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Abstract
Consider a branching Markov process with values in some general type space. Condi-
tional on survival up to generation N , the genealogy of the extant population defines
a random marked metric measure space, where individuals are marked by their type
and pairwise distances are measured by the time to the most recent common ancestor.
In the present manuscript, we devise a general method of moments to prove conver-
gence of such genealogies in the Gromov-weak topology when N → ∞. Informally,
the moment of order k of the population is obtained by observing the genealogy of k
individuals chosen uniformly at random after size-biasing the population at time N
by its kth factorial moment. We show that the sampled genealogy can be expressed in
terms of a k-spine decomposition of the original branching process, and that conver-
gence reduces to the convergence of the underlying k-spines. As an illustration of our
framework, we analyse the large-time behavior of a branching approximation of the
biparental Wright–Fisher model with recombination. The model exhibits some inter-
esting mathematical features. It starts in a supercritical state but is naturally driven to
criticality. We show that the limiting behavior exhibits both critical and supercritical
characteristics.
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1 Introduction

1.1 A branching process with a self-organized criticality behavior

The original motivation of the present article is the branching approximation of a
classical model in population genetics. It can be formulated as a branching process
in discrete time where each individual carries a subinterval of (0, R), for some fixed
parameter R > 0. At generation t = 0, the population is made of a single individual
carrying the full interval (0, R). At each subsequent generation, individuals reproduce
independently and an individual carrying an interval I with length |I | gives birth to
K (I ) children, where

K (I ) ∼ Poisson
(
1+ |I |

N

)
,

and N ≥ R is another fixed parameter. Each of these K (I ) children inherits indepen-
dently an interval which is either the full parental interval I , or a fragmented version
of it. More precisely, with probability

rN (I ) = 2
|I |
N

(
1+ oN (1)

)

we say that a recombination occurs: a random point is sampled uniformly on I which
breaks I into two subintervals. The child inherits either the left or the right subinterval
with equal probability. With probability 1− rN no recombination occurs and the child
inherits the full parental interval I . We refer to this process as the branching process
with recombination.

One of themost interesting aspect of the presentmodel is a self-organized criticality
property. While the process is “locally” supercritical, since E[K (I )] > 1, intervals
are broken via recombination and the process is naturally driven to criticality. Under
the regime N � R � 1, we will prove that some features are reminiscent of a critical
branching process (for instance, it satisfies a type of Yaglom’s law) but also bears
similarities to supercritical branching processes. In particular, one striking feature is
related to the genealogy of the process conditioned on survival at a large time horizon.
In the natural time scale, the genealogy of the extant population is indistinguishable
from the supercritical case, that is, it converges to a star tree. However, if we zoom
in on the root by rescaling time in a logarithmic way, the genealogy converges to the
celebrated Brownian Coalescent Point Process and becomes indistinguishable from a
critical branching process.

From a biological standpoint, our process was first introduced in [3] and corre-
sponds to a branching approximation of a more complicated model of population
genetics, named the biparental Wright–Fisher model with recombination. The con-
nection between the two models and their biological significance are discussed in
greater details in Sect. 2.
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1.2 Convergence of types and genealogy

In order to analyse the previous model, we introduce a general framework and provide
simple criteria for the convergence of random genealogies. Although the branching
process that we consider is interesting in its own right, our study aims at giving a
concrete illustration of a general approach that could presumably be relevant in many
other settings.

It is quite common that individuals in a branching process are endowed with a
“type”, which is heritable and can in turn influence the reproductive success of indi-
viduals. Let us denote by E the set of types. For instance, in our work E is the set of
subintervals of (0, R), for branching random walks E = R

d [44], or for multi-type
Galton–Watson processes E is often chosen as finite [1, Chapter 5]. In the absence of
types or when the reproduction law does not depend on types (as for standard branch-
ing random walks in R

d ), the scaling limits of the tree structure and of the distribution
of types have received quite a lot of attention [12, 30, 39]. In this particular setting, one
can make use of an encoding of the tree as the excursion of a stochastic process, the
so-called contour process, or height process. Convergence is then obtained by showing
that the corresponding excursion converges.

When the reproduction law may depend on the types, some attempts to extend the
excursion approach exist in the literature [40] but as far we know a systematic and
amenable approach is still missing. In this work we follow a different approach, and
extend the seminal work of [18] to prove convergence in the Gromov-weak topology.
Proving convergence in distribution for this setting is very similar in spirit to themethod
of moments for real random variables, where one proves convergence in distribution
by showing that all moments of the tree structure converge. In the context of trees and
metric spaces, the moments of order k are obtained by summing over all k-tuples of
individuals at some generation, and considering a functional of the subtree spanned by
these k individuals. Informally, this amounts to picking k individuals at random in a
size biased population, and then proving convergence of the genealogy of the sample.
One contribution of our work is that, analogously to the method of moments in the real
setting, we only need to prove convergence of the moments with no need to identify
the limit. This relies on a de Finetti-like representation of exchangeable coalescents
that was developed in [17]. See Theorem 4 for our main convergence result.

1.3 Spinal decomposition of Markov branching processes

To compute the moments of branching process, we make use of a second set of tools
called spinal decompositions [22, 31, 44]. One of the main insight of the present
manuscript lies in the observation that an ingenious random change of measure allows
us to reduce the computation of a polynomial of order k to a computation on a single
tree with k leaves, called the k-spine tree. Since this type of manipulation allows one
to reduce a computation involving the whole tree to a computation involving only k
individuals, this type of results have been called many-to-few formula. While many-
to-one formula have been extensively explored in the literature since the seminal work
of Lyons et al. [31], spinal decompositions of higher order are more sparse. One
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700 F. Foutel-Rodier, E. Schertzer

formulation has been exposed in [22] (see also [4, 21, 24, 41]) where the k-spine is
constructed from a system of branching particles evolving according to a prescribed
Markov dynamics. While the main result in [22] could be in principle applied to our
setting, the computation rapidly proved to be intractable. Another contribution of our
work, that we want to emphasize, is a derivation of new general many-to-few formula
that was better suited to our case. Let us describe it briefly here, and refer to Sect. 3
for a complete account.

The k-spine tree in our work is constructed iteratively as a coalescent point process
(CPP in short). Starting from a single branch of length N , at each step a new branch
is added to the right of the tree. Branch lengths are assumed to be i.i.d., and the
procedure is stopped when the tree has k leaves, see Fig. 4. Given this tree, types
need to be assigned to vertices of the k-spine tree. For k = 1, the tree is made of a
single branch, and the sequence of types observed from the root to the unique leaf is
a Markov chain. This Markov chain is the usual sequence of types along the spine
that arises in many versions of the many-to-one formula [7, 44]. It is obtained as the
Doob harmonic transform of the offspring type, see Sect. 3.1. For a general k, the
previous chain is duplicated independently at each branch point. The distribution of
the resulting tree is connected to the original distribution of the branching process
through a random change of measure �k given in (3). The latter factor accounts for
the fact that individuals located at the branch points are more likely to have a large
offspring and a favorable type.

While our spinal decomposition result bears similarities with that in [22], our for-
mulation allows for a more general distribution of the k-spine tree, which can be any
discrete CPP. This additional degree of freedom proved very valuable in our applica-
tion, where the introduction of a well-chosen ansatz for the genealogy of the process,
see (17), simplified considerably earlier versions of our proofs. More generally, we
believe that our approach is particularly amenable to the study of near-critical branch-
ing processes, since the scaling limit of their genealogy can also be described as a
continuous CPP. Nevertheless, see [21, 24] for successful applications of the tech-
niques in [22] to study the genealogy of a sample from a Galton–Watson tree.

1.4 Outline

Overall, the contribution of our work is three-fold. We have (1) derived a new type of
many-to-few formula based on a CPP tree, (2) combined it with the framework of the
Gromov-weak topology to produce an effective way of studying the scaling limit of
types and genealogies in branching processes, and (3) applied it to study a complex
model from population genetics, the branching process with recombination.

The rest of our work is laid out as follows. Section2 provides more details on the
biological motivation of the branching process with recombination and a statement of
our main results concerning this model. Those results will be proved using a general
framework that will be developed in the subsequent sections.

In Sect. 3 we construct the k-spine tree and prove our spinal decomposition result.
In Sect. 4, we show that the convergence of the genealogy of branching processes can
be reduced to the convergence of the associated k-spines. This approach relies on a
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Fig. 1 When a recombination occurs, a point is chosen along the sequence, called the crossover point and
represented by a dashed line. Two new chromosomes are formed by swapping the parts of the parental
chromosomes on one side of the crossover point. The offspring inherits one of these two chromosomes
(color figure online)

previous work [17] where we provide a de Finetti-like representation of ultrametric
spaces that allows us to extend previous convergence criteria for the Gromov-weak
topology.

In the last two sections, we apply the previous framework to the model at hand. In
Sect. 5, we characterize the 1-spine associated to the branching process with recom-
bination, and prove our convergence results in Sect. 6.

2 Branching process with recombination

2.1 Biological motivation

In the context of this work, genetic recombination is the biological mechanism by
which an individual can inherit a chromosome which is not a copy of one of its two
parental chromosomes, but a mix of them. An idealized version of this mechanism
is illustrated in Fig. 1. Due to recombination, the alleles carried by an individual at
different loci, that is, locations on the chromosome, are not necessarily transmitted
together. At the level of the population, this creates a complex correlation between the
gene frequencies at different loci which is hard to study mathematically.

When focusing on a finite number of loci it is possible to express the dynamics of
these frequencies as a set of non-linear differential equations or stochastic differential
equations [2, 36]. However, one needs to keep track of the frequencies of all possible
combinations of alleles. As the number of such combinations grows exponentially
fast with the number of loci, it leads to expressions that rapidly become cumbersome,
providing little biological insight. Another very fruitful approach is to trace backward-
in-time the set of potential ancestors of the population. This gives rise to amathematical
object named the ancestral recombination graph (ARG) [19], or see [13, Chapter 3].
However, the ARG is quite complicated both from a mathematical and a numerical
point of view. Nevertheless, see [28] for some recent mathematical results, and [32,
33] for approximations of the ARG that have proved very successful in application.

In this work we consider a third approach to this question, which is to envision the
chromosome as a continuous segment. At each reproduction event recombination can
break this segment into several subintervals, a subset of which is transmitted to the
offspring, as in Fig. 1. The genetic contribution of an individual is now described by
a collection of intervals, which are delimited by points called junctions. This point of
view has long-standing history dating back to the work of Fisher [16], see for instance
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702 F. Foutel-Rodier, E. Schertzer

Fig. 2 Illustration of theWright–Fisher model with recombination. A line is drawn between each individual
and its parents. It is dotted if no genetic material is inherited from this parent. The right panel focuses on
the genetic material left by the red individual. Note that each individual only carries an interval before the
first reproduction event involving two descendants of the focal ancestor (color figure online)

[23] and references therein. Let us discuss the specific model that we consider, and
how the branching process with recombination approximates it.

2.2 Connection to theWright–Fisher model

Consider a population of fixed size N where individuals are endowed with a contin-
uous chromosome represented by the interval (0, R). At each generation, individuals
pick independently two parents uniformly from the previous generation. Assume that
these parents can be distinguished, so that there is a left and a right parent. Then,
independently for each individual:

• with probability 1 − R/N , it inherits the chromosome of one of its two parents,
say the left one;

• with probability R/N , a recombination occurs. A crossover point U is sampled
uniformly on (0, R), and the offspring inherits the part of the chromosome to the
left of U from its left parent, and that to the right of U from its right parent.

Suppose that at some focal generation, labeled generation t = 0, each chromosome
in the population is assigned a different color. Due to recombination, new chromo-
somes are formed that are mosaics of the initial colors. We are ultimately interested
in describing the long-term distribution of these mosaics in the population. This is
illustrated in Fig. 2.

In this work, we consider a simpler but related problem. Fix a focal ancestor, and
say that its chromosome is red. We trace the individuals in the population that have
inherited some genetic material from this focal ancestor, that is, the set of individuals
that have some red on their chromosome as well as the location of the red color.
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To recover the branching approximation that we study, consider an individual in the
population at some generation t carrying a red interval I . Its offspring size distribution
is

Binomial

(
N ,

2

N

(
1+ oN (1)

)) −−−−→
N→∞ Poisson(2).

Each of these children has another parent in the population. As long as the number of
individuals with a red piece of chromosome is small compared to N , this other parent
does not have any red part on its chromosome.

Therefore, there are only four possible outcomes for each child:

• With probability 1− R/N no recombination occurs and

– with probability 1/2 it inherits I ;
– with probability 1/2 the interval I is lost.

• With probability R/N a recombination occurs and

– if U /∈ I the interval I is transmitted or lost with probability 1/2;
– if U ∈ I , the child inherits the subinterval of I to the left or to the right of U
with probability 1/2.

By combining the previous cases, we recover that the number of descendants that
carry some red of an individual with red interval I is approximately distributed as a
Poisson

(
1+ |I |

N

)
r.v., and that the probability of inheriting a fragmented interval is

rN (I ) = 2|I |/N
1+ |I |N .

This is the description of the branching process with recombination.

2.3 Limiting behavior

Let PR denote the distribution of the branching process with recombination started
from a single individual with interval (0, R). The following asymptotic expression for
the survival probability of this process was already derived in [3].

Proposition 1 [3] Let ZN denote the population size at generation N in the branching
process with recombination. The limit

lim
N→∞

PR(ZN > 0)

N

exists. Moreover it fulfills

lim
R→∞ lim

N→∞
R PR(ZN > 0)

N log R
= 1.
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Let TN denote the set of individuals at generation N in the branching process with
recombination. For an individual u ∈ TN , we denote by Iu the interval that it carries.
For u, v ∈ TN , let dT (u, v) denote the genealogical distance between u and v, that is,
the number of generations that need to be traced backward in time before u and v find
a common ancestor.

Our first result provides the joint limit of the interval lengths and of the genealogy
of the population. To derive this limit, we will envision the population as a marked
metric measure space and work with the marked Gromov-weak topology [10]. The
definition of this topology is recalled in Sect. 4.1.

Let us consider the measure μN on TN × R+ defined as

μN =
∑
u∈TN

δ(u,|Iu |).

The triple [TN , dT , μN ] is the marked metric measure space corresponding to the
branching process with recombination. Let us finally define the rescaling

∀x ∈ [0, 1], FR(x) = log
(
(R − 1)x + 1

)

log R
, F−1

R (x) = Rx − 1

R − 1
(1)

and define the rescaled distance as

∀u, v ∈ TN , d̄ R
N = 1− FR

(
1− dT (u,v)

N

)

which is the distance obtained by rescaling time according to FR .

Theorem 1 Fix t > 0. Conditional on survival at time 	Nt
 the following limit holds
in distribution for the marked Gromov-weak topology,

lim
R→∞ lim

N→∞

[
T	Nt
, d̄ R	Nt
,

μ	Nt

t N log R

]
= [

(0,Y ), dP ,Leb⊗Exp(t)
]

where [(0,Y ), dP ] is a Brownian coalescent point process, and Exp(t) is the expo-
nential distribution with mean 1/t .

A stronger version of this result is proved in Sect. 6.3. Let us now briefly discuss
several consequences of the previous result.

2.3.1 Convergence of the empirical measure

As mentioned in the introduction, the branching process at hand is naturally driven to
criticality through recombination. Recall that if the offspring distribution of a (stan-
dard) critical branching processes has finite second moment, the celebrated Yaglom
law states that conditional on survival up to time Nt , the rescaled population size
Z	Nt
/N converges to an exponential random variable. In contrast, the convergence
of μ	Nt


t N log R entails that the rescaled population size at time Nt converges to an expo-
nential random variable, but the population size is of order N log R instead of N . In
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words, the local supercritical character of the process translates into an extra log R
factor for the population size.

Secondly, the convergence of the random measure μ	Nt

t N log R also implies that the

length of the interval carried by a typical individual in the population is exponentially
distributed with mean 1/t . Since the limiting random measure is deterministic, the
intervals carried by k typical individuals in the populations are independent (propaga-
tion of chaos). Note that, although the length of the initial interval R goes to infinity,
the intervals at any finite time t remain of finite length. This phenomenon is usually
referred to as coming down from infinity. In our work, it originates from the existence
of an entrance law at infinity for the spine, which turns out to be connected to the exis-
tence of such entrance laws for positive self-similar Markov processes with negative
index of self-similarity [5, 6].

2.3.2 Convergence of the genealogy

Let us first comment on the rescaling FR . Although the expression of FR appears a bit
daunting at first, it essentially boils down to first rescaling time by N (as expected),
and then measuring time from the origin in the log-scale. The first consequence is that
the genealogy of the population in the natural scale (that is, if we only rescale time by
N ) converges to a star tree so that the genealogy becomes indistinguishable from the
one of a supercritical branching process at the limit.

A second consequence of this result is that, after rescaling time according to FR ,
the genealogy of the branching process with recombination converges to a limiting
metric space named the Brownian coalescent point process (CPP). It is constructed
out of a Poisson point process P on (0,∞) × (0, 1) with intensity dt ⊗ 1

x2
dx . Let

∀x ≤ y, dP (x, y) = sup{z : (t, z) ∈ P, x ≤ t ≤ y}.

The Brownian CPP is the randommetric space [(0,Y ), dP ], where Y is an exponential
r.v. with mean 1, independent of P , see Fig. 3 for a graphical construction. It corre-
sponds to the limit of the genealogy of a critical Galton–Watson process with finite
variance [39].

2.3.3 Chromosomic distance

The previous result provides a complete description of the interval lengths in the
population, but does not provide any insight into their distribution over (0, R). We
will encode the latter information by picking a reference point belonging to each
interval in the population and considering the usual distance on the real line between
these points. More precisely, for each u ∈ TN , pick a reference point Mu uniformly
on Iu . We define a new metric

∀u, v ∈ TN , DN (u, v) = |Mu − Mv|.

We will refer to the DN as the chromosomic distance.
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706 F. Foutel-Rodier, E. Schertzer

The quadruple [TN , dN , DN , μN ] can be seen as a random “bi-metric” measure
space with marks. We can define a straightforward extension of the marked Gromov-
weak topology for such objects, see the end of Sect. 4.1. The correct rescaling for DN

is to set

∀u, v ∈ TN , D̄R
N = log DN ∨ 2

log R

In Sect. 6.3, we prove the following refinement of Theorem 1.

Theorem 2 Fix t > 0. Conditional on survival of the process at 	t N
, the following
limit holds in distribution for the marked Gromov-weak topology,

lim
R→∞ lim

N→∞

[
T	Nt
, d̄ R	Nt
, D̄R	Nt
,

μ	t N

t N log R

]
= [

(0,Y ), dP , dP ,Leb⊗Exp(t)
]

where [(0,Y ), dP ] is a Brownian coalescent point process, and Exp(t) is the expo-
nential distribution with mean 1/t .

It is important to note that, in the limit, the two metrics coincide. This result is quite
interesting from a biological point of view. It shows that there is a correspondence
between the genealogical distance between two individuals, and the chromosomic
distance between the genetic material that they carry. Indeed, the latter two quantities
are correlated: two individuals inherit intervals that are subsets of the interval carried by
their most-recent common ancestor. If this ancestor is recent, its interval is smaller, and
so is their chromosomic distance. Our result shows that, in the limit, the two distances
become identical when considered on the right scale. This result is illustrated in Fig. 3.

Remark 1 Define the point process

ϑ =
∑
x≥0

Leb({y ∈ (0,Y ) : dP (0, y) = x})δx

which corresponds to the CPP tree “viewed from the individual with the left-most
interval”. Using elementary properties of Poisson point processes shows that ϑ can
also be written as

ϑ =
∑

(xi ,yi )∈P
yiδxi

where P is a Poisson point process on (0,∞)× (0,∞) with intensity 1
x2
e−x/ydxdy.

The same expression was obtained in [28, Theorem 1.5] to describe the set of
loci that share the same ancestor as the left-most locus in the fixed haplotype of a
Wright–Fishermodelwith recombination, under a limiting regime similar to ours. This
connection is quite surprising.We are considering a branching approximationwhere all
intervals belong to distinct individuals and its chromosome carries at most one block
of ancestral genome, whereas in [28] all intervals belong to a single chromosome,
which has reached fixation in the population.

123



Convergence of genealogies through spinal decomposition... 707

Fig. 3 Top: simulation of a Brownian CPP. The black vertical lines represent to the atoms of P , and the
corresponding tree is pictured in grey. Bottom: geometry of the blocks of ancestral material corresponding
to the top CPP. Each block is represented by a black stripe. The correspondence between the blocks and the
tree are shown for some blocks by grey segments joining the two. The distance between two consecutive
stripes is the logarithm of their distance on the chromosome. Note that this induces a strong deformation
of the intuitive linear scale

3 The k-spine tree

3.1 Themany-to-few formula

The objective of this first section is to introduce the k-spine tree and state our many-to-
few formula, that relates the expression of the polynomials of a branching process to
the k-spine tree. All the random variables introduced here are more formally defined
in the forthcoming sections, where the proof of the many-to-few formula is carried
out. A formal statement of our result requires some preliminary notation.

3.1.1 Assumption and notation

Consider a Polish space (E, dE ), and a collection (�(x); x ∈ E) of random point
measures on E . This collection can be used to construct a branching process with type
space E , such that the atoms of a realization of �(x) provide the types of the children
of an individual with type x . The distribution of the resulting branching process is
denoted by Px .

Let K (x) denote the number of atoms of �(x), and set

π(x, k) = P(K (x) = k)
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708 F. Foutel-Rodier, E. Schertzer

for the distribution of K (x). The nth factorial moment of K (x) is denoted by mn(x),
that is,

mk(x) := E

[
K (x)(n)

]
,

m(x) := m1(x) = E[K (x)],

where we have used the notation k(n) for the nth descending factorial of k,

k(n) = k(k − 1) . . . (k − n + 1).

Our results aremore easily formulated under the assumption that, conditional on K (x),
the locations of the atoms are i.i.d. with distribution p(x, ·). That is, we assume that

�(x) =
K (x)∑
i=1

δξi (x)

where (ξi (x); i ≥ 1) is an i.i.d. sequence distributed as p(x, ·) and is independent of
K (x). We make the further simplifying assumption that all distributions p(x, ·) have
a density w.r.t. some common measure � on E . With a slight abuse of notation, the
density of p(x, ·) is denoted by (p(x, y); y ∈ E).

3.1.2 Harmonic function

We say that a map h : E → [0,∞) is (positive) harmonic if

∀x ∈ E, h(x) = E[〈�(x), h〉],

wherewe used the notation 〈μ, f 〉 = ∫
f dμ, see for instance [7]. A harmonic function

can be used to define a new probability kernel on E , defined as

∀x, y ∈ E, q(x, y) = m(x)h(y)p(x, y)

h(x)
. (2)

The fact that this is a probability measure follows from the harmonicity of h.

3.1.3 The k spine tree

We are now ready to define the k-spine tree. Let ν = (νn; n ∈ {0, . . . , N − 1})
be a probability distribution and let (W1, . . . ,Wk−1) be i.i.d. random variables with
distribution ν. Define

∀i ≤ j, dT (i, j) = dT ( j, i) = max{N −Wi , . . . , N −Wj−1}.

There is a unique tree with k leaves labeled by {1, . . . , k} such that the tree distance
between the leaves is dT . We denote it by S and call it the ν-CPP tree. This tree is
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Fig. 4 Illustration of the
construction of a CPP tree. The
vector (W1, . . . ,Wk−1)

branching times between
successive leaves. In this
example, this vector is
(6, 4, 1, 5, 5). The tree is
recovered from these times by
grafting for each i a branch of
length N −Wi to the right-most
vertex of the tree at generation
Wi

constructed inductively by grafting a branch of length N −Wi on the tree constructed
at step i , as illustrated in Fig. 4.

We now assign marks on the tree such that along each branch of the tree, marks
evolve according to aMarkov chain with transition kernel (q(x, y); x, y ∈ E) defined
in (2). More formally construct a collection of processes (X1, . . . , Xk) such that

• the process (X1(n); n ≥ 0) is a Markov chain with transition (q(x, y); x, y ∈ E)

started from x ;
• conditional on (X1, . . . , Xi ),

∀n ≥ 0, Xi+1(n) =
{
Xi (n) if n < Wi

X ′(n −Wi ) if n ≥ Wi

for some independent Markov chain X ′ with transition (q(x, y); x, y ∈ E) started
from Xi (Wi ).

By thinking of (Xi (n); n ≥ 0) as giving the sequence of marks along the branch of S
starting from the root and going to the i th leaf, we can assign to each vertex u ∈ S a
mark Yu .

Definition 1 The k-spine tree is the random marked tree [S, (Yu; u ∈ S)] encoded by
the variables (W1, . . . ,Wk−1) and (X1, . . . , Xk). The distribution of the latter variables
is denoted by Qk,N

x .

We are now ready to state our many-to-few formula. It can be described informally
as follows. Suppose that the branching processwith lawPx is biased by the kth factorial
moment of its size at generation N and that k individuals are chosen uniformly for that
generation. Then the law of the subtree spanned by these individuals is Qk,N

x biased
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710 F. Foutel-Rodier, E. Schertzer

by a random factor �k that can be expressed as

�k =
∏
u∈S
du>1

(
h(Yu)

Nν|u|

)du−1 mdu (Yu)

du !m(Yu)du
·

k∏
i=1

1

h(Xi (N ))
, (3)

where du denotes the degree of a vertex u ∈ S and Yu its mark. Note that the left
product in (3) has at most k − 1 terms, which correspond to the branch points in S.

Lemma 1 Assume that for every x ∈ E, the offspring number K (x) is Poisson (for
some given parameter λ(x) > 0 that may depend on x). Then

�k =
∏
u∈S
du>1

(
h(Yu)

Nν|u|

)du−1 1

du ! ·
k∏

i=1

1

h(Xi (N ))
.

Proof This simply follows from the well known fact that the kth factorial moment of
a Poisson random variable with parameter λ > 0 is λk . ��

Finally, let TN denote the labels of the N th generation of a branching process with
distribution Px , for u ∈ TN let Xu denote its type, and let dT denote the tree distance
on TN .

Proposition 2 (Many-to-few) For any test function ϕ,

Px

⎡
⎢⎢⎣

∑
(v1,...,vk )∈TN

v1 �=···�=vk

ϕ
(
dT (vi , v j ), Xvi ; i, j ≤ k

)
⎤
⎥⎥⎦

= h(x)Nk−1k!Qk,N
x

[
�k · ϕ

(
dT (σi , σ j ), Xσi (N ); i, j ≤ k

)]

where σ is an independent uniform permutation of {1, . . . , k}.
Remark 2 (i) In our construction of the k-spine, the distribution of the tree is

independent of the marking. The term �k captures the interplay between the
genealogy and the types as a function of the marking at “topological” points.

(ii) Compare Proposition 2 to the many-to-few formula in [22]. Both expressions
relate the distribution of a k-sample from the branching process (l.h.s. of the
equality) to that of a simpler k-spine tree (r.h.s. of the equality) at the expense
of a bias term, here denoted by �k .

(iii) In [22], the k-spine tree only depends on the moments of the reproduction law.
Our formulation has one extra degree of freedom, since the k-spine tree is con-
structed out of an a priori genealogy, the ν-CPP tree.

(iv) In many situations, including the model at hand, the bias term in [22] becomes
degenerate in the limit so that the distribution of the limiting genealogy is singular
with respect to that of the original k-spine tree. For instance, for near-critical
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processes conditioned on survival at generation N , the first split time of the k-
spine tree in [22, Sect. 8] remains of order 1, whereas the most-recent common
ancestor of thewhole population is known to live at a time of order N . In contrast,
one advantage of our approach is that ν can be well-chosen so that the bias �k

converges to a non-degenerate limit. This amounts to finding a good ansatz for
the limiting genealogy. In our example this ansatz is given in (17), and the limit
of the bias �k is independent of the genealogy. This indicates that the limit of
the genealogy does not depend on the types in the population.

The rest of the section is dedicated to the proof of the many-to-few formula. Our
strategy to prove this result is to define a new tree with distribution Q̄k,N

x by grafting
on the k-spine tree independent subtrees distributed as the original branching process.
Themany-to-few formulawill then follow from themore precise spinal decomposition
theorem, which states that Q̄k,N

x and Px are connected through the random change
of measure �k . It is proved in Sect. 3.4. The remaining sections provide a rigorous
construction of the measures Px and Q̄k,N

x and the proof of the spinal decomposition
theorem.

3.2 Tree construction of the branching process

Let us recall some common notation on trees.

3.2.1 Trees

Following the usual Ulam–Harris labeling convention, all trees will be encoded as
subsets of

U :={∅} ∪
⋃
n≥1

N
n .

Let us consider an element u = (u(1), . . . , u(n)) ∈ U . We denote by |u| = n its
length, interpreted as the generation of u. Moreover, its i th child is denoted by

ui :=(u, i) = (u(1), . . . , u(n), i),

and its ancestor in the previous generation as

←−u :=(u(1), . . . , u(n − 1)).

The setU is naturally endowed with a partial order�, where u � v if u is an ancestor
of v, that is,

u � v ⇐⇒ ∀i ≤ |u|, u(i) = v(i).

The most-recent common ancestor of u and v can then be defined as

u ∧ v:=max{w : w � u and w � v}.

123



712 F. Foutel-Rodier, E. Schertzer

In the tree interpretation of U , we can define a metric dT corresponding to the graph
distance as

∀u, v ∈ U , dT (u, v):=Card{w : u ∧ v � w ≺ u} + Card{w : u ∧ v � w ≺ v}.

Finally, as a consequence of the Ulam–Harris encoding, trees are planar in the sense
that the children of each vertex are endowed with a total order. Accordingly let us
denote by≤ the lexicographical order onU , which we will call the planar order. Note
that ≤ extends �.

A subset τ ⊆ U is called a tree if

(i) ∅ ∈ τ ;
(ii) if, for some j , u j ∈ τ , then u ∈ τ ;
(iii) for any u ∈ τ , there exists ku ∈ N such that

ui ∈ τ ⇐⇒ i ≤ ku,

where ku is the number of children of u, also called the (out-)degree of u.

The set of all trees is denoted by �. For a tree τ ∈ �, define its restriction to the nth
generation as

τn = {u ∈ τ : |u| = n}

and that to the first n generations as

τ[n] = {u ∈ τ : |u| ≤ n} =
n⋃

i=1

τi .

Furthermore, let us denote by �n the set of trees of height at most n, where the height
of a tree is defined as the generation of the oldest individual in the tree.

3.2.2 Marked trees and definition of Px

A marked tree is a tree τ ∈ � with a collection (xu; u ∈ τ) of marks with values
in E . Let us define a random marked tree [T , (Xu; u ∈ T )] inductively as follows,
that corresponds to the branching process with offspring reproduction point processes
(�(x); x ∈ E).

Start from a single individual ∅ with mark X∅ = x . Conditional on the first n
generations T[n] and their marks (Xu; u ∈ T[n]), consider a collection of independent
point processes (�u; u ∈ Tn), where

�u ∼ �(Xu).
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Let us write

�u =
Ku∑
i=1

δξui

for the atoms of �u . Then define the next generation as

T[n+1] = T[n] ∪ {ui : u ∈ Tn, i ≤ Ku},

with marks given by

∀ui ∈ Tn+1, Xui = ξui .

Let T = ∪n≥1Tn be the whole tree, and define define Px as the law of the random
marked tree [T , (Xu; u ∈ T )] obtained through the previous procedure, and PN

x the
law of its restriction to the first N generations.

3.3 Ultrametric trees

From now on, we consider a fixed, focal generation N . In this section we construct
the measure Q̄k,N

x obtained by grafting some independent subtrees on the k-spine tree.
This construction relies on the notion of (discrete) ultrametric trees.

3.3.1 Ultrametric trees

A tree τ ∈ �N with height N is called ultrametric if all of its leaves lie at height N ,
that is

∀u ∈ τ, ku = 0 �⇒ |u| = N .

The set of all ultrametric trees of height N with k leaves is denoted by U
k,N . For

τ ∈ U
k,N , let us denote by (�1, . . . , �k) the leaves of τ in lexicographical order, that

is, such that

�1 ≤ · · · ≤ �k .

The previous description of an ultrametric tree as an element of �N is not suitable
to describe the large N limit of the k-spine tree. To derive such a limit, we need
to encode elements of U

k,N as a sequence (g1, . . . , gk−1) giving the branch times
between successive leaves in the tree. This construction is sometimes referred to as a
coalescent point process (CPP) [29, 39].

More precisely, define the map

� :
{

U
k,N → {0, . . . , N − 1}k−1

τ �→ (|�1 ∧ �2|, . . . , |�k−1 ∧ �k |
)
.
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714 F. Foutel-Rodier, E. Schertzer

The following straightforward result shows that the tree τ can be recovered from the
vector of coalescence times �(τ).

Lemma 2 The map � is a bijection from the set of ultrametric trees U
k,N to the set of

vectors {0, . . . , N − 1}k−1.

3.3.2 The k-spine tree

Let (W1, . . . ,Wk−1) and (X1, . . . , Xk) have distributionQ
k,N
x .We formally define the

ν-CPP tree illustrated in Fig. 4 as the random tree S:=�−1(W1, . . . ,Wk−1). Note that
the CPP tree associated to the uniform distribution is uniform on U

k,N . The processes
(X1, . . . , Xk) can now be used to construct a collection of marks (Yu; u ∈ S) as
follows. Each u ∈ S is of the form

u = (�i (1), . . . , �i (n))

for some leaf �i and n ≤ N . Define the mark of such a u as

Yu :=Xi (n).

(It is not hard to see that Yu is well-defined in that it does not depend on the choice
of �i if u is ancestral to several leaves.) The marked tree [S, (Yu)] is the k-spine tree
encoded by the r.v. (W1, . . . ,Wk−1) and (X1, . . . , Xk).

3.3.3 Construction of Q̄k,N
x

Let [S, (Yu)] be the k-spine tree constructed above. We attach to S some subtrees
distributed as Px to define a larger marked tree [T , (Xu)]. This yields a random tree
with k spines originated from the k leaves of S at generation N . The distribution of
these random variables will be denoted by Q̄k,N

x .
To construct T from the spine, we first specify the number of subtrees that need to

be attached to each vertex u of the spine. We will distinguish the degree of a vertex in
S and that in the larger tree T . We denote by du the number of children in S of u. (The
degree of u in T will be denoted by ku as previously.)Wework conditional on [S, (Yu)]
and assume them to be fixed. Let (Ku; u ∈ S, |u| < N ) be independent variables such
that Ku has the distribution of K (Yu), biased by its du th factorial moment. That is,

P(Ku = k) = k(du)

mdu (Yu)
π(Yu, k). (4)

Among the Ku children of u in T , du are distinguished as they correspond to the
children of u in S. Let Cu1 < · · · < Cudu be the labels of these distinguished children,
and let us assume that they are uniformly chosen among the

(Ku
du

)
possibilities. We
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can now define the subtree corresponding to S in the larger tree T by an inductive
relabelling of the nodes. For u ∈ S, define �(u) inductively as follows

�(∅) = ∅, �(ui) = �(u)Cui ,

with corresponding marks

X�(u) = Yu .

Finally, let us attach the subtrees to [S, (Yu)]. For u ∈ S, consider a sequence
[Tui , (Xui,v; v); i ≥ 1] of i.i.d. marked trees with the original distribution PXui,∅ , but
with random initial mark Xui,∅ distributed as p(Yu, ·). The final tree T is defined as

T =
⋃
u∈S|u|<N

⋃
i∈[Ku ]
ui /∈�(S)

�(u)iTui ,

and for v ∈ Tui , the mark of �(u)iv is

X�(u)iv = Xui,v.

Informally, for each of the Ku − du children of u that are not in S, we realize one step
of the Markov chain with kernel (p(x, y); x, y ∈ E) and then attach a whole subtree
Tui to that child.

The resulting tree T has k distinguished leaves, �(�1), . . . , �(�k), corresponding
to the k leaves of S. Let us finally define

∀i ≤ k, Vi = �(�σi )

for an independent uniform permutation σ of {1, . . . , k}. The distribution of the triple
[T[N ], (Xu), (Vi )] is denoted by Q̄k,N

x , where T[N ] is the restriction of T to the first N
generations.

3.4 The spinal decomposition theorem

Our final objective in this section is to connect Px and Q̄k,N
x to derive our many-to-

few formula. We assume νn > 0 for all n ∈ {0, . . . , N − 1}. Recall the expression
of �k from (3). Our spinal decomposition theorem states that, if Px is biased by the
kth factorial moment of its size at generation N and k uniformly chosen individuals
(V1, . . . , Vk) are distinguished from that generation, the corresponding marked tree
[TN , (Xu), (Vi )] is distributed as Q̄k,N

x biased by �k .

Theorem 3 (Spinal decomposition) Consider a tree τ with height N and k distinct
vertices (v1, . . . , vk) ∈ τN . Let h be a harmonic function for the branching process
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716 F. Foutel-Rodier, E. Schertzer

with law (Px ; x ∈ E). Then, for any test function ϕ, we have

PN
x

[
1T=τ ϕ(Xu; u ∈ τ)

]

= h(x)Nk−1k! Q̄k,N
x

[
�k · 1T=τ1V1=v1,...,Vk=vkϕ(Xu; u ∈ τ)

]
.

Proof It is enough to prove the result for the uniform CPP by noting that
∏

u∈S 1
Nνu

is the Radon–Nykodim derivative of the uniform CPP with respect to the ν-CPP.
The natural state space for PN

x is the space of all marked trees with height at most
N , that is,

⋃
τ∈�N

{τ } × Eτ .

Using that the offspring distribution on E has a density w.r.t. some measure �, it is
clear that PN

x has a density w.r.t. a dominating measure defined as

�N

⎛
⎝ ⋃

τ∈�N

{τ } ×
∏
u∈τ

Bu

⎞
⎠ =

∑
τ∈�N

∏
u∈τ

�(Bu)

which is given by

PN
x (τ, (xu)) =

∏
u∈τ|u|<n

π(xu, ku)
ku∏
i=1

p(xu, xui ) (5)

where ku stands for the number of children of u.
Let s denote the subtree spanned by (v1, . . . , vk), that is

s =
k⋃

i=1

{w : w � vi }.

We can decompose (5) into a product on s and on the subtrees attached to s. The
branching property shows that

PN
x (τ, (xu)) =

∏
u∈s|u|<N

π(xu, ku)

⎡
⎢⎢⎣

∏
i∈[ku ]
ui /∈s

p(xu, xui )Pxui
(
τui , (xuiv)v

)×
∏
i∈[ku ]
ui∈s

p(xu, xui )

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∏
u∈s|u|<N

π(xu, ku)
∏
i∈[ku ]
ui /∈s

p(xu, xui )Pxui (τui , (xuiv)v)

⎤
⎥⎥⎦

∏
u∈s\{∅}

p(x←−u , xu).
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For u ∈ s, let du denote the number of children of u that belong to s, that is,

du = Card{i : ui ∈ s}.

Let us make the following change in the previous equality

π(xu, ku) = 1

k(du)
u

· k
(du)
u π(xu, ku)

mdu (xu)
· mdu (xu).

Let us also write the second term in the product as

∏
u∈s\{∅}

p(x←−u , xu) =
∏

u∈s\{∅}

h(xu)m(x←−u )p(x←−u , xu)

h(x←−u )
· h(x←−u )

m(x←−u )h(xu)

=
∏

u∈s\{∅}
q(x←−u , xu) ·

∏
u∈s|u|<N

h(xu)du−1

m(xu)du
·

k∏
i=1

1

h(xvi )
· h(x∅).

Putting both expressions together, we obtain that

1

h(x∅)
Px (τ, (xu)) =

k∏
i=1

1

h(xvi )

∏
u∈s
du>1

h(xu)
du−1 mdu (xu)

du !m(xu)du
×

∏
u∈s\{∅}

q(x←−u , xu)

×
∏
u∈s|u|<N

[
du !
k(du)
u

· k
(du)
u π(xu, ku)

mdu (xu)
·
∏
ui /∈s

p(xu, xui )Pxui
(
τui , (xuiv)v

)]
.

The result now follows upon identifying each term in this product. The first term is
�k . The second term is the density of the marks (xu; u ∈ s) along the k-spine. The
last product is made of three terms. The first is the probability that the du children of
u that belong to s have a given birth rank. The second is the probability that the final
degree of u is ku given that it has du children in s (see (4)). The last is the density of
the marked trees attached to u. The Nk−1k! term in the statement of theorem is simply
the probability of observing a given ultrametric tree and labeling of the leaves. ��
Proof of Proposition 2 Let τ be some fixed tree and v1, . . . , vk be distinct vertices at
height N of τ . Using Theorem 3 yields

PN
x

[
1T=τ ϕ

(
dT (vi , v j ), Xvi ; i, j ≤ k

)]

= h(x)Nk−1k! Q̄k,N
x

[
�k · 1T=τ1V1=v1,...,Vk=vkϕ

(
dT (Vi , Vj ),YVi ; i, j ≤ k

)]
.

Summing over all (v1, . . . , vk) first, then over all τ , and recalling that Vi = �σi for an
independent uniform permutation σ of {1, . . . , k} proves the result. ��
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4 Convergence of marked branching processes

4.1 Themarked Gromov-weak topology

Deriving the scaling limit of the genealogy and types in a branching process requires
one to envision it as a random marked metric measure space. In this work we equip
the set of all such spaces with the marked Gromov-weak topology [10]. This section
is a brief remainder of the basic properties of this topology, a more thorough account
can be found in [10, 18]. We do not restrict our attention to trees and try to follow as
much as possible the notation in [10], so that some notation in this section might be
inconsistent with the rest of the paper.

Let (E, dE ) be a fixed complete separable metric space, referred to as the mark
space. In our application, E = [0,∞) is endowed with the usual distance on the
real line. A marked metric measure space (mmm-space for short) is a triple [X , d, μ],
where (X , d) is a complete separable metric space, andμ is a finite measure on X×E .

To define a topology on the set of mmm-spaces, for each k ≥ 1 consider the map

Rk :
{

(X × E)k → R
k2+ × Ek

(
(xi , ui ); i ≤ k

) �→ (
d(xi , x j ), ui ; i, j ≤ k

)

that maps k points in X×E to thematrix of pairwise distances and vector ofmarks.We
denote by νk,X = μ⊗k ◦R−1

k , the kthmarked distance matrix distribution of [X , d, μ],
which is the pushforward of μ⊗k by the map Rk . (Note that μ is not necessarily a
probability distribution.) For some k ≥ 1 and some continuous bounded test function

ϕ : R
k2+ × Ek → R

let us define a functional

�
(
X , d, μ

) = 〈νk,X , ϕ〉. (6)

Functionals of the previous form are called polynomials (k is the degree or order of the
polynomial), and the set of all polynomials, obtained by varying k and ϕ, is denoted
by �.

Definition 2 The marked Gromov-weak topology is the topology on mmm-spaces
induced by �. A random mmm-space is a r.v. with values in the set of (equivalence
classes of)mmm-spaces, endowedwith theGromov-weak topology and the associated
Borel σ -field.

Remark 3 Formally, the marked Gromov-weak topology should be defined on equiv-
alence classes of mmm-spaces, where two spaces belong to the same class iff there
is a measure preserving isometry between the supports of their measures that also
preserves marks, see [10, Definition 2.1]. This distinction has little consequences in
practice so that we often omit it.
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There is a unique equivalence class of all mmm-spaces with a null sampling
measure, which acts as the null mmm-space and that we denote by 0. It follows
from the definition of the Gromov-weak topology that a sequence of mmm-spaces
([Xn, dn, μn]; n ≥ 1) converges to 0 iff μn(Xn × E) → 0. If [X , d, μ] is a ran-
dom mmm-space, the expectation of a polynomial evaluated at [X , d, μ], namely
E[�(X , d, μ)], is called a moment of [X , d, μ].
Remark 4 (Polar decomposition) An mmm-space [X , d, μ] �= 0 can be seen as a
pair (μ̄, [X , d, μ̂]) where μ̄ = μ(X × E) is the total mass of μ and μ̂ = μ/μ̄ is
the renormalized probability measure. This is the so-called polar decomposition of
[X , d, μ] [9]. The space of all polar decompositions is naturally endowed with the
product topology, where the space of all probabilitymmm-spaces is endowed with the
more standard marked Gromov-weak topology restricted to probability mmm-spaces
[10]. It is not hard to see that the map taking non-null mmm-spaces to their polar
decompositions is an homeomorphism.

An important consequence of this remark is that the convergence in distribution
of a sequence of mmm-spaces [Xn, dn, μn] implies that of [Xn, dn, μ̂n], provided
that the limit mmm-space is a.s. non-null. In particular, for ultrametric spaces, it
implies the convergence in distribution of the genealogy of k individuals sampled
from [Xn, dn, μn] according to μ̂n .

Many properties of the marked Gromov-weak topology are derived in [10] under
the further assumption that μ is a probability measure. Relaxing this assumption to
account for finite measures is quite straightforward but requires some caution, as the
total mass of μ can now drift to zero or infinity. In particular, the following result
shows that � forms a convergence determining class only when the limit satisfies a
moment condition, which is a well-known criterion for a real variable to be identified
by its moments, see for instance [14, Theorem 3.3.25]. This result was already stated
for metric measure spaces without marks in [9, Lemma 2.7].

Proposition 3 Suppose that [X , d, μ] is a random mmm-space verifying

lim sup
p→∞

E[μ(X × E)p]1/p
p

< ∞. (7)

Then, for a sequence [Xn, dn, μn] of random mmm-spaces to converge in distribution
for the marked Gromov-weak topology to [X , d, μ] it is sufficient that

lim
n→∞E

[
�
(
Xn, dn, μn

)] = E
[
�
(
X , d, μ

)]

for all � ∈ �.

Proof Let us prove this result carefully. Fix a polynomial � of degree k associated
to a non-negative continuous bounded functional ϕ. Recall the notation μ̄n for the
total mass of [Xn, dn, μn], which is a r.v. with values in [0,∞), and μ̂n = μn/μ̄n .
Introduce a newmeasureM�

n on [0,∞) such that for any continuous bounded function
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f : [0,∞) → R

〈M�
n , f 〉 = E[ f (μ̄n)�(Xn, dn, μn)].

Thekeyobservation is now that, applyingFubini’s theorem, [X , d, μ] �→ μ̄p�(X , d, μ)

is again a polynomial of the form (6) (of degree p + k). Therefore, our assumption
entails that, for any integer p ≥ 0,

∫ ∞

0
x pM�

n (dx) = E[μ̄p
n�(Xn, dn, μn)]

−−−−→
n→∞ E[μ̄p�(X , d, μ)] =

∫ ∞

0
x pM�(dx)

where we have defined M� is a similar way to M�
n using the limiting random vari-

able [X , d, μ]. Now, the usual method of moments on [0,∞), see for instance [14,
Theorem 3.3.26], entails that for any continuous bounded function f

E[ f (μ̄n)�(Xn, dn, μn)] =
∫ ∞

0
f (x)M�

n (dx)

−−−−→
n→∞

∫ ∞

0
f (x)M�(dx) = E[ f (μ̄)�(X , d, μ)]. (8)

We have used that M� fulfills the moment growth condition of [14, Theorem 3.3.26]
since

∫ ∞

0
x pM�(dx) ≤ ‖ϕ‖∞E[μ(X × E)p+k]

and (7) holds. By taking linear combinations, (8) holds for any polynomials, not only
non-negative ones.

Let f : [0,∞) → R be continuous bounded and have its support bounded away
from 0. Since x �→ f (x)/xk is continuous bounded, applying (8) to this map and
using that �(Xn, dn, μn) = μ̄k

n�(Xn, dn, μ̂n) shows

E[ f (μ̄n)�(Xn, dn, μ̂n)] −−−−→
n→∞ E[ f (μ̄)�(X , d, μ̂)].

Standard arguments show that the above convergence also holds for f (x) =
g(x)1{x≥ε} for any continuous bounded g and ε > 0 such that P(μ̄ = ε) = 0. Since
[10, Theorem 5] ensures that polynomials are convergence determining on mmm-
spaces with a probability sampling measure, we can use [15, Proposition 4.6, Chapter
3] to obtain that for any continuous bounded functional F on the space ofmmm-spaces,

E[F(Xn, dn, μn)1{μ̄n≥ε}] −−−−→
n→∞ E[F(X , d, μ)1{μ̄≥ε}]. (9)

(Here we have applied the result to the polar decomposition of the mmm-space, and
used that the polar decomposition defines an homeomorphism.)
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To end the proof, we note that by Portmanteau’s theorem

P(μ̄ < ε) ≤ lim inf
n→∞ P(μ̄n < ε) ≤ lim sup

n→∞
P(μ̄n ≤ ε) ≤ P(μ̄ ≤ ε). (10)

Finally, we write

E[F(Xn, dn, μn)] = E[F(Xn, dn, μn)1{μ̄n≥ε}] + E[F(Xn, dn, μn)1{μ̄n<ε}]

take a limit n → ∞ first, then ε → 0, and use (9) to estimate the first term and (10)
to control the second one to obtain

E[F(Xn, dn, μn)] −−−−→
n→∞ E[F(X , d, μ)]

which is the desired result. ��

4.1.1 Bi-metric measure spaces

The branching process with recombination is naturally endowed with two metrics: the
genealogical distance and the chromosomic distance. Therefore, for the purpose of
this application only, let us say that [X , d, D, μ] is a marked bi-metric measure space
if both d and D are metric that make (X , d) and (X , D) Polish spaces, and if μ is a
finite measure on X × E , where X is endowed with the σ -field induced by reunion of
the open balls of d and D.

A polynomial of a marked bi-metric measure space is a functional of the form

∫

(X×E)k
ϕ
(
d(xi , x j ), D(xi , x j ), ui ; i, j ≤ k

)
μ⊗k(d(x1, u1), . . . , d(xk, uk)) (11)

for some k and some ϕ. Accordingly we define the Gromov-weak topology for these
spaces as the topology induced by the polynomials. It is straightforward to check that
all the results stated for mmm-spaces carry on to marked bi-metric measure spaces,
up to replacing the polynomials in (6) by that in (11).

4.2 Convergence of ultrametric spaces

Using Proposition 3 requires one to have prior knowledge of the limit [X , d, μ]. A
stronger versionof this resultwouldbe that the convergenceof each (E[�(Xn, dn, μn)];
n ≥ 1) implies the existence of a randommmm-space towhich (Xn, dn, μn) converges
in distribution (under a moment condition similar to (7)). Such a result cannot hold in
the current formulation of the marked Gromov-weak topology. This is a consequence
of the fact that some limits of distance matrix distributions cannot be expressed as
the distance matrix distribution of a separable metric space, see for instance [18,
Example 2.12 (ii)]. To overcome this issue, it is necessary to relax the separability
assumption in the definition of an mmm-space.
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722 F. Foutel-Rodier, E. Schertzer

Deriving a meaningful extension of the Gromov-weak topology to non-separable
metric spaces is not a straightforward task, since it raises many measure theoretic
difficulties. However, when restricting our attention to genealogies, as is the purpose
of this work, the specific tree structure of these objects can be used to define such an
extension. We follow the framework introduced in [17, Sect. 4], but see also [20]. The
results contained in this section are not necessary for the analysis of the branching
process with recombination and can be possibly skipped.

Definition 3 (MarkedUMS, [17])Amarked ultrametricmeasure space (markedUMS)
is a collection [U , d,U , μ] where U is a σ -field and

(i) The metric d is U ⊗U -measurable and is an ultrametric:

∀x, y, z ∈ X , d(x, y) ≤ max{d(x, z), d(z, y)}.
(ii) The σ -field U verifies:

σ
(
B(x, t); x ∈ U , t > 0

) ⊆ U ⊆ B(U )

where B(x, t) is the open ball of radius t and center x , and B(U ) is the Borel
σ -field associated to (U , d);

(iii) The measure μ is a finite measure on U × E , defined on the product σ -field
U ⊗B(E).

Remark 5 While this definition might be surprising at first sight, note that if (U , d)

is separable and ultrametric, points (i) and (ii) of the definition are fulfilled when U
is chosen to be the usual Borel σ -field. Therefore, a separable marked UMS in the
sense of Definition 3 is an ultrametric mmm-space in the sense of Sect. 4.1. When no
σ -field is prescribed,U is assumed to be the Borel σ -field. Using a naive definition of
a marked UMS as a complete metric space with a finite measure on the corresponding
Borel σ -field raises some deep measure theoretic issues related to the Banach–Ulam
problem, that are avoided by Definition 3, see [17, Sect. 4] for a discussion.

Point (i) of the above definition ensures that each map Rk is measurable, so that
we can define the marked distance matrix distribution νk,U and the polynomials
�(U , d,U , μ) of a marked UMS (U , d,U , μ) as in the previous section. Analo-
gously to mmm-spaces, we define the marked Gromov-weak topology on the set of
marked UMS as the topology induced by the set of polynomials.

Remark 6 Again, for the topology to be separated we need to work with equivalence
classes of marked UMS. For non-separable spaces, the correct notion of equivalence is
that of weak isometry provided in [17, Definition 4.11].We do notmake the distinction
between marked UMS and their equivalence class in practice.

We can now state a stronger version of Proposition 3 for ultrametric spaces. In the
statement of the theorem we will need a mild tightness conditions. For a marked UMS
[U , d,U , μ], define the maps r and πE as

∀(x1, u1), (x2, u2) ∈ U × E,

r((x1, u1), (x2, u2)) = d(x1, x2), πE ((x1, u1)) = u1
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and the corresponding pushforward measures

wU = μ⊗2 ◦ r−1, mU = μ ◦ π−1
E .

If [U , d,U , μ] is random, these are random measures, and we denote their intensity
measures by E[wU ] and E[mU ], which are deterministic measures on R+ and E
respectively.

Theorem 4 Let (Un, dn,Un, μn) be a sequence of random marked UMS such that for
any polynomial � ∈ �,

lim
n→∞E

[
�
(
Un, dn,Un, μn

)]

exists, and fulfill (compare with (7))

lim sup
p→∞

lim
n→∞

E[μn(Un × E)p]1/p
p

< ∞. (12)

Suppose also that the sequences (E[wUn ]; n ≥ 1) and (E[mUn ]; n ≥ 1) are rela-
tively compact, as measures on R+ and E. Then there exist a random marked UMS,
[U , d,U , μ] such that (Un, dn,Un, μn) converges to that limit in themarkedGromov-
weak topology. Moreover the limit is characterized by

E
[
�
(
U , d,U , μ

)] = lim
n→∞E

[
�
(
Un, dn,Un, μn

)]
.

Remark 7 The previous result suggests the following simple method to prove conver-
gence in distribution in the (usual) sense of separable ultrametric mmm-spaces. First
prove that the conditions of Theorem4 are fulfilled, then check that the limitingmarked
UMS is a.s. separable. The two compactness conditions on (E[wUn ]) and (E[mUn ])
ensure, in combination with the convergence of the moments, that the sequence of
mmm-spaces is tight. Compare this to checking, on top of the previous assumptions,
the tightness criterion in [18, Theorem 2 (ii)] that ensures that no mass of the sam-
pling measure is accumulating on isolated points. This condition is not needed here
because we have enlarged the state space of mmm-spaces to include non-separable
metric spaces.

The proof of the above result is based on a characterization of all exchangeable
ultrametric matrices. We call a random pair (di j ; i, j ≥ 1) and (Yi ; i ≥ 1) a marked
exchangeable ultrametric matrix if

• each Yi has values in E ;
• (di j ; i, j ≥ 1) is a.s. an ultrametric on N;
• its distribution is invariant by the action of any permutation σ of N with finite
support:

(
(dσiσ j ; i, j ≥ 1), (Yσi ; i ≥ 1)

) (d)= (
(di j ; i, j ≥ 1), (Yi ; i ≥ 1)

)
.
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724 F. Foutel-Rodier, E. Schertzer

A typical way to obtain such an ultrametric matrix is to consider an i.i.d. sample
(Xi ,Yi ; i ≥ 1) from a marked UMS (U , d,U , μ) with μ(U ) = 1 a.s., and define

∀i, j ≥ 1, di j = d(Xi , X j ). (13)

The next result shows that all exchangeable marked matrices are obtained in this way.
It can be seen as a version of Kingman’s representation theorem of exchangeable
partitions [26] for ultrametric matrices.

Theorem 5 [17] Let (di j ; i, j ≥ 1) and (Yi ; i ≥ 1) be an exchangeable marked
ultrametric matrix. There exists a randommarked probability UMS [U , d,U , μ] (that
is, μ(U ) = 1 a.s.) such that the exchangeable marked ultrametric matrix obtained by
sampling from it as in (13) is distributed as (di j ; i, j ≥ 1) and (Yi ; i ≥ 1). Moreover
this marked UMS is unique in distribution.

Proof This result is a straightforward extension of [17, Theorem 1.8] that deals with
the casewithoutmarks. To guide the reader, let usmention the crucialmodification that
need to be made. The proof relies on encoding some marginals of (di j ; i, j ≥ 1) as an

exchangeable sequence of r.v. (ξ (0)
i , . . . , ξ

(p)
i ; i ≥ 1) in [0, 1]p and using a de Finetti-

type argument, see [17, Appendix B]. The same argument should be applied to the
exchangeable sequence of r.v. (ξ (0)

i , . . . , ξ
(p)
i ,Yi ; i ≥ 1, ). ��

Proof of Theorem 4 We prove the result by a tightness and uniqueness argument. To
prove tightness,we embed the spaceofmarkedUMS into a spaceofmeasures, using the
marked distance matrices, and use known tightness arguments for random measures.
More precisely, the map ι : [U , d,U , μ] �→ (νk,U ; k ≥ 1) is an injection. This is a
consequence of the uniqueness part of Theorem 5. For each k ≥ 1, νk,U lives in the

space of finitemeasures onR
k2+ ×Ek , which can be endowedwith theweak topology. If

the space of sequences (νk,U ; k ≥ 1) is endowed with the product topology, it follows
readily from the definition of the Gromov-weak topology that ι is a homeomorphism
from the space of marked UMS to its image. We claim that the image of ι is closed in
this product topology. If this is the case, the space of marked UMS is homeomorphic
to a closed subset of the space of sequences of measures, and clearly,

(Un, dn,Un, μn; n ≥ 1) is tight ⇐⇒ ∀k ≥ 1, (νk,Un ; n ≥ 1) is tight,

where in the right-hand side each νk,Un is a random measure, and tightness is with
respect to the weak topology. For the collection of random measures (νk,Un ; n ≥ 1)
to be tight it is sufficient that the collection of intensity measures (E[νk,Un ]; n ≥ 1)

is relatively compact [8, Lemma 3.2.8]. For y = ((di j ), ui ; i, j ≤ k) ∈ R
k2 × Ek , let

pi j (y) = di j and p′i (y) = ui be the projection maps. It is sufficient to show that the
pushforward of E[νk,Un ] through each projection is relatively compact. By definition,
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for a Borel set A ⊆ R+ and i �= j , by exchangeability,

(
E[νk,Un ] ◦ p−1

i j

)
(A) = E

[∫

(Un×E)k
1{dn(xi ,x j )∈A} dμ⊗k

n ((xi , ui )i )

]

= E

[
μ̄k−2
n wUn (A)

]
.

The relative compactness of (E[νk,Un ] ◦ p−1
i j ; n ≥ 1) now follows from that of

(E[wUn ]; n ≥ 1) and from the uniform integrability of μ̄k−2
n . In a similar way, for a

Borel set B ∈ E ,

(
E[νk,Un ] ◦ p′i

−1
)

(B) = E

[∫

(Un×E)k
1{ui∈B} dμ⊗k

n ((xi , ui )i )

]
= E

[
μ̄k−1
n mUn (A)

]
.

The desired compactness follows form that of (E[mUn ]; n ≥ 1) and from the uniform
integrability of μ̄k−1

n .
We now go back to our claim that the image of ι is closed. For each k, n ≥ 1, let νk,n

be the kthmarked distancematrix distribution of somemarkedUMS [Un, dn,Un, μn],
and assume that it converges as n → ∞ to some νk . We need to show that the limiting
sequence of distance matrices can be obtained by sampling from a marked UMS.
We can assume without loss of generality that νk �= 0. Let ν̂k be the probability
measure obtained by renormalizing νk , and define similarly ν̂k,n . Since the projection

of ν̂k+1,n on R
k2+ × Ek is equal to ν̂k,n , the same property holds for ν̂k+1 and ν̂k .

Using Kolmogorov’s extension theorem, we can extend consistently the measures
(ν̂k; k ≥ 1) to a measure ν̂∞ on R

N×N+ × EN whose projections on finite-dimensional
spaces are given by the measures (ν̂k; k ≥ 1). Quite clearly, ν̂∞ is the law of a marked
exchangeable ultrametricmatrix. (Exchangeability and almost sure ultrametricity hold
for a fixed n, and pass to the limit.) Theorem 5 shows that we can find a marked UMS
[U , d,U , μ̂] whose kth marked distance matrix distribution is ν̂k . Denote by μ̄ the
limit of the total mass of ν1,n , and by μ = μ̄μ̂. The kth marked distance matrix
distribution of the marked UMS [U , d,U , μ] is μ̄k ν̂k = νk . This proves the claim.

Finally, we prove uniqueness. Let [U , d,U , μ] and [U ′, d ′,U ′, μ′] be two random
markedUMS, that are limits in distributionof a subsequenceof ([Un, dn,Un, μn]; n ≥
1). We want to show that they have the same distribution. For any polynomial � ∈ �,
since � is continuous and (�(Un, dn,Un, μn); n ≥ 1) is uniformly integrable (it has
uniformly bounded moments of all orders), the moments of the two limiting marked
UMS coincide and verify (12), namely,

lim
n→∞E

[
�
(
Un, dn,Un, μn

)] = E
[
�
(
U , d,U , μ

)] = E
[
�
(
U ′, d ′,U ′, μ′)].

Introducing the same measure M� as in the proof of Proposition 3, the method of
moments on R+ shows that, for any continuous bounded f : R+ → R and any poly-
nomial �,

E
[
f (μ̄)�

(
U , d,U , μ

)] = E
[
f (μ̄′)�

(
U ′, d ′,U ′, μ′)]
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so that if f (0) = 0, we have

E
[
f (μ̄)�

(
U , d,U , μ̂

)] = E
[
f (μ̄′)�

(
U ′, d ′,U ′, μ̂′)]. (14)

On the event {μ̄ > 0}, let (di j ,Yi ; i, j ≥ 1) be the marked exchangeable ultrametric
matrix obtained from an i.i.d. sample from [U , d,U , μ̂], and define (d ′i j ,Y ′

i ; i, j ≥ 1)
similarly from [U ′, d ′,U ′, μ̂′]. The identity (14) can be written as

E
[
f (μ̄)ϕ

(
di j ,Yi ; i, j ≤ k

)] = E
[
f (μ̄′)ϕ

(
d ′i j ,Y ′

i ; i, j ≤ k
)]

.

This equation shows that μ̄ and μ̄′ have the same distribution, and for μ̄-a.e. x , the law
of (di j ,Yi ; i, j ≤ k) conditional on μ̄ = x is the same as that of (d ′i j ,Y ′

i ; i, j ≤ k)
conditional on μ̄′ = x . The uniqueness part of Theorem 5 shows that the law of
[U , d,U , μ̂] conditional on μ̄ = x is the same as that of [U ′, d ′,U ′, μ̂′] conditional
on μ̄′. Combining this with the fact that μ̄ and μ̄′ have the same distribution and that
the polar decomposition is a homeomorphism proves that the two marked UMS have
the same distribution. ��

4.3 Moments of some continuous trees

In this section we compute the moments of some usual random tree models, namely
CPP trees and �-coalescents, to illustrate the type of expression that can arise for the
limiting mmm-space of Proposition 3.

4.3.1 Continuous coalescent point processes

Coalescent point process trees are a class of continuous random trees that correspond
to the scaling limit of the genealogy of various branching processes [11, 27, 39]. Of
particular interest is the Brownian CPP described in Sect. 2.3 that corresponds to the
scaling limit of critical Galton–Watson processes, and also corresponds to the limit of
the rescaled genealogy of the branching process with recombination.

Consider a Poisson point process P on [0,∞)× (0,∞), with intensity dt⊗ν(dx).
We make the further assumptions that

∀x > 0, ν([x,∞)) < ∞, ν((0,∞)) = ∞.

For some x0 > 0, let Y denote the first atom of P whose second coordinate exceeds
x0, that is,

Y = inf{t ≥ 0 : (t, x) ∈ P, x > x0}.

The CPP tree at height x0 associated to ν is the random metric measure space
[(0,Y ), dP ,Leb] with

∀x ≤ y, dP (x, y) = sup{z : (t, z) ∈ P, x ≤ z ≤ y}.
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Proposition 4 Let [(0,Y ), dP ,Leb] be the CPP tree at height x0 associated to the
measure ν. Then for any continuous bounded function ϕ with associated polynomial
�, we have

E
[
�
(
(0,Y ), dP ,Leb

)] = k!
ν((x0,∞))k

E
[
ϕ
(
Hσi ,σ j ; i, j ≤ k

)]

where for i < j ,

Hi, j = Hj,i = max{Hi , . . . , Hj−1},

the r.v. (H1, . . . , Hk−1) are i.i.d. with c.d.f.

∀x ∈ [0, x0], P(H1 ≤ x) = ν((x0,∞))

ν((x,∞))
,

and σ is an independent uniform permutation of {1, . . . , k}.

Proof According to (6), we need to study the distance of k variables sampled uniformly
from [0,Y ], after having biased ([0,Y ], dP ,Leb) by the kth moment of its mass.

Since Y is independent of the restriction of P to [0,∞) × [0, x0], the distribution
of ([0,Y ], dP ,Leb) biased by the kth moment of Y is simply that of ([0, Z ], dP ,Leb),
where Z is distributed as Y , biased by its kth moment. Let us use the notation
θ :=ν((x0,∞)). It is well known that Z follows a Gamma(θ, k + 1) distribution,
that is, Z has density

θk+1 x
k

k! e
−θxdx .

Conditional Z , let (U1, . . . ,Uk) be i.i.d. uniform variables on [0, Z ], and denote by
(U∗

1 , . . . ,U∗
k ) their order statistics. Let us also denote U∗

0 = 0 and U∗
k+1 = Z . It is

standard that

(
U∗
1 −U∗

0 ,U∗
2 −U∗

1 , . . . ,U∗
k+1 −U∗

k

)

are independent exponential variables with mean 1/θ . Define

∀i ≤ k, Hi = dP
(
U∗
i ,U∗

i+1

)
.

As the restriction of P to [0,∞)×[0, x0] is independent of the vector (U∗
0 , . . . ,U∗

k+1),
(H0, . . . , Hk) are i.i.d. and distributed as

max{x : (t, x) ∈ P, t ≤ Y }.
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The following direct computation shows that this has the required distribution,

P(H1 ≤ x) = P(P([0,Y ] × (x, x0]) = 0)

=
∫ ∞

0
θe−θ t exp

(
− tν((x, x0])

)
dt

= θ

θ + ν((x, x0]) = ν((x0,∞))

ν((x,∞))
.

It is clear from the definition of dP that for i < j ,

dP (U∗
i ,U∗

j ) = max{Hi , . . . , Hj−1}.

Therefore, if σ denotes the unique permutation of [k] such that Ui = U∗
σi
,

E

[ ∫

[0,Y ]k
ϕ
(
dP (xi , x j ); i, j ≤ k

)
dx1 . . . dxk

]
= E

[
Y k]

E
[
ϕ
(
dP (Ui ,Uj ); i, j ≤ k

)]

= k!
θk

E
[
ϕ
(
dP (Ui ,Uj ); i, j ≤ k

)]

= k!
θk

E
[
ϕ
(
Hσi ,σ j ; i, j ≤ k

)]
.

��
In this work, the scaling limit of the genealogy is given by the Brownian CPP, which

is the CPP with height 1 associated to the measure

ν(dx) = 1

x2
dx .

Corollary 1 The moments of the Brownian CPP are given by

E
[
�
(
(0,Y ), dP ,Leb

)] = k!E[ϕ(Hσi ,σ j ; i, j ≤ k
)]

where for i < j ,

Hi, j = Hj,i = max{Hi , . . . , Hj−1},

the r.v. (H1, . . . , Hk−1) are i.i.d. uniform on (0, 1), and σ is an independent uniform
permutation of {1, . . . , k}.
Proof A direct computation shows that

ν((1,∞)) = 1,
ν((1,∞))

ν((x,∞))
= x

so that the variables Hi in Proposition 4 are uniform on [0, 1]. ��
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4.3.2 Metric measure spaces with independent types

In our model and in many other settings, the types in the population become inde-
pendent of the genealogy in the limit of large population size. Typically, this situation
arises when the time between the ancestors of two typical individuals in the population
is large, so that the dynamics of the types along the lineages has time to reach some
form of equilibrium and to forget about its starting point (the type of the ancestor).

For ammm-space [X , d, μ], the independence between the types and the genealogy
corresponds to having a product sampling measure of the form μ = μX ⊗μE , where
μX is ameasure on X , andμE a probabilitymeasure on the type space E . Themoments
of such product mmm-spaces are easily expressed in terms of the (unmarked) metric
measure space [X , d, μX ].
Proposition 5 Let [X , d, μ] be a random mmm-space with a sampling measure of the
form μ = μX ⊗μE , where μE is a deterministic probability measure on E. Then, for
any polynomial � ∈ �, we have

E
[
�
(
X , d, μ

)] = E

[∫

Xk
ϕ
(
d(xi , x j ),Yi ; i, j ≤ k

)
μ⊗k
X (dx1, . . . , dxk)

]

where (Y1, . . . ,Yk) are i.i.d., distributed as μE , and independent of [X , d, μX ].
Proof By definition of a polynomial and applying Fubini’s theorem for a.s. all real-
izations of the random measure,

E
[
�
(
X , d, μ

)] =E

[∫

(X×E)k
ϕ
(
d(xi , x j ), ui ; i, j ≤ k

)

(μX ⊗ μE )⊗k(d(x1, u1), . . . , d(xk, uk))
]

=E

[∫

Ek

∫

Xk
ϕ
(
d(xi , x j ), ui ; i, j ≤ k

)

μ⊗k
X (dx1, . . . , dxk)μ

⊗k
E (du1, . . . , duk)

]

=E

[∫

Xk
ϕ
(
d(xi , x j ),Yi ; i, j ≤ k

)
μ⊗k
X (dx1, . . . , dxk)

]
.

��

4.3.3 3-coalescents

A �-coalescent is a process with values in the partitions of N such that for any n, its
restriction to {1, . . . , n} is a Markov process with the following transitions. When the
process has b blocks, any k blocks merge at rate λb,k where

λb,k =
∫ 1

0
xk−2(1− x)b−k�(dx)
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for somefinitemeasure�. These processeswere introduced in [38, 42], and provide the
limit of the genealogy of several celebrated population models with fixed population
size [34, 43].

A �-coalescent can be seen as a random ultrametric space on N. It is possible to
take an appropriate completion of this space to define an ultrametric d� on (0, 1) that
encodes the metric structure of the coalescent, see [18, Sect. 4] for the separable case,
and [17, Sect. 3] for the general case. More precisely, there exists a random ultrametric
d� such that if (Vi ; i ≥ 1) is an independent sequence of i.i.d. uniform r.v. on (0, 1),
and �t is the partition defined through the equivalence relation

i ∼�t j ⇐⇒ d�(Vi , Vj ) ≤ t,

then (�t ; t ≥ 0) is distributed as a �-coalescent. In particular, this leads to the
following expression for the moments of the metric measure space [(0, 1), d�,Leb].
Proposition 6 Let [(0, 1), d�,Leb] be a �-coalescent tree. Then

E
[
�
(
(0, 1), d�,Leb

)] = E
[
ϕ
(
di j ; i, j ≤ k

)]

where

∀i, j ≤ k, di j = inf{t ≥ 0 : i ∼�t j}

for a realization (�t ; t ≥ 0) of a �-coalescent.

4.4 Relating spine convergence to Gromov-weak convergence

Let [T , (Xu)] be the randommarked tree with distribution Px constructed in Sect. 3.2,
and let ZN = |TN | denote the population size at generation N . Recall that T can be
endowed with the graph distance dT , and that TN denotes the N th generation of the
process. The metric dT restricted to TN encodes the genealogy of the population, and
has the simple expression

∀u, v ∈ TN , dT (u, v) = N − |u ∧ v|.

Define the mark measure on TN × E as

μN =
∑
u∈TN

δ(u,Xu).

The triple [TN , dT , μN ] is the mmm-space associated to the branching process
[T , (Xu)]. The polynomial of degree k corresponding to a functional ϕ can be written
as

�
(
TN , dT , μN

) =
∑

(v1,...,vk )∈TN
ϕ
(
dT (vi , v j ), Xvi ; i, j ≤ k)

)
.
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The aimof this section is to provide a general convergence criterion for a rescaling of
the sequence ofmmm-spaces [TN , dT , μN ; N ≥ 1] that only involves computation on
the k-spine tree. For each N ≥ 1, consider a rescaling parameter αN for the population
size, βN : E → E for the mark space, and γN : R+ → R+ for the genealogical
distances. We assume that γN is increasing so that γN ◦ dT is also an ultrametric, and
that αN → ∞.

Theorem 6 Suppose that for any k ≥ 1 and any continuous bounded function ϕ, the
sequence

Nk−1

αk
NP

N
x (ZN > 0)

Qk,N
x

[
�k · ϕ

(
γN ◦ dT (i, j), βN ◦ Xi (N )); i, j ≤ k

)]
(15)

converges and that the limit fulfills (12). Then there exists a random marked UMS
[U , d,U , μ] such that conditional on ZN > 0,

lim
N→∞

[
TN , γN (dT ),

μ ◦ β−1
N

αN

]
= [U , d,U , μ]

holds in distribution for the marked Gromov-weak topology.

Proof According to Theorem 4 it is sufficient to prove that the following moments
converge,

MN :=PN
x (ZN > 0)−1

αk
N

PN
x

⎡
⎣ ∑

(u1,...,uk )∈TN
ϕ
(
γN ◦ dT (ui , u j ), βN (Xui ); i, j ≤ k

)
⎤
⎦ .

Let us denote by

M̃N :=PN
x (ZN > 0)−1

αk
N

PN
x

⎡
⎢⎢⎣

∑
(u1,...,uk )∈TN
u1 �=···�=uk

ϕ
(
γN ◦ dT (ui , u j ), βN (Xui ); i, j ≤ k

)
⎤
⎥⎥⎦ .

By the many-to-few formula, Proposition 2,

M̃N = k! Nk−1

αk
NP

N (ZN > 0)
Qk,N

x

[
�k · ϕ

(
γN ◦ dT (σi , σ j ), βN ◦ Xσi (N ); i, j ≤ k

)]

for an independent uniform permutation σ of [k]. Taking ϕ ≡ 1, the assumption of
the result readily implies that

PN
x

[
Zk
N

∣∣ ZN > 0
] = ON (αk

N ).
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Therefore, since

|MN − M̃N | = ON

(
PN
x

[
Zk−1
N

αk
N

∣∣∣ ZN > 0

])
−−−−→
N→∞ 0,

the convergence of each MN follows from that of M̃N and the result is proved. ��

4.5 Convergence of the k-spine

Theorem 6 shows that convergence of the branching process in the Gromov-weak
topology can be deduced from the convergence of some functionals of the k-spine
tree. We now provide a general convergence result for the k-spine tree that will be
used to compute the limit of (15) for the branching process with recombination.

We work under the measure Qk,N
x and define

WN
i = Wi

N
, ∀t ≥ 0, XN

i (t) = Xi
(	Nt
).

Since our work involves working under various measures, for a sequence (Pn; n ≥ 1)
of probability measures and a sequence (Yn; n ≥ 1) of r.v., we will use the notation

Yn
Pn−−−−→

n→∞ Y

to mean that the distribution of Yn , under the measure Pn , converges to the distribution
of Y .

Assumption 1 (A1)

(i) There exists a limiting r.v. W such that

WN
1

Q1,N
x−−−−→

N→∞ W .

(ii) There exists a limiting Feller process X such that, if XN
1 (0) → X(0),

XN
1

Q1,N
x−−−−→

N→∞ X

in the Skorohod topology.

There exist equivalent formulations of the second point involving generators or
semigroups, see for instance [25, Theorem 19.28]. In the next result, we use the
notation

[ f ; t; g] : t �→
{
f (s) if s < t

g(s − t) if s ≥ t
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for the concatenation of f and g at time t .

Proposition 7 Suppose that (A1) holds. Then

(
(WN

1 , . . . ,WN
k−1), (X

N
1 , . . . , XN

k )
)

Qk,N
x−−−−→

n→∞
(
(W1, . . . ,Wk−1), (X1, . . . , Xk)

)
.

where,

• the r.v. (W1, . . . ,Wk−1) are i.i.d. copies of the limiting r.v. W;
• X1 is distributed as X started from x and is independent of (W1, . . . ,Wk−1);
• for each i , conditional on (W1, . . . ,Wk−1) and (X1, . . . , Xi ),

Xi+1 = [Xi ;Wi ; X ′]

where (X ′(t); t ≥ 0) is distributed as X started from Xi (Wi ).

Proof Let us work inductively, and assume that the convergence holds for some k ≥ 1.
Let X̃ N

k+1 be distributed as X , started from XN
k (WN

k ).
Obviously,WN

k converges toWk , a copy ofW independent of (W1, . . . ,Wk−1) and
of (X1, . . . , Xk). Then it follows from the fact that X has no fixed time discontinuity
that XN

k (WN
k ) converges to Xk(Wk). Using the assumption (A1), this entails that X̃ N

k+1
converges to a limiting process X̃k+1, which is distributed as X started from Xk(Wk).

Recalling that, by definition of the discrete spine under Qk,N
x ,

XN
k+1 = [XN

k ;WN
k ; X̃ N

k+1],

the claim is a consequence of the a.s. continuity of the concatenation map, which is
proved in Lemma 6. ��

5 The recombination spine

We now focus on the branching process with recombination. In this first section we
derive the properties of its 1-spine.

Using the formalism of the previous section, the branching process with recombi-
nation can be constructed as a random marked tree, where the mark space is the set
of intervals of R. According to the description of the branching process with recom-
bination, an individual with mark I = [a, b] gives birth to K (I ) children, with

K (I ) ∼ Poisson
(
1+ |I |

N

)
.

Then, each newborn experiences a recombination event with probability

rN (I ) := 2|I |/N
1+ |I |/N .
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734 F. Foutel-Rodier, E. Schertzer

In the case of a recombination, the offspring inherits the interval [a,U ] or [U , b]
with equal probability, where U is uniformly distributed over I . As in the previous
section, we denote by �(I ) the offspring point process of a mother with interval I .
The objective of this section is to compute and characterize the distribution Q1,N

I of
the intervals along the 1-spine and its large N limit Q1

I .

5.1 The h-transformedmark process

DefiningQ1,N
I first requires one to find an adequate harmonic function for the branch-

ing process. In the branching process with recombination, a simple calculation shows
that the length of the intervals is harmonic.

Lemma 3 The function h : I �→ |I | is harmonic for the family of point processes
(�(I )).

Let us now compute the distributionQ1,N
I of the h-transformed process. According

to (2), underQ1,N
I , the probability of experiencing no recombination in one time-step

when carrying interval I is

(
1+ |I |

N

)(
1− rN (I )

) = 1− |I |
N

.

When experiencing a recombination event, according to (2) the resulting interval is
biased by h, that is, biased by its length. This leads to the following description of the
distribution of the intervals along the spine.

Definition 4 The distributionQ1,N
I of the intervals along the 1-spine in the branching

process with recombination is that of the discrete-time Markov chain (I (n); n ≥ 0)
verifying I (0) = I , and conditional on I (n) = [a, b],

I (n + 1) =

⎧⎪⎨
⎪⎩

[a, b] with probability 1− b−a
N

[a, a +U∗] with probability b−a
2N

[b −U∗, b] with probability b−a
2N

where U∗ has the size-biased uniform distribution on [0, b − a]. For convenience,
Q1,N

R refers to Q1,N
[0,R].

5.2 Large N convergence of the spine

As in the previous section, let I N denote the rescaled process

∀t ≥ 0, I N (t) = I
(	Nt
).

We show that its large N limit is given by the following process.

Definition 5 Let Q1
I denote the distribution of the continuous-time Markov process

(I (t); t ≥ 0) started from I and such that jumps:
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• from [a, b] to [a, a +U∗] at rate (b − a)/2;
• from [a, b] to [b −U∗, b] at rate (b − a)/2.

Again, Q1
R corresponds to Q1[0,R].

Proposition 8 The process (I N (t); t ≥ 0) under Q1,N
I converges in distribution for

the Skorohod topology to (I (t); t ≥ 0) under Q1
I .

Proof The two processes (I N (t); t ≥ 0) and (I (t); t ≥ 0) visit the same sequence of
states, in distribution. Therefore, convergence in the Skorohod topology amounts to
convergence of the jump times. Started from [a, b], the time before the first jump of
(I N (t); t ≥ 0) is distributed as T N/N , where T N is geometrically distributed with
success probability (b − a)/N . It is clear that T N/N converges in distribution to an
exponentially distributed variable with mean 1/(b−a). Applying this convergence to
the successive jump times of (I N (t); t ≥ 0) readily proves the result. ��

5.3 Poisson construction of Q1
R

We are interested in the large R properties of the spine. In this section, we prove
that the spine has a unique entrance law at infinity, which can be constructed from a
homogeneous Poisson point process. This construction will also provide a coupling
for the distribution of (I (t); t ≥ 0) started from any initial condition. It is illustrated
in Fig. 5.

First, for an interval I = [a, b], it will be convenient to use the notation

λ + μI = [λ + μa, λ + μb]

for any reals λ,μ.
Consider a homogeneous Poisson point process P on [0,∞) × R. For any t ≥ 0,

consider the point process Pt onR of atoms of P with time coordinate in [0, t] defined
as

∀A, Pt (A) = P([0, t] × A).

The atoms of Pt (A) split the real line into infinitely many subintervals. We are inter-
ested in the subinterval covering the origin. More precisely, let (xi ; i ∈ Z) be the
atoms of Pt , labeled in such a way that

· · · < x−1 < x0 < 0 < x1 < · · ·

and define IP (t) = [x0, x1].
The following proposition shows that (IP (t); t ≥ 0) corresponds to the distribution

of (I (t); t ≥ 0), started from infinity.

Proposition 9 Let M be uniformly distributed on [0, 1] and independent of P. Then,
for any R ≥ 0, the process (IR(t); t ≥ 0) defined as

∀t ≥ 0, IR(t) = MR + IP (t) ∩ [−MR, (1− M)R]
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736 F. Foutel-Rodier, E. Schertzer

Fig. 5 Illustration of the Poisson construction ofQ1
R . Atoms of P are represented with dark circles. At each

time t , the vertical slice of the shaded region gives IR(t)

has distribution Q1
R. Moreover, for any t, M is uniformly distributed on IR(t).

The proposition will follow from the next simple result.

Lemma 4 Let U and V be independent uniform r.v. on [0, 1]. Define the interval

I =
{
[0,U ] if V ≤ U ,

[U , 1] if V > U

Then |I | is independent of the event {V ≤ U }, |I | is a size-biased uniform r.v. on
[0, 1], and V is uniformly distributed on I .

Proof Let A = {V ≤ U } and Ā = {V > U }. For any test function ϕ and ψ , we can
directly compute

P(ϕ(V )ψ(|I |)1A) =
∫ 1

0

∫ u

0
ϕ(v)ψ(u)dvdu = P(A)

∫ 1

0
2uψ(u)

1

u

∫ u

0
ϕ(v)dvdu

and

P(ϕ(V )ψ(|I |)1 Ā) =
∫ 1

0

∫ 1

u
ϕ(v)ψ(1− u)dvdu

= P( Ā)

∫ 1

0
2(1− u)ψ(1− u)

1

1− u

∫ 1

u
ϕ(v)dvdu.

��
Proof of Proposition 9 It is clear that IR(0) = [0, R]. Let us consider the sequence of
jumps times (Ti ; i ≥ 0) of IR . By definition of the process, Ti+1 is the smallest time
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after Ti such that there exists Xi+1 with (Ti+1, Xi+1) ∈ P and Xi+1 ∈ IR(Ti ). Then,
if IR(Ti ) = [a, b],

IR(Ti+1) = [a, Xi+1]1{UR≤Xi+1} + [Xi+1, b]1{Xi+1<UR}

By the properties of homogeneous Poisson processes, Ti+1 − Ti is exponentially
distributed with parameter |IR(Ti )|, and Xi+1 is uniformly distributed over IR(Ti ).

Using that UR is uniformly distributed over [0, R], a straightforward induction
using Lemma 4 proves that for any i ,UR is uniformly distributed on IR(Ti ), and that
|IR(Ti+1)| is a size-biased r.v. uniform on IR(Ti ). This corresponds to the description
of the transition mechanism of (I (t); t ≥ 0) under Q1

R and proves the result. ��
Define

∀t ≥ 0, X(t) = |I (t)|, XP (t) = |IP (t)|.

The coupling provided by the previous representation can be used to study the behavior
of (X(t); t ≥ 0) as R → ∞.

Corollary 2 As R → ∞, the process (X(t); t ≥ 0) underQ1
R converges in distribution

to (XP (t); t ≥ 0) for the topology of uniform convergence on every set [ε,∞), ε > 0.
For any t > 0, X P (t) follows a Gamma(2, t) distribution, that is

XP (t) ∼ t2xe−t xdx .

Proof By the Poisson construction, if XR(t):=|IR(t)|, then (XR(t); t ≥ 0) is dis-
tributed as (X(t); t ≥ 0) underQ1

R . It is straightforward to see that for any ε > 0, for
large enough R we have XR(t) = XP (t) for any t ≥ ε, proving the convergence part
of the result.

Bywell-known properties of Poisson point processes, Pt is a homogeneous Poisson
point processwith rate t .Moreover both thefirst positive andnegative atomof Pt follow
an exponential distribution with parameter t , and are independent. This proves that
XP (t) is gamma distributed with the right parameters. ��

5.4 Self-similarity

From the transition mechanism of (I (t); t ≥ 0), we see that (X(t); t ≥ 0) is also a
Markov process. Under Q1

R it starts from R and, conditional on X(t), it jumps at rate
X(t) to X(t)U∗, where U∗ is a size-biased uniform r.v. on [0, 1]. As the jump rate of
(X(t); t ≥ 0) at time t is X(t), the process (X(t); t ≥ 0) is self-similar with index
−1, in the sense that for any constant c > 0, the following identity in law holds

(cX(ct); t ≥ 0) under Q1
R

(d)= (X(t); t ≥ 0) under Q1
cR .

Positive Markov processes fulfilling the previous property are called positive self-
similar Markov processes (pssMp), see [37] for an introductory exposition.
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Remark 8 In this work we will not make use of this connection with pssMp since all
computations can be carried out directly from the Poisson construction. However this
link could be used to generalize our results to a larger class of branching processes on
the intervals, with more general fragmentation rules for the offspring distribution.

5.5 Convergence of the rescaled spine

Recall the definition of FR and F−1
R from (1). The following result provides the limit

of the spine after rescaling time according to F−1
R .

Proposition 10 Let 0 < u1 < · · · < un ≤ 1. Then

(
F−1
R (u1)X ◦ F−1

R (u1), . . . , F
−1
R (un)X ◦ F−1

R (un)
) Q1

R−−−−→
R→∞ (γ1, · · · , γn)

where the γi ’s are independent Gamma r.v.’s with parameter (2, 1).

Proof We show the result by induction on n. Recall that X(F−1
R (u)) has the same

distribution asY1∧RU+Y2∧R(1−U )whereY1,Y2 are independent and exponentially
distributed with mean 1/F−1

R (u) and U is uniform on [0, 1]. For every u ∈ (0, 1],
1/F−1

R (u) ∼ R1−u = o(R) so that Y1 ∧ RU + Y2 ∧ R(1 − U ) = Y1 + Y2 with a
probability going to 1. This establishes the result at stage 1.

Let us nowassume that the property is satisfied at stage n. Conditional on the process
X up to time F−1

R (un), the Markov property implies that the spine at F−1
R (un+1) is

distributed as Y1 ∧ RnU + Y2 ∧ Rn(1 − U ) where Rn = X(F−1
R (un)), and Y1, Y2

are independent and exponentially distributed with mean
(
F−1
R (un+1)− F−1

R (un)
)−1.

Since we have

1

F−1
R (un+1) − F−1

R (un)
∼ 1

F−1
R (un+1)

= o
( 1

F−1
R (un)

)
= o(Rn),

as in the case n = 1, this implies that F−1
R (X(un+1)) is converging to an independent

γn+1 random variable. ��

6 The recombination k-spine tree

In the previous section we have characterized the large N , large R behavior of the pro-
cess giving the marks along a single spine. We now provide a similar characterization
for the k-spine tree. We start with the following definition.

Definition 6 Let us denote byQk
I the lawof some r.v. (I1, . . . , Ik) and (W1, . . . ,Wk−1)

such that:

• (W1, . . . ,Wk−1) are i.i.d. r.v.’s on [0, 1] with c.d.f. FR ;
• I1 has distribution Q1

I and is independent of (W1, . . . ,Wk−1);
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• Ii+1 = [Ii ;Wi ; I ′], where conditional on (W1, . . . ,Wi ) and (I1, . . . , Ii ), I ′ has
distribution Q1

Ii (Wi )
.

We also use the shorter notation Qk
R for Qk

[0,R].

6.1 Convergence of the tree

According to Proposition 10, it is natural to rescale time using FR as follows.

Definition 7 We consider the rescaled k-spine measure as

Qk
R = Qk

R ◦ F−1
R ,

in the sense that under Qk
R

• The branch times are distributed as (FR(W1), . . . , FR(Wk−1));
• The spatial processes are distributed (I1 ◦ F−1

R , . . . , Ik ◦ F−1
R );

where (W1, . . . ,Wk−1) and (I1, . . . , Ik) are distributed respectively as the branch
times and the spatial processes under Qk

R .

The following result is a straightforward extension of Proposition 10.

Proposition 11 Under the rescaled k-spine measure Qk
R:

(i) The branch times (W1, . . . ,Wk−1) are distributed as i.i.d. uniform random vari-
ables on [0, 1].

(ii) Conditional on the Wi ’s

((
F−1
R (W1)X1(W1), . . . , F

−1
R (Wk−1)Xk−1(Wk−1)

)
,
(
X1(1), . . . , Xk(1)

))

Qk
R−−−−→

R→∞
(
(γ1, . . . , γk−1), (γ̄1, . . . , γ̄k)

)

where the γi ’s and γ̄i ’s are independent Gamma r.v.’s with parameter (1, 2).

Proof The proof goes along the same line the one of Proposition 10 and is left to the
interested reader. ��

6.2 Convergence of the chromosomic distance

In this section, we prove that the genealogical distance and the rescaled chromosomic
distance coincide in the large R limit under Qk

R . For i < j , set

Wi, j = Wj,i = min{Wi , . . . ,Wj−1}

to be the time at which branches i and j split. Define

∀i, j ≤ k, d(i, j) = 1−Wi, j ,
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which is the genealogical distance between the leaves of the k-spine tree.
Conditional on (I1, . . . , Ik) and (W1, . . . ,Wk−1), let Mi be uniformly distributed

on Ii (1). We define

∀i, j ≤ k, D(i, j) = |Mi − Mj |

which is the chromosomic distance between the leaves. For later purpose, we also
introduce the corresponding rescaled distance,

∀i, j ≤ k, d̄R(i, j) = 1− FR(Wi, j ), D̄R(i, j) = log D(i, j) ∨ 2

log R
. (16)

The next result provides an interesting relation between the genealogy of the branch-
ing process and the “geography” along the chromosome. Namely, on a logarithmic
scale, the distance between two segments on the chromosome is directly related to the
genealogy of the two segments.

Lemma 5 We have

∀i, j ≤ k,
log D(i, j)

d(i, j) log R

Qk
R−−−−→

R→∞ 1.

Proof Let us work underQk
R and let i < j . By construction of the k-spine, conditional

on Ii (Wi, j ), (Ii (t + Wi, j ); t ≥ 0) and (I j (t + Wi, j ); t ≥ 0) are independent and
distributed as Q1

Ii (Wi, j )
. We know from the Poisson construction that, conditional on

Ii (Wi, j ), Mi and Mj are independent uniform variables on that interval. Therefore,

|Mi − Mj |
Xi (Wi, j )

is a Beta(1, 2) r.v. Write

log Di, j = log |Mi − Mj | = log
|Mi − Mj |
Xi (Wi, j )

+ logWi, j Xi (Wi, j ) − logWi, j .

From the previous point and Proposition 10,

1

log R
log

|Mi − Mj |
Xi (Wi, j )

+ logWi, j Xi (Wi, j )

log R

Qk
R−−−−→

R→∞ 0.

Moreover

logWi, j

log R
= (FR(Wi, j ) − 1)(1+ oR(1))
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so that

log Di, j

(1− FR(Wi, j )) log R

Qk
R−−−−→

R→∞ 1.

The result follows by noting that the r.v. on the left-hand side has the same distribution
under Qk

R as

log Di, j

di, j log R

under Qk
R . ��

6.3 Proof of themain result

We can now proceed to the proof of our main result.

Proof of Theorem 2 In order to ease the exposition, we only prove the result for t = 1,
but the proof is easily adapted for general t > 0.

Recall that Q1,N
R denotes the distribution of the 1-spine provided in Defini-

tion 5. Let Qk,N
R be the corresponding k-spine distribution, with i.i.d. branch times

(W1, . . . ,Wk−1) such that

Wi
(d)= 	WN
, ∀u ≤ 1, P(W ≤ u) = FR(u). (17)

for the function FR defined in (1).
Set

∀i, j ≤ k, d̄ N
R (i, j) = 1− FR

(
WN

i, j

)
, D̄N

R (i, j) = log |Mi − Mj | ∨ 2

log R
,

where the Mi are uniformly distributed on the Ii (N ). In order to use Theorem 6, we
need to compute the limit of

Qk,N
R

[
�k · ϕ

(
d̄ N
R (i, j), D̄N

R (i, j), XN
i (1); i, j ≤ k

)]

where for the branching process with recombination,

�k =
∏
u∈S

1

du !
k−1∏
i=1

XN
i (WN

i )

δN FR(WN
i )

k∏
i=1

1

XN
i (1)

with

∀x ≥ 0, δN FR(x) = N
(
FR(x + 1

N ) − FR(x)
)
.
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According to Proposition 8, under Q1,N
R the process I N converges to the limiting

process with distribution Q1
R introduced in Definition 5. Therefore, Proposition 7

proves that

((
I N1 , . . . , I Nk

)
,
(
WN

1 , . . . ,WN
k−1

)) Qk,N
R−−−−→

N→∞
(
(I1, . . . , Ik), (W1, . . . ,Wk−1)

)

where the limiting variables have distributionQk
R . Since the variables (W1, . . . ,Wk−1)

are a.s. distinct under Qk
R , it entails that

∏
u∈S

1

du !
Qk,N

R−−−−→
N→∞

1

2k−1 .

Corollary 3 provides enough uniform integrability to conclude that

lim
N→∞Qk,N

R

[∏
u∈S

1

du !
k−1∏
i=1

XN
i (WN

i )

δN FR(WN
i )

k∏
i=1

1

XN
i (1)

·ϕ(d̄ N
R (i, j), D̄N

R (i, j), XN
i (1); i, j ≤ k

)]

= 1

2k−1Q
k
R

[
k−1∏
i=1

Xi (Wi )

F ′
R(Wi )

k∏
i=1

1

Xi (1)

·ϕ(d̄R(i, j), D̄R(i, j), Xi (1); i, j ≤ k
)]

= 1

2k−1Qk
R

[
k−1∏
i=1

Xi (Wi )(F
−1
R )′(Wi )

k∏
i=1

1

Xi (1)

·ϕ(d(i, j), D̄R(i, j), Xi (1); i, j ≤ k
)]

where the last line follows by rescaling time according to (1) and the distances are
defined in (16). The first observation is that, a.s.,

1

log R

(F−1
R )′(Wi )

F−1
R (Wi )

= RWi

RWi − 1
−→ 1.

The second observation is that conditional on (W1, . . . ,Wk−1), according to Proposi-
tion 11,

((
F−1
R (Wi )Xi (Wi ); i ≤ k − 1

)
, (Xi (1); i ≤ k)

) Qk
R−−−−−→

R→∞
(
(γ1, . . . , γk−1), (γ̄1, . . . , γ̄k)

)
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where the limiting r.v. are Gamma(2, 1) distributed and independent. Let β ∈ (1, 2)
and define

∀u ∈ [0, 1], �(u) = 1

log R F ′
R(u)

= u + 1

R − 1

By reverting the previous change of variable

Qk
R

⎡
⎣
k−1∏
i=1

(
(F−1

R )′(Wi )Xi (Wi )

log R

)β k∏
i=1

1

Xi (1)β

⎤
⎦

= Qk
R

[
k−1∏
i=1

(
Xi (Wi )�(Wi )

)β k∏
i=1

1

Xi (1)β

]
.

By Corollary 3, the r.h.s. is uniformly bounded in R. This provides enough uniform
integrability to get

lim
R→∞

(
1

2 log R

)k−1

Qk
R

[
k−1∏
i=1

Xi (Wi )(F
−1
R )′(Wi )

k∏
i=1

1

Xi (1)

·ϕ(d(i, j), D̄R(i, j), Xi (1); i, j ≤ k
)]

= E

[
k∏

i=1

1

γi
· ϕ(1−Wi, j , 1−Wi, j , γi ; i, j ≤ k

)
]

= E
[
ϕ
(
1−Wi, j , 1−Wi, j ,Yi ; i, j ≤ k

)]

where γi are i.i.d. Gamma(2, 1) r.v., Yi are i.i.d. standard exponential random variable,
and we have used Lemma 5 for the convergence of the distances.

We can now apply Theorem 6 with

αN = 1

N log R
, βN (x) = x, γN (t) = 1− FR

(
1− t

N

)
.

Recall that ZN denotes the population size and that from Proposition 1

lim
N→∞ NPR(ZN > 0)

exists and that

lim
R→∞ lim

N→∞
N log R

R
PR(ZN > 0) = 1.

Therefore,

lim
N→∞

k!Nk−1R

(N log R)kPR(ZN > 0)
Qk,N

R

[
�k · ϕ

(
d̄ N
R (i, j), D̄N

R (i, j), XN
i (1); i, j ≤ k

)]
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exists and we have

lim
R→∞ lim

N→∞
k!Nk−1R

(N log R)kPR(|TN | > 0)

Qk,N
R

[
�k · ϕ

(
d̄ N
R (i, j), D̄N

R (i, j), XN
i (1); i, j ≤ k

)]

= lim
R→∞ lim

N→∞
k!

(log R)k−1

Qk,N
R

[
�k · ϕ

(
d̄ N
R (i, j), D̄N

R (i, j), XN
i (1); i, j ≤ k

)]

= k!E
[
ϕ
(
1−Wi, j , 1−Wi, j ,Yi ; i, j ≤ k

)]

Applying Theorem 6 for the large N limit, then Proposition 3 for the large R limit,
and finally Propositions 5 and 4 for the polynomials of the Brownian CPP with inde-
pendent marks proves the result. Note that since the total mass of the Brownian CPP
is exponentially distributed, it fulfills the moment condition (7). For the large N limit,
the size of the branching process with recombination is stochastically dominated by a
Galton–Watson process with Poisson(1+R/N ) offspring distribution. The size of this
process, conditional on survival at time N and rescaled by N , is well-known to con-
verge to an exponential distribution, see for instance [35, Theorem 2.1]. This readily
shows that (12) is also fulfilled by the large N limit, for each fixed R. ��

Remark 9 In the above proof we have made use of Theorem 4 to identify the large
N limit of the genealogy. It is possible to prove the result without relying on our
extension of the Gromov-weak topology by constructing the branching process with
recombination by superimposing on a Galton–Watson tree with Poisson(1 + R/N )

offspring distribution a process along the branches describing the recombination events
as in [3]. The large N limit could then be expressed by means of the superprocess limit
associated to that branching model.
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A. Appendix

A.1. Continuity of the concatenationmap

For two càdlàg functions x and y and a positive real r , recall that

[x; r; y] : t �→
{
x(t) if t < r

y(t − r) if t ≥ r

denotes the concatenation of x and y at time r .

Lemma 6 Suppose that we have two sequences of càdlàg functions (xn) and (yn) that
converge to x and y respectively in the Skorohod topology. Moreover, suppose that
(rn) converges to r > 0, and that x is continuous at r . Then

[xn; rn; yn] −→ [x; r; y].

Proof Recall that a sequence (zn) converges to some z in the Skorohod topology iff
for each T ≥ 0, we can find a sequence of continuous increasing maps λn such that

lim
n→∞ sup

t≤T
|λn(t) − t | = 0 (18)

and

lim
n→∞ sup

t≤T
|zn ◦ λn(t) − z(t)| = 0, (19)

see for instance [15, Proposition 5.3].
Fix T > r , and let (λn) and (μn) fulfill (18) and (19) with (zn) replaced by (xn)

and (yn) respectively. For ε > 0, let δ be such that

|t − r | < δ �⇒ |x(t) − x(r)| < ε.

Using that

λn(r − δ) → r − δ, λn(r + δ) → r + δ, rn → r

we know that for n large enough λn(r − δ) < rn < λn(r + δ). Define

∀t ≥ 0, λ′n(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λn(t) if t ≤ r − δ

λn(r − δ) + (
t − (r − δ)

) rn−λn(r−δ)
δ

if r − δ < t ≤ r

λn(r + δ) + (
t − (r + δ)

)
λn(r+δ)−rn

δ
if r < t ≤ r + δ

λn(t) if t ≥ r + δ
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which is continuous, increasing, and is designed so that λ′n(r) = rn and coincides with
λn outside of (r − δ, r + δ). Now,

sup
(r−δ,r+δ)

|xn ◦ λ′n(t) − x(t)| ≤ sup
(r−δ,r+δ)

|xn ◦ λ′n(t) − x(r)| + sup
(r−δ,r+δ)

|x(r) − x(t)|

≤ sup
(r−δ,r+δ)

|xn ◦ λn(t) − x(r)| + ε

≤ sup
(r−δ,r+δ)

|xn ◦ λn(t) − x(t)| + 2ε.

Therefore, up tomodifying λn in this way and extracting a subsequence, we can always
assume that, in addition to (18) and (19), we have λn(r) = rn .

Let us now denote

zn = [xn; rn; yn], z = [x; r; y]

and define

∀t ≥ 0, νn(t) =
{

λn(t) if t < r

μn(t − r) + rn if t ≥ r

to be the concatenation of the two increasingmaps. Clearly (νn) fulfills (18), and using
that νn(t) < rn iff t < r , we obtain

zn ◦ νn(t) =
{
xn ◦ λn(t) if t < r

yn ◦ μn(t − r) if t ≥ r

from which it follows that

sup
t≤T

|zn ◦ νn(t) − z(t)| ≤ sup
t≤T

|xn ◦ λn(t) − x(t)| + sup
t≤T

|yn ◦ μn(t) − y(t)|

proving the result. ��

A.2. Uniform integrability results

The aim of this technical section is to prove the uniform integrability of the inverse of
the k-spine.

Lemma 7 For any α < 1 and t > 0, there exists a constant C such that

∀R > 0, s ≤ t, Q1
R

[
1

X(s)1+α

]
≤ C

(
1

R1+α
+ 1

)
.
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There also exists a constant C ′ such that for N sufficiently large

∀R > 0, s ≤ t, Q1,N
R

[
1

XN (s)1+α

]
≤ C ′

(
1

R1+α
+ 1

)
.

Proof As XN and X are non-increasing, we have

Q1
R

[
1

X(s)1+α

]
≤ Q1

R

[
1

X(t)1+α

]

and

Q1,N
R

[
1

XN (s)1+α

]
≤ Q1,N

R

[
1

XN (t)1+α

]
.

It is a direct consequence of the Poisson construction that X(t) under Q1
R is stochas-

tically dominated by X(t) under Q1
R′ if R ≤ R′. Therefore

∀R ≥ 1, Q1
R

[
1

X(t)1+α

]
≤ Q1

1

[
1

X(t)1+α

]
.

Moreover, by self-similarity,

∀R ≤ 1, Q1
R

[
1

X(t)1+α

]
= 1

R1+α
Q1

1

[
1

X(Rt)1+α

]
≤ 1

R1+α
Q1

1

[
1

X(t)1+α

]
.

Together, these two identities yields that

∀R > 0, Q1
R

[
1

X(t)1+α

]
≤ Q1

1

[
1

X(t)1+α

](
1

R1+α
+ 1

)
.

The first part of the result is proved provided that

Q1
1

[
1

X(t)1+α

]
< ∞.

Recalling that X(t) has the same distribution as Y1 ∧U + Y2 ∧ (1−U ) where Y1 and
Y2 are exponentially distributed with mean 1/t andU uniformly distributed on [0, 1],
a direct computation shows that

Q1
1

[
1

X(t)1+α

]
≤ E

[(
1

Y1 + Y2

)1+α
]
+ 2E

[(
1

Y1 +U

)1+α
]
+ 1 < ∞.
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The second part of the result follows from the fact that, for any c > 1, for large
enough N ,

∀R > 0, XN (t) under Q1,N
R

(d)≥ X(ct) under Q1
R .

To see this note that XN and X visit the same sequence of states in distribution. Thus
stochastic domination follows if (X(ct); t ≥ 0) jumps faster than (XN (t); t ≥ 0).
Started from ρ, the process XN jumps after a time T N/N whereas X jumps after a
time T with

T N ∼ Geometric
( ρ

N

)
, Tρ ∼ Exponential(ρ).

A direct computation shows that, provided 1− exp(−cρ/N ) ≤ ρ/N , T /c is stochas-
tically dominated by T N/N . The latter condition clearly holds for all ρ ≤ R for large
enough N . ��

We now apply the previous estimate inductively to the k-spine, first to be able to
take the large N limit, then to take the large R limit. Recall the notation XN

i for the
rescaled marks along branch i and the notation WN

i for the rescaled i th branch time,
and the notation

∀u ∈ [0, 1], �(u) = u + 1

R − 1
.

Corollary 3 For any R > 1, k ≥ 1, and β ∈ (1, 2),

sup
R>1

Qk
R

[
k−1∏
i=1

(�(Wi )Xi (Wi ))
β

k∏
i=1

(
1

Xi (1)

)β
]

< ∞.

Further,

sup
N>1

Qk,N
R

⎡
⎣
k−1∏
i=1

(
Xi (WN

i )

δN FR(WN
i )

)β k∏
i=1

1

XN
i (1)β

⎤
⎦ < ∞.

Proof We only prove the result in the continuum setting. The discrete case can be
proved along the same lines. Applying the Markov property to Xk+1 at time Wk and
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using Lemma 7 yields

Qk+1
R

[
k∏

i=1

(
�(Wi )Xi (Wi )

)β k+1∏
i=1

(
1

Xi (1)

)β
]

= Qk+1
R

[
k∏

i=1

(
�(Wi )Xi (Wi )

)β k∏
i=1

1

Xi (1)β
Q1

Xk (Wk )

[
1

X(1−Wk)β

]]

≤ Qk+1
R

[
k∏

i=1

(
�(Wi )Xi (Wi )

)β k∏
i=1

1

Xi (1)β
C

(
1

Xk(Wk)β
+ 1

)]

≤ 2βCQk
R

[
k−1∏
i=1

(
�(Wi )Xi (Wi )

)β k∏
i=1

1

Xi (1)β

]

+ CQk
R

[(
�(Wk)Xk(Wk)

)β k−1∏
i=1

(
�(Wi )Xi (Wi )

)β k∏
i=1

1

Xi (1)β

]

where in the last inequality, we used the fact that �(u) ≤ 2 for every u ∈ [0, 1]. Let
p, q ≥ 0 such that 1

p + 1
q = 1 and take q close enough to 1 such that qβ ∈ (1, 2). By

Hölder’s inequality, the second term on the r.h.s. is bounded from above by

(
Qk

R

[
k−1∏
i=1

(
�(Wi )Xi (Wi )

)qβ
k∏

i=1

1

Xi (1)qβ

])1/q (
Qk

R

[(
�(W1)X1(W1)

)pβ])1/p

Further,

Qk
R

[(
�(W1)X1(W1)

)pβ] ≤ 2pβ−1Qk
R

[(
W1X1(W1)

)pβ]+ 2pβ−1Qk
R

[( X1(W1)

R − 1

)pβ]

≤ 2pβ−1Qk∞
[(
W1X1(W1)

)pβ]+ 2pβ−1
( R

R − 1

)pβ

Finally,W1X1(W1) is a Gamma(2, 1) r.v. underQk∞. The result follows by a straight-
forward induction since the case k = 1 was proved in Lemma 7. ��
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