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Abstract
We study a discrete-time Markov process on triangular arrays of matrices of size
d ≥ 1, driven by inverse Wishart random matrices. The components of the right edge
evolve as multiplicative random walks on positive definite matrices with one-sided
interactions and can be viewed as a d-dimensional generalisation of log-gamma poly-
mer partition functions. We establish intertwining relations to prove that, for suitable
initial configurations of the triangular process, the bottom edge has an autonomous
Markovian evolution with an explicit transition kernel.We then show that, for a special
singular initial configuration, the fixed-time law of the bottom edge is a matrix Whit-
taker measure, which we define. To achieve this, we perform a Laplace approximation
that requires solving a constrained minimisation problem for certain energy functions
of matrix arguments on directed graphs.
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1 Introduction

In the last few decades, we have witnessed a surge of research on stochastic integrable
models, often motivated by problems in mathematical physics and enriched by deep
connectionswith algebraic combinatorics, representation theory, symmetric functions,
and integrable systems [9, 10]. Some of the most intensively studied models are inter-
acting particle systems and stochastic growth processes in the Kardar–Parisi–Zhang
(KPZ) universality class [15, 45].

From amathematical perspective, it is natural to consider noncommutative versions
of these models, which have very recently received some attention. In [33] a system of
interactingBrownian particles in the space of positive definitematriceswas considered
and shown to have an integrable structure, related to the non-Abelian Toda chain and
Whittaker functions of matrix arguments (the latter introduced in that article). In the
discrete-time setting, [1] proved Matsumoto-Yor and Dufresne type theorems for a
random walk on positive definite matrices.

On the other hand, from the theoretical physics point of view, such matrix models
may find interesting applications in quantum stochastic dynamics, as set out in [20].
In particular, [20] introduced a matrix generalisation of the classical Kesten recursion
and studied a related quantum problem of interacting fermions in a Morse potential.
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Matrix Whittaker processes 205

Quoting the authors, their initial motivation was “to explore possible matrix (non-
commuting) generalizations of the famous directed polymer problem (which is related
to the KPZ stochastic growth equation)”.

The subject of the present article is an integrablemodel of randomwalks on positive
definite matrices with local interactions. This constitutes, on the one hand, a discrete-
time analogue of the matrix-valued interacting diffusions studied in [33] and, on the
other hand, a matrix generalisation of the log-gamma polymer model.

To motivate the contributions of this article, let us first define a discrete-time exclu-
sion process Z of N ≥ 1 ordered particles Z1 ≤ Z2 ≤ · · · ≤ ZN on Z moving to
the right. Let (V1(n), . . . ,VN (n))n≥1 be a collection of independent random variables
supported onZ≥0. At each time n, the particle positions are updated sequentially from
the 1-st one to the N th one, as follows. The 1-st particle simply evolves as a random
walk on Z with time-n increment V1(n). Once the positions of the first i − 1 particles
have been updated, if the (i−1)th particle has overtaken the i th particle, then the latter
is pushed forward to a temporary position to maintain the ordering; next, to complete
its update, the i th particle takes Vi (n) unit jumps to the right. The particle locations
then satisfy the recursive relations

Z1(n) = Z1(n − 1) + V1(n) , (1.1)

Zi (n) = max
[
Zi−1(n),Zi (n − 1)

]
+ Vi (n) , 2 ≤ i ≤ N . (1.2)

If one considers the initial state

Z1(0) = Z2(0) = · · · = ZN (0) = 0 , (1.3)

then the following last passage percolation formula holds:

Zi (n) = max
π

∑
(m,k)∈π

Vk(m) , 1 ≤ i ≤ N ,

where the maximum is over all directed lattice paths π in Z
2 (i.e., at each lattice site

(m, k), π is allowed to head either rightwards to (m + 1, k) or upwards to (m, k + 1))
that start from (1, 1) and end at (n, i). As a process of last passage percolation times,Z
can be also associated with the corner growth process with step (or ‘narrow wedge’)
initial configuration. Remarkable integrable versions of this model are those with
geometrically and exponentially distributed jumps, first studied in [24].

A positive temperature version ofZ can be obtained by formally replacing the oper-
ations (max,+) with (+,×) in the relations (1.1)–(1.2). Namely, given a collection
of independent positive random variables (V 1(n), . . . , V N (n))n≥1, we can consider
the discrete-time Markov process Z defined by

Z1(n) = Z1(n − 1)V 1(n) , (1.4)

Zi (n) =
[
Zi−1(n) + Zi (n − 1)

]
V i (n) , 2 ≤ i ≤ N . (1.5)

123
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Considering the initial configuration

Z1(0) = 1 , Z2(0) = · · · = ZN (0) = 0 , (1.6)

we have the closed-form expression

Zi (n) =
∑
π

∏
(m,k)∈π

V k(m) , 1 ≤ i ≤ N , (1.7)

where the sum is over all directed lattice paths π in Z
2 from (1, 1) to (n, i). The

variables (1.7) can be regarded as partition functions of the (1 + 1)-dimensional
directed polymer, an intensively studied model of statistical mechanics. Of partic-
ular importance is the model with inverse gamma distributed weights V i (n), known
as the log-gamma polymer, first considered in [39]. In [16] it was shown that the laws
of log-gamma polymer partition functions are marginals of Whittaker measures; the
latter are defined in terms of GLd(R)-Whittaker functions and were introduced in that
article.

In this article, we study a noncommutative generalisation of the above Markov
process of log-gamma polymer partition functions. The ‘particles’ of this process
live in Pd , the set of d × d positive definite real symmetric matrices. The random
weights V i (n) are now independent inverse Wishart matrices (a matrix generalisation
of inverse gamma random variables; see Sect. 1.2). We define Z by setting

Z1(n) := Z1(n − 1)1/2V 1(n)Z1(n − 1)1/2 , (1.8)

Zi (n) :=
[
Zi−1(n) + Zi (n − 1)

]1/2
V i (n)

[
Zi−1(n) + Zi (n − 1)

]1/2
,

2 ≤ i ≤ N , (1.9)

where, for a ∈ Pd , a1/2 denotes the unique b ∈ Pd such that b2 = a. The above
matrix products are symmetrised to ensure that, starting from any initial configuration
Zi (0) ∈ Pd , each Zi (n) still belongs toPd for all n ≥ 1. The 1-st particle (1.8) evolves
as a (GLd -invariant) multiplicative random walk on Pd ; on the other hand, the other
particles (1.9) can be viewed as analogous random walks with one-sided interactions.
From this point of view, the Markov process as a whole can be also regarded as a
noncommutative version of the exclusion processZ defined in (1.1)–(1.2). The natural
generalisation of the initial configuration (1.6) is

Z1(0) = Id , Z2(0) = · · · = ZN (0) = 0d , (1.10)

where Id and 0d are the d × d identity and zero matrices, respectively. Notice that,
although all but the first particle are initially zero, the process Z starting from (1.10)
lives in PN

d at all times n ≥ 1.
In Sect. 3, we introduce aMarkov process X=(X(n))n≥0, X(n)=(Xi

j (n))1≤ j≤i≤N ,
on triangular arrays of positive definite matrices whose ‘right edge’, namely
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x11

x21x22

x31x32x33

x41x42x43x44

Fig. 1 Graphical representation of a ’triangular’ array x ∈ TNd as in (2.1), for N = 4. Each row xi ,

1 ≤ i ≤ N , consists of the matrices (xi1, . . . , x
i
i ), read from right to left. The arrows refer to the energy

function �N (x) in (2.3), where every summand tr[ab−1] corresponds to an arrow pointing from a to b in
the figure

(X1
1, . . . , X

N
1 ), equals Z . The evolution of X may be viewed as a noncommuta-

tive version of the dynamics on Gelfand-Tsetlin patterns with blocking and pushing
interactions, studied in various contexts in [7, 8, 11, 31, 43, 44]. We refer to Fig. 1
for a graphical representation of such a triangular array. Moreover, as we detail in
Remark 3.4, the ‘left edge’ of X may be regarded as a noncommutative generalisation
of the strict-weak polymer studied in [17, 34].

The first main result of this article (Theorem 3.10) states that, for certain spe-
cial (random) initial configurations X(0), the ‘bottom edge’ XN = (XN

1 , . . . , XN
N )

of X also has an autonomous Markovian evolution. The transition kernel of XN is
explicit and has an interpretation as a Doob h-transform with h-function given by a
Whittaker function of matrix arguments. To obtain this, we prove certain intertwining
relations between kernels associated to the process X and use the theory of Markov
functions (reviewed in Appendix B). Another consequence of these intertwinings is
that Whittaker functions are eigenfunctions of certain integral operators and possess
a Feynman–Kac type interpretation.

Next, in Sect. 4, we define matrix Whittaker measures on PN
d after proving an

integral identity ofWhittaker functions of matrix arguments (Theorem 4.1), analogous
to the well-known Cauchy–Littlewood identity for Schur functions. The second main
result of this article (Theorem 4.8) states that, for a special initial state, the fixed-time
law of the bottom edge XN of X is a matrix Whittaker measure on PN

d . Such an initial
state, designed to match (1.10), is singular, in the sense that the particles are at the
‘boundary’ of Pd .

Due to the singularity of the initial configuration, the proof of Theorem 4.8 will
be based on a suitable limiting procedure and a careful integral approximation via
Laplace’s method. This will require a digression on a constrained minimisation prob-
lem for certain energy functions ofmatrix arguments.We chose to include this analysis
in a separate section and to present it in themore general framework of directed graphs,
as it may be of independent interest; see Sect. 5. For us, the main application will be
the asymptotic formula (4.8) for Whittaker functions of matrix arguments.

From our main results we deduce (see Corollary 4.10) that, under the initial config-
uration (1.10), the particles of the process Z defined in (1.8)–(1.9) have a fixed-time
law given by the first marginal of a matrix Whittaker measure on PN

d . In the scalar
d = 1 case, we recover the aforementioned result of [16] for the law of the log-
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gamma polymer partition functions. In Corollary 4.10, we also obtain an analogous
result concerning the fixed-time law of the ‘left edge’ of the triangular array X .

It is worth mentioning that the log-gamma polymer partition functions (1.7) were
also studied in [16] as embedded in a dynamic on triangular arrays. However,
such a dynamic was constructed via the combinatorial mechanism of the geomet-
ric Robinson–Schensted–Knuth correspondence; in particular, at each time step, the
right edge is updated using N new (independent) random variables, whereas all the
other components are updated via deterministic transformations of the current state
and the newly updated right edge. It turns out that, for d = 1, the processes con-
sidered in [16] and in the present article have an identical right edge and, under the
special initial configuration of Theorem 3.10, also a bottom edge process with the
same Markovian evolution. However, even in the d = 1 case, the two processes, as
a whole, differ. The dynamic introduced in this article is driven by random updates
with N (N + 1)/2 degrees of freedom, since each particle of the triangular array is
driven by an independent source of randomness (as well as by local interactions with
the other particles).

1.1 Organisation of the article

In Sect. 2, we defineWhittaker functions of matrix arguments. In Sect. 3, we introduce
a Markov dynamic on triangular arrays of matrices and study the evolution of its
bottom edge, using the theory of Markov functions; we also obtain a Feynman–Kac
interpretation ofWhittaker functions. In Sect. 4, we define matrixWhittaker measures
(through aWhittaker integral identity) and prove that they naturally arise as fixed-time
laws in the aforementioned triangular process under a singular initial configuration. To
do so, we need a Laplace approximation ofWhittaker functions, which can be justified
by solving a constrained minimisation problem for certain energy functions of matrix
arguments on directed graphs: this is the content of Sect. 5. In Appendix A, we give a
proof of the Cauchy–Littlewood identity for Schur functions that resembles our proof
of the Whittaker integral identity. In Appendix B, we review the theory of Markov
functions for inhomogeneous discrete-timeMarkov processes. Finally, in Appendix C,
we prove a convergence lemma related to weak convergence of probability measures.

1.2 Notation and preliminary notions

Here we introduce some notation and preliminary notions that we use throughout this
work. For background and proofs, we refer to [23, 42].

1.2.1 Positive definite matrices

Let Pd be the set of all d × d positive definite matrices, i.e. d × d real symmetric
matrices with positive eigenvalues. Throughout this article, for x ∈ Pd , we denote by
|x | the determinant of x and by tr[x] its trace.

The following properties hold:

• x ∈ Pd if and only if x−1 ∈ Pd ;
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• if x ∈ Pd and λ > 0, then λx ∈ Pd ;
• if x, y ∈ Pd , then x + y ∈ Pd (but in general xy /∈ Pd );
• x − y ∈ Pd if and only if y−1 − x−1 ∈ Pd .

For x ∈ Pd , there exists a unique y ∈ Pd such that y2 = x ; we denote such a y by
x1/2.

For any y ∈ Pd , we define the (noncommutative) ‘multiplication operation’ by y
as

Ty : Pd → Pd , Ty(x) := y1/2xy1/2 , x ∈ Pd . (1.11)

Such a symmetrised product will be used to construct a multiplicative random walk
on Pd (see Definition 3.1 and Remark 3.2 below).

We also denote by Id and 0d the d×d identity matrix and zero matrix, respectively.

1.2.2 Measure and integration onPd

Let GLd be the group of d × d invertible real matrices. Define the measure μ on Pd

by

μ(dx) := |x |− d+1
2

∏
1≤i≤ j≤d

dxi, j , (1.12)

where dxi, j is the Lebesgue measure on R in the variable xi, j . Such a measure is the
GLd -invariant measure on Pd , in the sense that

∫

Pd

f
(
a�xa

)
μ(dx) =

∫

Pd

f (x)μ(dx)

for all a ∈ GLd and for all suitable functions f . In other words, μ is invariant under
the group action of GLd on Pd

GLd × Pd → Pd , (a, x) �→ a�xa .

Furthermore, the measure μ is preserved under the involution x �→ x−1.

1.2.3 Wishart distributions and gamma functions

For α > d−1
2 , we will refer to the (d-variate) Wishart distribution with parameter α

as the probability measure

1

�d(α)
|x |α e− tr[x] μ(dx) (1.13)

on Pd , where �d(α) is the d-variate gamma function, i.e.
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�d(α) :=
∫

Pd

μ(dx) |x |α e− tr[x] =
∫

Pd

μ(dx) |x |−α e− tr[x−1]

= π
d(d−1)

4

d∏
k=1

�

(
α − k − 1

2

)
.

The inverse of a Wishart matrix with parameter α has the distribution

1

�d(α)
|x |−α e− tr[x−1] μ(dx) (1.14)

on Pd . We will refer to the latter as the (d-variate) inverse Wishart distribution with
parameter α.

1.2.4 Kernels and integral operators

Let (S,S) and (T , T) be two measurable spaces. Let mS denote the set of complex-
valued measurable functions on (S,S). For our purposes, a kernel from T to S will be
a map L : T × S → C such that, for each t ∈ T , L(t; ·) is a (complex) measure on
(S,S) and, for each A ∈ S, L(·; A) is an element of mT. The kernel L can be also,
alternatively, thought of as an integral operator

L : mS → mT , L f (t) :=
∫

S
L(t; ds) f (s) for f ∈ mS , t ∈ T , (1.15)

whenever the integral is well defined. Clearly, the composition of kernels/operators
yields another kernel/operator; such a composition is associative but, in general, not
commutative.When the complexmeasure L(t; ·) is a probabilitymeasure for all t ∈ T ,
we will talk about Markov kernels/operators.

Throughout this article, the measurable spaces will be usually Cartesian powers
of Pd (which we denote by Pk

d , k ≥ 1), with their Borel sigma-algebras. Moreover,
for a kernel L from Pk

d to P�
d , the measure L(t; ·) will be, in most cases, absolutely

continuous with respect to the reference product measure μ⊗� on P�
d , for any t ∈ Pk

d ;
with a little abuse of notation,wewill then alsowrite s �→ L(t; s) for the corresponding
density (a measurable function on P�

d ).

2 Whittaker functions

In this section we define Whittaker functions of matrix arguments following [33],
and then extend them to a further level of generality. Notice also that the kernels (2.8)
and (2.15) defined below arematrix versions of certain kernels defined in [16, Sect. 3.1]
and [35, Sect. 2] (see also references therein).
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2.1 Whittaker functions of matrix arguments

WedefineWhittaker functions ofmatrix arguments as integrals over ‘triangular arrays’
of d × d positive definite matrices. For N ≥ 1, denote by TNd := Pd ×P2

d × · · ·×PN
d

the set of height-N triangular arrays

x = (x1, . . . , xN ) = (xij )1≤ j≤i≤N , (2.1)

where xi = (xi1, . . . , x
i
i ) ∈ Pi

d will be referred to as the i th row of x , for 1 ≤ i ≤ N .
For λ = (λ1, . . . , λN ) ∈ C

N and x ∈ TNd , let

�N
λ (x) := ∣∣x11

∣∣−λ1
N∏
i=2

( ∣∣xi1 · · · xii
∣∣

∣∣xi−1
1 · · · xi−1

i−1

∣∣

)−λi

, (2.2)

�N (x) :=
N−1∑
i=1

i∑
j=1

(
tr
[
xi+1
j+1(x

i
j )

−1
]

+ tr
[
xij (x

i+1
j )−1

])
. (2.3)

For a graphical representation of the array (2.1) and of the ‘energy function’ �N ,
see Fig. 1. For z = (z1, . . . , zN ) ∈ PN

d , let TNd (z) ⊂ TNd be the set of all height-N
triangular arrays x with N th row xN = z. We define the Whittaker function ψN

λ (z)
with argument z ∈ PN

d and parameter λ ∈ C
N as

ψN
λ (z) :=

∫

TNd (z)

( N−1∏
i=1

i∏
j=1

μ(dxij )

)
�N

λ (x) e−�N (x) . (2.4)

Notice that, for N = 1, the expression above reduces to ψ1
λ(z) = |z|−λ. As proved

in [33], the integral (2.4) is absolutely convergent for all λ ∈ C
N , so that Whittaker

functions are well defined.
For our purposes, it is convenient to rewrite Whittaker functions in terms of certain

kernels that we now introduce. For N ≥ 1, λ ∈ C
N and x ∈ TNd , define the kernel


N
λ (xN ; dx1:(N−1)) := �N

λ (x) e−�N (x)
N−1∏
i=1

i∏
j=1

μ(dxij ) , (2.5)

where, as always from now on, i : j denotes the tuple (i, i + 1, . . . , j − 1, j) for
i ≤ j , so that x1:(N−1) ∈ TN−1

d is the triangular array consisting of the first N − 1
rows of x . Notice that, for N = 1, (2.5) reduces to 
1

λ(z; ∅) = |z|−λ = ψ1
λ(z). For

z ∈ PN
d , let us also define the kernel


̃N
λ (z; dx) := δ(z; dxN )
N

λ (xN ; dx1:(N−1)) , (2.6)
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212 J. Arista et al.

where δ is the Dirac delta kernel on PN
d . Then, the Whittaker function (2.4) can be

written as

ψN
λ (z) =

∫

TN−1
d


N
λ (z; dx) =

∫

TNd

̃N

λ (z; dx) . (2.7)

Moreover, for N ≥ 2, b ∈ C, z = (z1, . . . , zN ) ∈ PN
d , and y = (y1, . . . , yN−1) ∈

PN−1
d , let

K N
b (z; y) =

(
N∏
i=1

|zi |−b

)
N−1∏
j=1

∣∣y j
∣∣b e− tr

[
z j+1y

−1
j +y j z

−1
j

]
. (2.8)

We will usually regard (2.8) as a kernel by setting K N
b (z; dy) := K N

b (z; y)μ⊗(N−1)

(dy). We then have, for λ ∈ C
N , z ∈ PN

d , and x ∈ TN−1
d ,


N
λ (z; dx) = K N

λN
(z; dxN−1)K N−1

λN−1
(xN−1; dxN−2) · · · K 2

λ2
(x2; dx1)ψ1

λ(x1)

= K N
λN

(z; dxN−1)
N−1
(λ1,...,λN−1)

(xN−1; dx1:(N−2)) . (2.9)

This yields a recursive definition of Whittaker functions:

ψN
λ (z) =

{
|z|−λ N = 1 ,

K N
λN

ψN−1
(λ1,...,λN−1)

(z) = K N
λN

K N−1
λN−1

· · · K 2
λ2

ψ1
λ1

(z) N ≥ 2 .
(2.10)

2.2 A generalisation ofWhittaker functions

We now introduce a generalisation ofWhittaker functions of matrix arguments, which
will naturally emerge in Sect. 4.3 and, in the scalar case d = 1, corresponds to the one
considered in [35]. These generalised Whittaker functions are integrals over trape-
zoidal arrays of positive definite matrices, similarly to how the Whittaker functions of
Sect. 2.1 are defined as integrals over triangular arrays.

Let n ≥ N ≥ 1 and denote by

TN ,n
d := Pd × P2

d × · · · × PN
d × PN

d × · · · × PN
d︸ ︷︷ ︸

n−N times

the set of trapezoidal arrays

x = (x1, . . . , xn) = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ i ∧ N ) , (2.11)
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Fig. 2 Graphical representation

of a trapezoidal array x ∈ TN ,n
d

as in (2.11), for N = 3 and
n = 5. The additional variable s
appears in the definition (2.13)

of the energy function �
N ,n
s (x),

in which every summand
tr[ab−1] corresponds to an
arrow pointing from a to b in the
figure

x11

x21x22

x31x32x33

x41x42x43

x51x52x53

s

with i th row xi = (xi1, . . . , x
i
i∧N ) ∈ Pi∧N

d , for 1 ≤ i ≤ n (here i ∧ N denotes the

minimum between i and N ). For λ ∈ C
n , x ∈ TN ,n

d and s ∈ Pd , let

�
N ,n
λ (x) := ∣∣x11

∣∣−λ1
N∏
i=2

( ∣∣xi1 · · · xii
∣∣

∣∣xi−1
1 · · · xi−1

i−1

∣∣

)−λi n∏
i=N+1

( ∣∣xi1 · · · xiN
∣∣

∣∣xi−1
1 · · · xi−1

N

∣∣

)−λi

,

(2.12)

�N ,n
s (x) := tr

[
s(xNN )−1]+

n−1∑
i=1

⎛
⎝

i∧(N−1)∑
j=1

tr
[
xi+1
j+1(x

i
j )

−1]+
i∧N∑
j=1

tr
[
xij (x

i+1
j )−1]

⎞
⎠ .

(2.13)

See Fig. 2 for a graphical representation of the array (2.11) and of the energy function
�

N ,n
s . For z ∈ PN

d , let T
N ,n
d (z) ⊂ TN ,n

d be the set of all trapezoidal arrays x with nth
row xn = z. For n ≥ N , λ ∈ C

n , s ∈ Pd and z ∈ PN
d , we define

ψ
N ,n
λ;s (z) :=

∫

TN ,n
d (z)

⎛
⎝

n−1∏
i=1

i∧N∏
j=1

μ(dxij )

⎞
⎠�

N ,n
λ (x) e−�

N ,n
s (x) . (2.14)

Notice that, if s = 0d and n = N ,ψN ,N
λ;0 = ψN

λ corresponds to theWhittaker function
defined in (2.4). The absolute convergence of the integral in (2.14), for all λ ∈ C

n ,
can be shown by adapting the proof of [33, Prop. 6-(i)].

Let us now give an equivalent representation of these generalised Whittaker func-
tions. The following kernel will play a central role in this work. For a ∈ C and
z, z̃ ∈ PN

d , set

PN
a (z; z̃) :=

(
N−1∏
i=1

e− tr[z̃i+1z
−1
i ]
)

N∏
j=1

∣∣∣z j z̃−1
j

∣∣∣
a
e
− tr
[
z j z̃

−1
j

]
. (2.15)

We will see PN
a (z; z̃) as a measure in either of the two arguments, defining
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PN
a (z; dz̃) := PN

a (z; z̃)μ⊗N (dz̃) and �PN
a (z; dz̃) := PN

a (z̃; z)μ⊗N (dz̃) .

(2.16)

We then have

ψ
N ,n
λ;s (z) :=

⎧⎨
⎩
e− tr[sz−1

N ] ψN
λ (z) n = N ,

�PN
λn

ψ
N ,n−1
(λ1,...,λn−1);s(z) = �PN

λn
�PN
λn−1

· · · �PN
λN+1

ψ
N ,N
(λ1,...,λN );s(z) n > N .

(2.17)

We also record here two relations between the kernels (2.8) and (2.15), which follow
directly from the definitions:

K N
a (z; y) = |s|−a etr[sz

−1
N ] PN

a (y1, . . . , yN−1, s; z) , (2.18)

K N
a (z; y) = |zN |−a e− tr[zN y−1

N−1] PN−1
a (y; z1, . . . , zN−1) , (2.19)

for y = (y1, . . . , yN−1) ∈ PN−1
d , s ∈ Pd , and z = (z1, . . . , zN ) ∈ PN

d . Taking
a = λN in (2.19), multiplying both sides by ψN−1

(λ1,...,λN−1)
(y), integrating over PN−1

d

with respect to μ⊗(N−1)(dy), and using (2.10) and (2.17), we obtain the identity

ψN
λ (z) = |zN |−λN ψ

N−1,N
λ;zN (z1, . . . , zN−1) . (2.20)

Remark 2.1 Let us mention that we anticipate the function ψ
N ,n
λ;s to be symmetric in

the parameters λ1, . . . , λn . This is not obvious from the definition, but it is suggested
by an integral identity of Whittaker functions of matrix arguments that will be proven
later on (see (4.1)). As argued in [33, § 7.1], this symmetry is true at least in the case
N = n = 2. Moreover, it is known for d = 1 and arbitrary n, N ; see, for example,
[27], [21] and [35, pp. 369–370].

3 Markov dynamics

In this section,we define aMarkov process X on triangular arrays,which can be viewed
as a system of interacting random walks on Pd . Next, we prove intertwining relations
between certain transition kernels related to this process. This implies, via the theory
ofMarkov functions, that, under certain random initial configurations, the bottom edge
of the triangular process X has an autonomous stochastic evolution. A consequence
of these results is that Whittaker functions of matrix arguments are eigenfunctions of
certain integral operators and, thereupon, admit a Feynman–Kac interpretation.
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3.1 InteractingMarkov dynamics on triangular arrays

Let Od be the real orthogonal group in dimension d. Recall that a random matrix
Y in Pd is said to be Od -invariant (or orthogonally invariant) if k�Yk has the same
distribution of Y , for every k ∈ Od .

Definition 3.1 Let (W (n))n≥1 be a family of independent and Od -invariant random
matrices in Pd . The GLd -invariant random walk on Pd with initial state r ∈ Pd and
increments (W (n))n≥1 is the Pd -valued process R = (R(n))n≥0 such that R(0) = r
and

R(n) := TR(n−1)(W (n)) = R(n − 1)1/2W (n)R(n − 1)1/2 , n ≥ 1 . (3.1)

Remark 3.2 The randomwalk R ofDefinition 3.1 is indeedGLd -invariant, in the sense
that the conjugated walk (g�R(n)g)n≥0 has the same transition kernels for any choice
of g ∈ GLd (cf. [1, § 3]). Instead of (3.1), one could consider a different process
through the alternative symmetrisation

R′(n) := TW (n)(R
′(n − 1)) = W (n)1/2R′(n − 1)W (n)1/2 .

One can check that the resulting random walk R′ is Od -invariant, but in general not
GLd -invariant. In principle, one could proceed to obtain analogous results to those
presented in the present article using this alternative symmetrisation (for a similar
approach in the continuous Brownian setting, see [33, Prop. 3.5]). However, from our
point of view, the choice (3.1) is the most natural and leads to more explicit transition
kernels throughout.

It is well known that the Wishart distribution (1.13) and the inverse Wishart distri-
bution (1.14) areOd -invariant. In this article, we will focus on GLd -invariant random
walks with inverse Wishart increments.

Recall from definition (2.15) that P1
a (z; dz̃) = ∣∣zz̃−1

∣∣a e− tr[zz̃−1] μ(dz̃) for a ∈ C.
Using a straightforward change of variables, we see that, if (a) > d−1

2 ,

∫

Pd

P1
a (z; dz̃) = �d(a) for any z ∈ Pd . (3.2)

Define then the renormalised kernel

P
1
a(z; dz̃) := 1

�d(a)
P1
a (z; dz̃) . (3.3)

It is immediate to see that the (time-homogeneous) GLd -invariant randomwalk onPd

with inverse Wishart increments of parameter a > d−1
2 has transition kernel P

1
a .

We now define a discrete-time Markov process X = (X(n))n≥0 on the set TNd of
height-N triangular arrays whose components are elements of Pd .
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Definition 3.3 Fix a sequence of real parametersα = (α(n))n≥1, an integer N ≥ 1, and
a real N -tuple β = (β1, . . . , βN ) such that α(n)+β i > (d −1)/2 for all n, i . Denote
by α(n)+β the N -tuple (α(n)+β1, . . . , α(n)+βN ). For n ≥ 1 and 1 ≤ j ≤ i ≤ N ,
let Wi

j (n) be an inverse Wishart random matrix with parameter α(n) + β i (the same
parameter across j); assume further that all these random matrices are independent of
each other. We define the process X = (X(n))n≥0, where X(n) = (Xi

j (n))1≤ j≤i≤N

is a random element of TNd , as follows: given an initial state X(0) in TNd , for n ≥ 1 we
set recursively

Xi
j (n) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TX1
1(n−1)(W

1
1 (n)) 1 = j = i

TXi−1
1 (n)+Xi

1(n−1)(W
i
1(n)) 1 = j < i ≤ N[

Xi−1
i−1(n − 1)−1 + TXi

i (n−1)(W
i
i (n))−1

]−1
1 < j = i ≤ N

[
Xi−1

j−1(n − 1)−1 + TXi−1
j (n)+Xi

j (n−1)(W
i
j (n))−1

]−1
1 < j < i ≤ N

(3.4)

The i-tuple Xi := (Xi
1, . . . , X

i
i ) will be referred to as the i th row of X .

The fact that each Xi
j (n) takes values inPd followsby standardproperties of positive

definite matrices (cf. Sect. 1.2). Notice that, adopting the convention Xi
0(n)−1 =

Xi
i+1(n) = 0d for all i ≥ 0 and n ≥ 0, then the last formula in (3.4) can be taken as

the definition of Xi
j (n) for all 1 ≤ j ≤ i ≤ N .

The dynamic on TNd defined by (3.4) implies that the ‘top particle’ X1
1 evolves as a

GLd -invariant random walk in Pd with inverse Wishart increments (W 1
1 (n))n≥1.

Furthermore, the ‘right edge’ process (X1
1, X

2
1, . . . , X

N
1 ) equals the system

(Z1, . . . , ZN ) of random particles in Pd with one-sided interactions defined in (1.8)–
(1.9), where the random weight V i (n) equals Wi

1(n).
The ‘left edge’ process (X1

1, X
2
2, . . . , X

N
N ) also evolves as a system of particles

in Pd with one-sided interactions, as we now explain. Set Li (n) := Xi
i (n)−1 and

Ui (n) := Wi
i (n)−1 for all 1 ≤ i ≤ N and n ≥ 0. Then, Ui (n) has the Wishart

distribution with parameter α(n) + β i , and the process L = (L1, . . . , LN ) satisfies
the recursions

L1(n) = TL1(n−1)(U
1(n)) , (3.5)

Li (n) = Li−1(n − 1) + TLi (n−1)(U
i (n)), 2 ≤ i ≤ N . (3.6)

Under the (singular) initial configuration

L1(0) = Id , L2(0) = · · · = LN (0) = 0d , (3.7)

one can see by induction that Li (n) = 0d for all n < i − 1 and Li (i − 1) = Id , while
Li (i) reduces to a sum of independent Wishart matrices:

Li (i) = U 1(1) +U 2(2) + · · · +Ui (i) , 1 ≤ i ≤ N .
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In particular, Li (i) has the Wishart distribution with parameter
∑i

j=1(α( j) + β j ).

Remark 3.4 We make a few remarks about various specialisations of the process X
and related Markov dynamics:

(i) The interacting diffusion model on positive definite matrices studied in [33]
(see also [32, § 9] for the d = 1 case) can be regarded as a continuous-time
analogue of the process X defined in (3.4).

(ii) It seems that even the d = 1 case of the dynamic (3.4) has not been explicitly
considered elsewhere. It is related, even though not identical, to the process
constructed in [16] via the geometric Robinson–Schensted–Knuth correspon-
dence; see the discussion in the introduction for further details.

(iii) For d = 1, under the ‘step’ initial configuration, the right edge can be regarded
as a process of log-gamma polymer partition functions; see (1.6)–(1.7) and the
discussion therein.

(iv) For d = 1, under the ‘step’ initial configuration (3.7), the left edge can be
regarded as a process of strict-weak polymer partition functions in a gamma
environment, studied in [17, 34]. A strict-weak path is a lattice path π that,
at each lattice site (m, k), is allowed to head either horizontally to the right
to (m + 1, k) or diagonally up-right to (m + 1, k + 1). It is easily seen that
the process L defined in (3.5)–(3.6), in the d = 1 case, takes the closed form
expression

Li (n) =
∑
π

∏
e∈π

de , (3.8)

where the sum is over all strict-weak paths π from (0, 1) to (n, i), the product
is over all edges e in the path π , and de is a weight attached to the edge e and
defined as follows: de := 1 if e is a diagonal edge from (m, k) to (m+1, k+1);
de := Uk(m + 1) (gamma distributed with parameter α(m + 1) + βk) if e is a
horizontal edge from (m, k) to (m+1, k). Formula (3.8) defines the strict-weak
polymer partition function.

(v) The d = 1 case of (3.4) is a ‘positive temperature’ analogue (equivalently, a
(+,×) version) of the process defined by

Xi
j (n) := min

(
Xi−1

j−1(n − 1),max
(
Xi−1

j (n),Xi
j (n − 1)

)
+ Wi

j (n)
)

,

where Wi
j (n) are non-negative random variables representing jumps to the

right (see e.g. [44]). Roughly speaking, particle Xi
j performs a random walk

subject to certain interactions with other particles: it is pushed by Xi−1
j and

blocked by Xi−1
j−1.

(vi) Besides [44], other works [7, 8, 11, 31, 43] studied, in various discrete and con-
tinuous settings, similar push-and-block dynamics onGelfand–Tsetlin patterns
driven by random updates with N (N +1)/2 degrees of freedom. In particular,
again in the case d = 1, the process X should correspond to a certain q → 1
scaling limit of the q-Whittaker processes studied in [7, 11].
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Motivated to obtain the explicit Markovian evolution of X , we now introduce the
following kernels. For a ∈ C, y = (y1, . . . , yN−1) ∈ PN−1

d , ỹ = (ỹ1, . . . , ỹN−1) ∈
PN−1
d , z = (z1, . . . , zN ) ∈ PN

d , and z̃ = (z̃1, . . . , z̃N ) ∈ PN
d , we set

QN
a (y, ỹ, z; dz̃) :=

N∏
j=1

∣∣∣(ỹ j + z j
) (

z̃−1
j − y−1

j−1

)∣∣∣
a
e
− tr
[
(ỹ j+z j )

(
z̃−1
j −y−1

j−1

)]

∣∣∣Id − z̃ j y
−1
j−1

∣∣∣
− d+1

2
1Pd

(
z̃−1
j − y−1

j−1

)
μ(dz̃ j ), (3.9)

with the convention y−1
0 = ỹN = 0. Moreover, for λ = (λ1, . . . , λN ) ∈ C

N , we set

N
λ (x; dx̃)

:=
{
P1

λ (x; dx̃) if N = 1 ,

N−1
(λ1,...,λN−1)

(x1:(N−1); dx̃1:(N−1)) QN
λN

(xN−1, x̃ N−1, xN ; dx̃ N ) if N ≥ 2 ,

(3.10)

where x ∈ TNd (resp., x̃ ∈ TNd ) is a height-N triangular array of d × d positive definite
matrices with i th row xi ∈ Pi

d (resp., x̃
i ∈ Pi

d ), according to the notation of Sect. 2.1.
One can show (an analogous computation is made in the proof of Prop. 3.6) that, if
(a) > (d − 1)/2,

∫

PN
d

QN
a (y, ỹ, z; dz̃) = �d(a)N for any y, ỹ ∈ PN−1

d and z ∈ PN
d .

(3.11)

Using (3.2) and (3.11), we see that, if (λi ) > (d − 1)/2 for all i , then

∫

TNd
N

λ (x; dx̃) =
N∏
i=1

�d(λi )
i for any x ∈ TNd . (3.12)

Therefore, under the above conditions on the parameters, one can renormalise these
kernels, so that they integrate to 1:

Q
N
a (y, ỹ, z; dz̃) := 1

�d(a)N
QN

a (y, ỹ, z; dz̃) , (3.13)


N
λ (x; dx̃) := 1∏N

i=1 �d(λi )i
N

λ (x; dx̃) . (3.14)

The following result can be easily verified using the construction of X in Defini-
tion 3.3.

Proposition 3.5 Let X as inDefinition 3.3. Then, the conditional distribution of X N (n)

given XN−1(n − 1) = y, X N−1(n) = ỹ and XN (n − 1) = z, is Q
N
α(n)+βN (y, ỹ, z; ·).

123



Matrix Whittaker processes 219

Consequently, the process X = (X(n))n≥0 is a time-inhomogeneous Markov process

with state space TNd and time-n transition kernel 
N
α(n)+β .

3.2 Intertwining relations

We will now show that the Markov dynamic on X (see Definition 3.3), when started
from an appropriate random initial state, induces an autonomous Markov dynamic on
the N th row, or ‘bottom edge’, of X . This will be a consequence of an intertwining
relation between kernels through the theory of Markov functions, which is reviewed
in Appendix B for the reader’s convenience.

Let N ≥ 2 and a, b ∈ C. Recalling the definitions (2.8) and (2.15) of the kernels
K N
b and PN

a , respectively, and denoting by δ the Dirac delta kernel on PN
d , let us set

K̃ N
b (z; dy dz̃) := δ(z; dz̃) K N

b (z̃; dy) , (3.15)

�N
a,b(y, z; d ỹ dz̃) := PN−1

a (y; d ỹ) QN
a+b(y, ỹ, z; dz̃) , (3.16)

for z, z̃ ∈ PN
d and y, ỹ ∈ PN−1

d . We then have the following intertwining relation.

Proposition 3.6 Let N ≥ 2 and a, b ∈ C such that (a + b) > (d − 1)/2. Then,

K̃ N
b �N

a,b = �d(a + b)N−1PN
a K̃ N

b (3.17)

holds as an equality between kernels from PN
d to PN−1

d × PN
d .

Proof We have to prove that K̃ N
b �N

a,b f (z) = �d(a + b)N−1PN
a K̃ N

b f (z), for any

suitable test function f : PN−1
d × PN

d → R and any z ∈ PN
d . Using (3.15), we see

that this is equivalent to the identity

∫

PN−1
d

K N
b (z; dy)

∫

PN−1
d ×PN

d

�N
a,b(y, z; d ỹ dz̃) f (ỹ, z̃)

= �d(a + b)N−1
∫

PN
d

PN
a (z; dz̃)

∫

PN−1
d

K N
b (z̃; d ỹ) f (ỹ, z̃). (3.18)

Using the definitions of K N
b and �N

a,b, we obtain, after some rearrangements and
cancellations, that the left-hand side of (3.18) equals

∫

PN−1
d

μ⊗(N−1)(dy)
∫

PN−1
d

μ⊗(N−1)(d ỹ)
∫

PN
d

μ⊗N (dz̃) f (ỹ, z̃)

N−1∏
i=1

(
|ỹi |−a |yi − z̃i+1|a+b e

− tr
[
yi (z

−1
i +ỹ−1

i )
] ∣∣∣(yi − z̃i+1) y

−1
i

∣∣∣
− d+1

2
1Pd

(
z̃−1
i+1 − y−1

i

))

N∏
j=1

(∣∣z j
∣∣−b
∣∣∣(ỹ j + z j

)
z̃−1
j

∣∣∣
a+b

e
− tr
[
(ỹ j+z j )z̃

−1
j

])
,
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with the usual convention ỹN = 0. By interchanging the order of integration, we see
that the latter display equals

∫

PN−1
d

μ⊗(N−1)(d ỹ)
∫

PN
d

μ⊗N (dz̃) f (ỹ, z̃)
N−1∏
i=1

(|ỹi |−a J(zi , ỹi , z̃i+1)
)

N∏
j=1

(∣∣z j
∣∣−b
∣∣∣(ỹ j + z j

)
z̃−1
j

∣∣∣
a+b

e
− tr
[
(ỹ j+z j )z̃

−1
j

])
,

where J : P3
d → C is defined by

J(u, v, w)

:=
∫

Pd

μ(ds) |s − w|a+b e− tr
[
s(u−1+v−1)

] ∣∣∣(s − w) s−1
∣∣∣
− d+1

2
1Pd

(
w−1 − s−1

)
.

By the properties of positive definitematrices (see Sect. 1.2), we have thatw−1−s−1 ∈
Pd if and only if s − w ∈ Pd ; moreover, for w ∈ Pd , the latter condition is stronger
than s ∈ Pd . We then make the change of variables s′ := s − w, which preserves the
Lebesgue measure on the ‘independent’ entries of the symmetric matrix s, so that

|s| d+1
2 μ(ds) = ∣∣s′∣∣ d+1

2 μ(ds′) .

Therefore, we have

J(u, v, w) =
∫

Pd

μ(ds′)
∣∣s′∣∣a+b e− tr

[
(s′+w)(u−1+v−1)

]
.

After the further, this time μ-preserving, change of variables s′′ := Tu−1+v−1(s′), we
obtain

J(u, v, w) =
∣∣∣uv (u + v)−1

∣∣∣
a+b

e− tr
[
w(u−1+v−1)

] ∫

Pd

μ(ds′′)
∣∣s′′∣∣a+b e− tr[s′′]

=
∣∣∣uv (u + v)−1

∣∣∣
a+b

e− tr
[
w(u−1+v−1)

]
�d(a + b) ,

where the gamma function is well defined since by hypothesis (a+ b) > (d − 1)/2.
After a few cancellations, we then see that the left-hand side of (3.18) equals

�d(a + b)N−1
∫

PN−1
d

μ⊗(N−1)(d ỹ)
∫

PN
d

μ⊗N (dz̃) f (ỹ, z̃)

×
N−1∏
i=1

(
|ỹi |b e− tr

[
z̃i+1z

−1
i +z̃i+1 ỹ

−1
i +ỹi z̃

−1
i

]) N∏
j=1

(∣∣z j
∣∣a ∣∣z̃ j

∣∣−a−b e
− tr
[
z j z̃

−1
j

])
.
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It now follows from the definitions that this equals the right-hand side of (3.18), thus
concluding the proof. ��

A simple inductive argument shows that the intertwining (3.17) can be extended to
an intertwining that involves the-kernel (3.10) and the 
̃-kernel (2.6). From now on,
we fix N ≥ 1, a ∈ C and λ = (λ1, . . . , λN ) ∈ C

N such that (a + λi ) > (d − 1)/2
for all i . As usual, we also use the notation a + λ := (a + λ1, . . . , a + λN ).

Corollary 3.7 The intertwining relation


̃N
λ N

a+λ =
(

N∏
i=1

�d(a + λi )
i−1

)
PN
a 
̃N

λ (3.19)

holds as an equality between kernels from PN
d to TNd .

Proof Taking into account (2.6), it is immediate to see that (3.19) is equivalent to

∫

TN−1
d


N
λ (z; dx)

∫

TN−1
d ×PN

d

N
a+λ(x, z; dx̃ dz̃) f (x̃, z̃)

= κa+λ

∫

PN
d

PN
a (z; dz̃)

∫

TN−1
d


N
λ (z̃; dx̃) f (x̃, z̃) (3.20)

for all z ∈ PN
d and test function f : TN−1

d × PN
d → R, where we set

κ(ξ1,...,ξN ) :=
N∏
i=1

�d(ξi )
i−1 if (ξi ) >

d − 1

2
for all i .

To prove (3.20), we proceed by induction. For N = 1, (3.20) amounts to the identity

ψ1
λ(z)

∫

Pd

P1
a+λ(z; dz̃) f (z̃) =

∫

Pd

P1
a (z; dz̃)ψ1

λ(z̃) f (z̃)

for z ∈ Pd and f : Pd → R. Using (2.10) and (2.15), one can easily verify that the
latter is true, as both sides equal |z|a ∫Pd

μ(dz̃) |z̃|−a−λ e− tr[zz̃−1] f (z̃).

Let now N ≥ 2 and λ̃ = (λ1, . . . , λN−1). Assume by induction that

∫

TN−2
d


N−1
λ̃

(y; dx)
∫

TN−2
d ×PN−1

d

N−1
a+λ̃

(x, y; dx̃ d ỹ)g(x̃, ỹ)

= κa+λ̃

∫

PN−1
d

PN−1
a (y; d ỹ)

∫

TN−2
d


N−1
λ̃

(ỹ; dx̃)g(x̃, ỹ) (3.21)
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for any y ∈ PN−1
d and any test function g : TN−2

d × PN−1
d → R. Fix z ∈ PN

d and
f : TN−1

d × PN
d → R (which we view as f : TN−2

d × PN−1
d × PN

d → R). Choosing

g(x̃, ỹ) :=
∫

PN
d

QN
a+λN

(y, ỹ, z; dz̃) f (x̃, ỹ, z̃)

in (3.21) and integrating both sides with respect to the measure K N
λN

(z; ·), we obtain
∫

PN−1
d

K N
λN

(z; dy)
∫

TN−2
d


N−1
λ̃

(y; dx)
∫

TN−2
d ×PN−1

d

N−1
a+λ̃

(x, y; dx̃ d ỹ)

∫

PN
d

QN
a+λN

(y, ỹ, z; dz̃) f (x̃, ỹ, z̃)

= κa+λ̃

∫

PN−1
d

K N
λN

(z; dy)
∫

PN−1
d

PN−1
a (y; d ỹ)

∫

TN−2
d


N−1
λ̃

(ỹ; dx̃)

∫

PN
d

QN
a+λN

(y, ỹ, z; dz̃) f (x̃, ỹ, z̃) .

Using (2.9) and (3.10) for the left-hand side and (3.16) for the right-hand side, and
interchanging the integration order, we then have

∫

TN−2
d ×PN−1

d


N
λ (z; dx dy)

∫

TN−2
d ×PN−1

d ×PN
d

N
a+λ(x, y, z; dx̃ d ỹ dz̃) f (x̃, ỹ, z̃)

= κa+λ̃

∫

PN−1
d

K N
λN

(z; dy)
∫

PN−1
d ×PN

d

�N
a,λN

(y, z; d ỹ dz̃)
(∫

TN−2
d


N−1
λ̃

(ỹ; dx̃) f (x̃, ỹ, z̃)
)

= κa+λ̃ �d(a + λN )N−1
∫

PN
d

PN
a (z; dz̃)

∫

PN−1
d

K N
λN

(z̃; d ỹ)
(∫

TN−2
d


N−1
λ̃

(ỹ; dx̃) f (x̃, ỹ, z̃)
)

= κa+λ

∫

PN
d

PN
a (z; dz̃)

∫

TN−2
d ×PN−1

d


N
λ (z̃; dx̃ d ỹ) f (x̃, ỹ, z̃) ,

where the latter two equalities follow from (3.18) and (2.9), respectively. The identi-
fication TN−2

d × PN−1
d = TN−1

d concludes the proof of (3.20). ��
Recall now that the 
̃-kernels generate Whittaker functions of matrix arguments,

in the sense of (2.7). By integrating the intertwining relation (3.19) and using (3.12),
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we immediately deduce that Whittaker functions are eigenfunctions of the integral
P-operators:

Corollary 3.8 We have

PN
a ψN

λ =
(

N∏
i=1

�d(a + λi )

)
ψN

λ . (3.22)

We note that this complements the interpretation of the Whittaker functions ψN
λ ,

given in [33], as eigenfunctions of a differential operator, namely the Hamiltonian of
a quantisation in PN

d of the N -particle non-Abelian Toda chain.
For x ∈ TNd and z, z̃ ∈ PN

d , we now define



N
λ (z; dx) := 1

ψN
λ (z)


̃N
λ (z; dx) , (3.23)

PN
a,λ(z; dz̃) := 1∏N

i=1 �d(a + λi )

ψN
λ (z̃)

ψN
λ (z)

PN
a (z; dz̃) . (3.24)

It follows from (2.7) and (3.22) that the above kernels are normalised; therefore, they
are Markov kernels when the parameters a, λ1, . . . , λN are real. Notice that (3.24)
may be seen as a Doob h-transform of the P-kernel (2.15). It is now immediate to
deduce a renormalised version of (3.19):

Corollary 3.9 The intertwining relation



N
λ 

N
a+λ = PN

a,λ

N
λ (3.25)

holds as an equality between kernels from PN
d to TNd .

From a probabilistic point of view, (3.25) states that, for any fixed z ∈ PN
d , the two

following update rules are equivalent: (i) starting the process X from a (random) initial
configuration dictated by the intertwining kernel
(z; ·) and letting it evolve according
to the dynamic ; and (ii) running the dynamic P on the bottom edge (started at z)
and then updating the whole triangular array according to the intertwining kernel 
.
The main result of this section is a precise account of this interpretation.

Theorem 3.10 Let X = (X(n))n≥0 be the Markov process on TNd as in Definition 3.3.
Assume that, for an arbitrary z ∈ PN

d , the initial state X(0) of X is distributed

according to the measure 

N
β (z; ·). Then, the Nth row XN = (XN (n))n≥0 is a time-

inhomogeneous Markov process (in its own filtration) on the state space PN
d , with

initial state z and time-n transition kernel PN
α(n),β . Moreover, for any bounded mea-

surable function f : TNd → R and n ≥ 0, we have
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E

[
f (X(n))

∣∣∣∣ XN (0), . . . , XN (n − 1), XN (n)

]
= 


N
β f
(
XN (n)

)
a.s.

(3.26)

Proof The statement is an application of Theorem B.1, where the state spaces are
S = TNd and T = PN

d , and the function ϕ : TNd → PN
d is the projection ϕ(x) := xN

onto the N th row of x , so that XN (n) = ϕ(X(n)). Hypothesis (i) of Theorem B.1,
i.e. the fact that 
β(z;ϕ−1{z}) = 1 for any z ∈ PN

d , holds because, by definition,
the measure 
β(z; ·) is supported on the set TNd (z) of height-N triangular arrays with
N th row equal to z. On the other hand, by Prop. 3.5, the time-n transition kernel of X

is 
N
α(n)+β . Therefore, in this case, hypothesis (ii) of Theorem B.1 reads as the set of

intertwining relations



N
β 

N
α(n)+β = PN

α(n),β

N
β for all n ≥ 1 .

These follow from Corollary 3.9. ��
Remark 3.11 By letting N vary, it is immediate to deduce from Theorem 3.10 that
every row of X evolves as a Markov process in its own filtration, under an appropriate
(random) initial configuration on the previous rows. Therefore, the focus on the N th
row should only be seen as a convenient choice.

3.3 Feynman–Kac interpretation

Here we provide a Feynman–Kac type interpretation of Whittaker functions based on
the eigenfunction equation (3.22). Our result should be compared to the one obtained
in [33, Prop. 9] in the continuous setting of Brownian particles.

Definition 3.12 Let λ ∈ R
N with

min (λ1, λ2 − λ1, . . . , λN − λN−1) >
d − 1

2
.

Let y ∈ PN
d . We define Y = (Y (n))n≥0 = (Y1(n), . . . , YN (n))n≥0 to be a process in

PN
d with independent components, such that each component Yi = (Yi (n))n≥0 is a

GLd -invariant random walk on Pd with initial state Yi (0) = yi and inverse Wishart
increments with parameter λi .

Recalling (3.3), Y is then a time-homogeneous Markov process starting at y with
transition kernel

�N
λ (z; dz̃) := P

1
λ1

(z1; dz̃1) · · · P1
λN

(zN ; dz̃N ) for z, z̃ ∈ PN
d .

For z, z̃ ∈ PN
d , define the sub-Markov kernel

�̂N
λ (z; z̃) := e−V (z;z̃) �N

λ (z; z̃) , (3.27)
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where V is the ‘killing potential’

V (z; z̃) :=
N−1∑
i=1

tr
[
z̃i+1z

−1
i

]
. (3.28)

Denote by Py and Ey the probability and expectation, respectively, with respect to
the law of Y with initial state y.

Theorem 3.13 For all y ∈ PN
d , we have

ψN
λ (y) =

∏
1≤i< j≤N

�d(λ j − λi )

(
N∏
i=1

|yi |−λi

)
Ey

[
e−∑∞

n=0 V (Y (n);Y (n+1))
]
.

(3.29)

The main purpose of this subsection is to prove (3.29). In a nutshell, using a fairly
standardmartingale argument, wewill show that the expectation in (3.29) is the unique
solution to an eigenproblem; the latter is also, essentially, solved by Whittaker func-
tions.

Lemma 3.14 Fix an integer � ≥ 0. For any y ∈ PN
d , we have

lim sup
n→∞

1

n
log V (Y (n); Y (n + �)) < 0 Py-a.s.

Remark 3.15 In particular Lemma 3.14 with � = 1 implies that the infinite series
inside the expectation in (3.29) converges Py-a.s.

Proof of Lemma 3.14 Since

V (Y (n); Y (n + �)) =
N−1∑
i=1

tr
[
Yi+1(n + �)Yi (n)−1] ,

it suffices to show that, for each 1 ≤ i ≤ N − 1,

lim sup
n→∞

1

n
log tr

[
Yi+1(n + �)Yi (n)−1] < 0 Py-a.s.

Let us record the following properties, which hold for any a, b ∈ Pd :

• tr[ab] ≤ tr[a] tr[b] (submultiplicativity of the trace);
• tr[a] ≤ d λmax(a);
• λmax(a−1) = λmin(a)−1.

Here, λmax and λmin denote the maximum and minimum eigenvalue, respectively.
Using these facts, we have, for 1 ≤ i ≤ N − 1:

tr
[
Yi+1(n + �)Yi (n)−1] ≤ tr

[
Yi+1(n + �)

]
tr
[
Yi (n)−1] ≤ d2

λmax(Yi+1(n + �))

λmin(Yi (n))
.
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Now, using for example [1, Corollary B.4], we have

lim
n→∞

1

n
log λmax(Yi+1(n)) = −ψ

(
λi+1 − d − 1

2

)
,

lim
n→∞

1

n
log λmin(Yi (n)) = −ψ(λi ) ,

Py-a.s., where ψ is the digamma function. These are the maximum (respectively,
minimum) Lyapunov exponent of a GLd -invariant random walk with inverse Wishart
increments of parameter λi+1 (respectively, λi ). We then obtain

lim sup
n→∞

1

n
log tr

[
Yi+1(n + �)Yi (n)−1] ≤ ψ(λi ) − ψ

(
λi+1 − d − 1

2

)
< 0 ,

since the digamma function is strictly increasing and, by Definition 3.12, λi+1 −λi >

(d − 1)/2. ��

Lemma 3.16 Let u : PN
d → R be a measurable function such that

(i) �̂N
λ u = u (eigenfunction equation);

(ii) u is bounded (boundedness property);
(iii) u(y) → 1 as V (y; y) → 0 (boundary condition).

Then, for all y ∈ PN
d ,

u(y) = Ey

[
e−∑∞

n=0 V (Y (n);Y (n+1))
]
.

Proof Consider the process Y as in Definition 3.12, with initial state y ∈ PN
d and

transition kernel �N
λ . Denote by (F(k))k≥0 its natural filtration. It follows from the

eigenfunction equation that

Ey

[
u(Y (k + 1)) e−V (Y (k);Y (k+1))

∣∣∣∣ F(k)

]
=
∫

PN
d

�N
λ (Y (k); dz̃) e−V (Y (k);z̃) u(z̃)

= �̂N
λ u(Y (k)) = u(Y (k)) .

Therefore, the process M = (M(k))k≥0 defined by

M(k) :=
{
u(Y (0))= u(y) k = 0 ,

u(Y (k)) e−∑k−1
n=0 V (Y (n);Y (n+1)) k ≥ 1

(3.30)

is an (F(k))k≥0-martingale. By the boundedness property, M is uniformly bounded
and, thus, a uniformly integrable martingale. Therefore, M converges Py-a.s. and in 1-
norm to a certain limitM(∞) and, for all k ≥ 0, we haveM(k) = Ey

[
M(∞)

∣∣ F(k)
]
.
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By Lemma 3.14 (with � = 0), we have limk→∞ V (Y (k); Y (k)) = 0, Py-a.s. The
boundary condition then implies limk→∞ u(Y (k)) = 1, Py-a.s., whence

M(∞) = e−∑∞
n=0 V (Y (n);Y (n+1)) .

We conclude that, for any y ∈ PN
d ,

u(y) = M(0) = Ey[M(∞)] = Ey

[
e−∑∞

n=0 V (Y (n);Y (n+1))
]
.

��

Proof of Theorem 3.13 It was proven in [33, proof of Prop. 9] that the function

v(y) := ψN
λ (y)

N∏
i=1

|yi |λi , y ∈ PN
d ,

is bounded and satisfies

lim
V (y;y)→0

v(y) =
∏

1≤i< j≤N

�d(λ j − λi ) .

By Lemma 3.16, it then remains to prove that �̂N
λ v = v. It follows from the defini-

tion (2.15) of the kernel PN
a that

�̂N
λ v(z) =

(
N∏
i=1

|zi |λi
�d(λi )

)
PN
0 ψN

λ (z)

for z ∈ PN
d . Using the eigenfunction equation (3.22), we see that the right-hand side

above equals v(z), as desired. ��

Corollary 3.17 Under Py , we have the distributional equality

∞∑
n=0

tr
[
Y2(n + 1)Y1(n)−1

]
d= tr [aZ ] , (3.31)

where a := y−1
1 y2y

−1/2
1 and Z has the inverse Wishart distribution of parameter

λ2 − λ1.

Proof We may assume that N = 2, so that Y = (Y1,Y2) starts at y = (y1, y2). Using
Theorem 3.13 and the definition of Whittaker functions, we compute the Laplace
transform of the left-hand side of (3.31) as
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E(y1,y2)

[
e−s

∑∞
n=0 tr

[
Y2(n+1)Y1(n)−1

]]
= E(y1,sy2)

[
e−∑∞

n=0 tr
[
Y2(n+1)Y1(n)−1

]]

= |y1|λ1 |sy2|λ2
�d(λ2 − λ1)

∫

Pd

μ(dx) |x |−λ1

( |sy1y2|
|x |

)−λ2

e− tr[sy2x−1+xy−1
1 ]

=
∫

Pd

μ(dz) e−s tr[y−1/2
1 y2 y

−1/2
1 z] |z|−(λ2−λ1) e− tr[z−1]

�d(λ2 − λ1)

for s ∈ R, where we used the change of variables z = y1/21 x−1y1/21 . The last integral
equals E e−s tr[aZ ], where Z is inverseWishart of parameter λ2−λ1. We conclude that
the two sides of (3.31) have the same Laplace transform and, hence, the same law. ��

Remark 3.18 Up to some technical details, identity (3.31) may be also deduced from
the Dufresne type identity for a random walk on Pd proved in [1]. Let (R(n))n≥0 be
a GLd -invariant random walk on Pd whose initial state R(0) is an inverse Wishart
matrix with parameter λ2 and whose increments are Beta type II matrices with
parameters λ1 and λ2 (see [1] for more details). It is then natural to expect that the
eigenvalue processes of the two processes (Y1(n)−1/2Y2(n + 1)Y1(n)−1/2)n≥0 and
(a1/2R(n)a1/2)n≥0, where a = y−1

1 y2y
−1/2
1 , have the same law; this is certainly true

at least in the case d = 1. By summing the traces of these two processes over all
n ≥ 0, [1, Theorem 4.10] would then immediately provide a proof of (3.31) that does
not rely upon the Feynman–Kac formula (3.29). See [33, Lemma 8] for an analogous
argument in the Brownian setting.

4 Fixed-time laws andmatrix Whittaker measures

In this section, we first prove a Whittaker integral identity that allows us to introduce
matrix Whittaker measures. We then obtain an asymptotic formula for a Whittaker
function whose arguments go to zero or infinity in norm. Using the latter result,
we next show that, for a certain singular initial state, matrix Whittaker measures
appear naturally as the fixed-time laws of the bottom edge of the triangular process
X introduced in Sect. 3.1. Finally, under the same singular initial state, we study the
fixed-time law of the right edge and of the left edge of X .

4.1 MatrixWhittaker measures

Whittaker functions of matrix arguments satisfy a remarkable integral identity:

Theorem 4.1 Let n ≥ N ≥ 1. Let λ = (λ1, . . . , λn) ∈ C
n and � = (�1, . . . , �N ) ∈

C
N such that (λ� + �i ) > d−1

2 for all 1 ≤ � ≤ n, 1 ≤ i ≤ N. Let s ∈ Pd . Then,

∫

PN
d

μ⊗N (dz)ψN ,n
λ;s (z)ψN

� (z) = |s|−
∑N

j=1(λ j+� j )
n∏

�=1

N∏
i=1

�d(λ� + �i ) . (4.1)
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The case N = n of (4.1) was noted in [33, Prop. 10]; however, the identity did not
play a key role in that article, and the details of the proof were not provided therein.
Below we provide a proof of the general case n ≥ N that involves the generalised
Whittaker functions introduced in Sect. 2.2.

In the scalar d = 1 setting, (4.1) goes back to [35, Corollary 3.5]. For d = 1 and
N = n, it is equivalent to an identity that was originally found in the number theoretic
literature [12, 40].

Theorem 4.1 can be also seen as an analogue, in the context of Whittaker functions,
of the celebrated Cauchy–Littlewood identity for Schur functions. In the literature
on symmetric functions, the latter is usually proved using either the determinantal
structure of Schur functions (see [29, I-(4.3)]) or the Robinson–Schensted–Knuth cor-
respondence, a combinatorial bijection (see [41, Theorem 7.12.1]). None of these
tools is available, so far, in our context. To prove (4.1), we will rather proceed induc-
tively, using the recursive definition of Whittaker functions and the eigenfunction
equation (3.22). For the reader’s convenience, we also include in Appendix A a proof
of the classical Cauchy–Littlewood identity that similarly relies on an eigenfunction
equation for Schur functions (which can be seen as a version of the so-called Pieri
rule).

Proof of Theorem 4.1 Wewill prove (4.1) by induction on n. For a fixed integer n ≥ 1,
let S(n) be the statement that (4.1) holds for all N such that n ≥ N ≥ 1 and for any
choice of λ and � satisfying the assumptions of the theorem.

For n = N = 1 we have

∫

Pd

μ(dz)ψ1,1
λ;s (z)ψ

1
�(z) =

∫

Pd

μ(dz) e− tr[sz−1] |z|−λ1 |z|−�1

= |s|−λ1−�1

∫

Pd

μ(dz̃) |z̃|−(λ1+�1) e− tr[z̃−1] = |s|−λ1−�1 �d(λ1 + �1) ,

where we have used the definitions of Whittaker functions and gamma functions and
the μ-preserving change of variables z̃ = Ts−1(z). This proves the base case S(1).

Suppose now by induction that S(n − 1) holds for some fixed n ≥ 2. To prove
that S(n) holds, let us first prove that (4.1) is valid for all N such that n > N ≥ 1. It
follows from (2.17), Fubini’s theorem, (2.16) and (3.22), that

∫

PN
d

μ⊗N (dz)ψN ,n
λ;s (z)ψN

� (z) =
∫

PN
d

μ⊗N (dz)
( �PN

λn
ψ

N ,n−1
(λ1,...,λn−1);s

)
(z)ψN

� (z)

=
∫

PN
d

μ⊗N (dz̃)ψN ,n−1
(λ1,...,λn−1);s(z̃)

(
PN

λn
ψN

�

)
(z̃)

=
N∏
i=1

�d(λn + �i )

∫

PN
d

μ⊗N (dz̃)ψN ,n−1
(λ1,...,λn−1);s(z̃)ψ

N
� (z̃) .

Since n − 1 ≥ N , using the assumption S(n − 1) in the latter integral we obtain (4.1).
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To conclude S(n), we are left to prove the case N = n. Using (2.17), (2.10), Fubini’s
theorem, (2.18), (3.22), and (2.20), we have

∫

Pn
d

μ⊗n(dz)ψn,n
λ;s (z)ψn

� (z)

=
∫

Pn
d

μ⊗n(dz) e− tr
[
sz−1

n
] (

Kn
λn

ψn−1
(λ1,...,λn−1)

)
(z)ψn

� (z)

= |s|−λn

∫

Pn−1
d

μ⊗(n−1)(dy)ψn−1
(λ1,...,λn−1)

(y)
(
Pn
λn

ψn
�

)
(y1, . . . , yn−1, s)

= |s|−λn

⎛
⎝

n∏
i=1

�d (λn + �i )

⎞
⎠
∫

Pn−1
d

μ⊗(n−1)(dy)ψn−1
(λ1,...,λn−1)

(y)ψn
� (y1, . . . , yn−1, s)

= |s|−λn−�n

⎛
⎝

n∏
i=1

�d (λn + �i )

⎞
⎠
∫

Pn−1
d

μ⊗(n−1)(dy)ψn−1
(λ1,...,λn−1)

(y)ψn−1,n
�;s (y) .

Recall that we have already proved (4.1) for all N such that n > N ≥ 1. Applying
this, for N = n−1, to the latter integral, we conclude that (4.1) holds also for N = n.
��
Definition 4.2 For n ≥ N ≥ 1. Let λ = (λ1, . . . , λn) ∈ R

n and � = (�1, . . . , �N ) ∈
R

N such that λ� + �i > d−1
2 for all 1 ≤ � ≤ n, 1 ≤ i ≤ N . We call matrix Whittaker

measure with parameters λ and � the measure on PN
d that is absolutely continuous

with respect to μ⊗N (dz) with density

WN ,n
λ,� (z) :=

(
n∏

�=1

N∏
i=1

1

�d(λ� + �i )

)
ψ

N ,n
λ;Id (z)ψ

N
� (z) for z ∈ PN

d , (4.2)

where Id is the d × d identity matrix. According to the usual convention, we also
denote by WN ,n

λ,� (dz) the measure itself.

By Theorem 4.1, (4.2) defines a probability distribution on PN
d . This extends the

definition of matrix Whittaker measures given in [33, § 7.4], which corresponds to the
case n = N :

WN ,N
λ,� (z) =

⎛
⎝

N∏
�,i=1

1

�d(λ� + �i )

⎞
⎠ e− tr[z−1

N ] ψN
λ (z)ψN

� (z) . (4.3)

4.2 Asymptotics ofWhittaker functions

For any real k > 0, let

r ij (k) := k2 j−i−1 Id for 1 ≤ j ≤ i (4.4)
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and let r i (k) := (r i1(k), . . . , r
i
i (k)). Our ultimate goal is to obtain the k → ∞ leading

order approximation of the Whittaker function ψN
λ (r N (k)).

We rely on some results (Theorem 5.13 and Prop. 5.14) that we will prove, in
a more general setting, in Sect. 5. With this purpose in mind, we use the graphical
representations of the set of height-N triangular arrays TNd and of the energy function
�N , both involved in the definition of the Whittaker function (2.4) (see Fig. 1). Given
N ≥ 2, we set

V := {(i, j) ∈ Z
2 : 1 ≤ j ≤ i ≤ N }

and consider the finite graph G = (V , E), where E consists of all (directed) edges
(i, j) → (i + 1, j) and (i + 1, j + 1) → (i, j), for 1 ≤ j ≤ i ≤ N − 1. Then, TNd
may be identified as the set PV

d of arrays x = (xv)v∈V , where each xv ∈ Pd . Let also

� := {(N , j) : 1 ≤ j ≤ N } .

We may thus identify z ∈ PN
d with z ∈ P�

d , so that the set TNd (z) of all height-N
triangular arrays whose N th row equals z coincides with the set PV

d (z), according to
the notation (5.4). Furthermore, the energy function (2.3) can be equivalently rewritten
as

�N (x) =
∑

(i, j),(k,�)∈V :
(i, j)→(k,�)

tr
[
xij (x

k
� )−1

]
=
∑

v,w∈V :
v→w

tr[xvx
−1
w ] for all x ∈ PV

d .

All the results of Sect. 5 hold for the above ‘triangular graph’ structure, since:

• G = (V , E) is an acyclic finite directed graph;
• � is a proper subset of V containing the only source (N , N ) and sink (N , 1) of G;
• the energy function �N is of the form (5.9).

We first prove a property of the critical points of �N that, in the scalar d = 1
setting, was observed in [32].

Lemma 4.3 Let z ∈ PN
d . Let x be any critical point of�

N onTNd (z). For all 1 ≤ i ≤ N,
let pi := ∣∣xi1 · · · xii

∣∣ be the determinant of the product of the i th row of x. Then,

p1 = 2
√
p2 = · · · = N−1

√
pN−1 = N

√
pN = N

√|z1 · · · zN | . (4.5)

Proof The critical point equations of the energy function �N are

(xij )
−1(xi+1

j+1 + xi−1
j )(xij )

−1 = (xi−1
j−1)

−1 + (xi+1
j )−1 for all 1 ≤ j ≤ i < N ,
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with the convention xi−1
i = (xi−1

0 )−1 = 0 for all 1 ≤ i < N (these correspond
to (5.15) in the case of the triangular graph G). Taking determinants of both sides, we
obtain

∣∣xij
∣∣2 =

∣∣∣xi+1
j+1 + xi−1

j

∣∣∣
∣∣∣(xi−1

j−1)
−1 + (xi+1

j )−1
∣∣∣

for all 1 ≤ j ≤ i < N .

Taking the product over j in the latter, many terms cancel out, yielding

i∏
j=1

∣∣xij
∣∣2 =

i−1∏
j=1

∣∣xi−1
j

∣∣
i+1∏
j=1

∣∣xi+1
j

∣∣ .

By definition of p1, . . . , pN , the latter can be written as

p2i = pi−1 pi+1 for all 1 ≤ j ≤ i < N , (4.6)

with the convention p0 := 1. Finally, it is straightforward to see that equations (4.6)
are equivalent to (4.5). ��

Let now

I Nd := (Id , . . . , Id)︸ ︷︷ ︸
N times

= r N (1) ∈ PN
d .

As the components of I Nd are scalar matrices, Theorem 5.13 implies:

Corollary 4.4 The function �N on TNd (I Nd ) has a unique global minimiser, at which
the Hessian is positive definite. Moreover, each component mi

j of the minimiser m =
(mi

j )1≤ j≤i≤N is a positive scalar matrix.

Throughout this subsection, m will always denote the above minimiser.

Corollary 4.5 We have m1
1 = Id and

∣∣mi
1 · · ·mi

i

∣∣ = 1 for all i = 1, . . . , N . (4.7)

Proof Since m ∈ TNd (I Nd ), we have mN
j = Id for all j = 1, . . . , N , hence∣∣mN

1 · · ·mN
N

∣∣ = 1. On the other hand, as a minimiser, m is a critical point of �N

on TNd (I Nd ), hence (4.7) follows from Lemma 4.3. Furthermore, sincem1
1 is a multiple

of Id with determinant 1, we have m1
1 = Id . ��

Theorem 4.6 For any λ ∈ C
N , we have

ψN
λ (r N (k))

k→∞∼ 1√|H(m)|
(
2π

k

) N (N−1)d(d+1)
8

e−k�N (m) , (4.8)
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where |H(m)| > 0 is the Hessian determinant of �N at m.

The case d = 1, N = 2 of this asymptotic result is classical; the case d = 1 and
general N can be found in [32, eq. 20]. Finally, the case d > 1, N = 2 may be inferred
from the Laplace approximation of Bessel functions of matrix arguments studied in
[14] (see also [22, Appendix B] and [33, Section 2.6]).

An important feature of (4.8) is that the leading order asymptotics does not depend
on the parameter λ. This was already remarked in [13] in the special case d = 1 and
N = 3, for which the full asymptotic expansion was obtained.

Proof of Theorem 4.6 By (2.4), we have

ψN
λ (r N (k)) =

∫

TNd (r N (k))

( N−1∏
i=1

i∏
j=1

μ(dxij )

)
�N

λ (x) e−�N (x) .

Recalling (4.4), let us change variables by setting

x̃ ij = r ij (k)
−1xij = ki−2 j+1xij for 1 ≤ j ≤ i ≤ N . (4.9)

One can then easily verify, using also the invariance property of the measure μ, that

ψN
λ (r N (k)) =

∫

TNd (I Nd )

( N−1∏
i=1

i∏
j=1

μ(dx̃ ij )

)
�N

λ (x̃) e−k�N (x̃) . (4.10)

Applying Prop. 5.14 with g := �N
λ , we obtain

ψN
λ (r N (k))

k→∞∼ �N
λ (m)√|H(m)|

(
N−1∏
i=1

∣∣mi
1 · · ·mi

i

∣∣
)(

2π

k

) N (N−1)d(d+1)
8

e−k�N (m) ,

since the number of vertices of G that do not belong to � is N (N − 1)/2. The claim
then follows from Corollary 4.5 (which, in particular, implies that �N

λ (m) = 1). ��
Recall now the definition (2.6) of the 
̃-kernel.

Corollary 4.7 Let f : TNd → R be a bounded and continuous function and let

fk(x) := f
(
(r ij (k)x

i
j )1≤ j≤i≤N

)
for k > 0 and x ∈ TNd . (4.11)

Assume that fk
k→∞−−−→ f∞ uniformly on any compact subsets of TNd (I Nd ). Then, for

any λ, � ∈ R
N ,

lim
k→∞


̃λ f (r N (k))

ψN
� (r N (k))

= f∞(m) . (4.12)
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Proof As the leading order asymptotics of the Whittaker function ψN
λ (r N (k)) does

not depend on λ by Theorem 4.6, we have

lim
k→∞

ψN
λ (r N (k))

ψN
� (r N (k))

= 1 .

Therefore, it suffices to prove (4.12) for � = λ.
Note that, using (4.10) and the fact that λ ∈ R

N , the measure μN
k defined by

μN
k (dx̃) := 1

ψN
λ (r N (k))

�N
λ (x̃) e−k�N (x̃)

( N−1∏
i=1

i∏
j=1

μ(dx̃ ij )

)

is a probability measure on TNd (I Nd ). By definition of 
̃λ, we then have


̃λ f (r N (k))

ψN
λ (r N (k))

=
∫

TNd (r N (k))

( N−1∏
i=1

i∏
j=1

μ(dxij )

)
�N

λ (x) e−�N (x)

ψN
λ (r N (k))

f (x)

=
∫

TNd (I Nd )

μN
k (dx̃) fk(x̃) ,

where in the integral we performed the change of variables (4.9). Since f is bounded
and continuous, the functions { fk}k>0 are uniformly bounded and continuous; more-
over, by assumption, they converge as k → ∞ to f∞ uniformly on any compact
subsets of TNd (I Nd ). Therefore, by Lemma C.1, it is now enough to show that μN

k
converges weakly as k → ∞ to the Dirac measure δm , i.e. that

lim
k→∞

∫

TNd (I Nd )

μN
k (dx)g(x) = g(m)

for every bounded and continuous function g : TNd (I Nd ) → R. This claim, in turn,
follows readily from Prop. 5.14, since, without loss of generality, one can assume
g(m) �= 0. ��

4.3 Fixed-time law of the ‘bottom edge’process

Let us now go back to the Markov process X on TNd from Definition 3.3. Recall that,
under the hypotheses of Theorem 3.10, the N th row XN of the process X has an
autonomous Markov evolution with time-n transition kernel PN

α(n),β (cf. (3.24)). The

transition kernel of XN from time 0 to time n is then given by the composition

UN ,n
α,β := PN

α(1),β P
N
α(2),β · · · PN

α(n),β . (4.13)
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Thus, if the initial state of XN is XN (0) = z, then the law of XN (n) is UN ,n
α,β (z; ·).

Let now λ = (λ1, . . . , λN ) ∈ C
N such that α(�) + (λi ) > d−1

2 for all 1 ≤ � ≤ n
and 1 ≤ i ≤ N . Iterating the eigenfunction equation (3.22) n times, we obtain the
following eigenfunction equation for UN ,n

α,β :

UN ,n
α,β

ψN
λ

ψN
β

=
(

n∏
�=1

N∏
i=1

�d(α(�) + λi )

�d(α(�) + β i )

)
ψN

λ

ψN
β

. (4.14)

Consider now the initial state XN (0) = r N (k) (cf. (4.4)), which becomes singular
in the limit as k → ∞. We will show that the measure UN ,n

α,β (r N (k); ·) converges, as
k → ∞, to the matrix Whittaker measure with parameters (α(1), . . . , α(n)) and β.
An intuition about this fact is provided by (4.14). It follows from Theorem 4.6 that
the ratio of Whittaker functions on the right-hand side of (4.14), evaluated at r N (k),
converges to 1 as k → ∞. It is then easy to see that, if the convergence to matrix
Whittaker measures holds as claimed above, then (4.14) reduces to the Whittaker
integral identity proved in Sect. 4.1.

Theorem 4.8 Let n ≥ N. As k → ∞, the distribution U N ,n
α,β (r N (k); ·) converges

in total variation distance (and, hence, weakly) to the matrix Whittaker measure with
parameters (α(1), . . . , α(n)) andβ (whichwe denote byW N ,n

α,β for simplicity). Namely,
we have

lim
k→∞ sup

A

∣∣∣UN ,n
α,β (r N (k); A) − WN ,n

α,β (A)

∣∣∣ = 0 , (4.15)

where the supremum is taken over all measurable sets A ⊆ PN
d .

Proof We will prove that

lim
k→∞

∫

PN
d

μ⊗N (dz)
∣∣∣UN ,n

α,β (r N (k); z) − WN ,n
α,β (z)

∣∣∣ = 0 . (4.16)

This statement is stronger than (4.15), as the supremum in (4.15) is clearly bounded
from above by the integral in (4.16).

Let us fix N and prove (4.16) by induction on n ≥ N . Before proving the base
case, let us verify the (simpler) induction step. Assume that (4.16) holds for a certain
n ≥ N . Using (4.2), (3.24), (2.16) and (2.17), we obtain

(
WN ,n

α,β PN
α(n+1),β

)
(z) =

(
n+1∏
�=1

N∏
i=1

1

�d(α(�) + β i )

) ( �PN
α(n+1)ψ

N ,n
α(1:n);Id

)
(z)ψN

β (z)

=
(
n+1∏
�=1

N∏
i=1

1

�d(α(�) + β i )

)
ψ

N ,n+1
α(1:n+1);Id (z)ψ

N
β (z) = WN ,n+1

α,β (z)
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for z ∈ PN
d .On theother hand, by (4.13)wehaveU

N ,n+1
α,β = UN ,n

α,β PN
α(n+1),β .Applying

Fubini’s theorem and recalling that PN
α(n+1),β is a Markov kernel, we then obtain

∫

PN
d

μ⊗N (dz)
∣∣∣UN ,n+1

α,β (r N (k); z) − WN ,n+1
α,β (z)

∣∣∣

=
∫

PN
d

μ⊗N (dz)

∣∣∣∣∣
∫

PN
d

μ⊗N (dz̃)
(
UN ,n

α,β (r N (k); z̃) − WN ,n
α,β (z̃)

)
PN

α(n+1),β(z̃; z)
∣∣∣∣∣

≤
∫

PN
d

μ⊗N (dz̃)
∣∣∣UN ,n

α,β (r N (k); z̃) − WN ,n
α,β (z̃)

∣∣∣
∫

PN
d

μ⊗N (dz)PN
α(n+1),β(z̃; z)

︸ ︷︷ ︸
=1 for all z̃

.

The latter expression vanishes as k → ∞ by the induction hypothesis, thus proving
the induction step.

It remains to prove the base case, i.e. (4.16) for n = N . Recall that the measures
UN ,N

α,β (r N (k); ·), for any k > 0, and WN ,N
α,β have the same finite total mass, since

they are all probability distributions, and are absolutely continuous with respect to
μ⊗N . By Scheffé’s theorem (see e.g. [4, Theorem 16.12]), it then suffices to show the
convergence of the densities:

lim
k→∞UN ,N

α,β (r N (k); z) = WN ,N
α,β (z) for μ⊗N -almost every z ∈ PN

d .

(4.17)

Fix z ∈ PN
d once for all. Using (4.13), we write

UN ,N
α,β (r N (k); z) =

∫

PN
d

PN
α(1),β(r N (k); dz1)

∫

PN
d

PN
α(2),β(z1; dz2) · · ·

· · ·
∫

PN
d

PN
α(N−1),β(zN−2; dzN−1)PN

α(N ),β(zN−1; z)

Define now

J Nα (z0; zN ) :=
∫

PN (N−1)
d

⎛
⎝

N−1∏
�=1

μ⊗N (dz�)

⎞
⎠

N∏
i, j=1

∣∣zi−1
j

∣∣α(i)

∣∣zij
∣∣α(i)

e
− tr
[
zij+1(z

i−1
j )−1+zi−1

j (zij )
−1
]

(4.18)

for z0, zN ∈ PN
d , with the usual conventions ziN+1 := 0 for all i = 0, . . . , N . Using

the definition (3.24) of the P-kernels, we then have
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z04 = x44 z03 = x43 z02 = x42 z01 = x41

z14 = x33 z13 = x32 z12 = x31 z11 = y11

z24 = x22 z23 = x21 z22 = y22 z21 = y21

z34 = x11 z33 = y33 z32 = y32 z31 = y31

z44 = y44 z43 = y43 z42 = y42 z41 = y41

Fig. 3 Graphical representation of the set of variables zij , 0 ≤ i ≤ N and 1 ≤ j ≤ N (here N = 4)

appearing in (4.18). Each arrow a → b corresponds to the term e− tr[ab−1] in the integral. Relabelling the
zij as in (4.21)–(4.22) yields two triangular arrays x (coloured in red) and y (coloured in blue) (colour figure
online)

UN ,N
α,β (r N (k); z) =

⎛
⎝

N∏
�,i=1

1

�d(α(�) + β i )

⎞
⎠ ψN

β (z)

ψN
β (r N (k))

J N
α (r N (k); z) .

(4.19)

Comparing (4.19) with (4.3), we are reduced to show that

lim
k→∞

J N
α (r N (k); z)
ψN

β (r N (k))
= e

− tr
[
z−1
N

]
ψN

α(1:N )(z) for μ⊗N -almost every z ∈ PN
d .

(4.20)

Let us relabel the variables in the integral (4.18) by setting

zij = xN−i
j−i for 0 ≤ i ≤ N − 1 and i + 1 ≤ j ≤ N , (4.21)

zij = yij for 1 ≤ i ≤ N and 1 ≤ j ≤ i . (4.22)

This relabelling yields two triangular arrays x, y ∈ TNd . See Fig. 3 for a graphical
representation of the variables zij and the corresponding arrays x and y. Recalling the

definition (2.6) of the 
̃-kernel, we have

J N
α (r N (k); z) = 
̃N

α̂(1:N )
f (r N (k)) ,

where α̂(1 : N ) := (−α(N ), . . . ,−α(1)) and the function f : TNd → R is defined by

f (x) :=
∫

TNd (z)

⎛
⎝

N−1∏
i=1

i∏
j=1

μ(dyij )

⎞
⎠
(

N∏
i=1

e
− tr
[
xN−i+1
1 (yii )

−1
])

�N
α(1:N )(y) e

−�N (y) .
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Here, each term e
− tr
[
xN−i+1
1 (yii )

−1
]
corresponds, graphically, to a bold arrow in Fig. 3.

We now wish to apply Corollary 4.7. Notice first that f is a continuous function
of x ; moreover, it is bounded below by 0 and above by ψN

α(1:N )(z) (cf. (2.4)). The
associated functions fk defined in (4.11) are

fk(x) =
∫

TNd (z)

⎛
⎝

N−1∏
i=1

i∏
j=1

μ(dyij )

⎞
⎠
⎛
⎝

N∏
i=1

e
−k−(N−i) tr

[
xN−i+1
1 (yii )

−1
]⎞
⎠�N

α(1:N )(y) e
−�N (y) .

By dominated convergence and by the definition (2.4) of Whittaker function, we have
the pointwise convergence

lim
k→∞ fk(x) = e

− tr
[
x11 z

−1
N

]
ψN

α(1:N )(z) =: f∞(x) .

Notice that { fk}k>0 is a collection of continuous functions, increasing with k, that
converges pointwise to a continuous limit; hence, by Dini’s theorem (see e.g. [38,
Theorem 7.13]), the convergence is uniform on compacts. Then, the assumptions of
Corollary 4.7 are satisfied and we have

lim
k→∞

J N
α (r N (k); z)
ψN

β (r N (k))
= lim

k→∞

̃N

α̂(1:N )
f (r N (k))

ψN
β (r N (k))

= f∞(m) ,

where m is the unique global minimiser of �N on TNd (I Nd ) (cf. Corollary 4.4). Since
m1

1 = Id by Corollary 4.5, we have

f∞(m) = e
− tr
[
z−1
N

]
ψN

α(1:N )(z) .

This yields the desired limit (4.20). ��

4.4 Fixed-time laws of the ‘right edge’and ‘left edge’processes

Throughout this subsection, it will be convenient to work with the space of d × d
positive semidefinite matrices, i.e. d × d real symmetric matrices with nonnegative
eigenvalues; such a space is the closure of Pd under the standard Euclidean topology,
and we thus denote it by Pd .

It is clear from the definition given in Sect. 3.1 that the ‘right edge’ X1 =
(X1

1, . . . , X
N
1 ) of X is a Markov process in its own filtration. Furthermore, as men-

tioned before, X1 equals the system Z = (Z1, . . . , ZN ) of random particles in Pd

with one-sided interactions defined in (1.8)–(1.9), where the random weight V i (n)

equals Wi
1(n), an inverse Wishart random matrix with parameter α(n) + β i . If the

initial state Z(0) of this process is in PN
d (respectively, PN

d ), then clearly Z evolves as

a process in PN
d (respectively, PN

d ).
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Analogously, the ‘left edge’ of X is a Markov process in its own filtration. Its
‘inverse’ L = (L1, . . . , LN ) := ((X1

1)
−1, . . . , (XN

N )−1) is given by (3.5)–(3.6), where
Ui (n) := (Wi

i (n))−1 is a Wishart random matrix with parameter α(n) + β i . If the

initial state L(0) of this process is in PN
d (respectively, PN

d ), then clearly L evolves as

a process in PN
d (respectively, PN

d ).
As the next lemma shows, the singular initial state of the bottom edge of X consid-

ered in Sect. 4.3 induces (through Theorem 3.10) the initial state (1.10) on the right
edge X1, which resembles the step or ‘narrow wedge’ initial configuration in systems
of interacting particles/random walks. A similar statement holds for the left edge.

Lemma 4.9 Let X(0) be distributed according to 
β(r N (k); ·). Then, on the space

PN
d , both (X1

1(0), . . . , X
N
1 (0)) and ((X1

1(0))
−1, . . . , (XN

N (0))−1) converge in law, as
k → ∞, to (Id , 0d , . . . , 0d).

Proof We prove the claim about (X1
1(0), . . . , X

N
1 (0)), as the proof of the claim about

((X1
1(0))

−1, . . . , (XN
N (0))−1) is completely analogous.

Let g : PN
d → R be a bounded and continuous test function. We need to prove that

lim
k→∞ E [g(X1(0))] = g(Id , 0d , . . . , 0d) . (4.23)

Let f : TNd → R, f (x) := g(x1) = g(x11 , . . . , x
N
1 ) for all x ∈ TNd . By definition (3.23)

of 
β , we then have

E [g(X1(0))] = E [ f (X(0))] = 
β f (r N (k)) = 
̃β f (r N (k))

ψN
β (r N (k))

.

We now wish to apply Corollary 4.7. Since g is bounded and continuous, f also is.
The associated functions fk defined in (4.11) are

fk(x) := g

(
x11 ,

x21
k

, . . . ,
xN1
kN−1

)
, x ∈ TNd .

These functions converge as k → ∞ to f∞(x) := g(x11 , 0d , . . . , 0d) uniformly on

compacts, since g is continuous on PN
d . Therefore, by Corollary 4.7, E [g(X1(0))]

converges as k → ∞ to g(m1
1, 0d , . . . , 0d), where m is the minimiser of �N on

TNd (I Nd ). By Corollary 4.5 we have m1
1 = Id , and the claim (4.23) follows. ��

As a consequence of Theorem 4.8 and Lemma 4.9, we obtain:

Corollary 4.10 As above, let Z = (Z1, . . . , ZN ) and L = (L1, . . . , LN ) be the right
edge process and the (inverse) left edge process, respectively, with initial states Z(0) =
L(0) = (Id , 0d , . . . , 0d) ∈ PN

d . Then, for n ≥ N, Z N (n) and LN (n) are distributed as
the first marginal and the Nth marginal, respectively, of the matrix Whittaker measure
with parameters (α(1), . . . , α(n)) and β.
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Proof Again, we only prove the claim about the right edge, as the proof of the claim
about the left edge is completely analogous.

Let the process X be as in Definition 3.3, with initial state X(0) distributed accord-
ing to 
β(r N (k); ·). It is clear from the definition that XN

1 (n) can be written as a
continuous, deterministic function of the right edge initial state X1(0) and of the col-
lection of randommatrices (W 1

1 (�), . . . ,WN
1 (�))1≤�≤n . Therefore, by Lemma 4.9 and

the continuousmapping theorem [5, Theorem2.7], XN
1 (n) converges in law as k → ∞

to ZN (n).
On the other hand, by Theorem 4.8, for n ≥ N , XN

1 (n) converges in law as k → ∞
to the first marginal of a matrix Whittaker measure with parameters (α(1), . . . , α(n))

and β. ��

Remark 4.11 The following generalisation of Corollary 4.10 is immediate: under the
same hypotheses, for every 1 ≤ i ≤ N and n ≥ i , Zi (n) is distributed as the
first marginal of the matrix Whittaker measure with parameters (α(1), . . . , α(n)) and
(β1, . . . , β i ). This is due to the fact that, by definition, for any fixed i ≥ 1, the process
(Z1, . . . , Zi ) has both an initial configuration (Id , 0d , . . . , 0d) and aMarkov evolution
that do not depend on the choice of N ≥ i . Analogously, for every 1 ≤ i ≤ N and
n ≥ i , Li (n) is distributed as the i th marginal of the same matrix Whittaker measure.

5 Minimisation of energy functions and Laplace approximations

In this section, we study minimisation problems for certain energy functions of matrix
arguments on directed graphs. As a consequence, we obtain Laplace approximations
for integrals of exponentials of these energy functions. For our purposes, the most
important application of such results consists in certain asymptotics of Whittaker
functions of matrix arguments; see Sect. 4.2. However, the results of this section may
be of independent interest. For instance, the general framework we work with may be
applied to obtain analogous asymptotics for orthogonal Whittaker functions, which
also appeared in the study of stochastic systems—see [2, 6].

5.1 Energy functions on directed graphs

Let us recall some terminology of graph theory that will be useful throughout this
section. A finite directed graph G = (V , E) is a pair consisting of a nonempty finite
set V of vertices and a set E ⊂ {(v,w) ∈ V 2 : v �= w} of edges. Note that edges
connecting a vertex to itself are not allowed, nor are multiple edges. The direction of
an edge (v,w) connecting v to w is given by the ordering of the pair. For the sake of
notational convenience, we also write v → w when (v,w) ∈ E , and v �→ w when
(v,w) /∈ E . A vertex v is called a sink if it has no outcoming edges (i.e. if v �→ w for
all w ∈ V ) and a source if it has no incoming edges (i.e. if w �→ v for all w ∈ V ). For
any v,w ∈ V and 0 ≤ l < ∞, we call path of length l in G from v to w any sequence
(v0, v1, . . . , vl) such that v0 = v, vl = w, and vi−1 → vi for all 1 ≤ i ≤ l. A cycle is
any path (v0, v1, . . . , vl) such that v0 = vl and any other two vertices are distinct. We
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say that G is acyclic if it has no cycles. From now on, throughout the whole section,
G = (V , E) will always be an acyclic finite directed graph.

Lemma 5.1 For all v ∈ V , there exists a path in G from v to a sink; moreover, there
exists a path in G from a source to v.

Proof We will prove the existence of the first path only, as the existence of the second
path follows from a similar argument. We construct the path algorithmically. Set
v0 := v. For all i = 0, 1, 2, . . . , we proceed as follows: if vi is a sink, then we stop
the algorithm; otherwise, we pick vi+1 to be any vertex such that vi → vi+1. If the
algorithm never terminates, then there exist two distinct indices i, j with vi = v j ,
since G is finite; this implies that G has a cycle, against the hypotheses. Therefore, the
procedure must stop in a finite number l of steps, thus yielding a path (v0, v1, . . . , vl)

from v0 = v to a sink vl . ��
For any integer d ≥ 1, let Symd , Diagd , and Scald be the sets of d × d real

symmetric matrices, real diagonal matrices, and real scalar matrices (i.e. multiples of
the d × d identity matrix Id ), respectively. We will write SymV

d for the set of arrays
x = (xv)v∈V , where each xv ∈ Symd . We will use the notations DiagVd and ScalVd in
a similar way.

Let us define the ‘energy functions’

ϕd : SymV
d → R , ϕd(x) :=

∑
v,w∈V :

v→w

tr[exv e−xw ] , (5.1)

χd : SymV
d → R , χd(x) :=

∑
v,w∈V :

v→w

tr[exv−xw ] , (5.2)

where ea denotes the usual exponential of the matrix a. The Golden-Thompson
inequality (see e.g. [3]) states that tr[ea eb] ≥ tr[ea+b] if a and b are symmetric
matrices. It follows that

ϕd(x) ≥ χd(x) for all x ∈ SymV
d . (5.3)

However, the two energy functions are identical only for d = 1.
Notice that, by Lemma 5.1, G has at least one sink and one source, possibly coin-

ciding. Throughout, we also assume that there exists at least one vertex of G that is
neither a source nor a sink. We can thus fix a subset � ⊂ V that contains all the sinks
and sources and such that �c, the complement of � in V , is nonempty. For any set S
and any fixed array z = (zv)v∈� ∈ S� , let

SV (z) := {x = (xv)v∈V ∈ SV : xv = zv for all v ∈ �} . (5.4)

Our first result concerns the asymptotic behaviour of the energy functions on
SymV

d (z). Let ‖·‖ denote any norm on SymV
d .
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Proposition 5.2 Let z ∈ Sym�
d . For x ∈ SymV

d (z), we haveϕd(x) → ∞ andχd(x) →
∞ as ‖x‖ → ∞.

Proof By inequality (5.3), it suffices to prove the claim for χd . As all norms on a
finite-dimensional space are equivalent, we may arbitrarily take

‖x‖ :=
∑
v∈V

�(xv) for x ∈ SymV
d , (5.5)

where �(a) denotes the spectral radius of a symmetricmatrix a (i.e. the largest absolute
value of its eigenvalues). As the spectral radius is a norm on Symd , it can be easily
verified that (5.5) defines a norm on SymV

d . We will show that, for any sequence
(x (n))n≥1 ⊆ SymV

d (z) such that ‖x (n)‖ → ∞ as n → ∞, we have χd(x (n)) → ∞
as n → ∞. For the sake of notational simplicity, we will drop the superscript of x (n)

and leave the dependence on n implicit.
By contradiction, assume that there exists a positive constant C such that, along a

subsequence, χd(x) ≤ C . Since ‖x‖ → ∞, there exists w ∈ �c such that, along a
further subsequence, �(xw) → ∞. This implies that, passing to a final subsequence,
either λmax(xw) → ∞ or λmax(−xw) → ∞, where λmax(a) denotes the maximum
eigenvalue of a symmetric matrix a. As w ∈ �c, it is neither a source nor a sink. By
Lemma 5.1, there exists a path (v0, v1, . . . , vl) of length l ≥ 1 in G from v0 = w to
a sink vl ∈ �. Since G has no cycles, we have vi �= v j for all i �= j ; therefore, all
directed edges vi−1 → vi (1 ≤ i ≤ d) are distinct. We thus have

C ≥ χd(x) ≥
l∑

i=1

tr[exvi−1−xvi ] ≥
l∑

i=1

eλmax(xvi−1−xvi ) ≥
l∑

i=1

λmax(xvi−1 − xvi ) ,

(5.6)

where we used the bounds tr[ey] ≥ λmax(ey) = eλmax(y) for y ∈ Symd and eα ≥ α

for α ∈ R. Recall now that, for any a, b ∈ Symd ,

λmax(a + b) ≤ λmax(a) + λmax(b) . (5.7)

By iterating (5.7) several times and using (5.6), we obtain

λmax(xw) ≤
l∑

i=1

λmax(xvi−1 − xvi ) + λmax(xvl ) ≤ C + λmax(xvl ) .

By considering a path (u0, u1, . . . , um) of length m ≥ 1 from a source u0 ∈ � to
um = w (which again exists by Lemma 5.1) and using similar bounds, we also have

λmax(−xw) ≤ λmax(−xu0) + C .
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Since either λmax(xw) → ∞ or λmax(−xw) → ∞, it follows that either λmax(xvl ) →
∞ or λmax(−xu0) → ∞. This contradicts the fact that xvl = zvl and xu0 = zu0 are
both fixed for all x ∈ SymV

d (z), since vl , u0 ∈ �. ��
Remark 5.3 Above we have assumed that G = (V , E) is acyclic and that � is a subset
of V containing all the sinks and sources of G. We stress that both hypotheses are
necessary for Prop. 5.2 to hold. As a counterexample, let G be the cycle graph with n
vertices and let � = ∅. If a ∈ Symd and x = (xv)v∈V is the array with xv = a for all
v, then

ϕd(x) = χd(x) = tr[Id ] + · · · + tr[Id ]︸ ︷︷ ︸
n times

= dn

is constant in a; however, for the norm ‖·‖ defined in (5.5), if �(a) → ∞, then
‖x‖ → ∞.

5.2 Minima of energy functions

We now study the minima of the functions (5.1)–(5.2) on the set SymV
d (z), where

z ∈ Sym�
d . Inwords,wewish tominimise the energy functions subject to the constraint

that some of the entries of the input array (precisely, those indexed by the vertices of
the subset �) are fixed.

We start with the simplest case d = 1, in which Sym1 = Diag1 = Scal1 = R and
the two energy functions coincide:

ϕ1 = χ1 : R
V → R , ϕ1(x) = χ1(x) =

∑
v→w

exv−xw .

We denote by ∂v the partial derivative of a function on R
V with respect to the variable

xv .

Lemma 5.4 Let z ∈ R
� . The Hessian matrix of ϕ1 on R

V (z) is positive definite every-
where. In particular, ϕ1 is strictly convex on R

V (z).

Proof On R
V (z) the variables indexed by � are fixed to the assigned values z, hence

we can consider ϕ1 and its Hessian as functions of (xv)v∈�c . For v,w ∈ �c, we have

∂v∂wϕ1 =
{∑

u∈V
(
exv−xu 1v→u + exu−xv 1u→v

)
if v = w ,

− exv−xw 1v→w − exw−xv 1w→v if v �= w .

Thus, the quadratic form of the Hessian of ϕ1 onR
V (z), as a function of α = (αv)v∈�c ,

is
∑

v,w∈�c

αvαw∂v∂wϕ1 =
∑
v∈�c

α2
v

∑
u∈V

(
exv−xu 1v→u + exu−xv 1u→v

)

+ 2
∑

v,w∈�c

αvαw

(− exv−xw 1v→w − exw−xv 1w→v

)
.
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Setting αv := 0 for all v ∈ �, it is easy to see that the latter expression equals

∑
v,w∈V :

v→w

exv−xw

(
α2

v + α2
w − 2αvαw

)
=
∑

v,w∈V :
v→w

exv−xw (αv − αw)2 ≥ 0 .

Therefore, the Hessian is positive semidefinite everywhere. To prove that it is in fact
positive definite, we will show that, if the quadratic form of the Hessian vanishes at
α, then α = 0. If the above expression vanishes, then αv = αw for all v,w ∈ V such
that v → w. Let v ∈ �c. By Lemma 5.1, there exists a path from v to a sink s ∈ �.
The value αw is then the same for all the vertices w along such a path. We then have
αv = αs = 0, since s ∈ �. As v ∈ �c was arbitrary, it follows that α = (αv)v∈�c = 0.

��
Proposition 5.5 The function ϕ1 = χ1 has a unique (global) minimiser on R

V (z).

Proof By Lemma 5.4, ϕ1 is a strictly convex function over the convex set R
V (z);

therefore, it has at most oneminimiser. It remains to show the existence of aminimiser.
Since ϕ1 is a continuous function, it admits at least one minimiser on every closed ball
Br := {x ∈ R

V (z) : ‖x‖ ≤ r}. By Prop. 5.2, for r large enough, the minimiser on Br
is also a (global) minimiser on R

V (z). ��
The case d > 1 is much more challenging, and we are able to deal with it only

under rather strong assumptions on the fixed array z. Nonetheless, this is sufficient for
our ultimate purposes.

We will be using the fact that the relation between the eigenvalues and the diagonal
entries of a symmetric matrix is completely characterised by themajorisation relation.
Let us briefly explain this statement, referring to [23, § 4.3] for proofs and details. For
any α = (α1, . . . , αd) ∈ R

d , let us denote by α↓ = (α
↓
1 , . . . , α

↓
d ) its nonincreasing

rearrangement, i.e. the permutation of the coordinates of α such that α↓
1 ≥ α

↓
2 ≥ · · · ≥

α
↓
d . Given α, β ∈ R

d , we say that α majorises β, and write α � β, if

k∑
i=1

α
↓
i ≥

k∑
i=1

β
↓
i for 1 ≤ k ≤ d − 1 and

d∑
i=1

αi =
d∑

i=1

βi . (5.8)

Theorem 5.6 ([23, Theorem 4.3.45]) Let x ∈ Symd . Let λ = (λ1, . . . λd) be the vector
of the (real) eigenvalues of x, taken in any order. Let δi := x(i, i) for 1 ≤ i ≤ d, so
that δ = (δ1, . . . , δd) is the vector of the diagonal entries of x. Then we have λ � δ,
and the equality λ↓ = δ↓ holds if and only if x is a diagonal matrix.

We now briefly introduce the concept of Schur convexity and state the criterion that
is useful for our purposes, referring e.g. to [30, Ch. I.3] for more details. A function
H : R

d → R is called Schur-convex if H(α) ≥ H(β) for all α, β ∈ R
d such that

α � β. In particular, for all α, β such that α↓ = β↓, we have α � β � α, hence
H(α) = H(β); in other words, every Schur-convex function is a symmetric function.
Additionally, H is called strictly Schur-convex if H(α) > H(β) for all α, β ∈ R

d

such that α � β and α↓ �= β↓.
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Theorem 5.7 ([30, Ch. I.3, § C]) Let h : R → R and

H : R
d → R , H(α1, . . . , αd) =

d∑
i=1

h(αi ) .

If h is convex, then H is Schur-convex. If h is strictly convex, then H is strictly Schur-
convex.

As a consequence of the results just stated, we obtain:

Proposition 5.8 Suppose that x ∈ Symd and y ∈ Diagd have the same diagonal
entries. Then tr[ex ] ≥ tr[ey], and the equality holds if and only if x = y.

Proof Let λ = (λ1, . . . , λd) be the vector of the eigenvalues of x , taken in any order.
Let δ = (δ1, . . . , δd) be the vector of (common) diagonal entries of x and y, i.e.
δi = x(i, i) = y(i, i) for all 1 ≤ i ≤ d. Since y is diagonal, notice that the δi ’s
are also its eigenvalues. Therefore, the claimed inequality tr[ex ] ≥ tr[ey] reads as
H(λ) ≥ H(δ), where

H : R
d → R , H(α) = H(α1, . . . , αd) :=

d∑
i=1

eαi .

The function H is strictly Schur-convex byTheorem5.7, since the exponential function
is strictly convex. Since λ � δ by Theorem 5.6, we then have H(λ) ≥ H(δ), as
required. Moreover, assume that H(λ) = H(δ). Then, by strict Schur-convexity of
H , we have λ↓ = δ↓. Again by Theorem 5.6, we conclude that x is diagonal, which
in turn implies x = y. ��

From the latter proposition we deduce the existence and uniqueness of a minimiser
of χd on SymV

d (z), under the assumption that all the ‘fixed’ entries z are diagonal
matrices.

Theorem 5.9 Let z = (zv)v∈� ∈ Diag�
d and set z(i, i) := (zv(i, i))v∈� ∈ R

� for all
1 ≤ i ≤ d. Then, the function χd admits a unique minimiser on SymV

d (z). Such a
minimiser is of the formm = (mv)v∈V ∈ DiagVd (z), where m(i, i) := (mv(i, i))v∈V ∈
R
V denotes the unique minimiser of χ1 on R

V (z(i, i)) for all i .

Proof The claim will immediately follow from the two following facts:

(i) for any x ∈ SymV
d (z), there exists y ∈ DiagVd (z) such that χd(x) ≥ χd(y),

with equality if and only if x = y;
(ii) there exists m ∈ DiagVd (z) (as in the statement of the theorem) such that

χd(x) ≥ χd(m) for any x ∈ DiagVd (z), with equality if and only if x = m.

Proof of (i). Fix any x ∈ SymV
d (z). Define y = (yv)v∈V so that, for all v ∈ V ,

yv is the diagonal matrix with the same diagonal entries as x , i.e. yv(i, i) = xv(i, i)
for 1 ≤ i ≤ d. Since each zv (for v ∈ �) is diagonal by hypothesis, we have
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y ∈ DiagVd (z). For any v,w ∈ V , the matrices xv − xw ∈ Symd and yv − yw ∈ Diagd
have the same diagonal entries, hence tr[exv−xw ] ≥ tr[eyv−yw ] by Prop. 5.8; summing
over v → w, we obtain that χd(x) ≥ χd(y). Assume now that χd(x) = χd(y).
Then, tr[exv−xw ] = tr[eyv−yw ] whenever v → w. Again by Prop. 5.8, we then have
xv − yv = xw − yw for all v → w. For any v ∈ V , by Lemma 5.1 there exists a path
(v0, v1, . . . , vl) in G from v0 = v to a sink vl . Since all sinks are in � by assumption
(see Sect. 5.1) and both x and y are in SymV

d (z), we have xvl = zvl = yvl . Therefore,
xv − yv = xv1 − yv1 = · · · = xvl − yvl = 0; in particular, xv = yv . As v ∈ V is
arbitrary, we conclude that x = y.

Proof of (ii). For x ∈ DiagVd (z), set x(i, i) := (xv(i, i))v∈V ∈ R
V . As each xv is

diagonal, we have

χd(x) =
∑
v→w

tr[exv−xw ] =
∑
v→w

d∑
i=1

exv(i,i)−xw(i,i) =
d∑

i=1

χ1(x(i, i)) .

By Prop. 5.5, for all i , χ1 has a unique minimiser m(i, i) on R
V (z(i, i)). Therefore,

we have

χd(x) =
d∑

i=1

χ1(x(i, i)) ≥
d∑

i=1

χ1(m(i, i)) = χd(m) ,

and the inequality is strict whenever x �= m. ��
In the case where the ‘fixed’ entries z are scalar matrices, the inequality (5.3)

immediately implies the existence and uniqueness of a minimiser of ϕd .

Corollary 5.10 Let z = (zv)v∈� ∈ Scal�d , so that zv = ζv Id for all v ∈ � and for
a certain ζ = (ζv)v∈V ∈ R

� . Then, the function ϕd admits a unique minimiser on
SymV

d (z). Such a minimiser is of the form m = (mv)v∈V = (μv Id)v∈V ∈ ScalVd (z),
where μ = (μv)v∈V ∈ R

V is the unique minimiser of ϕ1 on R
V (ζ ).

Proof Since Scal�d ⊆ Diag�
d , it follows from Theorem 5.9 that χd has a unique

minimiser m on SymV
d (z), which is of the form specified above. Since the scalar

matrices mv and mw commute for any v,w ∈ V , we have emv e−mw = emv−mw ,
hence ϕd(m) = χd(m). By (5.3), we then have

ϕd(x) ≥ χd(x) ≥ χd(m) = ϕd(m) for all x ∈ SymV
d (z) ,

where the second inequality is strict if x �= m. It follows that m is also the unique
minimiser of ϕd on SymV

d (z). ��

5.3 Energy functions in logarithmic variables

It is a well-known fact that the functions

Symd → Pd , a �→ ea and Pd → Symd , a �→ log a ,
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namely the matrix exponential and the matrix logarithm, are both bijections on the
stated domains and inverse to each other. From now on, for any set S, we will use the
following compact notations: log x := (log xv)v∈S ∈ SymS

d for x = (xv)v∈S ∈ PS
d ,

and ex := (exv )v∈S ∈ PS
d for x = (xv)v∈S ∈ SymS

d .
Let us consider the analogue of ϕd ‘in logarithmic variables’, that is the energy

function �d(x) := ϕd(log x) for x ∈ PV
d . More explicitly, recalling (5.1), we define

�d : PV
d → R , �d(x) :=

∑
v,w∈V :

v→w

tr[xvx
−1
w ] for all x = (xv)v∈V ∈ PV

d .

(5.9)

Take now z = (zv)v∈� such that each zv is a positive multiple of Id , or equivalently
log z ∈ Scal�d . By Corollary 5.10, �d has a unique minimiser m on PV

d (z), where
logm is the unique minimiser of ϕd on SymV

d (log z). This implies that, on PV
d (z),

the Hessian of �d at m is positive semidefinite. We now aim to prove the stronger
statement that the Hessian of �d at m is positive definite.

As in the previous subsections, we first workwith d = 1. Recall that, by Lemma 5.4,
ϕ1 is strictly convex on R

V (log z), for z ∈ P�
1 . The analogous statement does not hold

for �1 on PV
1 (z); however, the following is still true:

Lemma 5.11 For z ∈ P�
1 , the Hessian of �1 on PV

1 (z) is positive definite at any
critical point.

Proof We prove the claim by simply expressing the derivatives of �1 in terms of the
derivatives of ϕ1. For v ∈ �c, the first partial derivative of �1 w.r.t. xv is

∂v�1(x) = 1

xv

∂vϕ1(log x) for any x ∈ PV
1 (z) . (5.10)

Therefore, for v,w ∈ �c,

∂v∂w�1(x) =

⎧⎪⎨
⎪⎩

1

x2v

[
∂2v ϕ1 − ∂vϕ1

]
(log x) if v = w ,

1

xvxw

∂v∂wϕ1(log x) if v �= w .

Assume now that x is a critical point of �1 on PV
1 (z), i.e. that both sides of (5.10)

vanish for all v ∈ �c. Then, we have

∂v∂w�1(x) = 1

xvxw

∂v∂wϕ1(log x) for all v,w ∈ �c .

As the Hessian of ϕ1 on R
V (log z) is positive definite everywhere by Lemma 5.4, it

follows that the Hessian of �1 on PV
1 (z) is positive definite at x . ��
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To compute the Hessian in the general case d ≥ 1, we will use the following
basic formulas (see e.g. [36]) that hold for any a, b ∈ Pd , 1 ≤ i ≤ j ≤ d, and
1 ≤ k ≤ � ≤ d:

∂(a−1)(k, �)

∂a(i, j)
= − 1

1 + δ(i, j)

[
a−1(k, i)a−1(�, j) + a−1(k, j)a−1(�, i)

]
, (5.11)

∂(a−1ba−1)(k, �)

∂a(i, j)

= −
a−1(k, i)(a−1ba−1)(�, j) + (a−1ba−1)(k, i)a−1(�, j) + i ↔ j

1 + δ(i, j)
(5.12)

∂

∂a(i, j)
tr[ab−1] = 2

1 + δ(i, j)
b−1(i, j) , (5.13)

∂

∂b(i, j)
tr[ab−1] = − 2

1 + δ(i, j)

[
b−1ab−1

]
(i, j) , (5.14)

where δ(i, j) is 1 if i = j and 0 otherwise. In (5.12), i ↔ j denotes the preceding
expression with the indices i and j swapped. Notice that (5.12) and (5.14) can be
deduced from (5.11).

Let Scal+d be the set of positive definite scalar matrices, i.e. positive multiples of
Id .

Lemma 5.12 Let z ∈ (Scal+d )� . Then, the Hessian of �d on PV
d (z) is positive definite

at any critical point x such that x ∈ (Scal+d )V (z).

Proof Wewill prove that, under the stated assumptions, the Hessian of�d (for d ≥ 1)
can be expressed in terms of the Hessian of �1; the claim will then follow from
Lemma 5.11.

For ease of notation, given any v ∈ V and 1 ≤ i ≤ j ≤ d, we will denote by ∂v;i, j
the partial derivative of a function of x ∈ PV

d with respect to the real variable xv(i, j).
It follows from the definition (5.9) and from the formulas (5.13)–(5.14) that

∂v;i, j�d(x) = 2

1 + δ(i, j)

⎛
⎜⎝
∑

w∈V :
v→w

x−1
w (i, j) −

∑
u∈V :
u→v

[
x−1
v xux

−1
v

]
(i, j)

⎞
⎟⎠

for v ∈ �c and 1 ≤ i ≤ j ≤ d. The critical point equations of �d on PV
d (z) are then

x−1
v

( ∑
u∈V :
u→v

xu

)
x−1
v =

∑
w∈V :
v→w

x−1
w for all v ∈ �c . (5.15)
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We will now compute the second derivatives at any critical point x = (xv)v∈V ∈
PV
d (z). Using (5.12) and (5.15), we have

∂v;k,�∂v;i, j�d(x) = 2

1 + δ(i, j)

1

1 + δ(k, �)

(
x−1
v (i, k)

[
x−1
v

( ∑
u∈V :
u→v

xu

)
x−1
v

]
( j, �)

+
[
x−1
v

( ∑
u∈V :
u→v

xu

)
x−1
v

]
(i, k)x−1

v ( j, �) + k ↔ �

)

= 2

1 + δ(i, j)

1

1 + δ(k, �)

(
x−1
v (i, k)

∑
u∈V :
v→u

x−1
u ( j, �)

+
∑
u∈V :
v→u

x−1
u (i, k)x−1

v ( j, �) + k ↔ �

)

for v ∈ �c, 1 ≤ i ≤ j ≤ d, and 1 ≤ k ≤ � ≤ d. Recall now that the acyclic
structure of the underlying graph guarantees that, if v → w, then w �→ v. Therefore,
for v,w ∈ �c such that v → w, 1 ≤ i ≤ j ≤ d, and 1 ≤ k ≤ � ≤ d, we have

∂w;k,�∂v;i, j�d (x) = − 2

1 + δ(i, j)

1

1 + δ(k, �)

[
x−1
w (i, k)x−1

w ( j, �) + x−1
w (i, �)x−1

w ( j, k)
]

.

On the other hand, the second derivative w.r.t. xv(i, j) and xw(k, �) vanishes for all
v,w ∈ �c such that v �→ w and w �→ v.

According to the hypotheses of the theorem, we further assume from now on that
there exists ζ = (ζv)v∈V ∈ P�

1 such that zv = ζv Id for all v ∈ �, and there exists
ξ = (ξv)v∈V ∈ PV

1 such that xv = ξv Id for all v ∈ V . Using the identity

δ(i, k)δ( j, �) + δ(i, �)δ( j, k)

1 + δ(k, �)
= δ((i, j), (k, �)) for 1 ≤ i ≤ j ≤ d , 1 ≤ k ≤ � ≤ d ,

we see that the second derivatives at x factorise as

∂w;k,�∂v;i, j�d(x) = f ((i, j), (k, �)) gξ (v,w) , with

f ((i, j), (k, �)) = 2δ((i, j), (k, �))

1 + δ(i, j)
.

Here, gξ (v,w) is an explicit function of ξ , v and w; we stress that it is the same
function for all d ≥ 1. It follows from (5.15) that, since x = (ξv Id)v∈V is a critical
point of �d on PV

d (z), ξ is a critical point of �1 on PV
1 (ζ ). Therefore, the matrix

gξ (v,w) = ∂v∂w�1(ξ)

123



250 J. Arista et al.

(with ‘row index’v and ‘column index’w),which is theHessianmatrix of�1 onPV
1 (ζ )

at ξ , is positive definite by Lemma 5.11. On the other hand, the matrix f ((i, j), (k, �))
(with ‘row index’ (i, j) and ‘column index’ (k, �)) is clearly positive definite as a
diagonal matrix with positive diagonal entries. Therefore, the Hessian of�d onPV

d (z)
at x is positive definite, as it can be written as a Kronecker product of two positive
definite matrices. ��

As any minimiser is a critical point, the main result of this section follows imme-
diately from Corollary 5.10 and Lemma 5.12.

Theorem 5.13 Let z ∈ (Scal+d )� . Then, the function �d on PV
d (z) has a unique

(global) minimiser m, at which the Hessian is positive definite. Moreover, we have
m ∈ (Scal+d )V (z).

5.4 Laplace approximation

We will now use Theorem 5.13 to study the asymptotic behaviour of integrals of
exponentials of �d , via Laplace’s approximation method. Recall the definition (1.12)
of the measure μ on Pd .

Proposition 5.14 Let z ∈ (Scal+d )� and let m be the unique global minimiser of �d

on PV
d (z) (see Theorem 5.13). Let g : PV

d (z) → C be a continuous function in a
neighbourhood of m, with g(m) �= 0, and such that

∫

PV
d (z)

(∏
v∈�c

μ(dxv)

)
|g(x)| e−k�d (x) < ∞ for some k > 0 .

Then

∫

PV
d (z)

(∏
v∈�c

μ(dxv)

)
g(x) e−k�d (x)

k→∞∼ g(m)√|H(m)|

(∏
v∈�c

|mv|− d(d+1)
2

)(
2π

k

)|�c| d(d+1)
4

e−k�d (m), (5.16)

where |H(m)| > 0 is the Hessian determinant of �d at m and
∣∣�c
∣∣ is the number of

vertices in �c.

We start by stating the Laplace approximation integral formula in the multivariate
context, which can be found e.g. in [19].

Theorem 5.15 ([19, Theorem 4.14]) Let A be an open subset of the p-dimensional
space R

p. Let h : A → C and � : A → R be functions such that

(i)
∫
A |h(x)| e−k�(x) dx < ∞ for some k > 0.

(ii) � has a global minimiser x0 ∈ A such that, for every ε > 0,

inf{�(x) − �(x0) : x ∈ A, |x − x0| ≥ ε} > 0 . (5.17)
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(iii) h is continuous in a neighbourhood of x0 and h(x0) �= 0.
(iv) � is twice continuously differentiable on A and its Hessian matrix H(x0) at x0

is positive definite (in particular, its determinant |H(x0)| is positive).
Then,

∫

A
h(x) e−k�(x) dx

k→∞∼ h(x0)√|H(x0)|
(
2π

k

) p
2

e−k�(x0) . (5.18)

Proof of Prop. 5.14 We will apply Theorem 5.15 with

A = PV
d (z) , h(x) = g(x)

∏
v∈�c

|xv|− d(d+1)
2 , � = �d , x0 = m .

The set PV
d (z) can be clearly viewed as an open subset of R

p, where p = ∣∣�c
∣∣d(d +

1)/2 is the number of ‘free’ real variables in A and d is the dimension of each matrix
in the array. The extra product in the definition of h is the density of the measure∏

v∈�c μ(dxv) with respect to the Lebesgue measure on PV
d (z).

Hypothesis (ii) of Theorem 5.15 is satisfied due to Theorem 5.13 and Prop. 5.2.
Hypotheses (i) and (iii) are matched by the assumptions of Prop. 5.14. Finally, hypoth-
esis (iv) also holds because of Theorem 5.13. The asymptotic formula (5.16) then
follows from (5.18). ��
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Appendix A: A proof of the Cauchy–Littlewood identity

In this appendix we include a proof of the classical Cauchy–Littlewood identity for
Schur functions that is based on a version of the Pieri rule. The proof of the Whittaker
integral identity (4.1) is based, mutatis mutandis, on the same line of reasoning.

For any two integer partitions μ = (μ1 ≥ μ2 ≥ · · · ) and λ = (λ1 ≥ λ2 ≥ · · · ),
we write μ ≺ λ if λi ≥ μi ≥ λi+1 for all i ≥ 1. The size of λ is |λ| := λ1 + λ2 + . . . ,
while its length is the smallest i ≥ 0 such that λi+1 = 0. We will adopt the following
recursive definition of Schur polynomials: for a partition λ of length ≤ n, we set
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sλ(x1, . . . , xn) :=
{
x |λ|
1 if n = 1 ,∑

μ≺λ x
|λ|−|μ|
n sμ(x1, . . . , xn−1) if n > 1 .

(A.1)

For the sake of convenience, we also set sλ(x1, . . . , xn) := 0 if the length of λ exceeds
n. This definition is easily seen to be equivalent to the classical combinatorial definition
of Schur polynomials as generating functions of semistandard Young tableaux.

We will use the following version of the Pieri rule:

∑
λ : μ≺λ

sλ(x1, . . . , xn) =
(

n∏
i=1

1

1 − xi

)
sμ(x1, . . . , xn) . (A.2)

The latter can be deduced from the usual Pieri rule (see e.g. [29, I-(5.16)])

∑
λ : μ≺λ,

|λ|−|μ|=r

sλ(x1, . . . , xn) =

⎛
⎜⎜⎝

∑
k1,...,kn≥0 :
k1+···+kn=r

xk11 · · · xknn

⎞
⎟⎟⎠ sμ(x1, . . . , xn)

by summing over all r ≥ 0. Notice that (A.2) can be read as an eigenfunction equation
for the operator defined through the kernel I (μ; λ) := 1μ≺λ, with the Schur function
sμ (viewed as a function of the partition μ) as an eigenfunction.

Theorem A.1 (Cauchy–Littlewood identity) For any n, N ≥ 1, we have

∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , yN ) =
n∏

�=1

N∏
i=1

1

1 − x�yi
, (A.3)

where the sum is over all integer partitions λ.

Proof Note first that we can restrict the sum on the left-hand side of (A.3) to the
partitions λ with length ≤ min(n, N ). When N = n = 1, the identity reduces to a
geometric sum:

∑
λ1≥0

xλ1
1 yλ1

1 = 1

1 − x1y1
. (A.4)

We can then proceed by induction on n + N .
Let n + N > 2 and assume, without loss of generality, that n > 1. Using the

definition (A.1), the fact that sλ is a homogeneous polynomial of degree |λ|, and
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identity (A.2), we obtain

∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , yN )

=
∑
λ

⎛
⎝∑

μ≺λ

x |λ|−|μ|
n sμ(x1, . . . , xn−1)

⎞
⎠ sλ(y1, . . . , yN )

=
∑
μ

⎛
⎝ ∑

λ : μ≺λ

sλ(xn y1, . . . , xn yN )

⎞
⎠ x−|μ|

n sμ(x1, . . . , xn−1)

=
∑
μ

(
N∏
i=1

1

1 − xn yi

)
sμ(xn y1, . . . , xn yN )x−|μ|

n sμ(x1, . . . , xn−1)

=
(

N∏
i=1

1

1 − xn yi

)∑
μ

sμ(x1, . . . , xn−1)sμ(y1, . . . , yN ) .

The claim then follows from the induction hypothesis applied to the latter sum. ��

Appendix B: Markov functions and intertwinings

In this appendix we review the theory of Markov functions, in the case of inhomoge-
neous discrete-time Markov processes, which we are concerned with in the present
article.

Let (S,S) and (T , T) be measurable spaces and ϕ : S → T be a measurable
function. Let X = (X(n))n≥0 be a time-inhomogeneous Markov process with state
space S, time-n transition kernel n and any initial distribution on X(0). Defining
Z(n) := ϕ(X(n)) for all n ≥ 0, we will give conditions under which the transformed
process Z = (Z(n))n≥0 with state space T is still Markov in its own filtration. The
well-known Dynkin criterion [18] ensures that Z satisfies theMarkov property for any
possible initial distribution on X . On the other hand, the theory of Markov functions
(developed at various levels of generality in [25, 26, 28, 37]) provides a more subtle
criterion, in which the Markov property of Z is guaranteed only under certain specific
initial states of X .

Let bS be the space of bounded measurable functions from (S,S) to R.

Theorem B.1 Let X = (X(n))n≥0 be a time-inhomogeneous Markov process on S
with time-n transition kernel n. Let ϕ : S → T be a measurable function. Let Z =
(Z(n))n≥0, where Z(n) = ϕ(X(n)) for all n ≥ 0. Assume that T contains all the
singleton sets {z}. Let 
 be a Markov kernel from T to S and, for all n ≥ 1, let Pn be
a Markov kernel from T to T . Suppose:

(i) 

(
z;ϕ−1{z}) = 1 for every z ∈ T ;

(ii) 
n = Pn
 for all n ≥ 1.
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Assume that, for an arbitrary z ∈ T , the initial state X(0) of X is distributed according
to the measure 
(z; ·). Then, Z is a time-inhomogeneous Markov process (in its own
filtration), with initial state z and time-n transition kernel Pn.Moreover, for all f ∈ bS
and n ≥ 0, we have

E[ f (X(n)) | Z(0), . . . , Z(n − 1), Z(n)] = 
 f (Z(n)) a.s. (B.1)

Proof This proof is an inhomogeneous discrete-time version of the argument given
for continuous-time Markov processes in [37]. Note that (i) implies

∫

S

(z; dx)g(ϕ(x)) f (x) = g(z)

∫

S

(z; dx) f (x)

for all g ∈ bT, f ∈ bS, and z ∈ T . Letting � : bT → bS be the Markov operator
defined by �g := g ◦ ϕ for g ∈ bT, we may rewrite the above identity as


(�g) f = g
 f . (B.2)

Here, as in the following, the operations should be read from right to left, prioritising
the brackets (for example, on the left-hand side of (B.2), one first multiplies the two
functions f and�g and then applies the operator
 to the resulting function).Applying
Pi to both sides of (B.2) and using hypothesis (ii), we have


i (�g) f = Pi g
 f for all i ≥ 1 . (B.3)

Consider now test functions g0, . . . , gn in bT and f ∈ bS. Using (B.2) and (B.3)
several times, we obtain


(�g0)1(�g1)2(�g2) · · · n(�gn) f

= g0
1(�g1)2(�g2) · · · n(�gn) f

= g0P1g1
2(�g2) · · · n(�gn) f = · · · = g0P1g1P2g2 · · · Pngn
 f . (B.4)

Fix now an arbitrary z ∈ T and assume that X(0) is distributed according to
(z; ·).
Then, (B.4) yields

E [g0(Z(0)) g1(Z(1)) · · · gn(Z(n)) f (X(n))] = g0P1g1 · · · Pngn
 f (z) .

Taking f ≡ 1, we deduce that Z is aMarkov process started at z with time-n transition
kernel Pn . For general f , the right-hand side of the equation above agrees with

E [g0(Z(0)) g1(Z(1)) · · · gn(Z(n))
 f (Z(n))] .

This, by definition of conditional expectation, proves (B.1). ��
Remark B.2 Taking f ≡ 1 in (B.2), we see that 
� is the identity on bT. Combining
this with hypothesis (ii) of Theorem B.1, it is immediate to deduce that every kernel
Pn is uniquely determined by the relation Pn = 
n�.
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Appendix C: A convergence lemma

Herewe state a useful convergence lemma. For completeness we also include its proof,
which follows from the properties of weak convergence and standard estimates.

Lemma C.1 Let S be a locally compactmetric space equippedwith its Borelσ -algebra.
Let (μk)k>0 be a collection of probability measures on S that converges weakly, as
k → ∞, to a Dirac measure δs for some s ∈ S. Let ( fk)k>0 be a uniformly bounded

collection of continuous functions S → R such that fk
k→∞−−−→ f∞ uniformly on any

compact subset of S. Then

lim
k→∞

∫

S
μk(dx) fk(x) = f∞(s) . (C.1)

Proof Fix ε > 0. For any Borel set U ⊂ S, we may write

∣∣∣∣
∫

S
μk(dx) fk(x) − f∞(s)

∣∣∣∣ ≤
∣∣∣∣
∫

U
μk(dx)[ fk(x) − f∞(s)]

∣∣∣∣

+
∣∣∣∣
∫

U c
μk(dx)[ fk(x) − f∞(s)]

∣∣∣∣

≤
∫

U
μk(dx) | fk(x) − f∞(x)| +

∫

U
μk(dx) | f∞(x) − f∞(s)|

+
(
sup
x∈S

| fk(x)| + | f∞(s)|
)

μk(U
c) ,

where U and U c are the closure and the complement of U , respectively. Since f∞ is
continuous (as a uniform limit of continuous functions) and S is a locally compact
metric space, we can chooseU to be a precompact open neighbourhood of s such that
| f∞(x) − f∞(s)| ≤ ε for all x ∈ U . Moreover, as U is compact, for k large enough
we have | fk(x) − f∞(x)| ≤ ε for all x ∈ U . Finally, the Portmanteau theorem (see
[5, § 2]) yields

lim sup
k→∞

μk(U
c) = δs(U

c) = 0 ,

sinceμk converges weakly to δs ,U c is closed, and s /∈ U c; therefore, for large enough
k we also have μk(U c) ≤ ε. By the hypothesis of uniform boundedness, there exists
M > 0 such that | fk(x)| ≤ M for all x ∈ S and k > 0. Hence, we have

∣∣∣∣
∫

S
μk(dx) fk(x) − f∞(s)

∣∣∣∣ ≤ μk(U )ε + μk(U )ε + [M + | f∞(s)|] ε
≤ [2 + M + | f∞(s)|] ε

for k large enough. As ε > 0 is arbitrary, the claim follows. ��
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(1982)
26. Kemeny, J.G., Snell, J.L.: FiniteMarkovChains.UndergraduateTexts inMathematics, Springer-Verlag,

New York (1976)
27. Kharchev, S., Lebedev,D.: Integral representations for the eigenfunctions of quantumopen and periodic

Toda chains from the QISM formalism. J. Phys. A 34(11), 2247–2258 (2001)
28. Kurtz, T.: Martingale problems for conditional distributions of Markov processes. Electron. J. Probab.

3, 1–29 (1998)
29. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Univ. Press, London (1979)
30. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications.

Springer Series in Statistics, 2nd ed. Springer, New York (2011)
31. Nordenstam, E.: On the shuffling algorithm for domino tilings. Electron. J. Probab. 15, 75–95 (2010)

123

http://arxiv.org/abs/2112.12558
http://arxiv.org/abs/2108.08737


Matrix Whittaker processes 257

32. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)
33. O’Connell, N.: Interacting diffusions on positive definite matrices. Probab. Theory Relat. Fields 180,

679–726 (2021)
34. O’Connell, N., Ortmann, J.: Tracy-Widom asymptotics for a random polymer model with gamma-

distributed weights. Electron. J. Probab. 20(25), 1–18 (2015)
35. O’Connell, N., Seppäläinen, T., Zygouras, N.: Geometric RSK correspondence, Whittaker functions

and symmetrized random polymers. Invent. Math. 197(2), 361–416 (2014)
36. Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook (2012). http://www2.imm.dtu.dk/pubdb/pubs/

3274-full.html
37. Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)
38. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
39. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann.

Probab. 40(1), 19–73 (2012)
40. Stade, E.: Archimedean L-factors on GL(n)×GL(n) and generalized Barnes integrals. Israel J. Math.

127(1), 201–219 (2002)
41. Stanley, R. P.: Enumerative Combinatorics: volume 2. Vol. 62. Cambridge Studies in Advanced Math-

ematics. Cambridge University Press, Cambridge (1999)
42. Terras, A.: Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix

Space and Generalizations, 2nd edn. Springer, New York (2016)
43. Warren, J.: Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12, 573–590

(2007)
44. Warren, J.,Windridge, P.: Some examples of dynamics forGelfand-Tsetlin patterns. Electron. J. Probab.

14, 1745–1769 (2009)
45. Zygouras, N.: Some algebraic structures in the KPZ universality. Probab. Surv. 19, 590–700 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html
http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

	Matrix Whittaker processes
	Abstract
	1 Introduction
	1.1 Organisation of the article
	1.2 Notation and preliminary notions
	1.2.1 Positive definite matrices
	1.2.2 Measure and integration on mathcalPd
	1.2.3 Wishart distributions and gamma functions
	1.2.4 Kernels and integral operators


	2 Whittaker functions
	2.1 Whittaker functions of matrix arguments
	2.2 A generalisation of Whittaker functions

	3 Markov dynamics
	3.1 Interacting Markov dynamics on triangular arrays
	3.2 Intertwining relations
	3.3 Feynman–Kac interpretation

	4 Fixed-time laws and matrix Whittaker measures
	4.1 Matrix Whittaker measures
	4.2 Asymptotics of Whittaker functions
	4.3 Fixed-time law of the `bottom edge' process
	4.4 Fixed-time laws of the `right edge' and `left edge' processes

	5 Minimisation of energy functions and Laplace approximations
	5.1 Energy functions on directed graphs
	5.2 Minima of energy functions
	5.3 Energy functions in logarithmic variables
	5.4 Laplace approximation

	Acknowledgements
	Appendix A: A proof of the Cauchy–Littlewood identity
	Appendix B: Markov functions and intertwinings
	Appendix C: A convergence lemma
	References




