Probability Theory and Related Fields (2023) 185:513-552
https://doi.org/10.1007/s00440-022-01162-9

®

Check for
updates

Explicit formulas for the inverses of Toeplitz matrices, with
applications

Akihiko Inoue’

Received: 9 August 2021 / Revised: 5 June 2022 / Accepted: 13 August 2022 /
Published online: 2 September 2022
© The Author(s) 2022

Abstract

We derive novel explicit formulas for the inverses of truncated block Toeplitz matrices
that correspond to a multivariate minimal stationary process. The main ingredients
of the formulas are the Fourier coefficients of the phase function attached to the
spectral density of the process. The derivation of the formulas is based on a recently
developed finite prediction theory applied to the dual process of the stationary process.
We illustrate the usefulness of the formulas by two applications. The first one is a strong
convergence result for solutions of general block Toeplitz systems for a multivariate
short-memory process. The second application is closed-form formulas for the inverses
of truncated block Toeplitz matrices corresponding to a multivariate ARMA process.
The significance of the latter is that they provide us with a linear-time algorithm to
compute the solutions of corresponding block Toeplitz systems.

Keywords Toeplitz matrix - Finite prediction - Dual process - Toeplitz system -
Linear-time algorithm

Mathematics Subject Classification 60G10 - 60G25 - 15B05 - 65F05

1 Introduction

Let T := {z € C : |z] = 1} be the unit circle in C. We write o for the normalized
Lebesgue measure d6/(2mw) on ([—7, ), B([—m, 7)), where B([—, 7)) is the Borel
o-algebraon [—m, 7); thus we have o ([—m, 7)) = 1.For p € [1, 00), we write L ,(T)
for the Lebesgue space of measurable functions f : T — C such that || f]|, < oo,
where || f 1|, := {ffn | £ (€)|Po(d)}/P. Let L’Z,‘X”(’]T) be the space of C"*"-valued
functions on T whose entries belong to L, (T).
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514 A.Inoue

Letd € N. For n € N, we consider the block Toeplitz matrix

vy y(=1) ---y(=n+1

y(D) y@©O) - y(=n+2)
Ty (w) = : o . e camxdn,
ym=1Dym—=2)---  y(@0)
where
T ik, 0,40 dxd
y (k) = e we')— e C*¢, kelZ, (1.1)
. 2w
and the symbol w satisfies the following two conditions:
w e L”liXd(’]T) and w(e'?) is a positive Hermitian matrix o-a.e., (1.2)
w™l e L94(T). (1.3)

Let {X; : k € Z} be a C?-valued, centered, weakly stationary process that has spectral
density w, hence autocovariance function y. Then the conditions (1.2) and (1.3) imply
that { X} is minimal (see Sect. 10 of [21, Chapter II]).

In this paper, we show novel explicit formulas for 7, (w)~! (Theorem 2.1), which
are especially useful for large n (see [2]). The formulas are new even for d = 1.
The main ingredients of the formulas are the Fourier coefficients of h*h_ = p! h;,

Cdxd

where h and hy are -valued outer functions on T such that

w(e'”) = h(E @) = hy(@)hy(e”).  o-ae. 14

(see [10]; see also Sect. 2). We note that the unitary matrix valued function h*h, I =
Rl h;‘ on T attached to w is called the phase function of w (see page 428 in [20]).

Let { X%} be as above, and let {X,’( : k € Z} be the dual process of {Xj} (see [19];
see also Sect. 2 below). In the proof of the above explicit formulas for 7}, (w)~1L, the
dual process {X} } plays an important role. In fact, the key to the proof of the explicit
formulas for 7),(w)~! is the following equality (Theorem 3.1):

s,t ,
(Tn(w)_l> = (X!, PumX)), s.tef{l,....n). (1.5)

Here, (-, -) stands for the Gram matrix (see Sect. 3) and Pp; ,1 X, denotes the best
linear predictor of X; based on the observations X, ..., X, (see Sect. 2 for the
precise definition). Moreover, forn € N, A € Cdnxdn gnd 5.t € {1,...,n}, we write
AS! e € for the (s,1) block of A; thus A = (A%")| < ,<n. The equality (1.5)
enables us to apply the P ,)-related methods developedin [11, 12, 14-16] and others
to derive the explicit formulas for 7}, (w) .
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Explicit formulas for the inverses of Toeplitz matrices ... 515

We illustrate the usefulness of the explicit formulas for 7, (w)~! by two appli-
cations. The first one is a strong convergence result for solutions of block Toeplitz
systems. For this application, we assume (1.2) as well as the following condition:

o
>~ lly®)| < oo and mindetw(z) > 0. (1.6)
oo zeT
Here, for a € C?*4, ||a|| denotes the operator norm of a. The condition (1.6) implies
that { Xy } with spectral density w is a short-memory process. We note that (1.3) follows

from (1.2) and (1.6) (see Sect. 4). Under (1.2) and (1.6), for n € N and a C?*?-valued
sequence {yx )2, such that Y72 | ||yl < oo, let

Zy= g2y ) € C with 2, e C kel ), (1)

be the solution to the block Toeplitz system

Thy(w)Zy = Yy, (1.8)
where
Yo =),y eCimd, (1.9)
Also, let
Zoo =21 .29....)" with zx € C¥*? k€N, (1.10)

be the solution to the corresponding infinite block Toeplitz system

Too(W)Zoo = Yoo, (1.11)
where
Y@ y(=Dy(=2)---
vy y@©) y(=D---
Toow) := | y(2) y(1) y@©) --- (1.12)
and
Yoo :=(y{ ¥y ... . (1.13)

Then, our result (Theorem 4.1) reads as follows:

n
> lznk =zl = 0. (1.14)

lim
n—oo
k=1
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516 A.Inoue

We explain the background of the result (1.14). As above, let {X; : k € Z}bea ce-
valued, centered, weakly stationary process that has spectral density w. Forn € N, the
finite and infinite predictor coefficients ¢, € Cdxd | ¢ {1,...,n},and ¢, k € N,
of {Xy} are defined by

n 00
P[l,n]Xn+l = Z¢n,kxn+l—k and P(—oo,n]Xn+l = Z¢kX11+l—k’
k=1 k=1

respectively; see Sect. 3 for the precise definitions of Py, and P(_o ). We note
that Z,fil l¢r]l < oo holds under (1.2) and (1.6) (see Sect. 4 below and (2.16) in
[16]). Baxter’s inequality in [1, 5, 9] states that, under (1.2) and (1.6), there exists
K € (0, 00) such that

D gk —ll <K D llgell. neN. (1.15)
k=1

k=n+1

In particular, we have

n
Tim >l — gell = 0. (1.16)
k=1
If we put w(e'?) = w(e™'?), then, (@n.1, - - - Pu.n) is the solution to the block Toeplitz

system

T (@) (Pn,1s-- s Pnn)™ = (¥ (D), ...y ()7,

called the Yule—Walker equation, while (¢1, ¢, .. .) is the solution to the correspond-
ing infinite block Toeplitz system

Too (@) (91, ¢2,...)" = (y(1), y(2),...)"

Clearly, w satisfies (1.2) and (1.6) since so does w. Therefore, our result (1.14) can
be viewed as an extension to (1.16). It should be noted, however, that we prove (1.14)
directly, without proving an analogue of Baxter’s inequality (1.15).

The convergence result (1.16) has various applications in time series analysis, such
as the autoregressive sieve bootstrap (see, e.g., [16] and the references therein), whille
Toeplitz systems of the form (1.8) appear in various fields, such as filtering of sig-
nals. Therefore the extension (1.14), as well as the other results explained below, may
potentially be useful in such fields. We note that Baxter’s inequality (1.15), hence
(1.16), is also proved for univariate and multivariate FARIMA (fractional autoregres-
sive integrated moving-average) processes, which are long-memory processes, in [14]
and [16], respectively. The FARIMA processes have singular spectral densities w
but our explicit formulas for T, (w)~! above also cover them since we only assume

@ Springer



Explicit formulas for the inverses of Toeplitz matrices ... 517

minimality in the formulas. Applications of the explicit formulas to univariate and
multivariate FARIMA processes will be discussed elsewhere. However, the problem
of proving results of the type (1.14) for FARIMA processes remains unsolved so far.

The second application of the explicit formulas for 7;,(w) ! is closed-form formu-
las for 7;, (w) ! with rational w that corresponds to a univariate (d = 1) or multivariate
(d = 2) ARMA (autoregressive moving-average) process (Theorem 5.2). More pre-
cisely, we assume that w is of the form

we'?) = e neE?*, 6 el[-n, n), (1.17)
where h : T — C4*? satisfies the following condition:

the entries of 4 (z) are rational functions in z that have (L18)
no poles in D, and det h(z) has no zeros in D. .

Here D := {z € C : |z] < 1} is the closed unit disk in C. The closed-form formulas for
T, (w)~" consist of several building block matrices that are of fixed sizes independent
of n. The significance of the formulas for 7}, (w)~Lis that they provide us with a linear-
time, or O (n), algorithm to compute the solution Z € C%*< to the block Toeplitz
system

Ty(w)Z =Y (1.19)

for Y € C%*4 (see Sect. 6). The famous Durbin—Levinson algorithm solves the Eq.
(1.19) for more general w in O(n?) time. Algorithms for Toeplitz linear systems that
run faster than O (n?) are called superfast. While our algorithm is restricted to the
class of w corresponding to ARMA processes, the class is important in applications,
and the linear-time algorithm is ideally superfast in the sense that there is no algorithm
faster than O (n).

Toeplitz matrices appear in a variety of fields, including operator theory, orthog-
onal polynomials on the unit circle, time series analysis, engineering, and physics.
Therefore, there is a vast amount of literature on Toeplitz matrices. Here, we refer
to [2, 3, 6, 8, 22, 23] and [24] as textbook treatments. For example, in [6, III], the
Gohberg-Semencul formulas in [7], which express the inverse of a Toeplitz matrix as
a difference of products of lower and upper triangular Toeplitz matrices, are explained.

After this work was completed, the author learned of [25] by Subba Rao and Yang,
where they also provide an explicit series expansion for 7, (w)~! that corresponds
to a univariate stationary process satisfying some conditions (see [25], Sect. 3.2).
The main aim of [25] is to reconcile the Gaussian and Whittle likelihood, and the
series expansion in [25] is tailored to this purpose, using the complete DFT (discrete
Fourier transform) introduced in [25]. It should be noticed that 7}, (w) ™! appears in
the Gaussian likelihood, while the Whittle likelihood is based on the ordinary DFT.
Since most results of the present paper directly concern T}, (w) ™!, some of them may
also be useful for studies related to the Gaussian likelihood.

@ Springer



518 A.Inoue

This paper is organized as follows. We state the explicit formulas for 7, (w)~! in
Sect. 2. In Sect. 3, we first prove (1.5) and then use it to prove the explicit formulas for
T, (w)~ L. In Sect. 4, we prove (1.14) for w satisfying (1.2) and (1.6), using the explicit
formulas for 7, (w)~!. In Sect. 5, we prove the closed-form formulas for 7;, (w)~! with
w satisfying (1.18), using the explicit formulas for 7,,(w)~'. In Sect. 6, we explain
how the results in Sect. 5 give a linear-time algorithm to compute the solution to (1.19).
Finally, the Appendix contains the omitted proofs of two lemmas.

2 Explicit formulas

Let C™*" be the set of all complex m x n matrices; we write C4 for C4*!. Let I, be
the n x n unit matrix. Fora € C"*", aT denotes the transpose of a, and a and a* the
complex and Hermitian conjugates of a, respectively; thus, in particular, a* := @' .

For a € C4*4, we write ||a|| for the operator norm of a:

lal == sup |aul.
ueCd |ul<1
Here |u| := (Zf=l |u'1%)1/2 denotes the Euclidean norm of u = (u!, ..., u?)T e C4.

For p € [1,00) and K C Z, Zf,x‘j(l( ) denotes the space of C*d _yalued sequences
{ar}kek such that 37, llax||? < oo. We write €45 for £4*4(N U {0}) and ¢, for
et = XL U o).

Recall o from Sect. 1. The Hardy class H>(T) on T is the closed subspace of L, (T)
consisting of f € Ly(T) such that [" e f(e!)o(df) = 0 form = 1,2,....
Let H)"*"(T) be the space of C"*"-valued functions on T whose entries belong to
Hy(T). Let D := {z € C : |z|]<1} be the open unit disk in C. We write H>(D)
for the Hardy class on D, consisting of holomorphic functions f on D such that
SUP,-[0, 1 ffﬂ | f(ret?) >0 (df) < oo. As usual, we identify each function f in H> (D)
with its boundary function f(em) = lim, 4 f(reie), o-a.e., in H(T). A function &
in Hﬁl xd (T) is called outer if det h is a C-valued outer function, that is, det & satisfies
log | deth(0)| = ™ log|det h(e'?)|o (d®) (see Definition 3.1 in [18]).

We assume that w satisfies (1.2) and (1.3). Then logdet w is in L{(T) (see Sect. 3
in [16]). Therefore w has the decompositions (1.4) for two outer functions 4 and hy

belonging to sz *d(T), and h and hy are unique up to constant unitary factors (see
Chapter II in [21] and Theorem 11 in [10]; see also Sect. 3 in [16]). We may take
hs = h for the case d = 1 but there is no such simple relation between . and Ay for

d > 2. We define the outer function / in Hﬁi xd () by

h(z) = (h:@)}*. 2.1)

Allof b1, h;l and 7! also belong to HSX‘J(T) since we have assumed (1.3).
We define four C?*¢-valued sequences {ct}, {ax}, {cx} and {ay} by
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Explicit formulas for the inverses of Toeplitz matrices ... 519

h(z) = izkcic, zeD, (2.2)
—h(x)~! Zz a. zeD, 2.3)
h(z) = szEk, zeD, (2.4)
and
—h() ' = izkdk, zeD, 2.5)

respectively. By (1.3), all of {ct}, {ax}, (&} and {d} belong to €5
We define a C?*“-valued sequence { B }° fe_ oo s the (minus of the) Fourier coeffi-
cients of the phase function h*h;1 =h! h;:

T 4 . do
,Bk — _/ e_lkeh(elg)*hu(ele)_lz—
r m

T ke o1, o ioye D0
—/ e " h(Ee") T hy(e') —, keZ. (2.6)
. 2w

Forn e Nyu € {1,...,n}and k € N, we can define the sequences {bﬁ,u,z}cﬁo € ¢dxd

by the recursion

1
bn,u’[ = ﬁll"‘fv

- 2k—1 2k+1 - 2k 27
bn u,l — Z bn u man+l+m+l’ bn ul — Z bn,u,mﬁn+1+m+€
m=0 m=0
(see Sect. 3 below) Similarly, forn € N,u € {1, ...,n}and k € N, we can define the

sequences {bn " iso €45 +d by the recursion

71 *
bnu@ ﬁn+1 u+°

00
b b2k+1 b2k * (28)
nu@ = numﬂ’1+1+m+e’ nau,l — numan+l+m+Z‘
m=0 m=0

Recall from Sect. 1 that (7,,(w) )% denotes the (s, ) block of 7, (w)~!. Since
T, (w), hence Tn(w)’l, is self-adjoint, we have

(T,(w)™H% = (T,(w)"H")*, s,te{l,..., n). (2.9)
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520 A.Inoue

We use the following notation:
sVt :=max(s,t), §At:=min(s,?).

We are ready to state the explicit formulas for (7, (w))~!.

Theorem 2.1 We assume (1.2) and (1.3). Then the following two assertions hold.

(i) Forn e Nands,t € {1, ..., n}, we have

SAL

(Tn(w)_l)“ = Z&;‘_z&,%
*
+ Z Z Zb gan+1 s+¢+ Z bn u eas+l} Gr—y. (2.10)
{=0

u=1 k=1
(ii) Forn e Nand s, t € {1, ..., n}, we have

-1 s:t . *

(T ™) " = Y afae
l=sVt
%
+ZZ{Zb§ku;ag+e+mean+l M} . (2.11)
u=t k=1 £=0

The proof of Theorem 2.1 will be given in Sect. 3.

Corollary 2.1 We assume (1.2) and (1.3). Then the following two assertions hold.

(i) Forn e Nands,t € {1, ..., n}, we have

SAt

()" = X
S o0 o0
+> ar, Z !Z b angiie+ Y b,%’fu,gm} . (212)

u=1 k=1 U£=0 =0
(ii) Forn e Nands,t € {1, ..., n}, we have
—1 5.t . *
(T )" = 3 aar
l=sVt
n o0 o0
+Y @y {Zbﬁ’; Lyt +an 1 0n i1 M} (2.13)
u=s k=1 Le=0 =0

Proof Thanks to (2.9), we obtain (2.12) and (2.13) from (2.10) and (2.11), respectively.
O
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Explicit formulas for the inverses of Toeplitz matrices ... 521

Remark 2.1 Recall T (w) from (1.12). Forn € NU{0}, wehave y (n) = > 2, CkCryk
and y (—n) = Y22 En+kCF (see (2.13) in [16]), hence Too(w) = Coo(Coo)*, where

& & & -
& & -
Cxo i= & -

0

On the other hand, it follows from ﬁ(z)ﬁ(z)_1 = [; that ZZ:O Crlp—x = —8u0ly for

n € N U {0}, hence C’OOAOO = — I, Where
dodi ay --- 100---
~ ao ay - - 010---
Ay = ay - | le=1]001--
0 C
Combining, we have Too(w)™ ! = (Aoo)*ﬁoo. Thus, we find that the first term

Sl ar ,a—g in (2.10) or (2.12) coincides with the (s, #) block of Too (w) ™.

For n € N, we define

ap dy ay -+ dp—1

dp ay -+ dp—2
A, = € Cdnxdn (2.14)
ai
0 ao
and
ap 0
a; ap
Ap=| & a € Cdnxdn, (2.15)

dp—1 ap-2 * -+ 4y ap

The next lemma will turn out to be useful in Sect. 6.

Lemma 2.1 Forn € Nands,t € {1, ..., n}, we have the following two equalities:
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522 A.Inoue

SNt

At L
(Asdn) " =D @ e,
=1

n
(A;';An)s’t = Z a;_ag—;.

{=sVt

The proof of Lemma 2.1 is straightforward and will be omitted.

3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We assume (1.2) and (1.3). Let {X;} = {Xi :
k € Z} be a C?-valued, centered, weakly stationary process, defined on a probability
space (£2, F, P), that has spectral density w, hence autocovariance function y. Thus
we have E[X X511 =y (k) = [7_e ™ w(e?)(d0/(2n)) fork € Z.

Write X; = (X 1 .., X,f)Tjrand let V be the complex Hilbert space spanned
by all the entries {X,f ckeZ, j=1,...,d}in LZ(.Q,]-', P), which has inner
product (x, y)y := E[xy] and norm | x|y := (x,x)%,/z. For J C 7Z such as {n},
(—oo,n]:={n,n—1,...},[n,00) :={n,n+1,...},and [m, n] := {m, ..., n} with
m < n, we define the closed subspace VJX of V by

V¥ =%pIX] j=1,....d, keJ}
Let P; and PJJ- be the orthogonal projection operators of V onto VJX and (VJX )+,
respectively, where (VJX )® denotes the orthogonal complement of VJX inV.

By Theorem 3.1 in [11] for d = 1 and Corollary 3.6 in [15] for general d > 1, the
conditions (1.2) and (1.3) imply the following intersection of past and future property:

X X X
V(—oo,n] N V[l,oo) = V[l,n]’ neN. 3.1

Let V¥ be the space of C4-valued random variables on (2, F, P) whose entries

belong to V. The norm ||x|y« of x = @l DT e vdis given by |[x[lys =
(Z?:I ||xi||%,)1/2. For J ¢ Zand x = (x!,...,x)T e V4, we write P;x for
(Pyxt, ..., Pyx®T. We define Pjix in a similar way. For x = (L., xDT and

y=0hL. .., yHTin Ve,
(x,y) == E[xy*] = (&5, y)v) 1<k 0<a € T4

stands for the Gram matrix of x and y.
Let

s
Xk =f e 0o, ke,
—7T
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Explicit formulas for the inverses of Toeplitz matrices ... 523

be the spectral representation of { X }, where ) is a C¢-valued random spectral measure.
We define a d-variate stationary process {&; : k € Z}, called the forward innovation
process of { Xy}, by

jT . .
&k :=/ e ey no), keZ.
-7

Then, {&;} satisfies (&, &n) = 8pm 4 and V()foo’n] =V for n € 7Z, hence

&

(—o0,n]
X 1

(V(_oo’n]) = V[il+1,oo)’ nex.

Recall the outer function A in Hg xd (T) from (1.4). We define the backward innovation
process {&x : k € Z} of {Xy} by

.7.[ . .
£ :=f M ny ey 'n(do), ke Z.

-7

V?:

oo for n € Z, hence

Then, {&;} satisfies (&,,, &) = 8um s and V[X

—n,00) =
(V[}En,OO))J_ = V[i+l,00)’ nel
(see Sect. 2 in [16]). Moreover, by Lemma 4.1 in [16], we have
(0, 8m) = —Beam» (Em.e0) = —PBippy, L.mel. (3.2)

By (3.2), for {s¢} € ¢57% and n € N,

00 o [ o0
P[foo) <Z SE8"+1+Z) == Z (Z smﬁn+1+€+m> &, 3.3
m=0

=0 =0 =
o0 o0 o0
P(l,oo’n] (Z SZEK) = - Z (Z Smlg:+1+£+m> Ent+1+L- 3.4)
=0 =0 \m=0
Therefore,
00 S 00 o
: Z Smﬁn+l+£+m} ) { Z Smﬂ:+1+z+m } € @gid-
m=0 (=0 Um=0 £=0
See Lemma 4.2 in [16]. In particular, forn € N, u € {1,...,n} and k € N, we can

define the sequences {bﬁ,u’ Jolo € ng_d and {I;ﬁ,u! JSo € E‘Zlid by the recursions
(2.7) and (2.8), respectively.
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524 A.Inoue

By (1.2) and (1.3), {X}} has the dual process {X} : k € Z}, which is a C9-valued,
centered, weakly stationary process characterized by the biorthogonality relation

(XS9X;>=8SlIda SvtEZ

(see [19]). Recall {a;} € €579 and {ac} € €57 from (2.3) and (2.5), respectively. The
dual process { X '} admits the following two MA representations (see Sect. 5 in [16]):

o
X,=-Y aj e nel, (3.5)
o0
X,=- Y ay & nel. (3.6)
{=—n

The next theorem is the key to the proof of Theorem 2.1.

Theorem 3.1 Assume (1.2) and (1.3). Then, forn € Nand s, t € {1, ..., n}, we have
(L.5).

Proof Fixn € N.Fors € {1, ..., n}, we canwrite P ,j X, = Y ;_, gs,x Xk for some
gsx € C¥ ke (l,...,n}).Fors,t €{l,...,n}, wehave
Ssela = (X}, Xi) = (X}, PumX:) = (Pim X}, <qu Xt xt>

n n
=Y sk (X, X)) =Y _qexyk—1),
k=1 k=1

or QnTy(w) = Iz, where Qy = (¢sk)1=sk=n € C9"*9" Therefore, we have
0, = T,(w)~!. However,

(X5, PumX)) = (PumXe X)) —<qu Xk, X > Z%k X, X;) = qs.;-
k=1
Thus, the theorem follows. O

Lemma 3.1 Assume (1.2) and (1.3). Then, forn € Nand s,t € {1,...,n}, the fol-
lowing two equalities hold:

(X5, Pl X7) Z a;_.ag— f+Z P 1€u)aur (3.7)
l=sVt
SNt

(X!, PpmX)) Za ar g—l—z (X}, Pt i) —u- (3.8)
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Proof First, we prove (3.7). Since V1 n C V , we have

(X5, PumX;) = (X5, Pl P—oon X))
= (X;, P(foo,n]X” - (X;, P[Jf,n]P(foo,n]X”-

On the other hand, from (3.5), we have P_o ,jX, = — > »_, @ _,&n, hence
o0 n n
(X, P—oom X;) = <Z a;_ee, Za,‘;,_,em> =Y aj_ai.
l=s m=t l=sVt

and (X, P[fn]P(_oo,n]XD is equal to

n n
<X P <Z a:_tau)> = — Z(Xg, Py y8u)u—r.

u=t u=t

Combining, we obtain (3.7).
Next, we prove (3.8). Since V[)f’n] cvX

(T.oo)» We have

(X5, PumX;) = (X5, P Ploo) X))
= (X}, Pl1.o0)X]) — (X} P ) Plioo) X))

On the other hand, from (3.6), we have P[j oo)X| = — > " _, a_,,é—m, hence

SNt
X, B X <z i YA me_m>=za:_ga,_e,
=1

{=—00

and (X, P[Jl-’n]P[lgoo)X;) is equal to

t t
_<x;, P (Z a,*_ug_u)> - _ Z(x/ Pt pB-i)s—u.
u=1

u=1
Combining, we obtain (3.8). O
Forn e Nandu € {1, ..., n}, we define the sequence {W, }k | in V<4 by
2k 1_ k—1
W, loo)(P( OOn]P[1 )  &u, k€N,
2k
Wn u (P(foo,n]P[l,oo)) ey, keN.

Lemma 3.2 We assume (1.2) and (1.3). Then, forn € Nandu € {1, ..., n}, we have

l n]gu - Z n,u’ (39)
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the sum converging strongly in V<.

Proof Since ¢, is in VX (3.9) follows from (3.1) and Theorem 3.2 in [16]. O

(—oo,n]’

Proposition 3.1 We assume (1.2) and (1.3). Then, forn € N, u € {1,...,n} and
k € N, we have

o
WA= " bk, (3.10)
=0
o0
Wk =", e (3.11)
n,u nou,eén+1+L- .

Proof Note that, from the definition of wk

n,u’

W2kl = _ph w2 w2 _pl w2kt

We prove (3.10) and (3.11) by induction. First, by (3.2), we have

[e¢)
1 1 1 =
Wiuw = =P oc)u = — E (eu, €0)8¢ = E Bu+eEe = E by y o8-
=0

=0

For k € N, assume that W21 = 3°0° b2* " Z,. Then, by (3.4),

n,u,l

2k 2k— 1~ 2k — l

(=0 \m=0
o
Z nou e En+14L,
£=0
and, by (3.3),
o0 o0 o
Wi = =P (Z bﬁ{(u,egn+1+€> = Z (Z . mﬂn+1+m+l> &
=0 £=0 \m=0
o0
p2hHlz
n u, c&e-
=0
Thus (3.10) and (3.11) follow. m]
Forn e Nandu € {1, ..., n}, we define the sequence {W,]f’u},fil in V¥ by
52k —1 1L 1 1 k—1z
Wo = = PCoon)(PT,00) PCo0,n)) —u» keN,

772k i 1 kz
Wiw = (Pl ooy Ploon) €, k€N
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Lemma 3.3 We assume (1.2) and (1.3). Then, forn € Nandu € {1, ..., n}, we have
P f—u = — Z o (3.12)

the sum converging strongly in Ve,
Proof Since &é_, isin V, [1 0)? (3.12) follows from (3.1) and Theorem 3.2 in [16]. O

Proposition 3.2 We assume (1.2) and (1.3). Then, forn € N, u € {1,...,n} and
k € N, we have

o0
Wi = Zbﬁ"u Lentive, (3.13)
Wit = an w0t (3.14)

Proof Note that, from the definition of wk

n,u’

n,u’ n,u

2k+1 2k 2k+2 _ i
W P( o n]W W =—Pq

We prove (3.13) and (3.14) by induction. First, by (3.2), we have

00
771
Wn, = P( 00,1] 8—14 = Z (E—us> Ent14+0)En+1+¢
=0
00
* 1
= Zﬂn+1_u+gen+1+z = an,u,38n+1+z-
=0

For k € N, assume that W,%ffjl =Y Eﬁ]fz;t}gﬁ“r@' Then, by (3.3),

o0 o0 o0
2k 1 ~2k—1 _ 72k—1 ~
W - _pt (z b) _y (z bﬂ) o
=0 =0 \m=0
o0
2,
= bt e,
=0

and, by (3.4),

S 00 o]
2k+1 ~2k
W _P(Oo n] (Z n,u g8£> Z (Z bn umbB n+1+m+€) Ent14L

=0 £=0 \m=0

00
Z bn u, 48n+l+6
=0
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Thus (3.13) and (3.14) follow. O
We are ready to prove Theorem 2.1.

Proof (i)Forn e N,s,u € {1,...,n}and k € N, we see from (3.5) and (3.13) that

2k 1
< W Zan-H Y+l( nuE)

and from (3.6) and (3.14) that

< Wr%ku - Z Astp (I;gtl,(u,ﬁ)*'
Therefore, by Lemma 3.3, (X, P n]s_ «) 1s equal to
[eS) 00 00 *
) = S R e+ 3B e
k=1 k=1 L£=0 £=0

The assertion (i) follows from this, Theorem 3.1 and Lemma 3.1.
(i) Forn e N,s,u € {1,...,n}and k € N, we see from (3.6) and (3.10) that

(X!, W2k 1 Z z(bgkué
and from (3.5) and (3.11) that

/ 2/( *
<X Wn ul — Zan—i-l H—E( nu,E) .

Therefore, by Lemma 3.2, (X, P n]su) is equal to

o8] [o0] *
_Z X/ Wr]zcu Z anufas“‘Z +anula"+l S‘M} :
k=1

k=1 L{=0 £=0

The assertion (ii) follows from this, Theorem 3.1 and Lemma 3.1. O

4 Strong convergence result for Toeplitz systems
In this section, we use Theorem 2.1 to show a strong convergence result for solutions
of block Toeplitz systems. We assume (1.2) and (1.6). Then w is continuous on T since

w(e?y = 2m)~1 Y oy ey (k). In particular, (1.3) is also satisfied. The conditions

@ Springer



Explicit formulas for the inverses of Toeplitz matrices ... 529

(1.2) and (1.6) also imply that all of {a}, {ct}, {@} and {¢x} belong to £{7?. See
The_orem 3.3 and (3.3) in [17]; see qlso Th~eorem 4.1 1in [12]. In particular, we have
h(e)™! = =302 e*ar and hy(e'?) = h(e™'%)* = 332 ¥ ¢F, hence, by (2.6),

o0
B = ajui;. keNU{OL 4.1)
j=0

Under (1.2) and (1.6), we define

{=n

Fny = | > _NE1 ] D llacll, neNu{o).
j=0

Then F(n) decreases to zero as n — o0.
We need the next lemma in the proof of Theorem 4.1 below.

Lemma 4.1 Assume (1.2) and (1.6). Then, forn,k € Nandu € {1, ..., n}, we have

o
S B ol < F+ DM F 4+ 1 — ). (4.2)
=0

Proof For m € N, we see from (4.1) that

o0 o o0 o0 o0
D UBurell < UGN Mamsjrell < NS Y llal,
=0 j=0 =0 j=0 =m

hence
o0
> lButell < F(m). 4.3)
=0
Letn e Nandu € {1, ..., n}. We use induction on k to prove (4.2). Since l;rll wt =
| _upe» W see from (4.3) that

o o0
D olby el =D IBusi-utell < Fn+1—u).
£=0

£=0
We assume (4.2) for k € N. Then, again by (4.3),
o0 o0 o0
DB < Y B ol D UBut1merel
£=0 m=0 £=0

o0
< F+1) Y byl < Fr+ DFF(n+1—u).

m=0
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Thus (4.2) with & replaced by k + 1 also holds. O

For {y}22, € ¢4*9(N), the solution Zsg to (1.11) with (1.12) and (1.13) is given
by (1.10) with

o0 SAL
=y a @y eC seN (4.4)
t=1 (=1

(see Remark 2.1 in Sect. 2). Notice that the sum in (4.4) converges absolutely.

Theorem 4.1 We assume (1.2) and (1.6). Let {y}32, € ¢{**(N). Then, for Z, in
(1.7)=(1.9) and Zs in (1.10)~(1.13), we have (1.14).

Proof By Theorem 2.1 (i), we have

n SNt n 13

Zn,s = Z Zfl;‘_gflr—z% + Z
t=1u

00
* ~
Z an+1_s+zﬂn+17u+€at7u)’t
t=1 ¢=1 =0

=14{¢=
*

o0
+ Z Z Z Z bﬁku’l}an+1—s+e + Z l;,%{cll,gasﬂ Ar—u Y

t=1 u=1 k=1 =0

hence, by (4.4), >5_| llzn,s — 25|l < S1(n) + S2(n) + S3(n) + Sa(n), where

o0 n N
Simy =Y Y llds—elll@—elllyl,

t=n+1 s=1 {=1

n n

t [e%e}
S50 ==Y "N "3 lanti—srelll Bus1—urellld—a 1y,

s=1r=1 u=14¢=0

n t

n (o SlNe )
Sy = N D Y b Mlansi—sellld@u 1|

s=1t=1 u=1k=1 =0

and

n t

Sa(n) = Z ||bn 2ol ellde— 12 -

s=1t=1 u=1k=1£=0
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By the change of variables m = s — £ + 1, we have

o0 n S
Sty = > 3 Nam- 1l em—s—1 1yl

t=n+1 s=1 m=1

o0 n n
Uyl D Nam—il Y N rm—s—ll
m=1 s=m

t=n+1
o0 2 o0
s(Zn&ku) Do lwll = 0. n— oo
k=0 t=n+1

By (4.2) with k = 1 or (4.3), we have

n t o n
Sy =Y > Nar—ulllyel D IBus1—urell Y lanti—stel
=0 s=1

t=1 u=1

[e%e} n t
< <Z ||as||> Do laulllly I Fn+1—w).
s=1

t=1 u=1

Furthermore, by the change of variables v =t — u + 1, we obtain

no 1 0ot
SN vl F 1 =) =33 lae—ulllyell Lo (D F (n + 1 — )
=1 u=l1 t=1 u=1
o0 t
=3 Nav—1lllye I jom ) F(n —t + v)
=1 v=1
o0 o0
<S> vty o () F (= 1+ v).
t=1 v=1

Since

lim flay—1[lly I 1o.m (D F(n —t+v) =0, t,veN,
n—o00
ldv—1llye Lo ) F(n — 1 +v) < F(Dlldv-1lllly:ll, #,veN,

(o SN e
DO llav-lllyill < oo,

t=1 v=1

the dominated convergence theorem yields

oo o0
Tim Y lldu-tlly: 0. (OF (n =t +v) =0,

t=1 v=1

hence lim;,_, o0 S2(n) = 0.
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Choose N € Nsuchthat F(N+1) < 1. Then, by Lemma 4.1, we have, forn > N,

S3(n) = ZZna, u||||yf||22||b2"+} ||Z||an+1 el

t=1 u=1 k=1 £=0

o0 n t
< F(l) (Z ||ax||> Dol | Z F(n+1)*

s=1 =1 u=1 k=1

. e = F(n+1)?
< F(l)( ||as||) ( ||au||) ( ||y,||> s

Thus lim,,_, o S3(r) = 0. Similarly, we have, forn > N,

) 2 /o
F 1
Sa(n) < F(1) (Z um) (Z llyr") ﬁ
=1

s=0

hence lim,;,_, o0 S4(n) = 0.
Combining, we obtain (1.14). O

5 Closed-form formulas

In this section, we use Theorem 2.1 to derive closed-form formulas for T, (w) ™! with
rational symbol w that corresponds to a d-variate ARMA process. We assume that
the symbol w of T, (w) is of the form (1.17) with 4 : T — Cdxd satisfying (1.18).
Then £ is an outer function in sz Xd('ﬂ‘), and another outer function h; € sz >“"(']I‘)
that appears in (1.4) also satisfies (1.18); see Sect. 6.2 in [16]. Notice that (1.17) with
(1.18) implies (1.2) and (1.3).

We can write /1(z) ! in the form

K my mo )
h(z)~ 1__'000_22(1—1; 7 P i — Y2 po.j. (5.1
n=1j=1 j=1

where

KeNU{0}, myeN, pnell,...,K}, mpeNU{0}
pu €D\{O}, well,....K}, pu#pv. w#v,
puj €C 1 e0,... K}, jell,....,my), poo €
Pum, #0, pe{l,....K},

Pomg # 0 if mg > 1.

cdxd  (5.2)

@ Springer



Explicit formulas for the inverses of Toeplitz matrices ... 533

Here the convention Zgzl = 01is adopted in the sums on the right-hand side of (5.1).
For example, if my = 0, then

K my
h@ ™ =—poo— D D ————puj
(1 =Du2)/
n=1j=1
while, if K = 0, then
mo
h@)™" = —poo— Y po; (5.3)

and the corresponding stationary process { X} is a d-variate AR (mg) process.

Remark 5.1 It should be noticed that the expression (5.1) with (5.2) is uniquely deter-
mined, up to a constant unitary factor, from {Xy} satisfying (1.17) with (1.18) since
so is & in the factorization (1.17) with (1.18) (see Sect. 2). Suppose that we start with
a d-variate, causal and invertible ARMA process { Xy} in the sense of [4], that is, a
C9-valued, centered, weakly stationary process described by the ARMA equation

®(B)X,, =¥ (B)t,, nel,
Where,forr,seNU{O}anddi[,lI/je(CdXd(i:I,...,r, j=1,...,9),
P()=1Ig—z2P1—- =P and ¥ ()=1Is—z¥1 —-- =¥

are C?*“_valued polynomials satisfying det ®(z) # 0 and det¥ (z) # 0 on D, B
is the backward shift operator defined by BX,, = X,,—1, and {§; : k € Z} is a
d-variate white noise, that is, a d-variate, centered process such that E[£,£)] =
8umV for some positive-definite V. e C¢*¢. Notice that the pair (®(z), ¥ (z)) is
not uniquely determined from {Xy}; for example, we can replace (@ (z), ¥ (z)) by
(2= 2)®(2), (2 — 2)¥(z)). However, if we put h(z) = ®(z) "' W (z)V'/2, then h is
an outer function belonging to H2d *d(T) and satisfies (1.17) for the spectral density
w of {X}. Therefore, h is uniquely determined, up to a constant unitary factor, from
{Xk}. In particular, the expression (5.1) with (5.2) for % is also uniquely determined,
up to a constant unitary factor, from {Xy}. From these observations and the results in
[13] and this paper, we are led to the idea of parameterizing the ARMA processes by
the expression (5.1) with (5.2) (see Remark 8 in [13]). This point will be discussed in
future work.

By Theorem 2 in [13], hﬁ_ ! has the same mo and the same poles with the same

multiplicities as A~ that is, for mg, K and (p1,my), ..., (px,mg) in (5.1) with
(5.2), hu_l has the form

K my

hu(Z) _100 0 Z Z 1—

n=1j=1

P2 u/ ZZ pOJ G4
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where

,oi)je(chd, nwel0,....K}, jell,...,my}, pg’oecdxd’
pﬁ,mﬂ#oa ,U/E{l,...,[<}7

Py 0 if mo > 1.

Notice that if d = 1, then we can take hy = h, hence pg,0 = pg,o and o, ; = pi’j for
well,...,Kyand j e {l,...,my,}.
Recall & from (2.1). From (5.4), we have
K my mo
I’Nl(Z) = —00,0 — Z Z pu Jj szﬁO,js
(1= pu2)/ =

n=1 j=1

where
O — goyx O, g * .
00,0 := (Po,0)"s  Pu,j = (pu,j) , mwel{0,...,K}, jell,...,m,}.

Recall the sequences {ay} and {ay} from (2.3) and (2.5), respectively. We have

K my
n+j—1\_
ay = ZZ( )pzpﬂ,, n=mo+ 1, (5.5)

n=1j=1 ]_1
K my .
- n+j—1 -
a,,:ZZ( i )pﬁpﬂj, n>my+1 (5.6)
n=l1j=1
and
K my .
n+j—1\_
an=po,n+22( T )pﬁpw, ne{0,....mp},  (57)
p=I1j=1 J
n+j— ~
an—pon—i—ZZ( )p;jpﬂ,,-, neio,...,mo}, (5.8)
n=1j=1

where the convention (8) = 1 is adopted; see Proposition 4 in [13].

We first consider the case of K = 0 that corresponds to a d-variate AR (m) process.
As can be seen from the following theorem, in this case, we have simple closed-form
formulas for T, (w)~!.

Theorem 5.1 We assume (1.17), (1.18) and K = 0 for K in (5.1). Thus we assume
(5.3). Then the following four assertions hold.
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(i) Forn >mo+1,se€f{l,....,n}andt € {1,...,n —mg}, we have
.t SNt
(T,,(w)—l) =G (5.9)
r=1
(ii) Forn >mog+1,s €{l,...,n—mpo}andt € {l,...,n}, we have
5.t SAt
(Tn(w)_l) =G (5.10)
(iii) Forn >mo+1,s €{l,...,n}andt € {mg+ 1, ...,n}, we have
s,t n
(Tn(w)*‘> =3 @ (5.11)
A=sVt
(iv) Forn >mo+1,s e {mo+1,...,ntandt € {1, ..., n}, we have
s,t n
(T,,(w)_l) =3 @ (5.12)
A=sVt

Proof For w satisfying (1.17), (1.18) and K = 0, let {X}, {X}}, {ex} and {&} be as
in Sect. 3.

(i) By (5.4) with K = 0, we have ap = po, ax = po.x for k € {1,...,mp} and
ay = 0fork > mg+ 1. In particular, we have Zf 0@ Xy+k +E&—y = O0foru € Z; see
(2.15) in [16]. This implies £_,, € Vln , or P 8 w=0,forue{l,...,n—mo}
Therefore, (5.9) follows from Theorem 3 1 and (3 8).

(iii) By (5.3), we have ag = po,0. ax = pox fork € {1,...,mo} and ax = O for
k > mg + 1. In particular, ka 0 Xy—k + &, = 0 foru € Z; see (2.15) in [16].
This implies ¢, € V1 n]> OF Pl ) = 0, foru € {mg+1, ..., n}. Therefore, (5.11)
follows from Theorem 3.1 and (3 7).

(ii), (iv) By (2.9), (ii) and (iv) follow from (i) and (iii), respectively. O

We turn to the case of K > 1. In what follows in this section, for K in (5.1), we
assume

K >1.

Formy, ..., mg in (5.1), we define M € N by

K
M= m,. (5.13)
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Forpuefl,...,K}, pyin(5.1)and i € N, we define p,; : Z — Cdxd by

k i
Pui(k) = (l, - l)p’; Hl, kel (5.14)
Notice that
. _ 0 —i+1 s
pu,z(o)— i1 Pu Ig =6i114.

For n € Z, we also define p, € C?M*4 by the following block representation:

P = P11, ..., prm () | p21(0), ..., P2, (1) |
Pk, prome ()T

Notice that
po=(1z,0,...,0]1g,0,...,0]--|13,0,...,007 e CdMxd,

We define A € C4M*dM by

o
A= Z pep;-
=0

For u,v € {1,2,..., K}, we define A"V € Cdmyxdmy by the block representation
ARV, AR (,2) - ARV, my)
A2, 1) AHY(2,2) - A2, my)
AT = : ) .

)

)\"u’v(mlln 1) )\"u’v(mlln 2) e )\'M’v(mlln ml})

where, fori e {I,...,my}and j € {1,...,m,},

j-1 . S Jer—l—i—r—1
i—1\/(i+j—r—2
) :=Z( )( / ) PPy Iy € Cx.

=\ r i—1 (1= p,p,)iti—r-1
Then, by Lemma 3 in [13], the matrix A has the following block representation:
Al,] A1,2 A],K

A2’1 A2,2 AZ,K
A=

AI.(,I AI.(,Z Ak,K
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We define, foru € {1,...,K}and j € {1,...,m,},

P . 1 dme—J {( Y ( )hT( )—1} c qdxd
el — )l dgme LT P RO :
(5.15)
where
hi(z) .= h(1/2)*. (5.16)

We define @ € CIM*4M by the block representation

® 0 ---0
0 @ - 0

O=1. .. A I
0 0 -0

where, foru € {1,...,K}, 0, € Cdmuxdmy is defined by

Ouo - eu,mu—l eu,mn
9“,2 9#,3 G,U-ym;t

9/L,m,l71 eu,m#
eu,mﬂ 0

using 6, ; in (5.15) with (5.16).
For n € Z, we define IT, € C?M*4M by the block representation

M, 0 -~ 0

0 Iy, 0

nn = . . . .
0 0 --- Mg,
where, forp e {l,...,K}andn € Z, I, , € Cdmuxdmy g defined by

Pu1(n) pu2(n) pusn) --- Pu,mu(n)
Pui ) pu2m) - pum,—1(n)

pu,2(”)
0 Pu,l(”l)

using p, ;i (n) in (5.14).
The next lemma slightly extends Lemma 17 in [13].

@ Springer



538 A.Inoue

Lemma 5.1 We assume (1.17), (1.18) and K > 1 for K in (5.1). Then, forn, k, € € 7
such thatn + k + € > mg, we have

Brtirer1 = P T,0px,
hence
Buvi+er1 =P UIT,0)py.
The proof of Lemma 5.1 is almost the same as that of Lemma 17 in [13], hence we
omit it. ~
For n € Z, we define G,,, G,, € C¢M*dM py

G, :=M,0A, G,:=II,0)*A".

Lemma 5.2 We assume (1.17), (1.18) and K > 1 for K in (5.1). Then the following
two assertions hold.

(i) We assumen > u > mqy + 1. Then, for k € N and ¢ € NU {0}, we have

bt ) =P 1(Ga G T UT,0) "Dy (5.17)
bgkuﬁ _pu —n— l(G Gn) 1Gn]7n(")p£- (5.18)

(ii) We assume 1 < u <n — mq. Then, for k € Nand € € N U {0}, we have

bﬁ ul — p—u(G n)k_lnn@PZ, (5.19)
bn al p—u(Gn n)k_lGn (Hn@)*l_)z (5.20)
The proof of Lemma 5.2 will be given in the Appendix.

Forn € Nand u,v € {1,2,..., K}, we define Z/"" € C¥uxdmv by the block
representation

13(1 D& (1,2) e g (my)
o " (2 D& 22 - & 2m)
S : : :
rlt/”v(muv D g#’v(mua 2) - #,v(mﬂ’ my)
where, forn € N,i € {1,...,m,}and j € {1,...,m,},&"" (i, j) € C4*? s defined
by
j—1 . 9 . . ) r—=l—n+i+j—r—2
o j)1=Z<n+l+J_ )<I+J—r— )pﬂ D I
n prd r i—1 (1— p'upv)l-‘rj r—1
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For n € N, we define &, € CIM*dM py

~1L1 =12 —~1,K

~n ~n . ~n

—~2,1 =22 —~2,K

Ep BT o By
En = .

~K,1 ~K,2 ~K,K

=y Ey e

We also define p € C¥M*4 and 5 e C4M*d by the block representations

R (TR N T A R I T

and
(,011a-~-u5Im1|/021a-~~u52T,m2| |PK1a~--
:(pf’l,...,m|p2ﬁ,l,...,%| |El,...

respectively. For n € N, we define v,, 7, € C¢M*4 by

00 00
Up = prwz, Up 1= Zﬁ(&m%-
=0 =0

Then, by Lemma 5 in [13], we have

@

vy, =

Moreover, if mg > 1, then we have

mo—n

npv i} :§n,57 anO+1'

T
5pK,mK

)T

mo—n
vy = Eyp + Z PePO.n+e, VUn = En:a + Z ﬁ[ﬁO,n—&-@s nefl,...,mp}.
=0

{=0

For n € Z, we define w,, w, € C/M*d py

00 00
Wy = Zpﬁ—naﬂv Wy 1= Zﬁe_néll-
=0 =0

To give closed-form expressions for w,, and w,,, we introduce some matrices. Forn € Z

and o, v € {1,2,..., K}, we define ®@}°" € C4"u>xdmv by the block representation
on (LD @n(1,2) oo gn " (1,my)
o' 2,1 @ (2,2) e en (2,my)
. ,

o my, 1) @ (mye, 2) - Y (myg, my)
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where, forn € Z,i = 1,...,my and j = 1,...,my, oh" (i, j) € C*? is defined
by

i-1j-1 . _ r+q+l—i—n—rtq
ot =Y 3 (7 Drtay( r—nm e P
" r q i—qg—1)1—p,p,)r+it!

g=0r=0
For n € 7, we define &, € C4MxaM by

ol pl2 (p’]l,[(

n n
2,1 2,2 2,K
¢n (pn e ®n

D, =
K1 K2 K.K
¢n ¢n e q)n
Here are closed-form expressions for w, and w,.

Lemma 5.3 We have

mo

wy = Ppp + Zpl—npO,Ka n e Z,
=0

mo
By =Pufp+ Y Pe_nhoe, ne€L.
=0

The proof of Lemma 5.3 will be given in the Appendix.
Recall M from (5.13). Forn e Nand s € {1, ..., n}, we define

En,x = {wpp1—5 — vn+1—s}*(IdM _ énGn)_l c (CdXdM,
Ups o= {hy — s} (Lapyt — GnGp) ™' € CIxdM

Fas = (I1,0)* s + G, IT,0v, 41, € CM*d
and
Fas = ,Ov,11_s + Gu(IT,0)* T3 € CIM*d

Here are closed-form formulas for (7}, (w)) ! with w satisfying (1.18) and K > 1.

Theorem 5.2 We assume (1.17), (1.18) and K > 1 for K in (5.1). Then the following
four assertions hold.

(i) Forn >mo+1,s€{l,...,n}andt € {1,...,n —mg}, we have

SNt

s,t
—1 ’ ~ ~, ~ ~
(@) ™) " =78+ Y @i
r=1
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(ii) Forn >mo+1,s€{l,....,.n—mgo}andt € {1, ...,n}, we have
N 3 SAL
(o) ™) = B + Y @5 i
A=l
(iii) Forn >mo+1,s €{l,...,n}andt € {mo+ 1, ...,n}, we have

st
<Tn(w)_l> =Tns nt+ Z a)» sdr—t-

A=sVt
(iv) Forn >mo+1,s e {mo+1,...,n}andt € {1, ...,n}, we have
St n
(Tn(w)_1> = Zn,srn,t + Z a;tfsa)wt'
A=sVt

Proof (i) We assumen > mg+ 1,s € {1,...,n}andr € {1,...,n — mop}. Then, by
Lemma 5.2 (ii) above and Lemma 19 in [13], we have

u=1 k=1 =0

00 *
Z {Zpl—u(GnGn)klnlz@pkan+l—s+k} ar—y
=0

1 k=1

t oo 00 *
ZZ{ZBZk 20n+1— H—)»} r—y

Il
MN

u

I
M-
WK

- *
{PIM (GnGn)k_lnn@UnJr]fS } Ai—y

<
I
_
~
Il
—

|
EN

T PR ¥
p_u(IdM G,G,) I,Ovu 151 iy

<
I
<

t
= vp 1 U10) gy — GG ™D Py

u=1

Similarly, by Lemma 5.2 (ii) above and Lemma 19 in [13],

ZZ{anuxaﬁ»A} ar— u—v 1T, ()G (am — G G, w) lZp wlt—u-

u=1 k=1

However, > ' _1 P_yGr—u = Y 500 Pr_rdr — 3 seq Prds+s = W; — U;. Therefore, the
assertion (i) follows from Theorem 2.1 (i).
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(iii) We assume n > mg + 1, s € {1,...,n}and ¢t € {mo + 1, ..., n}. Then, by
Lemma 5.2 (i) above and Lemma 19 in [13], we have

%
Y {zbzﬁ, }

u=t k=1

_ZZHZPM —n— 1(G”G) (Hn@)*l_)xds+k} ay—i
u=t k=1
=ZZ[PM a1 (GaG)' om} i

u=t

|
M=

- *
[p;:_n_l(IdM - GnGn)—l(nn@)*ﬁs} Qs

u=t

ﬁ IT,0 Iy — G*G )7]Zpu n—1ay—t-

u=t

Similarly, by Lemma 5.2 (i) above and Lemma 19 in [13], we have

331 DTN e

u=t k=1

n
= vy U0 Gy — GG ™D pu—n—1au—s.

u=t

However, ZZ:: Pu—n—10y—t = Wp41—t — Un+1—¢. Therefore, the assertion (ii) follows
from Theorem 2.1 (ii).
(i1), (iv) By (2.9), (ii) and (iv) follow from (i) and (iii), respectively. O

Example 5.1 Suppose that K > 1,m, = 1foru € {1, ..., K} and mo = 0. Then,

K K
_ 1 _ 1
h@) ™ =—poo— ) 1= Pwt 1@ '=—p50— ) =5 - p;ﬁm'
it TP,
We have
= (P{Ia. ..., Pils) e CK . nez,
= (0l P31 ) €T 5T = (of o k) € COFX
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We also have

pihs(p)pT 0 0
0 h L 0
o — P2 n(PZ)Pz)l eCdedK
0 0 < prhe(PK) Pk |
1 1 1
1=pip la 1=pipy la I-pipk la
S T R Ny PR S
A= 17172-171 lfpzlpz 1*P2.PK c (CdedK’
1 1 1
I—pk Dy la I1—pk Py la l—pk Pk la
Pl 0 0
0 pily--- 0
2
m= . . € CikxdK 7.
0 0 . p’ll(ld
71 75 Pk
1-pip) la 1-pi1Ds la 1-p1pk la
P J D5 I Pk I
- T—papy 4 T=pap, 14 "7 T=popg 'd
5, = I’2'[’1 [72.172 [72'[71{ c (CdKXdK, ne N,
Pl P g Px__ g
T=pkpr 4 T=pgp, 4 T=pkpx @
—n —n —n
Py P Py
o 1 T Ty
B, L_p, ... L]
b, = T=pap, 4 T=pap, ¢ T=papg 4 c CikxdK 7
—n —n —n
Pk Pk . Pk
T=pkp1 4 T=pkD> la 1-pk Pk la
G, = ,0A € C4kxdK G = (IT,0)"AT € CIK*K 7,
Uy = Eup e CKXd 5 —F,peCKxd  jeN,
dKxd — ~ = - — dK xd
Wy, = Ppp +P_npoo € CCXY W, =Dup+P_,000 € CHTY nel

Example 5.2 In Example 5.1, we further assume d = K = 1. Then, we can write
h(z) = hy(z) = —(1 — pz)/p, where p € C\{0} and p € D\{0}. It follows that

o /p, ca=p/p, cx=0 (k=>2),
ar = p(PF, @ =ax, keNU{0}.
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Since y (k) = Z;’;O ck+ece and y (—k) = y (k) for k € NU {0}, we have

2
T2<w>=i(1+'_l" =P )

P2\ -7 1+IpP
hence
_ | <1+|p|2 p )
Tyw)y ' =— P (1F] .
B ey ey et G A BT

We also have

~ _(1 10
A2=p(011)> and A2=p<ﬁ1>

for A, and A in (2.14) and (2.15), respectively. By simple calculations, we have

7 s (s -

(2.1,022) = ——————(1+1|pl°,. D), (32,1,52,2) = (£2.2,42.1),
@)2(1 — [pl©)

(r2,1,122) = —ppIplP (1 = [pH@BA + 1D, 1pP).  (Fo1,722) = (P22, 72.1)

hence
1 Fwi 1) = - * 471
H(w) = A;A2 + 7 (Fa1.722) = A3 Ay + s (r21.722)

which agrees with equalities in Theorem 5.2.

6 Linear-time algorithm
As in Sect. 5, we assume (1.17) and (1.18). Let K be as in (5.1) with (5.2). In this
section, we explain how Theorems 5.1 and 5.2 above provide us with a linear-time
algorithm to compute the solution Z to the block Toeplitz system (1.19).
For
Y =0 ...,y eC™ with y,eC™, sef{l,....n}, (6.1
let

7= (z]T, . ..,z;)T € CIxd with z, € C™4, se{l,...,n},

be the solution to (1.19), thatis, Z = Tn(w)’lY. For mg in (5.1), letn > 2mqy + 1 so
that n — mqy > mq + 1 holds.
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Recall An and A, from (2.14) and (2.15), respectively. If K = 0, then it follows
from Lemma 2.1 and Theorem 5.1 (ii), (iv) that

g =0py, SE{l,...,n—mp},

s = Ups, se{mo+1,...,n},

where
@ gseon Gy ) = ARALY with Gy € CY0 s e {1, ),
@ 1oeevaty )T = AZAY with o, € C s e {L,... n).

On the other hand, if K > 1, then we see from Lemma 2.1 and Theorem 5.2 (ii), (iv)
that

2 =Ly sRn+ans, se{l,...,n—mp},
ZS:gn,sRn + a5, se{mo+1,...,n},
where
n n
Ry:=7 Fauye € C Ryi= ) sy € C
=1 =1

Therefore, algorithms to compute AZA,,Y and A% A,Y in O(n) operations imply that
of Z. We present the former ones below.

Forn e NU{O}, w e {l,...,K}and j € {1,...,m,}, we define g, ;(n) € C4*¢
by gu,j(n) := pyu, j(n+ j— 1), thatis,

n+j—1\ ,
Clu,j(”)=< o )puld. 62)

Forn e Nyu e {l,...,K}and j € {I,...,m,}, we define the upper trianglular
block Toeplitz matrix Q,, j., € C¥>4" by

G j0) g j (D) qu j(2) - qu, j(n = 1)
Gu.j0) qpu j(1) - qp j(n —2)

-~ qu (D)
0 qp.j(0)
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Notice that

g, (0) 0
g () g0
of .= @, a0

4, ;=1 q; (n=2)---q; ;1) q, ;(0)

with g% (n) = (”ij{;l)ﬁzld. ForneN,pefl,...,Kyand j € {1,...,m,}, we

define the block diagonal matrices D#,J-,n € Cdnxdn and Dy, ; ., € Cnxdnpy

/S,u,j 0O --- 0 Pu,j 0O --- 0

0 ﬁ/""vj"' 0 0 Puj - 0
D;,L,jn = . . . . and D;L,j,n = . . . . s

0 0 "'ialhj 0 0 e P

respectively. Moreover, f9r n > mqo + 1, we define the upper and lower triangular
block Toeplitz matrices A, € C¥*" and A, € C"*4" py

£0,0 £0,1 *** P0,mq 0
£0,0 00,1 ’
A~n = ,50,m0
£0,0 0,1
0 £0,0
and
£0,0 0
£0,1 00,0
Dot
A, = ,
£0,mq
L p0,0
0 £0,mo -+ £0,1 £0,0

respectively. Note that both A,, and A,, are sparse matrices in the sense that they have
only O(n) nonzero elements.
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By (5.5)—(5.8), we have

K my
Ay =4y + Z Z Qu,j,nDp,,j,ns n>mgy+1,
p=1j=1
K my
Ap=20+Y Y 0% Dyjn. n=mo+1.
p=1j=1
Therefore, itis enough to give linear-time algorithms to compute Q,, ; ,Y and Ql*”’ WY
for ¥ € C%*4 in O(n) operations. The following two propositions provide such
linear-time algorithms.

Proposition6.1 Let n € N, n € {l,...,K} and Y be as in (6.1). We put

Zui = QuinY fori e {1,...,my}. Then the component blocks z, ;(s) of
Zyi= (z;’i ,..., z;';l.(n))—'— satisfy the following equalities:
Zu,i (M) = qu,i O yn, 1 €{l,...,my}, (6.3)
2u1(8) = puzp (s + 1) +4,,10)ys, sefl,....n—1} (6.4)
2 (8) = puzpi(s + 1) + zpi—108) +{g.i (0) — qu.i—1(0)}ys, ©6.5)
ie{2,...,my}, sefl,...,n—1}.

Proof From the definition of Q,, ; », (6.3) is trivial. For g, ; (k) in (6.2), Pascal’s rule
yields the following recursions:

quatk +1) = pugu k), keNU{0}, (6.6)
Guitk + 1) = pugui(k) + qui-1tk+1), i€{2,....j}, ke NU{0}. (6.7)

Fors € {1,...,n — 1}, we see, from (6.6),
n—s—1
201 () = qu1O)ys + Y qualt + Dysyrra
t=0

n—s—1

= @1 Oy + P Y ua@OYstirt = G O)ys + puzua(s + 1),

=0
and, from (6.7),
n—s—1
i () = quiO)ys + > it + Dyspopa
=0
n—s—1 n—s
= {91.1(0) = 4ui—1ONys + P Y Gua@O¥swrrt + ) i1 (D Y5t
t=0 t=0

= 1{q.i (0) = qu.i-1(0)}ys + puzpi(s + 1) + zpi-1(s)
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fori € {2,..., j}. Thus, (6.4) and (6.5) follow. m]

By Proposition 6.1, we can compute z,, ; (s) in the following order in O (n) opera-
tions:

Zu,l(”) — > Zu,l(l) - Zu,Z(”) — s> ZM,Z(I)

== Zum, (M) > =z, ().

Proposition6.2 Let n € N, u € {l,...,K} and Y be as in (6.1). We put

Wei = Q;J’nY fori e {1,...,my}). Then the component blocks w, ;(s) of

Wyei= (w;’i ,..., w;—’i(n))T satisfy the following equalities:

wii(D) =gy ,; Oy, i€ {l,... myu},

w1 (s + 1) =p,we () + g5 1 (0)ys1, sefl,....n—1}

Wi (s + 1) = Puwp i (8) +wyi—10s + 1) + g, ;(0) — g, ;1 (0)}yst1,
ie{2,...,my}, sefl,...,n—1}.

The proof of Proposition 6.2 is similar to that of Proposition 6.1; we omit it.
By Proposition 6.2, we can compute wy, ; (s) in the following order in O (n) oper-
ations:

wy1(1) = - = wy1(n) = wy2(l) = -+ = wy2(n)

P — wu,mu(l) e wu,m#(n).
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A Proofs of Lemmas 5.2 and 5.3

As in Sect. 5, we assume (1.17) and (1.18). We use the same notation as in Sect. 5.
For K in (5.1) with (5.2), we assume K > 1.
We prove Lemma 5.2.

Proof (i) We assume n > u > mg+ 1, and prove (5.17) and (5.18) by induction. First,
from Lemma 5.1,

byt = Butt = Py 1 IT,0) "Dy
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Next, fork = 1,2, ..., we assume (5.17). Then, by Lemma 5.1,

bZk 1
nu@_ n,u,m n+l+m+€

o
=p;_,1(G.Gn)* ' (UT,0)* (Z f)mp;) 11,0p;

m=0
=p}_,1(G,G) T (1,0) AT 11,0p = p};_,_1(G,G)* ' G IT,Op
or (5.18). From this as well as Lemma 5.1,

2k+1
bn ul — Z bn u, mﬂn+l+m+£
m=0

o
=p;_,_1(G,G "G, 11,0 ( > pmp,’;> (IT,0)"p,

m=0
=P}, 1(GGn)* ' G I1,0 AUT,0)'Py = p;;_, (GG (IT,0)*Py
or (5.17) with k replaced by k + 1. Thus (5.17) and (5.18) follow.

(i) We assume 1 < u < n — my, and prove (5.19) and (5.20) by induction. First,
from Lemma 5.1,

1 T
bn ul — :B:—H—u—&-ﬁ = p—un”l@)pl‘

Next, fork = 1,2, ..., we assume (5.19). Then, by Lemma 5.1,

,, wit = Z bn o Bremae

00
= pIu(GnGn)kilnn@ <Z Pm[hj,) (Hn@)*ﬁz

m=0
=p' (GG T,0 A(IT,0)"p, = pL (G, GG, (IT,0)D,

or (5.20). From this as well as Lemma 5.1,

o0

o0
7 2k+1 —
b= b Britimie =PL(GnG) T G (IT,0)* <§ pmpl) ,0p;
m=0 m=0

=p.,(G.G)" G, (T,0)* AT T,0p; = p_,(G,G,) 1T1,6p¢
or (5.19) with k replaced by k + 1. Thus (5.19) and (5.20) follow. O

To prove Lemma 5.3, we need some propositions.
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Proposition A1 Form,n € Z,i, j € NU{0} and x, y € D, we have
1 a 3\’ x"y"
ilj! \ox oy /) 1 —xy
ZZ n g+r m4r xm+q+r7iyn+q+r7j
— = \J—r/\ q i—q) (1—xyatr+t -
Proof Letm,n € Z,i, j € NU{0} and x, y € D. Then, we have
. j .
l 9 J n Z r 1 1 i J ryn
J! 8y l—xy = r! y I—xy) | (G—nr)!\0y

XJ: < > ryn+r—j
a e
r=0 jor xy)

d n n+r—j i 1 0 ! 1 1 0 i m-+r
=§<j—r>y 12{5(5) (1—xy>f+1}{<i—q>!<£) * }

- n n+r—j q+r yq m+r m+q—+r—i
-2 ()2l e 1)

m4r xm+q+r—iyn+q+r—j
< q) (1 —xy)atrt!

Thus, the proposition follows.

PropositionA.2 Forn e Z,i, j € NU{0} and x, y € D, we have

i n4 2 ]+€ n—HZ ; l ZZ r+q n4r xn+r+q7iyr+‘1
A J q=0r=0 i —q) (1—xy)yrath

Proof Letn € Z,i, j € NU{O}andx, y € D.Sincex"y/ /(1—xy) = 302 x"Tty/ Tt
we have

i i noi 00 .
; i i i J xly] _ Z n +£ ] +E xn+€7iy€.
iljl \ ox ay/) 1—xy i

=0 J
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On the other hand, by Proposition A.1, we have

LY () 2 oy 0 [ (g P
itj! \ox dy) 1—xy i—q) 1 —xy)rtatl’

qg=0r=0

Comparing, we obtain the proposition. O

We are ready to prove Lemma 5.3.

Proof By (5.5)—(5.8) and Proposition A.2, we have, forn € Z, u € {1, ..., K} and
iefl,....,mu},

o )
Z Pui(b —n)ag = Z Pui(t—n)po.e

=0 =0

my . . )
(R Y

v=1 j=1 = J
my
—Zpu,(e—n)poz+22¢#”(t Dov.j
v=1 j=1
00 mo

N B —mac = 5, (€ —nioe

£=0 =0

K m, . .
a1 RN L

v=1 j=1
K m,
—Zp,,t,w—n)poHZan’ (i, ))iv.j-
v=1 j=1
Thus, the lemma follows. O
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