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Abstract
We derive novel explicit formulas for the inverses of truncated block Toeplitz matrices
that correspond to a multivariate minimal stationary process. The main ingredients
of the formulas are the Fourier coefficients of the phase function attached to the
spectral density of the process. The derivation of the formulas is based on a recently
developed finite prediction theory applied to the dual process of the stationary process.
We illustrate the usefulness of the formulas by two applications. The first one is a strong
convergence result for solutions of general block Toeplitz systems for a multivariate
short-memory process. The second application is closed-form formulas for the inverses
of truncated block Toeplitz matrices corresponding to a multivariate ARMA process.
The significance of the latter is that they provide us with a linear-time algorithm to
compute the solutions of corresponding block Toeplitz systems.

Keywords Toeplitz matrix · Finite prediction · Dual process · Toeplitz system ·
Linear-time algorithm

Mathematics Subject Classification 60G10 · 60G25 · 15B05 · 65F05

1 Introduction

Let T := {z ∈ C : |z| = 1} be the unit circle in C. We write σ for the normalized
Lebesgue measure dθ/(2π) on ([−π, π),B([−π, π)), whereB([−π, π)) is the Borel
σ -algebra on [−π, π); thuswe have σ([−π, π)) = 1. For p ∈ [1,∞), wewrite L p(T)

for the Lebesgue space of measurable functions f : T → C such that ‖ f ‖p < ∞,
where ‖ f ‖p := {∫ π

−π
| f (eiθ )|pσ(dθ)}1/p. Let Lm×n

p (T) be the space ofCm×n-valued
functions on T whose entries belong to L p(T).
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514 A. Inoue

Let d ∈ N. For n ∈ N, we consider the block Toeplitz matrix

Tn(w) :=

⎛

⎜
⎜
⎜
⎝

γ (0) γ (−1) · · · γ (−n + 1)
γ (1) γ (0) · · · γ (−n + 2)

...
...

. . .
...

γ (n − 1) γ (n − 2) · · · γ (0)

⎞

⎟
⎟
⎟
⎠

∈ C
dn×dn,

where

γ (k) :=
∫ π

−π

e−ikθw(eiθ )
dθ

2π
∈ C

d×d , k ∈ Z, (1.1)

and the symbol w satisfies the following two conditions:

w ∈ Ld×d
1 (T) and w(eiθ ) is a positive Hermitian matrix σ -a.e., (1.2)

w−1 ∈ Ld×d
1 (T). (1.3)

Let {Xk : k ∈ Z} be aCd -valued, centered, weakly stationary process that has spectral
densityw, hence autocovariance function γ . Then the conditions (1.2) and (1.3) imply
that {Xk} is minimal (see Sect. 10 of [21, Chapter II]).

In this paper, we show novel explicit formulas for Tn(w)−1 (Theorem 2.1), which
are especially useful for large n (see [2]). The formulas are new even for d = 1.
The main ingredients of the formulas are the Fourier coefficients of h∗h−1

� = h−1h∗
� ,

where h and h� are Cd×d -valued outer functions on T such that

w(eiθ ) = h(eiθ )h(eiθ )∗ = h�(e
iθ )∗h�(e

iθ ), σ -a.e. (1.4)

(see [10]; see also Sect. 2). We note that the unitary matrix valued function h∗h−1
� =

h−1h∗
� on T attached to w is called the phase function of w (see page 428 in [20]).

Let {Xk} be as above, and let {X ′
k : k ∈ Z} be the dual process of {Xk} (see [19];

see also Sect. 2 below). In the proof of the above explicit formulas for Tn(w)−1, the
dual process {X ′

k} plays an important role. In fact, the key to the proof of the explicit
formulas for Tn(w)−1 is the following equality (Theorem 3.1):

(
Tn(w)−1

)s,t = 〈X ′
s, P[1,n]X ′

t 〉, s, t ∈ {1, . . . , n}. (1.5)

Here, 〈·, ·〉 stands for the Gram matrix (see Sect. 3) and P[1,n]X ′
t denotes the best

linear predictor of X ′
t based on the observations X1, . . . , Xn (see Sect. 2 for the

precise definition). Moreover, for n ∈ N, A ∈ C
dn×dn and s, t ∈ {1, . . . , n}, we write

As,t ∈ C
d×d for the (s, t) block of A; thus A = (As,t )1≤s,t≤n . The equality (1.5)

enables us to apply the P[1,n]-related methods developed in [11, 12, 14–16] and others
to derive the explicit formulas for Tn(w)−1.
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Explicit formulas for the inverses of Toeplitz matrices… 515

We illustrate the usefulness of the explicit formulas for Tn(w)−1 by two appli-
cations. The first one is a strong convergence result for solutions of block Toeplitz
systems. For this application, we assume (1.2) as well as the following condition:

∞∑

k=−∞
‖γ (k)‖ < ∞ and min

z∈T detw(z) > 0. (1.6)

Here, for a ∈ C
d×d , ‖a‖ denotes the operator norm of a. The condition (1.6) implies

that {Xk}with spectral densityw is a short-memory process.We note that (1.3) follows
from (1.2) and (1.6) (see Sect. 4). Under (1.2) and (1.6), for n ∈ N and aCd×d -valued
sequence {yk}∞k=1 such that

∑∞
k=1 ‖yk‖ < ∞, let

Zn = (z�n,1, . . . , z
�
n,n)

� ∈ C
dn×d with zn,k ∈ C

d×d , k ∈ {1, . . . , n}, (1.7)

be the solution to the block Toeplitz system

Tn(w)Zn = Yn, (1.8)

where

Yn := (y�
1 , . . . , y�

n )� ∈ C
dn×d . (1.9)

Also, let

Z∞ = (z�1 , z�2 , . . . )� with zk ∈ C
d×d , k ∈ N, (1.10)

be the solution to the corresponding infinite block Toeplitz system

T∞(w)Z∞ = Y∞, (1.11)

where

T∞(w) :=

⎛

⎜
⎜
⎜
⎝

γ (0) γ (−1) γ (−2) · · ·
γ (1) γ (0) γ (−1) · · ·
γ (2) γ (1) γ (0) · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

(1.12)

and

Y∞ := (y�
1 , y�

2 , . . . )�. (1.13)

Then, our result (Theorem 4.1) reads as follows:

lim
n→∞

n∑

k=1

‖zn,k − zk‖ = 0. (1.14)

123



516 A. Inoue

We explain the background of the result (1.14). As above, let {Xk : k ∈ Z} be aCd -
valued, centered, weakly stationary process that has spectral densityw. For n ∈ N, the
finite and infinite predictor coefficients φn,k ∈ C

d×d , k ∈ {1, . . . , n}, and φk , k ∈ N,
of {Xk} are defined by

P[1,n]Xn+1 =
n∑

k=1

φn,k Xn+1−k and P(−∞,n]Xn+1 =
∞∑

k=1

φk Xn+1−k,

respectively; see Sect. 3 for the precise definitions of P[1,n] and P(−∞,n]. We note
that

∑∞
k=1 ‖φk‖ < ∞ holds under (1.2) and (1.6) (see Sect. 4 below and (2.16) in

[16]). Baxter’s inequality in [1, 5, 9] states that, under (1.2) and (1.6), there exists
K ∈ (0,∞) such that

n∑

k=1

‖φn,k − φk‖ ≤ K
∞∑

k=n+1

‖φk‖, n ∈ N. (1.15)

In particular, we have

lim
n→∞

n∑

k=1

‖φn,k − φk‖ = 0. (1.16)

Ifwe put w̃(eiθ ) := w(e−iθ ), then, (φn,1, . . . , φn,n) is the solution to the blockToeplitz
system

Tn(w̃)(φn,1, . . . , φn,n)
∗ = (γ (1), . . . , γ (n))∗,

called the Yule–Walker equation, while (φ1, φ2, . . . ) is the solution to the correspond-
ing infinite block Toeplitz system

T∞(w̃)(φ1, φ2, . . . )
∗ = (γ (1), γ (2), . . . )∗.

Clearly, w̃ satisfies (1.2) and (1.6) since so does w. Therefore, our result (1.14) can
be viewed as an extension to (1.16). It should be noted, however, that we prove (1.14)
directly, without proving an analogue of Baxter’s inequality (1.15).

The convergence result (1.16) has various applications in time series analysis, such
as the autoregressive sieve bootstrap (see, e.g., [16] and the references therein), whille
Toeplitz systems of the form (1.8) appear in various fields, such as filtering of sig-
nals. Therefore the extension (1.14), as well as the other results explained below, may
potentially be useful in such fields. We note that Baxter’s inequality (1.15), hence
(1.16), is also proved for univariate and multivariate FARIMA (fractional autoregres-
sive integrated moving-average) processes, which are long-memory processes, in [14]
and [16], respectively. The FARIMA processes have singular spectral densities w

but our explicit formulas for Tn(w)−1 above also cover them since we only assume
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Explicit formulas for the inverses of Toeplitz matrices… 517

minimality in the formulas. Applications of the explicit formulas to univariate and
multivariate FARIMA processes will be discussed elsewhere. However, the problem
of proving results of the type (1.14) for FARIMA processes remains unsolved so far.

The second application of the explicit formulas for Tn(w)−1 is closed-form formu-
las for Tn(w)−1 with rationalw that corresponds to a univariate (d = 1) ormultivariate
(d ≥ 2) ARMA (autoregressive moving-average) process (Theorem 5.2). More pre-
cisely, we assume that w is of the form

w(eiθ ) = h(eiθ )h(eiθ )∗, θ ∈ [−π, π), (1.17)

where h : T → C
d×d satisfies the following condition:

the entries of h(z) are rational functions in z that have

no poles in D, and det h(z) has no zeros in D.
(1.18)

HereD := {z ∈ C : |z| ≤ 1} is the closed unit disk inC. The closed-form formulas for
Tn(w)−1 consist of several building block matrices that are of fixed sizes independent
of n. The significance of the formulas for Tn(w)−1 is that they provide us with a linear-
time, or O(n), algorithm to compute the solution Z ∈ C

dn×d to the block Toeplitz
system

Tn(w)Z = Y (1.19)

for Y ∈ C
dn×d (see Sect. 6). The famous Durbin–Levinson algorithm solves the Eq.

(1.19) for more general w in O(n2) time. Algorithms for Toeplitz linear systems that
run faster than O(n2) are called superfast. While our algorithm is restricted to the
class of w corresponding to ARMA processes, the class is important in applications,
and the linear-time algorithm is ideally superfast in the sense that there is no algorithm
faster than O(n).

Toeplitz matrices appear in a variety of fields, including operator theory, orthog-
onal polynomials on the unit circle, time series analysis, engineering, and physics.
Therefore, there is a vast amount of literature on Toeplitz matrices. Here, we refer
to [2, 3, 6, 8, 22, 23] and [24] as textbook treatments. For example, in [6, III], the
Gohberg-Semencul formulas in [7], which express the inverse of a Toeplitz matrix as
a difference of products of lower and upper triangular Toeplitz matrices, are explained.

After this work was completed, the author learned of [25] by Subba Rao and Yang,
where they also provide an explicit series expansion for Tn(w)−1 that corresponds
to a univariate stationary process satisfying some conditions (see [25], Sect. 3.2).
The main aim of [25] is to reconcile the Gaussian and Whittle likelihood, and the
series expansion in [25] is tailored to this purpose, using the complete DFT (discrete
Fourier transform) introduced in [25]. It should be noticed that Tn(w)−1 appears in
the Gaussian likelihood, while the Whittle likelihood is based on the ordinary DFT.
Since most results of the present paper directly concern Tn(w)−1, some of them may
also be useful for studies related to the Gaussian likelihood.
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518 A. Inoue

This paper is organized as follows. We state the explicit formulas for Tn(w)−1 in
Sect. 2. In Sect. 3, we first prove (1.5) and then use it to prove the explicit formulas for
Tn(w)−1. In Sect. 4, we prove (1.14) forw satisfying (1.2) and (1.6), using the explicit
formulas for Tn(w)−1. In Sect. 5, we prove the closed-form formulas for Tn(w)−1 with
w satisfying (1.18), using the explicit formulas for Tn(w)−1. In Sect. 6, we explain
how the results in Sect. 5 give a linear-time algorithm to compute the solution to (1.19).
Finally, the Appendix contains the omitted proofs of two lemmas.

2 Explicit formulas

Let Cm×n be the set of all complex m × n matrices; we write Cd for Cd×1. Let In be
the n × n unit matrix. For a ∈ C

m×n , a� denotes the transpose of a, and a and a∗ the
complex and Hermitian conjugates of a, respectively; thus, in particular, a∗ := a�.
For a ∈ C

d×d , we write ‖a‖ for the operator norm of a:

‖a‖ := sup
u∈Cd ,|u|≤1

|au|.

Here |u| := (
∑d

i=1 |ui |2)1/2 denotes the Euclidean norm of u = (u1, . . . , ud)� ∈ C
d .

For p ∈ [1,∞) and K ⊂ Z, �d×d
p (K ) denotes the space of Cd×d -valued sequences

{ak}k∈K such that
∑

k∈K ‖ak‖p < ∞. We write �d×d
p+ for �d×d

p (N ∪ {0}) and �p+ for

�1×1
p+ = �1×1

p (N ∪ {0}).
Recall σ from Sect. 1. The Hardy class H2(T) onT is the closed subspace of L2(T)

consisting of f ∈ L2(T) such that
∫ π

−π
eimθ f (eiθ )σ (dθ) = 0 for m = 1, 2, . . . .

Let Hm×n
2 (T) be the space of Cm×n-valued functions on T whose entries belong to

H2(T). Let D := {z ∈ C : |z|<1} be the open unit disk in C. We write H2(D)

for the Hardy class on D, consisting of holomorphic functions f on D such that
supr∈[0,1)

∫ π

−π
| f (reiθ )|2σ(dθ) < ∞. As usual, we identify each function f in H2(D)

with its boundary function f (eiθ ) := limr↑1 f (reiθ ), σ -a.e., in H2(T). A function h
in Hd×d

2 (T) is called outer if det h is a C-valued outer function, that is, det h satisfies
log | det h(0)| = ∫ π

−π
log | det h(eiθ )|σ(dθ) (see Definition 3.1 in [18]).

We assume that w satisfies (1.2) and (1.3). Then log detw is in L1(T) (see Sect. 3
in [16]). Therefore w has the decompositions (1.4) for two outer functions h and h�

belonging to Hd×d
2 (T), and h and h� are unique up to constant unitary factors (see

Chapter II in [21] and Theorem 11 in [10]; see also Sect. 3 in [16]). We may take
h� = h for the case d = 1 but there is no such simple relation between h and h� for
d ≥ 2. We define the outer function h̃ in Hd×d

2 (T) by

h̃(z) := {h�(z)}∗. (2.1)

All of h−1, h−1
� and h̃−1 also belong to Hd×d

2 (T) since we have assumed (1.3).

We define four Cd×d -valued sequences {ck}, {ak}, {c̃k} and {ãk} by
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Explicit formulas for the inverses of Toeplitz matrices… 519

h(z) =
∞∑

k=0

zkck, z ∈ D, (2.2)

−h(z)−1 =
∞∑

k=0

zkak, z ∈ D, (2.3)

h̃(z) =
∞∑

k=0

zk c̃k, z ∈ D, (2.4)

and

− h̃(z)−1 =
∞∑

k=0

zk ãk, z ∈ D, (2.5)

respectively. By (1.3), all of {ck}, {ak}, {c̃k} and {ãk} belong to �d×d
2+ .

We define a Cd×d -valued sequence {βk}∞k=−∞ as the (minus of the) Fourier coeffi-

cients of the phase function h∗h−1
� = h−1h∗

� :

βk = −
∫ π

−π

e−ikθh(eiθ )∗h�(e
iθ )−1 dθ

2π

= −
∫ π

−π

e−ikθh(eiθ )−1h�(e
iθ )∗ dθ

2π
, k ∈ Z. (2.6)

For n ∈ N, u ∈ {1, . . . , n} and k ∈ N, we can define the sequences {bkn,u,�}∞�=0 ∈ �d×d
2+

by the recursion

⎧
⎪⎪⎨

⎪⎪⎩

b1n,u,� = βu+�,

b2kn,u,� =
∞∑

m=0

b2k−1
n,u,mβ∗

n+1+m+�, b2k+1
n,u,� =

∞∑

m=0

b2kn,u,mβn+1+m+�

(2.7)

(see Sect. 3 below). Similarly, for n ∈ N, u ∈ {1, . . . , n} and k ∈ N, we can define the
sequences {b̃kn,u,�}∞�=0 ∈ �d×d

2+ by the recursion

⎧
⎪⎪⎨

⎪⎪⎩

b̃1n,u,� = β∗
n+1−u+�,

b̃2kn,u,� =
∞∑

m=0

b̃2k−1
n,u,mβn+1+m+�, b̃2k+1

n,u,� =
∞∑

m=0

b̃2kn,u,mβ∗
n+1+m+�.

(2.8)

Recall from Sect. 1 that (Tn(w)−1)s,t denotes the (s, t) block of Tn(w)−1. Since
Tn(w), hence Tn(w)−1, is self-adjoint, we have

(Tn(w)−1)s,t = ((Tn(w)−1)t,s)∗, s, t ∈ {1, . . . , n}. (2.9)

123



520 A. Inoue

We use the following notation:

s ∨ t := max(s, t), s ∧ t := min(s, t).

We are ready to state the explicit formulas for (Tn(w))−1.

Theorem 2.1 We assume (1.2) and (1.3). Then the following two assertions hold.

(i) For n ∈ N and s, t ∈ {1, . . . , n}, we have
(
Tn(w)−1

)s,t =
s∧t∑

�=1

ã∗
s−�ãt−�

+
t∑

u=1

∞∑

k=1

{ ∞∑

�=0

b̃2k−1
n,u,�an+1−s+� +

∞∑

�=0

b̃2kn,u,�ãs+�

}∗
ãt−u . (2.10)

(ii) For n ∈ N and s, t ∈ {1, . . . , n}, we have
(
Tn(w)−1

)s,t =
n∑

�=s∨t
a∗
�−sa�−t

+
n∑

u=t

∞∑

k=1

{ ∞∑

�=0

b2k−1
n,u,� ãs+� +

∞∑

�=0

b2kn,u,�an+1−s+�

}∗
au−t . (2.11)

The proof of Theorem 2.1 will be given in Sect. 3.

Corollary 2.1 We assume (1.2) and (1.3). Then the following two assertions hold.

(i) For n ∈ N and s, t ∈ {1, . . . , n}, we have
(
Tn(w)−1

)s,t =
s∧t∑

�=1

ã∗
s−�ãt−�

+
s∑

u=1

ã∗
s−u

∞∑

k=1

{ ∞∑

�=0

b̃2k−1
n,u,�an+1−t+� +

∞∑

�=0

b̃2kn,u,�ãt+�

}

. (2.12)

(ii) For n ∈ N and s, t ∈ {1, . . . , n}, we have
(
Tn(w)−1

)s,t =
n∑

�=s∨t
a∗
�−sa�−t

+
n∑

u=s

a∗
u−s

∞∑

k=1

{ ∞∑

�=0

b2k−1
n,u,� ãt+� +

∞∑

�=0

b2kn,u,�an+1−t+�

}

. (2.13)

Proof Thanks to (2.9), we obtain (2.12) and (2.13) from (2.10) and (2.11), respectively.
��
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Remark 2.1 Recall T∞(w) from (1.12). For n ∈ N∪{0}, we haveγ (n) = ∑∞
k=0 c̃k c̃

∗
n+k

and γ (−n) = ∑∞
k=0 c̃n+k c̃∗

k (see (2.13) in [16]), hence T∞(w) = C̃∞(C̃∞)∗, where

C̃∞ :=

⎛

⎜
⎜
⎜
⎝

c̃0 c̃1 c̃2 · · ·
c̃0 c̃1 · · ·

c̃0 · · ·
0

. . .

⎞

⎟
⎟
⎟
⎠

.

On the other hand, it follows from h̃(z)h̃(z)−1 = Id that
∑n

k=0 c̃k ãn−k = −δn0 Id for
n ∈ N ∪ {0}, hence C̃∞ Ã∞ = −I∞, where

Ã∞ :=

⎛

⎜
⎜
⎜
⎝

ã0 ã1 ã2 · · ·
ã0 ã1 · · ·

ã0 · · ·
0

. . .

⎞

⎟
⎟
⎟
⎠

, I∞ :=

⎛

⎜
⎜
⎜
⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

.

Combining, we have T∞(w)−1 = ( Ã∞)∗ Ã∞. Thus, we find that the first term∑s∧t
�=1 ã

∗
s−�ãt−� in (2.10) or (2.12) coincides with the (s, t) block of T∞(w)−1.

For n ∈ N, we define

Ãn :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ã0 ã1 ã2 · · · ãn−1
ã0 ã1 · · · ãn−2

. . .
. . .

...

. . . ã1
0 ã0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ C
dn×dn (2.14)

and

An :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 0
a1 a0

a2 a1
. . .

...
...

. . .
. . .

an−1 an−2 · · · a1 a0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ C
dn×dn . (2.15)

The next lemma will turn out to be useful in Sect. 6.

Lemma 2.1 For n ∈ N and s, t ∈ {1, . . . , n}, we have the following two equalities:
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522 A. Inoue

(
Ã∗
n Ãn

)s,t =
s∧t∑

�=1

ã∗
s−�ãt−�,

(
A∗
n An

)s,t =
n∑

�=s∨t
a∗
�−sa�−t .

The proof of Lemma 2.1 is straightforward and will be omitted.

3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We assume (1.2) and (1.3). Let {Xk} = {Xk :
k ∈ Z} be a Cd -valued, centered, weakly stationary process, defined on a probability
space (Ω,F , P), that has spectral density w, hence autocovariance function γ . Thus
we have E[Xk X∗

0] = γ (k) = ∫ π

−π
e−ikθw(eiθ )(dθ/(2π)) for k ∈ Z.

Write Xk = (X1
k , . . . , X

d
k )�, and let V be the complex Hilbert space spanned

by all the entries {X j
k : k ∈ Z, j = 1, . . . , d} in L2(Ω,F , P), which has inner

product (x, y)V := E[x y] and norm ‖x‖V := (x, x)1/2V . For J ⊂ Z such as {n},
(−∞, n] := {n, n−1, . . . }, [n,∞) := {n, n+1, . . . }, and [m, n] := {m, . . . , n}with
m ≤ n, we define the closed subspace V X

J of V by

V X
J := sp{X j

k : j = 1, . . . , d, k ∈ J }.

Let PJ and P⊥
J be the orthogonal projection operators of V onto V X

J and (V X
J )⊥,

respectively, where (V X
J )⊥ denotes the orthogonal complement of V X

J in V .
By Theorem 3.1 in [11] for d = 1 and Corollary 3.6 in [15] for general d ≥ 1, the

conditions (1.2) and (1.3) imply the following intersection of past and future property:

V X
(−∞,n] ∩ V X

[1,∞) = V X[1,n], n ∈ N. (3.1)

Let V d be the space of Cd -valued random variables on (Ω,F , P) whose entries
belong to V . The norm ‖x‖V d of x = (x1, . . . , xd)� ∈ V d is given by ‖x‖V d :=
(
∑d

i=1 ‖xi‖2V )1/2. For J ⊂ Z and x = (x1, . . . , xd)� ∈ V d , we write PJ x for
(PJ x1, . . . , PJ xd)�. We define P⊥

J x in a similar way. For x = (x1, . . . , xd)� and
y = (y1, . . . , yd)� in V d ,

〈x, y〉 := E[xy∗] = ((xk, y�)V )1≤k,�≤d ∈ C
d×d

stands for the Gram matrix of x and y.
Let

Xk =
∫ π

−π

e−ikθη(dθ), k ∈ Z,
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be the spectral representation of {Xk},whereη is aCd -valued randomspectralmeasure.
We define a d-variate stationary process {εk : k ∈ Z}, called the forward innovation
process of {Xk}, by

εk :=
∫ π

−π

e−ikθh(eiθ )−1η(dθ), k ∈ Z.

Then, {εk} satisfies 〈εn, εm〉 = δnm Id and V X
(−∞,n] = V ε

(−∞,n] for n ∈ Z, hence

(V X
(−∞,n])

⊥ = V ε
[n+1,∞), n ∈ Z.

Recall the outer function h� in H
d×d
2 (T) from (1.4).Wedefine thebackward innovation

process {ε̃k : k ∈ Z} of {Xk} by

ε̃k :=
∫ π

−π

eikθ {h�(e
iθ )∗}−1η(dθ), k ∈ Z.

Then, {ε̃k} satisfies 〈ε̃n, ε̃m〉 = δnm Id and V X
[−n,∞) = V ε̃

(−∞,n] for n ∈ Z, hence

(V X
[−n,∞))

⊥ = V ε̃
[n+1,∞), n ∈ Z

(see Sect. 2 in [16]). Moreover, by Lemma 4.1 in [16], we have

〈ε�, ε̃m〉 = −β�+m, 〈ε̃m, ε�〉 = −β∗
�+m, �,m ∈ Z. (3.2)

By (3.2), for {s�} ∈ �d×d
2+ and n ∈ N,

P⊥
[1,∞)

( ∞∑

�=0

s�εn+1+�

)

= −
∞∑

�=0

( ∞∑

m=0

smβn+1+�+m

)

ε̃�, (3.3)

P⊥
(−∞,n]

( ∞∑

�=0

s�ε̃�

)

= −
∞∑

�=0

( ∞∑

m=0

smβ∗
n+1+�+m

)

εn+1+�. (3.4)

Therefore,

{ ∞∑

m=0

smβn+1+�+m

}∞

�=0

,

{ ∞∑

m=0

smβ∗
n+1+�+m

}∞

�=0

∈ �d×d
2+ .

See Lemma 4.2 in [16]. In particular, for n ∈ N, u ∈ {1, . . . , n} and k ∈ N, we can
define the sequences {bkn,u,�}∞�=0 ∈ �d×d

2+ and {b̃kn,u,�}∞�=0 ∈ �d×d
2+ by the recursions

(2.7) and (2.8), respectively.
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By (1.2) and (1.3), {Xk} has the dual process {X ′
k : k ∈ Z}, which is a Cd -valued,

centered, weakly stationary process characterized by the biorthogonality relation

〈Xs, X
′
t 〉 = δst Id , s, t ∈ Z

(see [19]). Recall {ak} ∈ �d×d
2+ and {ãk} ∈ �d×d

2+ from (2.3) and (2.5), respectively. The
dual process {X ′

k} admits the following two MA representations (see Sect. 5 in [16]):

X ′
n = −

∞∑

�=n

a∗
�−nε�, n ∈ Z, (3.5)

X ′
n = −

∞∑

�=−n

ã∗
�+n ε̃�, n ∈ Z. (3.6)

The next theorem is the key to the proof of Theorem 2.1.

Theorem 3.1 Assume (1.2) and (1.3). Then, for n ∈ N and s, t ∈ {1, . . . , n}, we have
(1.5).

Proof Fix n ∈ N. For s ∈ {1, . . . , n}, we can write P[1,n]X ′
s = ∑n

k=1 qs,k Xk for some
qs,k ∈ C

d×d , k ∈ {1, . . . , n}. For s, t ∈ {1, . . . , n}, we have

δst Id = 〈X ′
s, Xt 〉 = 〈X ′

s, P[1,n]Xt 〉 = 〈P[1,n]X ′
s, Xt 〉 =

〈
n∑

k=1

qs,k Xk, Xt

〉

=
n∑

k=1

qs,k 〈Xk, Xt 〉 =
n∑

k=1

qs,kγ (k − t),

or QnTn(w) = Idn , where Qn := (qs,k)1≤s,k≤n ∈ C
dn×dn . Therefore, we have

Qn = Tn(w)−1. However,

〈X ′
s, P[1,n]X ′

t 〉 = 〈P[1,n]X ′
s, X

′
t 〉 =

〈
n∑

k=1

qs,k Xk, X
′
t

〉

=
n∑

k=1

qs,k〈Xk, X
′
t 〉 = qs,t .

Thus, the theorem follows. ��
Lemma 3.1 Assume (1.2) and (1.3). Then, for n ∈ N and s, t ∈ {1, . . . , n}, the fol-
lowing two equalities hold:

〈X ′
s, P[1,n]X ′

t 〉 =
n∑

�=s∨t
a∗
�−sa�−t +

n∑

u=t

〈X ′
s, P

⊥[1,n]εu〉au−t , (3.7)

〈X ′
s, P[1,n]X ′

t 〉 =
s∧t∑

�=1

ã∗
s−�ãt−� +

t∑

u=1

〈X ′
s, P

⊥[1,n]ε̃−u〉ãt−u . (3.8)
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Proof First, we prove (3.7). Since V X[1,n] ⊂ V X
(−∞,n], we have

〈X ′
s, P[1,n]X ′

t 〉 = 〈X ′
s, P[1,n]P(−∞,n]X ′

t 〉
= 〈X ′

s, P(−∞,n]X ′
t 〉 − 〈X ′

s, P
⊥[1,n]P(−∞,n]X ′

t 〉.

On the other hand, from (3.5), we have P(−∞,n]X ′
t = −∑n

m=t a
∗
m−tεm , hence

〈X ′
s, P(−∞,n]X ′

t 〉 =
〈 ∞∑

�=s

a∗
�−sε�,

n∑

m=t

a∗
m−tεm

〉

=
n∑

�=s∨t
a∗
�−sa�−t ,

and 〈X ′
s, P

⊥[1,n]P(−∞,n]X ′
t 〉 is equal to

−
〈

X ′
s, P

⊥[1,n]

(
n∑

u=t

a∗
u−tεu

)〉

= −
n∑

u=t

〈X ′
s, P

⊥[1,n]εu〉au−t .

Combining, we obtain (3.7).
Next, we prove (3.8). Since V X[1,n] ⊂ V X

[1,∞), we have

〈X ′
s, P[1,n]X ′

t 〉 = 〈X ′
s, P[1,n]P[1,∞)X

′
t 〉

= 〈X ′
s, P[1,∞)X

′
t 〉 − 〈X ′

s, P
⊥[1,n]P[1,∞)X

′
t 〉.

On the other hand, from (3.6), we have P[1,∞)X ′
t = −∑t

m=1 ã
∗
t−m ε̃−m , hence

〈X ′
s, P[1,∞)X

′
t 〉 =

〈
s∑

�=−∞
ã∗
s−�ε̃−�,

t∑

m=1

ã∗
t−m ε̃−m

〉

=
s∧t∑

�=1

ã∗
s−�ãt−�,

and 〈X ′
s, P

⊥[1,n]P[1,∞)X ′
t 〉 is equal to

−
〈

X ′
s, P

⊥[1,n]

(
t∑

u=1

ã∗
t−u ε̃−u

)〉

= −
t∑

u=1

〈X ′
s, P

⊥[1,n]ε̃−u〉ãt−u .

Combining, we obtain (3.8). ��
For n ∈ N and u ∈ {1, . . . , n}, we define the sequence {Wk

n,u}∞k=1 in V d by

W 2k−1
n,u = −P⊥

[1,∞)(P
⊥
(−∞,n]P

⊥
[1,∞))

k−1εu, k ∈ N,

W 2k
n,u = (P⊥

(−∞,n]P
⊥
[1,∞))

kεu, k ∈ N.

Lemma 3.2 We assume (1.2) and (1.3). Then, for n ∈ N and u ∈ {1, . . . , n}, we have

P⊥[1,n]εu = −
∞∑

k=1

Wk
n,u, (3.9)
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the sum converging strongly in V d .

Proof Since εu is in V X
(−∞,n], (3.9) follows from (3.1) and Theorem 3.2 in [16]. ��

Proposition 3.1 We assume (1.2) and (1.3). Then, for n ∈ N, u ∈ {1, . . . , n} and
k ∈ N, we have

W 2k−1
n,u =

∞∑

�=0

b2k−1
n,u,� ε̃�, (3.10)

W 2k
n,u =

∞∑

�=0

b2kn,u,�εn+1+�. (3.11)

Proof Note that, from the definition of Wk
n,u ,

W 2k+1
n,u = −P⊥

[1,∞)W
2k
n,u, W 2k+2

n,u = −P⊥
(−∞,n]W

2k+1
n,u .

We prove (3.10) and (3.11) by induction. First, by (3.2), we have

W 1
n,u = −P⊥

[1,∞)εu = −
∞∑

�=0

〈εu, ε̃�〉ε̃� =
∞∑

�=0

βu+�ε̃� =
∞∑

�=0

b1n,u,�ε̃�.

For k ∈ N, assume that W 2k−1
n,u = ∑∞

�=0 b
2k−1
n,u,� ε̃�. Then, by (3.4),

W 2k
n,u = −P⊥

(−∞,n]

( ∞∑

�=0

b2k−1
n,u,� ε̃�

)

=
∞∑

�=0

( ∞∑

m=0

b2k−1
n,u,mβ∗

n+1+m+�

)

εn+1+�

=
∞∑

�=0

b2kn,u,�εn+1+�,

and, by (3.3),

W 2k+1
n,u = −P⊥

[1,∞)

( ∞∑

�=0

b2kn,u,�εn+1+�

)

=
∞∑

�=0

( ∞∑

m=0

b2kn,u,mβn+1+m+�

)

ε̃�

=
∞∑

�=0

b2k+1
n,u,� ε̃�.

Thus (3.10) and (3.11) follow. ��
For n ∈ N and u ∈ {1, . . . , n}, we define the sequence {W̃ k

n,u}∞k=1 in V d by

W̃ 2k−1
n,u = −P⊥

(−∞,n](P
⊥
[1,∞)P

⊥
(−∞,n])

k−1ε̃−u, k ∈ N,

W̃ 2k
n,u = (P⊥

[1,∞)P
⊥
(−∞,n])

k ε̃−u, k ∈ N.
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Lemma 3.3 We assume (1.2) and (1.3). Then, for n ∈ N and u ∈ {1, . . . , n}, we have

P⊥[1,n]ε̃−u = −
∞∑

k=1

W̃ k
n,u, (3.12)

the sum converging strongly in V d .

Proof Since ε̃−u is in V X
[1,∞), (3.12) follows from (3.1) and Theorem 3.2 in [16]. ��

Proposition 3.2 We assume (1.2) and (1.3). Then, for n ∈ N, u ∈ {1, . . . , n} and
k ∈ N, we have

W̃ 2k−1
n,u =

∞∑

�=0

b̃2k−1
n,u,� εn+1+�, (3.13)

W̃ 2k
n,u =

∞∑

�=0

b̃2kn,u,�ε̃�. (3.14)

Proof Note that, from the definition of W̃ k
n,u ,

W̃ 2k+1
n,u = −P⊥

(−∞,n]W̃
2k
n,u, W̃ 2k+2

n,u = −P⊥
[1,∞)W̃

2k+1
n,u .

We prove (3.13) and (3.14) by induction. First, by (3.2), we have

W̃ 1
n,u = −P⊥

(−∞,n]ε̃−u = −
∞∑

�=0

〈ε̃−u, εn+1+�〉εn+1+�

=
∞∑

�=0

β∗
n+1−u+�εn+1+� =

∞∑

�=0

b̃1n,u,�εn+1+�.

For k ∈ N, assume that W̃ 2k−1
n,u = ∑∞

�=0 b̃
2k−1
n,u,� εn+1+�. Then, by (3.3),

W̃ 2k
n,u = −P⊥

[1,∞)

( ∞∑

�=0

b̃2k−1
n,u,� εn+1+�

)

=
∞∑

�=0

( ∞∑

m=0

b̃2k−1
n,u,mβn+1+m+�

)

ε̃l

=
∞∑

�=0

b̃2kn,u,�ε̃�,

and, by (3.4),

W̃ 2k+1
n,u = −P⊥

(∞,n]

( ∞∑

�=0

b̃2kn,u,�ε̃�

)

=
∞∑

�=0

( ∞∑

m=0

b̃2kn,u,mβ∗
n+1+m+�

)

εn+1+�

=
∞∑

�=0

b̃2k+1
n,u,� εn+1+�.
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Thus (3.13) and (3.14) follow. ��
We are ready to prove Theorem 2.1.

Proof (i) For n ∈ N, s, u ∈ {1, . . . , n} and k ∈ N, we see from (3.5) and (3.13) that

〈X ′
s, W̃

2k−1
n,u 〉 = −

∞∑

�=0

a∗
n+1−s+�(b̃

2k−1
n,u,� )

∗,

and from (3.6) and (3.14) that

〈X ′
s, W̃

2k
n,u〉 = −

∞∑

�=0

ã∗
s+�(b̃

2k
n,u,�)

∗.

Therefore, by Lemma 3.3, 〈X ′
s, P

⊥[1,n]ε̃−u〉 is equal to

−
∞∑

k=1

〈X ′
s, W̃

k
n,u〉 =

∞∑

k=1

{ ∞∑

�=0

b̃2k−1
n,u,�an+1−s+� +

∞∑

�=0

b̃2kn,u,�ãs+�

}∗
.

The assertion (i) follows from this, Theorem 3.1 and Lemma 3.1.
(ii) For n ∈ N, s, u ∈ {1, . . . , n} and k ∈ N, we see from (3.6) and (3.10) that

〈X ′
s,W

2k−1
n,u 〉 = −

∞∑

�=0

ã∗
s+�(b

2k−1
n,u,� )

∗,

and from (3.5) and (3.11) that

〈X ′
s,W

2k
n,u〉 = −

∞∑

�=0

a∗
n+1−s+�(b

2k
n,u,�)

∗.

Therefore, by Lemma 3.2, 〈X ′
s, P

⊥[1,n]εu〉 is equal to

−
∞∑

k=1

〈X ′
s,W

k
n,u〉 =

∞∑

k=1

{ ∞∑

�=0

b2k−1
n,u,� ãs+� +

∞∑

�=0

b2kn,u,�an+1−s+�

}∗
.

The assertion (ii) follows from this, Theorem 3.1 and Lemma 3.1. ��

4 Strong convergence result for Toeplitz systems

In this section, we use Theorem 2.1 to show a strong convergence result for solutions
of block Toeplitz systems.We assume (1.2) and (1.6). Thenw is continuous onT since
w(eiθ ) = (2π)−1 ∑

k∈Z eikθ γ (k). In particular, (1.3) is also satisfied. The conditions
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(1.2) and (1.6) also imply that all of {ak}, {ck}, {ãk} and {c̃k} belong to �d×d
1+ . See

Theorem 3.3 and (3.3) in [17]; see also Theorem 4.1 in [12]. In particular, we have
h(eiθ )−1 = −∑∞

k=0 e
ikθak and h�(eiθ ) = h̃(e−iθ )∗ = ∑∞

k=0 e
ikθ c̃∗

k , hence, by (2.6),

βk =
∞∑

j=0

a j+k c̃ j , k ∈ N ∪ {0}. (4.1)

Under (1.2) and (1.6), we define

F(n) :=
⎛

⎝
∞∑

j=0

‖c̃ j‖
⎞

⎠
∞∑

�=n

‖a�‖, n ∈ N ∪ {0}.

Then F(n) decreases to zero as n → ∞.
We need the next lemma in the proof of Theorem 4.1 below.

Lemma 4.1 Assume (1.2) and (1.6). Then, for n, k ∈ N and u ∈ {1, . . . , n}, we have
∞∑

�=0

‖b̃kn,u,�‖ ≤ F(n + 1)k−1F(n + 1 − u). (4.2)

Proof For m ∈ N, we see from (4.1) that

∞∑

�=0

‖βm+�‖ ≤
∞∑

j=0

‖c̃ j‖
∞∑

�=0

‖am+ j+�‖ ≤
∞∑

j=0

‖c̃ j‖
∞∑

�=m

‖a�‖,

hence

∞∑

�=0

‖βm+�‖ ≤ F(m). (4.3)

Let n ∈ N and u ∈ {1, . . . , n}. We use induction on k to prove (4.2). Since b̃1n,u,� =
β∗
n+1−u+�, we see from (4.3) that

∞∑

�=0

‖b̃1n,u,�‖ =
∞∑

�=0

‖βn+1−u+�‖ ≤ F(n + 1 − u).

We assume (4.2) for k ∈ N. Then, again by (4.3),

∞∑

�=0

‖b̃k+1
n,u,�‖ ≤

∞∑

m=0

‖b̃kn,u,m‖
∞∑

�=0

‖βn+1+m+�‖

≤ F(n + 1)
∞∑

m=0

‖b̃kn,u,m‖ ≤ F(n + 1)k F(n + 1 − u).
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Thus (4.2) with k replaced by k + 1 also holds. ��

For {yk}∞k=1 ∈ �d×d
1 (N), the solution Z∞ to (1.11) with (1.12) and (1.13) is given

by (1.10) with

zs =
∞∑

t=1

s∧t∑

�=1

ã∗
s−�ãt−�yt ∈ C

d×d , s ∈ N (4.4)

(see Remark 2.1 in Sect. 2). Notice that the sum in (4.4) converges absolutely.

Theorem 4.1 We assume (1.2) and (1.6). Let {yk}∞k=1 ∈ �d×d
1 (N). Then, for Zn in

(1.7)–(1.9) and Z∞ in (1.10)–(1.13), we have (1.14).

Proof By Theorem 2.1 (i), we have

zn,s =
n∑

t=1

s∧t∑

�=1

ã∗
s−�ãt−�yt +

n∑

t=1

t∑

u=1

∞∑

�=0

a∗
n+1−s+�βn+1−u+�ãt−u yt

+
n∑

t=1

t∑

u=1

∞∑

k=1

{ ∞∑

�=0

b̃2k+1
n,u,�an+1−s+� +

∞∑

�=0

b̃2kn,u,�ãs+�

}∗
ãt−u yt ,

hence, by (4.4),
∑n

s=1 ‖zn,s − zs‖ ≤ S1(n) + S2(n) + S3(n) + S4(n), where

S1(n) :=
∞∑

t=n+1

n∑

s=1

s∑

�=1

‖ãs−�‖‖ãt−�‖‖yt‖,

S2(n) :=
n∑

s=1

n∑

t=1

t∑

u=1

∞∑

�=0

‖an+1−s+�‖‖βn+1−u+�‖‖ãt−u‖‖yt‖,

S3(n) :=
n∑

s=1

n∑

t=1

t∑

u=1

∞∑

k=1

∞∑

�=0

‖b̃2k+1
n,u,�‖‖an+1−s+�‖‖ãt−u‖‖yt‖

and

S4(n) =
n∑

s=1

n∑

t=1

t∑

u=1

∞∑

k=1

∞∑

�=0

‖b̃2kn,u,�‖‖ãs+�‖‖ãt−u‖‖yt‖.
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By the change of variables m = s − � + 1, we have

S1(n) =
∞∑

t=n+1

n∑

s=1

s∑

m=1

‖ãm−1‖‖ãt+m−s−1‖‖yt‖

=
∞∑

t=n+1

‖yt‖
n∑

m=1

‖ãm−1‖
n∑

s=m

‖ãt+m−s−1‖

≤
( ∞∑

k=0

‖ãk‖
)2 ∞∑

t=n+1

‖yt‖ → 0, n → ∞.

By (4.2) with k = 1 or (4.3), we have

S2(n) =
n∑

t=1

t∑

u=1

‖ãt−u‖‖yt‖
∞∑

�=0

‖βn+1−u+�‖
n∑

s=1

‖an+1−s+�‖

≤
( ∞∑

s=1

‖as‖
)

n∑

t=1

t∑

u=1

‖ãt−u‖‖yt‖F(n + 1 − u).

Furthermore, by the change of variables v = t − u + 1, we obtain

n∑

t=1

t∑

u=1

‖ãt−u‖‖yt‖F(n + 1 − u) =
∞∑

t=1

t∑

u=1

‖ãt−u‖‖yt‖1[0,n](t)F(n + 1 − u)

=
∞∑

t=1

t∑

v=1

‖ãv−1‖‖yt‖1[0,n](t)F(n − t + v)

≤
∞∑

t=1

∞∑

v=1

‖ãv−1‖‖yt‖1[0,n](t)F(n − t + v).

Since

lim
n→∞ ‖ãv−1‖‖yt‖1[0,n](t)F(n − t + v) = 0, t, v ∈ N,

‖ãv−1‖‖yt‖1[0,n](t)F(n − t + v) ≤ F(1)‖ãv−1‖‖yt‖, t, v ∈ N,

∞∑

t=1

∞∑

v=1

‖ãv−1‖‖yt‖ < ∞,

the dominated convergence theorem yields

lim
n→∞

∞∑

t=1

∞∑

v=1

‖ãv−1‖‖yt‖1[0,n](t)F(n − t + v) = 0,

hence limn→∞ S2(n) = 0.
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Choose N ∈ N such that F(N +1) < 1. Then, by Lemma 4.1, we have, for n ≥ N ,

S3(n) =
n∑

t=1

t∑

u=1

‖ãt−u‖‖yt‖
∞∑

k=1

∞∑

�=0

‖b̃2k+1
n,u,�‖

n∑

s=1

‖an+1−s+�‖

≤ F(1)

( ∞∑

s=1

‖as‖
)

n∑

t=1

‖yt‖
t∑

u=1

‖ãt−u‖
∞∑

k=1

F(n + 1)2k

≤ F(1)

( ∞∑

s=1

‖as‖
)( ∞∑

u=0

‖ãu‖
) ( ∞∑

t=1

‖yt‖
)

F(n + 1)2

1 − F(n + 1)2
.

Thus limn→∞ S3(n) = 0. Similarly, we have, for n ≥ N ,

S4(n) ≤ F(1)

( ∞∑

s=0

‖ãs‖
)2 ( ∞∑

t=1

‖yt‖
)

F(n + 1)

1 − F(n + 1)2
,

hence limn→∞ S4(n) = 0.
Combining, we obtain (1.14). ��

5 Closed-form formulas

In this section, we use Theorem 2.1 to derive closed-form formulas for Tn(w)−1 with
rational symbol w that corresponds to a d-variate ARMA process. We assume that
the symbol w of Tn(w) is of the form (1.17) with h : T → C

d×d satisfying (1.18).
Then h is an outer function in Hd×d

2 (T), and another outer function h� ∈ Hd×d
2 (T)

that appears in (1.4) also satisfies (1.18); see Sect. 6.2 in [16]. Notice that (1.17) with
(1.18) implies (1.2) and (1.3).

We can write h(z)−1 in the form

h(z)−1 = −ρ0,0 −
K∑

μ=1

mμ∑

j=1

1

(1 − pμz) j
ρμ, j −

m0∑

j=1

z jρ0, j , (5.1)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K ∈ N ∪ {0}, mμ ∈ N, μ ∈ {1, . . . , K }, m0 ∈ N ∪ {0},
pμ ∈ D \ {0}, μ ∈ {1, . . . , K }, pμ �= pν, μ �= ν,

ρμ, j ∈ C
d×d , μ ∈ {0, . . . , K }, j ∈ {1, . . . ,mμ}, ρ0,0 ∈ C

d×d ,

ρμ,mμ �= 0, μ ∈ {1, . . . , K },
ρ0,m0 �= 0 if m0 ≥ 1.

(5.2)
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Here the convention
∑0

k=1 = 0 is adopted in the sums on the right-hand side of (5.1).
For example, if m0 = 0, then

h(z)−1 = −ρ0,0 −
K∑

μ=1

mμ∑

j=1

1

(1 − pμz) j
ρμ, j ,

while, if K = 0, then

h(z)−1 = −ρ0,0 −
m0∑

j=1

z jρ0, j (5.3)

and the corresponding stationary process {Xk} is a d-variate AR(m0) process.

Remark 5.1 It should be noticed that the expression (5.1) with (5.2) is uniquely deter-
mined, up to a constant unitary factor, from {Xk} satisfying (1.17) with (1.18) since
so is h in the factorization (1.17) with (1.18) (see Sect. 2). Suppose that we start with
a d-variate, causal and invertible ARMA process {Xk} in the sense of [4], that is, a
C
d -valued, centered, weakly stationary process described by the ARMA equation

Φ(B)Xn = Ψ (B)ξn, n ∈ Z,

where, for r , s ∈ N ∪ {0} and Φi , Ψ j ∈ C
d×d (i = 1, . . . , r , j = 1, . . . , s),

Φ(z) = Id − zΦ1 − · · · − zrΦr and Ψ (z) = Id − zΨ1 − · · · − zsΨs

are C
d×d -valued polynomials satisfying detΦ(z) �= 0 and detΨ (z) �= 0 on D, B

is the backward shift operator defined by BXm = Xm−1, and {ξk : k ∈ Z} is a
d-variate white noise, that is, a d-variate, centered process such that E[ξnξ∗

m] =
δnmV for some positive-definite V ∈ C

d×d . Notice that the pair (Φ(z), Ψ (z)) is
not uniquely determined from {Xk}; for example, we can replace (Φ(z), Ψ (z)) by
((2 − z)Φ(z), (2 − z)Ψ (z)). However, if we put h(z) = Φ(z)−1Ψ (z)V 1/2, then h is
an outer function belonging to Hd×d

2 (T) and satisfies (1.17) for the spectral density
w of {Xk}. Therefore, h is uniquely determined, up to a constant unitary factor, from
{Xk}. In particular, the expression (5.1) with (5.2) for h is also uniquely determined,
up to a constant unitary factor, from {Xk}. From these observations and the results in
[13] and this paper, we are led to the idea of parameterizing the ARMA processes by
the expression (5.1) with (5.2) (see Remark 8 in [13]). This point will be discussed in
future work.

By Theorem 2 in [13], h−1
� has the same m0 and the same poles with the same

multiplicities as h−1, that is, for m0, K and (p1,m1), . . . , (pK ,mK ) in (5.1) with
(5.2), h−1

� has the form

h�(z)
−1 = −ρ

�
0,0 −

K∑

μ=1

mμ∑

j=1

1

(1 − pμz) j
ρ

�
μ, j −

m0∑

j=1

z jρ�
0, j , (5.4)
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where

⎧
⎪⎪⎨

⎪⎪⎩

ρ
�
μ, j ∈ C

d×d , μ ∈ {0, . . . , K }, j ∈ {1, . . . ,mμ}, ρ
�
0,0 ∈ C

d×d ,

ρ�
μ,mμ

�= 0, μ ∈ {1, . . . , K },
ρ

�
0,m0

�= 0 if m0 ≥ 1.

Notice that if d = 1, then we can take h� = h, hence ρ0,0 = ρ
�
0,0 and ρμ, j = ρ

�
μ, j for

μ ∈ {1, . . . , K } and j ∈ {1, . . . ,mμ}.
Recall h̃ from (2.1). From (5.4), we have

h̃(z)−1 = −ρ̃0,0 −
K∑

μ=1

mμ∑

j=1

1

(1 − pμz) j
ρ̃μ, j −

m0∑

j=1

z j ρ̃0, j ,

where

ρ̃0,0 := (ρ
�
0,0)

∗, ρ̃μ, j := (ρ
�
μ, j )

∗, μ ∈ {0, . . . , K }, j ∈ {1, . . . ,mμ}.

Recall the sequences {ak} and {ãk} from (2.3) and (2.5), respectively. We have

an =
K∑

μ=1

mμ∑

j=1

(
n + j − 1

j − 1

)

pnμρμ, j , n ≥ m0 + 1, (5.5)

ãn =
K∑

μ=1

mμ∑

j=1

(
n + j − 1

j − 1

)

pnμρ̃μ, j , n ≥ m0 + 1 (5.6)

and

an = ρ0,n +
K∑

μ=1

mμ∑

j=1

(
n + j − 1

j − 1

)

pnμρμ, j , n ∈ {0, . . . ,m0}, (5.7)

ãn = ρ̃0,n +
K∑

μ=1

mμ∑

j=1

(
n + j − 1

j − 1

)

pnμρ̃μ, j , n ∈ {0, . . . ,m0}, (5.8)

where the convention
(0
0

) = 1 is adopted; see Proposition 4 in [13].
We first consider the case of K = 0 that corresponds to a d-variate AR(m0) process.

As can be seen from the following theorem, in this case, we have simple closed-form
formulas for Tn(w)−1.

Theorem 5.1 We assume (1.17), (1.18) and K = 0 for K in (5.1). Thus we assume
(5.3). Then the following four assertions hold.
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(i) For n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {1, . . . , n − m0}, we have

(
Tn(w)−1

)s,t =
s∧t∑

λ=1

ã∗
s−λãt−λ. (5.9)

(ii) For n ≥ m0 + 1, s ∈ {1, . . . , n − m0} and t ∈ {1, . . . , n}, we have

(
Tn(w)−1

)s,t =
s∧t∑

λ=1

ã∗
s−λãt−λ. (5.10)

(iii) For n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {m0 + 1, . . . , n}, we have

(
Tn(w)−1

)s,t =
n∑

λ=s∨t
a∗
λ−saλ−t . (5.11)

(iv) For n ≥ m0 + 1, s ∈ {m0 + 1, . . . , n} and t ∈ {1, . . . , n}, we have

(
Tn(w)−1

)s,t =
n∑

λ=s∨t
a∗
λ−saλ−t . (5.12)

Proof For w satisfying (1.17), (1.18) and K = 0, let {Xk}, {X ′
k}, {εk} and {ε̃k} be as

in Sect. 3.
(i) By (5.4) with K = 0, we have ã0 = ρ̃0, ãk = ρ̃0,k for k ∈ {1, . . . ,m0} and

ãk = 0 for k ≥ m0+1. In particular, we have
∑m0

k=0 ãk Xu+k + ε̃−u = 0 for u ∈ Z; see
(2.15) in [16]. This implies ε̃−u ∈ V X[1,n], or P⊥[1,n]ε̃−u = 0, for u ∈ {1, . . . , n − m0}.
Therefore, (5.9) follows from Theorem 3.1 and (3.8).

(iii) By (5.3), we have a0 = ρ0,0, ak = ρ0,k for k ∈ {1, . . . ,m0} and ak = 0 for
k ≥ m0 + 1. In particular,

∑m0
k=0 ak Xu−k + εu = 0 for u ∈ Z; see (2.15) in [16].

This implies εu ∈ V X[1,n], or P⊥[1,n]εu = 0, for u ∈ {m0 + 1, . . . , n}. Therefore, (5.11)
follows from Theorem 3.1 and (3.7).

(ii), (iv) By (2.9), (ii) and (iv) follow from (i) and (iii), respectively. ��

We turn to the case of K ≥ 1. In what follows in this section, for K in (5.1), we
assume

K ≥ 1.

For m1, . . . ,mK in (5.1), we define M ∈ N by

M :=
K∑

μ=1

mμ. (5.13)
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For μ ∈ {1, . . . , K }, pμ in (5.1) and i ∈ N, we define pμ,i : Z → C
d×d by

pμ,i (k) :=
(

k

i − 1

)

pk−i+1
μ Id , k ∈ Z. (5.14)

Notice that

pμ,i (0) =
(

0

i − 1

)

p−i+1
μ Id = δi,1 Id .

For n ∈ Z, we also define pn ∈ C
dM×d by the following block representation:

pn := (p1,1(n), . . . , p1,m1(n) | p2,1(n), . . . , p2,m2(n) |
· · · | pK ,1(n), . . . , pK ,mK (n))�.

Notice that

p0 = (Id , 0, . . . , 0 | Id , 0, . . . , 0| · · · | Id , 0, . . . , 0)� ∈ C
dM×d .

We define Λ ∈ C
dM×dM by

Λ :=
∞∑

�=0

p�p∗
�.

For μ, ν ∈ {1, 2, . . . , K }, we define Λμ,ν ∈ C
dmμ×dmν by the block representation

Λμ,ν :=

⎛

⎜
⎜
⎜
⎝

λμ,ν(1, 1) λμ,ν(1, 2) · · · λμ,ν(1,mν)

λμ,ν(2, 1) λμ,ν(2, 2) · · · λμ,ν(2,mν)
...

...
...

λμ,ν(mμ, 1) λμ,ν(mμ, 2) · · · λμ,ν(mμ,mν)

⎞

⎟
⎟
⎟
⎠

,

where, for i ∈ {1, . . . ,mμ} and j ∈ {1, . . . ,mν},

λμ,ν(i, j) :=
j−1∑

r=0

(
i − 1

r

)(
i + j − r − 2

i − 1

)
p j−r−1
μ pi−r−1

ν

(1 − pμ pν)
i+ j−r−1 Id ∈ C

d×d .

Then, by Lemma 3 in [13], the matrix Λ has the following block representation:

Λ =

⎛

⎜
⎜
⎜
⎝

Λ1,1 Λ1,2 · · · Λ1,K

Λ2,1 Λ2,2 · · · Λ2,K

...
...

. . .
...

ΛK ,1 ΛK ,2 · · · ΛK ,K

⎞

⎟
⎟
⎟
⎠

.
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We define, for μ ∈ {1, . . . , K } and j ∈ {1, . . . ,mμ},

θμ, j := − lim
z→pμ

1

(mμ − j)!
dmμ− j

dzmμ− j

{
(z − pμ)mμh�(z)h

†(z)−1
}

∈ C
d×d ,

(5.15)

where

h†(z) := h(1/z)∗. (5.16)

We define Θ ∈ C
dM×dM by the block representation

Θ :=

⎛

⎜
⎜
⎜
⎝

Θ1 0 · · · 0
0 Θ2 · · · 0
...

...
. . .

...

0 0 · · · ΘK

⎞

⎟
⎟
⎟
⎠

,

where, for μ ∈ {1, . . . , K }, Θμ ∈ C
dmμ×dmμ is defined by

Θμ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θμ,1 θμ,2 · · · θμ,mμ−1 θμ,mμ

θμ,2 θμ,3 · · · θμ,mμ

...
...

θμ,mμ−1 θμ,mμ

θμ,mμ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

using θμ, j in (5.15) with (5.16).
For n ∈ Z, we define Πn ∈ C

dM×dM by the block representation

Πn :=

⎛

⎜
⎜
⎜
⎝

Π1,n 0 · · · 0
0 Π2,n · · · 0
...

...
. . .

...

0 0 · · · ΠK ,n

⎞

⎟
⎟
⎟
⎠

,

where, for μ ∈ {1, . . . , K } and n ∈ Z, Πμ,n ∈ C
dmμ×dmμ is defined by

Πμ,n :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

pμ,1(n) pμ,2(n) pμ,3(n) · · · pμ,mμ(n)

pμ,1(n) pμ,2(n) · · · pμ,mμ−1(n)

. . .
. . .

...

. . . pμ,2(n)

0 pμ,1(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

using pμ,i (n) in (5.14).
The next lemma slightly extends Lemma 17 in [13].
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Lemma 5.1 We assume (1.17), (1.18) and K ≥ 1 for K in (5.1). Then, for n, k, � ∈ Z

such that n + k + � ≥ m0, we have

β∗
n+k+�+1 = p�

� ΠnΘpk,

hence

βn+k+�+1 = p∗
k(ΠnΘ)∗p�.

The proof of Lemma 5.1 is almost the same as that of Lemma 17 in [13], hence we
omit it.

For n ∈ Z, we define Gn, G̃n ∈ C
dM×dM by

Gn := ΠnΘΛ, G̃n := (ΠnΘ)∗Λ�.

Lemma 5.2 We assume (1.17), (1.18) and K ≥ 1 for K in (5.1). Then the following
two assertions hold.

(i) We assume n ≥ u ≥ m0 + 1. Then, for k ∈ N and � ∈ N ∪ {0}, we have

b2k−1
n,u,� = p∗

u−n−1(G̃nGn)
k−1(ΠnΘ)∗p�, (5.17)

b2kn,u,� = p∗
u−n−1(G̃nGn)

k−1G̃nΠnΘp�. (5.18)

(ii) We assume 1 ≤ u ≤ n − m0. Then, for k ∈ N and � ∈ N ∪ {0}, we have

b̃2k−1
n,u,� = p�−u(GnG̃n)

k−1ΠnΘp�, (5.19)

b̃2kn,u,� = p�−u(GnG̃n)
k−1Gn(ΠnΘ)∗p�. (5.20)

The proof of Lemma 5.2 will be given in the Appendix.
For n ∈ N and μ, ν ∈ {1, 2, . . . , K }, we define Ξ

μ,ν
n ∈ C

dmμ×dmν by the block
representation

Ξμ,ν
n :=

⎛

⎜
⎜
⎜
⎝

ξ
μ,ν
n (1, 1) ξ

μ,ν
n (1, 2) · · · ξ

μ,ν
n (1,mν)

ξ
μ,ν
n (2, 1) ξ

μ,ν
n (2, 2) · · · ξ

μ,ν
n (2,mν)

...
...

...

ξ
μ,ν
n (mμ, 1) ξ

μ,ν
n (mμ, 2) · · · ξ

μ,ν
n (mμ,mν)

⎞

⎟
⎟
⎟
⎠

,

where, for n ∈ N, i ∈ {1, . . . ,mμ} and j ∈ {1, . . . ,mν}, ξμ,ν
n (i, j) ∈ C

d×d is defined
by

ξμ,ν
n (i, j) :=

j−1∑

r=0

(
n + i + j − 2

r

)(
i + j − r − 2

i − 1

)
p j−r−1
μ pn+i+ j−r−2

ν

(1 − pμ pν)
i+ j−r−1 Id .
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For n ∈ N, we define Ξn ∈ C
dM×dM by

Ξn :=

⎛

⎜
⎜
⎜
⎝

Ξ
1,1
n Ξ

1,2
n · · · Ξ

1,K
n

Ξ
2,1
n Ξ

2,2
n · · · Ξ

2,K
n

...
...

. . .
...

Ξ
K ,1
n Ξ

K ,2
n · · · Ξ

K ,K
n

⎞

⎟
⎟
⎟
⎠

.

We also define ρ ∈ C
dM×d and ρ̃ ∈ C

dM×d by the block representations

ρ := (ρ�
1,1, . . . , ρ

�
1,m1

| ρ�
2,1, . . . , ρ

�
2,m2

| · · · | ρ�
K ,1, . . . , ρ

�
K ,mK

)�

and

ρ̃ := (ρ̃�
1,1, . . . , ρ̃

�
1,m1

| ρ̃�
2,1, . . . , ρ̃

�
2,m2

| · · · | ρ̃�
K ,1, . . . , ρ̃

�
K ,mK

)�

=
(
ρ

�
1,1, . . . , ρ

�
1,m1

| ρ
�
2,1, . . . , ρ

�
2,m2

| · · · | ρ
�
K ,1, . . . , ρ

�
K ,mK

)�
,

respectively. For n ∈ N, we define vn, ṽn ∈ C
dM×d by

vn :=
∞∑

�=0

p�an+�, ṽn :=
∞∑

�=0

p�ãn+�.

Then, by Lemma 5 in [13], we have

vn = Ξnρ, ṽn = Ξn ρ̃, n ≥ m0 + 1.

Moreover, if m0 ≥ 1, then we have

vn = Ξnρ +
m0−n∑

�=0

p�ρ0,n+�, ṽn = Ξn ρ̃ +
m0−n∑

�=0

p�ρ̃0,n+�, n ∈ {1, . . . ,m0}.

For n ∈ Z, we define wn, w̃n ∈ C
dM×d by

wn :=
∞∑

�=0

p�−na�, w̃n :=
∞∑

�=0

p�−nã�.

Togive closed-formexpressions forwn and w̃n , we introduce somematrices. For n ∈ Z

and μ, ν ∈ {1, 2, . . . , K }, we define Φ
μ,ν
n ∈ C

dmμ×dmν by the block representation

Φμ,ν
n :=

⎛

⎜
⎜
⎜
⎝

ϕ
μ,ν
n (1, 1) ϕ

μ,ν
n (1, 2) · · · ϕ

μ,ν
n (1,mν)

ϕ
μ,ν
n (2, 1) ϕ

μ,ν
n (2, 2) · · · ϕ

μ,ν
n (2,mν)

...
...

...

ϕ
μ,ν
n (mμ, 1) ϕ

μ,ν
n (mμ, 2) · · · ϕ

μ,ν
n (mμ,mν)

⎞

⎟
⎟
⎟
⎠

,
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where, for n ∈ Z, i = 1, . . . ,mμ and j = 1, . . . ,mν , ϕ
μ,ν
n (i, j) ∈ C

d×d is defined
by

ϕμ,ν
n (i, j) :=

i−1∑

q=0

j−1∑

r=0

(
j − 1

r

)(
r + q

q

)(
r − n

i − q − 1

)
pr+q+1−i−n
μ pr+q

ν

(1 − pμ pν)
r+q+1 Id .

For n ∈ Z, we define Φn ∈ C
dM×dM by

Φn :=

⎛

⎜
⎜
⎜
⎝

Φ
1,1
n Φ

1,2
n · · · Φ

1,K
n

Φ
2,1
n Φ

2,2
n · · · Φ

2,K
n

...
...

. . .
...

Φ
K ,1
n Φ

K ,2
n · · · Φ

K ,K
n

⎞

⎟
⎟
⎟
⎠

.

Here are closed-form expressions for wn and w̃n .

Lemma 5.3 We have

wn = Φnρ +
m0∑

�=0

p�−nρ0,�, n ∈ Z,

w̃n = Φn ρ̃ +
m0∑

�=0

p�−n ρ̃0,�, n ∈ Z.

The proof of Lemma 5.3 will be given in the Appendix.
Recall M from (5.13). For n ∈ N and s ∈ {1, . . . , n}, we define

�n,s := {wn+1−s − vn+1−s}∗(IdM − G̃nGn)
−1 ∈ C

d×dM ,

�̃n,s := {w̃s − ṽs}∗(IdM − GnG̃n)
−1 ∈ C

d×dM ,

rn,s := (ΠnΘ)∗ṽs + G̃nΠnΘvn+1−s ∈ C
dM×d

and

r̃n,s := ΠnΘvn+1−s + Gn(ΠnΘ)∗ṽs ∈ C
dM×d .

Here are closed-form formulas for (Tn(w))−1 with w satisfying (1.18) and K ≥ 1.

Theorem 5.2 We assume (1.17), (1.18) and K ≥ 1 for K in (5.1). Then the following
four assertions hold.

(i) For n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {1, . . . , n − m0}, we have
(
Tn(w)−1

)s,t = r̃∗
n,s �̃

∗
n,t +

s∧t∑

λ=1

ã∗
s−λãt−λ.
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(ii) For n ≥ m0 + 1, s ∈ {1, . . . , n − m0} and t ∈ {1, . . . , n}, we have

(
Tn(w)−1

)s,t = �̃n,s r̃n,t +
s∧t∑

λ=1

ã∗
s−λãt−λ.

(iii) For n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {m0 + 1, . . . , n}, we have

(
Tn(w)−1

)s,t = r∗
n,s�

∗
n,t +

n∑

λ=s∨t
a∗
λ−saλ−t .

(iv) For n ≥ m0 + 1, s ∈ {m0 + 1, . . . , n} and t ∈ {1, . . . , n}, we have

(
Tn(w)−1

)s,t = �n,srn,t +
n∑

λ=s∨t
a∗
λ−saλ−t .

Proof (i) We assume n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {1, . . . , n − m0}. Then, by
Lemma 5.2 (ii) above and Lemma 19 in [13], we have

t∑

u=1

∞∑

k=1

{ ∞∑

λ=0

b̃2k−1
n,u,λan+1−s+λ

}∗
ãt−u

=
t∑

u=1

∞∑

k=1

{ ∞∑

λ=0

p�−u(GnG̃n)
k−1ΠnΘpλan+1−s+λ

}∗
ãt−u

=
t∑

u=1

∞∑

k=1

{
p�−u(GnG̃n)

k−1ΠnΘvn+1−s

}∗
ãt−u

=
t∑

u=1

{
p�−u(IdM − GnG̃n)

−1ΠnΘvn+1−s

}∗
ãt−u

= v∗
n+1−s(ΠnΘ)∗(IdM − G̃∗

nG
∗
n)

−1
t∑

u=1

p−uãt−u .

Similarly, by Lemma 5.2 (ii) above and Lemma 19 in [13],

t∑

u=1

∞∑

k=1

{ ∞∑

λ=0

b̃2kn,u,λãs+λ

}∗
ãt−u = ṽ∗

s ΠnΘG∗
n(IdM − G̃∗

nG
∗
n)

−1
t∑

u=1

p−uãt−u .

However,
∑t

u=1 p−uãt−u = ∑∞
λ=0 pλ−t ãλ −∑∞

λ=0 pλãt+λ = w̃t − ṽt . Therefore, the
assertion (i) follows from Theorem 2.1 (i).
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(iii) We assume n ≥ m0 + 1, s ∈ {1, . . . , n} and t ∈ {m0 + 1, . . . , n}. Then, by
Lemma 5.2 (i) above and Lemma 19 in [13], we have

n∑

u=t

∞∑

k=1

{ ∞∑

λ=0

b2k−1
n,u,λãs+λ

}∗
au−t

=
n∑

u=t

∞∑

k=1

{ ∞∑

λ=0

p∗
u−n−1(G̃nGn)

k−1(ΠnΘ)∗pλãs+λ

}∗
au−t

=
n∑

u=t

∞∑

k=1

{
p∗
u−n−1(G̃nGn)

k−1(ΠnΘ)∗ṽs
}∗

au−t

=
n∑

u=t

{
p∗
u−n−1(IdM − G̃nGn)

−1(ΠnΘ)∗ṽs
}∗

au−t

= ṽ∗
s ΠnΘ(IdM − G∗

nG̃
∗
n)

−1
n∑

u=t

pu−n−1au−t .

Similarly, by Lemma 5.2 (i) above and Lemma 19 in [13], we have

n∑

u=t

∞∑

k=1

{ ∞∑

λ=0

b2kn,u,λan+1−s+λ

}∗
au−t

= v∗
n+1−s(ΠnΘ)∗G̃∗

n(IdM − G∗
nG̃

∗
n)

−1
n∑

u=t

pu−n−1au−t .

However,
∑n

u=t pu−n−1au−t = wn+1−t −vn+1−t . Therefore, the assertion (ii) follows
from Theorem 2.1 (ii).

(ii), (iv) By (2.9), (ii) and (iv) follow from (i) and (iii), respectively. ��

Example 5.1 Suppose that K ≥ 1, mμ = 1 for μ ∈ {1, . . . , K } and m0 = 0. Then,

h(z)−1 = −ρ0,0 −
K∑

μ=1

1

1 − pμz
ρμ,1, h�(z)

−1 = −ρ
�
0,0 −

K∑

μ=1

1

1 − pμz
ρ

�
μ,1.

We have

p�
n = (pn1 Id , . . . , p

n
K Id) ∈ C

d×dK , n ∈ Z,

ρ� = (ρ�
1,1, ρ

�
2,1, . . . , ρ

�
K ,1) ∈ C

dK×d , ρ̃� =
(
ρ

�
1,1, ρ

�
2,1, . . . , ρ

�
K ,1

)
∈ C

dK×d .
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We also have

Θ =

⎛

⎜
⎜
⎜
⎝

p1h�(p1)ρ∗
1,1 0 · · · 0

0 p2h�(p2)ρ∗
2,1 · · · 0

...
...

. . .
...

0 0 · · · pK h�(pK )ρ∗
K ,1

⎞

⎟
⎟
⎟
⎠

∈ C
dK×dK ,

Λ =

⎛

⎜
⎜
⎜
⎜
⎝

1
1−p1 p1

Id
1

1−p1 p2
Id · · · 1

1−p1 pK
Id

1
1−p2 p1

Id
1

1−p2 p2
Id · · · 1

1−p2 pK
Id

...
...

. . .
...

1
1−pK p1

Id
1

1−pK p2
Id · · · 1

1−pK pK
Id

⎞

⎟
⎟
⎟
⎟
⎠

∈ C
dK×dK ,

Πn =

⎛

⎜
⎜
⎜
⎝

pn1 Id 0 · · · 0
0 pn2 Id · · · 0
...

...
. . .

...

0 0 · · · pnK Id

⎞

⎟
⎟
⎟
⎠

∈ C
dK×dK , n ∈ Z,

Ξn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

pn1
1−p1 p1

Id
pn2

1−p1 p2
Id · · · pnK

1−p1 pK
Id

pn1
1−p2 p1

Id
pn2

1−p2 p2
Id · · · pnK

1−p2 pK
Id

...
...

. . .
...

pn1
1−pK p1

Id
pn2

1−pK p2
Id · · · pnK

1−pK pK
Id

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ C
dK×dK , n ∈ N,

Φn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p−n
1

1−p1 p1
Id

p−n
1

1−p1 p2
Id · · · p−n

1
1−p1 pK

Id
p−n
2

1−p2 p1
Id

p−n
2

1−p2 p2
Id · · · p−n

2
1−p2 pK

Id
...

...
. . .

...
p−n
K

1−pK p1
Id

p−n
K

1−pK p2
Id · · · p−n

K
1−pK pK

Id

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ C
dK×dK , n ∈ Z,

Gn = ΠnΘΛ ∈ C
dK×dK , G̃n = (ΠnΘ)∗Λ� ∈ C

dK×dK , n ∈ Z,

vn = Ξnρ ∈ C
dK×d , ṽn = Ξn ρ̃ ∈ C

dK×d , n ∈ N,

wn = Φnρ + p−nρ0,0 ∈ C
dK×d , w̃n = Φn ρ̃ + p−n ρ̃0,0 ∈ C

dK×d , n ∈ Z.

Example 5.2 In Example 5.1, we further assume d = K = 1. Then, we can write
h(z) = h�(z) = −(1 − pz)/ρ, where ρ ∈ C\{0} and p ∈ D\{0}. It follows that

c0 = −1/ρ, c1 = p/ρ, ck = 0 (k ≥ 2),

ak = ρ(p)k, ãk = ak, k ∈ N ∪ {0}.
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Since γ (k) = ∑∞
�=0 ck+�c� and γ (−k) = γ (k) for k ∈ N ∪ {0}, we have

T2(w) = 1

|ρ|2
(
1 + |p|2 −p

−p 1 + |p|2
)

,

hence

T2(w)−1 = |ρ|2
1 + |p|2 + |p|4

(
1 + |p|2 p

p 1 + |p|2
)

.

We also have

Ã2 = ρ

(
1 p
0 1

)

and A2 = ρ

(
1 0
p 1

)

for Ã2 and A2 in (2.14) and (2.15), respectively. By simple calculations, we have

(�2,1, �2,2) = ρ

(p)2(1 − |p|6) (1 + |p|2, p),
(
�̃2,1, �̃2,2

)
= (

�2,2, �2,1
)
,

(r2,1, r2,2) = −ρ p|p|2(1 − |p|2)(p(1 + |p|2), |p|2), (
r̃2,1, r̃2,2

) = (
r2,2, r2,1

)

hence

T2(w)−1 = Ã∗
2 Ã2 +

(
�̃2,1

�̃2,2

)
(
r̃2,1, r̃2,2

) = A∗
2A2 +

(
�2,1
�2,2

)
(
r2,1, r2,2

)

which agrees with equalities in Theorem 5.2.

6 Linear-time algorithm

As in Sect. 5, we assume (1.17) and (1.18). Let K be as in (5.1) with (5.2). In this
section, we explain how Theorems 5.1 and 5.2 above provide us with a linear-time
algorithm to compute the solution Z to the block Toeplitz system (1.19).

For

Y = (y�
1 , . . . , y�

n )� ∈ C
dn×d with ys ∈ C

d×d , s ∈ {1, . . . , n}, (6.1)

let

Z = (z�1 , . . . , z�n )� ∈ C
dn×d with zs ∈ C

d×d , s ∈ {1, . . . , n},

be the solution to (1.19), that is, Z = Tn(w)−1Y . For m0 in (5.1), let n ≥ 2m0 + 1 so
that n − m0 ≥ m0 + 1 holds.
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Recall Ãn and An from (2.14) and (2.15), respectively. If K = 0, then it follows
from Lemma 2.1 and Theorem 5.1 (ii), (iv) that

zs = α̃n,s, s ∈ {1, . . . , n − m0},
zs = αn,s, s ∈ {m0 + 1, . . . , n},

where

(α̃�
n,1, . . . , α̃

�
n,n)

� := Ã∗
n ÃnY with α̃n,s ∈ C

d×d , s ∈ {1, . . . , n},
(α�

n,1, . . . , α
�
n,n)

� := A∗
n AnY with αn,s ∈ C

d×d , s ∈ {1, . . . , n}.

On the other hand, if K ≥ 1, then we see from Lemma 2.1 and Theorem 5.2 (ii), (iv)
that

zs = �̃n,s R̃n + α̃n,s, s ∈ {1, . . . , n − m0},
zs = �n,s Rn + αn,s, s ∈ {m0 + 1, . . . , n},

where

R̃n :=
n∑

t=1

r̃n,t yt ∈ C
d×d , Rn :=

n∑

t=1

rn,t yt ∈ C
d×d .

Therefore, algorithms to compute Ã∗
n ÃnY and A∗

n AnY in O(n) operations imply that
of Z . We present the former ones below.

For n ∈ N∪ {0}, μ ∈ {1, . . . , K } and j ∈ {1, . . . ,mμ}, we define qμ, j (n) ∈ C
d×d

by qμ, j (n) := pμ, j (n + j − 1), that is,

qμ, j (n) =
(
n + j − 1

j − 1

)

pnμ Id . (6.2)

For n ∈ N, μ ∈ {1, . . . , K } and j ∈ {1, . . . ,mμ}, we define the upper trianglular
block Toeplitz matrix Qμ, j,n ∈ C

dn×dn by

Qμ, j,n :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

qμ, j (0) qμ, j (1) qμ, j (2) · · · qμ, j (n − 1)
qμ, j (0) qμ, j (1) · · · qμ, j (n − 2)

. . .
. . .

...

. . . qμ, j (1)
0 qμ, j (0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Notice that

Q∗
μ, j,n :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q∗
μ, j (0) 0

q∗
μ, j (1) q∗

μ, j (0)

q∗
μ, j (2) q∗

μ, j (1)
. . .

...
...

. . .
. . .

q∗
μ, j (n − 1) q∗

μ, j (n − 2) · · · q∗
μ, j (1) q

∗
μ, j (0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with q∗
μ, j (n) = (n+ j−1

j−1

)
pnμ Id . For n ∈ N, μ ∈ {1, . . . , K } and j ∈ {1, . . . ,mμ}, we

define the block diagonal matrices D̃μ, j,n ∈ C
dn×dn and Dμ, j,n ∈ C

dn×dn by

D̃μ, j,n :=

⎛

⎜
⎜
⎜
⎝

ρ̃μ, j 0 · · · 0
0 ρ̃μ, j · · · 0
...

...
. . .

...

0 0 · · · ρ̃μ, j

⎞

⎟
⎟
⎟
⎠

and Dμ, j,n :=

⎛

⎜
⎜
⎜
⎝

ρμ, j 0 · · · 0
0 ρμ, j · · · 0
...

...
. . .

...

0 0 · · · ρμ, j

⎞

⎟
⎟
⎟
⎠

,

respectively. Moreover, for n ≥ m0 + 1, we define the upper and lower triangular
block Toeplitz matrices Δ̃n ∈ C

dn×dn and Δn ∈ C
dn×dn by

Δ̃n :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ̃0,0 ρ̃0,1 · · · ρ̃0,m0 0

ρ̃0,0 ρ̃0,1
. . .

. . .
. . . ρ̃0,m0

. . .
. . .

...

ρ̃0,0 ρ̃0,1
0 ρ̃0,0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

Δn :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ0,0 0
ρ0,1 ρ0,0

... ρ0,1
. . .

ρ0,m0

. . .
. . .

. . .
. . . ρ0,0

0 ρ0,m0 · · · ρ0,1 ρ0,0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

respectively. Note that both Δ̃n and Δn are sparse matrices in the sense that they have
only O(n) nonzero elements.
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By (5.5)–(5.8), we have

Ãn = Δ̃n +
K∑

μ=1

mμ∑

j=1

Qμ, j,n D̃μ, j,n, n ≥ m0 + 1,

An = Δn +
K∑

μ=1

mμ∑

j=1

Q∗
μ, j,nDμ, j,n, n ≥ m0 + 1.

Therefore, it is enough to give linear-time algorithms to compute Qμ,i,nY and Q∗
μ,i,nY

for Y ∈ C
dn×d in O(n) operations. The following two propositions provide such

linear-time algorithms.

Proposition 6.1 Let n ∈ N, μ ∈ {1, . . . , K } and Y be as in (6.1). We put
Zμ,i = Qμ,i,nY for i ∈ {1, . . . ,mμ}. Then the component blocks zμ,i (s) of
Zμ,i = (z�μ,i (1), . . . , z

�
μ,i (n))� satisfy the following equalities:

zμ,i (n) = qμ,i (0)yn, i ∈ {1, . . . ,mμ}, (6.3)

zμ,1(s) = pμzμ,1(s + 1) + qμ,1(0)ys, s ∈ {1, . . . , n − 1} (6.4)

zμ,i (s) = pμzμ,i (s + 1) + zμ,i−1(s) + {qμ,i (0) − qμ,i−1(0)}ys,
i ∈ {2, . . . ,mμ}, s ∈ {1, . . . , n − 1}. (6.5)

Proof From the definition of Qμ,i,n , (6.3) is trivial. For qμ,i (k) in (6.2), Pascal’s rule
yields the following recursions:

qμ,1(k + 1) = pμqμ,1(k), k ∈ N ∪ {0}, (6.6)

qμ,i (k + 1) = pμqμ,i (k) + qμ,i−1(k + 1), i ∈ {2, . . . , j}, k ∈ N ∪ {0}. (6.7)

For s ∈ {1, . . . , n − 1}, we see, from (6.6),

zμ,1(s) = qμ,1(0)ys +
n−s−1∑

t=0

qμ,1(t + 1)ys+t+1

= qμ,1(0)ys + pμ

n−s−1∑

t=0

qμ,1(t)ys+t+1 = qμ,1(0)ys + pμzμ,1(s + 1),

and, from (6.7),

zμ,i (s) = qμ,i (0)ys +
n−s−1∑

t=0

qμ,i (t + 1)ys+t+1

= {qμ,i (0) − qμ,i−1(0)}ys + pμ

n−s−1∑

t=0

qμ,1(t)ys+t+1 +
n−s∑

t=0

qμ,i−1(t)ys+t

= {qμ,i (0) − qμ,i−1(0)}ys + pμzμ,i (s + 1) + zμ,i−1(s)
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for i ∈ {2, . . . , j}. Thus, (6.4) and (6.5) follow. ��
By Proposition 6.1, we can compute zμ,i (s) in the following order in O(n) opera-

tions:

zμ,1(n) → · · · → zμ,1(1) → zμ,2(n) → · · · → zμ,2(1)

→ · · · → zμ,mμ(n) → · · · → zμ,mμ(1).

Proposition 6.2 Let n ∈ N, μ ∈ {1, . . . , K } and Y be as in (6.1). We put
Wμ,i = Q∗

μ,i,nY for i ∈ {1, . . . ,mμ}. Then the component blocks wμ,i (s) of

Wμ,i = (w�
μ,i (1), . . . , w

�
μ,i (n))� satisfy the following equalities:

wμ,i (1) = q∗
μ,i (0)y1, i ∈ {1, . . . ,mμ},

wμ,1(s + 1) = pμwμ,1(s) + q∗
μ,1(0)ys+1, s ∈ {1, . . . , n − 1}

wμ,i (s + 1) = pμwμ,i (s) + wμ,i−1(s + 1) + {q∗
μ,i (0) − q∗

μ,i−1(0)}ys+1,

i ∈ {2, . . . ,mμ}, s ∈ {1, . . . , n − 1}.

The proof of Proposition 6.2 is similar to that of Proposition 6.1; we omit it.
By Proposition 6.2, we can compute wμ,i (s) in the following order in O(n) oper-

ations:

wμ,1(1) → · · · → wμ,1(n) → wμ,2(1) → · · · → wμ,2(n)

→ · · · → wμ,mμ(1) → · · · → wμ,mμ(n).
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A Proofs of Lemmas 5.2 and 5.3

As in Sect. 5, we assume (1.17) and (1.18). We use the same notation as in Sect. 5.
For K in (5.1) with (5.2), we assume K ≥ 1.

We prove Lemma 5.2.

Proof (i) We assume n ≥ u ≥ m0 +1, and prove (5.17) and (5.18) by induction. First,
from Lemma 5.1,

b1n,u,� = βu+l = p∗
u−n−1(ΠnΘ)∗p�.
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Next, for k = 1, 2, . . . , we assume (5.17). Then, by Lemma 5.1,

b2kn,u,� =
∞∑

m=0

b2k−1
n,u,mβ∗

n+1+m+�

= p∗
u−n−1(G̃nGn)

k−1(ΠnΘ)∗
( ∞∑

m=0

pmp
�
m

)

ΠnΘp�

= p∗
u−n−1(G̃nGn)

k−1(ΠnΘ)∗Λ�ΠnΘp� = p∗
u−n−1(G̃nGn)

k−1G̃nΠnΘp�

or (5.18). From this as well as Lemma 5.1,

b2k+1
n,u,� =

∞∑

m=0

b2kn,u,mβn+1+m+�

= p∗
u−n−1(G̃nGn)

k−1G̃nΠnΘ

( ∞∑

m=0

pmp∗
m

)

(ΠnΘ)∗p�

= p∗
u−n−1(G̃nGn)

k−1G̃nΠnΘΛ(ΠnΘ)∗p� = p∗
u−n−1(G̃nGn)

k(ΠnΘ)∗p�

or (5.17) with k replaced by k + 1. Thus (5.17) and (5.18) follow.
(ii) We assume 1 ≤ u ≤ n − m0, and prove (5.19) and (5.20) by induction. First,

from Lemma 5.1,

b̃1n,u,� = β∗
n+1−u+� = p�−uΠnΘp�.

Next, for k = 1, 2, . . . , we assume (5.19). Then, by Lemma 5.1,

b̃2kn,u,� =
∞∑

m=0

b̃2k−1
n,u,mβn+1+m+�

= p�−u(GnG̃n)
k−1ΠnΘ

( ∞∑

m=0

pmp∗
m

)

(ΠnΘ)∗p�

= p�−u(GnG̃n)
k−1ΠnΘΛ(ΠnΘ)∗p� = p�−u(GnG̃n)

k−1Gn(ΠnΘ)∗p�

or (5.20). From this as well as Lemma 5.1,

b̃2k+1
n,u,� =

∞∑

m=0

b̃2kn,u,mβ∗
n+1+m+� = p�−u(GnG̃n)

k−1Gn(ΠnΘ)∗
( ∞∑

m=0

pmp
�
m

)

ΠnΘp�

= p�−u(GnG̃n)
k−1Gn(ΠnΘ)∗Λ�ΠnΘp� = p�−u(GnG̃n)

kΠnΘp�

or (5.19) with k replaced by k + 1. Thus (5.19) and (5.20) follow. ��
To prove Lemma 5.3, we need some propositions.

123



550 A. Inoue

Proposition A.1 For m, n ∈ Z, i, j ∈ N ∪ {0} and x, y ∈ D, we have

1

i ! j !
(

∂

∂x

)i (
∂

∂ y

) j xm yn

1 − xy

=
i∑

q=0

j∑

r=0

(
n

j − r

)(
q + r

q

)(
m + r

i − q

)
xm+q+r−i yn+q+r− j

(1 − xy)q+r+1 .

Proof Let m, n ∈ Z, i, j ∈ N ∪ {0} and x, y ∈ D. Then, we have

1

j !
(

∂

∂ y

) j yn

1 − xy
=

j∑

r=0

{
1

r !
(

∂

∂ y

)r 1

1 − xy

} {
1

( j − r)!
(

∂

∂ y

) j−r

yn
}

=
j∑

r=0

(
n

j − r

)
xr yn+r− j

(1 − xy)r+1 ,

hence

1

i ! j !
(

∂

∂x

)i (
∂

∂ y

) j xm yn

1 − xy

=
j∑

r=0

(
n

j − r

)

yn+r− j
i∑

q=0

{
1

q!
(

∂

∂x

)q 1

(1 − xy)r+1

}{
1

(i − q)!
(

∂

∂x

)i−q

xm+r

}

=
j∑

r=0

(
n

j − r

)

yn+r− j
i∑

q=0

{(
q + r

q

)
yq

(1 − xy)q+r+1

} {(
m + r

i − q

)

xm+q+r−i
}

=
i∑

q=0

j∑

r=0

(
n

j − r

)(
q + r

q

)(
m + r

i − q

)
xm+q+r−i yn+q+r− j

(1 − xy)q+r+1 .

Thus, the proposition follows. ��
Proposition A.2 For n ∈ Z, i, j ∈ N ∪ {0} and x, y ∈ D, we have

∞∑

�=0

(
n + �

i

)(
j + �

j

)

xn+�−i y� =
i∑

q=0

j∑

r=0

(
j

r

)(
r + q

q

)(
n + r

i − q

)
xn+r+q−i yr+q

(1 − xy)r+q+1 .

Proof Letn ∈ Z, i, j ∈ N∪{0} and x, y ∈ D. Since xn y j/(1−xy) = ∑∞
�=0 x

n+�y j+�,
we have

1

i ! j !
(

∂

∂x

)i (
∂

∂ y

) j xn y j

1 − xy
=

∞∑

�=0

(
n + �

i

)(
j + �

j

)

xn+�−i y�.
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On the other hand, by Proposition A.1, we have

1

i ! j !
(

∂

∂x

)i (
∂

∂ y

) j xn y j

1 − xy
=

i∑

q=0

j∑

r=0

(
j

r

)(
r + q

q

)(
n + r

i − q

)
xn+r+q−i yr+q

(1 − xy)r+q+1 .

Comparing, we obtain the proposition. ��
We are ready to prove Lemma 5.3.

Proof By (5.5)–(5.8) and Proposition A.2, we have, for n ∈ Z, μ ∈ {1, . . . , K } and
i ∈ {1, . . . ,mμ},

∞∑

�=0

pμ,i (� − n)a� =
m0∑

�=0

pμ,i (� − n)ρ0,�

+
K∑

ν=1

mν∑

j=1

{ ∞∑

�=0

(
� − n

i − 1

)(
� + j − 1

j − 1

)

p�−i+1−n
μ p�

ν

}

ρν, j

=
m0∑

�=0

pμ,i (� − n)ρ0,� +
K∑

ν=1

mν∑

j=1

ϕμ,ν
n (i, j)ρν, j

and

∞∑

�=0

pμ,i (� − n)ã� =
m0∑

�=0

pμ,i (� − n)ρ̃0,�

+
K∑

ν=1

mν∑

j=1

{ ∞∑

�=0

(
� − n

i − 1

)(
� + j − 1

j − 1

)

p�−i+1−n
μ p�

ν

}

ρ̃ν, j

=
m0∑

�=0

pμ,i (� − n)ρ̃0,� +
K∑

ν=1

mν∑

j=1

ϕμ,ν
n (i, j)ρ̃ν, j .

Thus, the lemma follows. ��
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