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Abstract
We study the variance of the number of zeroes of a stationary Gaussian process on a
long interval. We give a simple asymptotic description under mild mixing conditions.
This allows us to characterise minimal and maximal growth. We show that a small
(symmetrised) atom in the spectral measure at a special frequency does not affect the
asymptotic growth of the variance, while an atom at any other frequency results in
maximal growth.
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1 Introduction

Zeroes of Gaussian processes, and in particular stationary Gaussian processes (SGPs),
have been widely studied, with diverse applications in physics and signal processing;
for a comprehensive historical account see [19]. The expected number of zeroesmay be
computed by the celebrated Kac–Rice formula. Estimating the fluctuations, however,
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proved to be a much more difficult task. The aim of this paper is to give a simple
expression which describes the growth of the variance of the number of zeroes in the
interval [0, T ], as T → ∞. Following the ideas of Slud [29], it is easy to give a lower
bound for this quantity. Our main contribution is a matching upper bound, which holds
under a very mild hypothesis. In particular we give a sharp asymptotic expression for
the variance for any process with decaying correlations, no matter how slow the decay.

An intriguing feature of our results is the emergence of a ‘special frequency’: adding
an atom to the spectral measure at this frequency does not change the order of growth
of the fluctuations.

1.1 Results

Let f : R → R be a stationary Gaussian process (SGP) with continuous covariance
kernel

r(t) = E[ f (0) f (t)].

Denote by ρ the spectral measure of the process, that is, the unique finite, symmetric
measure on R such that

r(t) = F[ρ](t) =
∫
R

e−iλt dρ(λ).

We normalise the process so that r(0) = ρ(R) = 1. It is well-known (see, e.g., [7,
Section 7.6]) that the distribution of f is determined by ρ, and further that any such
ρ is the spectral measure of some SGP.

We study the number of zeroes of f in a long ‘time’ interval [0, T ], which we
denote

N (ρ; T ) = N (T ) = #{t ∈ [0, T ] : f (t) = 0}.

The expectation of N (T ) is given by the Kac–Rice formula (see [13, 32])

E[N (T )] = σ

π
T , (1)

where

σ 2 = −r ′′(0) =
∫
R

λ2dρ(λ).

Throughout we assume that N (T ) has finite variance, which turns out to be equivalent
to the Geman condition [11]

∫ ε

0

r ′′(t) − r ′′(0)
t

dt < ∞ for some ε > 0. (2)
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An SGP f is degenerate if its spectral measure consists of a single symmetrised
atom ρ = δ∗

α = 1
2 (δα + δ−α), or equivalently if the covariance is r(t) = cos(αt). In

this case the zero set is a random shift of the lattice π
α
Z, and the variance Var[N (T )]

is bounded. Throughout this paper, atoms in the spectral measure should always be
understood as symmetrised atoms.

We formulate our results in terms of the function

ϕ(t) = max

{
|r(t)| + |r ′(t)|

σ
,

|r ′(t)|
σ

+ |r ′′(t)|
σ 2

}
. (3)

We note that1 the condition r(t)
|t |→∞−→ 0 implies that ϕ(t)

|t |→∞−→ 0. This means that
the condition (4) below may be viewed as a very mild mixing condition, which in
particular holds whenever the spectral measure is absolutely continuous.

The notation A(T ) � B(T ) denotes that there exist C1,C2 > 0 such that C1 ≤
A(T )
B(T )

≤ C2 for all T > 0, while A(T ) ∼ B(T ) denotes that limT→∞ A(T )
B(T )

= 1. Our
main result is the following.

Theorem 1 (a) For any SGP satisfying

lim sup
|t |→∞

ϕ(t) < 1, (4)

we have

Var[N (T )] � T
∫ T

0

(
1 − t

T

)(
r(t) + r ′′(t)

σ 2

)2

dt (5)

where the implicit constants depend on ρ.
(b) Under the additional assumptions r + r ′′

σ 2 /∈ L2(R) and lim|t |→∞ ϕ(t) = 0 we
have

Var[N (T )] ∼ σ 2

π2 T
∫ T

0

(
1 − t

T

)(
r(t) + r ′′(t)

σ 2

)2

dt .

(c) Var[N (T )] � T 2 if and only if ρ contains an atom at a point different from σ .

1 To see this, note first that r ′ and r ′′ are uniformly continuous. Now suppose that r(t) → 0 but there exists
an ε > 0 and a sequence {tn}∞n=1 such that |r ′(tn)| > 2ε for all n and tn → ∞. By the uniform continuity
of r ′ we get

∣∣r ′(t) − r ′(tn)
∣∣ < ε for |t − tn | < δ. Hence |r ′(t)| ≥ |r ′(tn)| − |r ′(t) − r ′(tn)| > ε and so

∣∣∣∣∣
∫ tn+δ

tn−δ
r ′(t) dt

∣∣∣∣∣ =
∫ tn+δ

tn−δ
|r ′(t)|dt ≥ 2εδ > 0.

But, we can also compute

lim
n→∞

∣∣∣∣
∫ tn+ε

tn−ε
r ′(t) dt

∣∣∣∣ = lim
n→∞ |r(tn + ε) − r(tn − ε)| = 0,

which is absurd. The same proof shows that r ′′ → 0.
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Following the ideas of Kac–Rice, one may write down an exact expression for
Var[N (T )], see, e.g., [7, Sections 10.6-7] or [11, Page 979]. While one may obtain
some asymptotics from this expression if r decays at infinity, in general there are
cancellations which are difficult to see explicitly. The main point of Theorem 1 is that
the dominant contribution to Var[N (T )] comes from (r + r ′′

σ 2 )
2, due to other contribu-

tions cancelling, and much of our proofs involve organising terms appropriately to see
this cancellation. We do this by considering the Wiener chaos expansion—the second
chaos (which is the first non-trivial chaos) is an obvious lower bound and we dedicate
much effort to showing that it is also an upper bound (up to a constant), under the
hypothesis (4). This is the key estimate which allows us to prove stronger results than
those which were known previously. Our proof boils down to proving some combi-
natorial identities for the coefficients of certain polynomials, see Sect. 1.5 for more
details.

We obtain the following characterisation of linear variance from the proof of
Theorem 1.

Corollary 2 We have

Var[N (T )] � T �⇒ r + r ′′

σ 2 ∈ L2(R).

Under condition (4), the converse holds.

The idea of using the first (non-trivial) chaos to give a lower bound for the variance
goes back to Slud [28], see Sect. 1.3 for a discussion of previous results.While wewere
preparing this paper we became aware of the independent work [22], where this idea
also appears. In particular, it is shown that Var[N (T )] always grows at least linearly in
T and that r + r ′′

σ 2 ∈ L2(R) is necessary for linear variance. Both of these results also
follow from Proposition 11 below. In [22] a sufficient condition for linear variance
is also given, which essentially amounts to the condition r + r ′′

σ 2 ∈ L2(R) and the

spectral measure having an L2 density in a neighbourhood of ±σ . These imply that
r , r ′′ ∈ L2(R) and so lim|t |→∞ ϕ(t) = 0. Corollary 2 is therefore a stronger result
than [22, Theorem 2.1 (ii)]. For instance, Corollary 2 allows us to conclude that we
have linear variance for the example given in Sect. 1.4 below. It also allows us to see
that we still have linear variance if we perturb a process that has linear variance by
adding an atom (that is not too big) at σ , à la Corollary 3 below. These examples could
not be analysed previously and we emphasise that the key difference is our ability to
prove an upper bound for the variance, which allows us to prove stronger results.

By stationarity, Var[N (T )] grows at most quadratically in T and so Theorem 1 (c)
therefore characterises maximal growth. Again, one direction of this result also
appeared in [22, Theorem 2.1 (iii)], but our results are stronger due to our upper
bound.

The emergence of a special frequency σ in Theorem 1 (c) is new,2 and intriguing.
One naturally askswhat the effect of an atomat this frequency is.Notice thatmodifying

2 While some of the results in [22] give information about atoms at points other than σ , our result is the
first to show that atoms at σ have a different effect on the variance, and are therefore special.
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a measure by adding an atom at frequency σ does not change E[N (T )]. The following
result follows fromTheorem1 (a), and shows that the asymptotic growth ofVar[N (T )]
remains unchanged as well—at least under some mild assumptions.

Corollary 3 Suppose that (4) holds for the spectral measure ρ. Define3 ρθ = (1 −
θ)ρ + θδ∗

σ for 0 < θ < 1. There exists θ0 > 0 such that

Var[N (ρ; T )] � Var[N (ρθ ; T )]

for any θ < θ0 (and the implicit constants may depend on θ ). Moreover, θ0 depends
only on lim sup|t |→∞ ϕ(t).

1.2 Discussion

As we already remarked, a major theme of our results is the importance of the quantity
r + r ′′

σ 2 , since we use it to give both upper and lower bounds for Var[N (T )]. Let us
first note that there might also be cancellation within this expression, see Sect. 1.4 for
an example of r , r ′′ /∈ L2 but r + r ′′

σ 2 ∈ L2.

Observe also that r + r ′′
σ 2 = F[μ] where the signed measure μ is defined by

dμ(λ) =
(
1 − λ2

σ 2

)
dρ(λ); this is crucial to some of our proofs. In fact, it follows

from Parseval’s identity that

∫ T

0

(
1 − t

T

)(
r(t) + r ′′(t)

σ 2

)2

dt = π

∫
(ST ∗ μ) dμ (6)

where ST (λ) = T
2π sinc2

( Tλ
2

)
. For details, see Sect. 4.2. One consequence of the

cancellation mentioned above is the emergence of the special atom (in the sense of
Theorem 1 (c) and Corollary 3). This phenomenon is explained, in part, by the fact
that the measure μ does not ‘see’ σ .

For crossings of non-zero levels, the presence of an atom at any frequency leads
to quadratic variance, see the remark on Page 18 after the proof of Theorem 1 (c).
The existence of a special atom at a distinguished frequency is therefore unique to the
zero level. Furthermore, this phenomenon is purely real. No such frequency exists for
complex zeroes, see [10].

We remark that, following Arcones [3], many previous results were stated in terms
of the function

ψ(t) = max

{
|r(t)|, |r ′(t)|

σ
,
|r ′′(t)|

σ 2

}

rather than the function ϕ that we introduced in (3). To compare the two, note that our
assumption (4) is implied by the stronger assumption lim sup|t |→∞ ψ(t) < 1

2 .

3 Notice that E[N (ρθ ; T )] is independent of θ .
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While the condition (4) is a very mild mixing condition, there are some processes
with singular spectral measure for which it does not hold. We believe that our results
hold in greater generality.

Conjecture (Weak form) The estimate (5) holds for any non-degenerate SGP
satisfying

lim sup
|t |→∞

max

{
r(t)2 + r ′(t)2

σ 2 ,
r ′′(t)2

σ 4 + r ′(t)2

σ 2

}
< 1. (7)

Conjecture (Strong form) The estimate (5) holds for any non-degenerate SGP.

Even the weak form of the conjecture would allow us to prove stronger results, e.g.,
to prove that Corollary 3 holds for any θ ∈ [0, 1). The strong form would allow
us to improve Corollary 2 to completely characterise linear variance. We provide
further evidence for the conjectures in Sect. 3.5. We also note that every SGP satisfies

max
{
r(t)2 + r ′(t)2

σ 2 ,
r ′′(t)2

σ 4 + r ′(t)2
σ 2

}
≤ 1 and if equality holds for any finite t = 0 then

the process is degenerate. The condition (7) is therefore extremely mild.

1.3 Background andmotivation

The origins for the Kac–Rice method for computing the expected number of zeroes lie
in the independent work of Kac [15, 16] and of Rice [25, 26]. Applying this method
to SGPs yields the formula (1), even when both sides are infinite, as was done by
Ylvisaker [32] and Itô [13]. Sufficiency of the Geman condition (2) for finite variance
was proved by Cramér and Leadbetter [7, Equation 10.6.2 or 10.7.5], while necessity
was established by Geman [11]. Qualls [24, Lemma 1.3.4] showed that the Geman
condition is equivalent to the spectral condition

∫
R
log(1 + |λ|)λ2dρ(λ) < ∞ (see

also [4, Theorem 3]).
An exact formula for the variance was rigorously derived4 by Cramér and Leadbet-

ter [7, Sections 10.6-7], although extracting the rate of growth of the variance under
general conditions from this expression proved challenging. Little progress in under-
standing the asymptotic growth of the variancewasmade until Slud [28, 29] introduced
Multiple Wiener Integral techniques some decades later—these were in turn refined
and extended by Kratz and Léon [20, 21], using Wiener chaos expansions. These for-
mulas and techniques were used to prove various properties of the zeroes, such as
sufficient conditions for linearity of the variance and for a central limit theorem (see,
e.g., [8, 23]).

The caseof linear variancewashistorically of interest. Previously, the only condition
for asymptotically linear variance (that we are aware of) was r , r ′′ ∈ L2(R), which
follows from combining the results of Cuzick [8] and Slud [28]. We show in Sect. 1.4
that the condition r + r ′′

σ 2 ∈ L2(R) is strictly weaker, therefore Corollary 2 improves

4 This formula was based on the ideas of Kac–Rice, and indeed such a formula was known to physicists
[27] and had been proved mathematically assuming the existence of r (vi)(0) (see the footnote on [30, Page
188]).
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upon their result. It also follows from their work that r , r ′′ ∈ L2(R) implies that
1
T Var[N (T )] converges as T → ∞. Ancona and Letendre [1, Proposition 1.11] give
an exact expression for this limit (see also [9, Proposition 3.1]), although their main
focus is on the growth of the central moments of linear statistics (which generalise the
zero count). A linear lower bound appears in the (independent) work of Lachièze–Rey
[22], who also studies rigidity and predictability of the zero set.

We finally mention that our work has parallels in different but related models.
In the setting of complex zeroes of a random Gaussian analytic f : C → C an
asymptotic formula for the variance, an L2-condition that guarantees linearity, and a
characterisation of maximal (i.e., quadratic) growth were given in [10]. Analogous
results were then proved for the winding number of a Gaussian stationary f : R → C

in [5].

1.4 Cancellation in the quantity r + r′′
�2

Aswe indicated previously, an important message of this paper is that the behaviour of
the variance is governed by the quantity r + r ′′

σ 2 . We wish to emphasise the important
rôle of cancellation between the two terms here, and we have already seen an example
of this in Corollary 3 when the spectral measure has an atom at a ‘special frequency’.
However this cancellation phenomenon is not just about atoms, and as an illustrative
example we will produce a5 covariance function r such that:

• The spectral measure ρ has an L1(R) density.
• r + r ′′

σ 2 ∈ L2(R) where σ 2 = ∫
R

λ2 dρ(λ).

• r , r ′′ /∈ L2(R).

Writing dρ(λ) = φ(λ)dλ and applying the Fourier transform we see that it is
equivalent to produce a function φ ≥ 0 satisfying:

1.
∫
R

φ(λ)dλ = 1 but φ /∈ L2(R).
2. λ2φ(λ) ∈ L1(R), but λ2φ(λ) /∈ L2(R).

3.
(
1 − λ2

σ 2

)
φ(λ) ∈ L2(R) where σ 2 = ∫

R
λ2φ(λ)dλ.

We proceed to produce such a function φ.
Let α ∈ ( 12 , 1

)
. Choose M > 1 such that

M2 + M + 1 > 3 + 3(1 − α)

(
1

3 − α
− 2

2 − α

)
, (8)

and let c1, c2 ∈ R be the solution of the linear system

1
1−α

c1 + (M − 1) c2 = 1
2 ,(

1
1−α

− 2
2−α

+ 1
3−α

)
c1 + M3−1

3 c2 = 1
2 .

(9)

5 In fact we produce a family of such covariance functions.
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We note that (8) ensures that the determinant of the matrix associated to (9) is positive,
and since we also have M3−1

3 > M − 1 and 2
2−α

> 1
3−α

, it follows that c1, c2 > 0.
Define

φ(λ) =
{
c1(1 − |λ|)−α, for |λ| < 1,

c2, for 1 < |λ| < M .

Then:

• Since α ∈ ( 12 , 1
)
, it follows that φ ∈ L1(R) but φ /∈ L2(R).

• Integration yields, by the first equation in (9), that
∫
R

φ(λ)dλ = 1.
• Similarly λ2φ(λ) ∈ L1(R), but λ2φ(λ) /∈ L2(R).
• Now the second equation in (9) shows that σ 2 = ∫

R
λ2φ(λ)dλ = 1.

• Finally note that
(
1 − λ2

)
φ(λ) ∈ L2(R).

1.5 Outline of our methods

Let us briefly outline our method. We write

N (T ) =
∞∑
q=0

πq(N (T ))

where πq denotes the projection onto the q’th Wiener chaos. Explicit expressions for
this decomposition are well known, it turns out that only the even chaoses contribute,
and so we have

Var[N (T )] =
∞∑
q=1

E[π2q(N (T ))2].

The diagram formula allows us to compute (see Lemma 5)

E[π2q(N (T ))2] =
∫ T

−T
(T − |t |)P̃q(t)dt

where P̃q is a polynomial expression that involves r , r ′ and r ′′. We establish that(
r + r ′′

σ 2

)2
divides the polynomial6 P̃q exactly, see Proposition 8. This yields

E[π2q(N (T ))2] ≤ Cq

∫ T

−T
(T − |t |)

(
r(t) + r ′′(t)

σ 2

)2

dt

for someCq . The remainder of our proof of the upper bound involves showing that this
sequence Cq is summable (in fact, decays exponentially) under the given hypothesis;

6 Strictly speaking we first add a small computable quantity, which leads to the difference between Pq and
P̃q in Sect. 2.
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we do this in Proposition 9. We finally remark that the fact that
(
r + r ′′

σ 2

)2
divides the

polynomial P̃q exactly seems like amiraculous coincidence, and itwould be interesting
to understand it better.

2 A formula for the variance

The goal of this section is to give an infinite series expansion for Var[N (T )], each
coming from a different component of the Wiener chaos (or Hermite-Itô) expansion
of N (T ). We begin with some notation. For q ∈ N and l, l1, l2, n ∈ N0 = N ∪ {0}
write7

aq(l) = 1

l!(q − l)! · 1

2l − 1
(10)

and

bq(l1, l2, n) = (2q − 2l1)!(2l1)!(2q − 2l2)!(2l2)!
(2q − 2l1 − 2l2 + n)!(2l1 − n)!(2l2 − n)!n! . (11)

Next define the polynomials

P̃q(x, y, z) =
q∑

l1,l2=0

aq(l1)aq(l2)

min(2l1,2l2)∑
n=max(0,2(l1+l2−q))

bq(l1, l2, n) · x2(q−l1−l2)+n y2(l1+l2−n)zn (12)

and

Pq(x, y, z) = P̃q(x, y, z) + cq
(
x2q−1z + (2q − 1)x2q−2y2

)
(13)

where

cq = 24q(q!)2
2q(2q)! = 24q

2q
(2q
q

) . (14)

We are now ready to state the expansion.

Proposition 4 We have

Var N (T ) = σ 2

π2

∞∑
q=1

Vq(T )

4q
+ arccos r(T )

π

(
1 − arccos r(T )

π

)

7 We adopt the standard convention 1
n! = 0 when n is a negative integer.
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where

Vq(T ) = 2
∫ T

0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt . (15)

Furthermore

Var N (T ) ≥ σ 2

4π2 V1(T ) + 1

π2

(
1 − r(T )2

)
. (16)

The starting point in our calculations is the following Hermite expansion for N (T )

given by Kratz and Léon [21, Proposition 1] assuming only the Geman condition8

(though they and other authors had considered it previously under more restrictive
assumptions). We have (the sum converges in L2(P))

N (T ) = σ

π

∞∑
q=0

(−1)q+1

2q
Nq(T )

where.9

Nq(T ) =
q∑

l=0

aq(l)
∫ T

0
H2(q−l)( f (t))H2l( f

′(t)/σ ) dt, (17)

and Hl is the l’thHermite polynomial. Further each Nq (T ) belongs to the 2q’thWiener
chaos which yields

E[N (T )] = σ

π
N0(T ) = σ

π
T ,

and

Var[N (T )] = σ 2

π2

∞∑
q=1

4−q
E[Nq(T )2]. (18)

Furthermore

Var[N (T )] ≥ σ 2

π2

E[N1(T )2]
4

. (19)

The next lemma allows us to evaluate E
[
Nq(T )2

]
8 The conditions (1–3) in [21] are satisfied in our setting: (3) is trivial since ψ ≡ 0, (2) is precisely the
Geman condition, and (1) is a consequence of the fact that r is twice differentiable and can be written as
the cosine transform of the spectral measure.
9 Under the Geman condition, one cannot assume that f is continuously differentiable, and ‘conversely’
a continuously differentiable process need not satisfy the Geman condition, see [11, Section 4]. However
the existence of r ′′ implies the existence of the derivative in quadratic mean of the process, and this is how
the object f ′ should be understood if the process is not differentiable.
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Lemma 5 For all q ∈ N

E

[
Nq(T )2

]
= 2

∫ T

0
(T − t) P̃q

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt,

where P̃q is given by (12).

We now show how this lemma yields the desired expression.

Proof of Proposition 4, assuming Lemma 5 Lemma 5 yields

E

[
Nq(T )2

]
=Vq(T ) − 2cq

σ 2

∫ T

0
(T− t)

(
r(t)2q−1r ′′(t)+(2q−1)r(t)2q−2r ′(t)2

)
dt .

Note that r(t)2q−1r ′′(t) + (2q − 1)r(t)2q−2r ′(t)2 = d2

dt2

[
r(t)2q

2q

]
and so

∫ T

0
(T − t)

(
r(t)2q−1r ′′(t) + (2q − 1)r(t)2q−2r ′(t)2

)
dt

= 1

2q

∫ T

0
(T − t)

d2

dt2

[
r(t)2q

]
dt

= 1

2q

[
(T − t) · 2q · r(t)2q−1r ′(t)

∣∣∣T
t=0

+
∫ T

0

d

dt

[
r(t)2q

]
dt

]

= 1

2q

[
r(T )2q − 1

]
.

We therefore have

E

[
Nq(T )2

]
= Vq(T ) + cq

qσ 2

(
1 − r(T )2q

)
.

Applying (19) yields the desired lower bound

Var[N (T )] ≥ σ 2

4π2E[N1(T )2] = σ 2

4π2 V1(T ) + 1

π2 (1 − r(T )2)

while (18) gives

Var [N (T )] = σ 2

π2

∞∑
q=1

1

4q

[
Vq(T ) + cq

qσ 2

(
1 − r(T )2q

)]

= σ 2

π2

∞∑
q=1

Vq(T )

4q
+ 1

2π2

∞∑
q=1

22q − (2r(T ))2q

q2
(2q
q

) .
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We identify the last series as

arcsin2(x) = 1

2

∞∑
q=1

22q

q2
(2q
q

) x2q (20)

for all |x | ≤ 1 implying that

Var[N (T )] = σ 2

π2

∞∑
q=1

Vq(T )

4q
+ arcsin2(1) − arcsin2(r(T ))

π2

= σ 2

π2

∞∑
q=1

Vq(T )

4q
+ arccos r(T )

π

(
1 − arccos r(T )

π

)
,

where the last equality follows from arccos(x) = π
2 − arcsin(x). ��

We now proceed to prove Lemma 5.

Proof of Lemma 5 Squaring the expression for Nq(T ) given in (17) yields

Nq(T )2 =
q∑

l1,l2=0

aq(l1)aq(l2)
∫ T

0

∫ T

0
H2(q−l1)( f (t))

H2(q−l2)( f (s))H2l1

(
f ′(t)
σ

)
H2l2

(
f ′(s)
σ

)
ds dt .

and so

E
[
Nq(T )2

] =
q∑

l1,l2=0

aq(l1)aq(l2)
∫ T

0

∫ T

0

E

[
H2(q−l1)( f (t))H2(q−l2)( f (s))H2l1

(
f ′(t)
σ

)

H2l2

(
f ′(s)
σ

)]
ds dt .

Applying Lemma 6 below, and using the simple change of variables

∫ T

0

∫ T

0
h(t − s)dt ds =

∫ T

−T
(T − |x |)h(x)dx

for any h ∈ L1([−T , T ]), we get

E
[
Nq(T )2

] =
∫ T

−T
(T − |t |) P̃q

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt .
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An asymptotic formula for the variance of the number of… 1011

Noting that r is an even function and that only even powers of y appear in P̃q yields
Lemma 5. ��
Lemma 6 For all q ∈ N and l1, l2 ∈ N0 such that 0 ≤ l1, l2 ≤ q we have

E

[
H2q−2l1 ( f (t)) H2q−2l2 ( f (s)) H2l1

(
f ′(t)
σ

)
H2l2

(
f ′(s)
σ

)]

=
min(2l1,2l2)∑

n=max(0,2l1+2l2−2q)

bq(l1, l2, n)

(
r ′′(t − s)

σ 2

)n (r ′(t − s)

σ

)2(l1+l2−n)

(r(t − s))2(q−l1−l2)+n .

Before proving the lemma we first recall the diagram formula.

Lemma 7 (The diagram formula [6, Page 432] [14, Theorem 1.36]) Let X1, . . . , Xk

be jointly Gaussian random variables, and n1, . . . , nk ∈ N. A Feynman diagram is a
graph with n1 + . . . + nk vertices such that

• There are ni vertices labelled Xi for each i (and each vertex has a single label).
For a vertex a we write X(a) for the label of a.

• Each vertex has degree 1.
• No edge joins 2 vertices with the same label.

Let D be the set of such diagrams. For γ ∈ D we define the value of γ to be

v(γ ) =
∏

(a,b)∈E(γ )

E
[
X(a)X(b)

]

where E(γ ) is the set of edges of γ . Then

E
[
Hn1(X1) · · · · · Hnk (Xk)

] =
∑
γ∈D

v(γ ).

Proof of Lemma 6 We apply the diagram formula to the random variables
f (t), f (s), f ′(t)/σ and f ′(s)/σ and corresponding integers 2(q − l1), 2(q − l2), 2l1
and 2l2 and denote by D the collection of relevant Feynman diagrams. Since
E
[
f (t) f ′(t)

] = E
[
f (s) f ′(s)

] = r ′(0) = 0, it is enough to consider diagrams
whose edges do not join vertices labeled f (t) to f ′(t)/σ or vertices labeled f (s) to
f ′(s)/σ .
Let n be the number of edges joining a vertex labeled f ′(t)/σ to a vertex labeled

f ′(s)/σ , see Fig. 1. Then 0 ≤ n ≤ min(2l1, 2l2). Moreover, as the other vertices
labeled f ′(t)/σ must be joined to vertices labeled f (s), we see that 2l1−n ≤ 2q−2l2,
so max(0, 2l1 +2l2 −2q) ≤ n ≤ min(2l1, 2l2). Further, every value of n in this range
is attained by some diagram.
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1012 E. Assaf et al.

Fig. 1 Counting the number of Feynman diagrams

We compute the value of such a diagram to be

v(γ ) = E

[
f ′(t) f ′(s)/σ 2

]n
E
[
f ′(t) f (s)/σ

]2l1−n

E
[
f (t) f ′(s)/σ

]2l2−n
E [ f (t) f (s)]2q−2l1−2l2+n

=
(
r ′′(t − s)

σ 2

)n (r ′(t − s)

σ

)2(l1+l2−n)

(r(t − s))2(q−l1−l2)+n .

Finally, we count the number of such diagrams. There are

(
2l1
n

)(
2l2
n

)
n!

ways to choose n vertices labeled f ′(t)/σ , to choose n vertices labeled f ′(s)/σ and
to pair them. There are

(
2q − 2l2
2l1 − n

)
(2l1 − n)!

ways to choose 2l1 − n vertices labeled f (s) and to pair them with the remaining
vertices labeled f ′(t)/σ . There are

(
2q − 2l1

2q − 2l1 − 2l2 + n

)
(2q − 2l1 − 2l2 + n)!

ways to choose 2q − 2l1 − 2l2 + n vertices labeled f (t) and to pair them with the
remaining ones labeled f (s). There are

(2l2 − n)!
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An asymptotic formula for the variance of the number of… 1013

ways to pair the remaining vertices labeled f (t) and f ′(s)/σ . Since these choices are
independent, we multiply these counts to get that there are bq(l1, l2, n) such diagrams,
where bq is given by (11). Applying the diagram formula completes the proof. ��

3 Proofs of Theorem 1 (a) and (b)

In this section, we prove parts (a) and (b) of Theorem 1. Our method is to bound each
Vq(T ) by V1(T ) and apply Proposition 4. We achieve this by proving the following
properties of the polynomials Pq (recall (13)).

Proposition 8 For all q ≥ 1 we have (x + z)2 | Pq(x, y, z).

Proposition 9 Set M = max(|x | + |y|, |y| + |z|). Then

|Pq(x, y, z)|
(x + z)2

≤ e2√
π
q3/24qM2q−2. (21)

Proving Proposition 8 amounts to proving some identities for the coefficients of the
polynomials Pq , which is deferred to Sect. 5 where we implement a general method
due to Zeilberger [2]. We proceed to prove Proposition 9.

3.1 Proof of Proposition 9

By Proposition 8, we may prove Proposition 9 by bounding the second derivative of
Pq . To achieve this we borrow the main idea from the proof of Arcones’ Lemma [3,
Lemma 1].

Proof of Proposition 9 Our goal is to bound ∂2Pq
∂x2

. For k ≤ 2q − 2, define

αq(k) =
{
0, for odd k,
1
q! · ( q

k/2

) (2q−k)!k!
k−1 , for even k,

which yields (recall (10))

αq(2k) =
(
q

k

)
(2q − 2k)!(2k)!
(2k − 1) · q! = (2q − 2k)!(2k)! · aq(k).

Let 0 ≤ k, l ≤ 2q−2 and suppose that n is an integer such thatmax(0, l+k−2q+2) ≤
n ≤ min(l, k). Recalling (11) we have

αq(2k)αq(2l) = (2q − 2k)!(2k)!(2q − 2l)!(2l)! · aq(k)aq(l)
= (2q − 2k − 2l + n)!(2k − n)!(2l − n)!n! · aq(k)aq(l)bq(k, l, n)
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1014 E. Assaf et al.

and so

aq(k)aq(l)bq(k, l, n)
∂2

∂x2

[
x2(q−k−l)+n

]

= αq(2k)αq(2l)x2q−2k−2l−2+n

(2q − 2k − 2l − 2 + n)!(2k − n)!(2l − n)!n! . (22)

Let

k1 = 2q − 2 − k, k2 = k, l1 = 2q − 2 − l, and l2 = l,

define

A(k, l) =
{(

2q − l − k − 2 + n l − n
k − n n

)
: max(0, l + k − 2q + 2) ≤ n ≤ min(l, k)

}

=
{
a =

(
a11 a12
a21 a22

)
: ai j ∈ N0, ai1 + ai2 = ki , a1i + a2i = li

}

and

Ã(k) =
2q−2⋃
l=0

A(k, l) =
{
a =

(
a11 a12
a21 a22

)
: ai j ∈ N0, ai1 + ai2 = ki

}
.

Then, using (22) and recalling (12), we have

∂2 P̃q
∂x2

=
q−1∑
k,l=0

αq(2k)αq(2l)
min(2k,2l)∑

n=max(0,2k+2l−2q+2)

x2(q−k−l−1)+n

(2q − 2k − 2l − 2 + n)!
y2k−n

(2k − n)!
y2l−n

(2l − n)!
zn

n!

=
q−1∑
k,l=0

αq(2k)αq(2l)
∑

A∈A(2k,2l)

2∏
i, j=1

x
ai j
i j

ai j !

=
2q−2∑
k,l=0

αq(k)αq(l)
∑

A∈A(k,l)

2∏
i, j=1

x
ai j
i j

ai j !

where

x11 = x, x12 = x21 = y, and x22 = z.

We now bound

∣∣∣∣∣
∂2 P̃q
∂x2

∣∣∣∣∣ ≤
2q−2∑
k,l=0

∣∣αq(k)αq(l)
∣∣ ∑
a∈A(k,l)

2∏
i, j=1

|xi j |ai j
ai j !
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An asymptotic formula for the variance of the number of… 1015

≤
2q−2∑
k,l=0

(
αq(k)2 + αq(l)2

2

) ∑
a∈A(k,l)

2∏
i, j=1

|xi j |ai j
ai j !

Algebraic manipulation of this last quantity yields

∣∣∣∣∣
∂2 P̃q
∂x2

∣∣∣∣∣ ≤
2q−2∑
k=0

αq(k)
2
2q−2∑
l=0

∑
a∈A(k,l)

2∏
i, j=1

|xi j |ai j
ai j ! =

2q−2∑
k=0

αq(k)
2
∑

a∈Ã(k)

2∏
i, j=1

|xi j |ai j
ai j !

Applying the Binomial Theorem to the last term gives

2q−2∑
k=0

αq(k)
2

2∏
i=1

(|xi1| + |xi2|)ki
ki ! ≤ M2q−2

2q−2∑
k=0

αq(k)2

k!(2q − 2 − k)!

≤ 4q2M2q−2
2q−2∑
k=0

αq(k)2

k!(2q − k)!

= 4q2M2q−2
q−1∑
k=0

1

(q!)2
(
q

k

)2
(2k)!(2q − 2k)!

(2k − 1)2
= 4q2cqM

2q−2.

where the last identity is due to Lemma 10 below, and we remind the reader of (14).
We also have, from (13), that

∂2Pq
∂x2

= ∂2 P̃q
∂x2

+ (2q − 1)(2q − 2)cq
(
x2q−3z + (2q − 3)x2q−4y2

)
.

We next bound this final summand. Note that for q = 1 this term vanishes. Otherwise,
on the domain DM = {|x | + |y| ≤ M, |y| + |z| ≤ M}, it attains its maximum on the
boundary, and a calculation reveals the maximum is attained at |z| = |x | = M, y = 0.
Therefore

|x2q−3z + (2q − 3)x2q−4y2| ≤ M2q−2.

Combining these two estimates we obtain

∣∣∣∣∂
2Pq
∂x2

∣∣∣∣ ≤
(
4q2 + (2q − 1)(2q − 2)

)
cqM

2q−2 ≤ 8q2cqM
2q−2.

Using Sterling’s bounds10 we see that
(2q
q

) ≥ 2
√

π

e2
22q√
q which yields

cq = 24q

2q
(2q
q

) ≤ e2

4
√

π

4q√
q

10 The constants here are not asymptotically optimal, but this is irrelevant for our purposes.
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1016 E. Assaf et al.

so that

sup
DM

∣∣∣∣∂
2Pq
∂x2

∣∣∣∣ ≤ 2e2√
π
q3/24qM2q−2. (23)

By the mean value theorem,

Pq(x, y, z) = Pq(−z, y, z) + ∂Pq
∂x

(−z, y, z)(x + z) + 1

2

∂2Pq
∂x2

(t, y, z)(x + z)2

for some t between x and −z. It follows from Proposition 8 that Pq(−z, y, z) =
∂Pq
∂x (−z, y, z) = 0, so that

Pq(x, y, z) = 1

2

∂2Pq
∂x2

(t, y, z)(x + z)2.

Note that |t | ≤ max(|x |, |z|) ≤ M − |y| and so by (23) we have

|Pq(x, y, z)|
(x + z)2

≤ 1

2
sup

(t,y,z)∈DM

∣∣∣∣∂
2Pq
∂x2

(t, y, z)

∣∣∣∣ ≤ e2√
π
q3/24qM2q−2.

��
In the course of the proof we used the following computation.

Lemma 10 For all q ∈ N we have

cq =
q∑

l=0

(
2l

l

)(
2q − 2l

q − l

)
1

(2l − 1)2
.

Proof For q ≥ 0, let us denote Tq = ∑q
l=0

(2 l
l

)(2q−2 l
q−l

) 1
(2 l−1)2

. Notice that

∞∑
q=0

Tqx
2q = φ(x)ψ(x) (24)

where

φ(x) =
∞∑
l=0

(
2l

l

)
x2l

(2l − 1)2
, and ψ(x) =

∞∑
l=0

(
2l

l

)
x2l = 1√

1 − 4x2
.

We next compute φ. We have

d

dx

[
φ(x)

x

]
=

∞∑
l=0

(
2l

l

)
x2l−2

2l − 1
= − 1

x2

√
1 − 4x2 = d

dx

[√
1 − 4x2

x
+ 2 arcsin(2x)

]
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An asymptotic formula for the variance of the number of… 1017

and so φ(x)
x =

√
1−4x2
x +2 arcsin(2x)+C for some constantC . Since all the functions in

this equation are odd, it follows thatC = 0, and so φ(x) = √
1 − 4x2+2x arcsin(2x).

Therefore, using the Taylor series (20) once more,

φ(x)ψ(x) = 1 + 2x arcsin(2x)√
1 − 4x2

= 1 + x

2

d

dx
(arcsin(2x))2

= 1 + x

2

d

dx

∞∑
q=1

(4x)2q

2q2
(2q
q

) = 1 +
∞∑
q=1

42q x2q

2q
(2q
q

) .

Comparing this with (24) we conclude that Tq = 24q

2q(2qq )
= cq for q ≥ 1. ��

3.2 Lower bound

In this subsection we show that the lower bound in Theorem 1 (b) actually holds for
any process. We will also use this lower bound in deducing Theorem 1 (a) from
Proposition 9. We note that the estimate (25) also appears in [22].

Proposition 11 For any SGP,

Var[N (T )] ≥ σ 2

π2 T
∫ T

0

(
1 − t

T

)(
r(t) + r ′′(t)

σ 2

)2

dt .

In particular, for any non-degenerate SGP there exists a constant C = C(ρ) > 0 such
that

Var[N (T )] ≥ CT , ∀T > 0. (25)

Proof From Proposition 4 we have

Var[N (T )] ≥ σ 2

4π2 V1(T )

and the first statement of Proposition 11 follows simply by computing

P1(x, y, z) = 2(x + z)2

which gives

V1(T ) = 4T
∫ T

0

(
1 − t

T

)(
r(t) + r ′′(t)

σ 2

)2

dt . (26)
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Todeduce the second statement it is enough tofind an interval I such that
∣∣∣r + r ′′

σ 2

∣∣∣ ≥
C > 0 on I . But this follows from the fact that r ′′ is continuous and r is not cosine. ��

3.3 Proof of Theorem 1 (a)

Having Proposition 9 at our disposal, we are ready to prove Theorem 1 (a). Let

M ′ = lim sup
|t |→∞

ϕ(t) < 1

and choose M ∈ (M ′, 1
)
. Then there exists some T0 > 0 such that ϕ(t) ≤ M for all

|t | > T0. We can rearrange (15) to obtain

Vq(T ) = Vq(T0) + 2 (T − T0)
∫ T0

0
Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

+ 2
∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt . (27)

Proposition 9 yields

∣∣∣∣
∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

∣∣∣∣ ≤ e2√
π
q3/24qM2q−2

∫ T

T0
(T − t)

(
r(t) + r ′′(t)

σ 2

)2

dt

≤ e2√
π
q3/24qM2q−2

∫ T

0
(T − t)

(
r(t) + r ′′(t)

σ 2

)2

dt

= e2√
π
q3/24q−1M2q−2V1(T ), (28)

see (26). Since M < 1 we see that

∞∑
q=1

1

4q

∣∣∣∣
∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

∣∣∣∣ < ∞.

ByProposition 4, sincewe are assuming theGeman condition, we have
∑∞

q=1
Vq (T )

4q <

∞ for every T > 0 and so we may write, from (27)

∞∑
q=1

Vq(T )

4q
=

∞∑
q=1

Vq(T0)

4q
+ (T − T0)

∞∑
q=1

1

4q

∫ T0

0
Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

+
∞∑
q=1

1

4q

∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt .
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An asymptotic formula for the variance of the number of… 1019

Combining this with (28) we get

∞∑
q=1

Vq(T )

4q
≤ C0 + C1T + C2V1(T )

where C0,C1 and C2 depend on T0 and M . Recalling Proposition 4 we have

Var[N (T )] ≤ σ 2

π2

∞∑
q=1

Vq(T )

4q
+ 1

4
≤ C3V1(T )

where we have used Proposition 11 for the final bound.

3.4 Proof of Theorem 1 (b)

By (26) we need to show that Var[N (T )] ∼ σ 2

4π2 V1(T ). The lower bound follows
immediately from Proposition 11 and so we focus on the upper bound. We proceed as
in the previous section, but estimate more carefully. By Proposition 4 we have

Var[N (T )] ≤ σ 2

4π2 V1(T ) + σ 2

π2

∞∑
q=2

Vq(T )

4q
+ 1

4
.

Now fix ε > 0 and choose T0 = T0(ε) such that ϕ(t) < ε for all t > T0. As in the
previous section we write

∞∑
q=2

Vq(T )

4q
=

∞∑
q=2

Vq(T0)

4q
+ (T − T0)

∞∑
q=2

1

4q

∫ T0

0
Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

+
∞∑
q=2

1

4q

∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

and estimate

∣∣∣∣
∫ T

T0
(T − t) Pq

(
r(t),

r ′(t)
σ

,
r ′′(t)
σ 2

)
dt

∣∣∣∣ ≤ e2

2
√

π
q3/24qε2q−2V1(T ).

This yields

∞∑
q=2

Vq(T )

4q
= C0 + C1T + 2e2√

π

∞∑
q=2

q3/2(4ε2)q−1V1(T ) ≤ C0 + C1T + C3ε
2V1(T )
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and we finally note that since r + r ′′
σ 2 /∈ L2(R) we have

V1(T )

T
→ ∞

as T → ∞. This completes the proof.

3.5 Conjectural bounds

In this section we give some evidence in favor of the conjectures stated in the Intro-
duction. The precise expression for the variance appearing in Proposition 4 establishes
a way to prove even tighter upper bounds, by reducing to combinatorial statements
about the polynomials Pq , defined in (13). It is not difficult to see that the vector
(r(t), r ′(t)/σ, r ′′(t)/σ 2) always lies in the domain

D = {(x, y, z) ∈ R
3 : x2 + y2 ≤ 1, y2 + z2 ≤ 1}.

By Proposition 8, Rq(x, y, z) = Pq(x, y, z)/(x + z)2 is a homogeneous polynomial
and since D contains all segments to the origin, it follows that Rq attains the maximum
of its absolute value on the boundary. We expect that the maximum should be obtained
at the points where |x | = |z|.

When x = −z, the same techniques employed in this paper show the value to be

Pq(x, y, z)

(x + z)2

∣∣∣
z=−x

= 22q−1(x2 + y2)q−1

and so on this boundary component the value of Rq is 22q−1.We believe that this bound
is the one relevant to Gaussian processes, however numerical computations suggest
that Rq can be much larger at the points where x = z. We believe that there is some
‘hidden’ structure that prevents r(t) from being close to r ′′(t)/σ 2 in certain subregions
of D. For example, if r(t) is close to 1 then we should be close to a local maximum
and so we would expect r ′′(t) to be negative. Understanding the ‘true domain’ where
the vector (r(t), r ′(t)/σ, r ′′(t)/σ 2) ‘lives’ already appears to be a quite interesting
question.

4 Atomic spectral measure

4.1 The proofs of Theorem 1 (c) and Corollary 3

In this section we consider the effect of atoms in the spectral measure, that is, we prove
Theorem 1 (c) and Corollary 3. Our proof relies on the following proposition.
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An asymptotic formula for the variance of the number of… 1021

Proposition 12 Let μ be a signed-measure with
∫
R
d|μ| < ∞. Then μ contains an

atom if and only if there exists c > 0 such that

∫ T

−T
(T − |t |) |μ̂(t)|2dt ≥ cT 2

for all T > 0.

We postpone the proof of Proposition 12 to Sect. 4.2. We will also need the following
result.

Lemma 13 Let f be a SGP with covariance kernel r , spectral measure ρ and suppose
that ρ has a continuous component. Let ψ(t) = A cos(σ t + α), where A ∈ R,
α ∈ [0, 2π ] and σ 2 = −r ′′(0). Denote by NJ (ψ) = #{t ∈ [0, π J/σ ] : f (t) = ψ(t)}
the number of crossings of the curve ψ by the process. Then E[NJ (ψ)] = J .

Proof Denote the Gaussian density function by ϕ and by � the corresponding
distribution function. The generalised Rice formula [7, Equation 13.2.1] gives

ENJ (ψ) = σ

∫ π J
σ

0
ϕ(ψ(y))

[
2ϕ

(
ψ ′(y)

σ

)
+ ψ ′(y)

σ

(
2�

(
ψ ′(y)

σ

)
− 1

)]
dy

= σ

∫ π J
σ

0

e− A2
2 cos2(σ y+α)

√
2π

⎡
⎣2e− A2

2 sin2(σ y+α)

√
2π

−A sin(σ y + α) (2�(−A sin(σ y + α)) − 1)] dy

= Je− A2
2 − σ√

2π

∫ π J
σ

0
e− A2

2 cos2(σ y+α)

A sin(σ y + α) (2�(−A sin(σ y + α)) − 1) dy

= Je− A2
2 − σ√

2π

∫ π J
σ

0
e− A2

2 cos2(σ y+α)|A| sin(σ y + α)

(2�(−|A| sin(σ y + α)) − 1) dy.

Write

F(y) = e− A2
2 cos2(y)|A| sin(y) (2�(−|A| sin(y)) − 1)

and notice that F is periodic with period π . This yields

ENJ (ψ) = J

(
e− A2

2 − σ√
2π

∫ π
σ

0
F(σ y + α)dy

)

= J

(
e− A2

2 − 1√
2π

∫ π

0
F(y)dy

)
. (29)
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1022 E. Assaf et al.

Moreover, since F is even we have

∫ π

0
F(y) dy =

∫ π
2

0
F(y) dy +

∫ π

π
2

F(y) dy =
∫ π

2

0
F(y) dy +

∫ 0

− π
2

F(y) dy

= 2
∫ π

2

0
F(y) dy.

Substituting u = |A| cos(y) we obtain

− 1√
2π

∫ π

0
F(y)dy = −

√
2

π

∫ π/2

0
F(y)dy

= −
√

2

π

∫ |A|

0
e− u2

2 ·
(
2�

(
−
√
A2 − u2

)
− 1

)
du

= 2

π

∫ |A|

0

∫ √
A2−u2

0
e− u2+v2

2 dv du

= 2

π

∫ |A|

0

∫ π/2

0
e− r2

2 rdθdr = 1 − e− A2
2 .

Inserting this value into (29) yields the result. ��

Proof of Theorem 1 (c) First we note that, by stationarity, Var[N (T )] ≤ CT 2 for some
C > 0. Assume that ρ has an atom at a point different from σ . By (16) and (26), to
show that Var[N (T )] ≥ cσ 2

2π2 T
2 for some c > 0 it is enough to see that

∫ T

−T
(T − |t |)

(
r(t) + r ′′(t)

σ 2

)2

dt ≥ cT 2.

But this follows from Proposition 12 if we define the signed measure μ by dμ(λ) =
(1 − λ2

σ 2 )dρ(λ) and notice that μ̂ = r + r ′′
σ 2 and that μ has an atom.

For the converse, notice that it is enough to check that for integer J we have

Var[N (π
σ
J )]

J 2
→ 0 as J → ∞,

since this implies that Var[N (T )] = o(T 2), by stationarity. Assume first that ρ has
no atoms; we adapt the proof of [5, Thm 4]. By the Fomin-Grenander-Maruyama
theorem, f is an ergodic process (see, e.g., [12, Sec. 5.10]). By standard arguments,
this also implies that the sequence

N j = #
{
t ∈

[
( j − 1)

π

σ
, j

π

σ

)
: f (t) = 0

}
.
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is ergodic. Recall that we assume the Geman condition, which implies that the first
and second moments of

N
(π

σ
J
)

=
J∑

j=1

N j

are finite. Thus, by von Neumann’s ergodic theorem, we have

lim
J→∞

N (π
σ
J )

J
= E[N1] = 1,

where the convergence is both in L1 and L2 (see [31, Cor. 1.14.1]). We conclude that

lim
J→∞

Var[N (π
σ
J )]

J 2
= 0.

Finally suppose that ρ = θρc + (1 − θ)δ∗
σ where 0 < θ < 1 and ρc has no atoms.

We may represent the corresponding process as

f (t) = √
θ fc +√

(1 − θ)X cos(σ t + �)

where fc is a SGP with spectral measure ρc, X ∼ χ2(2), � ∼ Unif([0, 2π ]), and
moreover fc, X and � are pairwise independent. By the law of total variance and
Lemma 13 we have

Var
[
N
(π

σ
J
)]

= E

[
Var

[
N
(π

σ
J
)∣∣∣X ,�

]]+ Var
[
E
[
N
(π

σ
J
)∣∣∣X ,�

]]

= E

[
Var

[
N
(π

σ
J
)∣∣∣X ,�

]]
. (30)

We define, for A ∈ R and α ∈ [0, 2π ],

N A,α
j = #

{
t ∈

[
( j − 1)

π

σ
, j

π

σ

)
: fc(t) = A cos(σ t + α)

}
.

As before the process fc is ergodic, and so is the sequence N A,α
j for fixed A and α.

This implies that

lim
J→∞

Var[N (π
σ
J )|X ,�]

J 2
= 0

(almost surely), exactly as before. Furthermore, using stationarity we have

1

J 2
Var

[
N
(π

σ
J
)∣∣∣X ,�

] ≤ Var
[
N
(π

σ

)∣∣∣X ,�
]
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1024 E. Assaf et al.

and using (30) we see that

E

[
Var

[
N
(π

σ

)∣∣∣X ,�
]] = Var

[
N
(π

σ

)]
< +∞,

since we assume the Geman condition. It follows from dominated convergence that

lim
J→∞

1

J 2
E

[
Var

[
N
(π

σ
J
)∣∣∣X ,�

]] = 0

whence limJ→∞
Var[N ( π

σ
J )]

J 2
= 0. ��

Remark We remarked in the introduction that the presence of a special atom in Theo-
rem 1 (c) is unique to the zero level; here we give a brief explanation. Indeed, consider
the spectral measure ρ = θρ0 + (1 − θ)δ∗

α where 0 < θ < 1, α ∈ R and ρ0 is a
symmetric probability measure. We may represent the corresponding process as

f (t) = √
θ f0 +√

(1 − θ)X cos(αt + �)

where f0 is a SGP with spectral measure ρ0, and X and � are as above. Denote by
N(T ) the number of crossings of the level  by the process f . Again using the law
of total variance we have

Var
[
N

(2π
α

J
)]

≥ Var
[
E
[
N

(2π
α

J
)∣∣∣X ,�

]]

and by stationarity and periodicity we have E
[
N

(
2π
α
J
)∣∣∣X ,�

] =
JE
[
N

(
2π
α

)∣∣∣X ,�
]
. A necessary condition for the variance to be sub-quadratic

is therefore that E
[
N

(
2π
α

)∣∣∣X ,�
]
is deterministic, and one may check using Kac-

Rice that this requires  = 0 and α2 = ∫
R

λ2dρ0(λ). Specifically, one may check

that the values at X = 0 and as X → ∞ cannot both equal E
[
N

( 2π
α

)]
unless these

conditions are satisfied.

Proof of Corollary 3 Let M = lim sup|t |→∞ ϕ(t), where ϕ is defined in (3). By
assumption we have M < 1 and we define

θ0 = 1 − M√
2 − M

.

Wewould like to apply Theorem 1 (a) to the spectral measure ρθ . Writing rθ = F[ρθ ]
and r = F[ρ] we have rθ (t) = (1− θ)r(t) + θ cos(σ t), and σ 2

θ = −r ′′
θ (0) = σ 2. We

accordingly compute

ϕθ (t) = max

{
|rθ (t)| + |r ′

θ (t)|
σ

,
|r ′′

θ (t)|
σ 2 + |r ′

θ (t)|
σ

}
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An asymptotic formula for the variance of the number of… 1025

≤ max
{
(1 − θ)

(
|r(t)| + |r ′(t)|

σ

)
+ θ(| cos σ t | + | sin σ t |),

(1 − θ)

( |r ′′(t)|
σ 2 + |r ′(t)|

σ

)
+ θ(| cos σ t | + | sin σ t |)

}

≤ (1 − θ)M + θ
√
2

and so

lim sup
|t |→∞

ϕθ (t) < 1

for θ < θ0. Applying Theorem 1 (a) to ρθ and to ρ we obtain

Var[N (ρθ ; T )] � T
∫ T

−T

(
1 − |t |

T

)(
rθ (t) + r ′′

θ (t)

σ 2
θ

)2

dt

= (1 − θ)2T
∫ T

−T

(
1 − |t |

T

)(
r(t) + r ′′(t)

σ 2

)2

dt

� Var[N (ρ; T )].

��

4.2 Proof of Proposition 12

We begin with a review of some elementary harmonic analysis that we will need,
for more details and proofs see, e.g., Katznelson’s book [17, Ch. VI]. Let M(R)

denote the space of all finite signed measures on R endowed with the total mass
norm ‖μ‖1 = ∫

R
d|μ|. Recall that the convolution of two measures μ, ν ∈ M(R)

is given by (μ ∗ ν)(E) = ∫
μ(E − λ)dν(λ) for any measurable set E and satisfies

‖μ ∗ ν‖1 ≤ ‖μ‖1‖ν‖1 and F[μ ∗ ν] = F[μ] · F[ν]. Moreover, F[·] is a uniformly
continuous map with ‖F[μ]‖∞ ≤ ‖μ‖1. We identify a function f ∈ L1 with the
measure whose density is f .

The following lemma is a version of Parseval’s identity, see [17, VI 2.2].

Lemma 14 (Parseval) If f ,F[ f ] ∈ L1(R) and ν ∈ M(R), then
∫

f dν =
1
2π

∫
F[ f ]F[ν].

A simple application of Parseval’s identity proves our next lemma.

Lemma 15 Suppose that μ, ν ∈ M(R) and S,F[S] ∈ L1(R). Then

∫
(S ∗ μ)dν = 1

2π

∫
F[S]F[μ]F[ν].

Proof Note that S ∗ μ is a function and further that

‖S ∗ μ‖1 ≤ ‖μ‖1‖S‖1 < ∞, and
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1026 E. Assaf et al.

‖F[S ∗ μ]‖1 = ‖F[S]F[μ]‖1 ≤ ‖F[μ]‖∞‖F[S]‖1 ≤ ‖μ‖1‖F[S]‖1 < ∞.

A simple application of Lemma 14 finishes the proof. ��

We will also use the so-called ‘triangle function’

TT (t) =
(
1 − |t |

T

)
1[−T ,T ](t)

which satisfies TT = F[ST ] where11

ST (λ) = T

2π
sinc2

(
Tλ

2

)
.

Notice that applying Lemma 15 to these functions, we obtain

∫ T

−T

(
1 − |t |

T

)
|μ̂(t)|2dt =

∫
R

TT |F[μ]|2 = 2π
∫

(ST ∗ μ) dμ,

which is (6).
We are now ready to prove Proposition 12. First suppose that μ contains an atom at

α. Write μ = μ1 + μ2 where μ1 = cδα for some c = 0 and μ2({α}) = 0. Note that

|μ2([α − ε, α + ε])| ≤ |μ2|([α − ε, α + ε]) ↓ 0, as ε ↓ 0. (31)

We have

|F[μ](t)|2 = |F[μ1](t)|2 + 2Re{F[μ1](t)F[μ2](t)} + |F[μ2](t)|2
≥ |c|2 + 2Re{F[μ1](t)F[μ2](t)}

Using this and Lemma 15 we obtain

∫ T

−T
(T − |t |)|μ̂(t)|2dt = T

∫
R

TT |F[μ]|2

≥ |c|2T
∫
R

TT + 2TRe

{∫
R

TTF[μ1]F[μ2]
}

= |c|2T 2 + 4πT Re

{∫
R

ST ∗ μ1 dμ2

}
.

It is therefore enough to show that
∫
R
(ST ∗ μ1) dμ2 = o(T ). We bound

11 We use the normalisation sinc(x) = sin x
x .
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An asymptotic formula for the variance of the number of… 1027

∣∣∣∣
∫

(ST ∗ μ1)(λ) dμ2(λ)

∣∣∣∣ =
∣∣∣∣cT2π

∫
R

sinc2
( T
2 (λ − α)

)
dμ2(λ)

∣∣∣∣
≤ |c|T

2π

∫
R

sinc2
( T
2 (λ − α)

)
d|μ2|(λ).

Let Iα(T ) = [
α − log T

T , α + log T
T

]
. By (31) we have

∫
Iα(T )

sinc2
( T
2 (λ − α)

)
d|μ2|(λ) ≤ |μ2|(Iα(T )) → 0, as T → ∞.

On R\Iα(T ) we have T
2 |λ − α| ≥ log T

2 , so that

∫
R\Iα(T )

sinc2
( T
2 (λ − α)

)
d|μ2|(λ) ≤ 4

(log T )2
|μ2|(R) → 0, as T → ∞.

This concludes the first part of the proof.
Conversely, suppose that μ contains no atoms. Recall that

∫ T

−T

(
1 − |t |

T

)
|μ̂(t)|2dt = 2π

∫
(ST ∗ μ) dμ.

We will show that |(ST ∗ μ)(λ)| = o(T ), uniformly in λ, which will conclude the
proof. As before, denoting Iλ(T ) = [

λ − log T
T , λ + log T

T

]
we have

|(ST ∗ μ)(λ)| =
∣∣∣∣
∫
R

T

2π
sinc2

( T
2 (λ − τ

)
dμ(τ)

∣∣∣∣ ≤ T

2π

(
|μ|(Iλ(T )) + 4|μ|(R)

(log T )2

)
.

It therefore suffices to prove the following claim.

Claim 16 Let ν be a non-negative, finite measure on R that contains no atoms. Then

sup
x∈R

ν
([x − ε, x + ε]) → 0, as ε ↓ 0.

Proof Denote B(x, ε) = [x − ε, x + ε] andm(ε) = supx∈R ν
(
B(x, ε)

)
. It is clear that

m(ε) decreases with ε so m(ε) must converge as ε ↓ 0 to some non-negative limit,
2δ ≥ 0. Suppose that δ > 0 and choose N > 0 such that ν(R\[−N/2, N/2]) < δ.
Fix n ∈ N and divide [−N , N ] into disjoint ‘dyadic’ intervals

Dn = {[kN2−n, (k + 1)N2−n) : k ∈ Z ∩ [−2n, 2n)
}
.

For any x ∈ R, either B(x, N
2n ) ⊆ R\[−N/2, N/2], which implies that

ν(B(x, N
2n )) < δ, or B(x, N

2n ) ⊆ I ∪ I ′ for some I , I ′ ∈ Dn−1. Therefore,

m
( N
2n
) ≤ max

(
δ, 2 sup

I∈Dn−1

ν(I )

)
.
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1028 E. Assaf et al.

Recall that by definition of δ we have m
( N
2n
) ≥ 2δ. We conclude that for every n ∈ N

we can find In ∈ Dn such that

ν(In) ≥ δ. (32)

Next we shall construct a sequence of nested dyadic intervals {Jn}∞n=0 such that,
for all n,

Jn ∈ Dn, Jn+1 ⊆ Jn, ν(Jn) ≥ δ.

This will imply, by Cantor’s lemma, that
⋂

n Jn = {x} for some x ∈ R, and further
that ν({x}) = limn→∞ ν(Jn) ≥ δ > 0. This contradicts the assumption that ν has no
atoms, which will end our proof.

We start by setting J0 = [−N , N ]. Suppose that we have constructed J0 ⊃ J1 ⊃
J2 ⊃ · · · ⊃ Jm such that for every n > m we can find I ′

n ∈ Dn that satisfies

I ′
n ⊂ Jm, and ν(I ′

n) ≥ δ; (33)

that is, the interval Jm has a descendant of any generation whose ν-measure is at least
δ. Notice that this holds form = 0 by (32). Notice that if (33) fails for both descendants
of Jm in the generation Dm+1, then it also fails for Jm , since ν(J ) ≥ ν(J ′) for every
descendant J ′ ⊆ J . This completes the inductive construction of Jm and consequently
the proof. ��

5 Proof of Proposition 8

5.1 Dehomogenisation

Our first step is based on the following lemma.

Lemma 17 Let P(x, y, z) be a homogeneous polynomial. Then (x + z)2 | P(x, y, z)
if and only if P(−1, y, 1) = 0 and ∂P

∂x (−1, y, 1) = 0.

Proof Consider the polynomial f (x, y) = P(x, y, 1) and write f as a polynomial in
x + 1 to obtain f (x, y) = ∑d

j=0 a j (y) · (x + 1) j . Suppose first that

a0(y) = f (−1, y) = P(−1, y, 1) = 0 (34)

and

a1(y) = ∂ f

∂x
(−1, y) = ∂P

∂x
(−1, y, 1) = 0. (35)

It follows that (x + 1)2 | f (x, y), and we write f (x, y) = (x + 1)2g(x, y).
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As P(x, y, z) is homogeneous, one has

P(x, y, z) = zdeg P P

(
x

z
,
y

z
, 1

)
= zdeg P f

(
x

z
,
y

z

)

= zdeg P
(
x

z
+ 1

)2

g

(
x

z
,
y

z

)
= (x + z)2 · zdeg P−2g

(
x

z
,
y

z

)
.

Finally zdeg P−2g
(
x
z ,

y
z

)
is a homogeneous polynomial, and we are done.

For the converse, note that if (x + z)2 | P(x, y, z), then (x + 1)2 | f (x, y), hence
equations (34) and (35) hold. ��

In light of Lemma 17, Proposition 8 is equivalent to the next proposition.

Proposition 18 For all q ≥ 1 we have

(a) Pq(−1, y, 1) = 0, and

(b)
∂Pq
∂x (−1, y, 1) = 0.

We shall therefore concentrate on proving Proposition 18.

5.2 Reduction to a combinatorial identity

For z ∈ R and k ∈ Z, we use the standard notation (z)k for the rising factorial
Pochhammer symbol

(z)k = z(z + 1) · · · · · (z + k − 1) = �(z + k)

�(z)

where the second equality holds for z not a non-positive integer. We next reformulate
Proposition 18 in terms of the purely hypergeometric terms

Hq(l1, l2, k) =
(−1)l1+l2

(− 1
2

)
l1

· (− 1
2

)
l2

· ( 12
)
q−l1

· ( 12
)
q−l2

(2q − l1 − l2 − k)!(l2 − l1 + k)!(l1 − l2 + k)!(l1 + l2 − k)!

and

H ′
q(l1, l2, k) = (2q − l1 − l2 − k)Hq(l1, l2, k),

in order to be able to apply Zeilberger’s algorithm in Sect. 5.3. We note that Hq , H ′
q

are defined for every k, l1, l2 ∈ Z, by expressing everything in terms of the Gamma
function.

Proposition 19 For all q ≥ 1 we have
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1030 E. Assaf et al.

(a)

∑
l1,l2

Hq(l1, l2, k) =

⎧⎪⎨
⎪⎩
0, for k ≥ 2,

2−4q(2q − 1)cq , for k = 1,

2−4qcq , for k = 0.

(b)

∑
l1,l2

H ′
q(l1, l2, k) =

⎧⎪⎨
⎪⎩
0, for k ≥ 2,

2−4q(2q − 1)(2q − 2)cq , for k = 1,

2−4q(2q − 1)cq , for k = 0.

Proof that Proposition 19 is equivalent to Proposition 18 A rearrangement of the terms
in (13) yields

Pq(−1, y, 1) =
q∑

k=0

(−1)kdq(k) · y2k + cq
(
(2q − 1)y2 − 1

)
, (36)

where

dq(k) =
∑

k≤l1+l2≤2q−k
|l1−l2|≤k

aq(l1)aq(l2)bq(l1, l2, l1 + l2 − k) · (−1)l1+l2 .

Similarly, one obtains

∂Pq
∂x

(−1, y, 1) =
q∑

k=0

(−1)kd ′
q(k) · y2k + cq(2q − 1)

(
1 − (2q − 2)y2

)

where

d ′
q (k) =

∑
k≤l1+l2≤2q−k

|l1−l2|≤k

(2q − l1 − l2 − k) · aq (l1)aq (l2)bq (l1, l2, l1 + l2 − k) · (−1)l1+l2−1.

It is therefore enough to prove that

(−1)l1+l2aq(l1)aq(l2)bq(l1, l2, l1 + l2 − k) = 24q Hq(l1, l2, k),

which is easily verified by standard algebraic manipulations. ��
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5.3 Proof of Proposition 19 (a)

We will use the multivariate Zeilberger algorithm for multi-sum recurrences of
hypergeometric terms (see [2] and [18, Chapters 6 and 7]). For convenience we write

Sq(k) =
∑
l1,l2

Hq(l1, l2, k) = 2−4qdq(k).

First, we will handle the case where k = q.

Lemma 20 For all q ≥ 2 we have Sq(q) = 0.

Proof We have

dq(q) =
q∑

l=0

aq(l)aq(q − l)bq(l, q − l, 0) = 1

(q!)2
q∑

l=0

(
q

l

)2

· (2q − 2l)!(2l)!
(2l − 1)(2q − 2l − 1)

=
q∑

l=0

(
2q − 2l

q − l

)
1

2q − 2l − 1
·
(
2l

l

)
1

2l − 1
.

We write φ(x) = ∑∞
l=0

(2 l
l

) 1
2 l−1 x

l = −√
1 − 4x . Then

∑∞
q=0 dq(q)xq = φ(x)2 =

1 − 4x , showing that dq(q) = 0 for all q ≥ 2, whence the claim. ��
Next, we prove a recurrence relation for Sq(k).

Lemma 21 For all q ≥ 1 and all k = q + 2 we have

q2

8(2k − 2q − 3)(k − q − 2)
Sq(k) + 4kq − 4q2 + 2k − 7q − 4

4(2k − 2q − 3)(k − q − 2)
Sq+1(k) + Sq+2(k) = 0.

Proof Let us begin by defining some rational functions in 4 variables. Let

Q(1)
q (l1, l2, k) = 4q2(l1 − l2 − k) + 4qk3 + 8qk2(4 − l1 − l2)

+ 4qk (l1 − l2)
2 + 2qk(4l2 + 14l2 − 11) + 2q(2l1l2 + 3l1 − 9l2 + 3)

+ 4k(2k + 1)(3 − 2l1)(2l2 − 1) + 12l1l2 − 6l1 − 18l2 + 9,

Q(2)
q (l1, l2, k) = 8l21k − 4l21q + 4l1l2q − 12l1kq

+ 4l1q
2 − 4l2q

2 + 4kq2 − 8l21 + 4l1l2 − 12l1k

+ 10l1q − 6l2q + 10kq + 6l1 − 2l2 + 4k − 2q − 1

and

Qq(l1, l2, k) = 32k(2k − 2q − 3)(k − q − 2) · (2q − l1 − l2 − k + 1)4.

Define also

R(1)
q (l1, l2, k) = Q(1)

q (l1, l2, k)(1/2 + q − l1)(l1 + l2 − k)(l1 − l2 + k)

Qq(l1, l2, k)

123



1032 E. Assaf et al.

and

R(2)
q (l1, l2, k) = −Q(2)

q (, l1, l2, k)(1/2 + q − l2)(l1 + l2 − k)(l2 − l1 + k)

Qq(l1, l2, k)
.

Applying Zeilberger’s algorithm yields the following identity of rational functions,
which can be verified directly by expanding (and should be interpreted in the usual
way at the poles):

q2

8(2k − 2q − 3)(−q + k − 2)
+ 4kq − 4q2 + 2k − 7q − 4

4(2k − 2q − 3)(−q + k − 2)
· Hq+1(l1, l2, k)

Hq(l1, l2, k)

+ Hq+2(l1, l2, k)

Hq(l1, l2, k)

= R(1)
q (l1 + 1, l2, k) · Hq(l1 + 1, l2, k)

Hq(l1, l2, k)
− R(1)

q (l1, l2, k)

+ R(2)
q (l1, l2 + 1, k) · Hq(l1, l2 + 1, k)

Hq(l1, l2, k)
− R(2)

q (l1, l2, k).

Therefore, after multiplying both sides by Hq(l1, l2, k), one gets

q2Hq(l1, l2, k)

8(2k − 2q − 3)(−q + k − 2)

+ 4kq − 4q2 + 2k − 7q − 4

4(2k − 2q − 3)(−q + k − 2)
Hq+1(l1, l2, k) + Hq+2(l1, l2, k)

= G(1)
q (l1 + 1, l2, k) − G(1)

q (l1, l2, k) + G(2)
q (l1, l2 + 1, k) − G(2)

q (l1, l2, k),

where G(1)
q (l1, l2, k) = R(1)

q (l1, l2, k) · Hq(l1, l2, k), and G(2)
q (l1, l2, k) =

R(2)
q (l1, l2, k) · Hq(l1, l2, k). Tedious but routine manipulations show that G(1)

q and

G(2)
q are well-defined at the poles of R(1)

q and R(2)
q . We can now sum over all l1, l2

on both sides, noting that Hq (and therefore G(1)
q and G(2)

q ) vanish for |l1| or |l2|
sufficiently large, and get

q2

8(2k − 2q − 3)(−q + k − 2)
Sq (k) + 4kq − 4q2 + 2k − 7q − 4

4(2k − 2q − 3)(−q + k − 2)
Sq+1(k) + Sq+2(k) = 0,

as claimed. ��
Now Proposition 19 easily follows from Lemma 21, by induction.

Proof of Proposition 19 (a) We proceed by induction on q. For the base case note that

P1(x, y, z) = 2(x + z)2
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whence, recalling (36) and the relation Sq(k) = 2−4qdq(k),

(
S1(0) − 4

24

)
+
(

4

24
− S1(1)

)
y2 +

∑
k≥2

S1(k)y
2k = 1

24
P1(−1, y, 1) = 0.

This implies that

S1(k) =

⎧⎪⎨
⎪⎩
0, for k ≥ 2,
1
4 , for k = 1,
1
4 , for k = 0,

which is exactly the case q = 1. Similarly, one verifies the formula for q = 2.
Using now Lemma 21, it is clear that we have Sq+2(k) = 0 for all 2 ≤ k < q + 2.

By Lemma 20, this also holds for k = q+2. By definition, Sq+2(k) = 0 for k > q+2.
It remains to consider the cases k = 0, 1. Assume that

Sq(0) = 2−4qcq , Sq(1) = 2−4q(2q − 1)cq
Sq+1(0) = 2−4(q+1)cq+1, Sq+1(1) = 2−4(q+1)(2q + 1)cq+1.

Then from Lemma 21 we have

−Sq+2(0) = q2

8(2q + 3)(q + 2)
· 1

2q · (2qq
) − 4q2 + 7q + 4

4(2q + 3)(q + 2)
· 1

(2q + 2) · (2q+2
q+1

)

= − 1

2(q + 2) · (2q+4
q+2

)

and similarly

−Sq+2(1) = q2

8(2q + 1)(q + 1)
· 2q − 1

2q · (2qq
) − 4q2 + 3q + 2

4(2q + 1)(q + 1)
· 2q + 1

(2q + 2) · (2q+2
q+1

)

= − 1

4
(2q+2
q+1

)

as claimed. ��

5.4 Proof of Proposition 19 (b)

The development is very similar to that of the previous section, and we shall
accordingly give less detail. We define

S′
q(k) =

∑
l1,l2

H ′
q(l1, l2, k)
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and notice that S′
q(k) = 2−4qd ′

q(k). We begin with a recurrence relation, similar to
before.

Lemma 22 For all q ≥ 1 and all k = 2q − 1, we have

q(k − 2q − 1)

2(2k − 2q − 1)(k − 2q + 1)
S′
q(k) + S′

q+1(k) = 0.

Proof This time we define

Q′
1(q, l1, l2, k) = 2l2k − 4kq + 4l2q − k + 2l2 − 2q − 1,

Q′
2(q, l1, l2, k) = 2k2 − 2l2k − 4l2q + 3k − 2l2 + 2q + 1

and

Q′(q, l1, l2, k) = 4k(2k − 2q − 1)(k − 2q + 1)(2q − l1 − l2 − k)(2q − l1 − l2 − k + 1).

Define also

R′
1(q, l1, l2, k) = Q′

1(q, l1, l2, k)(1/2 + q − l1)(l1 + l2 − k)(l1 − l2 + k)

Q ′
(q, l1, l2, k)

and

R′
2(q, l1, l2, k) = Q′

2(q, l1, l2, k)(1/2 + q − l2)(l1 + l2 − k)(l2 − l1 + k)

Q ′
(q, l1, l2, k)

.

Applying Zeilberger’s algorithm again yields

q(k − 2q − 1)

2(2k − 2q − 1)(k − 2q + 1)
H ′
q(l1, l2, k) + H ′

q+1(l1, l2, k)

= G ′
1(q, l1 + 1, l2, k) − G ′

1(q, l1, l2, k) + G ′
2(q, l1, l2 + 1, k) − G ′

2(q, l1, l2, k)

where G ′
1(q, l1, l2, k) = R′

1(q, l1, l2, k) · H ′
q(l1, l2, k), and G ′

2(q, l1, l2, k) =
R′
2(q, l1, l2, k) · H ′

q(l1, l2, k). We can now sum over all l1, l2 on both sides and get the
result. ��
Proposition 19 (b) now follows by induction, as before.
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