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Abstract
We study random domino tilings of the Aztec diamond with a biased 2 × 2 periodic
weight function and associate a linear flow on an elliptic curve to this model. Our main
result is a double integral formula for the correlation kernel, in which the integrand is
expressed in terms of this flow. For special choices of parameters the flow is periodic,
and this allows us to perform a saddle point analysis for the correlation kernel. In these
cases we compute the local correlations in the smooth disordered (or gaseous) region.
The special example in which the flow has period six is worked out in more detail, and
we show that in that case the boundary of the rough disordered region is an algebraic
curve of degree eight.
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1 Introduction

Domino tilings of the Aztec diamond, originally introduced in [12], form a popular
arena for various interesting phenomena of integrable probability. A domino tiling of
the Aztec diamond can be viewed as a perfect matching, also called dimer configura-
tion, on the Aztec diamond graph. This is a particular bipartite subgraph of the square
lattice (cf. Fig. 2). By putting weights on the edges of the Aztec diamond graph, one
defines a probability measure on the set of all perfect matchings, and hence all domino
tilings, by saying that the probability of having a particular matching is proportional to
the product of the weights of the edges in that matching. In recent years, several works
have appeared on domino tilings of the Aztec diamond where the weights are doubly
periodic. That is, they are periodic in two independent directions, and we will use the
notation k × � to indicate that they are k-periodic in one direction and �-periodic in
the other. In this paper, we will study a particular example of a 2 × 2 doubly periodic
weighting that is a generalization of the model studied in [1, 2, 7, 8, 11, 20]. The dif-
ference is that we introduce an extra parameter that induces a bias towards horizontal
dominos, and we refer to this model as the biased 2× 2 periodic Aztec diamond. The
model considered in [1, 2, 7, 8, 11, 20] will be referred to as the unbiased 2×2 periodic
Aztec diamond.

Doubly periodic weightings lead to rich behavior when the size of the Aztec dia-
mond becomes large. The Aztec diamond can be partitioned into three regions: frozen,
rough disordered (or liquid) and smooth disordered (or gaseous). They are character-
ized by the different local limiting Gibbs measures that one expects in these regions
[22]. The difference between the smooth and disordered regions is that the dimer-
dimer correlations decay exponentially with their distance in the smooth disordered
region and polynomially in the rough region. The three regions are clearly visible in
Fig. 1 where we have plotted a sample of our model for a large Aztec diamond.

Fromgeneral arguments, that go back to [21],we know that the correlation functions
in our model are determinantal. In order to perform a rigorous asymptotic study,
one aims to find an expression for the correlation kernel that is amenable for an
asymptotic analysis. For the unbiased 2×2 periodic Aztec diamond, a double integral
representation was first found in [7] (more precisely, they were able to find the inverse
Kasteleyn matrix [21]). Based on this expression, the boundary between the smooth
and rough disordered region has been studied extensively in [1, 2, 20]. Unfortunately,
it is not obvious how the expression in [7] extends to the biased generalization that we
consider in this paper. Instead, we follow the approach of [5].

In [5] the authors studied probability measures on particle configurations given
by products of minors of block Toeplitz matrices. The biased 2 × 2 periodic Aztec
diamond can be viewed as a special case of such a probability measure. The main
result of [5] is an explicit double integral formula for the correlation kernel, provided
one can find aWiener–Hopf factorization for the product of thematrix-valued symbols
for the block Toeplitz matrices. That Wiener–Hopf factorization can in principle be
found by carrying out an iterative procedure, in which the total number of iterations
is of the same order as the size of the Aztec diamond. In certain special cases, such as
the unbiased 2× 2 periodic Aztec diamond [5] and a family of 2× k periodic weights
[4], the procedure is periodic, and after a few iterations one ends up with the same
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Biased 2 × 2 periodic Aztec diamond... 261

parameters that one started with. This means that the Wiener–Hopf factorization has
a rather simple form, and after inserting that expression in the double integral formula
one obtains a suitable starting point for a saddle point analysis [5, 11]. However,
generically, the iteration in [5] is too complicated to find simple expressions for the
Wiener–Hopf factorization, and other ideas are needed.

The biased 2 × 2 periodic Aztec diamond is the simplest doubly periodic case in
which it is difficult to trace the flow in [5]. Our first main result is that the Wiener–
Hopf factorization can alternatively be computed by following a linear flow on an
explicit elliptic curve. This flow is rather simple and consists of repeatedly adding
a particular point on the elliptic curve. For generic parameters, one expects the flow
to be ergodic, but for special choices the flow will be periodic. We will identify a
few explicit examples of these periodic cases, and perform an asymptotic study in the
smooth disordered region for the general periodic situation.

The reason why the iterative procedure in our case is linearizable on an elliptic
curve can be traced back to [26]. In that work it was shown how an isospectral flow on
certain quadratic matrix polynomials, obtained by repeatedly moving the right divisor
of the polynomial with a given spectrum to the left side, is linearizable on the Jacobian
(or the Prym variety) of the corresponding spectral curve. The main goal of [26] was
to describe the dynamics of certain discrete analogs of classical integrable systems in
terms of Abelian functions. Some of the key ideas used in that work had previously
originated in constructing the so-called finite gap solutions of integrable PDEs, see
their book-length exposition [3] with historic notes and references therein. The matrix
case, which was most relevant for [26], had been originally developed in [9, 10, 16,
23, 24].

While our situation does not exactly fit into the formalism of [26], similar ideas
do apply, and they led us to the linearization. We hope that they will also help with
studying more general tiling models.

To conclude, let us mention that in [11] it was shown that the double periodicity
leads to matrix-valued orthogonal polynomials. For the unbiased 2×2 periodic Aztec
diamond, thesematrix-valued orthogonal polynomials have a particularly simple struc-
ture. Somewhat surprisingly, they even have explicit integral expressions that lead to
an explicit double integral representation for the correlation kernel. The expression in
[11] was re-derived in [5]. For the biased model it is interesting to see what the flow on
the elliptic curve implies for the matrix-valued orthogonal polynomials, and if explicit
expressions can be given in general and/or for the periodic case. Furthermore, it is
interesting to compare our results with [6], in which matrix orthogonal polynomials
were studied using an abelianization based on the spectral curve for the orthogonality
weight.

2 Preliminaries

In this section we will introduce the dimer model that we are interested in, discuss
several standard different representations from the literature and recall the determi-
nantal structure of the correlation functions for a corresponding point processes. In
our discussion we repeat necessary definitions from earlier works, in particular of [5,
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262 A. Borodin, M. Duits

Fig. 1 A sampling of the biased
doubly periodic for a large Aztec
diamond. The West and South
dominos are colored yellow, and
the North and East dominos are
colored blue. The three different
regions are clearly visible, with
the smooth disordered region in
the middle, surrounded by the
rough disordered region and
frozen regions in the corners
(colour figure online)

Fig. 2 The left picture is the bipartite graph GN , with N = 4, and the right picture is a perfect mathching
of GN

11, 17, 19], and we will make specific references to those works at several places to
refer the reader for more details. We refer to [15] for a general introduction to random
tilings.

2.1 A doubly periodic dimer model

For N ∈ N define a bipartite graph GN = (BN ∪ WN , EN ), with black vertices

BN = {( 1
2 − N + j + k,− 1

2 − j + k
) | j = 0, . . . , N − 1, k = 0, . . . , N

}
,

and white vertices

WN = {( 1
2 − N + j + k, 1

2 − j + k
) | j = 0, . . . , N , k = 0, . . . , N − 1

}
,
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Biased 2 × 2 periodic Aztec diamond... 263

Fig. 3 The weights on the edges of GN

and with edges EN between black and white vertices that are neighbors in the lattice
graph (i.e., that have a difference of (±1, 0) or (0,±1)). This gives the graph on the
left of Fig. 2. The picture on the right of Fig. 2 is a perfect matching of this bipartite
graph, also called a dimer configuration. A dimer model is a probability distribution
on the space of all perfect matchingsM of this graph GN such that the probability of
a particular matching M is proportional to

P(M) ∼
∏

e∈M
w(e),

where w : E → (0,∞) is a weight function.
In this paper, we will consider the weight functions defined as is shown in Fig. 3.

There are two parameters α, a ∈ (0, 1]. The vertical and horizontal edges with a black
vertex on top or on the right all have weights a and 1, respectively. For vertical edges
with a black vertex on the bottom and horizontal edges with a black vertex on the left,
the weight depends on the coordinates of that black vertex. These weights are given by
aα and α, or by a/α and 1/α, depending on the coordinates of the black vertex in that
edge. If the vertical coordinate of that vertex is 1

2 + k for an even k, then the weights
are aα and α. If the vertical coordinate of that vertex is 1

2 + k for an odd k, then we
have the same weight, but with α replaced by 1/α. The distribution of the weights
is thus two periodic in two different directions; edges whose coordinates differ by a
multiple of (2, 2) or (2,−2) have the same weight.

Note that only the parameter α is responsible for the double periodicity. Indeed, for
α = 1 the weights no longer depend on the position of the black vertex in the center
in Fig. 3. We will be particularly interested in the doubly periodic situation and thus
in the case 0 < α < 1. The effect of the extra parameter a is that all the vertical edges
are given an extra factor a. If 0 < a < 1, this makes them less likely, and the model is
biased towards horizontal edges. As we will see, adding this parameter has a profound
effect on the integrable structure of this model. Moreover, we will see that the special
case a = 1, studied by several authors [5, 8, 11], is a very particular point.

An alternative way of representing matchings is by drawing dominos. Indeed, each
matching is equivalent to a domino tiling by drawing rectangles around the matched
vertices as is shown in Fig. 4. The dominos tile a planar region known as the Aztec
diamond. We distinguish between four different types of dominos called the West,
East, North and South dominos. The West dominos are the vertical dominos with a
black vertex on the bottom, the East dominos are the vertical dominos with a black
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264 A. Borodin, M. Duits

Fig. 4 The right picture is the domino representation of the dimer configuration on the left

Fig. 5 The DR paths on a domino tiling

vertex on the top, the North dominos are the horizontal dominos with a black vertex
on the right and, finally, the South dominos are the horizontal dominos with a black
vertex on the left. In Fig. 4 these four types of dominos are the furthermost ones in the
corresponding corners.

Note that the weighting that we will consider is such that all North dominos have
weight 1 and all East dominos have weight a. The weight of a West domino is either
aα if the vertical coordinate of the lower left corner is even, or a/α if that coordinate
is odd. Similarly, the weight of a South domino is either α if the vertical coordinate
of the lower left corner is even, and 1/α if that coordinate is odd. For small a > 0
we expect to see more South and North dominos, as the West and East domino have
small weight.
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Biased 2 × 2 periodic Aztec diamond... 265

Fig. 6 The left figure shows the underlying graph Gp . The right figure shows the graph Gp and a collection
of non-intersecting paths starting in (0, − j) and ending in (2N , − j) for j = 0, . . . M , with N = 4 and
M = 5

2.2 Non-intersecting paths

A useful alternative representation, that is easily obtained from the dominos, is the
representation by DR-paths [18, 19, 29]. By drawing an upright path across eachWest
domino, a down-right path across each East domino, a horizontal across each South
domino and nothing on a North domino, we obtain the picture given in Fig. 5. There
are four paths leaving from the lower left side of the Aztec diamond and ending at
the lower right side. The paths also cannot intersect. Clearly, the paths determine the
location of the East, West and South dominos, and therewith the entire tiling. One
can therefore represent each dimer configuration with a collection of non-intersecting
paths.

Instead of looking directly at theDRpaths, however,wewill consider closely related
interpretation in terms of non-intersecting paths on a different graph. The reason for
this is two-fold. First, the DR paths are rather uneven in length. The bottom path is
much shorter than the top path. The second reason is that it turns out to be useful to
add paths so that we have an infinite number of them. The auxiliary paths will have
no effect on the model, but will give a very convenient integrable structure.

We start with a directed graph Gp = ({0, 1, . . . , 2N }×Z, Ep)where we draw edges
between the following vertices (we use the index p in Gp and Ep to distinguish this
graph from the bipartite graph in the dimer representation):

(2 j, k) → (2 j + 1, k), (2 j, k) → (2 j + 1, k + 1),

(2 j + 1, k) → (2 j + 2, k), (2 j + 2, k + 1) → (2 j + 2, k).

A part of the graph is shown in Fig. 6. We then fix starting points (0,− j) for j =
0, . . . , M , and endpoints (2N ,− j) for j = 0, . . . , M and consider collections of
paths in the directed graph that connect the starting points with the endpoints, such
that no paths have a vertex in common (i.e., they never intersect).

Note that if M ≥ 2N −2 only the N top paths and the N −1 bottom paths are non-
trivial, but any path in between is, due to the non-intersecting condition, necessarily
a straight line. In fact, even the top N and bottom N − 1 paths have parts where they
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266 A. Borodin, M. Duits

Fig. 7 From the non-intersecting paths on the graph Gp to the DR paths. The middle picture is obtained
by removing the horizontal steps from the paths and the graph Gp . In the second transformation (m, u) �→
(m, u − m) we obtain the rotated DR paths

are necessarily straight lines. Indeed, in the region between the lines (m,−N +m/2)
and (m,−M + N +m/2) form = 0, . . . , 2N , all the paths are necessarily horizontal.

The connection with the dimer models is the following: If we remove all paths
below the line (m,−N +m/2) then the configuration that remains is equivalent to the
DR paths for the domino tilings of Aztec diamond. Indeed, by further removing all
horizontal parts (m, u) → (m+1, u) for oddm and concatenating the result, we obtain
the picture in the middle of Fig. 7. The coordinate transform (m, u) �→ (m, u − m)

maps the middle picture to the DR-paths shown on the right of Fig. 7.
The next step is to put a probability measure on the collection of non-intersecting

paths that is consistent with the dimer model from Sect. 2.1. To make the correspon-
dence, we note that each up-right diagonal edge in the graph Gp corresponds to aWest
domino, each vertical edge to an East domino, and each horizontal edge (after remov-
ing the auxiliary horizontal edges at the odd steps) corresponds to a South domino. A
careful comparisonwith theweights for the dimermodels leads us to assigningweights
to the underlying directed graph as follows: the horizontal edges (m, u) → (m+1, u)

for odd m are auxiliary and have weight 1, the vertical edges correspond to East
dominos and have weight a, the horizontal edges (m, u) → (m + 1, u) for even m
correspond to South dominos and have weight α if u is even and weight 1/α if u is
odd, and, finally, the up-right edges (m, u) → (m + 1, u + 1) for m even have weight
aα if u is even and weight a/α if u is odd. This is also represented in the following
finite weighted graph that is the building block for the rest of Gp:

α

aα

1
α

a
α

1

1

1

a

a

(2 j, 2k − 1)

(2 j, 2k)

(2 j + 2, 2k − 1)

(2 j + 2, 2k)

Then the probability of having a particular configuration of non-intersecting paths
is proportional to the product of the weights of all the edges in the corresponding
dimer/domino configuration.
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Biased 2 × 2 periodic Aztec diamond... 267

2.3 A determinantal point process

Let us now assign a point process to the above collections of paths. We place points
on these paths by taking the lowest possible vertex on each vertical section (including
those of length 0), as indicated in the right panel of Fig. 6,

(m, u j
m) for j = 1, . . . , M, m = 0, . . . , 2N ,

where u j
0 = u j

2N = − j+1 and M ≥ N . Since the top N paths uniquely determine the

dimer configuration, so do the points (m, u j
m). Further, our probability measure also

turns the set of pointswith coordinates (m, u j
m) into a point process on {0, 1, . . . , 2N }×

Z.
We stress that we are only interested in the points (m, u j

m) with j ≤ N −m/2+ 1,
as it is those that determine the tiling. The other points are auxiliary and only added
for convenience. Indeed, by a theorem of Lindström-Gessel-Viennot (see, e.g., [14,
25]) the probability of a given point configuration is proportional to

2N∏

m=1

det Tm(u j
m−1, u

k
m)Mj,k=1,

where Tm are the transition matrices defined by

[Tm(2k1 − �1, 2k2 − �2)]
1
�1,�2=0 = 1

2π i

∮
Am(z)

dz

zk2−k1+1 ,

for k1, k2 ∈ Z, and Am(z) given by

Am(z) =
{
Ae(z), if m is even,
Ao(z), if m is odd,

with

Ao(z) =
(

α aαz
a
α

1
α

)
, Ae(z) = 1

1 − a2/z

(
1 a
a
z 1

)
. (1)

We will also use the notation
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268 A. Borodin, M. Duits

A(z) =
2N∏

m=1

Am(z).

By the Eynard-Mehta theorem (see, e.g., [13]), the point process is determinantal,
meaning that there exists a kernel

KN ,M : ({0, 1, . . . , 2N } × Z) × ({0, 1, . . . , 2N } × Z) → C, (2)

such that, for any (mk, uk) ∈ {0, . . . , 2N } × Z and k = 1, . . . , n,

P(there are points at (mk, uk), k = 1, . . . , n)

= det
[
KN ,M ((m j , u j ), (mk, uk))

]n
j,k=1 .

Now we recall that we are only interested in the top N paths, and thus we will restrict
u j to be in {−N + 1, . . . , 0}. Then the marginal densities are independent of M as
long as M is sufficiently large and

KN ,M ((m1, u1), (m2, u2))

= lim
M→∞ KN ,M ((m1, u1), (m2, u2)) = KN ((m1, u1), (m2, u2)).

In [5] a double integral formula for the correlation kernel KN was given. That formula
involves a solution to a Wiener–Hopf factorization.

Proposition 2.1 [5, Theorem 3.1] Suppose that we can find a factorization

A(z) = A−(z)A+(z)

with 2 × 2 matrices A±(z) such that

1. A±1+ (z) are analytic in |z| < 1 and continuous in |z| ≤ 1,
2. A±1− (z) are analytic in |z| > 1 and continuous in |z| ≥ 1,

3. A−(z) ∼
(
1 0
0 1

)
as z → ∞.

Then the kernel KN ,M has the pointwise limit KN as M → ∞ given by

[
KN ((m, 2x − j), (m′, 2x ′ − j ′))

]1
j, j=0 = −1m′<m

2π i

∫

|z|=1

m∏

j=m′+1

A j (z)
dz

zx−x ′+1

+ 1

(2π i)2

∮

|w|=ρ1

∮

|z|=ρ2

⎛

⎝
2N∏

j=m′+1

A j (w)

⎞

⎠ A+(w)−1A−(z)−1

⎛

⎝
m∏

j=1

A j (z)

⎞

⎠ wx ′

zx
dzdw

z(z − w)
, (3)
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where |a|2 < ρ1 < ρ2 < 1/|a|2, 1m′<m = 1 if m′ < m and 0 otherwise, and the
integration contours are positively oriented.

Remark 2.2 Proposition 2.1 is only part of Theorem 3.1 in [5]. Indeed, the kernel in
(3) is called Ktop in [5]. We note that here we already shifted coordinates compared
to [5]. Also, in the formulation of Theorem 3.1 in [5] one needs a second factorization
A(z) = Ã−(z) Ã+(z). However, all that is needed for Proposition 2.1 is the existence
of such a factorization, and that is guaranteed by Theorem 4.8 in [5].

2.4 TheWiener–Hopf factorization

The question remains how to find a Wiener–Hopf factorization that is explicit enough
to be able to use (3) as a starting point for asymptotic analysis. The idea for finding a
Wiener–Hopf factorization is simple (see also [5, Sect. 4.4]). Write

A(z) = 1

(1 − a2/z)N
(P(z))N ,

where

P(z) =
(

α aαz
a
α

1
α

)(
1 a
a
z 1

)
.

Then in the first step we look for a Wiener–Hopf factorization of the form

P(z) = P0,−(z)P0,+(z),

and then write

(P(z))N = P0,−(z)(P1(z))
N−1P0,+(z),

where

P1(z) = P0,+(z)P0,−(z).

Next, we compute a factorization for P1(z) = P1,−(z)P1,+(z) and set P2(z) =
P1,+(z)P1,−(z). At each step in the procedure we thus construct a new matrix val-
ued function Pk+1(z) = Pk,+(z)Pk,−(z) constructed by switching the order of the
Wiener–Hopf factorization

Pk(z) = Pk,−(z)Pk,+(z). (4)

The result is that we find a Wiener–Hopf factorization for A(z) of the form

A(z) = 1

(1 − a2/z)N
(
P0,−(z) · · · PN−1,−(z)

) (
PN−1,+(z) · · · P0,+(z)

)
.
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270 A. Borodin, M. Duits

An important point is that this procedure defines a flow

P0(z) �→ P1(z) �→ P2(z) �→ . . .

and to obtain explicit representations for the correlation kernel in (3) we need to have
a sufficiently detailed description of this flow. As was pointed out in [5, Sect. 4], there
is a general procedure to capture this flow. Generically, the description in [5] of the
flow is rather difficult to control, but for specific values it can be written explicitly.
Indeed, for a = 1, the double integral formula of [11] could be reproduced. See also
[4] for other cases where it was tractable. It is important to note that in the cases of both
[11] and [4], the flow was periodic, which is of great help, in particular for asymptotic
analysis. For the model that we consider in this paper, however, it appears difficult to
control this flow for a < 1, and the point of the present paper is to give an alternative
more tangible description. We will show that the flow is equivalent to translations on
an explicit elliptic curve. This will also help us to track other choices of parameters
for which the flow is periodic.

3 Main results

We now present our main results. All proofs will be postponed to Sect. 5.

3.1 An elliptic curve

Consider an elliptic curve E (over R) defined by the equation

y2 = x2 + 4x(x − a2)(x − 1/a2)

(a + 1/a)2(α + 1/α)2
, (5)

where α and a are the parameters from the dimermodel in Sect. 2.1. One easily verifies
that the curve crosses the x-axis precisely three times, once at the origin and at two
further intersection points in (−∞, 0). The elliptic curve has therefore two connected
components, and one of those, denoted by E−, lies entirely in the left half plane. Note
also that (0, 0), (a2, a2) and (a−2, a−2) are the intersection points of the curve with
the line y = x . The point (a−2, a−2) will be of particular interest to us.

It is well known that an elliptic curve carries an Abelian group structure, and we
can add points on the curve. The point at infinity serves as the identity. We will be
interested in a linear flow on the curve that is constructed by repeatedly adding the
point (a−2, a−2) starting from the initial parameters (x0, y0) = (−1,− 1−α2

1+α2 ). That
is, we consider the flow

{
(x j+1, y j+1) = σ(x j , y j ),

(x0, y0) =
(
−1,− 1−α2

1+α2

)
,
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Biased 2 × 2 periodic Aztec diamond... 271

Fig. 8 The flow on the elliptic curve. At each step we add the point (a−2, a−2). This can be geometrically
represented by drawing a straight line through (a−2, a−2) and (x j , y j ). This line intersects the curve at a
unique third point in E−. The point (x j+1, y j+1) is then obtained from the intersection point by flipping
the sign of the second coordinate

where

σ(x, y) = (x, y) + (a−2, a−2),

and + represents addition on the elliptic curve. The flow can be nicely illustrated by
the geometric description of the group addition on the curve. Starting from (x j , y j )
we compute (x j+1, y j+1) as follows: the straight line passing though (x j , y j ) and
(a−2, a−2) passes through a third point and (x j+1, y j+1) is the reflection of that point
with respect to the x axis (in other words, we flip the sign of the y-coordinate). See
also Fig. 8. It can happen that the line through (x j , y j ) and (a−2, a−2) is tangent to E−
at point (x j , y j ). In that case, (x j+1, y j+1) is just the reflection of the (x j , y j ) with
respect to the x axis. Note that the initial point (x0, y0) lies on the oval E−, and from
the geometric interpretation it is easy to see that every point (x j , y j ) is on the oval E−.

Our first main result is that this flow uniquely determines the correlations for the
biasedAztec diamond as described in Sects. 2.1–2.4 above. But before we explain that,
we first discuss properties of the flow that will be of interest to us. For generic choices
of the parameters one can expect the flow to be ergodic on E−, but for certain special
parameters (a−2, a−2) will be a torsion point. In those cases the flow is periodic. This
distinction has important implications for our asymptotic analysis of the tiling model.
We will therefore discuss a few examples in which (a−2, a−2) is a torsion point.

First, if we assume that α = 1, then our dimer model is an example of a Schur
process [27], and we know that simpler double integral formulas for its correlation
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kernel can be given. This should mean that our flow has a particularly simple structure.
Indeed, for α = 1, the oval E− reduces to a singleton E− = {(−1, 0)}, and the flow
is constant. This can also be seen directly, from the fact that the two factors in the
definition of P(z) commute.

The second case of interest is the unbiased case where a = 1. In that case,
(a−2, a−2) = (a2, a2), and the elliptic curve is tangent to the line y = x at that
point. For general a > 0 we have the relation (a2, a2)+ (a−2, a−2) = (0, 0) and thus,
for a = 1, we have 2(a−2, a−2) = (0, 0). It is also clear that (0, 0) is a point of order
2, and thus (a−2, a−2) is of order 4. This implies that our flow is periodic and returns
to its initial point after 4 steps. For completeness, we compute the flow explicitly:

(
−1,−1 − α2

1 + α2

)
�→

(
−α2, 0

)
�→

(
−1,

1 − α2

1 + α2

)

�→
(

− 1

α2 , 0

)
�→

(
−1,−1 − α2

1 + α2

)
. (6)

See the left panel of Fig. 9 for an illustration.
The next example we would like to discuss is that of an order six torsion point. This

happens when

a2 = α

α2 + α + 1
. (7)

The flow on the elliptic curve is given by:

(
−1,−1 − α2

1 + α2

)
�→

(
−α2,

−α2 + α3

1 + α

)
�→

(
−α2,

α2 − α3

1 + α

)
�→

(
−1,

1 − α2

1 + α2

)

�→
(

− 1

α2 ,
1 − α

α2 + α3

)
�→

(
− 1

α2 ,− 1 − α

α2 + α3

)
�→

(
−1,−1 − α2

1 + α2

)
. (8)

Indeed, after six steps we have returned to our initial point. This case is illustrated on
the right panel of Fig. 9.

We found the relation (7) by computing the division polynomial of order 6 and
requiring that (a−2, a−2) is a zero of this polynomial. In fact, this provides a recipe
for deriving relations between a and α such that (a−2, a−2) is a torsion point of order
m. We recall the notion of division polynomials in Appendix B and provide such
relations for m = 4, 5, 6, 7, 8.
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Fig. 9 The picture on the left illustrates the flow in case (a−2, a−2) is a torsion point of order four. The
picture on the right shows the flow in case that point has order six

3.2 Correlation kernel

To explain the connection between the flow on the elliptic curve and theWiener–Hopf
factorization in Proposition 2.1 we define functions a, b, d : E− → (0,∞) by

⎧
⎪⎨

⎪⎩

a(x, y) = a(a2+1)(α2+1)
2

y−x
1−a2x

,

b(x, y) = − 1
αax ,

d(x, y) = 2aαx(x−1/a2)
(a2+1)(α+1/α)(y−x)

.

Since x < 0 for (x, y) ∈ E−, these functions are well-defined with no poles and take
strictly positive values. Consider the maps

P− : (x, y) �→ b(x, y)

(
a(x, y) 0

0 1

)(
1 1
a2
z 1

)(
1 0
0 a(x, y)

)
,

and

P+ : (x, y) �→
(
1 0

0 a2

α2 d(x, y)

)(
1 a2z
1 1

)(
1 0
0 d(x, y)

)
.

The first main result of this paper is that the factorization (4) is given by

Pk,±(z) = P±(σ k(x, y)).

We will discuss this claim at length in Sect. 4 in a slightly more general setup and we
refer to that section for more details. The claim is then a special case of Theorem 4.6.
Of important to us now is that it, together with Proposition 2.1, implies the following.
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Theorem 3.1 The correlation kernel KN from Proposition 2.1 can be written as

[
KN ((2m + ε, 2x − j), (2m′ + ε′, 2x ′ − j ′))

]1
j, j ′=0

= −12m′+ε′<2m+ε

2π i

∫

|z|=1
Ae(z)

−ε′
(P(z))m−m′

Ao(z)
ε z

m−x−m′+x ′
dz

(z − a2)m−m′ z

+ 1

(2π i)2

∮

|w|=ρ1

∮

|z|=ρ2

Ae(w)−ε′
P(w)N−m′

P+(w)−1P−(z)−1P(z)m Ao(z)
ε

×wx ′+N−m′
(z − a2)N−m

zx+N−m(w − a2)N−m′
dzdw

z(z − w)
, (9)

where

P−(z) =
N−1∏

j=0

b(σ j (x, y))

(
a(σ j (x, y)) 0

0 1

)(
1 1
a2
z 1

)(
1 0
0 a(σ j (x, y))

)
(10)

and

P+(z) =
N−1∏

j=0

(
1 0

0 a2

α2 d(σ N−1− j (x, y))

)(
1 a2z
1 1

)(
1 0
0 d(σ N−1− j (x, y))

)
, (11)

and the contours of integration are counterclockwise oriented circles with radii ρ1
and ρ2 such that |a|2 < ρ1 < ρ2 < 1/|a|2.

A proof of this theorem is given in Sect. 5.1.
If (a−2, a−2) is a torsion point of order d, the flow (x, y) �→ σ(x, y) is periodic,

and the double integral formula can be rewritten in a useful way.

Corollary 3.2 Assume that (a−2, a−2) is a torsion point of order d. Define

P(d)
− (z) = P0,−(z) · · · Pd−1,−(z),

and

P(d)
+ (z) = Pd−1,+(z) · · · P0,+(z).

Then we can rewrite (9) as

[
KdN ((2m + ε, 2x − j), (2m′ + ε′, 2x ′ − j ′))

]1
j, j ′=0

= −12m′+ε′<2m+ε

2π i

∮

|z|=1
Ae(z)

−ε′
(P(z))m−m′

Ao(z)
ε z

m−x−m′+x ′
dz

(z − a2)m−m′ z

+ 1

(2π i)2

∮

|w|=ρ1

∮

|z|=ρ2

Ae(w)−ε′
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P(w)dN−m′
(P(d)

+ (w))−N (P(d)
− (z))−N P(z)m Ao(z)

ε

×wx ′+dN−m′
(z − a2)dN−m

zx+dN−m(w − a2)dN−m′
dzdw

z(z − w)
, (12)

where |a|2 < ρ1 < ρ2 < 1/|a|2.
Note that in (9) we have replaced the size of the Aztec diamond N by dN . This is

not necessary and the upcoming analysis can also be performed for the general case.
Since the difference will only involve non-essential cumbersome bookkeeping, we
feel that working with dN instead of N makes for a cleaner presentation.

3.3 Asymptotics

The representation of the correlation kernel in (12) is a good starting point for an
asymptotic study. We will compute the microscopic process in the limit N → ∞ near
the point

(2dT , 2X) = (2d�Nτ�, 2�dNξ�), 0 < τ < 1, − 1
2 < ξ − τ/2 < 0. (13)

That is, we consider the limiting behavior of the correlation kernel

[
KdN

(
(2dT + 2m + ε, 2X + 2x − j) ,

(
2dT + 2m′ + ε′, 2X + 2x ′ − j ′

))]1
j, j ′=0

(14)

as N → ∞, with m,m′ ∈ Z fixed. Note that the first coordinate of the point (13) is a
multiple of 2d and the second coordinate is a multiple of 2. This restriction is made
for clarity purposes and is not necessary. Note also that any finite shift from (13) can
be absorbed into the variables 2m + ε, 2m′ + ε′, 2x + j +2x ′ + j ′ in (14).

3.3.1 The spectral curve

To perform the asymptotic analysis it is convenient to diagonalize the matrices P(w),
P(z), P(d)

+ (w) and P(d)
− (z).

The spectral curve det(P(z) − λ) = 0 can be easily computed:

λ2 −
(

α + 1

α

)
(1 + a2)λ + (1 − a2z)

(
1 − a2

z

)
= 0. (15)

The curve has branch points at z = 0, z = ∞, and at the zeros of the discriminant:

R(z) :=
(

α + 1

α

)2

(1 + a2)2 − 4(1 − a2z)

(
1 − a2

z

)
= 0. (16)

These zeros are negative and will be denoted by x1 and x2, ordered as x1 < x2 < 0.
With these points, we define a Riemann surface R consisting of two sheets R j =
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C\ ((−∞, x1) ∪ (x2, 0)), that we connect in the usual crosswise manner along the
cuts (−∞, x1) and (x2, 0). The sheets have 0 and ∞ as common points. See also
Fig. 10. We will write z( j) to indicate the point z on the sheet R( j). Then we define
the square root (R(z))1/2 on R such that (R(z(1)))1/2 > 0 for z(1) > 0. The spectral
curve (15) then defines a meromorphic function on R given by

λ(z) = 1

2

(
α + 1

α

)
(1 + a2) + 1

2
(R(z))1/2, (17)

with poles at 0 and ∞, and zeros at (a±2)(2). The restrictions of λ to R( j) will be
denoted by λ j , i.e., λ j (z) = λ(z( j)).

Next, consider the spectral curves for P(d)
− and P(d)

+ ,

det(P(d)
− (z) − μ) = μ2 − μTr P(d)

− (z) + det P(d)
− (z) = 0, (18)

det(P(d)
+ (z) − ν) = ν2 − ν Tr P(d)

+ (z) + det P(d)
+ (z) = 0, (19)

These spectral curves factorize (15) in the following way.

Lemma 3.3 The equations (18), (19) for μ and ν define meromorphic functions onR
such that

(λ(z))d = μ(z)ν(z), (20)

for z ∈ R. Then μ has a zero at (a2)(2) and a pole at 0, both of the same order d, and
ν has a zero at (a−2)(2) and a pole at ∞, both of the same order d.

With E(z) defined by

E(z) =
(

aα(1 + z) aα(1 + z)
λ1(z) − α(a2 + 1) λ2(z) − α(a2 + 1)

)
, (21)

we have

P(z) = E(z)

(
λ1(z) 0
0 λ2(z)

)
E(z)−1, (22)

P(d)
− (z) = E(z)

(
μ1(z) 0
0 μ2(z)

)
E(z)−1, (23)

and

P(d)
+ (z) = E(z)

(
ν1(z) 0
0 ν2(z)

)
E(z)−1. (24)

Here μ j (z) = μ(z( j)) and ν j (z) = ν(z( j)) for z ∈ C\ ((−∞, x1) ∪ (x2, 0)).
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Fig. 10 The two sheeted Riemann surface R. The dashed lines represent the cycles C1 and C2

The proof of this lemma will be given in Sect. 5.2
One particular consequence of this lemma is thatwe can simultaneously diagonalize

P(z) and P(d)
± (z). In the following theoremwe use this to rewrite the correlation kernel

in (12).

Theorem 3.4 Assume (a−2, a−2) is a torsion point of order d. Set, with E(z) as in
(15),

F(z) =

⎧
⎪⎪⎨

⎪⎪⎩

E(z)

(
1 0
0 0

)
E(z)−1, z ∈ R1,

E(z)

(
0 0
0 1

)
E(z)−1, z ∈ R2.

(25)

Then,

[
KdN ((2dT + 2m + ε, 2X + 2x − j), (2dT + 2m′ + ε′, 2X + 2x ′ − j ′))

]1
j, j ′=0

= −12m′+ε′<2m+ε

2π i

∫

γ
(1)
2 ∪γ

(2)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)m−m′ zm−x−m′+x ′

(z − a2)m−m′
dz

z

+ 1

(2π i)2

∮

γ
(1)
1 ∪γ

(2)
1

∮

γ
(1)
2 ∪γ

(2)
2

Ae(w)−ε′
F(w)F(z)Ao(z)

ε λ(z)m

λ(w)m
′
wx ′−m′

zx−m

× (w − a2)m
′

(z − a2)m
μ(w)N−T

μ(z)N−T

ν(z)T

ν(w)T

wd(N−T )+X

zd(N−T )+X

(z − a2)d(N−T )

(w − a2)d(N−T )

dwdz

z(z − w)
, (26)

where γ
(1,2)
2 are the unit circles with counterclockwise orientation on the sheetsR1,2,

γ
(1)
1 is a counterclockwise oriented contour inside the contour γ

(1)
2 on the sheet R1

that goes around (a2)(1) and the cut [x2, 0], and γ
(2)
1 is a counterclockwise oriented

contour on the sheet R2 inside the contour γ
(2)
2 that goes around the cut [x2, 0]. See

also Fig.11.

The proof of this Theorem will be given in 5.3.
Note that Ae(w)−1 is analytic at w = a2 (even though Ae(w) is not). Moreover,

λ(w)−m′
μ(w)N−T has a zero at w = (a2)(2) of order d(N − T ) − m′, and this
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Fig. 11 The contours of integration in (26). The blue contour represents γ1 and the orange contours are the
unit circles on the two different sheets (colour figure online)

zero cancels the pole at w = (a2)(2) in the double integral in (26). The contour γ
(2)
1

therefore does not have to go around (a2)(2).
By passing to the eigenvalues and spectral curves we in fact are essentially looking

at a scalar problem, instead of a matrix-valued one.

Remark 3.5 We note that the spectral curve det (P(z) − λ) = 0 and the elliptic curve
E in (5) are related. Indeed, (5) can be written as

det
(
P(x) − 1

2 (a
2 + 1)(α + 1/α) (1 + y/x)

)
= 0.

In other words, the elliptic curve E equals the spectral curve after changing the spectral
variable.

3.3.2 Saddle point equation and classification of different regions

The representation (26) is a very good starting point for asymptotic analysis. To illus-
trate this we will perform a partial asymptotic study, based on a saddle point analysis.
We note that a similar analysis has been given in [4, 11]. An interesting feature is that
our analysis will depend on the torsion d, but in such a way that we can treat all values
of d simultaneously.

To perform a saddle point analysis of (26) we need to find the saddle points and the
contours of steepest descent/ascent for the action defined by


(z; τ, ξ) = (1 − τ) logμ(z) − τ log ν(z) + d(1 − τ + ξ) log z − d(1 − τ) log(z − a2). (27)

This is a multi-valued function, but the differential


′(z)dz

is single valued onR. Its zeros are the saddle points for Re
, andwewill be especially
interested in them.LetC1 be the cycle onRdefinedby connecting the segments (x1, x2)
onR1 andR2 at the end points x1 and x2. Similarly, let C2 be the cycle that combines
the copies of (0,∞) on both sheets.
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Fig. 12 Both pictures represent a partitioning of the region into the frozen region, the roughdisordered region
and the smooth disordered region. The picture on the left uses the natural coordinates (τ, ξ) corresponding
to the point process associated with the non-intersecting paths. The picture on the right corresponds to the
coordinates for the original dimer model. In both pictures we have a2 = α/(1 + α + α2) and α = 1

2

Proposition 3.6 The differential 
′(z)dz has simple poles at 0, (a2)(1), (1/a2)(2) and
∞. There are four saddle points (i.e., the critical points where 
′(z)dz = 0) counted
according to multiplicity. There are at least two distinct saddle points on the cycle C1.

There are always two saddle points on the cycle C1, but it is the location of the two
other saddle points that determines the phase at the point (τ, ξ). We say that (τ, ξ) is

• in the frozen region, if we have two distinct saddle points on the cycle C2;
• in the smooth disordered region, if we have four distinct saddle points on the cycle
C1;

• in the rough disordered region, if there is a saddle point in the upper half plane of
R1 or R2;

• on the boundary between the rough and smooth disorderd regions, when this saddle
point from the upper half plane coalesces with its complex conjugate on the cycle
C1;

• on the boundary between the rough and frozen regions, when the saddle point from
the upper half plane coalesces with its complex conjugate on the cycle C2.

We note that the terminology rough, smooth and frozen goes back to at least [22]. See
also Fig. 12 for a partition of the Aztex diamond in the different regions. In that work
also the alternatives gaseous for smooth disordered and liquid for rough disordered
were mentioned. In the subsequent literature both these terms have been used. We
chose to use terminology frozen, rough and smooth disordered. The difference between
these regions is in the decay of the local correlations for the local Gibbs measure. In
the frozen region, the randomness disappears. In the rough disordered region, the
correlations between two points decay polynomially in their distance, whereas in the
smooth disorder regions these correlations decay exponentially.Our list above suggests
that these different behavior can be characterized in terms of the location of the two
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remaining saddle points. The following theorem justifies this characterization for the
smooth disordered (or gaseous) region.

Theorem 3.7 Let (τ, ξ) be in the smooth disordered region. Then

lim
N→∞ [KdN ((2dT + 2m + ε, 2X + 2x − j),

(2dT + 2m′ + ε′, 2X + 2x ′ − j ′)
]1
j, j ′=0

= −12m′+ε′<2m+ε

2π i

∫

γ
(2)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)d(m−m′) zm−x−m′+x ′

(z − a2)m−m′
dz

z

+12m′+ε′≥2m+ε

2π i

∫

γ
(1)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)d(m−m′) zm−x−m′+x ′

(z − a2)m−m′
dz

z
.

(28)

Note that from (28) we see that the limiting mean density in the smooth disordered
region is given by

lim
N→∞

[
KdN ((2dT+2m+ε, 2X+2x− j), (2dT+2m+ε, 2X+2x− j ′)

]1
j, j ′=0

= 1

2π i

∫

γ
(1)
2

Ae(z)
−εF(z)Ao(z)

ε dz

z
,

and the right-hand side is independent of (T , X) (as long as it is in the smooth disor-
dered region).

It is also not difficult to see that the right-hand side of (28) decays exponentiallywith
the distance between (m, x) and (m′, x ′). Indeed, for m and m′ fixed, the right-hand
side is the (x − x ′)-th Fourier coefficient of a function that is analytic in an annulus.
Such coefficients decay exponentially with a rate that is determined by the width of
the annulus. More generally, the exponential decay follows from a steepest descent
analysis for the right-hand side of (28).

The proof of Theorem 3.7 will be given in Sect. 5.5 and it is based on a saddle point
analysis of the integral representation (26). We are confident that such a saddle point
analysis can be carried out similarly for the rough disordered and frozen regions. Since
it requires non-trivial effort and since a full asymptotic study is not the main focus of
this paper, we do not perform such an analysis here.

3.4 The boundary of the rough disordered region

We will now show that the boundary of the rough disordered region is an algebraic
curve and discuss how this curve can be found explicitly in particular cases.

We start with the following proposition.
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Proposition 3.8 With 
 as in (27) and R(z) = a2(z − x1)(z − x2)/z as in (16) we
have


′(z) = d(1 − τ)a2
zγ1 + γ2 + γ3R(z)1/2

(z − a2)zR(z)1/2
− dτ

γ1 + γ2z + γ3zR(z)1/2

(z − a−2)zR(z)1/2

+d(1 − τ + ξ)

z
− d(1 − τ)

z − a2
, (29)

where γ1, γ2 and γ3 are real constants determined by

⎧
⎪⎨

⎪⎩

γ1 = − 1
2

(
1
d

∑d−1
j=0 a(σ j (x, y))

)1/2 (
1
d

∑d−1
k=0

1
a(σ k (x,y))

)1/2
,

γ2 + a2γ1 = − 1
2 (a

2 + 1)(α + 1/α),

γ3 = 1
2 ,

(30)

and the square root is taken such that R(z)1/2 is meromorphic onR and R(z(1))1/2 > 0
for z > 0.

The proof of this proposition will be given in Sect. 5.6.
By inserting the constants (29) into
′(z), multiplying by (z−a2)(z−a−2)R(z)1/2,

and re-organizing the equation so that all terms with R(z)1/2 are on the right, we see
that 
′(z) = 0 can be written as

(1 − τ)a2(γ1z + γ2)(z − a−2) − τ(γ1 + γ2z)(z − a2)

= −R(z)1/2
(
(1 − τ)a2γ3(z − a−2) − τγ3(z − a2)z

+(1 − τ + ξ)(z − a2)(z − a−2) − (1 − τ)z(z − a−2)
)

. (31)

Before we proceed, note that z = a−2 and z = a2 are two solutions that we just
introduced by multiplying by (z − a2)(z − a−2) and are not saddle points.

By squaring both sides of (31) and multiplying by z we find a polynomial equation
of degree 6 in z with coefficients that are quadratic functions of τ and ξ . Since z = a±2

are solutions that we are not interested in, we are left with an equation of degree four.
There are four solutions to this equation, and each of them corresponds to exactly one
point on the surface. This confirms that we indeed have four saddle points, which was
part of the statement in Proposition 3.6.

This also allows to write an equation for the rough disordered boundary. Indeed,
the coefficients of this fourth degree equation will be quadratic expressions in τ and
ξ . We have a third order saddle in case the discriminant vanishes. The discriminant of
a polynomial of degree four is a polynomial in its coefficients of degree six. Thus, the
discriminant is a polynomial in τ and ξ of degree twelve. In the explicit cases that we
tried, we found, with the help of computer software, that this degree twelve curve can
be factorized into a curve of degree eight and remaining factors that are not relevant.
This also matches with the findings of [7] and [5] for the special case a = 1. We have,
however, only been able to verify that this holds numerically in special cases (one of
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them we will discuss in Appendix A) and do not have a proof that it holds generally.
We leave this as an interesting open problem and post the following conjecture:

Conjecture 3.9 The boundary of the rough disordered region is an algebraic curve in
τ and ξ of degree eight.

Remark 3.10 There is another way of parametrizing the boundary. Indeed, on the two
components of the boundary of the rough region we have a coalescence of saddle
points on the cycles C1 or C2. This means that we have a double zero of the differential

′(z)dz. This gives a way of parametrizing these curves. Indeed, 
′(z) = 
′′(z) = 0
for z ∈ C1 or C2 gives a linear system of equations for μ and ξ that can be easily
solved.

Another interesting consequence of (29) is that the saddle point equation
′(z) = 0
only depends on the order d of the torsion via the constant γ1 in (30). However, it is
even possible to replace this with another expression that does not involve d:

Lemma 3.11 The constants γ1 and γ2 from (30) are related via

γ1

∫ x2

x1

xdx

(x − a−2)
√
R(x)

= −γ2

∫ x2

x1

dx

(x − a−2)
√
R(x)

, (32)

where
√
R(x) > 0 for x ∈ (x1, x2).

The proof of this lemma will ve given in Sect. 5.7.
By replacing the equation for γ1 in (30) by (32) we see that we have eliminated

the dependence on d from the saddle point equation, and the saddle point equation
makes sense for general parameters a and α. Although the arguments that we provide
in this paper use the torsion at several places, it is natural to conjecture that the saddle
point analysis and its consequences can be extended in this way. In particular, we
conjecture the characterization of the different phases in Sect. 3.3.2 and Theorem 3.7
to hold under this extension. We leave this as an open problem.

3.5 Overview of the rest of the paper and the proofs

In the remaining part of this paper we will prove the main results. In Sect. 4 we will
show that the linear flow on the elliptic curve can be used to find a Wiener–Hopf
factorization in Proposition 2.1. We will do this in a more general setup than only
for the biased Aztec diamond. In Sect. 5 we will return to the biased Aztec diamond
and prove Theorem 3.1 in Sect. 5.1, which is by then just an identification of the
parameters in the discussion of Sect. 4. Then Lemma 3.3 and Theorem 3.4 are proved
in Sects. 5.2 and 5.3, respectively. The saddle point analysis starts with proving Lemma
3.6 in Sect. 5.4. After that, we perform a saddle point analysis in Sect. 5.5 and prove
Theorem 3.7. Proposition 3.8 is proved in Sect. 5.6 and Lemma 3.11 in Sect. 5.7. In
Appendix A we work out the example where (a−2, a−2) is a torsion point of order six.
We compute the boundary of the rough disordered region, and we provide numerical
results supporting the saddle point analysis of Sect. 5.5. Finally, in Appendix Bwewill
show how the notion of division polynomials can be used to find algebraic relations
between a and α so that (a−2, a−2) is a torsion point of order d.
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4 The flow

In this section we introduce a flow on a space of matrices that will give aWiener–Hopf
factorization in the correlation kernel. We prove that this flow is equivalent to a linear
flow on an elliptic curve using translations by a fixed point on that curve.

4.1 The space

First we have to define the space of matrices that we work on. To this end, we first
introduce

S =
{(

a11 a12 + b12z
a21 + b21/z a22

)
| a11, a22, a12, a21, b12, b21 > 0

}
. (33)

Clearly, the determinant det P(z) of any P ∈ S is a rational function in z with poles
at z = 0 and z = ∞ and no other. Also, det P(z) will have two zeros z1 and z2, and
we will assume that

0 < z1 < 1 < z2.

Then the winding number of det P(z) with respect to the unit circle equals zero.
The flow that we will define on S will be such that det P(z) and Tr P(z) will be

invariant under it. We therefore introduce the sets

S(z1, z2, c1, c2) = {P(z) ∈ S | Tr P(z) = 2c1, det P(z) = −c2(z − z1)(z − z2)/z}

for c1, c2 > 0 and 0 < z1 < 1 < z2.
Naturally, c1, c2 and z1, z2 be expressed in terms of ai j and bi j . Indeed,

{
c1 = a11+a22

2 ,

c2 = a21b12,
(34)

and z1, z2 are the solutions to det P(z) = 0. Equivalently, z1 and z2 can be obtained
from the following equations:

{
z1z2 = a12b21

a21b12
,

c2(z1 + z2) = a11a22 − (a21a12 + b12b21),
(35)

which, combined with the condition 0 < z1 < 1 < z2, determine z1 and z2 uniquely.
We also note that the condition 0 < z1 < 1 < z2 is equivalent to requiring det P(1) >

0, because det P(z) → −∞ for z ↓ 0 and z → +∞. In terms of ai j and bi j this
means that the condition is equivalent to

a11a22 > (a12 + b12)(a21 + b21).
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Note that this also shows that right-hand side of the second equation in (35) is positive,
as it should be.

It should also be noted that c1, c2, z1 and z2 cannot take arbitrary values. For
instance, we have the following result.

Lemma 4.1 We have

c21 ≥ c2(
√
z1 + √

z2)
2. (36)

Proof The proof follows after inserting (34) and (35) into

c21 − c2(
√
z1 + √

z2)
2 = c21 − c2(z1 + z2 + 2

√
z1z2)

= (a11 + a22)2

4
− a11a22 + a12a21

+ b12b21 − 2
√
a12a21b12b21

= (a11 − a22)2

4
+ (

√
a12a21 −√

b12b21)
2 ≥ 0,

giving the result. ��
Aswewill see later, the inequality (36) is sufficient to ensure thatS(z1, z2, c1, c2) �=

∅. We will give an explicit parametrization of S(z1, z2, c1, c2) in terms of part of an
elliptic curve. But first, let us define a flow on S(z1, z2, c1, c2).

4.2 Definition of the flow

We will be interested in factorization of the matrices in S of a particular form. Start
by introducing the sets

S− =
{(

a 0
0 1

)(
1 1
z1
z 1

)(
b 0
0 1

)
| a > 0, b > 0, 0 < z1 < 1

}
,

and

S+ =
{(

1 0
0 c

)(
1 z

z2
1 1

)(
1 0
0 d

)
| c > 0, d > 0, z2 > 1

}
.

It is straightforward to verify that if Q+ ∈ S+ and Q− ∈ S− then Q+Q− ∈ S and
Q−Q+ ∈ S.
Proposition 4.2 Let P ∈ S(z1, z2, c1, c2). Then there exist unique Q± ∈ S± such that
P = Q−Q+.

Proof Note that

(
a 0
0 1

)(
1 1
z1
z 1

)(
b 0
0 1

)(
1 0
0 c

)(
1 z

z2
1 1

)(
1 0
0 d

)
=
(
ab + ac acd + abdz

z2
c + bz1

z cd + bdz1
z2

)

.
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To find Q± we have to solve

(
ab + ac acd + abdz

z2
c + bz1

z cd + bdz1
z2

)

=
(

a11 a12 + b12z
a21 + b21/z a22

)
.

By comparing the coefficients on both sides we obtain six equations for the six
unkowns a, b, c, d, z1 and z2. The parameters z1, z2 can be found from the condi-
tion det P(z1) = det P(z2) = 0. Then finding the remaining equation gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = a11z1
a21z1+b21

,

b = b21
z1

,

c = a21,
d = a12(a21z1+b21)

a11a21z1
.

(37)

This determines the factorization P = Q−Q+ uniquely. ��
Because of the special structure ofS± wehave uniqueness of the factorization.How-

ever, for our purposes we need an additional degree of freedom by adding a diagonal
factor. Indeed, if P = Q−Q+ then P− = Q−D and P+ = D−1Q+ for any diago-
nal matrix D also provides a factorization of P such that P+P− = D−1Q+Q−D ∈
S(z1, z2, c1, c2). We will use this additional degree of freedom by requiring that

P+P− = P−P+ + O(1), z → ∞.

In other words, we require that the leading term in the asymptotic behavior fo P−P+
and P+P− match. In order to achieve this, we define

D =
(
1 0
0 ab

)
, (38)

where a, b are the parameters in Q−.

Definition 4.3 Define the map s : S(z1, z2, c1, c2) → S(z1, z2, c1, c2) as follows: for
P ∈ S(z1, z2, c1, c2) let P = Q−Q+ be the unique factorization from Proposition 4.2
and take P+ = D−1Q+ and P− = Q−D where D is defined by (38). Then set
s(P) = P+P−.

The flow on S(z1, z2, c1, c2) that we wish to study is then defined by iterating the
map s, i.e., the flow is defined by the recurrence

{
Pk+1 = s(Pk), k ≥ 0,
P0 = P ∈ S(z1, z2, c1, c2).

It turns out it is rather complicated to keep track of this dynamics, and our goal is to
describe this dynamics in a way that it is easier to grasp.
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4.3 Translations on an elliptic curve

Consider the elliptic curve E over R defined by (with c1, c2 > 0 and 0 < z1 < 1 < z2
as before)

E =
{
(x, y) ∈ R

2 | c21(y2 − x2) = c2x(x − z1)(x − z2)
}

.

We also assume, cf. Lemma 4.1, that

c21
c2

≥ (
√
z1 + √

z2)
2. (39)

This inequality implies that we have three points on the curve whose y coordinate
is zero, (0, 0), (−t1, 0) and (−t2, 0), with t1, t2 > 0. Moreover, the curve E has two
connected components

E± = {(x, y) ∈ E | ±x ≥ 0} ,

one in the left half plane and the other in the right half plane. It will also be important
for us that the lines y = ±x lie above and below E−, meaning that y2 − x2 < 0 and
thus |y|/|x | < 1. Indeed, the lines y = ±x intersect E at most at three points, and we
already established that these points are on E+. This implies that E− has to lie fully
below or above each of these lines and since (−t1, 0) and (−t2, 0) lie below the line
y = −x and above the line y = x , so does E−. See also Fig. 13.

There is a classical construction of addition on an elliptic curve which we will use.
We can add two points (x1, x1), (x2, y2) ∈ E as follows: generically, the line through
(x1, y1) and (x2, y2) intersects the elliptic curve at exactly one point (x3,−y3). Then
we define (x1, y1) + (x2, y2) = (x3, y3). One exception is when (x2, y2) = (x1, y1)
(in which case the addition becomes a doubling of the point), but this can be defined
by continuity. The other exception is (x1, y1) + (x1,−y1) which we define to be the
point at infinity. The addition turns E into group with the point at infinity as zero.

We will be mostly interested in translation by (z2, z2) on E . Observe that if (x, y) ∈
E− then (x, y) + (z2, z2) ∈ E−. We will define the translation operator

σ : E− → E− : (x, y) �→ (x, y) + (z2, z2).

It is not hard to put this into a concrete formula. Since it will be useful to have this
formula at hand, and in order to simplify arguments later, we include it in the following
lemma.

Lemma 4.4 We have

σ(x, y) =
(
z2(x − z1)(y − x)

(x − z2)(x + y)
,
z2(y − x)(x2 + y(z1 − z2) − z1z2)

(x − z2)2(x + y)

)
,

for all (x, y) ∈ E−.
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Fig. 13 An example with parameter z1 = 1
2 , z2 = 2 and c21/c2 = 7. Under strict inequality in (39) we

always have an oval in the left half plane. In case we have equality, the oval has shrunk to a point

Proof The line through the point (x, y) and (z2, z2) is given by the formula Y =
λ(X − z2) + z2 where λ = y−z2

x−z2
. By substituting this into the equation for E , moving

all terms to the right-hand side and collecting the coefficient of X2 we obtain

−λ2c21 + c21 − c2(z1 + z2),

and this equals −c2 times the sum of the three zeros of the resulting cubic equation
for X . In other words, after setting (x∗,−y∗) = (x, y) + (z2, z2) we have

−c2(x
∗ + z2 + x) = −c21λ

2 + c21 − c2(z1 + z2).

Thus,

x∗ = c21
c2

(λ2 − 1) + z1 − x = c21
c2

(
(y − x)(x + y − 2z2)

(x − z2)2

)
+ z1 − x .

Now use the fact that (x, y) ∈ E to find

x∗ = (x − z1)x(x + y − 2z2)

(x − z2)(x + y)
+ z1 − x

= (x − z1)

(x − z2)(x + y)
(x(x + y − 2z2) − (x − z2)(x + y)) = z2(x − z1)(y − x)

(x − z2)(x + y)
.
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Inserting this back into y∗ = λ(x∗ − z2) + z2 we find

y∗ = z2

((
(y − z2)(x − z1)(y − x)

(x − z2)2(x + y)
− y − z2

x − z2

)
+ 1

)

= z2

(
(y − z2)(x − z1)(y − x)

(x − z2)2(x + y)
+ x − y

x − z2

)
,

and further simplification shows

y∗ = z2(y − x) ((y − z2)(x − z1) − (x + y)(x − z2))

(x − z2)2(x + y)

= − z2(y − x)
(
x2 + y(z1 − z2) − z1z2

)

(x − z2)2(x + y)
.

By flipping the sign of y∗ we thus obtain the statement. ��

4.4 Equivalence of the flows

Our main point is that the flows s and σ from Definition 4.3 and Lemma 4.4 are
equivalent. We start with the following.

Proposition 4.5 The map π : (0,∞) × E− → S(z1, z2, c1, c2) defined by

π(u, (x, y)) =
(

c1
(
1 − y

x

)
u(z − x)

c2
u

(
1 − z1z2

xz

)
c1
(
1 + y

x

)

)

(40)

is well-defined and a bijection.

Proof First, since x < 0 and |y| < |x | for (x, y) ∈ E− we see that all entries
and coefficients of π(u, (x, u)) are positive and thus π(u, (x, y)) ∈ S. To see that
π(u, (x, y)) ∈ S(z1, z2, c1, c2) we have to check that the defining equations match.
To this end, we note that

Tr π(u, (x, y)) = 2c1,

and

det π(u, (x, y)) = c21

(
1 − y2

x2

)
− c2(z − x)

(
1 − z1z2

xz

)

= c21
(
x2 − y2

)+ c2x(x − z1)(x − z2)

x2
− c2(z − z1)(z − z2)

z
.

(41)

Hence,

det π(u, (x, y)) = −c2(z − z1)(z − z2)/z
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if and only if (x, y) ∈ E− (note that we already observed that x < 0). Therefore,
π(u, (x, y)) ∈ S(z1, z2, c1, c2).

To establish that π is a bijection we construct the inverse map as follows. It is
not difficult to see that any matrix from the general space S can be written as in the
right-hand side of (40) after choosing c1, c2, z1, z2 as in (34) and (35) and u, x, y as

⎧
⎪⎨

⎪⎩

u = b12,
x = − a12

b12
,

y = a12
b12

(
a11−a22
a11+a22

)
.

By the assumptions ai j > 0 and bi j > 0 we see that u, c1, c2, z1z2 > 0, hence x < 0
and |y| < |x |. We still need to verify that (x, y) lies on the elliptic curve. But this
follows from the computation of the determinant (41). Indeed, since the determinant
matches with det P(z) we must have that (x, y) ∈ E . Since we already know that
x < 0 we find (x, y) ∈ E−, and we have thus proved the statement. ��

We now come to the key point of this section.

Theorem 4.6 For any (u, (x, y)) ∈ (0,∞) × E− we have π(u, σ (x, y)) =
s(π(u, (x, y))).

Proof Since π is a bijection, there must exist (u′, (x ′, y′)) ∈ (0,∞) × E− such that
s(π(u, (x, y))) = π(u′, (x ′, y′)). We first compute s(π(u, (x, y))). Note that from
Proposition 4.2 and (37) we have π(u, (x, y)) = Q−Q+ with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = uc1(x−y)
c2(x−z2)

,

b = − c2z2
xu ,

c = c2
u ,

d = −ux(x−z2)
c1(x−y) .

(42)

We note that since (x, y) is a point on the elliptic curve, we can rewrite d as

d = uc1(x + y)

c2(x − z1)
.

Now we can compute

s(π(u, (x, y)) = P+(z)P−(z) = D−1Q+(z)Q−(z)D =
(
ab + bdz1

z2
a2b + abdz

z2
c + cdz1

az ac + cd

)

.

To find (u′, (x ′, y′)) such that s(π(u, (x, y)) = π(u′, (x ′, y′)) we argue as follows.
From (40) we see that u′ is the coefficient of z in the 12-entry. This gives u′ = u, so
the parameter u is unchanged under the flow.

Then x ′ is the zero of the 12-entry viewed as a linear function in z and thus

x ′ = −z2a

d
= z2(y − x)(x − z1)

(x + y)(x − z2)
.
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Next, by looking at the 22-entry of P+P− we find

c(a + d) = c1
(x − z1)(x − y) + (x − z2)(x + y)

(x − z1)(x − z2)
.

By solving for y′ from the 22-entry of π(u′, (x ′, y′)), cf. (40), we find

y′ =
(
c(a + d)

c1
− 1

)
x ′

=
(

(x − z1)(x − y) + (x − z2)(x + y)

(x − z1)(x − z2)
− 1

)
z2(y − x)(x − z1)

(x + y)(x − z2)

=
(

(x − z1)(x − y) + (x − z2)(y + z1)

(x − z1)(x − z2)

)
z2(y − x)(x − z1)

(x + y)(x − z2)

= z2(x2 + y(z1 − z2) − z1z2)(y − x)

(x + y)(x − z2)2
.

Thus, (x ′, y′) matches with (z2, z2) + (x, y) from Lemma 4.4 as desired. ��

4.5 Wiener–Hopf factorizations

Let P(z) ∈ S with S as defined in (33) and n ∈ N. In this paragraph we will show
how the flows above can be used to find an explicit Wiener–Hopf factorization

(P(z))n+1 = P−(z)P+(z).

First of all, as also discussed in Sect. 2.4, with Pk(z) = sk(P(z)) and Pk(z) =
Pk,−(z)Pk,+(z) as in Definition 4.3 we can take

P−(z) = P0,−(z)P1,−(z) · · · Pn,−(z),

and

P+(z) = Pn,+(z)Pn−1,+(z) · · · P0,+(z).

Then, by Theorem 4.6 we can obtain an explicit representation in terms of the flow on
the elliptic curve. To this end, we first define the functions (cf. (42))

⎧
⎨

⎩

a(x, y) = uc1(x−y)
c2(x−z2)

,

b(x, y) = −c2z2
xu

.

Using the parametrizaton for P(z) as in (40) we then have, by Theorem 4.6,

Pj,−(z) = b(σ j (x, y)))

(
a(σ j (x, y)) 0

0 1

)(
1 1
z1
z 1

)(
1 0
0 a(σ j (x, y))

)
. (43)
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Hence,

P0,−(z)P1,−(z) · · · Pn,−(z) =
n∏

j=0

b(σ j (x, y)))

×
n∏

j=0

(
a(σ j (x, y)) 0

0 1

)(
1 1
z1
z 1

)(
1 0
0 a(σ j (x, y))

)
(44)

For future reference, we note that the constant pre-factor is of no interest to us and
will cancel out in the integrand for the double integral formula of Proposition 2.1 for
the correlation kernel. It is thus the evolution of a(σ j (x, y)) that is of importance.

Next, define the function

d(x, y) = −ux(x − z2)

c1(x − y)
.

Then we have

Pj,+(z) =
(
1 0
0 c2

z2u2
d(σ j (x, y))

)(
1 z

z2
1 1

)(
1 0
0 d(σ j (x, y))

)
. (45)

Hence,

Pn,+(z)Pn−1,+(z) · · · P0,+(z) =
n∏

j=0

(
1
0 c2

z2u2
d(σ j (x, y))

)(
1 z

z2
1 1

)(
1 0
0 d(σ j (x, y))

)
.

(46)

5 Proofs of themain results

Wenow return to themodel of the biased doubly periodicAztec diamond fromSect. 2.1
and prove our main results.

5.1 Proof of Theorem 3.1

Proof of Theorem 3.1 We recall from Proposition 2.1 that we are interested in finding
a factorization for

A(z) = 1

(1 − a2/z)N
(P(z))N ,

where

P(z) =
(

α aαz
α
a

1
α

)(
1 a
a
z 1

)
.
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Comparing this with the setting of Sect. 4.4 we see that we have the special case

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z1 = a2,
z2 = 1/a2,
c1 = 1

2 (a
2 + 1)(α + 1/α),

c2 = a2,
u = aα,

(47)

and thus the elliptic curve can be written as

y2 − x2 = 4x(x − a2)(x − 1/a2)

(a + 1/a)2(α + 1/α)2
.

The flow starts with the initial parameters (x0, y0) = (−1,− 1−α2

1+α2 ). The theorem is a
straightforward consequence of the factorization of Sect. 4.5. ��

5.2 Proof of Lemma 3.3

Proof of Lemma 3.3 It is readily verified that (22) holds. An important observation is
that

(
P(d)

− (z)P(d)
+ (z)

)2 = (P(z))2d =
(
P(d)

− (z)
)2 (

P(d)
+ (z)

)2
.

This implies that P(z)d , P(d)
− (z) and P(d)

+ (z) commute,1 and therefore are simultane-

ously diagonalizable. Hence, we can write P(d)
± (z) as in (23) and (24). Furthermore,

note that we can rewrite (23) and (24) as

E(z)−1P(d)
− (z)E(z) =

(
μ1(z) 0
0 μ2(z)

)
, E(z)−1P(d)

+ (z)E(z) =
(

ν1(z) 0
0 ν2(z)

)
,

(48)

with E(z) as in (21). Now the entries of E(z) and E(z)−1 are meromorphic functions
for z ∈ C\ ((−∞, x1] ∪ [x2, 0]). From (48) we then see that μ1,2 and ν1,2 are also
meromorphic for z ∈ C\ ((−∞, x1] ∪ [x2, 0]). Now, on the cuts (−∞, x1] ∪ [x2, 0]
we have

E+(z) = E−(z)

(
0 1
1 0

)
,

where E±(z) = limε↓0 E(z ± εi). This implies that, for z ∈ (−∞, x1) ∪ (x2, 0), we
have

μ1,±(z) = μ2,∓(z), ν1,±(z) = ν2,∓(z),

1 We are grateful to Tomas Berggren for reminding us of this fact.

123



Biased 2 × 2 periodic Aztec diamond... 293

whereμ j,± = limε↓0 μ j (z+εi) and ν j,± = limε↓0 ν j (z+εi). Therefore, we see that
the functions μ defined by μ(z( j)) = μ j (z) and, similarly, ν defined ν(z( j)) = ν j (z)
extend to meromorphic functions on R.

Clearly, μ and ν must satisfy (20).
What remains is the statement on the zeros and poles of ν and μ. By (19), any pole

of ν is a pole of Tr P(d)
+ (z) and/or det P(d)

+ (z). Since Tr P(d)
+ (z) can only possibly have

a pole at z = ∞, and det P(d)
+ (z) has exactly one pole which is at z = ∞ of degree

d, we see that ν has a pole at the branch point z = ∞ of degree d and no other. The
zeros of ν can then be determined from the zeros of det P(d)

+ (z), and this shows that
the only possible locations of the zeros are z = (a−2)(1) and z = (a−2)(2), where the
sum of the orders equals d. By (20) and the fact that λ has no zero at z = (a−2)(1), it
follows that ν has a zero at z = (a−2)(2) of order d. The poles and zeros of μ can be
determined analogously. ��

5.3 Proof of Theorem 3.4

Proof of Theorem 3.4 Note that by (25) we can rewrite the spectral decomposition (22)
as

P(w) = F(w(1))λ(w(1)) + F(w(2))λ(w(2)),

and, similarly for P+(w),

P(d)
+ (w) = F(w(1))ν(w(1)) + F(w(2))ν(w(2)).

Combining this with F(w(1))F(w(2)) = O (the zero matrix), we see that

P(w)−m′
P(w)d(N−T )(P(d)

+ (w))−N

= F(w(1))λ(w(1))d(N−T )−m′
ν(w(1))−N + F(w(2))λ(w(2))d(N−T )−m′

ν(w(2))−N

= F(w(1))λ(w(1))−m′
μ(w(1))N−T ν(w(1))−T

+F(w(2))λ(w(2))−m′
μ(w(2))N−T ν(w(2))−T . (49)

In the same way,

(P(d)
− (z))−N P(z)dT P(z)m

= F(z(1))λ(z(1))mμ(z(1))T−Nν(z(1))T + F(z(2))λ(z(2))mμ(z(2))T−Nν(z(2))T .

(50)

By substituting (49) and (50) in the double integral of (12) (with adjusted parameters)
and inserting

(P(z))m−m′ = F(z(1))λ(z(1))m
′−m + F(z(2))λ(z(2))m

′−m

in the single integral one obtains the statement. ��
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5.4 Proof of Proposition 3.6

Proof of Proposition 3.6 One can easily see that 
′(z)dz has simple poles at 0 and ∞.
On the first sheet 
′(z) takes the form

(1 − τ)μ′
1(z)

μ1(z)
− τν′

1(z)

ν1(z)
+ d(1 − τ + ξ)

z
− d(1 − τ)

z − a2
, (51)

and we see that we have a simple pole at (a2)(1). On the second sheet we can use the
relations ν1(z)ν2(z) = const · (z − a2)d and μ1(z)μ2(z) = const · (z − a−2)d/zd , to
deduce that 
′(z) takes the form

− (1 − τ)μ′
1(z)

μ1(z)
+ τν′

1(z)

ν1(z)
+ dξ

z
− dτ

z − a−2 , (52)

and the pole at (a2)(2) gets canceled at the cost of a new simple pole at (a−2)(2). Thus,

′(z)dz has four simple poles at said locations and thus also four zeros (since R(z)
is of genus 1).

We now show that there are at least two saddle points in C1, which can be done
using the same argument as in [11, proof of Proposition 6.4]. The point is that one can
show that

∮

C1

′(z)dz = 0. (53)

Indeed, since ν1(z) and μ1(z) are real-valued for z ∈ (x1, x2), so is 
′(z(1,2)) by (51)
and (52), and thus

Im
∮

C1

′(z)dz = 0.

As for the real part, note that

∮

C1

′(z)dz =

∫ x2

x1

′(z(1))dz −

∫ x2

x1

′(z(2))dz

and, since Re
 is single-valued on R,

Re
∫ x2

x1

′(z(1))dz = Re
(x2) − Re
(x1) = Re

∫ x2

x1

′(z(2))dz.

Therefore, also the real part of the left-hand side of (53) vanishes. By combining this
with the fact that 
′(z)dz is real-valued and continuous on C1, we see that 
′(z)dz
must change sign at least two times. This means that there are at least two zeros of

′(z)dz. (Note that this argument does not work on C2 since 
′(z)dz has two poles
on C2.) ��
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Fig. 14 The first deformation of contours. The contours γ
(1)
2 , γ (2)

2 and γ
(2)
1 remain untouched. The blue

contour γ̃
(1)
1 is a deformation of the contour γ

(1)
1 . By deforming the contour like this, we pick up a residue

at z = w. Note also that each blue contour can be deformed through the cuts and be entirely, or partly, on
the second sheet. The orange contour is allowed to pass the cuts provided one does not pass through the
origin while deforming (colour figure online)

5.5 Asymptotic analysis in the smooth phase

Wewill work out the asymptotic analysis in the smooth phase.We prepare the proof
of Theorem 3.7 by first performing two steps:

1. a preliminary deformation of paths.
2. a qualitative description of the paths of steepest descent and ascent leaving from

the saddle points.

After these steps, the asymptotic analysis follows by standard arguments.

5.5.1 A preliminary deformation

Wewill need the following lemma on the asymptotic behavior of the integrand in (26)
near the poles at 0 and ∞.

Lemma 5.1 We have that

λ(w)−m′
wx−m(w − a2)m

′
μ(w)N−T ν(w)−Twd(T−N )+X (w − a2)d(N−T )

=
{
O(|w|X+x ′−dT /2−m′/2), w → ∞,

O(|w|X+x ′−d(N−T )/2−m′/2), w → 0.
(54)

Proof The behavior near w = ∞ follows readily after observing

⎧
⎪⎨

⎪⎩

λ(w) = O(|w|1/2),
μ(w) = O(1),

ν(w) = O(|w|d/2),

as w → ∞.

123



296 A. Borodin, M. Duits

Similarly, the behavior near w = 0 follows after observing

⎧
⎪⎨

⎪⎩

λ(w) = O(|w|−1/2),

μ(w) = O(|w|−d/2),

ν(w) = O(1),

as w → 0. ��
It is important to observe thatwe are considering (τ, ξ) in the parallellogramdefined

by τ = 0, τ = 1, ξ = τ/2 and ξ = (τ−1)/2.By (13) thismeans that for any x ′,m′ ∈ Z

we have that

X − d(N − T )/2′ + x ′ − m′/2 > 0, X − dT /2 + x ′ − m′/2 < 0, (55)

for N sufficiently large, and thus the left-hand side of (54) has no poles (and no
residues) for either w = 0 or w = ∞.

We proceedwith the first contour deformation. The contours γ
(1)
2 , γ (2)

2 and γ
(2)
1 will

be untouched, but the contour γ (1)
1 is deformed to the contour γ̃ (1)

1 that goes around the
cut (−∞, x1) in clockwise direction, as indicated in Fig. 14. While deforming we pick
up possible residues at the pole at w = ∞ and at w = z for z ∈ γ

(1)
2 . As mentioned

above, with our choice of parameters there is no pole at w = ∞. The pole at w = z
has a residue for z ∈ γ

(1)
2 , and this gives us a contribution:

1

2π i

∫

γ
(1)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)m−m′ zm−x−m′+x ′

(z − a2)m−m′
dz

z
.

This means that we can rewrite (26) as

[
KdN ((2dT + 2m + ε, 2X + 2x − j), (2dT + 2m′ + ε′, 2X + 2x ′ − j ′))

]1
j, j ′=0

= −12m′+ε′<2m+ε

2π i

∫

γ
(2)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)m−m′ zm−x−m′+x ′

(z − a2)m−m′
dz

z

+12m′+ε′≥2m+ε

2π i

∫

γ
(1)
2

Ae(z)
−ε′

F(z)Ao(z)
ελ(z)m−m′ zm−x−m′+x ′

(z − a2)m−m′
dz

z

+ 1

(2π i)2

∮

γ̃
(1)
1 ∪γ

(2)
1

∮

γ
(1)
2 ∪γ

(2)
2

Ae(w)−ε′
F(w)F(z)Ao(z)

ε λ(z)m

λ(w)m
′
wx ′−m′

zx−m

× (w − a2)m
′

(z − a2)m
μ(w)N−T

μ(z)N−T

ν(z)T

ν(w)T

wd(N−T )+X

zd(N−T )X

(z − a2)d(N−T )

(w − a2)d(N−T )

dwdz

z(z − w)
. (56)

This finishes the preliminary deformation.
Before we continue to the steepest descent analysis, we mention that by (54) and

(55), the integrand with respect to w has no pole at w = 0. This means that we can
deform the contour γ

(2)
1 to lie partly or even entirely on the first sheet. The integrand
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with respect to z does have poles at z = 0 and z = ∞ and thus, the contours γ
(1)
1 and

γ
(2)
2 may be deformed over the surfaceR but cannot pass through the origin (without

picking up a residue).

5.5.2 Description of the paths of steepest descent/ascent

By definition, we have four saddle points in the cycle C1, and in the interior of the
smooth region these are distinct and simple. By viewing Re
 as a function on the
cycle C1, these saddle points will correspond to the locations of the two local minima
and two local maxima of Re
. We will denote the saddles associated to the local
minima by s1 and s3, and the local maxima by s2 and s4. We take the indexing such
that when traversing the cycle C1 starting from x1 to x2 on R1 and then from x2 to
x1 onR2, the first saddle point one encounters is s1, then s2 and so on. Note also that
both local minima are neighbors to both local maxima (on the cycle C1) and therefore
Re
(s1,3) < Re
(s2,4).

We proceed by giving a description of the contours of steepest descent and ascent
for Re
 leaving from these four saddles. Since each saddle point is simple, there will
be two paths of steepest descent and two path of steepest ascent leaving from them. It
is straightforward that the segment of C1 between s2 j and s2 j±1 is a path of steepest
descent for Re
 leaving from s2 j and a path of steepest ascent leaving from s2 j±1.
What remains, is to identify the paths of steepest descent leaving from s1 and s3 and
the paths of steepest ascent from s2 and s4. These paths will continue in the lower and
upper half planes of the sheetsR j and they are further characterized by the condition
that

Im

[∫ z

s j

′(z)dz

]

= 0.

It is important to note that, even though 
′(z) is single-valued, 
(z) is a multi-valued
function, and we cannot replace the condition simply with Im
(z) = Im
(s j ).
Indeed, because of the logarithmic terms the imaginary part Im
(z) jumps whenever
we cross a cut (which we did not specify) for a logarithm. The real part Re
(z),
however, is single-valued, and this will be important. We will also need the behavior
near the logarithmic singularities of Re
(z) at z = 0, z = (a2)(1), z = (a−2)(2) and
at z = ∞: from (27) (see also (51) and (52))

Re
(0) = Re
(∞) = −∞, (57)

and

Re
((a2)(1)) = Re
((a−2)(2)) = +∞. (58)

By analyticity of 
′(z) the paths are a finite union of analytic arcs and ultimately
have to end up at some special points. The only options for such special points are other
saddle points or the poles of 
′. It takes only a short argument to exclude possibility
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Fig. 15 An illustration of the hypothetical case that the two saddle points s2 and s4 connect to the same
saddle point (1/a2)(2). In this case, the four paths together form a contractible curve and enclose the
(shaded) region that contains s3 but not the cycle C2. This means that the steepest descent paths leaving s3
will have to cross the paths from s2 or s4, which is not possible

that they will connect to another saddle point. Indeed, since Re
(s1,3) < Re
(s2,4)
it is impossible to connect s2 j to s2 j±1 in this way. Moreover, it is obvious that a path
of steepest descent (or ascent) from the global minimum (or maximum) cannot be
connected to any other saddle point, hence s1 cannot be connected to s3 and s2 cannot
be connected to s4. We conclude so far that the path of steepest descent leaving from
s1,3 and the paths of steepest ascent from s2,4 will have to end up at the four simple
poles of 
. From (57) we further deduce s1,3 connect to ∞ and 0, and from (57) we
find that s2,4 connect to the simple poles at (a2)(1) and (1/a2)(2).

Observe that none of these paths can cross each other, since by analyticity of 


such a crossing necessarily would be a saddle point (which we already excluded) or a
pole. For the same reason, since Im

∫ z

′(s)ds is constant on the cycles, the paths can

never cross the cycles C1 and C2 as the point where it would cross would necessarily
be a saddle point. The only point the paths have in common with the cycles are the
saddle point at C1 they started at and the pole at C2 they end in. Hence, a path that starts
at a saddle point onR1 and continues in the upper half plane ofR1 always remain in
the union of the upper half plane ofR1 and the lower half plane ofR2 glued together
along the cuts (−∞, x1) ∪ [x1, x2]. This important property shows, in particular, that
steepest ascent/descent paths do not wind around the poles of 
′(z).

Next we argue that the paths of steepest ascent leaving from s2 and s4 cannot end
in the same pole. Indeed, if they would, then all these four paths together would form
a closed loop that is contractible and hence cuts the Riemann surface into two parts,
as illustrated in Fig. 15. The cycle C2 lies fully in one of the parts. But s1 and s3 are in
different parts, and hence there must be one of them that is in a part that is different
from the part that contains the cycle C2. The steepest descent path that leaves that
saddle point has to cross the closed loop in order to end up at a pole on C2, which
is not possible, and we arrive at a contradiction. This means that the steepest ascent
paths from s2 and s4 have to end up at different poles, one saddle connects to (a2)(1)

and the other to (1/a2)(2). A similar argument shows that one of the saddle points s1
and s3 connect, via steepest descent paths, to 0 and the other to ∞.

Let us summarize our findings above:

Proposition 5.2 The steepest descent paths leaving from s1 and s3 and steepest ascent
path from s2 and s4 form simple closed loops on R, such that no two loops intersect,
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Fig. 16 The seven pictures illustrate the possible locations (schematically) of the paths of steepest descent
and ascent leaving from the four saddle points on the cycle C1 in the smooth region. In a and b we have
all four saddle points on the first sheet, in pictures c–f we have three saddle points on the first sheet and
in picture g we have one point on the first sheet. It is also possible that all four saddle points are on the
second sheet, and in that case the picture is similar to that of a and b with the two sheets switched (but
keeping the poles a±2 in place and slightly adjusting the contours accordingly). Similarly, for the case
of three saddle point on the second sheet. All pictures can be reconstructed started from the picture in a
by continuous deformations. For example, b can be obtained by moving the right most saddle point (and
the orange contour) in a over the cycle C1, first passing the branch point x1 to the second sheet and then
passing the branch point x2 back to the first sheet to become the left most saddle point at (b). The pictures
(c) and (d) can be obtained from (a) by moving the right most and the left most points respectively to the
second sheet, etc. We did not check whether all configurations indeed occur and perhaps some cases can
be excluded, but our arguments hold for any of the above configurations

each loop intersects each cycle C1 and C2 exactly once, and it does so at a saddle point
for Re
 in C1 and a pole for 
′(z) in C2.

See Fig. 16 and its caption for an illustration.

5.5.3 Proof of Theorem 3.7

Now we are ready for the

Proof of Theorem 3.7 The starting point is the representation of the kernel after the
preliminary deformation as given in (56). To prove the result, all that is needed is to
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show that the double integral tends to zero as N → ∞. This is rather straightforward
after one has realized that the contours of the preliminary deformation strongly resem-
ble the paths of steepest descent and ascent for the saddle point s j . Indeed, the two

contours γ̃
(1)
1 and γ

(2)
1 can be deformed to go through the saddle points s1 and s3 and

follow the paths of steepest descent, and the contours γ
(1)
2 and γ

(2)
2 can be deformed

to the path of steepest ascent ending in z = (a2)(1) and z = (1/a2)(2) respectively.
During this deformation, no additional residues are being picked up, and standard
saddle point arguments show that there exists c > 0 such that

∮

γ̃
(1)
1 ∪γ

(2)
1

∮

γ
(1)
2 ∪γ

(2)
2

= O(exp(−Nc)),

as N → ∞. This finishes the proof. ��

5.6 Proof of Proposition 3.8

Before we come to the proof of Proposition 3.8 we need a few lemmas. We use the
notation �x� for the largest integer smaller than x .

Lemma 5.3 There exists polynomials p, p̃ with real coefficients and of degree at most
� d
2 �, and polynomials q, q̃ with real coefficients, of degree at most � d−1

2 � and q(0) =
q̃(0) = 0, such that

ν(z) = p(z) + q(z)(R(z))1/2, (59)

μ(z) = p̃(1/z) + q̃(1/z)(R(z))1/2, (60)

where R(z) is as in (16) and the square root (R(z))1/2 is such that (R(z))1/2 for z > 0
onR1.

Proof From (17) and (48) we then find that

ν(z) = p(z) + q(z)(R(z))1/2,

for some rational functions p(z) and q(z) with real coefficients. It remains to show
that p and q are in fact polynomials in z of said degree.

By computing the trace of P(d)
+ (z) we have

Tr P(d)
+ (z) = ν1(z) + ν2(z) = 2p(z),

and thus p(z) is a polynomial. The degree of Tr P(d)
+ (z) can also be estimated from

above. Indeed, for any matrices A j,1, A j,2 for j = 1, . . . , d of the same dimensions
such that

A j,2A j+1,2 = O, j = 1, . . . , d − 1,
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we have that

Tr
d∏

j=1

(A j,1 + zA j,2)

is a polynomial of degree at most � d
2 �. In the case of P(d)

+ , we have A j,2 = c j

(
0 1
0 0

)

for some constant c j , and this shows that p(z) has degree at most � d
2 � as stated.

Finally, let us consider q(z). We have

det P(d)
+ (z) = ν1(z)ν2(z) = p(z)2 + R(z)(q(z))2.

Since the left-hand is a polynomial of degree d, and p(z)2 is a polynomial of degree
at most d, R(z)(q2(z))2 is a polynomial of degree d. Hence, the rational function q
must be a polynomial of degree at most � d−1

2 �. Moreover, since R(z) has a simple
pole at z = 0, the polynomial q(z) must have a zero at z = 0.

The statement for μ follows in the same way. ��

Lemma 5.4 We have |λ1(z)| > |λ2(z)|, |μ1(z)| > |μ2(z)|, and |ν1(z)| > |ν2(z)| for
z ∈ C \ ((−∞, x1) ∪ (x2, 0]).

Proof The proof is the same for all three cases, soweonly prove that |μ1(z)| > |μ2(z)|.
To this end, we note that μ2(z)/μ1(z) is analytic on C \ ((−∞, x1] ∪ [x2, 0]). It has
a zero at z = a2 and a possible pole at z = 0. However, from (60) it follows that the
singularity at z = 0 is removable. Moreover,μ2(z)/μ1(z) → 1 as z → ∞. From (60)
it also follows that |μ2(z)/μ1(z)| = 1 for z ∈ (−∞, x1) ∪ (x2, 0). By the maximum
modulus principle we must have either |μ2(z)/μ1(z)| > 1 or |μ2(z)/μ1(z)| < 1, for
z ∈ C\((−∞, x1) ∪ (x2, 0]). Sinceμ2(a2) = 0, we conclude that |μ2(z)/μ1(z)| < 1.

��

We also need the behavior of μ near the branch point at ∞.

Lemma 5.5 With

� =
d−1∏

j=0

a(σ j (x, y))b(σ j (x, y)) (61)

we have

μ1(z) = �

⎛

⎜
⎝1 + a

z1/2

⎛

⎝
d−1∑

j=0

a(σ j (x, y))
d−1∑

k=0

1

a(σ k(x, y))

⎞

⎠

1/2
⎞

⎟
⎠+ O(z−1), (62)
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and

μ2(z) = �

⎛

⎜
⎝1 − a

z1/2

⎛

⎝
d−1∑

j=0

a(σ j (x, y))
d−1∑

k=0

1

a(σ k(x, y))

⎞

⎠

1/2
⎞

⎟
⎠+ O(z−1),

as z → ∞ along the positive real axis, and the square root is taken such that z1/2 > 0.

Proof A simple computation gives

P(d)
− (z) = �

((
1
∑d−1

j=0 a(σ j (x, y))
0 1

)

+a2

z

d−1∑

k=0

(
1
∑k−1

j=0 a(σ j (x, y))
0 1

)(
0 0

a(σk(x, y))−1 0

)(
1
∑d−1

j=k+1 a(σ j (x, y))
0 1

)

+ O(z−2)

)

,

as z → ∞. Hence,

Tr P(d)
− (z) = �

⎛

⎝2 + a2

z

d−1∑

k=0

d−1∑

j=0, j �=k

a(σ j (x, y))

a(σ k(x, y))
+ O(z−2)

⎞

⎠

= �

⎛

⎝2 + a2

z

⎛

⎝
d−1∑

j=0

a(σ j (x, y))
d−1∑

k=0

1

a(σ k(x, y))
− d

⎞

⎠+ O(z−2)

⎞

⎠ ,

as z → ∞. Since det P(d)
− (z) = �2(1 − a2/z)d , we find

μ1,2 = �

⎛

⎜
⎝1 ± a

z1/2

⎛

⎝
d−1∑

j=0

a(σ j (x, y))
d−1∑

k=0

1

a(σ k(x, y))

⎞

⎠

1/2
⎞

⎟
⎠+ O(z−1),

as z → ∞. It remains to determine whether μ1 or μ2 comes with the plus sign. Since
μ1(z) > μ2(z), we see that μ1 comes with the plus sign and μ2 with the minus sign.

��
Now we are ready for the

Proof of Proposition 3.8 By (59) we have

ν1(z) = p(z) + q(z)
√
R(z), ν2(z) = p(z) − q(z)

√
R(z),

with R(z) = a2(z − x1)(z − x2)/z and the square root is taken so that
√
R(z) > 0 for

z > 0. Here p(z) is a polynomial of degree at most �d/2� and q is a polynomial of
degree �(d − 1)/2� with a zero at z = 0.
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Observe that ν′
1(z)ν2(z) can be written as

ν′
1(z)ν2(z) =

(
p′(z) + q ′(z)

√
R(z) + q(z)R′(z)

2
√
R(z)

)
(p(z) − q(z)

√
R(z))

= r1(z) + r2(z)
√
R(z)

z
√
R(z)

, (63)

where

r1(z) = 2zq ′(z)p(z)R(z) + zq(z)p(z)R′(z) − 2p′(z)q(z)zR(z),

and

r2(z) = 2zp′(z)p(z) − 2zq ′(z)q(z)R(z) + zq(z)2R′(z).

Since q(0) = 0 and R′(z) has double pole at z = 0, r1 and r2 are polynomials and
r2(0) = 0. The degree of r1 and r2 is at most d. By replacing

√
R(z) by −√

R(z) in
the derivation above we also find

ν′
2(z)ν1(z) = −r1(z) + r2(z)

√
R(z)

z
√
R(z)

.

Therefore, we can write

2r1(z) = (
ν′
1(z)ν2(z) − ν′

2(z)ν1(z)
)
z
√
R(z),

and

2r2(z) = z
(
ν′
1(z)ν2(z) + ν′

2(z)ν1(z)
)

(64)

Since ν2(z) has a zero of order d at z = a−2, this means that both r1 and r2 have a
zero of order d − 1 at z = a−2. This implies that ν′

1(z)ν2(z) can be written as

ν′
1(z)ν2(z) = d

(z − a−2)d−1
(
γ1 + γ2z + γ3z

√
R(z)

)

z
√
R(z)

and thus

ν′
1(z)

ν1(z)
= ν′

1(z)ν2(z)

ν1(z)ν2(z)
= d

γ1 + γ2z + γ3z
√
R(z)

(z − a−2)z
√
R(z)

, (65)

where γ j ∈ R, for j = 1, 2, 3, are some real constants.
By a similar reasoning, one can show that

μ′
1(z)

μ1(z)
= da2

zγ̃1 + γ̃2 + γ̃3
√
R(z)

(z − a2)z
√
R(z)

, (66)

123



304 A. Borodin, M. Duits

for some real parameters γ̃ j , for j = 1, 2, 3.
The next step is to compute the values of the constants γ j , γ̃ j for j = 1, 2, 3. To

this end, add (65) and (66) to obtain

d
λ′
1(z)

λ1(z)
= μ′

1(z)

μ1(z)
+ ν′

1(z)

ν1(z)
= d

(γ1 + γ2z)(z − a2) + a2(γ̃1z + γ̃2)(z − a−2)

(z − a2)(z − a−2)z
√
R(z)

+d

(
zγ3(z − a2) + a2γ̃3(z − a−2

)
)
√
R(z)

(z − a2)(z − a−2)z
√
R(z)

. (67)

On the other hand, we easily compute from (15)–(17) that

λ′
1(z)

λ1(z)
= λ′

1(z)λ2(z)

λ1(z)λ2(z)
= − z2R′(z)

( 1
2 (1 + a2)(α + 1/α) − 1

2

√
R(z)

)

4a2z(z − a2)(z − a−2)
√
R(z)

= − (z2 − 1)
(
(1 + a2)(α + 1/α) − √

R(z)
)

2z(z − a2)(z − a−2)
√
R(z)

(68)

where we used z2R′(z) = 4a2(z2 − 1) in the last step. Comparing (67) and (68) leads
to the following two equations:

(γ1 + γ2z)(z − a2) + a2(γ̃1z + γ̃2)(z − a−2) = −1

2
(z2 − 1)(1 + a2)(α + 1/α),

(69)

and

zγ3(z − a2) + a2γ̃3(z − a−2) = 1

2
(z2 − 1). (70)

From (70) we find

γ3 = γ̃3 = 1

2
, (71)

and from (69) we find

γ̃1 = γ2, γ̃2 = γ2 (72)

and

a2γ1 + γ2 = −1

2
(1 + a2)(α + 1/α). (73)

Thus far, we have derived the first two identities in (30).
The value of γ1 can be computed by comparing the asymptotic expansion for the

logarithmic derivative for μ1 from (66) and (62), and comparing the results. Indeed,
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from (62) we find

μ′
1(z)

μ1(z)
= − a

2z3/2

⎛

⎝
d−1∑

j=0

a(σ j (x, y))
d−1∑

k=0

1

a(σ k(x, y))

⎞

⎠

1/2

+ O(1/z2),

as z → ∞, and from (66) we find, using γ1 = γ̃1 and (16), that

μ′
1(z)

μ1(z)
= daγ1

z3/2
+ O(1/z2),

as z → ∞. Therefore

γ1 = −1

2

⎛

⎝ 1

d

d−1∑

j=0

a(σ j (x, y))
1

d

d−1∑

k=0

1

a(σ k(x, y))

⎞

⎠

1/2

, (74)

which is the third identity in (30).
Finally, by substituting (65) and (66) using (71), (72), (73) and (74) into 
′(z), and

using analytic continuation toR, we obtain (29). ��

5.7 Proof of Lemma 3.11

Proof of Lemma 3.11 The cycle condition (53) implies that (using (29))

(1 − τ)a2
∫ x2

x1

xγ1 + γ2

(x − a2)x
√
R(x)

dx − τ

∫ x2

x1

γ1 + xγ2
(x − a−2)x

√
R(x)

dx = 0. (75)

By a change of variable x �→ 1/x we find (using (16))

∫ x2

x1
a2

xγ1 + γ2

(x − a2)x
√
R(x)

dx = −
∫ x2

x1

γ1 + xγ2
(x − a−2)x

√
R(x)

dx,

and after substituting this into the first integral, (75) reduces to

∫ x2

x1

γ1 + xγ2
(x − a−2)x

√
R(x)

dx = 0,

after which the statement easily follows. ��
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A Example: torsion point of order six

Let us now assume

a2 = α

1 + α + α2 . (76)

Then, as discussed in Sect. 3.1, (a−2, a−2) is a torsion point of order six. Here we
will compute the spectral curves for μ and ν, and derive a degree eight equation for
the boundary of the rough disordered region. We will also show, numerically, how
the steepest descent/ascent path can be chosen when (τ, ξ) are in the center of the
diamond.

A.1 The flow on thematrices

The linear flow on the elliptic curve is given already in (8). The flow on the matrices
and their decomposition can then be traced giving:

P(0)
− (z) = α

(
1 aα2

a
zα2 1

)
�→ P(1)

− (z) =
(

1 aα3

a
zα3 1

)
�→ P(2)

− (z) = 1

α

(
1 aα2

a
zα2 1

)

�→ P(3)
− (z) = 1

α

(
1 a
a
z 1

)
�→ P(4)

− (z) =
(
1 a

α
aα
z 1

)
�→ P(5)

− (z) = α

(
1 a
a
z 1

)
(77)

and

P(0)
+ (z) =

(
1 az
a
α2

1
α2

)
�→ P(1)

+ (z) =
(
1 aαz
a
α

1

)
�→ P(2)

+ (z) =
(
1 aα2z
a α2

)

�→ P(3)
+ (z) =

(
1 aα2z
a α2

)
�→ P(4)

+ (z) =
(
1 aαz
a
α

1

)
�→ P(5)

+ (z) =
(
1 az
a
α2

1
α2

)
. (78)

From here we can compute P(d)
± as in (11) and (10) and the spectral curves (19) and

(18).
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The discriminant R as in (16) can be written as

R(z) = (a−2 − 1)2(a2 + 1)2 + 4a2(z + 1/z − a2 − a−2).

Straightforward computations give det P(d)
+ (z) = (a2z − 1)6 and

Tr P(d)
+ (z) = 2 + (1 − 6a4 + 3a8)z

a6
+ 2(2 − 3a4)z2 + 2a6z3.

The discriminant then becomes

Tr P(d)
+ (z) − 4 det P(d)

+ (z)

= a−12z2(1 − 3a4 + 2a6z)2(1 − 6a4 − 3a8 + 4a6(z + 1/z)),

so that

ν(z) = 1 + (1 − 6a4 + 3a8)z

2a6
+ (2 − 3a4)z2 + a6z3

± z(1 − 3a4 + 2a6z)

2a4
(R(z))1/2.

Similarly, det P(d)
− (z) = (z − a2)6/z6 and

Tr P(d)
− (z) = 2 + (2a6z−3 + 4z−2 − 6a4z−2 + ((1 − 6a4 + 3a8)z−1)/a6).

The discriminant then becomes

Tr P(d)
− (z) − 4 det P(d)

− (z)

= a−12z−2(1 − 3a4 + 2a6z−1)2(1 − 6a4 − 3a8 + 4a6(z + 1/z)),

so that

μ(z) = 1 + (1 − 6a4 + 3a8)z−1

2a6
+ (2 − 3a4)z−2 + a6z3

± z−1(1 − 3a4 + 2a6z−1)

2a4
(R(z))1/2.

Note that μ(z) = ν(1/z).
Now that we have μ and ν we can compute the saddle point equation 
′(z)dz = 0.

We start with computing the logarithmic derivatives of μ and ν:

μ′(z)
μ(z)

= −2 + (−1/a2 + 3a2)z + 3a2(R(z))1/2

(z − a2)z(R(z))1/2
(79)
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and

ν′(z)
ν(z)

= (−1/a2 + 3a2) − 2z + 3a2z(R(z))1/2

(a2z − 1)z(R(z))1/2
. (80)

From the above expressions we can read off the values for γ j :

γ1 = − 1

6a4
+ 1

2
, γ2 = − 1

3a2
, γ3 = 1

2
. (81)

This, together with (31), allows us to compute the four saddle points as a function of
the parameters a, τ and ξ . The expressions are rather long, and we omit them here.
Instead, we will provide some numerical results in the next subsection.

A.2 Contours of steepest descent/ascent

We will plot the contours of steepest descent/ascent for Re
, with 
 as in (27), for
the special values

a2 = 1

3
− 1

100
, τ = 1

2
, ξ = 0.

This is themidpoint of theAztecdiamond,wherewe indeed expect a smoothdisordered
region to appear. Indeed, with this choice of parameters, we find four saddle points on
the cycle C1. Two of them are on the first sheet:

s1 = −1.97156, s2 = −0.833032,

and the other two on the second sheet:

s3 = −0.507212, s4 = −1.20043.

The branch points are at

x1 = −2.01885, x2 = −0.495331.

Observe that s1 is close to x1 and s3 is close to x2, which we found to be typical
for any choice of parameters. This has the unfortunate consequence that in numerical
illustrations the saddle points s1 and s3 are hard to distinguish from the branch points
x1 and x2, respectively.

The contours of steepest descent/ascent leaving from the saddle points locally
coincide with the level lines of Im
(z). The problem is that 
(z) has logarithmic
terms making Im
(z) multi-valued and plotting the level sets Im
(z) = Im
(s j )
does not give the correct result. For this reason, we compute the vectorfield given by
(Re
′,− Im
′) and compute the streamlines using the function Streamplot in
Mathematica. The results are given in Fig. 17.

123



Biased 2 × 2 periodic Aztec diamond... 309

Fig. 17 a Level lines for Im
. The paths of steepest descent for Re
 from s1 connect to infinity on the
first sheet. The paths of steepest ascent from s2 end up in a2. b Level lines for Im
. The paths of steepest
ascent from s2 end up in a−2. To see the paths of steepest descent from s3 we need to zoom in. c Zooming
in on the segment (x2, 0) shows that the path of steepest descent for Re
 starting from the saddle point s3
end in the origin

From Fig. 17 one can see that the paths of ascent/descent are indeed as illustrated
schematically in Fig. 16g. On the first sheet, the paths of steepest descent leaving from
s1 end up at ∞ and the paths of steepest ascent leaving from s2 end up at a2. On the
second sheet, the paths of steepest descent leaving from s3 end up at 0 and the paths of
steepest ascent leaving from s4 end up at a−2. The statement for s3 is not immediately
obvious from Fig. 17b and this is why we zoom in around s3 as in Fig. 17c.

A.3 Boundary of the rough disordered region

The last result for the case of order six thatwewill present here, is an explicit expression
for the boundary of the rough disordered region. We follow the procedure indicated in
Sect. 3.4 with a and α related by (76) and values for γ j , j = 1, 2, 3 as in (81). We start
with (31), square both sides and remove the additional factors (z − a2)(z − a−2)/z.
Then we obtain an equation that is polynomial in z and of order four. The values of
(τ, ξ) where the discriminant vanishes lead to a double saddle point and this will be
the boundary of the liquid region.
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The discriminant has degree twelve in τ and ξ , and for general parameters a (and
α related by (76)) the expression is rather long. In order to obtain a shorter expression
it will be convenient to perform the following change of variables

(τ, ξ) = ((q + v + 1)/2, q/2).

These coordinates change the parallellogram in the left panel into the tilted square in
the right panel of Fig. 12.

The discriminant has two factors. The first factor, of degree four in v and q, reads

(−1 + 9a4 + 9q2 − 9a4q2 − 9a4v2 + 9a8v2)2.

The zero set of this factor is a hyperbola that lies outside the Aztec diamond, and
hence this factor does not contribute to the boundary for the rough region. The second
factor, of degree eight in v and q, is the factor that defines the boundary for the rough
disordered region:

0 = 16 − 336a4 + 1440a8 + 7776a12 − 34992a16 − 104976a20 − 288q2

+6336a4q2 − 45504a8q2 + 124416a12q2

−209952a16q2 + 419904a20q2 + 1296q4 − 32400a4q4

+242352a8q4 − 587088a12q4 + 839808a16q4

−629856a20q4 + 23328a4q6 − 303264a8q6 + 769824a12q6

−909792a16q6 + 419904a20q6 + 104976a8q8

−314928a12q8 + 314928a16q8 − 104976a20q8 − 72v2

+1152a4v2 − 1224a8v2 − 43200a12v2 + 75816a16v2

+419904a20v2 − 157464a24v2 + 1296q2v2

−20088a4q2v2 + 119880a8q2v2 − 527472a12q2v2

+1283040a16q2v2 − 997272a20q2v2 + 472392a24q2v2

−5832q4v2 + 81648a4q4v2 − 367416a8q4v2

+863136a12q4v2 − 833976a16q4v2 + 734832a20q4v2

−472392a24q4v2 + 52488a4q6v2 − 472392a8q6v2

+944784a12q6v2 − 524880a16q6v2 − 157464a20q6v2

+157464a24q6v2 + 81v4 − 1215a4v4 − 3483a8v4

+79461a12v4 − 2349a16v4 − 750141a20v4

+570807a24v4 − 59049a28v4 − 1458q2v4

+21870a4q2v4 − 158922a8q2v4 + 867510a12q2v4 − 1963926a16q2v4

+1418634a20q2v4 − 301806a24q2v4

+118098a28q2v4 + 6561q4v4 − 98415a4q4v4 + 452709a8q4v4

−387099a12q4v4 − 610173a16q4v4

+964467a20q4v4 − 269001a24q4v4 − 59049a28q4v4 + 5832a8v6
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−52488a12v6 − 128304a16v6

+734832a20v6 − 717336a24v6 + 157464a28v6

+52488a8q2v6 − 472392a12q2v6 + 944784a16q2v6

−524880a20q2v6 − 157464a24q2v6 + 157464a28q2v6

+104976a16v8 − 314928a20v8 + 314928a24v8 − 104976a28v8.

For α = 1 (and thus a2 = 1/3) this can be reduced to

0 = (3q2 + v2)3(−3 + 12q2 + 4v2).

The first factor is only zero for (q, v) = (0, 0), and what is left is the boundary for the
smooth disordered region. The second factor is an ellipse.

Finally, for α ↓ 0 (and hence a ↓ 0 simultaneously) the curve reduces to

0 = (1 − 9q2)2(4 − 9v2)2,

which gives a rectangular shape. In this case, there is no rough disordered region, but
only a frozen region and a smooth disordered region.

In Fig. 18 we have plotted the boundary of the rough disordered region for several
particular values of a.

B Computation of torsion points

In Sect. 3.1 we gave a few examples of particular choices for the parameters α and
a such that (1/a2, 1/a2) is a torsion point. Here we will indicate how one can find
such examples by recalling the notion of division polynomials. This is a standard
construction for finding the torsion subgroups of the elliptic curve. We will base our
discussion on [28, p. 105].

First, let us introduce new variables

Y = y
2 (a + 1/a)(α + 1/α), X = x,

and rewrite (5) as

Y 2 = X3 +
(
(a + 1/a)(α + 1/α)2/2 − a2 − 1/a2

)
X2 + X .
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Fig. 18 The boundary of the rough disordered regions in the (v, q) plane for the values a = 0, a = 0.4,
a = .55 and a = 1

3

√
3. For a = 0, the rough disordered region has disappeared. For a = 1

3

√
3 the smooth

disordered region has disappeared

In thenewvariables,we ask forwhat choices ofα andawehave that (1/a2, (a+1/a)(α+1/α)

2a2
)

is a torsion point. With the same notation as in [28, p. 105] we define

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2 = −a2 − 1/a2 + 1
4 (a + 1/a)2(α + 1/α)2,

a4 = 1,

b2 = 4a2,

b4 = 2,

b8 = −1,
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and the remaining parameters a1 = a3 = a6 = b6 = 0. Then we define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ1 = 1,

ψ2 = 2Y ,

ψ3 = 3X4 + b2X3 + 3b4X2 + b8,

ψ4 = ψ2
(
2X6 + b2X5 + 5b4X4 + 10b8X2 + b2b8X + b4b8

)
,

and ψk with k ≥ 5 recursively using:

{
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1, m ≥ 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−1ψmψ2

m+1, m ≥ 3.

The torsion subgroup of order m consists of all zeros of ψm , which are called division
polynomials.

Note that we are not looking for the entire subgroup, but for situations where

(
1/a2,

(a + 1/a)(α + 1/α)

2a2

)

is a torsion point. After substituting this point into ψm we find a rational function in
a and α. This rational function will have several zeros, but we are only interested in
the zeros that satisfy 0 < α < 1 and 0 < a ≤ 1. For instance, for m = 3 we find the
following equation

− (1 + a2)2(−1 − α + a2α − α2)(1 − α + a2α + α2)

a8α2 = 0.

This equation has no solutions such that 0 < α < 1 and 0 < a ≤ 1, and thus a third
order torsion point cannot occur.

With the help of a computer code, we found the following equations that give proper
solutions such that we have a torsion point of order m = 4, . . . , 8:

m = 4 : a = 1,

m = 5 : 0 = −a4 + α − a2α + α2 − 2a2α2 − 2a4α2 + α3 + a2α3 − 3a4α3

+ a6α3 + α42a2α4 − 2a4α4 + α5 − a2α5 − a4α,

m = 6 : 0 = (1 + α + α2)a2 − α

m = 7 : 0 = a4 + a4α − a6α + a8α − a10α + 5a4α2 + 2a6α2 − a8α2 − α3

+ 3a2α3 − a4α3 + 5a6α3 − 4a8α3 − 2a10α3 − α4

+ 4a2α4 + 5a4α4 + 12a6α4 − 5a8α4 − α5 − a2α5 + 12a4α5

− 7a8α5 − 3a10α5 − α6 + 2a2α6 + 17a4α6 + 7a8α6

− 6a10α6 + a12α6 − α7 − a2α7 + 12a4α7 − 7a8α7 − 3a10α7 − α8 + 4a2α8
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+ 5a4α8 + 12a6α8 − 5a8α8 − α9 + 3a2α9 − a4α9 + 5a6α9 − 4a8α9 − 2a10α9

+ 5a4α10 + 2a6α10 − a8α10 + a4α11 − a6α11 + a8α11 − a10α11 + a4α12,

m = 8 : 0 = a − α + a2α + aα2.

Each term on the right-hand side is a factor of ψm .
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