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Abstract
The free multiplicative Brownian motion bt is the large-N limit of the Brownian
motion on GL(N ;C), in the sense of ∗-distributions. The natural candidate for the
large-N limit of the empirical distribution of eigenvalues is thus the Brown measure
of bt . In previous work, the second and third authors showed that this Brown measure
is supported in the closure of a region �t that appeared in the work of Biane. In the
present paper, we compute the Brown measure completely. It has a continuous density
Wt on �t , which is strictly positive and real analytic on �t . This density has a simple
form in polar coordinates:

Wt (r , θ) = 1

r2
wt (θ),

wherewt is an analytic function determined by the geometry of the region�t .We show
also that the spectral measure of free unitary Brownian motion ut is a “shadow” of the
Brown measure of bt , precisely mirroring the relationship between the circular and
semicircular laws. We develop several new methods, based on stochastic differential
equations and PDE, to prove these results.
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1 Introduction

1.1 The Brownmeasure

Let (A, τ ) be a tracial von Neumann algebra: a von Neumann algebraA together with
a faithful, normal, tracial state τ : A → C. Such algebras frequently arise from large-
N limits of random matrix models, with τ playing the role of the normalized trace for
matrices. For an element a of A, the notion of the empirical eigenvalue distribution
of a matrix is then played by the Brown measure of a, defined as follows [5]. We let

sa(λ) = τ [log((a − λ)∗(a − λ))], (1.1)

which is defined as a finite real number for almost every λ. (The quantity sa(λ) is
twice the logarithm of the Fuglede–Kadison determinant [9, 10] of a − λ.) Then sa
is a subharmonic function and the Brown measure μa of a is defined in terms of the
distributional Laplacian of sa :

μa = 1

4π
	sa(λ).
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The Brown measure of the free multiplicative Brownian motion 211

The definition of the Brown measure is the operator-algebra counterpart to Girko’s
method [11] of computing the empirical eigenvalue distribution of a random matrix.

By regularizing the right-hand side of (1.1), one can construct the Brown measure
μa as a weak limit,

dμa(λ) = lim
ε→0+

1

4π
	λτ [log[(a − λ)∗(a − λ) + ε)] dλ, (1.2)

where 	λ is the Laplacian with respect to λ and dλ is the Lebesgue measure on the
plane (see [23, Section 11.5] and [18, Eq. (2.11)]). Here, the positive parameter ε

regularizes the logarithm, so that τ [log[(a − λ)∗(a − λ) + ε)] is a smooth function of
λ ∈ C.

In general,μa is a probability measure supported on the spectrum of a. If a happens
to be a normal operator, μa coincides with the law (or distribution) of a. That is to
say, if a is normal, μa(E) = τ(Pa(E)), where Pa is the projection-valued measure
associated to a by the spectral theorem.

1.2 The free unitary andmultiplicative Brownianmotions

Let σt be a free semicircular Brownian motion (e.g., [4, Section 1.1]) and let ct be
a free circular Brownian motion, which may be constructed as ct = (xt + iyt )/

√
2,

where xt and yt are freely independent semicircular Brownian motions. These are
the large-N limits, in the sense of ∗-distribution, of Brownian motions in the space
of Hermitian N × N matrices and in the space of all N × N matrices, respectively.
We then introduce the free unitary Brownian motion ut and the free multiplicative
Brownian motion bt given by the free stochastic differential equations

dut = iut dσt − 1
2ut dt

dbt = bt dct ,

both starting at 1. These processes are the large-N limits of Brownian motions in
the unitary group and in the general linear group, respectively. (For the free unitary
Brownian motion, this limiting result is due to Biane, while for the free multiplicative
Brownian motion it was conjectured by Biane [3] and proved by the third author [20]).

Biane also computed the law νt of ut . We now record this result, since it relates
directly to the results of the present paper (Sect. 2.2). Let ft denote the holomorphic
function on C\{1} defined by

ft (λ) = λe
t
2
1+λ
1−λ . (1.3)

Then ft has a holomorphic inverseχt in the open unit disk, andχt extends continuously
to the closed unit disk. Biane showed that

χt = ψut

1 + ψut

where ψut (z) = τ [(1 − zut )−1] − 1 is the (recentered) moment-generating function
of ut . From this (and other SDE computations) he determined the following result.
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212 B. K. Driver et al.

Theorem 1.1 (Biane [2, 3]). The spectral measure νt of the free unitary Brownian
motion ut is supported in the arc{

eiφ
∣∣∣ |φ| ≤ φmax(t) := 1

2

√
(4 − t)t + cos−1(1 − t/2)

}

for t<4, and is fully supported on the circle for t≥4. The measure νt has a continuous
density κt , which is real analytic on the interior of its support arc, given by

κt (e
iφ) = 1

2π

1 − ∣∣χt (eiφ)
∣∣2∣∣1 − χt (eiφ)
∣∣2 .

See, for example, p. 275 in [3]. In the present paper, we compute the Brownmeasure
μbt of the freemultiplicativeBrownian motion and show a direct relationship between
μbt and the law νt of the free unitary Brownian motion ut (Sect. 2.2).

1.3 The Brownmeasure of bt

The main result of this paper is a formula for the Brown measure μbt of the free
multiplicative Brownian motion bt .

Aprevious result [18] of the second and third authors showed that the support ofμbt
is contained in closure of a certain region�t introduced by Biane in [3]; see Fig. 1 and
Definition 2.1. (We reprove that result in the present paper by a different method; see
Theorem 6.2 in Sect. 6.2). Nonrigorous results on the support of the Brown measure
were also obtained in the physics literature by Gudowska-Nowak et al. [13] and then
by Lohmayer et al. [22]. None of the results mentioned in this paragraph say anything
about the actual Brown measure itself—only about its support.

We conjecture that the Brown measure of bt coincides with the limiting eigenvalue
distribution of the corresponding Brownian motion BN

t in the general linear group
(see Fig. 2). Proving such results is, however, well known to be a difficult problem,
which we do not address here.

Since the first version of this paper appeared on the arXiv, four subsequent works
have appeared that use the techniques developed here to analyze Brown measures of
other operators. First,work ofHo andZhong [19] has extended the results of the present
paper to the case of a free multiplicative Brownian motion with an arbitrary unitary
initial condition. This means that they compute the Brown measure of ubt , where u
is a unitary element freely independent of bt . Ho and Zhong also compute the Brown
measure of x0+ct ,where ct is a free circular Brownian motion and x0 is a self-adjoint
element freely independent of ct . Second, Demni and Hamdi [7] have computed the
support of theBrownmeasure ofut P,whereut is the free unitaryBrownianmotion and
P is a projection freely independent of ut . Third, Hall and Ho [16] have computed the
Brownmeasure of x0+iσt ,whereσt is the free semicircularBrownianmotion and x0 is
a self-adjoint element freely independent of xt . Last, Hall and Ho [17] have computed
theBrown of ubs,τ , where bs,τ is a family ofmultiplicativeBrownianmotions allowing
different diffusion rates in the Hermitian and skew-Hermitian directions and where u
is freely independent of bs,τ .
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The Brown measure of the free multiplicative Brownian motion 213

Fig. 1 The first three images show �t for t = 3, t = 4, and t = 4.1, with the unit circle indicated for
comparison. The last image shows a detail of the t = 4 case

Fig. 2 The Brown measure μbt (left) and the eigenvalues of a simulation of the corresponding Brownian

motion BN
t (right), for t = 1 and N = 2000
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214 B. K. Driver et al.

The reader may also consult the expository article [15] by the second author, which
provides a nontechnical introduction to the techniques used in the present paper. See
also the paper [12] of Grela, Nowak, and Tarnowski that explains the PDE method
from a physical perspective.

2 Statement of main results

2.1 A formula for the Brownmeasure

To state our main result, we need to briefly describe the regions �t . For each t > 0,
consider the holomorphic function ft on C\{1} defined by (1.3). It is easily verified
that if |λ| = 1 then | ft (λ)| = 1. There are, however, other points where | ft (λ)| = 1.
We then define

Ft = {λ ∈ C ||λ| �= 1, | ft (λ)| = 1 } (2.1)

and

Et = Ft . (2.2)

Definition 2.1 For each t > 0, we define �t to be the connected component of the
complement of Et containing 1.

We will show (Theorem 3.1) that �t may also be characterized as

�t = {λ ∈ C| T (λ) < t} , (2.3)

where T (λ) = |λ − 1|2 log(|λ|2)/(|λ|2 − 1). Each region �t is invariant under the
maps λ 	→ 1/λ and λ 	→ λ̄. If we consider a ray from the origin with angle θ, if this
ray intersects �t at all, it does so in an interval of the form 1/rt (θ) < r < rt (θ) for
some rt (θ) > 1 (see Figs. 3 and 4). See Sect. 3 for more information.

We are now ready to state our main result.

Theorem 2.2 For all t > 0, the Brown measureμbt of bt is absolutely continuous with
respect to the Lebesgue measure on the plane and μbt (�t ) = 1. In �t , the density Wt

of μbt with respect to the Lebesgue measure is strictly positive and real analytic, with
the following form in polar coordinates:

Wt (r , θ) = 1

r2
wt (θ) (2.4)

for a certain even function wt . This function may be computed as

wt (θ) = 1

4π

(
2

t
+ ∂

∂θ

2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ

)
(2.5)

where rt (θ) is the larger of the two radii where the ray with angle θ intersects the
boundary of �t .
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The Brown measure of the free multiplicative Brownian motion 215

Fig. 3 We let rt (θ) denote the
larger of the two radii where the
ray with angle θ intersects ∂�t .

Shown for t = 1.5

Fig. 4 Graphs of rt (θ) (black) and 1/rt (θ) (dashed) for t = 2, 3.5, 4, and 7

Since�t is invariant under λ 	→ λ̄, the function rt (θ) is an even function of θ , from
which it is easy to check that the second term on the right-hand side of of (2.5) is also
an even function of θ. Although we will customarily let rt (θ) denote the larger of the
the two radii where the ray with angle θ intersects the boundary of �t , we note that
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216 B. K. Driver et al.

r 	→ 2r sin θ

r2 + 1 − 2r cos θ
(2.6)

is invariant under r 	→ 1/r . Thus, the value of wt does not actually depend on which
radius is used. It is noteworthy that the one nonexplicit part of the formula for wt ,

namely the second term on the right-hand side of (2.5), is computable entirely in
terms of the geometry of the region �t . According to Proposition 7.5, wt can also be
computed as a logarithmic derivative along the boundary of �t of the function ft in
(1.3).

It follows from (2.3) that the function T equals t on the boundary of �t . It is then
possible to use implicit differentiation in the equation T (λ) = t to compute drt (θ)/dθ

as a function of rt (θ) and θ. We may then use this computation to rewrite (2.5) in a
form that no longer involves a derivative with respect to θ, as follows.

Proposition 2.3 The function wt in Theorem 2.2 may also be computed in the form

wt (θ) = 1

2π t
ω(rt (θ), θ).

Here

ω(r , θ) = 1 + h(r)
α(r) cos θ + β(r)

β(r) cos θ + α(r)
, (2.7)

where

h(r) = r
log(r2)

r2 − 1
; α(r) = r2 + 1 − 2rh(r); β(r) = (r2 + 1)h(r) − 2r .

Thus, to compute wt (θ), we evaluate ω/(2π t) on the boundary of �t and then
parametrize the boundary by the angle θ ; see Fig. 5. Using Proposition 2.3, we can
derive small- and large-t asymptotics of wt (θ) as follows:

wt (θ) ∼ 1

π t
, t small;

wt (θ) ∼ 1

2π t
, t large.

See Sect. 7 for details.
The following simple consequences of Theorem 2.2 help to explain the significance

of the factor of 1/r2 in the formula (2.4) for Wt .

Corollary 2.4 The Brown measure μbt of bt has the following properties.

(1) μbt is invariant under the maps λ 	→ 1/λ and λ 	→ λ̄.
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The Brown measure of the free multiplicative Brownian motion 217

Fig. 5 The function wt (θ) is computed by evaluating ω on the boundary of �t and parametrizing the
boundary by the angle θ . Shown for t = 2

(2) Let �t denote the image of �t\(−∞, 0) under the complex logarithm map, using
the standard branch cut along the negative real axis. We write points z ∈ �t as
(ρ, θ). Then for points in �t , the pushforward of μbt by the logarithm map has
density ωt (ρ, θ) given by

ωt (ρ, θ) = wt (θ),

independent of ρ.

Proof As we have stated above, the region �t is invariant under the maps λ 	→ 1/λ
and λ 	→ λ̄. The invariance of μbt under λ 	→ λ̄ follows from the fact that wt is even.
Now, we may compute μbt in polar coordinates as

dμbt =
(
1

r2
wt (θ)

)
r dr dθ = wt (θ)

1

r
dr dθ = wt (θ) d(log r) dθ,

where log r and θ are the real and imaginary parts of the complex logarithm of λ =
reiθ , as claimed in Point 2. The invariance of the measure under λ 	→ 1/λ, that is,
under (r , θ) 	→ (1/r ,−θ) is now evident. �

Plots ofwt (θ) are shown in Fig. 6. Note that for t < 4, not all angles θ actually occur
in the domain �t . Thus, for t < 4, the function wt (θ) is only defined for θ in a certain
interval (−θmax(t), θmax(t))—where, as shown in Sect. 3, θmax(t) = cos−1(1− t/2).
Plots of Wt for t = 1 and t = 4 are then shown in Fig. 7. Actually, when t = 1,
the function wt is almost constant. Thus, the variation in Wt in the top part of Fig. 7
comes almost entirely from the variation in the factor of 1/r2 in (2.4).

We also observe that, by Point 1 of Corollary 2.4, half the mass of μbt is contained
in the unit disk and half in the complement of the unit disk. Thus, although the density
Wt becomes large near the origin when t = 4, it is not correct to say that most of the
mass of μbt is near the origin.
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218 B. K. Driver et al.

Fig. 6 Plots of wt (θ) for t = 2, 3.5, 4 and 7

Fig. 7 The density Wt with t = 1 (top) and t = 4 (bottom)
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The Brown measure of the free multiplicative Brownian motion 219

2.2 A connection to free unitary Brownianmotion

It follows easily from Theorem 2.2 that the distribution of the argument of λ with
respect to μbt has a density given by

at (θ) = 2 log[rt (θ)]wt (θ), (2.8)

where, as in Theorem 2.2, we take rt (θ) to be the outer radius of the domain (with
rt (θ) > 1). After all, the Brown measure in the domain is computed in polar coordi-
nates as (1/r2)wt (θ)r dr dθ . Integrating with respect to r from 1/rt (θ) to rt (θ) then
gives the claimed density for θ .

Recall from Theorem 1.1 that the limiting eigenvalue distribution νt for Brownian
motion in the unitary group was determined by Biane. We now claim that the distri-
bution in (2.8) is related to Biane’s measure νt by a natural change of variables. To
each angle θ arising in the region �t , we associate another angle φ by the formula

ft (rt (θ)eiθ ) = eiφ, (2.9)

where ft is as in (1.3). (Recall that, by Definition 2.1, the boundary of �t maps into
the unit circle under ft .) We then have the following remarkable direct connection
between the Brown measure of bt and Biane’s measure νt .

Proposition 2.5 If θ is distributed according to the density in (2.8) and φ is defined
by (2.9), then φ is distributed as Biane’s measure νt .

We may think of this result in a more geometric way, as follows. Define a map

�t : �t → S1

by requiring (a) that �t should agree with ft on the boundary of �t , and (b) that �t

should be constant along each radial segment inside�t , as in Fig. 8. (This specification
makes sense because ft has the same value at the two boundary points on each radial
segment). Explicitly, �t may computed as

�t (λ) = ft (rt (arg λ)ei arg λ).

Then Proposition 2.5 gives the following result, which may be summarized by saying
that the distribution νt of free unitary Brownian motion is a “shadow” of the Brown
measure of bt .

Proposition 2.6 The push-forward of the Brown measure of bt under the map �t is
Biane’s measure νt on S1. Indeed, the Brown measure of bt is the unique measure μ

on �t with the following two properties: (1) the push-forward of μ by �t is νt and (2)
μ is absolutely continuous with respect to Lebesgue measure with a density W having
the form

W (r , θ) = 1

r2
g(θ)

in polar coordinates, for some continuous function g.
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220 B. K. Driver et al.

Fig. 8 The map �t : �t → S1 coincides with ft on ∂�t and maps each radial segment in �t to a single
point in S1

Now, the results of [3, 18] already suggest a relationship between the free unitary
Brownian motion ut (whose law is νt ) and the free multiplicative Brownian motion
bt (whose Brown measure we are studying in this paper). It is nevertheless striking to
see such a direct relationship between μbt and νt . Indeed, Proposition 2.6 precisely
mirrors the relationship between the semicircle law and the circular law. If ct is a
circular random variable of variance t , and xt is semicircular of variance t , then the
distribution of xt (the semicircle law on the interval [−2

√
t, 2

√
t]) is the push-forward

of the Brown measure of ct (the uniform probability measure on the disk D(
√
t) of

radius
√
t) under a similar “shadowmap”: first project the disk onto its upper boundary

circle via (x, y) 	→ (x,
√
t − x2), and then use the conformal map z 	→ z + t

z from

C\D(
√
t) onto C\[−2

√
t, 2

√
t]. The net result of these two operations is the map

(x, y) 	→ 2x, and the push-forward of the uniform measure on D(
√
t) under this map

is the semicircular measure on [−2
√
t, 2

√
t].

2.3 Deriving the formula

We now briefly indicate the method we will use to compute the Brown measure μbt .
Following the general construction of the Brown measure in (1.2), we consider the
function S defined by

S(t, λ, ε) = τ [log((bt − λ)∗(bt − λ) + ε)] (2.10)

for λ ∈ C and ε > 0, where bt is the free multiplicative Brownian motion and τ is
the trace in the von Neumann algebra in which bt lives. It is easily verified that as ε

decreases with t and λ fixed, S(t, λ, ε) also decreases. Hence, the limit

st (λ) = lim
ε→0+ S(t, λ, ε)

exists, possibly with the value −∞.
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The Brown measure of the free multiplicative Brownian motion 221

The general theory developed by Brown [5] shows that st (λ) is a subharmonic
function of λ for each fixed t, so that the Laplacian (in the distribution sense) of
st (λ) with respect to λ is a positive measure. If this measure happens to be absolutely
continuous with respect to the Lebesgue measure, then the density W (t, λ) of the
Brown measure is computed in terms of the value of st (λ), as follows:

W (t, λ) = 1

4π
	st (λ). (2.11)

See also Chapter 11 in [23] and Section 2.3 in [18] for general information on Brown
measures.

The first major step toward proving Theorem 2.2 is the following result.

Theorem 2.7 The function S in (2.10) satisfies the following PDE:

∂S

∂t
= ε

∂S

∂ε

(
1 + (|λ|2 − ε)

∂S

∂ε
− a

∂S

∂a
− b

∂S

∂b

)
, λ = a + ib, (2.12)

with the initial condition

S(0, λ, ε) = log(|λ − 1|2 + ε). (2.13)

We emphasize that S(t, λ, ε) is only defined for ε > 0. Although, as we will see,
limε→0+ S(t, λ, ε) is finite, ∂S/∂ε develops singularities in this limit. Thus, it is not
correct to formally set ε = 0 in (2.12) to obtain ∂st/∂t = 0. (Actually, it will turn out
that st (λ) is independent of t for as long as λ remains outside �t , but not after this
time; see Sect. 6.2).

After verifying this equation (Sect. 4), we will use the Hamilton–Jacobi formalism
to analyze the solution (Sect. 5). In the remaining sections, we will then analyze the
limit of the solution as ε tends to zero and compute the Laplacian in (2.11). The
expository article [15] of the second author provides an introduction to the methods
used in the present paper.

By way of comparison, we mention that a similar PDE appeared in Biane’s paper
[1]. There he studies the spectral measure μt of x0 + xt , the free additive Brownian
motion with a nonconstant initial distribution x0 freely independent from xt . Biane
studies the Cauchy transform G of μt :

G(t, z) =
∫
R

μt (dx)

z − x
, Im(z) > 0,

and shows that G satisfies the complex inviscid Burger’s equation

∂G(t, z)

∂t
= −G(t, z)

∂G

∂z
. (2.14)

The measure μt may then be recovered, up to a constant, as limε→0+ ImG(t, x + iε).
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222 B. K. Driver et al.

In our paper, we similarly use a first-order, nonlinear PDE whose solution in a
certain limit gives the desired measure. We note, however, that the PDE (2.14) is not
actually the main source of information about μt in [1]. By contrast, our analysis of
the Brown measure of the free multiplicative Brownian motion bt is based entirely on
the PDE in Theorem 2.7.

Finally, we mention that, for the case of the circular Brownian motion ct , a PDE
similar to the one in Theorem 2.12 appeared in work of Burda et al. [6, Equation (9)].

3 Properties of 6t

We now verify some important properties of the regions �t in Definition 2.1. Define

T (λ) = |λ − 1|2 log(|λ|2)
|λ|2 − 1

. (3.1)

Since the function

x 	→ log(x)

x − 1

has a removable singularity at x = 1 with a limiting value of 1, we interpret T (λ)

as equaling |λ − 1|2 when |λ|2 = 1. Then T (λ) is a real analytic function on all of
C\{0}. Since, also,

lim
x→0

log(x)

x − 1
= +∞,

we see that T (λ) → +∞ as λ → 0. By checking the three cases |λ| > 1, |λ| = 1,
and |λ| < 1, we may verify that T (λ) ≥ 0 for all λ, with equality only if λ = 1.

Theorem 3.1 For all t > 0, the region �t may be expressed as

�t = {λ ∈ C| T (λ) < t}

and the boundary of �t may be expressed as

∂�t = {λ ∈ C| T (λ) = t} .

Thus, each fixed λ ∈ C will be outside �t until t = T (λ) and will be inside �t for
all t > T (λ). We may therefore say that T (λ) is the time that the domain �t gobbles
up λ. See Figs. 9 and 10.

Theorem 3.2 For each t > 0, the region �t has the following properties.

(1) For t ≤ 4, we have |arg λ| ≤ cos−1(1 − t/2) for all λ ∈ �t , with equality
precisely for the points on the unit circle with cos θ = 1 − t/2.
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Fig. 9 Plot of the function T (λ), showing values between 0 and 5. The function has a global minimum at
λ = 1, a saddle point at λ = −1, and a pole at λ = 0

(2) Consider the ray from the origin with angle θ ; if t ≤ 4, assume |θ | < cos−1(1−
t/2). Then this ray intersects�t precisely in anopen interval of the form1/rt (θ) <

r < rt (θ) for some rt (θ) > 1.
(3) The boundary of �t is smooth for all t > 0 with t �= 4. When t = 4, the

boundary of�t is smooth except atλ = −1, nearwhich it looks like the transverse
intersection of two smooth curves.

(4) The region �t is invariant under λ 	→ 1/λ and under λ 	→ λ̄.

(5) The region �t coincides with the one defined by Biane in [3].

We now begin working toward the proofs of Theorems 3.1 and 3.2.

Lemma 3.3 For λ ∈ C with |λ| �= 1, we have | ft (λ)| = 1 if and only if T (λ) = t .

Proof Since ft (0) = 0,wemust have λ �= 0 if | ft (λ)| is going to equal 1. For nonzero
λ, we compute that

log(| ft (λ)|) = log |λ| + Re

(
t

2

1 + λ

1 − λ

)
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Fig. 10 Level sets of the function T (λ) form the boundaries of the regions �t . Shown for t = 3.7 (gray),
t = 4 (black), and t = 4.3 (dashed). The right-hand side of the figure gives a close-up view near λ = 0

= log |λ| + t

2

1 − |λ|2
|λ − 1|2 .

Thus, for nonzero λ, the condition | ft (λ)| = 1 is equivalent to

0 = log |λ| + t

2

1 − |λ|2
|λ − 1|2 .

When |λ| �= 1, this condition simplifies to

t = |λ − 1|2 log(|λ|2)
|λ|2 − 1

= T (λ),

as claimed. �
Wenow state some important properties of the function rt occurring in the statement

of Theorem 2.2; the proof is given on p. 15.

Proposition 3.4 Consider a real number t > 0 and an angle θ ∈ (−π, π ], where if
t ≤ 4, we require |θ | < cos−1(1 − t/2). Then there exist exactly two radii r �= 1 for
which

∣∣ ft (reiθ )∣∣ = 1, and these radii have the form r = rt (θ) and r = 1/rt (θ) with
rt (θ) > 1. Furthermore, rt (θ) depends analytically on θ and if t ≤ 4, then rt (θ) → 1
as θ → ± cos−1(1 − t/2).

If t ≤ 4 and θ ∈ (−π, π ] satisfies |θ | ≥ cos−1(1 − t/2), then there are no radii
r �= 1 with | ft (r)| = 1.

Using the proposition, we can now compute the sets Ft and Et = Ft that enter into
the definition of �t . (Recall (2.1) and (2.2)).
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Corollary 3.5 For t ≤ 4, the set Ft consists of points of the form rt (θ)eiθ and
(1/rt (θ))eiθ for − cos−1(1− t/2) < θ < cos−1(1− t/2). In this case, the closure of
Ft consists of Ft together with the points eiθ on the unit circle with cos θ = 1 − t/2.
There are two such points when t < 4 and one such point when t = 4, namely −1.

For t > 4, the set Ft consists of points of the form rt (θ)eiθ and (1/rt (θ))eiθ , where
θ ranges over all possible angles, and this set is closed.

We now set out to prove Proposition 3.4. In the proof, we will always rewrite the
equation | ft (λ)| = 1, for |λ| �= 1, as T (λ) = t (Lemma 3.3).

Lemma 3.6 Let us write the function T in (3.1) in polar coordinates. Then for each θ,

the function r 	→ T (r , θ) is strictly decreasing for 0 < r < 1 and strictly increasing
for r > 1.For each θ, theminimum value of T (r , θ), achieved at r = 1, is 2(1−cos θ),

and we have

lim
r→0

T (r , θ) = lim
r→+∞ T (r , θ) = +∞.

Proof We will show in Proposition 5.13 that the function T (λ) is the limit of another
function t∗(λ0, ε0) as ε0 goes to zero. Explicitly, this amounts to saying that T (r , θ) =
gθ (δ),where g is defined in (5.58) and δ = r+1/r .Now, δ is decreasing for 0 < r < 1
and increasing for r > 1. Thus, the claimed monotonicity of T follows if g θ (δ) an
increasing function δ for each θ, which we will show in the proof of Proposition 5.16.

For the convenience of the reader, we briefly outline how the argument goes in the
context of the function T (r , θ). We note that

T (r , θ) = (r2 + 1 − 2r cos θ)
log(r2)

r2 − 1
,

where if we assign log(r2)/(r2 − 1) the value 1 at r = 1, then T is analytic except at
r = 0. We then compute that, after simplification,

∂T

∂r
= 2

[−2r + (1 + r2) cos θ

(r2 − 1)2

]
log(r2) + r2 + 1 − 2r cos θ

r2 − 1

2

r
. (3.2)

We then claim that for all θ, we have ∂T /∂r > 0 for r > 1 and ∂T /∂r < 0 for r < 1.
Note that for each fixed r , the right-hand side of (3.2) depends linearly on cos θ. Thus,
if, for a fixed r , if ∂T /∂r is positive when cos θ = 1 and when cos θ = −1, it will be
positive for all θ . Specifically, we may say that

∂T

∂r
(r , θ) ≥ min

(
∂T

∂r
(r , 0),

∂T

∂r
(r , π)

)
. (3.3)

It is now an elementary (if slightly messy) computation to check that the right-hand
side of (3.3) is strictly positive for all r > 1. A similar argument then shows that
∂T /∂r is negative for all θ and all 0 < r < 1.

We conclude that for each θ, the function r 	→ T (r , θ) is decreasing for 0 < r < 1
and increasing for r > 1. The minimum value therefore occurs at r = 1, and this
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value is the value of r2 + 1 − 2 cos θ at r = 1, namely 2(1 − cos θ). Finally, we can
easily see that for r approaching zero, we have

T (r , θ) ∼ − log(r2) → +∞

and for r approaching infinity, we have

T (r , θ) ∼ log(r2) → +∞,

as claimed. �
Proof of Proposition 3.4 The minimum value of T (r , θ), achieved at r = 1, is 2 −
2 cos θ. This value is always less than t, as can be verified separately in the cases
t > 4 (all θ ) and t ≤ 4 (|θ | < cos−1(1 − t/2)). Thus, Lemma 3.6 tells us that the
equation T (r , θ) = t has exactly one solution for r with 0 < r < 1 and exactly one
solution for r > 1. Since, as is easily verified, T (1/r , θ) = T (r , θ), the two solutions
are reciprocals of each other, and we let rt (θ) denote the solution with r > 1. Since
∂T /∂r is nonzero for all r �= 1, the implicit function theorem tells us that rt (θ) depend
analytically on θ.

Now, if t ≤ 4 and θ approaches ± cos−1(1 − t/2), the minimum value of 2 −
2 cos θ—achieved at r = 1—approaches 2 − 2(1 − t/2) = t . It should then be
plausible that rt (θ) will approach r = 1. To make this claim rigorous, we need to
show that T (r , θ) increases rapidly enough as r increases from 1 that the T (r , θ) = t
is achieved close to r = 1. To that end, let g(r) denote the function on the right-hand
side of (3.3), which is continuous everywhere and strictly positive for r > 1. Then for
r > 1, we have

T (r , θ) − (2 − 2 cos θ) ≥ G(r) :=
∫ r

1
g(s) ds. (3.4)

Now, G(r) is continuous and strictly increasing for r ≥ 1, with G(1) = 0. Thus, G it
has a continuous inverse function satisfying G−1(0) = 1.

For ε > 0, choose δ > 0 so that G−1(R) < 1 + ε when 0 < R < δ. Then take θ

sufficiently close to ± cos−1(1 − t/2) that 2 − 2 cos θ is within δ of t . Then

G−1(t − (2 − 2 cos θ)) < 1 + ε,

which is to say that there is an R with 1 < R < 1 + ε such that

∫ R

1
g(s) ds = t − (2 − 2 cos θ).

From (3.4) we can then see that T (R, θ) > t . Thus, rt (θ) will satisfy

1 < rt (θ) < R < 1 + ε.

We have therefore shown that rt (θ) → 1 as θ → ± cos−1(1 − t/2).
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Finally, if t ≤ 4 and θ ∈ (−π, π ] satisfies |θ | ≥ cos−1(1 − t/2), the minimum
value of T (r , θ), achieved at r = 1, is 2 − 2 cos θ ≥ t . Thus, there are no values of
r �= 1 where T (r , θ) = t . �

We are now ready for the proofs of our main results about �t .

Proof of Theorem 3.1 We first claim that the set Et = Ft is precisely the set where
T (λ) = t . To see this, first note that Ft is, by Lemma 3.3, the set of λ with |λ| �= 1
where T (λ) = t . Then by Corollary 3.5, the closure of Ft is obtained by adding in
the points on the unit circle (zero, one, or two such points, depending on t) where
cos θ = 1 − t/2. But these points are easily seen to be the points on the unit circle
where T (λ) = t .

Using Corollary 3.5, we see that the complement of the set Et = {λ|T (λ) = t} has
two connected components when t < 4 and three connected components when t ≥ 4.
Since T (1) = 0 < t, we have T (λ) < t on the entire connected component of Ec

t
containing 1, which is, by definition, the region �t . The remaining components of
Ec
t are the unbounded component and (for t ≥ 4) the component containing 0. Since

T (λ) tends to +∞ at zero and at infinity, we see that T (λ) > t on these regions, so
that T (λ) < t precisely on �t .

It is also clear from Corollary 3.5 that the boundary of the region �t (i.e., the
connected component of Ec

t containing 1) contains the entire set Et = {λ|T (λ) = t}.
�

Proof of Theorem 3.2 Point 1 follows easily from Corollary 3.5. For Point 2, we note
that by Proposition 3.4, we have T (r , θ) < t for 1/rt (θ) < r < rt (θ), and T (r , θ) ≥ t
for 0 < r ≤ 1/rt (θ) and for r ≥ rt (θ). Thus, by Theorem 3.1, the ray with angle θ

intersects �t precisely in the claimed interval.
For Point 3, we have already shown that ∂T /∂r is nonzero except when r = 1.

When r = 1, we know from (3.1) that

T (r , θ) = |λ − 1|2 = 2 − 2 cos θ.

Thus, when r = 1, we have ∂T /∂θ = 2 sin θ, which is nonzero except when θ = 0
or θ = π. Thus, the gradient of T (λ) is nonzero except when λ = 0 (where T (λ) is
undefined), when λ = 1, and when λ = −1. Since 0 is never in �t and 1 is always
in �t , the only possible singular point in the boundary of �t is at λ = −1. Since
T (r , θ) = 2 − 2 cosπ = 4 when r = 1 and θ = π, the point λ = −1 belongs to the
boundary of �4.

Meanwhile, the Taylor expansion of T to second order at λ = −1 is easily found
to be T (λ) ≈ 4 + (Re λ + 1)2/3 − (Im λ)2. By the Morse lemma, we can then make
a smooth change of variables so that in the new coordinate system,

T (u, v) = 4 + u2 − v2 = 4 + (u + v)(u − v).

Thus, near λ = −1, the set T (λ) = 4 is the union of the curves u + v = 0 and
u − v = 0.
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The invariance of �t under λ 	→ 1/λ and under λ 	→ λ̄ follows from the easily
verified invariance of T (λ) under these transformations. Finally, we verify that the
domain �t , as we have defined it, coincides with the one originally introduced by
Biane [3]. Let us start with the case t < 4. According to the discussion at the bottom
of p. 273 in [3], the boundary of Biane’s domain�t consists in this case of two analytic
arcs. The interior of one arc lies in the open unit disk and the interior of the other arc
lies in the complement of the closed unit disk, while the endpoints of both arcs lie
on the unit circle. The first arc is then computed by applying a certain holomorphic
function χ(t, ·) to the support of Biane’s measure νt in the unit circle. Now, χ(t, ·)
satisfies ft (χ(t, z)) = z on the closed unit disk. (Combine the identity involving κ on
p. 266 of [3] with the definition of χ on p. 273). We see that the interior of the first
arc consists of points with |λ| �= 1 but | ft (λ)| = 1. This arc must, therefore, coincide
with the arc of points with radius 1/rt (θ). The second arc is obtained from the first by
the map λ 	→ 1/λ and therefore coincides with the points of radius rt (θ). We can now
see that the boundary of Biane’s domain coincides with the boundary of the domain
we have defined. A similar analysis applies to the cases t > 4 and t = 4, using the
description of the boundary of �t in those cases at the top of p. 274 in [3]. �

4 The PDE for S

In this section, we will verify the PDE for S in Theorem 2.7. The claimed initial
condition (2.13) holds because b0 = 1. We now proceed to verify the Eq. (2.12) itself.
We let bt be the freemultiplicative Brownianmotion, which satisfies the free stochastic
differential equation

dbt = bt dct , b0 = 1.

Throughout the rest of this section, we use the notation

bt,λ := bt − λ.

Lemma 4.1 The function S in (2.10) satisfies

∂S

∂t
= ετ

[(
b∗
t,λbt,λ + ε

)−1
]
τ

[
btb

∗
t

(
bt,λb

∗
t,λ + ε

)−1
]
. (4.1)

Proof The basic tools for computing with SDEs involving the free circular Brownian
motion ct are the free Itô formulas, which may be stated informally as

τ [gt dct ] = τ [gt dc∗
t ] = 0

dc∗
t gt dct = dct gt dc

∗
t = τ [gt ], (4.2)

for a continuous adapted process gt . Free stochastic calculus was developed by Biane
and Speicher [4] and extended by Kümmerer and Speicher [21]. We will specifically
use the free stochastic product rule and free functional Itô formula developed by
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Nikitopoulos [24]. (An earlier version of this paper, available on the arXiv, used a
power series argument in place of Nikitopoulos’s result).

For each λ ∈ C, define a self-adjoint element mt by

mt = b∗
t,λbt,λ.

Then by the free stochastic product rule [24, Thm. 3.2.5] and the free SDE for bt , we
have

dmt = dc∗
t b

∗
t bt,λ + b∗

t,λbt dct + dc∗
t b

∗
t bt dct

= dc∗
t b

∗
t bt,λ + b∗

t,λbt dct + τ [b∗
t bt ] dt . (4.3)

Then by the free functional Itô formula [24, Thm. 3.5.3], we have

dτ [log(mt + ε)] = τ [R dmt ] − 1

2
τ [R dmt R dmt ], (4.4)

where

R = (mt + ε)−1.

Noting that S = τ [log(mt + ε)], and using (4.2) and (4.3), (4.4) becomes

∂S

∂t
= τ [R]τ [b∗

t bt ] − τ [R]τ [b∗
t,λbtb

∗
t bt,λR], (4.5)

Equation (4.5) is actually just of Eq. (33) in Example 3.5.5 of [24] with n = 1,

a1t = b∗
t,λbt ; b1t = 1; c1t = 1; d1t = b∗

t bt,λ; lt = τ [b∗
t bt ]1.

To compute further, we note that

bt,λ(b
∗
t,λbt,λ + ε) = (bt,λb

∗
t,λ + ε)bt,λ.

Multiplying by (b∗
t,λbt,λ + ε)−1 on the right and (bt,λb∗

t,λ + ε)−1 on the left gives a
useful identity:

(
bt,λb

∗
t,λ + ε

)−1
bt,λ = bt,λ

(
b∗
t,λbt,λ + ε

)−1
. (4.6)

Replacing bt,λ by its adjoint gives another version of the identity:

b∗
t,λ(bt,λb

∗
t,λ + ε)−1 = (b∗

t,λbt,λ + ε)−1b∗
t,λ. (4.7)

We also claim that

τ [(b∗
t,λbt,λ + ε)−1] = τ [(bt,λb∗

t,λ + ε)−1]. (4.8)
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This result can be verified for large ε by expanding both sides in powers of 1/ε and
checking the identity term by term. The result for general ε then follows by analyticity
of both sides in ε.

We now use (4.7) to show that

bt,λRb
∗
t,λ = bt,λb

∗
t,λ

(
bt,λb

∗
t,λ + ε

)−1

= (
bt,λb

∗
t,λ + ε − ε

) (
bt,λb

∗
t,λ + ε

)−1

= 1 − ε
(
bt,λb

∗
t,λ + ε

)−1
.

Thus, (4.5) becomes the claimed formula (4.1) for ∂S/∂t . �
Lemma 4.2 We have the following formulas for the derivatives of S with respect to ε

and λ:

∂S

∂ε
= τ

[(
b∗
t,λbt,λ + ε

)−1
]

∂S

∂λ
= −τ

[
b∗
t,λ

(
b∗
t,λbt, λ + ε

)−1
]

∂S

∂λ̄
= −τ

[
bt,λ

(
b∗
t,λbt,λ + ε

)−1
]
.

Proof The lemma follows easily from the formula for the derivative of the trace of a
logarithm (Lemma 1.1 in [5]):

d

du
τ [log( f (u))] = τ

[
f (u)−1 d f

du

]
.

(We emphasize that there is no such simple formula for the derivative of log( f (u))

without the trace, unless d f /du commutes with f (u)). �
We are now ready for the proof of our main result.

Proof of Theorem 2.7 We start from the formula for ∂S/∂t in Lemma 4.1. Noting that

btb
∗
t = (bt,λ + λ)∗(bt,λ + λ)

= bt,λb
∗
t,λ + λb∗

t,λ + λ̄bt,λ + |λ|2 ,

we expand the second factor on the right-hand side of (4.1) as

τ [btb∗
t (bt,λb

∗
λ + ε)−1] = τ [bt,λb∗

t,λ(bt,λb
∗
t,λ + ε)−1]

+ λτ [b∗
t,λ(bt,λb

∗
t,λ + ε)−1]

+ λ̄τ [bt,λ(bt,λb∗
t,λ + ε)−1]

+ |λ|2 τ [(bt,λb∗
t,λ + ε)−1].
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We then simplify the first term by writing bt,λb∗
t,λ = bt,λb∗

t,λ + ε − ε. In the middle
two terms, we use (4.6), (4.7), and cyclic invariance of the trace. Using also (4.8), we
get

τ [btb∗
t (bt,λb

∗
λ + ε)−1] = 1 + (|λ|2 − ε)τ [(b∗

t,λbt,λ + ε)−1]
+ λτ [b∗

t,λ(b
∗
t,λbt,λ + ε)−1]

+ λ̄τ [bt,λ(b∗
t,λbt,λ + ε)−1]. (4.9)

Thus,

∂S

∂t
= ετ [(b∗

t,λbt,λ + ε)−1](all the terms in (4.9)). (4.10)

All terms on the right-hand side of (4.10) are expressible using Lemma 4.2 in terms
of derivatives of S, and the claimed differential equation follows. �

5 The Hamilton–Jacobi method

5.1 Setting up themethod

The Eq. (2.12) is a first-order, nonlinear PDE of Hamilton–Jacobi type. (The reader
may consult, for example, Section 3.3 in the book of Evans [8], but we will give a brief
self-contained account of the theory in the proof of Proposition 5.3). We consider a
Hamiltonian function obtained from the right-hand side of (2.12) by replacing each
partial derivative with momentum variable, with an overall minus sign. Thus, we
define

H(a, b, ε, pa, pb, pε) = −εpε(1 + (a2 + b2)pε − εpε − apa − bpb). (5.1)

We then considerHamilton’s equations for thisHamiltonian. That is to say,we consider
this system of six coupled ODEs:

da

dt
= ∂H

∂ pa
; db

dt
= ∂H

∂ pb
; dε

dt
= ∂H

∂ pε

;
dpa
dt

= −∂H

∂a
; dpb

dt
= −∂H

∂b
; dpε

dt
= −∂H

∂ε
. (5.2)

As convenient, we will let

λ(t) = a(t) + ib(t).

The initial conditions for a, b, and ε are arbitrary:

a(0) = a0; b(0) = b0; ε(0) = ε0, (5.3)
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while those for pa, pb, and pε are determined by those for a, b, and ε as follows:

pa(0) = 2(a0 − 1)p0; pb(0) = 2b0 p0; pε(0) = p0, (5.4)

where

p0 = 1

|λ0 − 1|2 + ε0
= 1

(a0 − 1)2 + b20 + ε0
. (5.5)

The motivation for (5.4) is that the momentum variables pa, pb, and pε will corre-
spond to the derivatives of S along the curves (a(t), b(t), ε(t)); see (5.8). Thus, the
initial momenta are simply the derivatives of the initial value (2.13) of S, evaluated at
(a0, b0, ε0).

For future reference, we record the value H0 of the Hamiltonian at time t = 0.

Lemma 5.1 The value of the Hamiltonian at t = 0 is

H0 = −ε0 p
2
0 . (5.6)

Proof Plugging t = 0 into (5.1) and using (5.4 ) gives

H0 = −ε0 p0
(
1 +

(
a20 + b20

)
p0 − ε0 p0 − 2a0(a0 − 1)p0 − 2b20 p0

)
,

which simplifies to

H0 = −ε0 p0
(
1 − p0

(
a20 − 2a0 + b20 + ε0

))
.

But using the formula (5.5) for p0, we see that a20 − 2a0 + b20 + ε0 equals 1/p0 − 1,
from which (5.6) follows. �

The main result of this section is the following; the proof is given on p. 22.

Theorem 5.2 Assume λ0 �= 0 and ε0 > 0. Suppose a solution to the system (5.2) with
initial conditions (5.3) and (5.4) exists with ε(t) > 0 for 0 ≤ t < T . Then we have

S(t, λ(t), ε(t)) = log(|λ0 − 1|2 + ε0) − ε0t

(|λ0 − 1|2 + ε0)2

+ log |λ(t)| − log |λ0| (5.7)

for all t ∈ [0, T ). Furthermore, the derivatives of S with respect to a, b, and ε satisfy

∂S

∂ε
(t, λ(t), ε(t)) = pε(t);

∂S

∂a
(t, λ(t), ε(t)) = pa(t);

∂S

∂b
(t, λ(t), ε(t)) = pb(t). (5.8)
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Note that S(t, λ, ε) is only defined for ε > 0. Thus, (5.7) and (5.8) only make sense
as long as the solution to (5.2) exists with ε(t) > 0.

Since our objective is to compute 	st (λ) = ∂2st/∂a2 + ∂2st/∂2b2, the formula
(5.8) for the derivatives of S will ultimately be of as great importance as the formula
(5.7) for S itself. We emphasize that we are not using the Hamilton–Jacobi method
to construct a solution to (2.12); the function S(t, λ, ε) is already defined in (2.10)
in terms of free probability and is known (Theorem 2.7) to satisfy (2.12). Rather, we
are using the Hamilton–Jacobi method to analyze a solution that is already known to
exist.

We begin by briefly recapping the general form of the Hamilton–Jacobi method.

Proposition 5.3 Fix an open set U ⊂ R
n, a time-interval [0, T ], and a function

H(x,p). Consider a function S(t, x) satisfying

∂S

∂t
= −H(x,∇xS), x ∈ U , t ∈ [0, T ]. (5.9)

Consider a pair (x(t),p(t)) with x(t) ∈ U , p(t) ∈ R
n, and t ∈ [0, T1] with T1 ≤ T .

Assume this pair satisfies Hamilton’s equations:

dx j
dt

= ∂H

∂ p j
(x(t),p(t)); dp j

dt
= − ∂H

∂x j
(x(t),p(t))

with initial conditions

x(0) = x0; p(0) = (∇xS)(0, x0). (5.10)

Then we have

S(t, x(t)) = S(0, x0) − H(x0,p0) t +
∫ t

0
p(s) · dx

ds
ds (5.11)

and

(∇xS)(t, x(t)) = p(t). (5.12)

Again, we are not trying to construct solutions to (5.9), but rather to analyze a
solution that is already assumed to exist.

Proof Take an arbitrary (for the moment) smooth curve x(t) and note that

d

dt
S(t, x(t)) = ∂S

∂t
(t, x(t)) + ∂S

∂x j
(t, x(t))

dx j
dt

= −H(x(t), (∇xS)(t, x(t))) + (∇xS)(t, x(t)) · dx
dt

, (5.13)
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where we use the Einstein summation convention. Let us use the notation

p(t) = (∇xS)(t, x(t));

that is p j (t) = ∂S/∂x j (t, x(t)). Then (5.13) may be rewritten as

d

dt
S(t, x(t)) = −H(x(t),p(t)) + p(t) · dx

dt
. (5.14)

If we can choose x(t) so that p(t) is somehow computable, then the right-hand side
of (5.14) would be known and we could integrate to get S(t, x(t)).

To see how we might be able to compute p(t), we try differentiating:

dp j

dt
= d

dt

∂S

∂x j
(t, x(t))

= ∂2S

∂t∂x j
(t, x(t)) + ∂2S

∂xk∂x j
(t, x(t))

dxk
dt

. (5.15)

Now, from (5.9), we have

∂2S

∂t∂x j
= ∂2S

∂x j∂t

= − ∂

∂x j
H(x,∇xS)

= − ∂H

∂x j
(x,∇xS) − ∂H

∂ pk
(x,∇xS)

∂2S

∂x j∂xk
.

Thus, (5.15) becomes (suppressing the dependence on the path)

dp j

dt
= − ∂H

∂x j
+

(
dxk
dt

− ∂H

∂ pk

)
∂2S

∂xk∂x j
. (5.16)

If we now take x(t) to satisfy

dx j
dt

= ∂H

∂ p j
, (5.17)

the second term on the right-hand side of (5.16) vanishes, andwe find thatp(t) satisfies

dp j

dt
= − ∂H

∂x j
. (5.18)

With this choice of x(t), (5.14) becomes

123



The Brown measure of the free multiplicative Brownian motion 235

d

dt
S(t, x(t)) = −H(x0,p0) + p(t) · dx

dt
,

because H is constant along the solutions to Hamilton’s equations.
Note that not all solutions (x(t),p(t)) to Hamilton’s Eqs. (5.17) and (5.18) will

arise by the above method. After all, we are assuming that p(t) = (∇xS)(t, x(t)),
from which it follows that the initial conditions (x0,p0) will be of the form in (5.10).

On the other hand, suppose we take a pair (x0,p0) as in (5.10). Let us then take
x(t) to be the solution to

dx j
dt

= ∂H

∂ p j
(x(t), (∇xS)(t, x(t))), x(0) = x0, (5.19)

where since S is a fixed, “known” function, thisODE forx(t)will have unique solutions
for as long as they exist. If we set p(t) = (∇xS)(t, x(t)), then p(0) = p0 as in (5.10)
and (5.19) says that the pair (x(t),p(t)) satisfies the first of Hamilton’s equations.
Applying (5.16) with this choice of x(t) shows that the pair (x(t),p(t)) also satisfies
the second of Hamilton’s equations. Thus, (x(t),p(t)) must be the unique solution to
Hamilton’s equations with the given initial condition (x0,p0).

We conclude that for any solution to Hamilton’s equations with initial conditions of
the form (5.10), the formula (5.14) holds. Since, also, H is constant along solutions to
Hamilton’s equations, we may replace H(x(t),p(t)) by H(x0,p0) in (5.14), at which
point, integration with respect to t gives (5.11). Finally, (5.12) holds by the definition
of p(t). �

We are now ready for the proof of Theorem 5.2.

Proof of Theorem 5.2 We apply Proposition 5.3 with n = 3 and the open set U con-
sisting of triples (a, b, ε) with ε > 0. The PDE (2.12) is of the type in (5.9), with H
given by (5.1). The initial conditions (5.4) are obtained by differentiating the initial
condition S(0, λ, ε) = log(|λ − 1|2 + ε).

We let x(t) = (a(t), b(t), ε(t)) and p(t) = (pa(t), pb(t), pε(t)). For the case of
the Hamiltonian (5.1), a simple computation shows that

p · dx
dt

= p · ∇pH

= 2H + εpε

= 2H0 + εpε.

Thus, the general formula (5.11) becomes, in this case,

S(t, x(t)) = S(0, x0) + H(x0,p0) t +
∫ t

0
ε(s)pε(s) ds. (5.20)

But we also may compute that
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d

dt
log

(√
a2 + b2

)
= 1

a2 + b2
(aȧ + bḃ)

= 1

a2 + b2

(
a

∂H

∂ pa
+ b

∂H

∂ pb

)

= εpε.

Thus,

∫ t

0
ε(s)pε(s) ds = log |λ(t)| − log |λ0| . (5.21)

If we now plug in the value of S(0, x0) = S(0, λ0, ε0) and use Lemma 5.1 along with
the definition (5.5) of p0, we obtain (5.7). Finally, (5.8) is just the general formula
(5.12), applied to the case at hand. �

5.2 Constants of motion

We now identify several constants of motion for the system (5.2), from which various
useful formulas can be derived. Throughout the section, we assume we have a solution
to (5.2) with the initial conditions (5.3) and (5.4), defined on a time-interval of the
form 0 ≤ t < T . We continue the notation λ(t) = a(t) + ib(t).

Proposition 5.4 Along any solution of (5.2), following quantities remain constant:

(1) The Hamiltonian H ,

(2) The “angular momentum” in the (a, b) variables, namely apb − bpa, and
(3) The argument of λ, assuming λ0 �= 0.

Proof For any system of the form (5.2), the Hamiltonian H itself is a constant of
motion, as may be verified easily from the equations. The conservation of the angular
momentum is a consequence of the invariance of H under simultaneous rotations of
(a, b) and (pa, pb); see Proposition 2.30 and Conclusion 2.31 in [14]. This result can
also be verified by direct computation from (5.2).

Finally, note from (5.21) that if λ0 �= 0, then log |λ(t)| remains finite as long as the
solution to (5.2) exists, so that λ(t) cannot pass through the origin. We then compute
that

d

dt
tan(arg λ(t)) = d

dt

b

a
= ḃa − bȧ

a2
= εpεba − bεpεa

a2
= 0.

(If a = 0, we instead compute the time-derivative of cot(arg λ), which also equals
zero). �
Proposition 5.5 The Hamiltonian H in (5.1) in invariant under the one-parameter
group of symplectic linear transformations given by

(a, b, ε, pa, pb, pε) 	→ (eσ/2a, eσ/2b, eσ ε, e−σ/2 pa, e
−σ/2 pb, e

−σ pε), (5.22)
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with σ varying over R. Thus, the generator of this family of transformations, namely,

� := εpε + 1

2
(apa + bpb) (5.23)

is a constant of motion for the system (5.2). The constant � may be computed in terms
of ε0 and λ0 as

� = p0(a0(a0 − 1) + b20 + ε0) (5.24)

where p0 is as in (5.5).

Proof The claimed invariance of H is easily checked from the formula (5.1). One can
easily check that � is the generator of this family. That is to say, if we replace H by
� in (5.2), the solution is given by the map in (5.22). Thus, by a simple general result,
� will be a constant of motion; see Conclusion 2.31 in [14]. Of course, one can also
check by direct computation that the function in (5.23) is constant along solutions to
(5.2). The expression (5.24) then follows easily from the initial conditions in (5.4). �
Proposition 5.6 For all t, we have

ε(t)pε(t)
2 = ε0 p

2
0e

−Ct , (5.25)

where C = 2� − 1 and � is as in (5.23). The constant C in (5.25) may be computed
in terms of ε0 and λ0 as

C = p0(|λ0|2 − 1 + ε0) = |λ0|2 − 1 + ε0

|λ0 − 1|2 + ε0
. (5.26)

Proof We compute that

ε̇ = ∂H

∂ pε

= H

pε

− εpε(a
2 + b2 − ε)

ṗε = −∂H

∂ε
= −H

ε
− εp2ε (5.27)

and then that

d

dt
(εp2ε ) = ε̇p2ε + 2εpε ṗε

= pεH − εp3ε (a
2 + b2 − ε) − 2Hpε − 2ε2 p3ε

This result simplifies to

d

dt
(εp2ε ) = εp2ε

[
1 − 2

(
εpε + 1

2
(apa + bpb)

)]

= −εp2ε (2� − 1).
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The unique solution to this equation is (5.25). The expression (5.26) is obtained by
evaluating � at t = 0, using the initial conditions (5.4), and simplifying. �

We now make an important application of preceding results.

Theorem 5.7 Suppose a solution to (5.2) exists with ε(t) > 0 for 0 ≤ t < t∗, but that
limt→t∗ ε(t) = 0. Then

lim
t→t∗

log |λ(t)| = Ct∗
2

, (5.28)

where C = 2� − 1 is as in Proposition 5.6. Furthermore, we have

lim
t→t∗

(apa + bpb) = lim
t→t∗

2 log |λ(t)|
t

+ 1. (5.29)

Equation (5.29) is a key step in the derivation of our main result; see Sect. 6.1. We
will write (5.28) in a more explicit way in Proposition 5.12, after the time t∗ has been
determined. We note also from Proposition 5.6 that since ε(t) approaches zero as t
approaches t∗, then pε(t) must be blowing up, so that ε(t)pε(t)2 can remain positive
in this limit.

Proof Using the constant of motion � in (5.23), we can rewrite the Hamiltonian H
as

H = −εpε(1 + (a2 + b2)pε − 2� + εpε). (5.30)

Now, by assumption, the variable ε approaches zero as t approaches t∗. Furthermore,
by Proposition 5.6, εp2ε remains finite in this limit, so that εpε = √

ε
√

εp2ε tends to

zero. Thus, in the t → t∗ limit, the εpε terms in (5.30) vanish while εp2ε remains
finite, leaving us with

H = − lim
t→t∗ εp2ε (a

2 + b2).

Since H is a constant of motion, we may write this result as

lim
t→t∗

(a2 + b2) = − lim
t→t∗

H0

εpε2
= lim

t→t∗

ε0 p20
εp2ε

= eCt∗

where we have used Lemma 5.1 in the second equality and Proposition 5.6 in the third.
The formula (5.28) follows.

Meanwhile, as t approaches t∗, the εpε term in the formula (5.23) for � vanishes
and we find, using (5.28), that

lim
t→t∗

(apa + bpb) = 2� = C + 1 = lim
t→t∗

2 log |λ(t)|
t

+ 1,

as claimed in (5.29), where we have used (5.28) in the last equality. �
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5.3 Solving the equations

We now solve the system (5.2) subject to the initial conditions (5.3) and (5.4). The
formula in Proposition 5.6 for ε(t)pε(t)2 will be a key tool. Although we are mainly
interested in the case ε0 > 0, we will need in Sect. 6.2 to allow ε0 to be slightly
negative.

We begin by with the following elementary lemma.

Lemma 5.8 Consider a number a2 ∈ R and let a be either of the two square roots of
a2. Then the solution to the equation

ẏ = y2 − a2 (5.31)

subject to the initial condition y(0) = y0 > 0 is

y(t) = y0 cosh(at) − a sinh(at)

cosh(at) − y0
sinh(at)

a

(5.32)

If a2 ≥ y20 , the solution exists for all t > 0. If a2 < y20 , then y(t) is a strictly
increasing function of t until the first positive time t∗ at which the solution blows up.
This time is given by

t∗ = 1

a
tanh−1

(
a

y0

)
(5.33)

= 1

2a
log

(
1 + a/y0
1 − a/y0

)
. (5.34)

Here, we use the principal branch of the inverse hyperbolic tangent, with branch cuts
(−∞,−1] and [1,∞) on the real axes, which corresponds to using the principal
branch of the logarithm. When a = 0, we interpret the right-hand side of (5.33) or
(5.34) as having its limiting value as a approaches zero, namely 1/y0.

In passing from (5.33) to (5.34), we have used the standard formula for the inverse
hyperbolic tangent,

tanh−1(x) = 1

2
log

(
1 + x

1 − x

)
. (5.35)

In (5.32), we interpret sinh(at)/a as having the value t when a = 0. If a2 < 0, so that
a is pure imaginary, one can rewrite the solution in terms of ordinary trigonometric
functions, using the identities cosh(iα) = cosα and sinh(iα) = i sin α. For each fixed
t, the solution is an even analytic function of a and therefore an analytic function of a2.
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Proof If a is nonzero and real, we may integrate (5.31) to obtain

t = 1

2a

∫ t

0

(
1

y(τ ) − a
− 1

y(τ ) + a

)
ẏ(τ ) dτ

= 1

2a
log

(
y(τ ) − a

y(τ ) + a

)∣∣∣∣
t

τ=0

= 1

2a
log

(
y(t) − a

y(t) + a

y0 + a

y0 − a

)
.

It is then straightforward to solve for y(t) and simplify to obtain (5.32). Similar
computations give the result when a is zero (recalling that we interpret sinh(at)/a as
equaling t when a = 0) and when a is nonzero and pure imaginary. Alternatively, one
may check by direct computation that the function on the right-hand side of (5.32)
satisfies the Eq. (5.31) for all a ∈ C.

Now, if a2 ≥ y20 > 0, the denominator in (5.32) is easily seen to be nonzero for all
t and there is no singularity. If a2 is positive but less than y20 , the denominator remains

positive until it becomes zero when tanh(at) = a/y0. If a2 is negative, so that a = iα
for some nonzero α ∈ R, we write the solution using ordinary trigonometric functions
as

y(t) = y0
cos(αt) + α

y0
sin(αt)

cos(αt) − y0
α
sin(αt)

. (5.36)

The denominator in (5.36) becomes zero at αt = tan−1(α/y0) < π/2. Finally, if
a2 = 0, the solution is y(t) = y0/(1 − y0t), which blows up at t = 1/y0.

It is then not hard to check that for all cases with a2 < y20 , the blow-up time can be
computed as t∗ = 1

a tanh
−1(a/y0), where we use the principal branch of the inverse

hyperbolic tangent, with branch cuts (−∞,−1] and [1,∞) on the real axis. (At a = 0
we have a removable singularitywith a value of 1/y0.) This recipe corresponds to using
the principal branch of the logarithm in the last expression in (5.34). �

We now apply Lemma 5.8 to compute the pε-component of the solution to (5.2).
We use the following notations, some of which have been introduced previously:

p0 = 1

|λ0 − 1|2 + ε0
(5.37)

δ = |λ0|2 + 1 + ε0

|λ0| (5.38)

C = 2� − 1 = p0(|λ0|2 − 1 + ε0) (5.39)

y0 = p0 + C

2
= 1

2
p0 |λ0| δ (5.40)

a2 = C2/4 + ε0 p
2
0 . (5.41)
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We now make the following standing assumptions:

λ0 �= 0

p0 > 0

δ > 0. (5.42)

We note that under these assumptions, y0 is positive. Furthermore, wemay compute
that

a = 1

2
p0 |λ0|

√
δ2 − 4. (5.43)

from which we obtain

a2

y20
= δ2 − 4

δ2
< 1, (5.44)

so that a2 < y20 . Now, the assumptions p0 > 0 and δ > 0 can be written as ε0 >

− |λ0 − 1|2 and ε0 > −(1 + |λ0|2). Thus, for λ0 �= 0, the assumptions (5.42) are
always satisfied if ε0 > 0. Furthermore, except when λ0 = 1, some negative values
of ε0 are allowed.

Proposition 5.9 Under the assumptions (5.42), the pε-component of the solution to
(5.2) subject to the initial conditions (5.3) and (5.4) is given by

pε(t) = p0
cosh(at) + 2|λ0|−δ√

δ2−4
sinh(at)

cosh(at) − δ√
δ2−4

sinh(at)
e−Ct (5.45)

for as long as the solution to the system (5.2) exists. Here we write a as in (5.43)
and we use the same choice of

√
δ2 − 4 in the computation of a as in the two times√

δ2 − 4 appears explicitly in (5.45). If δ = 2, we interpret sinh(at)/
√

δ2 − 4 as
equaling 1

2 p0 |λ0| t .
If ε0 ≥ 0, the numerator in the fraction on the right-hand side of (5.45) is positive

for all t . Hence when ε0 ≥ 0, we see that pε(t) is positive for as long as the solution
exists and 1/pε(t) extends to a real-analytic function of t defined for all t ∈ R.

The first time t∗(λ0, ε0) at which the expression on the right-hand side of (5.45)
blows up is

t∗(λ0, ε0) = 2(δ − 2 cos θ0)√
δ2 − 4

tanh−1

(√
δ2 − 4

δ

)
(5.46)

= δ − 2 cos θ0√
δ2 − 4

log

(
δ + √

δ2 − 4

δ − √
δ2 − 4

)
, (5.47)
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where θ0 = arg λ0 and
√

δ2 − 4 is either of the two square roots of δ2−4.The principal
branch of the inverse hyperbolic tangent should be used in (5.46), with branch cuts
(−∞,−1] and [1,∞) on the real axis, which corresponds to using the principal
branch of the logarithm in (5.47). When δ = 2, we interpret t∗(λ0, ε0) as having its
limiting value as δ approaches 2, namely δ − 2 cos θ0.

Note that the expression

1

a
tanh−1

(a
b

)

is an even function of a with b fixed, with a removable singularity at a = 0. This
expression is therefore an analytic function of a2 near the origin. In particular, the
value of t∗(λ0, ε0) does not depend on the choice of square root of δ2 − 4.

Proof of Proposition 5.9 We assume at first that ε0 �= 0.We recall from Proposition 5.6
that ε(t)pε(t)2 is equal to ε0 p20e

−Ct ,which is never zero, sinceweassume ε0 is nonzero
and p0 is positive. Thus, as long as the solution to the system (5.2) exists, both ε(t)
and pε(t) must be nonzero—and must have the same signs they had at t = 0. Using
(5.27) and the fact that H is a constant of motion, we obtain

ṗε(t) = ε0 p20
ε(t)

− ε0 p
2
0e

−Ct

But ε0 p20/ε(t) = pε(t)2eCt and we obtain

ṗε(t) = pε(t)
2eCt − ε0 p

2
0e

−Ct .

Then if y(t) = eCt pε(t) + C/2, we find that y satisfies (5.31). Thus, we obtain
pε(t) = (y(t)−C/2)e−Ct , where y(t) is as in (5.32), which simplifies to the claimed
formula for pε. The same formula holds for ε0 = 0, by the continuous dependence of
the solutions on initial conditions. (It is also possible to solve the system (5.2 ) with
ε0 = 0 by postulating that ε(t) is identically zero and working out the equations for
the other variables).

In this paragraph only, we assume ε0 ≥ 0. Then a2 ≥ 0,with a = 0 occurring only
if ε0 = 0 and |λ0| = 1, so that δ = 2. In that case, the numerator on the right-hand
side of (5.45) is identically equal to 1. If a2 > 0, then the numerator will always be
positive provided that

(
2 |λ0| − δ√

δ2 − 4

)2

≤ 1,

which is equivalent to

(δ2 − 4) − (2 |λ0| − δ)2 ≥ 0.
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But a computation shows that

(δ2 − 4) − (2 |λ0| − δ)2 = 4ε0, (5.48)

and we are assuming ε0 ≥ 0. Now, since the numerator in (5.45) is always positive,
we conclude that pε remains positive until it blows up.

For any value of ε0, the blow-up time for the function on the right-hand side of
(5.45) is computed by plugging the expression (5.44) for a/y0 into the formula (5.34),
giving

t∗(λ0, ε0) = 1

y0

1

a/y0
tanh−1

(
a

y0

)

= 2

p0 |λ0| δ
δ√

δ2 − 4
tanh−1

(√
δ2 − 4

δ

)
.

After computing that

1

p0 |λ0| = |λ0 − 1|2 + ε0

|λ0| = δ − 2 cos θ0,

we obtain the claimed formula (5.46) for t∗(λ0, ε0). �
Remark 5.10 If ε0 < 0, then numerator on the right-hand side of (5.45) can become
zero. The time σ at which this happens is computed using (5.43) and (5.48) as

σ = 2

p0 |λ0|
√

δ2 − 4
tanh−1

(
−

(
1 + 4ε0

(2 |λ0| − δ)2

)1/2
)

.

By considering separately the cases |λ0| �= 1 and |λ0| = 1, we can verify that σ tends
to infinity, locally uniformly in λ0, as ε0 tends to zero from below. Thus, for small
negative values of ε0, the function on the right-hand side of (5.45) will remain positive
until the time t∗(λ0, ε0) at which it blows up.

We now show that the whole system (5.2) has a solution up to the time at which
the function on the right-hand side of (5.45) blows up.

Proposition 5.11 Assume that ε0 andλ0 satisfy the assumptions (5.42). Assume further
that if ε0 < 0, then |ε0| is sufficiently small that pε remains positive until it blows up,
as in Remark 5.10. Then the solution to the system (5.2) exists up to the time t∗(λ0, ε0)
in Proposition 5.9.

For any ε0, we have

lim
t→t∗(λ0,ε0)

ε(t) = 0. (5.49)

If ε0 = 0, the solution has ε(t) ≡ 0 and λ(t) ≡ λ0.
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Proof Let T be the maximum time such that the solution to (5.2) exists on [0, T ). We
now compute formulas for the solution on this interval. Recall from Proposition 5.9
that if ε0 ≥ 0, then pε(t) remains positive for as long as the solution exists; by
Remark 5.10, the same assertion holds if ε0 is small and negative.

Now, since εp2ε = ε0 p20e
−Ct , we see that

ε(t) = 1

pε(t)2
ε0 p

2
0e

−Ct . (5.50)

Since pε(t) remains positive until it blows up, ε(t) remains bounded until time
t∗(λ0, ε0), at which time ε(t) approaches zero, as claimed in (5.49 ). We recall from
Proposition 5.4 that the argument of λ(t) remains constant. Then as in shown in (5.21),
we have

log |λ(t)| = log |λ0| +
∫ t

0
ε(s)pε(s) ds. (5.51)

Finally,

dpa
dt

= −∂H

∂a
= −2aεp2ε + εpε pa (5.52)

which is a first-order, linear equation for pa, which can be solved using an integrating
factor. A similar calculation applies to pb.

Suppose now that the existence time T of the whole system were smaller than the
time t∗(λ0, ε0) at which the right-hand side of (5.45) blows up. Then from the formulas
(5.50), (5.51), and (5.52), we see that all functions involved would remain bounded
up to time T . But then by a standard result, T could not actually be the maximal time.
The solution to the system (5.2) must therefore exist all the way up to time t∗(λ0, ε0).

Finally, we note that when ε0 = 0, (5.50) gives ε(t) ≡ 0 and (5.51) gives |λ(t)| ≡
|λ0| . Since also the argument of λ(t) is constant, we see that λ(t) ≡ λ0. �

5.4 More about the lifetime of the solution

In light of Propositions 5.9 and 5.11, the lifetime of the solution to the system (5.2)
is t∗(λ0, ε0), as computed in (5.46) or (5.47). In this subsection, we (1) analyze the
behavior of log |λ(t)| as t approaches t∗(λ0, ε0), (2) analyze the behavior of t∗(λ0, ε0)
as ε0 approaches zero, and (3) show that t∗(λ0, ε0) is an increasing function of ε0 with
λ0 fixed.

Proposition 5.12 Assume that ε0 and λ0 satisfy the assumptions (5.42). Then

lim
t→t∗(λ0,ε0)

log |λ(t)| = δ − 2/ |λ0|
2
√

δ2 − 4
log

(
δ + √

δ2 − 4

δ − √
δ2 − 4

)
, (5.53)

where δ is as in (5.38).
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Notice that there is a strong similarity between the formula (5.47) for t∗(λ0, ε0) and
the expression on the right-hand side of (5.53).

Proof By (5.28) in Theorem 5.7, we have limt→t∗(λ0,ε0) log |λ(t)| = Ct∗(λ0, ε0)/2,
where by (5.26),

C = (|λ0|2 − 1 + ε0)/ |λ0|
(|λ0 − 1|2 + ε0)/ |λ0|

= δ − 2/ |λ0|
δ − 2 cos θ0

.

From this result and the second expression (5.47) for t∗(λ0, ε0), (5.53) follows easily.
�

Proposition 5.13 If t∗(λ0, ε0) is defined by (5.47), then for all nonzero λ0 we have

t∗(λ0, 0) = T (λ0),

where the function T is defined in (3.1). Furthermore, when ε0 = 0, we have

lim
t→t∗(λ0,ε0)

log |λ(t)| = log |λ0| . (5.54)

Recall that the formula for t∗(λ0, ε0) is defined under the standing assumptions in
(5.42). Note that for all λ0 �= 0, the value ε0 = 0 satisfies these assumptions.

Since log(x)/(x −1) → 1 as x → 1, we see that t∗(λ0, 0) is a continuous function
ofλ0 ∈ C

∗.Comparing the formula for t∗(λ0, 0) toTheorem3.1,wehave the following
consequence.

Corollary 5.14 For λ0 ∈ �t , we have t∗(λ0, 0) < t, while for λ0 ∈ ∂�t , we have
t∗(λ0, 0) = t , and for λ0 /∈ �t , we have t∗(λ0, 0) > t .

Proof of Proposition 5.13 In the limit as ε0 → 0, we have

δ = |λ0|2 + 1

|λ0| ,

and

δ2 − 4 =
(

|λ0|2 − 1

|λ0|

)2

,

so that

√
δ2 − 4 = ±|λ0|2 − 1

|λ0| . (5.55)

In the case |λ0| = 1, the limiting value of δ is 2.We thenmake use of the elementary
limit

lim
δ→2+

1√
δ2 − 4

log

(
δ + √

δ2 − 4

δ − √
δ2 − 4

)
= 1. (5.56)
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Thus, using (5.47), we obtain in this case,

lim
ε0→0

t∗(λ0, ε0) = 2 − 2 cos θ0 = |λ0 − 1|2 , |λ0| = 1,

which agrees with the value of T (λ0) when |λ0| = 1.
In the case |λ0| �= 1,we note that the quantity (1/b) log((a+b)/(a−b)) is an even

function of b with a fixed. We may therefore choose the plus sign on the right-hand
side of (5.55), regardless of the sign of |λ0|2 − 1. We then obtain, using (5.47),

lim
ε0→0

t∗(λ0, ε0) = (|λ0|2 + 1)/ | λ0| − 2 cos θ0

(|λ0|2 − 1)/ |λ0|
log

(
2 |λ0|2 / |λ0|

2/ |λ0|

)

= |λ0|2 + 1 − 2 |λ0| cos θ0

|λ0|2 − 1
log(|λ0|2)

= T (λ0). (5.57)

A similar calculation, beginning from (5.53), establishes (5.54). �
Remark 5.15 If we began with (5.46) instead of (5.47), we would obtain by similar
reasoning

t∗(λ0, 0) = 2 |λ0 − 1|2
|λ0|2 − 1

tanh−1

(
|λ0|2 − 1

|λ0|2 + 1

)
.

Using (5.35), this expression is easily seen to agree with T (λ0) but is more transparent
in its behavior at |λ0| = 1.

Proposition 5.16 For each λ0, the function t∗(λ0, ε0) is a strictly increasing function
of ε0 for ε0 ≥ 0, and

lim
ε0→+∞ t∗(λ0, ε0) = +∞.

Proof We note that the quantity δ in (5.38) is an increasing function of ε0 with λ0
fixed, with δ tending to infinity as ε0 tends to infinity. We note also that if ε0 ≥ 0,
then

δ ≥ |λ0| + 1

|λ0| ≥ 2.

It therefore suffices to show that for each angle θ0, the function

gθ0(δ) := δ − 2 cos θ0√
δ2 − 4

log

(
δ + √

δ2 − 4

δ − √
δ2 − 4

)
, (5.58)
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is strictly increasing, non-negative, continuous function of δ for δ ≥ 2 that tends to
+∞ as δ tends to infinity. Here when δ = 2, we interpret gθ0(δ) as having the value
2 − 2 cos θ0, in accordance with the limit (5.56).

Throughout the proof, we use the notation

γ =
√

δ2 − 4.

We note that

lim
δ→∞

δ − 2 cos θ0

γ
= 1.

Meanwhile, for large δ, we have

δ − γ = δ

(
1 −

√
1 − 4/δ2

)

= δ

(
1 −

(
1 − 1

2

4

δ2
+ O

(
1

δ3

)))

= 2

δ
+ O

(
1

δ3

)
,

whereas

δ + γ = 2δ + O

(
1

δ

)
.

Thus, gθ0(δ) grows like log(δ
2) as δ → ∞.

Our definition of gθ0(δ) for δ = 2, together with (5.56), shows that gθ0 is non-
negative and continuous there. To show that gθ0 is an increasing function of δ,we show
that ∂gθ0/∂δ is positive for δ > 2. The derivative is computed, after simplification, as

∂gθ0

∂δ
= 2

γ 3

(
(δ − 2 cos θ0)γ + (δ cos θ0 − 2) log

(
δ + γ

δ − γ

))
.

Since this expression depends linearly on cos θ0 with δ fixed, if it is positive when
cos θ0 = 1 and also when cos θ0 = −1, it will be positive always. Thus, it suffices to
verify the positivity of the functions

(δ − 2)

(
γ + log

(
δ + γ

δ − γ

))
(5.59)

and

(δ + 2)

(
γ − log

(
δ + γ

δ − γ

))
. (5.60)
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Now, (5.59) is clearly positive for all δ > 2. Meanwhile, a computation shows that

d

dδ

(
γ − log

(
δ + γ

δ − γ

))
= δ − 2

γ
> 0

and

lim
δ→2+

(
γ − log

(
δ + γ

δ − γ

))
= 0,

from which we conclude that (5.60) is also positive for all δ > 2. �

5.5 Surjectivity

In Sect. 6.3, we will compute st (λ) := limε→0+ S(t, λ, ε) for λ in �t . We will do
so by evaluating S (and its derivatives) along curves of the form (t, λ(t), ε(t)) and
then the taking the limit as we approach the time t∗ when ε(t) becomes zero. For this
method to be successful, we need the following result, whose proof appears on p. 34.

Theorem 5.17 Fix t > 0. Then for all λ ∈ �t , there exists a unique λ0 ∈ C and
ε0 > 0 such that the solution to (5.2) with these initial conditions exists on [0, t) with
limu→t− ε(u) = 0 and limu→t− λ(u) = λ. For all λ ∈ �t , the corresponding λ0 also
belongs to �t .

Define functions �t
0 : �t → �t and Et

0 : �t → (0,∞) by letting �t
0(λ) and

Et
0(λ)be the corresponding values ofλ0 and ε0, respectively. Then�t

0 and E
t
0 extend to

continuousmaps of�t into�t and [0,∞), respectively, with the continuous extensions
satisfying �t (λ) = λ and Et

0(λ) = 0 for λ ∈ ∂�t .

We first recall that we have shown (Proposition 5.16) that the lifetime of the path
to be a strictly increasing function of ε0 ≥ 0 with λ0 fixed. If λ0 is outside �t , then by
Theorem 3.1 and Proposition 5.13, the lifetime is at least t, even at ε0 = 0. (That is
to say, T (λ0) = t∗(λ0, 0) ≥ t for λ0 outside �t .) Thus, for λ0 outside �t , the lifetime
cannot equal t for ε0 > 0. On the other hand, if λ0 ∈ �t , then t∗(λ0, 0) < t and
Proposition 5.16 tells us that there is a unique ε0 > 0 with t∗(λ0, ε0) = t .

Lemma 5.18 Fix t > 0. Define maps

εt0 : �t → [0,∞)

λt : �t → C\{0}

as follows. For λ0 ∈ �t , we let εt0(λ0) denote the unique positive value of ε0 for which
t∗(λ0, ε0) = t . Then we set

λt (λ0) = lim
u→t−

λ(u),

where λ(·) is computed with initial conditions λ(0) = λ0 and ε(0) = εt0(λ0). Then
both εt0 and λt extend continuously from �t to �t , with the extended maps satisfying
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εt0(λ0) = 0 and λt (λ0) = λ0 for λ0 ∈ ∂�t . The extended map λt is a homeomorphism
of �t to itself.

We note that the desired function �t
0 in Theorem 5.17 is the inverse function to λt

and that Et
0(λ) = εt0(λ

−1
t (λ)).

Recall from Proposition 5.4 that the argument of λ(t) is constant. By the formula
(5.28) in Theorem 5.7 together with the expression (5.26) for the constant C, we can
write

λt (λ0) = λ0

|λ0|e
Ct/2 = λ0

|λ0| exp
(
t

2

|λ0|2 − 1 + εt0(λ0)

|λ0 − 1|2 + εt0(λ0)

)
, (5.61)

where we have used that t∗(λ0, εt0(λ0)) = t .As noted in the proof of Proposition 5.12,
this formula can also be written as

λt (λ0) = λ0

|λ0| exp
(

δ − 2/ |λ0|
2
√

δ2 − 4
log

(
δ + √

δ2 − 4

δ − √
δ2 − 4

))
, (5.62)

where δ = (|λ0|2 + 1 + εt0(λ0))/ |λ0| .
Proof We start by trying to compute the function εt0, which we will do by finding the
correct value of δ and then solving for εt0.Recall that the lifetime t∗(λ0, ε0) is computed
as gθ0(δ),where δ is as in (5.38) and gθ0 is as in (5.58). As we have computed in (5.57),
we have

gθ0

(
r20 + 1

r0

)
= T (r0e

iθ0).

Assume, then, that the ray with angle θ0 intersects �t and let rt (θ0) be the outer (for
definiteness) radius at which this ray intersects the boundary of �t . Then Theorem
3.1 tells us that T (rt (θ0)eiθ0) = t, and we conclude that

gθ0

(
rt (θ0)2 + 1

rt (θ0)

)
= t . (5.63)

Consider, then, some λ0 ∈ �t with arg(λ0) = θ0. By the formula (5.47), to find ε0
with t∗(λ0, ε0) = t,we first find δ so that gθ0(δ) = t . (Note that the value of δ depends
only on the argument of λ0.) We then adjust ε0 so that (|λ0|2 + ε0 + 1)/ |λ0| = δ.

Since the correct value of δ is given in (5.63), this means that we should choose ε0 so
that

|λ0|2 + ε0 + 1

|λ0| = rt (θ0)2 + 1

rt (θ0)
.
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We can solve this relation for ε0 to obtain

εt0(λ0) = |λ0|
(
rt (arg λ0)

2 + 1

rt (arg λ0)
− |λ0|2 + 1

|λ0|

)
. (5.64)

Now, we have shown that rt (θ) is continuous for the full range of angles θ occurring
in �t . Since 0 is not in �t , we can then see that the formula (5.64) is well defined
and continuous on all of �t . For λ0 ∈ ∂�t , we have that |λ0| equals rt (arg λ0) or
1/rt (arg λ0), so that εt0(λ0) equals zero.

Now, the point 0 is always outside�t ,while the point 1 is always in�t and therefore
not on the boundary of �t . Thus, since εt0 is continuous on �t and zero precisely on
the boundary, we see from (5.61) that λt is continuous on �t . Furthermore, on ∂�t ,

we compute λt (λ0) by putting εt0(λ0) = 0 in (5.61). Suppose now that λ0 is in ∂�t .

Then εt0(λ0) = 0 and, by Theorem 3.1, the function T (λ0) in (3.1) has the value t, so
that

t

2

|λ0|2 − 1

|λ0 − 1|2 = log(|λ0|).

Thus, from (5.61), we see that λt (λ0) = λ0.

Consider an angle θ0 for which the ray Ray(θ0) with angle θ0 intersects �t and
let δ be chosen so that gθ0(δ) = t, noting again that the value of δ depends only on
θ0 = arg λ0. We now observe from (5.62) that |λt (λ0)| is a strictly increasing function
of |λ0|with δ fixed. Thus,λt is a strictly increasing function of the interval Ray(θ0)∩�t

into Ray(θ0) that fixes the endpoints. Thus, actually, λt maps this interval bijectively
into itself. Since this holds for all θ0, we conclude that λt maps �t bijectively into
itself. The continuity of the inverse then holds because λt is continuous and �t is
compact. �
Proof of Theorem 5.17 We have noted before the statement of Lemma 5.18 that if the
desired pair (λ0, ε0) exists, λ0 must be in�t .The lemma then tells us that a unique pair
(λ0, ε0) exists with λ0 ∈ �t . We compute �t

0(λ) as λ−1
t (λ) and Et

0(λ) as εt0(λ
−1
t (λ)),

both of which extend continuously to �t . For λ ∈ ∂�t , we have λ−1
t (λ) = λ and

εt0(λ
−1
t (λ)) = εt0(λ) = 0. �

6 Letting " tend to zero

6.1 Outline

Our goal is to compute the Laplacian with respect to λ of the function st (λ) :=
limε→0+ S(t, λ, ε), using the Hamilton–Jacobi method of Theorem 5.2. We want the
curve ε(·) occurring in (5.7) and (5.8) to approach zero at time t ; a simple way we
might try to accomplish this is to let the initial condition ε0 approach zero. Suppose,
then, that ε0 is very small. Using various formulas from Sect. 5.3, we then find that for
as long as the solution to the system (5.2) exists, the whole curve ε(·) will be small
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and the whole curve λ(·) will be approximately constant. Thus, by taking ε0 ≈ 0 and
λ0 ≈ λ,we obtain a curve with ε(t) ≈ 0 and λ(t) ≈ λ.Wemay then hope to compute
st (λ) by letting λ0 and λ(t) approach λ and ε0 approach zero in the Hamilton–Jacobi
formula (5.7), with the result that

st (λ) = log(|λ − 1|2). (6.1)

It is essential to note, however, that this approach is only valid if the solution to
system (5.2) exists up to time t . Corollary 5.14 tells us that for ε0 ≈ 0, the solution
will exist beyond time t provided λ is outside �t . Thus, we expect that for λ outside
�t , the function st will be given by (6.1) and therefore that 	st will be zero. (The
function log(|λ − 1|2) is harmonic except at the point λ = 1, which is always inside
�t .)

To analyze st (λ) for λ inside �t , we first make use of the surjectivity result in
Theorem 5.17. The theorem says that for each t > 0 and λ ∈ �t , there exist ε0 > 0
and λ0 ∈ �t such that ε(u) approaches 0 and λ(u) approaches λ as u approaches t .We
then use the formula (5.29) in Theorem 5.7. In light of the second Hamilton–Jacobi
formula (5.8), we can write (5.29) as

lim
u→t

(
a

∂S

∂a
+ b

∂S

∂b

)
(u, λ(u), ε(u)) = lim

u→t

2 log |λ(t)|
t

+ 1

= 2 log |λ|
t

+ 1. (6.2)

Once we have established enough regularity in the function S(t, λ, ε) near ε = 0, we
will be able to identify the left-hand side of (6.2) with the corresponding derivative of
st , giving the following explicit formula for one of the derivatives of st :

(
a

∂st
∂a

+ b
∂st
∂b

)
(λ) = 2 log |λ|

t
+ 1. (6.3)

We now compute in logarithmic polar coordinates, with ρ = log |λ| and θ = arg λ.

We may recognize the left-hand side of (6.3) as the derivative of st with respect to ρ,

giving

∂st
∂ρ

= 2ρ

t
+ 1 (6.4)

for points inside �t . Remarkably, ∂st/∂ρ is independent of θ ! Thus,

∂

∂ρ

∂st
∂θ

= ∂

∂θ

∂st
∂ρ

= 0,

meaning that ∂st/∂θ is independent of ρ.

Now, we will show in Sect. 6.4 that the first derivatives of st have the same value
as we approach a point λ ∈ ∂�t from the inside as when we approach λ from the
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outside. We can therefore give a complete description of the function ∂st/∂θ on �t

as follows. It is the unique function on �t that is independent of ρ (or, equivalently,
independent of r = |λ|) and whose boundary values agree

∂

∂θ
log(|λ − 1|2) = 2b

|λ − 1|2 = 2r sin θ

r2 + 1 − 2r cos θ
. (6.5)

Since the points on the outer boundary of �t have the polar form (rt (θ), θ), we
conclude that

∂st
∂θ

= 2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ
.

From this result, the expression (6.4), and the formula for the Laplacian in logarithmic
polar coordinates, we obtain

	st (λ) = 1

|λ|2
(

∂2st
∂ρ2 + ∂2st

∂θ2

)

= 1

|λ|2
(
2

t
+ ∂

∂θ

2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ

)

for points inside �t , accounting for the formula in Theorem 2.2.
We now briefly discuss what is needed to make the preceding arguments rigorous.

If λ is outside �t and ε is small and positive, we need to know that we can find a
λ0 close to λ and a small, positive ε0 such that with these initial conditions, ε(t) =
ε and λ(t) = λ. To show this, we apply the inverse function theorem to the map
Ut (λ0, ε0) := (λ(t), ε(t)) in a neighborhood of the point (λ0, ε0) = (λ, 0).

For λ inside �t , we need to know first that S(t, λ, ε) is continuous—in all three
variables—up to ε = 0. After all, st (λ) is defined letting ε tend to zero in the expres-
sion S(t, λ, ε), with t and λ fixed. But the Hamilton–Jacobi formula (5.7) gives a
formula for S(u, λ(u), ε(u)), in which the first two variables in S are not remaining
constant. Furthermore, we want to apply also the Hamilton–Jacobi formula (5.8) for
the derivatives of S, which means we need also continuity of the derivatives of S with
respect to λ up to ε = 0. Using another inverse function theorem argument, we will
show that after making the change of variable z = √

ε, the function S will extend
smoothly up to ε = z = 0, from which the needed regularity will follow.

We use the following notation throughout the section.

Notation 6.1 We will let

ε(t; λ0, ε0)

denote the ε-component of the solution to (5.2)withλ(0) = λ0 and ε(0) = ε0 (andwith
initial values of the momenta given by (5.4)), and similarly for the other components
of the solution.

123



The Brown measure of the free multiplicative Brownian motion 253

6.2 Outside 6t

The goal of this subsection is to prove the following result.

Theorem 6.2 Fix a pair (t, λ) with λ outside �t . Then

st (λ) := lim
ε→0+ S(t, λ, ε) = log(|λ − 1|2). (6.6)

Thus,

	st (λ) = 0

whenever λ is outside �t .

As we have discussed in Sect. 6.1, the idea is that for λ outside �t and ε small
and positive, we should try to find a λ0 close to λ and a small, positive ε0 such that
ε(u) and λ(u) will approach 0 and λ, respectively, as u approaches t . To that end, we
define, for each t > 0, a map Ut from an open subset of R × C into R × C by

Ut (λ0, ε0) = (λ(t; λ0, ε0), ε(t; λ0, ε0)).

We wish to evaluate the derivative of this map at the point (λ0, ε0) = (λ, 0). For this
idea to make sense, λ(t; λ0, ε0) and ε(t; λ0, ε0) must be defined in a neighborhood of
(λ, 0); it is for this reason that we have allowed ε0 to be negative in Sect. 5.3.

The domain ofUt consists of pairs (λ0, ε0) such that (1) the assumptions (5.42) are
satisfied; (2) the function pε(·) remains positive until it blows up, as in Remark 5.10;
and (3) we have t∗(λ0, ε0) > t . We note that these conditions allow ε0 to be slightly
negative and that all the results of Sect. 5.3 hold under these conditions. We also note
that by Proposition 5.11, if ε0 = 0, then ε(t) ≡ 0 and λ(t) ≡ λ0; thus,

Ut (λ0, 0) = (λ0, 0). (6.7)

We now fix a pair (t, λ) with λ outside of �t (so that λ �= 1). By Corollary 5.14,
we then have t∗(λ, 0) > t .

Lemma 6.3 The Jacobian of Ut at (λ, 0) has the form

U ′
t (λ, 0) =

(
I2×2

∂λ
∂ε0

(t; λ, 0)
0 ∂ε

∂ε0
(t; λ, 0)

)
(6.8)

with ∂ε/∂ε0(t; λ, 0) > 0. In particular, the inverse function theorem applies at (λ, 0).

Proof The claimed form of the second column of U ′
t (λ, 0) follows immediately from

(6.7). We then compute from (5.50) that
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∂ε(t; λ0, ε0)

∂ε0
(0, λ0) = 1

pε(t)2
p20e

−Ct + ε0
∂

∂ε0

[
1

pε(t)2
p20e

−Ct
]∣∣∣∣

ε0=0

= 1

pε(t)2
p20e

−Ct , (6.9)

which is positive. �
Proof of Theorem 6.2 We note that the inverse of the matrix in (6.8) will have a positive
entry in the bottom right corner, meaning that U−1

t has the property that ∂ε0/∂ε > 0.
It follows that the ε0-component ofU−1

t (λ, ε)will be positive for ε small and positive.
In that case, the solution to the system (5.2) will have ε(u) > 0 up to the blow-up
time. The blow-up time, in turn, exceeds t for all points in the domain of Ut .

We may, therefore, apply the Hamilton–Jacobi formula (5.7), which we write as
follows. We let HJ denote the right-hand side of the Hamilton–Jacobi formula (5.7):

HJ(t, λ0, ε0) = log(|λ0 − 1|2 + ε0) − ε0t

(|λ0 − 1|2 + ε0)2

+ log |λ(t; λ0, ε0)| − log |λ0| (6.10)

and we then have

S(t, λ(t; λ0, ε0), ε(t; λ0, ε0)) = HJ(t, λ0, ε0). (6.11)

If ε is small and positive, we therefore obtain

S(t, λ, ε) = HJ(t,U−1
t (λ, ε)),

where we note that by definition λ(t;U−1
t (λ, ε)) = λ.

Now, in the limit ε → 0+ with λ fixed, the inverse function theorem tells us that
U−1
t (ε, λ) → (0, λ). Thus, the limit (6.6) may be computed by putting λ(t; λ0, ε0) =

λ in (6.11) and letting ε0 tend to zero and λ0 tend to λ. This process gives (6.6).
Finally, when λ0 = 0, we can use continuous dependence of the solutions on the

initial conditions. The formula for pε(t) in Proposition 5.9 has a limit as |λ0| tends to
zero, so that δ tends to +∞. From (5.44), we find that a2 = y20 , so that from (5.32),
y(t) ≡ y0. We then obtain

pε(t) = e−Ct p0,

which remains nonsingular for all t . We can then continue to use the formula (5.50)
for ε(t). Furthermore, by exponentiating (5.51) and letting |λ0| tend to zero, we find
that λ(t) ≡ 0. We then continue to use the remaining formulas in the proof of Propo-
sition 5.11 and find that the solution to the system exists for all time.

When λ0 = 0, we apply the Hamilton–Jacobi formula in the form (5.20), which is
to say that we replace the last two terms in (5.7) by

∫ t
0 ε(s)pε(s) ds. We then compute

as in (6.9) that the derivative of ε(t; 0, ε0)with respect to ε0 is positive at ε0 = 0.Thus,
by the inverse function theorem, for small positive ε, we can find a small positive ε0
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that gives ε(t; 0, ε0) = ε. We then apply (5.20 ) with λ0 = 0 and λ(t) = 0, and let ε
tend to zero, which means that ε0 also tends to zero. As ε0 tends to zero, the function

ε(s)pε(s) = ε(s)pε(s)2

pε(s)
= ε0 p20e

−Cs

pε(s)

tends to zero uniformly and we obtain (6.6). �

6.3 Inside 6t

In this subsection, we establish the needed regularity of S(t, λ, ε) as ε tends to zero,
for λ in�t . This result, whose proof is on p. 41, together with Theorem 5.7, will allow
us to understand the structure of st and its derivatives on �t .

Theorem 6.4 Define

S̃(t, λ, z) = S(t, λ, z2), z > 0.

Fix a pair (σ, μ) with μ in �σ . Then S̃(t, λ, z), initially defined for z > 0, extends to
a real-analytic function in a neighborhood of (σ, μ, 0) inside R × C × R.

We emphasize that the analytically extended S̃ does not satisfy the identity
S̃(t, λ, z) = S(t, λ, z2). Indeed, since

√
ε(t)pε(t) is always bounded away from

zero (Proposition 5.6), the second Hamilton–Jacobi formula (5.8) tells us that
∂ S̃/∂z(t, λ, z) = 2

√
ε∂S/∂ε(t, λ, z2) has a nonzero limit as z tends to zero, ruling

out a smooth extension that is even in z.

Corollary 6.5 Fix a pair (σ, μ) with μ in �σ . Then the functions

S(t, λ, ε),
∂S

∂a
(t, λ, ε),

∂S

∂b
(t, λ, ε),

√
ε
∂S

∂ε
(t, λ, ε) (6.12)

all have extensions that are continuous in all three variables to the set of (t, λ, ε)

with λ ∈ �t and ε ≥ 0. Furthermore, for each t > 0, the function st is infinitely
differentiable on�t , and its derivatives with respect to a and b agree with the ε → 0+
limit of ∂S/∂a and ∂S/∂b. If we let t∗ be short for t∗(λ0, ε0), then for allλ0 and ε0 > 0,
we have

st (t∗, λ(t∗; λ0, ε0)) = log(|λ0 − 1|2 + ε0) − ε0t∗
(|λ0 − 1|2 + ε0)2

+ log |λ(t∗; λ0, ε0)| − log |λ0|

and

∂st
∂a

(t∗, λ(t∗; λ0, ε0)) = lim
t→t∗

pa(t)

∂st
∂b

(t∗, λ(t∗; λ0, ε0)) = lim
t→t∗

pb(t). (6.13)
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Proof We note that the four functions in (6.12) may be computed as

S̃(t, λ,
√

ε),
∂ S̃

∂a
(t, λ,

√
ε),

∂ S̃

∂b
(t, λ,

√
ε),

1

2

∂ S̃

∂z
(t, λ,

√
ε),

respectively, and that S(t, λ, 0) = S̃(t, λ, 0). The first claim then follows from Theo-
rem 6.4. Now that the continuity of S and its derivatives has been established, we may
let t approach t∗(λ0, ε0) in the Hamilton–Jacobi formulas (5.7) and (5.8) to obtain the
second claim. �
Corollary 6.6 Let us write λ ∈ �t in logarithmic polar coordinates, with ρ = log |λ|
and θ = arg λ. Then for each pair (t, λ) with λ ∈ �t , we have

∂st
∂ρ

(t, λ) = 2ρ

t
+ 1. (6.14)

Furthermore, ∂st/∂θ is independent of ρ; that is,

∂st
∂θ

= mt (θ),

for some smooth function mt . Thus,

∂2st
∂ρ2 + ∂2st

∂θ2
= 2

t
+ ∂

∂θ
mt (θ) (6.15)

for some smooth function mt , and

(
∂2

∂a2
+ ∂2

∂b2

)
st (λ) = 1

|λ|2
(
2

t
+ ∂

∂θ
mt (θ)

)
. (6.16)

In Sect. 6.4, we will obtain a formula for the function mt (θ) appearing in Corol-
lary 6.6.

Proof The derivative ∂/∂ρ may be computed in ordinary polar coordinates as r∂/∂r or
in rectangular coordinates as a∂/∂a+b∂/∂b. It then follows from theHamilton–Jacobi
formula (5.8) that

(
a

∂S

∂a
+ b

∂S

∂b

)
(t, λ(t), ε(t)) = a(t)pa(t) + b(t)pb(t).

Now, for each pair (t, λ) with λ ∈ �t , Theorem 5.17 tells us that we can find (λ0, ε0)

so that

lim
u→t

ε(u) = 0; lim
u→t

λ(u) = λ.
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In light of (6.13), the formula (6.14) then follows from the formula (5.29) in Theo-
rem 5.7.

Now, ∂st/∂ρ is manifestly independent of θ. Since, by Corollary 6.5, st is an
analytic, hence C2, function on �t , we conclude that

∂

∂ρ

∂st
∂θ

= ∂

∂θ

∂st
∂ρ

= 0,

showing that ∂st/∂θ is independent of ρ. The formula (6.15) then follows by dif-
ferentiating (6.14) with respect to ρ. Finally, if we use the standard formula for the
Laplacian in polar coordinates,

	 = 1

r2

((
r

∂

∂r

)2

+ ∂2

∂θ2

)
= 1

r2

(
∂2

∂ρ2 + ∂2

∂θ2

)
.

we obtain (6.16) from (6.15). �
We now begin preparations for the proof of Theorem 6.4. Recall from Proposi-

tion 5.6 that ε(t)pε(t)2 = ε0 p20e
−Ct ,where C = 2� −1 is a constant computed from

ε0 and λ0 as in (5.26). Recall also from Proposition 5.9 that for ε0 > 0, the function
1/pε(t) extends to real analytic function of t defined for all t ∈ R. We then define,
for ε0 > 0,

z(t; λ0, ε0) = √
ε0 p0e

−Ct/2 1

pε(t; λ0, ε0)
(6.17)

for all t ∈ R. For t < t∗(λ0, ε0), the function z(t; λ0, ε0) is positive and satisfies

z(t; λ0, ε0)
2 = ε(t; λ0, ε0),

while for t = t∗(λ0, ε0), we have z(t; λ0, ε0) = 0 and for t > t∗(λ0, ε0), the function
z(t; λ0, ε0) is negative.

Furthermore, using (5.51) and Point 3 of Proposition 5.4, we see that

λ(t; λ0, ε0) = λ0e
∫ t
0 ε(s)pε(s) ds,

where by Proposition 5.6, we have

ε(s)pε(s) = ε(s)pε(s)2

pε(s)
= ε0 p20e

−Cs

pε(s)
.

Since 1/pε(s) extends to an analytic function of s ∈ R, we see that λ(t) extends to an
analytic function of t ∈ R. We may therefore define a map

V (t, λ0, ε0) := (t, λ(t; λ0, ε0), z(t; λ0, ε0)),

for all t ∈ R, λ0 ∈ C, and ε0 > 0.
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Proposition 6.7 Suppose (t, λ0, ε0) has the property that λ0 �= 0 and t∗(λ0, ε0) = t,
so that z(t; λ0, ε0) = 0. Then the Jacobian matrix of V at (t, λ0, ε0) is invertible.

Proof We make some convenient changes of variables. First, we replace (t, λ0, ε0)
with (t, λ0, δ),where δ is as in (5.38). This change has a smooth inverse, since we can
recover ε0 from δ as

ε0 = |λ0| δ − |λ0|2 − 1.

Then we write λ0 in terms of its polar coordinates, (r0, θ0). Finally, we write
λ(t; λ0, ε0) in logarithmic polar coordinates,

ρ(t; λ0, ε0) := log |λ0(t; λ0, ε0)| ; θ(t; λ0, ε0) := arg(λ(t; ε0, λ0)),

where by Point 3 of Proposition 5.4, θ(t; λ0, ε0) = θ0.

Thus, to prove the proposition, it suffices to verify that the Jacobian matrix of the
map

W (t, θ0, r0, δ) := (t, θ0, ρ(t; λ0, ε0), z(t; λ0, ε0))

is invertible. We observe that this Jacobian has the form

W ′ =
(
I2×2 0
∗ K

)
,

where

K =
(

∂ρ
∂r0

∂ρ
∂δ

∂z
∂r0

∂z
∂δ

)
.

Now, by Proposition 5.9, the lifetime is independent of r0 with δ and θ0 fixed. Thus,
if we start at a point with t∗(λ0, ε0) = t and vary r0, the lifetime will remain equal to
t and z(t; ε0, λ0) will remain equal to 0. Thus, at the point in question, ∂z/∂r0 = 0.
Meanwhile, Proposition 5.12 gives a formula for the value of ρ(t; λ0, ε0) at t =
t∗(λ0, ε0), from which we can easily see that ∂ρ/∂r0 > 0. It therefore remains only
to verify that ∂z/∂δ is nonzero.

Now, z(t∗(λ0, ε0); λ0, ε0) = 0. If we differentiate this relation with respect to ε0
with λ0 fixed, we find that

∂z

∂ε0
= −∂z

∂t

∂t∗(λ0, ε0)
∂ε0

. (6.18)

The derivative ∂t∗/∂ε0 may be computed as

∂t∗(λ0, ε0)
∂ε0

= ∂gθ0(δ)

∂δ

∂δ

∂ε0
,
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where gθ0 is as in (5.58). But the proof of Proposition 5.16 shows that ∂gθ /∂δ > 0 for
all δ > 2, while from the formula (5.38) for δ, we see that ∂δ/∂ε0 > 0. (Note also
that δ > 2 whenever ε0 > 0.) Thus, ∂t∗(λ0, ε0)/∂ε0 > 0.

Meanwhile, from (6.17) and (5.45), we have

z(t) =
√

ε0eCt/2

cosh(at) + 2|λ0|−δ√
δ2−4

sinh(at)

(
cosh(at) − δ√

δ2 − 4
sinh(at)

)
.

If we differentiate with respect to t and evaluate at the time t∗ when the last factor is
zero, the product rule gives

∂z(t; λ0, ε0)

∂t

∣∣∣∣
t=t∗(λ0,ε0)

= 0 +
√

ε0eCt/2

cosh(at) + 2|λ0|−δ√
δ2−4

sinh(at)
a

(
sinh(at) − δ√

δ2 − 4
cosh(at)

)
,

which is negative because δ/
√

δ2 − 4 > 1 and the denominator is positive (Proposi-
tion 5.9). Thus, from (6.18), we conclude that ∂z/∂ε0 > 0. �

We are now ready for the proof of the main result of this section.

Proof of Theorem 6.4 By (6.11), we have

S̃(t; λ(t; λ0, ε0), z(t; λ0, ε0)) = S(t; λ(t; λ0, ε0), ε(t; λ0, ε0))

= HJ(t, λ0, ε0), (6.19)

where HJ is as in (6.10), whenever t∗(λ0, ε0) > σ. Fix a point (σ, μ) with μ ∈ �σ .

Then by Theorem 5.17, we can find a pair (λ0, ε0) with t∗(λ0, ε0) = t—so that
z(t; λ0, ε0) = 0—and λ(t; λ0, ε0) = λ. We now construct a local inverse V−1 to V
around the point V (t, λ0, ε0) = (t, λ, 0).

For any triple (t, λ, z) in the domain of V−1, we write V−1(t, λ, z) as (t, λ0, ε0).
We note that if z > 0 then t∗(λ0, ε0) must be greater than t, because if we had
t∗(λ0, ε0) ≤ t, then z(t; λ0, ε0) = z would be zero or negative. Thus, we may apply
(6.19) at (t, λ0, ε0) = V−1(t, λ, z) to obtain

S̃(t, λ, z) = HJ(V−1(t, λ, z)), (6.20)

whenever (t, λ, z) is in the domain of V−1 and z > 0.
Recall now that λ(t; λ0, ε0) extends to an analytic function of t ∈ R. Thus, the

function HJ in (6.10) extends to a smooth function of t ∈ R, λ0 ∈ C\{0}, and ε0 > 0,
defined even if t∗(λ0, ε0) < t . Therefore, the right-hand side of (6.20) provides the
claimed smooth extension of S̃. �
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6.4 Near the boundary of 6t

We start by considering what is happening right on the boundary of �t .

Remark 6.8 Neither the method of Sect. 6.2 nor the method of Sect. 6.3 allows us to
compute the value of st (λ) for λ in the boundary of �t . Although we expect that this
value will be log(|λ − 1|2), the question is irrelevant to the computation of the Brown
measure. After all, we are supposed to consider	st computed in the distribution sense,
that is, the distribution whose value on a test function ψ is

∫
C

st (λ)	ψ(λ) d2λ. (6.21)

The value of (6.21) is unaffected by the value of st (λ) for λ in ∂�t , which is a set of
measure zero in C.

It is nevertheless essential to understand the behavior of st (λ) as λ approaches the
boundary of �t .

Definition 6.9 We say that a function f : C → R is analytic up to the boundary from
inside �t if the following conditions hold. First, f is real analytic on �t . Second, for
each λ ∈ ∂�t , we can find an open set U containing λ and a real analytic function g
on U such that g agrees with f on U ∩ �t . We may similarly define what it means
for f to be analytic up to the boundary from outside �t .

Proposition 6.10 For each t > 0, the function st is analytic up to the boundary from
inside �t and analytic up to the boundary from outside �t .

Note that the proposition is not claiming that st is an analytic function on all of
C. Indeed, our main results tell us that 1

4π 	st (λ) is identically zero for λ outside �t

but approaches a typically nonzero value as λ approaches a boundary point from the
inside. As we approach from the inside a boundary point with polar coordinates (r , θ),

the limiting value of 1
4π 	st (λ) is wt (θ)/r2. This quantity certainly cannot always be

zero, or the Brown measure of bt would be identically zero. Actually, we will see in
Sect. 7.1 that wt (θ) is strictly positive except when t = 4 and θ = π.

Proof We have shown that st (λ) = log(|λ − 1|2) for λ in (�t )
c. Since 1 ∈ �t , we see

that st is analytic from the outside of �t .

To address the analyticity from the inside, first note that by applying (6.20) with
z = 0, we have

st (λ) = S(t, λ, 0) = S̃(t, λ, 0) = HJ(V−1(t, λ, 0)),

where HJ is as in (6.10). But if εt0 : �t → R and λt : �t → C are as in Lemma 5.18,
then we can see that

V−1(t, λ, 0) = (t, λ−1
t (λ), εt0(λ

−1
t (λ)))
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and we conclude that

st (λ) = HJ(t, λ−1
t (λ), εt0(λ

−1
t (λ))). (6.22)

We now claim that the function εt0(λ0), initially defined for λ0 ∈ �t , extends to an
analytic function in a neighborhood of �t . For t ≥ 4, we can simply use the formula
(5.64) for all nonzero λ0. For t < 4, however, the formula (5.64) becomes undefined
in a neighborhood of a point where ∂�t intersects the unit circle.

Nevertheless, we can make a general argument as follows. To compute εt0(λ0), we
solve the equation t∗(λ0, ε0) = t for ε0 as a function of λ0.To do this, we first solve the
equation gθ0(δ) = t for δθ0,t and then solve for ε0 in terms of δ as ε0 = |λ0| δ−|λ0|2−1.
Now, we know from the proof of Proposition 5.16 that gθ0(δ) = t has a solution when
|θ0| ≤ θmax(t) = cos−1(1− t/2),with the solution being δ = 2 when θ0 = ±θmax(t).
We can also verify that ∂gθ0/∂δ > 0 for all δ ≥ 2. This was verified for δ > 2 in the
proof of Proposition 5.16. To see that the result holds even when δ = 2, it suffices
to verify that the expressions in (5.59) and (5.60) have positive limits as δ → 2+.
We omit this verification and simply note that the limits have the values 1 and 1/3,
respectively. It then follows from the implicit function theorem that (1) the solution
δθ0,t continues to exist (with δ < 2) for |θ0| slightly larger than θmax(t), and (2) the
solution δθ0,t depends analytically on θ0. Then, the expression

εt0(λ0) = |λ0| δθ0,t − |λ0|2 − 1

makes sense and is analytic for all nonzero λ0 with |arg λ0| < θmax(t) + αt , for some
positive quantity αt . We note that in this expression, εt0(λ0) can be negative—for
example if |λ0| = 1 and arg λ0 > θmax(t).

We now consider the function λt , defined as

λt (λ0) = λ(t; λ0, ε
t
0(λ0)),

and we recall that λt (λ0) = λ0 for λ0 ∈ ∂�t . Although λt was initially defined
for λ0 in �t , it has an analytic extension to a neighborhood of �t , namely the set
of λ0 in the domain of the extended function εt0 for which the pair (λ0, ε0) satisfy
the assumptions in (5.42). We now claim that the derivative of λt (λ0) is invertible at
each point in its domain. We use polar coordinates in both domain and range. Since
arg(λt (λ0)) = arg λ0, the derivative will have the form

λ′
t (λ0) =

(
∂|λt |
∂r

∂ arg λt
∂θ

0 1

)
,

and it therefore suffices to check that ∂ |λt | /∂r is nonzero. To see this, we use the
formula (5.62), where δ = δθ0,t as in the previous paragraph. Since δ is independent
of |λ0| with t and arg λ0 fixed, we can easily verify from (5.62) that ∂ |λt | /∂r > 0.

Now, we have already established that st is analytic in the interior of �t . Consider,
then, a point λ in ∂�t , so that λt (λ) = λ. Since λ′

t (λ) is invertible, it has a analytic
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local inverse λ−1
t defined near λ. Then the formula (6.22) gives an analytic extension

of st to a neighborhood of λ. �
Proposition 6.11 Fix a point μ on the boundary of �t . Then the functions

st (λ),
∂st
∂a

(λ),
∂st
∂b

(λ)

all approach the samevaluewhenλapproachesμ from inside�t aswhenλapproaches
μ from outside �t .

Proof We begin by considering st itself. The limit as λ approaches μ from the inside
may be computed by using (6.22). By Lemma 5.18, as λ approaches μ from the
inside, λ−1

t (λ) approaches λ−1
t (μ) = μ, and εt0(λ

−1
t (λ)) approaches 0. Thus, the

limiting value of st from the inside is

HJ(t, μ, 0) = log(|μ − 1|2),

where HJ is given by (6.10) and were we have used that λ(t;μ, 0) = μ. (See the last
part of Proposition 5.11). Since st (λ) = log(|λ − 1|2) outside �t , the limit of st from
the outside agrees with the limit from the inside.

Next we consider the derivatives, which we compute in logarithmic polar coordi-
nates ρ = log |λ| and θ = arg λ. By (6.14), we have

∂st
∂ρ

(λ) =
(
a

∂st
∂a

+ b
∂st
∂b

)
(λ) = log(|λ|2)

t
+ 1

for λ ∈ �t . Letting λ approach μ from the inside gives the value log(|μ|2)/t + 1.
Since μ is on the boundary of �t , Theorem 3.1 says that T (μ) = t, so that

log |μ|2
t

+ 1 = |μ|2 − 1

|μ − 1|2 + 1

= 2(|μ|2 − Reμ)

|μ − 1|2 .

Taking the corresponding derivative of the “outside” function log(|λ − 1|2) and letting
λ tend to μ from the outside gives the same result.

Finally, we recall from Proposition 5.4 that apb−bpa is a constant of motion. Thus,
by the second Hamilton–Jacobi formula (5.8) and the initial conditions (5.4), we have

a
∂st
∂b

(u, λ(u), ε(u)) − b
∂st
∂a

(u, λ(u), ε(u)) = a0 pb,0 − b0 pa,0

= (2a0b0 − 2b0(a0 − 1))p0

= 2b0
|λ0 − 1|2 + ε0

.
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If we choose ε0 and λ0 so that t∗(λ0, ε0) = t we can use the regularity result in
Corollary 6.5 to let u tend to t . This gives

a
∂st
∂b

(λ) − b
∂st
∂a

(λ) = 2b0
|λ0 − 1|2 + ε0

,

where now λ0 = λ−1
t (λ) and ε0 = εt0(λ

−1
t (λ)). As λ approaches μ, Theorem 5.17

says that the value of λ0 approaches μ and ε0 approaches 0, so we get

lim
λ→μinside

(
a

∂st
∂b

(λ) − b
∂st
∂a

(λ)

)
= 2 Imμ

|μ − 1|2 .

Taking the corresponding derivative of log(|λ − 1|2) and letting λ tend to μ from the
outside gives the same result. �

6.5 Proof of themain result

In this subsection, we prove our first main result, Theorem 2.2. Proposition 2.3 will
then be proved in Sect. 7.1, while Propositions 2.5 and 2.6 will be proved in Sect. 7.2.

Proposition 6.12 For each fixed t, the restriction to �t of the function

∂st
∂θ

(t, λ)

is the unique function that on �t that (1) extends continuously to the boundary, (2)
agrees with the θ -derivative of log(|λ − 1|2) on the boundary, and (3) is independent
of r = |λ| . Thus, the function mt in Corollary 6.6 is given by

mt (θ) = 2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ
,

where rt (θ) is the outer radius of the domain �t (Fig. 3).

Proof We have already established in Corollary 6.6 that ∂st/∂θ is independent of
ρ (or equivalently, of r ) in �t . Then Propositions 6.10 and 6.11 tell us that ∂st/∂θ

is continuous up to the boundary and agrees there with the angular derivative of
log(|λ − 1|2). Thus, to compute ∂st/∂θ at a point in �t , we travel along a radial
segment (in either direction) until we hit the boundary at radius rt (θ) or 1/rt (θ). We
then evaluate the angular derivative of log(|λ − 1|2), as in (6.5), giving the claimed
expression for ∂st/∂θ = mt (θ). �
Proposition 6.13 For each t > 0, the distributional Laplacian of st (λ) with respect to
λ may be computed as follows. Take the pointwise Laplacian of st outside �t (giving
zero), take the pointwise Laplacian of st inside �t (giving the expression (6.16) in
Corollary 6.6) and ignore the boundary of �t .
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Proof Since, by Proposition 6.10, st is analytic up to the boundary of �t from the
inside, Green’s second identity says that

∫
�t

st (λ)	ψ(λ) d2λ =
∫

�t

(	st (λ))ψ(λ) d2λ

+
∫

∂�t

(st (λ)∇ψ(λ) − ψ(λ)∇st (λ)) · n̂ dS,

for any test function ψ, where in the last integral, the limiting value of ∇st from the
inside should be used. This identity holds because the boundary of �t is smooth for
t �= 4 and piecewise smoothwhen t = 4 (Point 3 of Theorem3.2).We also have similar
formula for the integral over the complement of �t , provided that ψ is compactly
supported, but with the direction of the unit normal reversed. Proposition 6.11 then
tells us that the boundary terms in the two integrals cancel, giving

∫
C

st (λ)	χ(λ) d2λ =
∫

(�t )c
(	st (λ))χ(λ) d2λ +

∫
�t

(	st (λ))χ(λ) d2λ, (6.23)

where the integral over (�t )
c is actually zero, since 	st (λ) = 0 there. The formula

(6.23) says that the distributional Laplacian of st may be computed by taking the
ordinary, pointwise Laplacian in �t and in �t and ignoring the boundary of �t . �

We now have all the ingredients for a proof of Theorem 2.2.

Proof of Theorem 2.2 Proposition 6.13 tells us that we can compute the distributional
Laplacian of st separately inside �t and outside �t , ignoring the boundary. The-
orem 6.2 tells us that the Laplacian outside �t is zero. Corollary 6.6 gives us the
form of 	st inside �t , while Proposition 2.6 identifies the function mt appearing in
Corollary 6.6. The claimed formula for the Brown measure therefore holds. �

7 Further properties of the Brownmeasure

7.1 The formula for!

In this subsection, we derive the formula for wt given in Proposition 2.3 in terms of
the density ω. Throughout, we will write the function T in (3.1) in polar coordinates
as

T (r , θ) = (r2 + 1 − 2r cos θ)
log(r2)

r2 − 1
. (7.1)

We start with a simple rewriting of the expression for wt in Theorem 2.2.

Lemma 7.1 The density wt (θ) in Theorem 2.2 may also be written as

wt (θ) = 1

2π t

(
1 + ∂

∂θ
[h(rt (θ)) sin θ ]

)
,
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The Brown measure of the free multiplicative Brownian motion 265

where

h(r) = r
log(r2)

r2 − 1
.

Proof We start by noting that the point with polar coordinates (rt (θ), θ) is on the
boundary of �t . Thus, by Theorem 3.1, we have T (rt (θ), θ) = t, from which we
obtain

1

rt (θ)2 + 1 − 2rt (θ) cos θ
= 1

t

log(rt (θ))

rt (θ)2 − 1
.

Thus, we may write

2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ
= 2

t
h(rt (θ)) sin θ,

from which the claimed formula follows easily from the expression in Theorem 2.2.
�

We now formulate the main result of this subsection, whose proof is on p. 47.

Theorem 7.2 Consider the function ω(r , θ) defined in (2.7). Although the right-hand
side of (2.7) is indeterminate at r = 1, the function ω has a smooth extension to all
r > 0 and all θ. The function wt (θ) in Theorem 2.2 can then be expressed as

wt (θ) = 1

2π t
ω(rt (θ), θ).

The function ω has the following properties.

(1) We have ω(1/r , θ) = ω(r , θ) for all r > 0 and all θ.

(2) When r = 1, we have

ω(1, θ) = 3
1 + cos θ

2 + cos θ
.

In particular, ω(1, 0) = 2 and ω(1, π) = 0.
(3) The density ω(r , θ) is strictly positive except when r = 1 and θ = ±π. Further-

more, ω(r , θ) ≤ 2 with equality precisely when r = 1 and θ = 0.
(4) We have

lim
r→0

ω(r , θ) = 1,

where the limit is uniform in θ.

We now derive consequences for wt . For t ≤ 4, the density wt (θ) is only defined
for −θmax(t) < θ < θmax(t), where θmax(t) = cos−1(1 − t/2), while for t > 4, the
density wt (θ) is defined for all θ. (Recall Theorem 3.2).
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Corollary 7.3 (Positivity). If t > 4, thenwt (θ) is strictly positive for all θ. If t < 4, then
wt (θ) is strictly positive for −θmax(t) < θ < θmax(t) and the limit as θ approaches
±θmax(t) of wt (θ) is strictly positive. Finally, if t = 4, then wt (θ) is strictly positive
for −π < θ < π, but limθ→±π wt (θ) = 0.

Proof The only time ω(r , θ) equals zero is when r = 1 and θ = ±π. When t > 4,
the function rt (θ) is continuous and and greater than 1 for all θ, so that wt (θ) is
strictly positive in this case. When t ≤ 4, we know from Proposition 3.4 that rt (θ)

is greater than 1 for |θ | < θmax(t) and approaches 1 when θ approaches ±θmax(t).
Thus, wt (θ) = ω(rt (θ), θ) is strictly positive for |θ | < θmax(t).When t < 4, we have
θmax(t) = cos−1(1− t/2) < π and the limiting value ofwt (θ)—namelyω(1, θmax)—
will be positive. Finally, when t = 4, we have θmax(t) = π and the limiting value of
wt (θ) is ω(1, π) = 0. �
Corollary 7.4 (Asymptotics). The density wt (θ) has the property that

wt (θ) ∼ 1

π t

for small t . More precisely, for all sufficiently small t and all θ ∈ (−θmax(t), θmax(t)),
the quantity π twt (θ) is close to 1. Furthermore,

wt (θ) ∼ 1

2π t

for large t. More precisely, for all sufficiently large t and all θ, the quantity 2π twt (θ)

is close to 1.

The small- and large-t behavior of the region �t can also be determined using the
behavior of the function T (λ) near λ = 1 (small t) and near λ = 0 (large t), together
with the invariance of the region under λ 	→ 1/λ. For small t, the region resembles
a disk of radius

√
t around 1, while for large t, the region resembles an annulus with

inner radius e−t/2 and outer radius et/2. In particular, the expected behavior of the
Brown measure for small t can be observed: it resembles the uniform probability
measure on a disk of radius

√
t centered at 1.

Proof When t is small, the entire boundary of�t will be close toλ = 1, since this is the
only point where T (λ) = 0. Furthermore, when t is small, θmax(t) = cos−1(1− t/2)
is close to zero. When t is small, therefore, the quantity

π twt (θ) = 1

2
ω(rt (θ), θ)

will be close to ω(1, 0)/2 = 1 for all θ ∈ (−θmax(t), θmax(t)), by Point 2 of Theorem
7.2.

When t is large (in particular, greater than 4), the inner boundary of the domain
will be close to λ = 0, since this is the only point in the unit disk where T (λ) is large.
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Thus, for large t, the inner radius 1/rt (θ) of the domain will be uniformly small, and
therefore

2π twt (θ) = ω(rt (θ), θ) = ω(1/rt (θ), θ)

will be uniformly close to 1, by Point 4 of Theorem 7.2. �
Proof of Theorem 7.2 We note that the function T in (7.1) can be written as

T (r , θ) =
(
r + 1

r
− 2 cos θ

)
h(r),

so that

∂T

∂r
=

(
1 − 1

r2

)
h(r) +

(
r + 1

r
− 2 cos θ

)
h′(r);

∂T

∂θ
= 2 sin θ h(r).

Applying implicit differentiation to the identity T (rt (θ), θ) = t then gives

drt (θ)

dθ
= −∂T /∂θ

∂T /∂r
. (7.2)

By the chain rule and (7.2), d
dθ

[h(rt (θ)) sin θ ] = q(rt (θ), θ), where

q(r , θ) = h(r) cos θ − h′(r) sin θ
∂T /∂θ

∂T /∂r

= h(r) cos θ − 2h′(r) sin2 θ h(r)(
1 − 1

r2

)
h(r) + (

r + 1
r − 2 cos θ

)
h′(r)

. (7.3)

After computing that

h′(r) = 2

r2 − 1
− r2 + 1

r(r2 − 1)
h(r),

it is a straightforward but tedious exercise to simplify (7.3) and obtain the claimed
formula (2.7).

Since h(1/r) = h(r), we may readily verify Point (1); both numerator and denom-
inator in the fraction on the right-hand side of (2.7) change by a factor of 1/r2 when
r is replaced by 1/r .

To understand the behavior of ω at r = 1, we need to understand the function
h better. We may easily calculate that h has a removable singularity at r = 1 with
h(1) = 1, h′(1) = 0, and h′′(1) = −1/3.We also claim that h satisfies 0 < h(r) ≤ 1,
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with h(r) = 1only at r = 1.Toverify the claim,wefirst compute that limr→0 h(r) = 0
and that

h′(r) = 2(r2 − 1) + (r2 + 1) log(1/r2)

(r2 − 1)2
.

Using the Taylor expansion of logarithm, we may then compute that

h′(r) = 1

(r2 − 1)2

∞∑
k=3

(
2

k
− 1

k + 1

)
(1 − r2)k > 0

for 0 < r < 1. Thus, h(r) increases from 0 to 1 on [0, 1].
We now write h in the form

h(r) = 1 − c(r)(r − 1)2 (7.4)

for some analytic function c(r),with c(1) = 1/6.Theminus sign in (7.4) is convenient
because h has a strict global maximum at 1, which means c(r) is strictly positive
everywhere.

Now, since h(1) = 1, the fraction on the right-hand side of (2.7) is of 0/0 form
when r = 1. To rectify this situation, we observe that α and β may be written as

α(r) = (r − 1)2[1 + 2rc(r)]; β(r) = (r − 1)2[1 − (r2 + 1)c(r)].

Thus, we can take a factor of (r − 1)2 out of numerator and denominator to obtain

ω(r , θ) = 1 + h(r)
α̃(r) cos θ + β̃(r)

β̃(r) cos θ + α̃(r)
, (7.5)

where α̃(r) = 1 + 2rc(r) and β̃(r) = 1 − (r2 + 1)c(r). This expression is no longer
of 0/0 form at r = 1. Indeed, since h(1) = 1 and c(1) = 1/6, we may easily verify
the claimed formula for ω(1, θ) in Point 2 of the theorem. We will shortly verify that
the denominator in the fraction on the right-hand side of (7.5) is positive for all r > 0
and all θ, from which the claimed smooth extension of ω follows.

To verify the claimed positivity of ω, we first observe that β̃(r)z + α̃(r) is positive
when z = 1 (with a value of 2 − (r − 1)2c(r) = 1 + h(r)) and also positive when
z = −1 (with a value of (r + 1)2c(r)), and hence positive for all −1 ≤ z ≤ 1. Thus,
the denominator in the fraction on the right-hand side of (7.5) is never zero. We then
compute that

d

dz

α̃(r)z + β̃(r)

β̃(r)z + α̃(r)
= α̃(r)2 − β̃(r)2

(β̃(r)z + α̃(r))2
= (r + 1)2h(r)

(β̃(r)z + α̃(r))2
> 0
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for all r and θ. Thus, (α̃(r)z + β̃(r))/(β̃(r)z + α̃(r)) increases from −1 to 1 as z
increases from −1 to 1. Since h(r) is positive, we conclude that

1 − h(r) ≤ ω(r , θ) ≤ 1 + h(r)

for all r and θ, with equality when cos θ = −1 in the first case and when cos θ = 1
in the second case. Since h(r) ≤ 1 with equality only at r = 1, we see that ω(r , θ)

is positive except when r = 1 and cos θ = −1. Similarly, ω(r , θ) ≤ 2 with equality
only if r = 1 and cos θ = 1.

Finally, from the definition (7.4) and the fact that limr→0 h(r) = 0, we find that
limr→0 c(r) = 1. Thus, as r → 0, we have α̃(r) → 1 and β̃(r) → 0. In this limit,
the fraction on the right-hand side of (7.5) converges uniformly to cos θ, while h(r)
tends to zero, giving Point 4. �

7.2 The connection to free unitary Brownianmotion

Recall from Theorem 1.1 that the spectral measure νt of the free unitary Brownian
motion ut was computed by Biane. In this subsection, we prove Proposition 2.5, which
connects the Brown measure of bt to Biane’s measure νt . The support of νt is a proper
subset of the unit circle for t < 4 and the entire unit circle for t ≥ 4. For t < 4, the
support of νt consists of points with angles φ satisfying |φ| ≤ φmax(t), where

φmax(t) = 1

2

√
t(4 − t) + cos−1(1 − t/2).

Recall the definition in (1.3) of the function ft . Then ft maps the boundary of �t

into the unit circle. (This is true by the definition (2.1) for points in ∂�t outside the
unit circle and follows by continuity for points in ∂�t in the unit circle). Indeed, let
the outer boundary of �t , denoted ∂�out

t , be the portion of ∂�t outside the open unit
disk. Then ft is a homeomorphism of ∂�out

t to the support of νt :

ft : ∂�out
t ↔ supp(νt ). (7.6)

In particular, for t < 4, let us define

θmax(t) = cos−1(1 − t/2),

so that the two points in ∂�t ∩ S1 have angles ±θmax(t) (Theorem 3.2). Then

ft (e
iθmax(t)) = eiφmax(t),

as may be verified by direct computation from the definition of ft . (Use the formula
(7.10) below with r = 1 and cos θ = 1 − t/2.)
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We now describe the map (7.6) more concretely. We denote by λt (θ) the point at
angle θ in ∂�out

t :

λt (θ) = rt (θ)eiθ ,

where for t < 4, we require |θ | ≤ θmax(t). Then the map in (7.6) can be thought of as
a map of θ to φ determined by the relation

ft (λt (θ)) = eiφ. (7.7)

We now observe a close relationship between the densitywt (θ) in Theorem 2.2 and
the map in (7.7).

Proposition 7.5 Let φ and θ be related as in (7.7), where if t < 4, we require |φ| ≤
φmax(t) and |θ | ≤ θmax(t). Then the density wt in Theorem 2.2 may be computed as

wt (θ) = 1

2π t

dφ

dθ
. (7.8)

We may also write this formula as a logarithmic derivative of ft along the outer
boundary of �t :

wt (θ) = 1

2π t

1

i

d
dθ

ft (λt (θ))

ft (λt (θ))
. (7.9)

Proof We compute that

Im

(
1 + λ

1 − λ

)
= 2 Im λ

|λ − 1|2 = 2r sin θ

r2 + 1 − 2r cos θ
.

Thus, using the definition (1.3) of ft , we find that

arg( ft (λ)) = arg λ + arg e
t
2
1+λ
1−λ = θ + t

r sin θ

r2 + 1 − 2r cos θ
. (7.10)

Evaluating this expression at the point λt (θ) gives

φ = arg( ft (λt (θ)))

= θ + t
rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ
. (7.11)

(Strictly speaking, φ and θ are only defined “mod 2π,” but for any local continuous
version of θ, the last expression in (7.11) gives a local continuous version of φ.) Thus,

dφ =
(
1 + t

d

dθ

rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ

)
dθ
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and the formula (7.8) follows easily by recalling the definition (2.5) ofwt . The expres-
sion (7.9) is then obtained by noting that φ = 1

i log ft (λt (θ)). �
Proposition 7.6 Biane’s measure νt may be computed as

dνt (φ) = rt (θ)2 − 1

rt (θ)2 + 1 − 2rt (θ) cos θ

dφ

2π
(7.12)

or as

dνt (φ) = log(rt (θ))

π t
dφ. (7.13)

Here, as usual, rt (θ) is the outer radius of the domain�t and θ is viewed as a function
of φ by inverting the relationship (7.7). When t < 4, the formula should be used only
for |φ| ≤ φmax(t).

Proof We make use of the expression for νt in Theorem 1.1. If φ is in the interior
of the support of νt , then χt (eiφ) is in the open unit disk, so that the density of νt is
nonzero at this point. Now, since χt is an inverse function to ft we see that χt (eiφ) is
(for φ in the interior of the support of νt ) the unique point λ with |λ| < 1 for which
ft (λ) = eiφ. Thus,

dνt (φ) = 1 − 1/rt (θ)2

1 + 1/rt (θ)2 − 2 cos θ/rt (θ)

dφ

2π
,

which reduces to (7.12). Finally, since T (λ) = t on ∂�t (Theorem 3.1), we have

(rt (θ)2 + 1 − 2rt (θ) cos θ)
log(rt (θ)2)

rt (θ)2 − 1
= t, (7.14)

which allows us to obtain (7.13) from (7.12). �
We are now ready for the proof of Proposition 2.5.

Proof of Proposition 2.5 The distribution of arg λ with respect to the Brown measure
of bt is given in (2.8) as 2 log(rt (θ))wt (θ) dθ, which we write using Proposition 7.5
and Proposition 7.6 as

2 log(rt (θ))wt (θ) dθ = 2 log(rt (θ))
1

2π t

dφ

dθ
dθ

= log(rt (θ))
dφ

π t
= dνt (φ),

as claimed. �
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Proof of Proposition 2.6 The value �t (λ) is computed by first taking the argument of
λ to obtain θ and then applying the map in (7.7) to obtain φ. Thus, the first result is
just a restatement of Proposition 2.5. For the uniqueness claim, suppose a measure μ

on �t has the form

dμ(λ) = 1

r2
g(θ) r dr dθ.

Then the distribution of the argument θ of λ will be, by integrating out the radial
variable, 2 log(rt (θ))g(θ) dθ. The distribution of φ will then be

2 log(rt (θ)g(θ)
dθ

dφ
dφ = 2 log(rt (θ)g(θ)

1

2π twt (θ)
dφ.

The onlyway this can reduce to Biane’smeasure as computed in (7.13) is if g coincides
with wt . �
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