hence S = τr ,q for all r ∈ (p, S) ∩ Q, which in turn by left-continuity
yields S = τS,q , contradicting the conclusion of the preceding paragraph. ��

The last result allows to develop a theory of “excursions of B relative to a random
set admitting an honest indexation τ” (more precisely, from an associated set, D,
to be introduced presently), which generalizes the excursions of B from its running
minimum in the case of τ being the standard indexation of the local minima of B.
Though we shall not find any immediate use for it, this “Itô’s excursion point of view”
is at our fingertips, and since we also find it interesting in its own right and may prove
useful in future explorations of the subject, we provide the details.

For the remainder of this section let then τ be an honest indexation of a randomsetM
and assume that the process τ0,· = (τ0,t )t∈(0,∞) is right-continuous, (B|[0,∞))

−1(H)-
measurable, (0,∞)-valued, nondecreasing, majorized by id(0,∞) and has τ0,τ0,t = τ0,t
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for all t ∈ (0,∞) (this wemay ask for according to Lemma 5.4 by passing to a suitable
version of τ ). The right-continuity and (B|[0,∞))

−1(H)-measurability are important.
The other properties we ask for in order to avoid some a.s. qualifiers and ease the
sailing below, but are otherwise not consequential (they hold a.s. anyway). Introduce

D := {t ∈ (0,∞) : t = τ0,t } = {τ0,t : t ∈ (0,∞)} ∈ (B|[0,∞))
−1(H) ⊗ B(0,∞),

which is a closed F0,→-optional subset of (0,∞) with 0 as an accumulation point.
An important property to note at once concerning the relation of D to M is as

follows. Set

Rt := Et − t := inf{s ∈ (t,∞) : s ∈ D} − t, t ∈ (0,∞),

and

G := {t ∈ (0,∞) : Rt− = 0, Rt > 0} = {t ∈ D : Rt > 0}

(the set of the left end-points of the intervals contiguous to D = {t ∈ (0,∞) : Rt− =
0}, i.e. the set of those points of D, which are isolated on the right in D). Then

M ∩ D = G a.s.-W.

For, if t ∈ D and t is isolated from the right in D, then there is a rational p ∈ (t,∞),
such that t = τ0,t = τ0,p; conversely, a.s.-W, if t ∈ M ∩ D, then p < t = τp,q < q
for some rational p < q and consequently τ0,q = τp,q = t = τ0,t , implying that t is
isolated on the right in D.

A second immediate observation that we can make is that (0,∞)\D is dense in
(0,∞) a.s.-W: the converse would indeed imply that for some rational p ∈ (0,∞)

with positive W-probability τ0,p = p, which cannot be.
The reader may also wonder at this point whether or not the set D has to be

unbounded a.s.-W. The answer is no: just take κ > 0 in Example 5.3, in which
case D is bounded a.s.-W.

Proposition 5.10 Let T be an F0,→-stopping time. Then

D ∩ (T ,∞) = T + D(�T ) a.s.-W on {T ∈ D}, (5.4)

We may remark that (5.4) implies, in particular, that D ∩ (Et ,∞) = Et +
D(�Et ) a.s.-W and hence that D ∩ (0, Et ] is independent of [D ∩ (Et ,∞)] − Et

on {Et < ∞}, this for each t ∈ (0,∞). Thus D is a regenerative set in the sense of
[16, p. 1] (with a trivial, constant, “modulating” process X—but not with X = B!).

Proof Theorem 5.9, together with the observation that M ∩ D are a.s.-W those points
of D that are isolated on the right, entails that τ0,T+· − T is strictly positive a.s.-W on
{T ∈ D}. From Lemma 5.4 we hence get that

τ0,T+· = T + τ0,·(�T ) a.s.-W on {T ∈ D},
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provided a nice enough version of τ0,· is chosen in the stipulated equality. The claim
follows (becauseW(�T ∈ A) = 0 forW-negligible A ∈ (B|[0,∞))

−1(H), so that one
can pass back to the given version). ��

We aim next to construct a local time for D with a certain nice regenerative property
relative to the Lévy shifts. We turn to this after preparing

Lemma 5.11 Let ζ be a U-stopping time. For a process X : �0 × [0,∞) → R that is
(H ⊗ B[0,∞))/BR-measurable put

X̃ := X ζ + X̂ := X ζ + [(X − X0)(�ζ )]·−ζ𝟙�ζ,∞�.

(i) If X is optional, then so is X̂ (and, hence, X̃ ).
(ii) If X is a right-continuous martingale, the running supremum of the absolute

value of which is P-integrable at finite deterministic times, then X̂ (and, hence,
X̃ ) has these same properties.

(iii) If X is right-continuous and bounded on bounded time intervals, then X̂ has the
same properties and o X̂ = ô X .

(iv) If X is nondecreasing, right-continuous and bounded on bounded time intervals
then X̃ has these properties also and (X̃)p = X̃ p a.s.-P.

Here oX (resp. X p) denotes the (U, P)-optional (resp. dual predictable) projection of
X.

Proof All notions of the general theory of stochastic process in this proof are relative
to the pair (U, P). The filtration being Brownian the optional and predictable σ -field
coincide and we shall use this without special mention. We may and do assume P(ζ <

∞) > 0 (for otherwise X̂ = 0 & X̃ = X a.s.-P and the matter is trivial).

(i) By a monotone class argument we reduce to checking it in the case when X =
𝟙A×[u,∞) with A ∈ Uu , u ∈ (0,∞). In that case

X̂t = 𝟙{ζ+u≤t,�ζ ∈A}, t ∈ [0,∞),

so that X̂ is right-continuous and adapted (∵ ζ + u is a stopping time and
(�ζ )

−1(Uu) ⊂ Uζ+u), hence optional.
(ii) Wemay and do assume X0 = 0. By (i) X̂ is adapted. Let s1 ≤ s2 be from [0,∞).

On the one hand, on {s1 ≤ ζ },

P
[
X̂s2 |Us1

] = P
[
X(�ζ )s2−ζ𝟙{ζ≤s2}|Us1

] = P
[
P
[
X(�ζ )s2−ζ𝟙{ζ≤s2}|Uζ

] |Us1

]
= 0 = X̂s1

a.s.-P, since �ζ is independent of Uζ under P(·|ζ < ∞), ζ is Uζ -measurable,
(�ζ )�P(·|ζ < ∞) = P and P[Xu] = 0 for all u ∈ [0,∞). On the other hand,
for all u ∈ [0,∞), P[Xu+s2−s1 |Uu] = Xu a.s.-P, hence, on {ζ < ∞}, a.s.-P,
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X(�ζ )u = (
(�ζ �P(·|ζ < ∞))[Xu+s2−s1 |Uu]

)
(�ζ )

= P(·|ζ < ∞)[X(�ζ )u+s2−s1 |�−1
ζ (Uu)]

= P(·|ζ < ∞)[X(�ζ )u+s2−s1 |(�ζ
u)−1(B�0)]

= P(·|ζ < ∞)[X(�ζ )u+s2−s1 |Uζ ∨ (�ζ
u)−1(B�0)]

= P[X(�ζ )u+s2−s1 |Uζ ∨ (�ζ
u)−1(B�0)]

(using quasi left-continuity and predictability of U together with the Black-
well property of (�0,B�0) it is possible to see [14, Corollary 7.20] that
Uζ ∨ (�ζ

u)−1(B�0) = Uζ+u but we do not need it). Therefore

P[X(�ζ )u |Us1 ] = P[X(�ζ )u+s2−s1 |Us1 ]

a.s.-P on {u ≥ s1−ζ, ζ ≤ s1}. Take now an approximating sequence of stopping
times (ζk)k∈N for ζ with the following property: for each k ∈ N, ζk takes on only
countably many values, ζk → ζ as k → ∞ and ζk > ζ for at most finitely many
k ∈ N a.s.-P (we have seen the method for the construction of such a sequence
in the proof of Theorem 5.9). Then, for each k ∈ N, on {ζ ≤ s1, ζk ≤ ζ }, a.s.-P,

P[X(�ζ )s1−ζk |Us1 ] = P[X(�ζ )s2−ζk |Us1 ];

on letting k → ∞ we deduce that

X̂s1 = P[X(�ζ )s1−ζ |Us1 ] = P[X(�ζ )s2−ζ |Us1 ] = P[X̂s2 |Us1 ]

a.s.-P on {ζ ≤ s1}. Thus X̂ is indeed a martingale and the other properties are
immediate.

(iii) We may and do assume X0 = 0. By (i) ô X is adapted; it is also right-continuous.
Both these properties are true of X̂ also.With these two preliminary observations
out of the way we compute that, for all u ∈ [0,∞), on {ζ < ∞}, a.s.-P,

oXu(�ζ ) = P[Xu |Uu](�ζ ) = (
(�ζ �P(·|ζ < ∞))[Xu |Uu]

)
(�ζ )

= P(·|ζ < ∞)[Xu(�ζ )|(�ζ
u)−1(B�0)]

= P(·|ζ < ∞)[Xu(�ζ )|Uζ ∨ (�ζ
u)−1(B�0)]

= P[Xu(�ζ )|Uζ ∨ (�ζ
u)−1(B�0)].

Therefore, for all t ∈ [0,∞),

P[oXu(�ζ )|Ut ] = P[Xu(�ζ )|Ut ]

a.s.-P on {u ≥ t − ζ, ζ ≤ t}. Taking (ζk)k∈N as in (ii) we get that for each k ∈ N,
on {ζ ≤ t, ζk ≤ ζ }, a.s.-P,

P[oXt−ζk (�ζ )|Ut ] = P[Xt−ζk (�ζ )|Ut ];
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on letting k → ∞ we deduce that

ô X t = P[ô X t |Ut ] = P[oXt−ζ (�ζ )|Ut ] = P[Xt−ζ (�ζ )|Ut ] = P[X̂t |Ut ] = o X̂t

a.s.-P on {ζ ≤ t}. This relation being trivial on {ζ < t} the claim follows.
(iv) Since the dual predictable projection commutes with stopping and is linear it

suffices to establish that (X̂)p = X̂ p a.s.-P. We may and do assume X0 =
0. By [23, Theorem VI.21.4] (and deterministic localization) oX − X p is a
right-continuous martingale having the integrability property of (ii). Therefore
oX − X p
∧

= ô X − X̂ p = o X̂ − X̂ p is also a right-continuous martingale having
the integrability property of (ii), where we have used in addition (iii). By another
application of [23, TheoremVI.21.4] (and deterministic localization) the desired
conclusion follows.

��
Proposition 5.12 There exists a, W-a.s. unique up to a multiplicative constant from
(0,∞), continuous nondecreasing F0,→-adapted, (B|[0,∞))

−1(H)-measurable real
process L = (Lt )t∈[0,∞) vanishing at zero, such that supp(dL) ∩ (0,∞) = D a.s.-W
and such that for any F0,→-stopping time T the Lévy shift regenerative property

LT+· = LT + L(�T ) a.s.-W on {T ∈ D} (5.5)

holds true.

In particular it means that D has no isolated points a.s.-W. Also, with ζ the right-
continuous inverse of L ,

ζt := inf{s ∈ [0,∞) : Ls > t}, t ∈ [0,∞),

we have that for all s ∈ [0,∞),

ζs+t = ζs + ζt (�ζs ) for all t ∈ [0,∞) a.s.-W on {ζs < ∞}.

In turn it means that the bivariate process (ζ, Bζ ), defined on the temporal inter-
val [0, L∞), is a possibly killed Lévy process under W in the filtration F0,→

ζ =
(F0,→

ζt
)t∈[0,∞). Especially, L∞ has an exponential distribution under W (possibly

degenerate, equal to δ∞, of course) and ζ is a (F0,→
ζ ,W)-subordinator, the closure of

the range of which is equal to D a.s.-W.

Proof For the purposes of the proof we transfer everything relevant fromW under P in
the obvious way, but do not bother to introduce new notation for D, the Rt , t ∈ (0,∞),
and G. To placate the reader as to this we note that by [15, Lemma 1.19] any stopping
time of F0,→ is a.s.-W equal to a stopping time of ((B|[0,∞))

−1(Ut ))t∈[0,∞) (because
the latter filtration is right-continuous, which follows from Lemma 3.18 and the right-
continuity of U).
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As in Lemma 5.11 all notions of the general theory of stochastic process in this
proof are relative to the pair (U, P).

Existence. The construction is standard; we follow [8, Chapter XX, Section 1,
# 11]. Then set

Lt := L (D ∩ (0, t]) +
∑

g∈G∩(0,t]
(1 − e−Rg ), t ∈ [0,∞).

The process L = (Lt )t∈[0,∞) belongs to (H ⊗ B[0,∞))/BR and is nondecreasing,
right-continuous, vanishing at zero, bounded on bounded time intervals, furthermore,
thanks to Proposition 5.10, for any U-stopping time T ,

LT+· = LT + L·(�T ) a.s.-P on {T ∈ D}. (5.6)

Denote by L the dual predictable projection of L. We get evidently a U-adapted real
nondecresing right-continuous process vanishing at zero (or anyway can choose its
version in this way). This process is (may be chosen) continuous because of the
following argument: according to [8, Remark on p. 132 in # XX.11] the set of its
discontinuities is P-a.s. contained in Go, which is a thin set (i.e. exhausted by a count-
able union of U-stopping times) [8, Chapter 20, Section 1, (8.1)] that is contained
in G; as discussed above G = M ∩ D a.s.-P and we conclude by applying Theo-
rem 5.9 that Go = ∅ a.s.-P. L satisfies moreover (5.5), which follows from (5.6) and
Lemma 5.11(iv) on taking X = L and ζ = T𝟙{T∈D} + ∞𝟙{T /∈D} therein. Finally,
we check that L := supp(dL) ∩ (0,∞) = D a.s.-P. On the one hand, the Lebesgue–
Stieltjes measure dL is carried on (0,∞) by the predictable set D, therefore the same
is true of dL , i.e. D ⊃ L. Conversely, L is the closure of the set of points of left
increase of L , which is a predictable set (use [23, VI.5, (6.29)]) that carries dL hence
dL on (0,∞), therefore since D is actually equal to the support of dL on (0,∞) we
get also D ⊂ L.

Uniqueness. The argument of [4, Proposition IV.5] having to do with the local time
for excursions away from a point of a Markov process applies, mutatis mutandis. We
omit the details of the straightforward modification, noting only (i) that the role of
the Markov property of [4] is played by the regenerative properties (5.4)-(5.5) of D
and L relative to the Lévy shifts, while (ii) the fact that the point from which the
excursions are being looked at in [4] is regular and instantaneous corresponds to 0
being an accumulation point of D and to (0,∞)\D being dense in (0,∞) a.s.-P,
respectively. ��

With the continuous local time L , having the regenerative property, of Proposi-
tion 5.12 in hand, the excursion structure of B from the set D follows easily. Simply
define

εt :=
{

(�ζt−|[0,∞))
ζt−ζt− , if ζt > ζt−

∂, otherwise
, t ∈ (0,∞),

where ∂ is a cemetery (coffin) state. Then, underW, ε = (εt )t∈(0,∞) is a Poisson point
process in the filtration F0,→

ζ [13, Theorem 3.1].
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We leave it here at that, except for noting that the splitting result of Theorem 5.7
with M ′ = M or M ′ = ∅ is not really surprising in view of (and could perhaps be
got from) the excursion-theoretic structure presented just now—see e.g. [11] for a
pleasant exposition of the Wiener–Hopf factorization based on excursion theory in
the case when τ is the standard indexation of the local maxima. Nevertheless, we
certainly cannot through this lense alone explain away the extra information of the
splitting coming from an M ′ whose relation to M is not a priori trivial. It is precisely
this extra information that we shall find immediate use for in the next section.

6 Minimality

Here we wish to examine the question of “minimality” of a local stationary random
countable set.

Proposition 6.1 If M1 and M2 are two stationary local random countable sets then
either M1 ⊂ M2 a.s.-W orwithW-probability zero; in the former case either M1 = M2
a.s.-W or M2\M1 is a stationary local dense random countable set.

Proof For all v ∈ R, �−1
v ({M1 ⊂ M2}) = {M1 ⊂ M2} a.s.-W, therefore W(M1 ⊂

M2) ∈ {0, 1} (recall Remark 2.6). Clearly M2\M1 is a stationary local random count-
able set, therefore is empty W-a.s. or dense W-a.s. by Proposition 3.14. ��
Definition 6.2 A stationary local dense random countable set that admits no proper
dense stationary local random countable subset with positive W-probability shall be
called minimal.

By the preceding it is equivalent to ask that it does not decompose into the disjoint
union of two dense local stationary random countable sets. The local extrema of B
are not minimal (they decompose into the local maxima and minima). Are the local
maxima (minima) of B minimal? If not, then the answer to Tsirelson’s question would
have been to the affirmative at once. However, it could not have been so easy, as we
shall see.

Theorem 6.3 Let M be a dense stationary local random countable set admitting an
honest indexation τ = (τs,t )(s,t)∈R2,s<t . If (†) W(τ0,t ∈ M ′) is {0, 1}-valued for arbi-
trarily small t ∈ (0,∞) for all stationary local random countable sets M ′ contained
in M a.s.-W, then M is minimal (the converse is also true, but trivial).

Proof Let M ′ be a stationary local random countable set contained in M a.s.-W. For
{s, t} ⊂ (0,∞), we argue as follows:

• by nestedness and locality of τ , a.s.-W, either τ0,s+t ∈ (0, s) and then τ0,s+t = τ0,s
or τ0,s+t ∈ (s, s + t) and then τ0,s+t = τs,s+t (recall that W(τ0,s+t = s) = 0),
hence

{τ0,s ∈ M ′} ∩ {τs,s+t ∈ M ′} ⊂ {τ0,s+t ∈ M ′};
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• by locality of M ′ and since τ0,s is F0,s-measurable, while τs,t is Fs,t -measurable,

the two events {τ0,s ∈ M ′} a.s.-W= {τ0,s ∈ M ′ ∩ (0, s)} and {τs,s+t ∈ M ′} a.s.-W=
{τs,s+t ∈ M ′ ∩ (s, s + t)} are respectively F0,s- and Fs,s+t -measurable;

• by stationarity of M ′ and τ , {τs,s+t ∈ M ′} = {s + τ0,t (�s) ∈ s + M ′(�s)} =
�−1

s ({τ0,t ∈ M ′}) [which fact is true for s ∈ R, not just s ∈ (0,∞)];
• therefore, using the basic properties of W,

W(τ0,s+t ∈ M ′) ≥ W(τ0,s ∈ M ′, τs,s+t ∈ M ′) = W(τ0,s ∈ M ′)W(τs,s+t ∈ M ′)
= W(τ0,s ∈ M ′)W(τ0,t ∈ M ′).

In words, the map f := ((0,∞) � t �→ W(τ0,t ∈ M ′)) is supermultiplicative. Let D
be a countable subset of (0,∞) with 0 as an accumulation point on which f is {0, 1}-
valued; it exists by assumption (†). If (*) f (t) = 0 for some t ∈ D, then f (t2−n) = 0
for all n ∈ N0 by supermultiplicativity of f . But

M = {τtm2−n ,t(m+1)2−n : (m, n) ∈ Z × N0} a.s.-W.

On using also the third bullet point above, (*) thus leads to M ′ being empty. On the
other hand, if (**) f (t) = 1 for all t ∈ D, then since also

M = {τp,p+t : (p, t) ∈ Q × D} a.s.-W,

we get by the third bullet point again, that (**) leads to M ′ = M a.s.-W. We conclude
that M is indeed minimal. ��
Corollary 6.4 Suppose the dense stationary local random countable set M admits an
honest indexation τ . Then M is minimal.

Proof Let M ′ be a stationary local random countable set contained in M a.s.-W. By
Theorem 5.7 (with an arbitrary λ, λ = 1 say) and in the notation thereof {τe ∈ M ′} is
W̃-trivial; by Tonelli and Theorem 6.3 it is enough. ��

Immediately it begs

Question 6.5 If a stationary local random countable set M is minimal, must it admit
an honest indexation?

Corollary 6.6 For d ∈ (0, 2) the set M (d) is minimal. In particular the local minima
(maxima) are minimal.

Proof Apply Corollary 6.4 recalling Example 5.2. For d = 1 we get the local minima;
for the local maxima one slides along the map which sends B to −B. ��
Corollary 6.7 The local extrema do not admit an honest indexation.

Proof Indeed they are not minimal so the contrapositive of Corollary 6.4 applies. ��
Left open, but natural is
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1110 M. Vidmar, J. Warren

Question 6.8 Does every local stationary random countable set decompose into a
countable union of such sets which are minimal?

By a “straightforward” Zorn lemma type argument (cf. the proof of Proposition 7.7
below) it is equivalent to askingwhether or not every local stationary randomcountable
set that is not empty (hence is dense) admits a minimal subset of its kind.

7 Noises out of random sets

In this section we connect the stationary local random countable sets that we have
studied above to some nonclassical extensions of the Wiener noise. All Hilbert spaces
considered below are complex.

7.1 Construction

Preparation. Let M be a dense perfectly stationary local random countable set, count-
able with certainty (recall Proposition 3.17 concerning the existence of such a version
for a given local stationaryM). Take a shift-invariantW-almost certain set�1 onwhich
M is dense (for instance, �1 = {M is dense} will do /by perfect stationarity/). Fix
also a measurable enumeration S for M , which we (may and do) assume is injective,
R
N-valued and satisfies M = [S], all of this on �1.
We shall work, for the most part, on �1, letting W be the restriction of Wiener

measure W to �1. The spruced up properties of M and S on �1, as above, will save
us from a number of “a.s., mod-0, up to a negligible set” qualifiers in what follows.
Though, there seems to be a certain “partial law of preservation of nuissance” in
mathematics, and here too we are not able to escape it. For instance, �0 is canonically
identified with�0|(−∞,0]×�0|[0,∞) via the bijectionω �→ (ω|(−∞,0], ω|[0,∞))which
is measure-preserving betweenW and the product of the Wiener measures on the two
factors of �0|(−∞,0] × �0|[0,∞) (i.e. it pushes forward the first onto the second), and
there is no a priori reason why�1 should also have such a canonical product structure.
(Although, it is true “up to negligible sets”: the same map, restricted to �1, is an
injective map that pushes W forward onto the product of the Wiener measures on
the two factors of �1|(−∞,0] × �1|[0,∞). Hence it is actually a mod-0 isomorphism
between the two probabilities (since they are standard, see [24, p. 22, Section 2.5,
Theorem on isomorphisms]).) For this reason the reader will notice that sometimes
we prefer to use �0 where �1 would (prima facie) be more natural, e.g. in (7.1)-(7.2).
We have anyway strived to keep the overhang of “negligibility” at a minimum.

The objects we shall introduce below will depend on �1, some of them on S and
basically all of them on M . To keep it manageable we will make explicit only M in
the notation as it seems enough to preclude confusion (when later on we shall deal
with more than one M at a time).

Remark 7.1 In fact, the same (a universal) �1 can be chosen for all stationary local
random countable sets on passing to suitable versions thereof (these choices/changes
do not really matter—see the forthcoming Remark 7.3). Let indeed M ′ be another
perfectly stationary local random countable set, countable with certainty. Attach to it
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�′
1 as�1 was attached to somefixed chosenM (say, the localminima). Then changeM ′

to M on �1\�′
1. We get a version of M ′ for which we may take �′

1 = �1. (However,
we cannot ever take�1 = �0—for instance it contains the constant function zero, and
there can be no countable dense set m attached to this function, which would satisfy
m = u + m for all u ∈ R.)

With these preliminaries out of the way, put �M := {(ω1, η) : ω1 ∈ �1, η ∈
{−1, 1}M(ω1)}, which will be the sample space for Brownian paths enhanced by inde-
pendent equiprobable random signs attached to the points of the random subset M .
We stress again that �M depends on both �1 and M , but only reference to M has
been made in the notation. So as to formalize the corresponding probability measure,
define the bijective map �M : �M → �1 × {−1, 1}N by putting

�M (ω1, η) := (ω1, η ◦ S(ω1)) = (ω1, (η(Sk(ω1)))k∈N), (ω1, η) ∈ �;

besides M this map depends also on �1 and, more importantly, S, but still only
M has been noted explicitly. On �1 × {−1, 1}N we consider the probability Q :=
W× ( 12δ−1+ 1

2δ1)
×N (product of Wiener measure on�1 and of the infinite product of

equiprobable random signs; no completion of the product is needed or made) and pull
it back, including the measurable structure, via �M to a probability on �M , which we
shall denote P

M and its domain by BM . For two different choices S1 and S2 of S the
transition map (in the obvious notation) ζ := �M2 ◦ (�M1)−1 : �1 × {−1, 1}N →
�1 × {−1, 1}N is given by

ζ(ω1, p) = (ω1, p ◦ S1(ω1)
−1 ◦ S2(ω1)), (ω1, p) ∈ �1 × {−1, 1}N,

and is bimeasurable, bijective and measure-preserving for Q, the latter because the
actions of the permutations ofN aremeasure-preserving for ( 12δ−1+ 1

2δ1)
×N. Therefore

the probability P
M , including its sigma-field BM , actually does not depend on the

choice of S, even though �M does. At this point we complete P
M and its σ -field BM ,

but keep on using the same symbols for the completions by an abuse of notation.
Let us denote next by (W , P) the canonical projections on �1 × {−1, 1}N, which

is just to say that the pair (W , P) is the identity on this space. It is plain that the law
of W ◦ �M under P

M is W.
An important structural property (of the L2 space) of P

M is revealed by

Proposition 7.2 For f ∈ L2(PM ) there exist a.s.-W unique maps fK ∈ L2(W), K ∈
(2N)fin, satisfying

∑
K∈(2N)fin

W[| fK |2] < ∞ and

f ((ω1, η)) =
∑

K∈(2N)fin

fK (ω1)
∏
k∈K

η(Sk(ω1)) for P
M-a.e. (ω1, η), (7.1)

i.e. f = ∑
K∈(2N)fin

fK (W ◦ �M )
∏

k∈K Pk ◦ �M a.s.-PM; moreover, (7.1) is an

L2(PM )-orthogonal sum decomposition.

The fK , K ∈ (2N)fin, of (7.1) depend on M , �1 and S, but we do not reference
these, not even M , since we will only need them for the given (M;�1, S).
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1112 M. Vidmar, J. Warren

Proof The map �M induces the unitary isomorphism L2(Q) � g �→ g ◦ �M ∈
L2(PM ). We have also the natural unitary isomorphism between L2(Q) = L2(W ×
( 12δ−1 + 1

2δ1)
×N) and L2(W) ⊗ L2(( 12δ−1 + 1

2δ1)
×N). Finally, the orthonormal basis(∏

k∈K Pk
)
K∈(2N)fin

of L2(( 12δ−1 + 1
2δ1)

×N) induces in the known manner a unitary

isomorphism of L2(W)⊗L2(( 12δ−1 + 1
2δ1)

×N) onto ⊕K∈(2N)fin
L2(W). Decomposing

a general element of ⊕K∈(2N)fin
L2(W) according to the orthogonal sum and sliding

back and forth along these isomorphisms gives the posited representation up to the
trivial canonical identification of L2(W) with L2(W). ��

The probability P
M having been specified and some of its basic properties

unearthed, we now define a one-dimensional factorization of sigma-fields associated
to M as follows. For extended-real s < t we set NM

s,t to be the P
M -complete (referred

to as the property of “completeness” below) sigma-field generated by the increments
of the Brownian motion W ◦ �M on the interval (s, t) and by the random variables

Rk :=
(
�M � (ω1, η) �→ η(Ss,t (k)(ω1))

)
, k ∈ N,

where Ss,t is an Fs,t -measurable enumeration of M ∩ (s, t) that is injective, (s, t)N-
valued and satisfies M ∩ (s, t) = [Ss,t ], all of this on �1. Such an enumeration we
may ask for by locality of M and by the density of M on �1. Notice that NM

s,t does
not depend on the choice of the enumeration Ss,t , just because Ss,t is Fs,t -measurable
and NM

s,t includes the information generated by the increments of W ◦ �M on (s, t).
Informally we think of NM

s,t as being generated by the movement of B on (s, t) and
by the random signs attached to the points of M which belong to (s, t) together with
the trivial sets.

To see the so-called “factorizability” property of NM under P
M , namely that the

σ -fields NM
t0,t1 , . . . , N

M
tn−1,tn are P

M -independent for extended-real −∞ = t0 < · · · <

tn = ∞, n ∈ N, and together generate NM−∞,∞ = the whole of the σ -field of P
M ,

take S such that S(n(m − 1) + l) = Stl−1,tl (m) for m ∈ N and l ∈ [n] a.s.-W (we
can do it because W({t1, . . . , tn−1} ∩ M �= ∅) = 0), then use the Q-independence of
the σ -fields generated by the increments of W on (tl−1, tl) and by the random signs
(P(n(m − 1) + l))m∈N as l ranges over [n].

Thus we have unambiguously introduced a continuous factorization of σ -fields
(a.k.a. a continuous product of probability spaces) [27, Definition 3c1] NM =
(NM

s,t )(s,t)∈[−∞,∞]2,s<t associated to the random set M on �1. Note that a slightly
different definition of this notion appears in [28, Definition 3.16], namely one
asks in addition for “upward continuity” in the sense that NM

s,t is generated by
∪ε∈(0,∞)NM

s+ε,t−ε for all extended-real s < t , where we interpret −∞ + ε := −1/ε
and ∞− ε := 1/ε. This property will actually be automatic once we have established
below that NM corresponds to a one-dimensional noise [27, Proposition 3d3].

The preceding construction is basically that of [30, p. 566], where it is done for
M = {local minima of B}.

The family NM is enhanced to a one-dimensional noise (a.k.a. a homogeneous
continuous product of probability spaces) [27, Definition 3d1] by the introduction of
the group T M = (T M

h )h∈R ofBM -bimeasurable bijections of�M , measure-preserving
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Stationary local random countable sets over the Wiener noise 1113

for P
M , defined as follows:

T M
h ((ω1, η)) = (�h(ω1), η(· + h)), (ω1, η) ∈ �M , h ∈ R.

Each T M
h induces indeed an automorphism of the probability P

M that sends NM
s,t to

(T M
h )−1(NM

s,t ) = NM
s+h,t+h , this for all extended-real s < t and all h ∈ R (the property

of “homogeneity”).
In partial summary, given a triplet (M;�1, S), we have

the canonical process (W , P) on �1 × {−1, 1}N under Q = �M
�P

M

and the noise (NM ; P
M , T M ).

Remark 7.3 If �M ′
etc. are constructed from (M ′;�′

1, S
′) in lieu of (M;�1, S) and if

M ′ is a version of M , then �M ∩ �M ′ = {(ω1, η) : ω1 ∈ {M = M ′} ∩ �1 ∩ �′
1, η ∈

{−1, 1}M(ω1)}, P
M (�M ∩ �M ′

) = 1 = P
M ′

(�M ∩ �M ′
); furthermore, NM = NM ′

and T M = T M ′
on �M ∩ �M ′

.

7.2 A continuity condition

Actually, the system (NM ; P
M , T M ) is not as yet evidently fully in line with [27,

Definition 3d1] for we are still missing measurability (equivalently, continuity) of
the group of automorphisms, viewed as a map from R into the Polish group of all
automorphisms of P

M (for the strong topology of the associated unitary operators on
L2(PM )). Before immersing ourselves into establishing this technical fact it seems
appropriate here to quote Tsirelson (yet again): “Unfortunately, the latter assumption
(continuity of the group action) is missing in my former publications, which opens
the door for pathologies.” [28, p. 42]. Let us preclude these pathologies in the case of
the noises at hand!

Proposition 7.4 The following are equivalent.

(i) For each f ∈ L2(PM ), the map R � h �→ f (T M
h ) ∈ L2(PM ) is continuous.

(ii) limh→0 W(Sk = h + Sk(�h)) = 1 for all k ∈ N.

Proof Assume (ii). Using the fact that, by functional monotone class, products of the
form

∏
t∈T ft (Wt ◦ �M ), with ft : R → C continuous bounded for each t ∈ T , T a

finite subset of R, are total in L2(PM |σ(W◦�M )), we deduce easily by approximation
the requisite continuity of (i) in case f ∈ L2(PM |σ(W◦�M )) (σ signifies completion
w.r.t. PM ). (It is just the continuity of the Lévy shifts for the Wiener noise and it does
not use (ii).) From Proposition 7.2 we reduce further at once to the case when f has
fK = 0 for all but one K ∈ (2N)fin and, moreover, by telescoping, to the case when
fK = 0 except for a single singleton K = {k}, k ∈ N, for which f{k} = 1. Then
f = Pk ◦ �M and we compute
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1114 M. Vidmar, J. Warren

P
M
[
| f − f ◦ T M

h |2
]

= Q

[
(Pk − Pk ◦ �M ◦ T M

h ◦ (�M )−1)2
]

= Q

⎡
⎣
(
Pk −

∑
l∈N

Pl𝟙{Sl (W )=h+Sk (�hW )}

)2
⎤
⎦

= W(Sk �= h + Sk(�h)) +
∑

l∈N\{k}
W(Sl = h + Sk(�hW ))

= 2W(Sk �= h + Sk(�h)).

This computation being valid whether or not (ii) holds true we see not only that (ii)
implies (i) but also the reverse implication. ��
Definition 7.5 A random variable underWwith values in R

† is called shift-stabilising
when limh→0W(S = h + S(�h)) = 1. A measurable enumeration of a random
countable set is said to be shift-stabilising if each member thereof is so.

For the next two results we suspend temporarily the overarching setting that we
have built in this section hitherto (namely, in Sect. 7.1).

Lemma 7.6 Let M be a stationary random countable set that is not empty. Then there
is a stationary random countable set M ′ that is contained in M a.s.-W, that is not
empty and that admits a shift-stabilising enumeration.

Proof By Proposition 3.17 wemay and do assume M is perfectly stationary, countable
with certainty and belongs to B�0 ⊗ BR. Then set A := {0 ∈ M} ∈ B�0 and check
that M = MA (the proof is verbatim the same as in Theorem 3.31).

Let next S be ameasurable perfect enumerationofM and setA := ∑
k∈N 2−k(�Sk )�

W|{Sk∈R}, which is a subprobability measure on B�0 carried by A. Using [5, Theo-
rem 1.1] (which is to say, using the fact that on metric spaces measurable sets can
be approximated from within by closed sets relative to any finite measure) we see
that there exists a nondecreasing sequence of closed sets (Cn)n∈N of �0 such that
A ⊃ C := ∪n∈NCn has full A-measure. Then MC ∈ B�0 ⊗ BR (again the proof is
verbatim the same as in Theorem 3.31) and MC ⊂ MA = M . Moreover, MC = M
a.s.-W. For suppose per absurdum that it were not so. Then, for some n ∈ N, we
would have that Sn /∈ MC , i.e. �Sn /∈ C , with positive W-probability on {Sn ∈ R},
contradicting the fact that C has full A-measure. Besides, for each n ∈ N and ω ∈ �0,
MCn (ω) is a closed subset of R since it is the preimage of Cn under the continuous
map R � t �→ �t (ω) ∈ �0 (the continuity comes from the fact that the continuous
path ω is uniformly continuous on compacta).

For p ∈ R and n ∈ N define

Snp := inf(MCn ∩ [p,∞)) (inf ∅ := †).

Because MCn is closed we have Snp ∈ MCn on {Snp ∈ R}. Since by stationarity of
M , W(p ∈ M) = 0, and again because MCn is closed we have that a.s.-W there is
ε > 0 such that MCn ∩ (p− ε, p+ ε) = ∅. Hence limh↓0 W(Snp = h + Snp(�h)) = 1,
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indeed W-a.s. Snp = h + Snp(�h) eventually as h ↓ 0. Let us show that the set
Mn := {Snp : p ∈ Q} ∩ R is stationary. Pick an arbitrary h ∈ R. It will suffice to
establish that h + Mn(�h) ⊂ Mn a.s.-W. But for p ∈ Q, Snp(�h) > p a.s.-W on
{Snp(�h) ∈ R}, hence W-a.s. h + Snp(�h) = Snq for some sufficiently small rational
q ∈ [p + h,∞).

Finally, note that since M = ∪n∈NMCn
a.s.-W and since M is not empty, then, for

a large enough n ∈ N, MCn is not a.s.-W empty and therefore neither is Mn empty.
Take M ′ := Mn . ��
Proposition 7.7 A measurable enumeration of a stationary random countable set M
is shift-stabilising.

We may recall from Remark 3.4 that, by contrast, no measurable enumeration of a
random countable set M that is not empty can be stationary.

Proof First we show that M admits a shift-stabilising measurable enumeration.
Let M be the collection of stationary random countable sets that are contained in

M a.s.-W, that are not empty and that admit an enumeration that is shift-stabilising,
these sets being quotiented out by W-a.s. equality. Let F ⊂ 2M be the collection of
those subsets S ofM whose elements are a.s.-W pairwise disjoint (so, informally, the
collection of (possibly inexhaustive) partitions of M , each member of which admits
a shift-stabilising enumeration). Partially order F by inclusion. ∅ ∈ F, therefore F is
not empty. Each chain in F has an upper bound, namely its union. By Zorn’s lemma
F admits a maximal element, say F. The set F is countable, since, for a(ny) given
measurable enumeration S of M and then for each n ∈ N,W(Sn ∈ D) > 0 for at most
countably many D ∈ F (just because the events {Sn ∈ D}, D ∈ F, are pairwise disjoint
a.s.-W), while for each D ∈ F, W(Sn ∈ D) > 0 for some n ∈ N. The union of the
members of F (defined up to a.s.-W equality), call itG, is a stationary random countable
set contained in M a.s.-W that admits a shift-stabilising measurable enumeration (by
a diagonalization of the shift-stabilising enumerations of the individual members of
G). Finally, G must be a.s.-W equal to M , since otherwise M\G would be a stationary
random countable set, not empty, and Lemma 7.6 would yield a contradiction with the
maximality of F.

Now let S be a shift-stabilising measurable enumeration for M and let S̃ be an
arbitrary measurable enumeration of M . For each n ∈ N we have W-a.s.

{S̃n �= h + S̃n(�h)} ⊂ {S̃n = †, S̃n(�h) �= †}
∪
(

∪k∈N {S̃n �= †, S̃n �= S1, . . . , S̃n �= Sk−1, S̃n = Sk}
∩ [{S̃n = Sk, S̃n(�h) �= Sk(�h)} ∪ {Sk �= h + Sk(�h)}]

)
.

In the proof of Proposition 7.4 we established (i) thereof for f ∈ L2(PM |σ(W◦�M )).

This means that limh↓0 W(S̃n = †, S̃n(�h) �= †) = 0 and limh↓0 W(S̃n =
Sk, S̃n(�h) �= Sk(�h)) = 0 for all k ∈ N. Combined with the shift-stabilising prop-
erty of S we conclude at once via countable subaddivity and dominated convergence.

��
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Return to the standing setting of this section as delineated in Sect. 7.1.

Corollary 7.8 Item (i) of Proposition 7.4 holds true. ��
Thus the “continuity of the group action” has been established. Combined with P

M

being standard, as well as the completeness, factorizability and homogeneity proper-
ties noted already in the previous subsection, the system (NM ; P

M , T M ) is indeed a
“fully-fledged” noise.Another is (F;W,�)—theWiener noise, this qualification, used
hitherto only informally, being now understood in the formal sense of the properties
just listed.

7.3 The stable part and the first superchaos

We denote by HM
stb and HM

sens,1 the stable part [28, p. 67] and the first superchaos [28,

p. 71] of the noise (NM ; P
M , T M ), respectively. They are closed linear subspaces of

L2(PM ). For extended-real s < t set also

Ps,t (k) := Rk ◦ (�M )−1 = P(S(W )−1(Ss,t (W )k)), k ∈ N.

Ps,t := (Ps,t (k))k∈N is the sequence of random signs that is “associated” with (s, t)
on�1×{−1, 1}N; it depends on S, Ss,t , M and�1, none of which we reference, since
we will only need it for the given S, Ss,t , M and �1.

Proposition 7.9 We have the identifications HM
stb = { f ∈ L2(PM ) : fK =

0 for all K ∈ (2N)fin\{∅}} = L2(PM |σ(W◦�M )) (as usual, σ indicates completion
w.r.t. the relevant measure, P

M in this case) and HM
sens,1 = { f ∈ L2(PM ) : fK =

0 for all K ∈ (2N)fin of size �= 1}.

A noise is called classical when the stable part is the whole of the L2 space. Thus
(NM ; P

M , T M ) is not classical. At the other side of the spectrum it is called black
when the stable part is {0} but the sensitive (= orthogonal complement of the stable)
part is not {0}. The noise (NM ; P

M , Tm) is not black either. Since σ(HM
stb, H

M
sens,1) =

NM−∞,∞, (NM ; P
M , Tm) has only superchaoses of finite order (no non-zero “super-

superchaoses”) [28, p. 71, penultimate paragraph].

Proof Suppose we have established that HM
stb = L2(PM |σ(W◦�M )). Knowing this, the

determination of the first superchaos is relatively straightforward, we just project the
sensitive subspace HM

sens := L2(PM ) $ HM
stb = L2(PM ) $ L2(PM |σ(W◦�M )) onto the

first superchaos using [28, Theorem 6.8]. Let then K ∈ (2N)fin\{∅} and f ∈ L2(W)

be bounded. We show that if |K | = 1 then the projection onto the first superchaos
leaves F := f (W ◦ �M )

∏
k∈K Pk ◦ �M invariant, while if |K | > 1 then it sends this

vector to zero; by Proposition 7.2 and the fact that bounded maps are dense in L2(W)

it will be enough.
As preparation for the main computation we first observe, for extended-real s < t ,

as follows. On the one hand, on ∩k∈K {S(W )k ∈ (s, t)} ∈ σ(W ),
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Stationary local random countable sets over the Wiener noise 1117

∏
k∈K

Pk =
∑
l∈NK

𝟙∩k∈K {Ss,t (W )lk=S(W )k }
∏
k∈K

Pk

=
∑
l∈NK

𝟙∩k∈K {Ss,t (W )lk=S(W )k }
∏
k∈K

Ps,t (lk) ∈ σ(W , Ps,t );

therefore

Q

[∏
k∈K

Pk
∣∣∣W , Ps,t

]
=
∏
k∈K

Pk a.s.-Q on ∩k∈K {S(W )k ∈ (s, t)}.

On the other hand, for disjoint L ⊂ K and R ⊂ K , L ∪ R �= ∅, L (resp. R) empty
if s = −∞ (resp. t = ∞), we see similarly that, on (∩k∈L{S(W )k ∈ (−∞, s)}) ∩
(∩k∈K\(L∪R){S(W )k ∈ (s, t)}) ∩ (∩k∈R{S(W )k ∈ (t,∞)}),
∏
k∈K

Pk =
∑
l∈NK

𝟙(∩k∈L {S−∞,s (W )lk
=S(W )k })∩(∩k∈K\(L∪R){Ss,t (W )lk

=S(W )k })∩(∩k∈R {St,∞(W )lk
=S(W )k })

⎛
⎝∏
k∈L

P−∞,s (lk )
∏
k∈K

Ps,t (lk )
∏
k∈R

Pt,∞(lk )

⎞
⎠ .

Further, given W we have as follows: the sequences of random signs P−∞,s , Pt,∞
(defined to be empty respectively as s = −∞, t = ∞) are Q-independent, jointly Q-
independent of Ps,t and have entries of zero mean. Therefore, since also Q(Sk(W ) ∈
{s, t} for some k ∈ K ) = 0,

Q

[
∩k∈K Pk

∣∣∣W , Ps,t
]

= 0 a.s.-Q off ∩k∈K {S(W )k ∈ (s, t)}.

Altogether we conclude that

Q

[
∩k∈K Pk

∣∣∣W , Ps,t
]

= 𝟙∩k∈K {Sk (W )∈(s,t)}
∏
k∈K

Pk a.s.-Q.

With this in hand we return to projecting F onto the first superchaos. To this end
let −∞ = tn0 < · · · < tnkn = ∞, kn ∈ N, with An := {tnl : l ∈ [kn − 1]} ↑ to a dense
subset of R as n ∈ N increases to ∞, and we compute, for each n ∈ N,

∑
i∈[kn ]

P
M
[
F
∣∣∣NM

tni−1,t
n
i

∨ σ(W ◦ �M )
]

=
∑
i∈[kn ]

P
M

[
f (W ◦ �M )

∏
k∈K

(Pk ◦ �M )

∣∣∣NM
tni−1,t

n
i

∨ σ(W ◦ �M )

]

= f (W ◦ �M )

⎛
⎝∑

i∈[kn ]
Q

[∏
k∈K

Pk
∣∣∣Ptni−1,t

n
i
,W

]⎞
⎠ ◦ �M
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1118 M. Vidmar, J. Warren

= f (W ◦ �M )
∑
i∈[kn ]

𝟙∩k∈K {Sk (W )◦�M∈(tni−1,t
n
i )}
∏
k∈K

(Pk ◦ �M )

= F
∑
i∈[kn ]

𝟙∩k∈K {Sk (W )◦�M∈(tni−1,t
n
i )}

a.s.-PM . Now if |K | = 1, then since P
M (Sk(W ◦ �) ∈ An for some k ∈ K ) = 0,

we get that the expression in the preceding display is equal to F a.s.-PM ; thus the
projection onto the first superchaos does indeed leave F invariant. On the other hand,
if |K | > 1 the second mean of the expression in the preceding display is

≤ ‖ f ‖∞
∑
i∈[kn ]

W(Sk ∈ (tni−1, t
n
i ) for all k ∈ K )

↓ ‖ f ‖∞W(the Sk, k ∈ K , are all equal) = 0 as n → ∞;

whence we conclude that the projection of F onto the first superchaos is zero in this
case.

Returning now to the identification of the stable part, it is easy to check that the
first chaos of the factorization associated to the Wiener process W ◦ �M—denote
this subfactorization of NM by NM |W—is included in the first chaos of NM . It is
then further straightforward to establish that the higher classical chaoses of NM |W are
included in the respective higher classical chaoses of NM . Suppose per absurdum that
the first chaos of NM did not coincide with the first chaos of NM |W . Since the classical
chaoses are orthogonal, by the preceding it wouldmean that there is a non-zero element
G of the first chaos of NM , which is orthogonal to L2(PM |σ(W◦�M )). Let K ∈ (2N)fin,
|K | ≥ 2 and f ∈ L2(W) be bounded. Let further −∞ = tn0 < · · · < tnkn = ∞,
kn ∈ N, with {tnl : l ∈ [kn − 1]} ↑ to a dense subset of R as n ∈ N increases to ∞.
Then the second mean of the projection of F := f (W ◦ �M )

∏
k∈K (Pk ◦ �M ) onto

the first chaos is [28, Theorem 6.3]

lim
n→∞

∑
i∈[kn ]

P
M
[∣∣∣PM

[
F
∣∣∣NM

tni−1,t
n
i

]∣∣∣2
]

≤ lim
n→∞

∑
i∈[kn ]

P
M
[∣∣∣PM

[
F
∣∣∣NM

tni−1,t
n
i

∨ σ(W ◦ �M )
]∣∣∣2
]

= 0,

where the inequality is because conditional expectations are L2-contractions and the
equality follows directly from the superchaos computation above. By a density argu-
ment the first chaos of NM , therefore G, is orthogonal to all f ∈ L2(PM ) for which
fK is non-zero only for |K | ≥ 2, K ∈ (2N)fin. Using Proposition 7.2 it follows
that G = ∑

k∈N gk(W ◦ �M )(Pk ◦ �M ) for some gk ∈ L2(W), k ∈ N, satisfying∑
k∈NW[|gk |2] < ∞. G being an additive integral of NM , for any t ∈ R we must

have, a.s.-PM ,
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Stationary local random countable sets over the Wiener noise 1119

∑
k∈N

gk(W ◦ �M )(Pk ◦ �M )𝟙{Sk (W◦�M )∈(−∞,t)}

+
∑
k∈N

gk(W ◦ �M )(Pk ◦ �M )𝟙{Sk (W◦�M )∈(t,∞)}

=
∑
k∈N

gk(W ◦ �M )(Pk ◦ �M ) = G = P
M [G|NM−∞,t ] + P

M [G|NM
t,∞]

= P
M

[∑
k∈N

gk(W ◦ �M )(Pk ◦ �M )𝟙{Sk (W◦�M )∈(−∞,t)}|NM−∞,t

]

+ P
M

[∑
k∈N

gk(W ◦ �M )(Pk ◦ �M )𝟙{Sk (W◦�M )∈(t,∞)}|NM
t,∞

]
.

Taking the second mean of this equality and using the fact that conditional
expectations are L2-contractions shows that Xt := ∑

k∈N gk(W ◦ �M )(Pk ◦
�M )𝟙{Sk (W◦�M )∈(−∞,t)} must in fact be NM−∞,t -measurable and

∑
k∈N gk(W ◦

�M )(Pk ◦ �M )𝟙{Sk (W◦�M )∈(t,∞)} must in fact be NM
t,∞-measurable. We infer that

Xt = P
M [Xt |NM−∞,t ∨ σ(P ◦ �M )]

=
∑
k∈N

(Pk ◦ �M )PM
[
gk(W ◦ �M )𝟙{Sk (W◦�M )∈(−∞,t)}|(NM |W )−∞,t

]

a.s.-PM . Comparing this expression for Xt with the one defining Xt it follows by
orthogonality that for all k ∈ N, gk𝟙{Sk∈(−∞,t)} is F−∞,t -measurable. Similarly we
deduce that gk𝟙{Sk∈(t,∞)} is Ft,∞-measurable. Therefore

W[gk |F−∞,t ] = gk𝟙{Sk∈(−∞,t)} + W[gk; Sk > t]

a.s.-W, on using W(Sk = t) = 0. We are therefore witnessing in (gk𝟙{Sk∈(−∞,t)} +
W[gk; Sk > t])t∈R a discontinuous L2-bounded right-continuous martingale in the
Brownian filtration (F−∞,t )t∈R, which is a contradiction, unless gl = 0 a.s.-W for all
l ∈ N, but the latter yields G = 0 a.s.-PM , which in itself is in contradiction with what
we have assumed. (If the reader feels we have been a little cavalier about calling the
two-sided filtration (F−∞,t )t∈R Brownian, he/she would be correct. But anyway, for
all a ∈ R, the filtration (Fa+t )t∈[0,∞) is generated by the Brownian motion �a |[0,∞)

and the independent σ -fieldF−∞,a (initial enlargement), so the argument can be done
“locally” on [a,∞) for an a such that W(Sk > a) > 0 (and such a exists) to get
gk = 0 a.s.-W, no matter what the choice of k ∈ N.) ��

Recall Proposition 7.2. For f ∈ HM
sens,1 write fk := f{k}, k ∈ N, and introduce the

finite measure μM
f on R × �0,

μM
f (E) :=

∑
k∈N

W[| fk |2𝟙E (Sk, B)], E ∈ BR ⊗ G. (7.2)

123



1120 M. Vidmar, J. Warren

Notice that taking the fk , k ∈ N, such that they are all a.s.-W non-zero (a choice that
can be made) gives a measure μM

f that has, besides being carried by �M� (which is

true always), the following property: μM
f (�M�\�N�) > 0 for any random countable

set for which M\N is not empty — we will say that μM
f has full support. (Here

�N� := {(t, ω) ∈ R × �0 : t ∈ N (ω)} is the graph of a random countable set N
on R × �0. The reader will forgive us the notational shenanigan vis-à-vis the same
notation of Remark 3.3 albeit with the order of time and of the sample space in the
product reversed.) The following result will be used up in the next subsection.

Proposition 7.10 Let f ∈ HM
sens,1. For A ∈ G and extended-real s < t we identify

μM
f ((s, t) × A) = P

M [|PM [ f |NM
s,t ∨ σ(W ◦ �M )]|2;W ◦ �M ∈ A]. (7.3)

In particular μM
f does not depend on the choice of the enumeration S.

We may thus think of μM
f as a kind of spectral measure of f conditioned on the

Brownian motion W ◦ �M .

Proof We have seen in the proof of Proposition 7.9 that

Q

[
Pk
∣∣∣W , Ps,t

]
= Pk𝟙{Sk (W )∈(s,t)} a.s.-Q, k ∈ N.

Then we can compute, using Proposition 7.9 in the first equality:

P
M [|PM [ f |NM

s,t ∨ σ(W ◦ �M )]|2;W ◦ �M ∈ A]

= P
M

⎡
⎢⎣
∣∣∣∣∣∣P

M

⎡
⎣∑
k∈N

fk(W ◦ �M )(Pk ◦ �M )

∣∣∣NM
s,t ∨ σ(W ◦ �M )

⎤
⎦
∣∣∣∣∣∣
2

;W ◦ �M ∈ A

⎤
⎥⎦

= Q

⎡
⎢⎣
∣∣∣∣∣∣Q
⎡
⎣∑
k∈N

fk(W )Pk
∣∣∣W , Ps,t

⎤
⎦
∣∣∣∣∣∣
2

;W ∈ A

⎤
⎥⎦

= Q

⎡
⎢⎣
∣∣∣∣∣∣
∑
k∈N

fk(W )𝟙A(W )Q
[
Pk
∣∣∣W , Ps,t

]∣∣∣∣∣∣
2
⎤
⎥⎦

= Q

⎡
⎢⎣
∣∣∣∣∣∣
∑
k∈N

fk(W )𝟙A(W )Pk𝟙(s,t)(Sk(W ))

∣∣∣∣∣∣
2
⎤
⎥⎦

=
∑
k∈N

Q

[
| fk(W )|2𝟙A(W )𝟙(s,t)(Sk(W ))P2

k

]
(by orthogonality)

=
∑
k∈N

W
[
| fk |2𝟙(s,t)×A(Sk , B)

]

= μM
f ((s, t) × A).
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This establishes (7.3). The final claim follows by Dynkin’s lemma. ��

7.4 Non-isomorphic noises

Recall that an isomorphism of two noises (N 1; P
1, T 1) and (N 2; P

2, T 2) is a mod-0
isomorphismψ between the probabilities P

1 and P
2 which sends N 1

s,t onto N 2
s,t for all

extended-real s < t and intertwines the shifts in the sense thatψ ◦T 1
h = T 2

h ◦ψ a.s.-P1

for all h ∈ R [27, Definitions 4a1 and 4a3]. Let (M1;�1
1, S

1
1) and (M2;�2

1, S
2
2 ) be two

triplets such as (M;�1, S)—two stationary local random countable sets, enumerated
and spruced according to Sect. 7.1—and put (Ni ; P

i , T i ) := (NMi ; P
Mi , T Mi ), i ∈

{1, 2}, and similarly for the other pieces of notation (for instance, �i = �Mi , i ∈
{1, 2}). We set also

sM := (�M � (ω1, η) �→ (−ω1, η) ∈ �M(−B))

whenever we have the same �1 for M(−B) in introducing �M(−B) as we do for M
(implicitly below we shall take this to be the case, referring to Remarks 7.1 and 7.3 as
necessary)—the sign change of the Brownian component.

Theorem 7.11 The following are equivalent.

(A) M1!M2 and M1!M2(−B) are not empty.
(B) The noises (N 1; P

1, T 1) and (N 2; P
2, T 2) are not isomorphic.

Proof By Remarks 7.1 and 7.3 we may and do assume �1
1 = �2

1 and write it as just
�1 (but �1 �= �2 unless M1 = M2 on �1).

If (N+; P
+, T+) is associated to M and (N−; P

−, T−) to M(−B), then these two
noises are isomorphic, the isomorphism carrying the first onto the second being sM .
Thus we see easily that (B) implies (A).

For the converse implication assume (A) and suppose per absurdum ψ is an iso-
morphisms between (N 1; P

1, T 1) and (N 2; P
2, T 2). It carries the stable part of N 1

onto the stable part of N 2 so restricts to an isomorphism of the white noises associated
toW ◦�1 andW ◦�2 under (P1, T 1) and (P2, T 2), respectively. It is well-known [27,
p. 184] that there are only two such isomorphisms; the identity, and the sign change. In
other words, either (+)W ◦�2 ◦ψ = W ◦�1 a.s.-P1 or (−)W ◦�2 ◦ψ = −W ◦�1

a.s.-P1.
Suppose (+) and M2\M1 is not empty in the first instance. Take any f ∈ H2

sens,1

such that μ2
f has full support. We get f ◦ ψ ∈ H1

sens,1. Also, from Proposition 7.10,
for all A ∈ G and extended-real s < t ,

μ2
f ((s, t) × A) = P

2[|P2[ f |N 2
s,t ∨ σ(W ◦ �2)]|2;W ◦ �2 ∈ A]

= P
1[|P1[ f ◦ ψ |N 1

s,t ∨ σ(W ◦ �2 ◦ ψ)]|2;W ◦ �2 ◦ ψ ∈ A],
= P

1[|P1[ f ◦ ψ |N 1
s,t ∨ σ(W ◦ �1)]|2;W ◦ �1 ∈ A]

= μ1
f ◦ψ((s, t) × A).
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1122 M. Vidmar, J. Warren

By Dynkin’s lemma we infer that μ f := μ2
f = μ1

f ◦ψ . Then μ f (�M2�\�M1�) =
μ2

f (�M
2�\�M1�) > 0, but also μ f (�M2�\�M1�) = μ1

f ◦ψ(�M2�\�M1�) = 0, a
contradiction.

If (+) still holds but instead M1\M2 is not empty, apply the argument with the
roles of M1 and M2 interchanged, ψ−1 playing the role of ψ .

In case of (−) apply the preceding to M2(−B) in lieu of M2, noticing that the
noises associated to these two random sets are isomorphic, the isomorphism being the
sign change s2 (thus the role of ψ is then played by s2 ◦ ψ). ��
Remark 7.12 The same proof shows that if merely M1!M2 is not empty, then
(N 1; P

1, T 1) and (N 2; P
2, T 2) are non-isomorphic extensions of the Wiener noise,

i.e. not isomorphic as noises where in addition we insist thatW ◦�1 is sent toW ◦�2

by the isomorphism.

Example 7.13 Let (N locmin; P
locmin, T locmin) be associated to

M = {local minima of B} and (N locmax; P
locmax, T locmax) be associated to

M = {local maxima of B}. These two noises are isomorphic.

Example 7.14 Let (N loc ext; P
loc ext, T loc ext)be associated toM = {local extrema of B}.

Theorem 7.11 implies that (N locmin; P
locmin, T locmin) and (N loc ext; P

loc ext, T loc ext)

are not isomorphic noises.

Returning to the random countable sets got from the squared Bessel processes, at
least for dimensions from [1, 2) we have
Proposition 7.15 Let {d1, d2} ⊂ [1, 2). Then M (d1) ∩ M (d2)(−B) is empty.

Proof Assume {d1, d2} ⊂ (1, 2) at first. According to [22, Exercise XI.1.26] if Z =
Z (di ) solves (4.1) for d = di , i ∈ {1, 2}, then W-a.s.

√
Z (di )
t = Bt + di − 1

2

∫ t

0

ds√
Z (di )
s

, t ∈ [0,∞).

Taking the sum yields

√
Z (d1)
t +

√
Z (d2)(−B)t

= d1 − 1

2

∫ t

0

ds√
Z (d1)
s

+ d2 − 1

2

∫ t

0

ds√
Z (d2)(−B)s

, t ∈ [0,∞),

a.s.-W, so that

(√
Z (d1)
t +√

Z (d2)(−B)t

)
t∈(0,∞)

is a.s.-W strictly positive, hence at

most one of Z (d1) and Z (d2)(−B) is zero at any given point in time from (0,∞). We
deduce that g(d1)

s,t �= g(d2)
s,t (−B) with W-probability one for all real s < t . Due to

Lemma 4.1(iii) it renders M (d1) ∩ M (d2)(−B) = ∅ a.s.-W, as required.
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If, say, d1 = 1, then [22, Exercise XI.1.26] W-a.s

√
Z (d1)
t = Bt + 1

2
L0
t , t ∈ [0,∞),

where L0 is the local time of
√
Z (d1) at zero; similarly for d2 = 1. The remainder

of the argument to handle the case when possibly d1 = 1 or d2 = 1 is essentially
verbatim the same. ��

For d ∈ (0, 2) associate (N (d); P
(d), T (d)) to M (d).

Corollary 7.16 Thenoises (N (d); P
(d), T (d)), d ∈ [1, 2), are pairwise non-isomorphic.

Proof Combine Propositions 4.9 and 7.15 with Theorem 7.11. ��
We do not attempt here the decomposition into isomorphism classes of the entire

family (N (d); P
(d), T (d)), d ∈ (0, 2). Though, the latter are certainly pairwise non-

isomorphic extensions of the Wiener noise in the sense of (and as a consequence of)
Remark 7.12.

7.5 Subnoises

Under a subnoise of a noise (N ; P, T ) we shall understand a family N ′ =
(N ′

s,t )(s,t)∈[−∞,∞]2,s<t of P-complete sub-σ -fields of N−∞,∞ having the factorizabil-
ity property relative to P|N ′−∞,∞ such that N ′

s,t = Ns,t ∩ N ′−∞,∞ for all extended-real

s < t and such that Th ∈ N ′−∞,∞/N ′−∞,∞ for all h ∈ R (hence, actually,
Th ∈ N ′

s+h,t+h/N
′
s,t for all extended-real s < t and all h ∈ R). Passing, in the obvious

way, to the associated standard quotient probability P
′/N ′−∞,∞ (note: the probability

P
′|N ′−∞,∞ is not standard unless N ′−∞,∞ = N−∞,∞), the associated quotient sub-σ -

fields N ′/N ′−∞,∞ and the associated group of mod-0 isomorphisms T /N ′−∞,∞ we
get indeed a (one-dimensional) noise, which justifies the nomenclature. It is important
to note that for a subnoise N ′, as a consequence of the factorizability property, the
σ -field N ′−∞,∞ (which, incidentally, wholly determines N ′) commutes with all of
the σ -fields of N in the sense that P[P[·|N ′−∞,∞]|Ns,t ] = P[P[·|Ns,t ]|N ′−∞,∞] (and
hence = P[·|N ′

s,t ]) on L2(P) for all extended-real s < t : by a monotone class argu-
ment it suffices indeed to check that P[ f f ′|N ′−∞,∞|Ns,t ] = P[ f f ′|Ns,t |N ′−∞,∞] for
f ∈ L2(P|Ns,t ) and f ′ ∈ L2(P|N−∞,s∨Nt,∞), in which case it follows from the follow-
ing computation, in which we write y := N ′−∞,∞, x := Ns,t and x ′ := N−∞,s ∨Nt,∞
for short,

P[P[ f f ′|x]|y] = P[ f |y]P[ f ′] = P[ f |(y ∩ x) ∨ (y ∩ x ′)]P[ f ′] = P[ f |y ∩ x]P[ f ′]
= P[P[ f |y ∩ x]P[ f ′|y ∩ x ′]|x] = P[P[ f f ′|(y ∩ x) ∨ (y ∩ x ′)]|x]
= P[P[ f f ′|y]|x].

We recall also that any noise (N ; P, T ) admits a largest classical subnoise N lin, called
the linear or classical part of (N ; P, T ), whose underlying σ -field N lin−∞,∞ is connected
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to the stable part Hstb of L2(P) by the relation Hstb = L2(P|N lin−∞,∞). We will use these
facts below without special mention.

A stationary local random countable set M ′ that is contained in M a.s.-W leads
to a subnoise of (NM ; P

M , T M ) as follows. For extended-real s < t let S′
s,t be a

measurable enumeration of M ′ ∩ (s, t) and define NM ′
s,t as the P

M -complete σ -field
generated by the increments of W ◦ �M on (s, t) and by the random signs

(
(W ◦ �M )−1({S′

s,t (k) ∈ M}) � (ω1, η) �→ η(S′
s,t (k)(ω1))

)
, k ∈ N.

Then NM ′ := (NM ′
s,t )(s,t)∈R2,s<t is a subnoise of (NM ; P

M , T M ) (there is no depen-

dence of NM ′
on the actual enumerations used). The notation NM ′

is in conflict with
NM ′

under P
M ′
, but we will suffer it, since we will only work with (NM ; P

M , T M ) in
this subsection, no (NM ′ ; P

M ′
, T M ′

) shall appear. Two special cases are worth point-
ing out: when M ′ is empty, then NM ′

is generated just by W ◦ �M and we get the
Wiener subnoise, which is also the classical part of (NM ; P

M , T M ) by Proposition 7.9;
when M\M ′ is empty, then NM ′ = NM and we have the “full” subnoise.

Actually all the non-void subnoises of (NM ; P
M , T M ) are got in this way. (A

subnoise is called void when all its σ -fields are P-trivial.)

Theorem 7.17 Let N ′ be a non-void subnoise of (NM ; P
M , T M ). Then N ′ is equal to

NM ′
for some stationary local random countable set M ′ that is contained in M.

Proof The spectral measure type [27, bottom of p. 274] of N ′ is absolutely continuous
w.r.t. that of NM , indeed for each f ∈ L2(P|N ′−∞,∞) the N ′-spectral measure of f [27,

p. 272] is equal to the N -spectral measure of f . The stable part of N ′ is contained in
the stable part of NM . Since NM has only superchaoses of finite order, the same is true
of N ′. If the stable part of N ′ is void, then the first superchaos of N ′ is void too, whence
N ′ is rendered void, which is a contradiction with the assumption. Therefore the stable
part of N ′ is non-void and since the only non-void subnoise of the one-dimensional
Wiener noise is theWiener noise itself (Lemma 7.18 below) it follows that N ′ and NM

have the same stable part, the same maximal classical subnoise, which is the subnoise
generated by W ◦ �M . In symbols, (NM )lin−∞,∞ = (N ′)lin−∞,∞ = σ(W ◦ �M ).

Now consider the commutative von Neumann algebra AM
sens,1 of operators on the

Hilbert space HM
sens,1 generated by the (commuting) family of the multiplications MA

with the indicators of {W ◦�M ∈ A} for A ∈ G (notice they leave HM
sens,1 invariant) and

of the conditional expectations Ps,t with respect to the sub-σ -fields σ(W ◦�M )∨NM
s,t

for extended-real s < t (they also leave HM
sens,1 invariant). Pick an f ∈ HM

sens,1 such

that fk �= 0 a.s.-W for all k ∈ N (so that μM
f has full support) and set μ := μM

f (recall

(7.2) for the notation). For g ∈ HM
sens,1 define �(g) ∈ (BR ⊗ G)/BC by putting

�(g)((t, ω)) :=
∑
k∈ℕ

𝟙{Sk (ω)}(t)
gk(ω)

fk(ω)
𝟙C\{0}( fk(ω)), (t, ω) ∈ R × �0.
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We compute

μ[�(g)�(h)] =
∑
k∈N

W
[
| fk |2 gkhk| fk |2 ; fk �= 0

]
=
∑
k∈N

W [gkhk]

= P
M [gh], {g, h} ⊂ HM

sens,1;

therefore � : HM
sens,1 → L2(μ) is a linear isometry. Since it is also surjective it is

indeed a unitary isomorphism. Furthermore, (*) for A ∈ G and extended-real s < t
the productMAPs,t corresponds, via said unitary isomorphism, to multiplication with
(s, t) × A (as we have seen in the proof of Proposition 7.9). We deduce that � is
a spectral resolution of AM

sens,1 satisfying (*), which will be a property (variants of)
which we shall refer to later on.

Restricting to N ′ we have the commutative von Neumann algebraA′
sens,1 of opera-

tors on the first superchaos H ′
sens,1 of N

′ introduced in the same way asAM
sens,1 above

except that N ′ replaces NM ; one checks that A′
sens,1 = {A|H ′

sens,1
: A ∈ AM

sens,1}.
Because H ′

sens,1 ⊂ HM
sens,1 is invariant under the action of the operators from AM

sens,1

we may infer2 that �(H ′
sens,1) = L2(𝟙Q · μ) for some Q ∈ BR ⊗ G, Q ⊂ �M�. Then

�|H ′
sens,1

: H ′
sens,1 → L2(𝟙Q · μ) is a spectral resolution of A′

sens,1 satisfying (*’), i.e.

(*) with—in the obvious notation—M′
AP

′
s,t = MA|H ′

sens,1
Ps,t |H ′

sens,1
in lieu of MAPs,t .

Now we argue that Q is actually the graph of the stationary local random countable
set M ′ given by

M ′(ω) := {t ∈ R : (t, ω) ∈ Q}, ω ∈ �0.

First, for k ∈ N and ω ∈ �0, define S′
k(ω) as Sk(ω) or † according as (Sk(ω), ω) ∈

Q or not. We get a measurable enumeration (S′
k)k∈N of M ′. Thus M ′ is a random

countable set.
Second, we show that M ′ is local. For ease of notation focus on establishing that

M ′∩(−∞, 0) admits anF−∞,0-measurable enumeration (and, in passing,M ′∩(0,∞)

an F0,∞-measurable enumeration), the general case is not fundamentally more dif-
ficult. Denote �0,− := �0|(−∞,0] with Wiener measure P− defined on the σ -field
G−; analogously introduce �0,+ and P+ defined on G+ (which are then just � and P
on H, respectively). Repeating the story above with the commutative von Neumann
algebras—which, note, does not require the intervention of the measure-preserving
group, only the factorization!—but corresponding to the “restrictions” of the factor-
izations NM and N ′ to the temporal interval (−∞, 0), we get Q− ∈ B(−∞,0) ⊗ G−,
an F−∞,0-measurable enumeration (S′−(l))l∈N of the random countable set M ′−,

M ′−(ω) := {t ∈ R : (t, ω|(−∞,0]) ∈ Q−}, ω ∈ �0,

2 In general, if, for a σ -finitemeasure ν, H is a closed linear subspace of L2(ν) that is closed under the action
of the multiplication maps with elements of L∞(ν) (or, equivalently, just with indicators of measurable sets
belonging to a generating π -system), then H = L2(𝟙E · ν) for some measurable set E , up to the canonical
inclusion of L2(𝟙E · ν) into L2(ν). To see it, consider the orthogonal projection prH onto H and note that
it commutes with the multiplication operators corresponding to elements of L∞(ν). It is well-known that
this renders prH itself a multiplication operator by an element of L∞(ν); being a projection, it must be the
operator of multiplication with some measurable E .
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and a measure μ− on (−∞, 0) × �0− together with spectral resolutions �− :
HM
sens,1− → L2(μ−) of AM

sens,1− and �−|H ′
sens,1− : H ′

sens,1− → L2(𝟙Q− · μ−) of

A′
sens,1−; likewise with + in lieu of −. Moreover, up to a canonical unitary isomor-

phism HM
sens,1 =

(
HM
sens,1− ⊗ L2(P+)

)
⊕
(
L2(P−) ⊗ HM

sens,1+
)
. On the other hand we

have the obvious identification ιof (((−∞, 0)×�0−)×�0+)�(�0−×((0,∞)×�0+))

withℝ×�0 and thus we have also the identification of (μ− ×P+)⊕ (P− ×μ+) with
the ι-push-forward of this measure to the measure μ̃ := ι�μ on R × �0; the same for
((𝟙Q− ·μ−)×P+)⊕(P− ×(𝟙Q+ ·μ+)), which sliding along ι gives the measure 𝟙Q̃ ·μ̃
with Q̃ := {(t, ω) ∈ R×�0 : (t, ω|(−∞,0]) ∈ Q− or (t, ω|[0,∞)) ∈ Q+}. Thus, up to
these natural identifications, �̃ :=

(
�− ⊗ idL2(P+)

)
⊕
(
idL2(P−) ⊗ �+

)
: HM

sens,1 →
L2(μ̃) becomes a spectral resolution of AM

sens,1 satisfying (*.), which restricts to the

spectral resolution �̃|H ′
sens,1

: H ′
sens,1 → L2(𝟙Q̃ · μ̃) ofA′

sens,1 satisfying (*’.), the dots
in (*.), (*’.) signifying that perhaps (*), (*’) hold only for A of the form A− ∩ A+
with (A−, A+) ∈ F−∞,0 × F0,∞. But spectral measures of spectral resolutions of
commutative von Neumann algebras with a fixed spectral space and fixed spectral sets
on a generating multiplicative system of projections (viz. properties (*.), (*’.)) are
unique up to equivalence. This means that μ ∼ μ̃ and 𝟙Q̃ · μ̃ ∼ 𝟙Q · μ. Therefore
M ′− ∪ M ′+ = M ′ a.s.-W, especially M ′− = M ′ ∩ (−∞, 0) a.s.-W (and likewise for
M ′+). The proof of locality is complete.

Third, we proceed to stationarity. Let h ∈ R. The automorphism T M
h of themeasure

space (�M ,BM , P
M ) induces the unitary automorphism ψh := ( f �→ f ◦ T M

h ) of
the Hilbert space L2(PM ), which leaves HM

sens,1 invariant. In turn, δh := ψh |HM
sens,1

induces the automorphism Ah := (X �→ δ−1
h Xδh) of the commutative von Neumann

algebra AM
sens,1. We have also the unitary isomorphism � ◦ δh : HM

sens,1 → L2(μ),

which amounts to a spectral resolution ofAM
sens,1 for which the spectral set associated

to Ah(MAPs,t ) = M�h(A)Ps−h,t−h is (s, t) × A, this for all extended-real s < t and
A ∈ G. Define

ρh((t, ω)) := (t − h,�h(ω)), (t, ω) ∈ R × �0;

then ρh : R × �0 → R × �0 is a (BR ⊗ G)-bi-measurable bijection, put

μ̃ := (ρh)�μ

and denote by θh : L2(μ) → L2(μ̃) the unitary isomorphism (g �→ g ◦ ρ−1
h ). We

see that θh ◦ � ◦ δh : HM
sens,1 → L2(μ̃) is a spectral resolution of AM

sens,1 satisfying
(*) and deduce that μ̃ ∼ μ. Repeating the same exercise with the subnoise we get

𝟙Q · μ ∼ 𝟙Q ·μ. It follows that ρh(Q) = Q a.e.-μ, i.e. M ′ = −h+ M ′(�−h) a.s.-W.
This being true for all h ∈ R the random countable set M ′ is indeed stationary.

IfM ′ is empty or equal toM a.s.-W, then clearly N ′ = N∅ or N ′ = NM accordingly,
simply because in this case the first superchaos of N ′ is null or coincides with that
of NM , respectively (there are no super-superchaoses, so the stable part and the first
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superchaos generate everything [28, p. 71, penultimate paragraph]). Therefore we
may and do assume neither M ′ nor M ′′ := M\M ′ is empty. We choose an a.s.-W
injective measurable enumeration S′ = (S′

k)k∈N of M ′, likewise S′′ for M ′′. Finally,
we insist that the enumeration S of M has been got in such a way that S2k = S′

k and
S2(k−1)+1 = S′′

k a.s.-W for all k ∈ N to begin with (which too we may do). Looking
at the first superchaos of N ′ we now see that it is equal to { f ∈ L2(PM ) : fK =
0 for all K ∈ (2N)fin of size �= 1, f2(k−1)+1 = 0 for all k ∈ N}, which is also the
first superchaos of NM ′

. Thus the stable part and the first superchaos of N ′ and NM ′

are seen to coincide. But then again these two subnoises are the same, which completes
the proof. ��

We owe the reader the next result, which must be folklore, but, it appears, is not so
easy to pin down in literature.

Lemma 7.18 TheWiener noise (F;W,�) has only trivial subnoises: the void subnoise
and itself.

Proof Let F′ be a subnoise of the Wiener noise (F;W,�). Like the Wiener noise it is
classical (a subnoise of a classical noise is classical). The spectral measure type of F′
restricted to the part of the spectral space corresponding to the first chaos — that we
identify canonically with R—call it μ, is translation invariant, up to equivalence, by
the temporal homogeneity of F′. We deduce [6, Proposition VII.1.11] that μ = 0 or
μ ∼ l. (By the same token it follows that all non-void classical noises have the same
spectral measure class [27, Example 9b9], but we do not need it.) In the former caseF′
is void, for a classical noise is generated by its first chaos. In the latter case there is an
element f of the first chaos ofF′, whoseF′-spectral measure is equivalent to Lebesgue
measure on R ≡ (

R

1

)
. Such f , being also a member of the first chaos of F, is of the

form g · B (the stochastic integral in theWiener sense is meant) for a g ∈ L2(L ). This
g must necessarily be non-zero a.e.-L , for its spectral measure is equal to |g|2 · L
on R ≡ (

R

1

)
. Hence the random variablesW[ f |F′

s,t ] = W[ f |Fs,t ] = (g𝟙(s,t)) · B, for
s < t real, which all belong to the first chaos of F′, generate the whole of the σ -field
ofW up to trivial sets. But that can only be if F′−∞,∞ = G = F−∞,∞, i.e. F′ = F. ��
Corollary 7.19 The following statements are equivalent.

(A) M is minimal.
(B) The only non-void proper subnoise of (NM ; P

M , T M ) is the classical noise asso-
ciated with W ◦ �M.

Proof By Theorem 7.17 condition (A) implies (B). On the other hand, if M is not
minimal, then we can easily construct a proper non-void non-classical subnoise of
(NM ; P

M , T M ) out of any proper dense local stationary subset of M following the
construction of the second paragraph of this subsection. ��
Example 7.20 Thanks to Corollary 6.6 (N locmin; P

locmin, T locmin) and (N locmax;
P
locmax, T locmax) have as their only proper non-void subnoises the Wiener noise

(and the same is true for each (N (d); P
(d), T (d)), d ∈ (0, 2)). On the other

hand these two noises are also both isomorphic to proper non-void subnoises of
(N loc ext; P

loc ext, T loc ext).
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