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Abstract
The present paper is a continuation of our previous work (Hoshino et al., J Evol Equ
21:339–375, 2021) on the stochastic quantization of the exp(�)2-quantum fieldmodel
on the two-dimensional torus.Making use of key properties of Gaussianmultiplicative
chaos and refining the method for singular SPDEs introduced in the previous work,
we construct a unique time-global solution to the corresponding parabolic stochastic
quantization equation in the full “L1-regime” |α| < √

8π of the charge parameter α.
Wealso identify the solutionwith an infinite-dimensional diffusionprocess constructed
by the Dirichlet form approach.
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1 Introduction

1.1 Background

In the present paper, we study stochastic quantization associated with space-time
quantum fields with interactions of exponential type, called the exp(�)2-quantum
field model in the Euclidean quantum field theory, in finite volume. The exp(�)2-
quantum field (or the exp(�)2-measure) μ(α) is a probability measure on D′(�), the
space of distributions on the two-dimensional torus � = T

2 = (R/2πZ)2, which is
given by

μ(α)(dφ) = 1

Z (α)
exp

(
−

∫

�

exp�(αφ)(x)dx
)
μ0(dφ),

where the massive Gaussian free field μ0 is the Gaussian measure onD′(�)with zero
mean and the covariance operator (1 − �)−1, � being the Laplacian in L2(�) with
the periodic boundary conditions, α(∈ R) is called the charge parameter, the Wick
exponential exp�(αφ)(x) is formally introduced by the expression

exp�(αφ)(x) = exp
(
αφ(x)− α2

2
E
μ0 [φ(x)2]

)
, x ∈ �,

and

Z (α) =
∫

D′(�)
exp

(
−

∫

�

exp�(αφ)(x)dx
)
μ0(dφ) > 0

is the normalizing constant. We remark that the diverging term E
μ0 [φ(x)2] plays a

role of the Wick renormalization. Since this quantum field model was first introduced
by Høegh-Krohn [32] in the “L2-regime”

|α| < √
4π,

it is also called the Høegh-Krohn model. For a physical background and related early
works of thismodel, see e.g., [2, 3, 47] and references therein. Kahane [35] constructed
a random measure

ν
(α)
φ (dx) := exp�(αφ)(x)dx, x ∈ �,

called the Gaussian multiplicative chaos, in the “L1-regime”

|α| < √
8π.

It implies the existence of the exp(�)2-measure μ(α) under |α| < √
8π , which gives

a generalization of the early works mentioned above. After that, the relevance of both
the Gaussian multiplicative chaos and the exp(�)2-quantum field model has been
received much attention by many people in connection with topics like the Liouville
conformal field theory and the stochastic Ricci flow. See e.g., [12–14, 21, 22, 34, 35,
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exp(�)2-model in L1-regime 393

45] and references therein. We should also mention that Kusuoka [38] independently
studied the exp(�)2-quantum field model under |α| < √

8π .
By heuristic calculations, we observe that the exp(�)2-measureμ(α) is an invariant

measure of the following two-dimensional parabolic stochastic partial differential
equation (SPDE in short) involving exponential nonlinearity:

∂t�t (x) = 1

2
(�− 1)�t (x)− α

2
exp�

(
α�t

)
(x)+ Ẇt (x), t > 0, x ∈ �,

(1.1)

where (Ẇt )t≥0 is an R-valued Gaussian space-time white noise, that is, the time
derivative of a standard L2(�)-cylindrical Brownian motion {Wt = (Wt (x))x∈�}t≥0.
We call (1.1) the exp(�)2-stochastic quantization equation associated with μ(α). Due
to the singularity of the nonlinear drift term, the interpretation and construction of a
solution to this singular-SPDE have been a challenging problem over the past years.
For a concise overview on stochastic quantization equations, we refer to [1, 5–7] and
references therein. Albeverio and Röckner [9] first solved (1.1) (in the case where� is
replaced byR2) weakly under |α| < √

4π by using the Dirichlet form theory. Inspired
by recent quick developments of singular SPDEs based on Hairer’s groundbreaking
work on regularity structures [29] and the relatedwork, called paracontrolled calculus,
due to Gubinelli et al. [28], Garban [26] constructed a unique strong solution to (1.1)
(for the case where (�− 1) is replaced by�, i.e., massless case) in a more restrictive
condition than |α| < √

4π . In our previous paper [33], we constructed the time-global
and pathwise-unique solution to the SPDE (1.1) under |α| < √

4π by splitting the
original equation (1.1) into the Ornstein–Uhlenbeck process

∂t Xt (x) = 1

2
(�− 1)Xt (x)+ Ẇt (x),

and the shifted equation

∂t Yt (x) = 1

2
(�− 1)Yt (x)− α

2
exp(αYt (x)) exp

�(αXt )(x). (1.2)

This split is based on the idea of Da Prato and Debussche [17], which is now called the
Da Prato–Debussche trick. By the uniqueness of the solution, we also obtained the
identification with the limit of the solutions to the stochastic quantization equations
generated by the approximating measures to the exp(�)2-measure μ(α), and with the
process obtained by the Dirichlet form approach. Our construction of the solution to
the shifted equation (1.2) is different from the standard fixed-point argument applied
in [17, 26]. To be more precise, we proved convergence of solutions to approximating
equations of (1.1) by using compact embedding, and then identified the limit as the
solution.We shouldmention that, after Hoshino et al. [33], Oh et al. [43] independently
constructed the time-global unique solution to (1.1) in the same regime in [33]. Later
in [42], together with Tzvetkov, they studied the massless case on two-dimensional
compact Riemannian manifolds in the L2-regime. Besides, elliptic SPDEs, which also
realize the exp(�)2-quantum field model have been studied in e.g., [1].
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394 M. Hoshino et al.

The main purpose of the present paper is to construct the time-global and pathwise-
unique solution to the parabolic SPDE (1.1) in the full “L1-regime” |α| < √

8π .
Although the present paper builds on our previous work [33], we significantly improve
the arguments of [33] in several ways. To apply theDa Prato–Debussche trick, we need
to construct theWick exponential of the Ornstein–Uhlenbeck process {exp�(αXt )}t≥0
as a driving noise of the shifted equation (1.2). Since the Gaussian free field μ0 is
the stationary measure of the Ornstein–Uhlenbeck process {Xt }t≥0, this problem is
reduced to the construction of the Wick exponential exp�(αφ). In [33, Theorem 2.2],
we constructed it under |α| < √

4π by combining the Wick calculus of the Gaussian
free fieldμ0 with the standard Fourier expansion on a negative order L2-Sobolev space
Hs(�) (s < 0). However, this kind of argument does not work beyond the L2-regime.
Refining existing results on the convergence of the Gaussian multiplicative chaos
ν
(α)
φ (dx) in [12, 22, 45], we construct the Wick exponential exp�(αφ) on a suitable

Besov space under |α| <
√
8π (see Theorem 2.1). This is one of the important

contributions of the present paper. On the other hand, in this case, since the Wick
exponential exp�(αφ) does not have L2-integrability with respect to μ0 unlike the
case of |α| < √

4π , we need to modify our arguments mentioned above into L p-
setting for the construction of the time-global and pathwise-unique solution to (1.1).
Besides, due to the lack of the L2-integrability, we cannot follow the argument as in
[5, 8, 9, 33] to show the closability of the associated Dirichlet form. To overcome this
difficulty, in Corollary 2.4, we prove that the Wick exponential exp�(αφ) has the L2-
integrability with respect not to μ0, but to μ(α). This key property plays a significant
role not only for the closability of the Dirichlet form, but also for the identication of
the diffusion process obtained by the Dirichlet form approach with the solution to the
SPDE (1.1).

We should mention here that our model is closely connected with the sine-Gordon
model (or cos(�)2-quantum field model), which has been studied for a long period by
many authors. See e.g., [4, 23–25] for the early works. Since the sine-Gordon model is
formally obtained by replacing the nonlinearity eαφ by e

√−1αφ , it has some similarities
with the exp(�)2-model. Indeed, it can be constructed rigorously in the samewayas the
exp(�)2-model in the case |α| < √

4π . On the other hand, for large values of |α| up to√
8π , further renormalization by counter-terms is required (see [11, 20] for details). To

make a rigorous meaning to stochastic quantization equations associated with both the
�4

3-model and the sine-Gordon model, we require further renormalization procedures
beyond theWick renormalization, and recent developments of regularity structure and
paracontrolled calculus enable us to study such singular SPDEs rigorously. In [15,
31], Hairer, Shen and Chandra proved local well-posedness of (the massless version
of) the sine-Gordon stochastic quantization equation by applying regularity structure.
Hence, at first sight, one might guess that regularity structure or paracontrolled cal-
culus is applicable to the exp(�)2-stochastic quantization equation (1.1) beyond the
L2-regime. To apply such general theories, we usually assume that the inputs of the
solution map to the shifted equation of a given singular SPDE take values in a Besov
space Bs∞,∞(�) with some s < 0. (We mention here that the reconstruction theorem
in Bs

p,q(R
d) was also studied by Hairer and Labbé [30], but they considered only the

models with Bs∞,∞-type bounds.) In contrast, the Wick exponential of the Ornstein–
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exp(�)2-model in L1-regime 395

Uhlenbeck process {exp�(αXt )}t≥0, which plays a role of an input in our case, belongs
to Bs

p,p(�) for some p ∈ [1, 2), but does not to Bs∞,∞(�) (see Theorem 3.2). More-
over, since the nonlinear term of the SPDE (1.1) has exponential growth, it is out of
results by these general theories. Alternatively, by making use of the nonnegativity
of exp�(αXt ), we may define a product between two rough objects exp(αYt ) and
exp�(αXt ) on the right-hand side of the shifted equation (1.2) (see Theorem 4.3). This
is the most crucial point in our argument. We remark that the nonnegativity of the
Wick exponential is a remarkable and useful property, and is also applied in proofs of
previous results (see e.g [3, 26, 33, 42, 43]).

The organization of the rest of the present paper is as follows: In Sect. 1.2, we
present the framework and state the main theorems (Theorems 1.1, 1.5 and 1.7). In
Sect. 1.3, we fix some notations and summarize several basic properties on Besov
spaces. In Sect. 2, we introduce an approximation of the Wick exponentials of the
Gaussian free fields and show its almost-sure convergence in an appropriate Besov
space (see Theorem 2.1). For later use, we modify the argument of Berestycki [12]
to obtain a stronger estimate than existing results. Moreover, we also prove that the
exp(�)2-measureμ(α) is well-defined and theWick exponential exp�(αφ) has the L2-
integrability with respect toμ(α) (see Corollaries 2.3 and 2.4). In Sect. 3, we prove the
almost-sure convergence of theWick exponential of the infinite-dimensionalOrnstein–
Uhlenbeck process (see Theorem 3.2). In Sect. 4, we prove Theorem 1.1 using the
result of Sect. 3. In Sects. 5 and 6, we prove Theorems 1.5 and 1.7, respectively. Since
some parts of Sects. 4–6 go in very similar ways to the arguments of the previous paper
[33], we sometimes omit the details in the present paper. Finally, in Appendix, we give
several estimates on the approximation of the Green function of (1 − �), which are
used in Sect. 2.

1.2 Statement of themain theorems

We begin with introducing some notations and objects. Let � = T
2 = (R/2πZ)2

be the two-dimensional torus equipped with the Lebesgue measure dx . Let L p(�)

(p ∈ [1,∞]) be the usual real-valued Lebesgue space. In particular, L2(�) is a
Hilbert space equipped with the usual inner product

〈 f , g〉 =
∫

�

f (x)g(x)dx, f , g ∈ L2(�).

Let C∞(�) be the space of real-valued smooth functions on � equipped with the
topology given by the convergence fn → f in C∞(�):

sup
(x1,x2)∈�

∣∣∣ ∂
i+ j fn

∂xi1∂x
j
2

(x1, x2)− ∂ i+ j f

∂xi1∂x
j
2

(x1, x2)
∣∣∣ → 0 as n → ∞

for all i, j ∈ N ∪ {0}. We denote by D′(�) the topological dual space of C∞(�).
We have L p(�) ⊂ D′(�) for all p ∈ [1,∞] by identification of f ∈ L p(�) with
the map C∞(�) � ϕ �→ ∫

�
f (x)ϕ(x)dx ∈ R. Since C∞(�) ⊂ L2(�) ⊂ D′(�),
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396 M. Hoshino et al.

the L2-inner product 〈·, ·〉 is naturally extended to the pairing of C∞(�) and its dual
space D′(�).

For k = (k1, k2) ∈ Z
2 and x = (x1, x2) ∈ �, we write |k| = (k21 + k22)

1/2 and
k · x = k1x1+k2x2. Although we work in the framework of real-valued functions, it is
sometimes easier to do computations by using a system of complex-valued functions
{ek}k∈Z2 defined by

ek(x) = 1

2π
e
√−1k·x , k ∈ Z

2, x ∈ �.

For f ∈ D′(�), we define the k-th Fourier coefficient f̂ (k) (k ∈ Z
2) by

f̂ (k) := 〈 f , e−k〉 =
∫

�

f (x)ek(x)dx .

Note that, since f is real-valued, f̂ (−k) = f̂ (k) for k ∈ Z
2.

For s ∈ R, we define the real L2-Sobolev space of order s with periodic boundary
condition by

Hs(�) =
⎧⎨
⎩u ∈ D′(�) ; ‖u‖2Hs :=

∑

k∈Z2

(1+ |k|2)s |û(k)|2 < ∞
⎫⎬
⎭ .

This space is a Hilbert space equipped with the inner product

(u, v)Hs :=
∑

k∈Z2

(1+ |k|2)s û(k)v̂(k), u, v ∈ Hs(�).

Note that H0(�) coincides with L2(�) and we regard H−s(�) as the dual space of
Hs(�) through the standard chain Hs(�) ⊂ L2(�) ⊂ H−s(�) for s ≥ 0.

We nowdefine themassiveGaussian free fieldmeasureμ0 by the centeredGaussian
measure on D′(�) with covariance (1−�)−1, that is, determined by the formula

∫

D′(�)
〈φ, ek〉〈φ, e
〉 μ0(dφ) = (1+ |k|2)−11k=
, k, 
 ∈ Z

2, (1.3)

where � is the Laplacian acting on L2(�) with periodic boundary condition. This
formula implies

∫

D′(�)
‖φ‖2H−εμ0(dφ) < ∞

for any ε > 0, and thus the Gaussian free field measure μ0 has a full support on
H−ε(�). For a charge parameter α ∈ (−√

8π,
√
8π), we then define the exp(�)2-

quantum field (or the exp(�)2-measure) μ(α) on D′(�) by
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exp(�)2-model in L1-regime 397

μ(α)(dφ) := 1

Z (α)
exp

(
−

∫

�

exp�(αφ)(x)dx
)
μ0(dφ),

where Z (α) > 0 is the normalizing constant and exp�(αφ) is the Wick exponential
which will be rigorously constructed in Sect. 2. We prove in Theorem 2.1 that the
functionφ �→ ∫

�
exp�(αφ)(x)dx is a positivemeasurable function for all |α| < √

8π .
Hence, we may also regard μ(α) as a probability measure on D′(�) (see Corollary
2.3).

In the present paper, we consider the stochastic quantization equation (1.1) associ-
ated with exp(�)2-measure μ(α), that is a parabolic SPDE

∂t�t (x) = 1

2
(�− 1)�t (x)− α

2
exp�(α�t )(x)+ Ẇt (x), t > 0, x ∈ �,

whereW = {Wt (x); t ≥ 0, x ∈ �} is an L2(�)-cylindrical Brownian motion defined
on a filtered probability space (�,F , (Ft )t≥0,P) and (Ẇt )t≥0 is its time derivative in
weak sense. This driving noise has a convenient Fourier series representation

Wt (x) =
∑

k∈Z2

w
(k)
t ek(x), t ≥ 0, x ∈ �,

where {ek}k∈Z2 is a real-valued complete orthonormal system (CONS) of L2(�)

defined by e(0,0)(x) = (2π)−1 and

ek(x) = 1√
2π

{
cos(k · x), k ∈ Z

2+,
sin(k · x), k ∈ Z

2−,
(1.4)

with Z
2+ = {(k1, k2) ∈ Z

2 ; k1 > 0} ∪ {(0, k2) ; k2 > 0} and Z
2− = −Z

2+, and
{w(k)}k∈Z2 is a family of independent one-dimensional (Ft )t≥0-Brownian motions
starting at origin. See [18, Chapter 4] for the precise definition of cylindrical Brownian
motions. For later use, we note here that

ek(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

2

(
ek(x)+ e−k(x)

)
, k ∈ Z

2+,
√
2

2
√−1

(
ek(x)− e−k(x)

)
, k ∈ Z

2−.

The exponential term of the SPDE (1.1) is difficult to treat as it is, because the
solution �t is expected to take values in D′(�) \ C(�). For this reason, we need
to give a rigorous meaning of this SPDE by the renormalization. We assume some
properties for the multiplier function.

Hypothesis 1 ψ : R2 → [0, 1] is a function satisfying the following properties:

(i) ψ(0) = 1 and ψ(x) = ψ(−x) for any x ∈ R
2.

(ii) supx∈R2 |x |2+κ |ψ(x)| < ∞ for some κ > 0.
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(iii) supx∈R2 |x |−ζ |ψ(x)− 1| < ∞ for some ζ > 0.

Note that ψ does not need to be continuous except the origin. For a function ψ

satisfying Hypothesis 1, we define the Fourier cut-off operator PN on D′(�) by

PN f (x) =
∑

k∈Z2

ψ(2−Nk) f̂ (k)ek(x), N ∈ N, x ∈ �. (1.5)

From Hypothesis 1, we have the following.

• PN maps H−1−ε(�) to H1+ε(�) for small ε > 0. Since H1+ε(�) ⊂ C(�),
the regularized cylindrical Brownian motion (PNWt )t≥0 is a continuous function
almost surely.

• limN→∞ ‖PN f − f ‖Hs = 0 for any s ∈ R and f ∈ Hs(�).

By introducing approximating equations driven by the regularized white noise
(PN Ẇt )t≥0, we obtain the following theorem in the full L1-regime of the charge
parameter α. See Sect. 1.3 below for the definition of the Besov space B−ε

p,p(�).

Theorem 1.1 Assume that ψ satisfies Hypothesis 1. Let |α| < √
8π , p ∈ (1, 8π

α2
∧ 2),

and ε > 0. For any N ∈ N, consider the initial value problem

⎧⎪⎨
⎪⎩
∂t�

N
t = 1

2
(�− 1)�N

t − α

2
exp

(
α�N

t − α2

2
CN

)
+ PN Ẇt , t > 0,

�N
0 = PNφ,

(1.6)

where φ ∈ D′(�) and

CN := 1

4π2

∑

k∈Z2

ψ(2−Nk)2

1+ |k|2 .

Then for μ0-almost every φ ∈ D′(�), the unique time-global classical solution
�N converges as N → ∞ to a B−ε

p,p(�)-valued stochastic process � in the space
C([0, T ]; B−ε

p,p(�)) for any T > 0, P-almost surely. Moreover, the limit � is inde-
pendent of the choice of ψ .

In this paper we call this � the strong solution of the SPDE (1.1), because in view
of Theorem 1.1 we have the mapping from the initial value φ and the driving noise
Ẇt to the process �.

Remark 1.2 The key ingredient of the proof is Theorem 2.1 below, which is the almost-
sure convergence of Gaussian multiplicative chaos (GMC in short). The law of GMC
was first constructed by Kahane [35], and Robert and Vargas [46] extended it for
general convolution approximations of the covariance kernel. Although these results
give only convergence in law, some stronger convergence results were also obtained:
almost-sure convergence for the circle average and standard Fourier projection [22]
and the convergence in probability for general convolution approximations [12]. See
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exp(�)2-model in L1-regime 399

[13, 45] for the reviews of these theories. Our proof of Theorem 2.1 is a modification
of [12]. We remark that Hypothesis 1 is prepared for the main theorems on singular
SPDEs (for e.g. Theorem 1.1), and the circle average approximation contained in [12]
does not satisfy Hypothesis 1. However, our construction of Wick exponentials of the
Gaussian free field in Sect. 2 includes the case of the approximations by averaging
treated in [12], in particular the circle average approximation, because the estimates
(2.5) and (2.6) below hold also for the approximations by averaging (see Sect. A.3).
See Sect. 2 for our construction of Wick exponentials (GMC).

Remark 1.3 Since the exp(�)2-measure μ(α) is absolutely continuous with respect
to μ0 (see Corollary 2.3), “μ0-almost every φ” can be replaced by “μ(α)-almost
every φ”.

Remark 1.4 We can refine the state space of the strong solution obtained in Theorem
1.1. Precisely, the strong solution is inC([0, T ]; H−ε(�)) almost surely (seeCorollary
1.6 for detail).

To introduce another approach to the SPDE (1.1), we define the regularized
exp(�)2-measure

μ
(α)
N (dφ) := 1

Z (α)
N

exp

{
−

∫

�

exp

(
αPNφ(x)− α2

2
CN

)
dx

}
μ0(dφ), N ∈ N,

(1.7)

where Z (α)
N > 0 is the normalizing constant, and consider the SPDE associated with

this measure. The sequence {μ(α)
N }N∈N of probability measures weakly converges to

μ(α) (see Corollary 2.3).

Hypothesis 2 The operators PN defined by (1.5) satisfy the following properties.

(i) PN is nonnegative, that is, PN f ≥ 0 if f ≥ 0.
(ii) For any p ∈ (1, 2), s ∈ R, there exists a constant C > 0 such that

sup
N∈N

‖PN f ‖Bs
p,p

≤ C‖ f ‖Bs
p,p
, lim

N→∞‖PN f − f ‖Bs
p,p

= 0

for any f ∈ Bs
p,p(�).

If ψ is a Schwartz function and the inverse Fourier transform of ψ is a nonnegative
function, then Hypothesis 2 holds. See e.g., [10, Proposition 2.78].

Theorem 1.5 Assume that ψ satisfies Hypotheses 1 and 2. Let |α| < √
8π and ε > 0.

For any N ∈ N, consider the solution �̃N = �̃N (φ) of the SPDE

⎧
⎪⎨
⎪⎩
∂t�̃

N
t = 1

2
(�− 1)�̃N

t − α

2
PN exp

(
αPN �̃

N
t − α2

2
CN

)
+ Ẇt , t > 0,

�̃N
0 = φ ∈ D′(�).

(1.8)
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Let ξN be a random variable with the law μ
(α)
N independent of W . Then �̃N ,stat =

�̃N (ξN ) is a stationary process and converges in law as N → ∞ to the strong solution
�stat of (1.1)with an initial lawμ(α), on the space C([0, T ]; H−ε(�)) for any T > 0.
Moreover, the law of the random variable �stat

t is μ(α) for any t ≥ 0.

Corollary 1.6 The strong solution � of the SPDE (1.1) belongs to the space
C([0, T ]; H−ε(�)), P-almost surely, for μ0-almost every (or μ(α)-almost every) ini-
tial value φ ∈ D′(�).

Finally, we discuss a connection between the SPDE (1.1) and the Dirichlet form
theory. Let s ∈ (0, 1) be an exponent fixed later (seeCorollary 2.4) and set H = L2(�)

and E = H−s(�). Recall that {ek}k∈Z2 is a real-valued CONS of H defined by (1.4).
We then denote byFC∞

b the space of all smooth cylinder functions F : E → R having
the form

F(φ) = f (〈φ, l1〉, . . . , 〈φ, ln〉), φ ∈ E,

with n ∈ N, f ∈ C∞
b (Rn;R) and l1, . . . , ln ∈ Span{ek; k ∈ Z

2}. Since supp(μ(α)) =
E , two different functions in FC∞

b are also different in L p(μ(α))-sense. Moreover,
FC∞

b is dense in L p(μ(α)) for all p ≥ 1. For F ∈ FC∞
b , we define the H -derivative

DH F : E → H by

DH F(φ) :=
n∑
j=1

∂ j f
(〈φ, l1〉, . . . , 〈φ, ln〉

)
l j , φ ∈ E .

We then consider a pre-Dirichlet form (E,FC∞
b ) which is given by

E(F,G) = 1

2

∫

E

(
DH F(φ), DHG(φ)

)
Hμ

(α)(dφ), F,G ∈ FC∞
b , (1.9)

where (·, ·)H is the inner product of H . Applying the integration by parts formula for
μ(α), we obtain that (E,FC∞

b ) is closable on L2(μ(α)) (see Proposition 6.1 below for

detail), so we can define D(E) as the completion of FC∞
b with respect to E1/2

1 -norm.
Thus, by directly applying the general methods in the theory of Dirichlet forms (cf.
[16, 40]), we can prove quasi-regularity of (E,D(E)) and the existence of a diffusion
processM = (�,G, (Gt )t≥0, (�t )t≥0, (Qφ)φ∈E ) properly associated with (E,D(E)).

The following theorem says that the diffusion process� = (�t )t≥0 coincides with
the strong solution � obtained in Theorem 1.1.

Theorem 1.7 Let |α| < √
8π . Then for μ(α)-almost every φ, the diffusion process �

coincidesQφ-almost surelywith the strong solution� of the SPDE (1.1)with the initial
value φ, driven by some L2(�)-cylindrical (Gt )t≥0-Brownian motionW = (Wt )t≥0.
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1.3 Notations and preliminaries

Throughout this paper, we use the notation A � B for two functions A = A(λ) and
B = B(λ) of a variable λ, if there exists a constant c > 0 independent of λ such that
A(λ) ≤ cB(λ) for any λ. We write A � B if A � B and B � A. We write A �μ B
if we want to emphasize that the constant c depends on another variable μ.

For a measure space (M,m) and a Banach space B, denote by L p(M,m; B) the
usual L p-space, where M or m may be omitted if they are obvious in the context. If
B = R, then we write it by L p(M,m) simply. If M is a compact topological space,
denote by C(M; B) the space of continuous functions with the supremum norm.

We collect several basic facts on function spaces used through this paper. Below
we usually denote L p(�), Hs(�) and Bs

p,q(�) by L p, Hs and Bs
p,q , respectively, for

the sake of brevity. Denote by S(R2) for the space of real-valued Schwartz functions
on R

2 and denote its dual by S ′(R2), which is the space of tempered distributions.
The Fourier transform F is defined by

(F f )(ξ) := 1

2π

∫

R2
f (x)e−

√−1x ·ξ dx, f ∈ S(R2), ξ ∈ R
2,

and so the inverse Fourier transform is given by F−1 f (z) = F f (−z) (z ∈ R
2). Also

for the distribution f ∈ S ′(R2), the usual generalization of the Fourier transform is
considered.

Let (χ, ρ) be a dyadic partition of unity, that is, they satisfy the following:

• χ, ρ : R2 → [0, 1] are smooth radial functions,
• supp(χ) ⊂ B(0, 4/3), supp(ρ) ⊂ B(0, 8/3) \ B(0, 3/4),

• χ(ξ)+
∞∑
j=0

ρ(2− jξ) = 1 for any ξ ∈ R
2,

where B(x, r) stands for the open ball in R2 centered at x and with radius r . We then
set ρ−1 := χ and ρ j := ρ(2− j ·) for j ≥ 0. We define the Littlewood–Paley blocks
(or the Littlewood–Paley operator) {� j }∞j=−1 by

(� j f )(x) :=
∑

k∈Z2

ρ j (k) f̂ (k)ek(x), f ∈ D′(�), x ∈ �.

We then define the inhomogeneous Besov norm ‖·‖Bs
p,q

and the Besov space Bs
p,q(�)

(s ∈ R, p, q ∈ [1,∞]) by

‖ f ‖Bs
p,q

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∞∑
j=−1

2 jsq‖� j f ‖qL p

)1/q
, q ∈ [1,∞),

sup
j≥−1

(
2 js‖� j f ‖L p

)
, q = ∞,
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and

Bs
p,q = Bs

p,q(�) := { f ∈ D′(�) ; ‖ f ‖Bs
p,q

< ∞},

respectively. The Besov space Bs
p,q is a Banach space. Moreover, Bs

p,q is separable if
q < ∞ (see [10, Lemma 2.73]).

We recallmainly fromBahouri et al. [10] some basic properties of Besov spaces.We
remark that the setting in [10] is not on a torus but on the Euclidean spaces. However, it
is known that most results in [10] also follow in the case of function spaces on a torus,
and are proved by a parallel argument or by extending functions on a torus to those
on the Euclidean spaces periodically (see e.g. [28, Appendix A]). In view of this fact
we refer associate results in [10] below, though there is a difference between a torus
and the Euclidean spaces. The following embeddings are immediate consequences of
the definition.

• If s1 ≤ s2, then Bs2
p,q ⊂ Bs1

p,q .
• If p1 ≤ p2, then Bs

p2,q ⊂ Bs
p1,q .

• If q1 ≤ q2, then Bs
p,q2 ⊃ Bs

p,q1 . However, B
s
p,q2 ⊂ Bs−ε

p,q1 for any ε > 0.

It is important to note that Bs
2,2 coincides with the Sobolev space H

s for any s ∈ R, and
Bs∞,∞ coincides with the Hölder space Cs(�) for any s ∈ R \ N with the equivalent
norms [10, Page 99]. The second and third properties above implies that Hs ⊂ Bs−ε

p,p
for any p ∈ [1, 2] and ε > 0.

The following is an immediate consequence of the interpolations of L p-spaces and
of 
p-spaces.

Proposition 1.8 Let s1, s2 ∈ R and p1, p2, q1, q2 ∈ [1,∞]. Let θ ∈ [0, 1] and set
s = (1− θ)s1 + θs2,

1
p = 1−θ

p1
+ θ

p2
, and 1

q = 1−θ
q1

+ θ
q2
. Then one has

‖ f ‖Bs
p,q

≤ ‖ f ‖1−θ
B
s1
p1,q1

‖ f ‖θ
B
s2
p2,q2

.

Proposition 1.9 [10, Proposition 2.71] For any s ∈ R, p1, p2, q1, q2 ∈ [1,∞] such
that p1 ≤ p2 and q1 ≤ q2, one has the embedding

Bs
p1,q1 ↪→ Bs−2(1/p1−1/p2)

p2,q2 .

In particular, the space Bs
p,p is embedded into C(�) if s > 2

p .

The following equivalence of norms plays an important role in Corollary 2.4.

Proposition 1.10 [49, Theorem 9 and Remark 26] For any s > 0 and p, q ∈ [1,∞],

‖ξ‖B−s
p,q

� ‖e�ξ‖L p +
∥∥∥t s/2‖et�ξ‖L p

∥∥∥
Lq ((0,1],t−1dt)

,

where et� denotes the heat semigroup of the Laplacian � on �.
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A distribution ξ ∈ D′(�) is said to be nonnegative if ξ(ϕ) = 〈ξ, ϕ〉 ≥ 0 for
any nonnegative ϕ ∈ C∞(�). Let Bs,+

p,q be the set of all nonnegative elements in
Bs
p,q . Thanks to the following theorem, a nonnegative distribution is regarded as a

nonnegative Borel measure. This fact plays a crucial role in Sect. 4.

Theorem 1.11 [39, Theorem 6.22] For any nonnegative ξ ∈ D′(�), there exists a
unique nonnegative Borel measure μξ such that

ξ(ϕ) =
∫

�

ϕ(x)μξ (dx), ϕ ∈ C∞(�).

Consequently, the domain of ξ can be extended to whole C(�).

2 Wick exponentials of GFFs

In this section, we construct the Wick exponentials of Gaussian free fields (GFFs in
short) on �, that is, the so-called Gaussian multiplicative chaos (see [12–14, 21, 22,
34, 35, 45]). For some specific approximations for Gaussian multiplicative chaos (e.g.,
usual Fourier cut-off and circle average), the almost-sure convergence was obtained
in [13, 22]. In the present paper, we consider the approximation with general Fourier
multiplier operators as in (1.5). Since we need a stronger convergence for our purpose,
we give a self-contained proof of the construction in this section.

As mentioned in Remark 2.6 below, our arguments work on more general approx-
imations than previous results.

2.1 GFFs andWick exponentials

Recall thatμ0 is the centered Gaussian measure onD′(�)with covariance (1−�)−1.
On the probability space (�,F ,P), a D′(�)-valued random variable X with the law
μ0 is called a (massive) Gaussian free field. Recalling (1.3), we have the covariance
formula of the random field X:

E [X(x)X(y)] = 1

2π

∑

k∈Z2

1

1+ |k|2 ek(x − y) = G�(x, y), x, y ∈ �, (2.1)

where G� stands for the Green function of 1 − � on �. Since G� depends on only

the difference x − y, the law of X is shift invariant, that is, X
d= X(· + h) for any fixed

h ∈ �.
The aim of this section is to define the formal exponential

exp(αX)

for any GFF X and any α with |α| < √
8π . Since X is D′(�)-valued, we need a

renormalization procedure to give a rigorous meaning to it. Recall that ψ satisfies
Hypothesis 1, and the Fourier cut-off operator PN on D′(�) is defined by (1.5):
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PN f (x) =
∑

k∈Z2

ψN (k) f̂ (k)ek(x),

whereψN := ψ(2−N ·). Since PN maps H−1−ε toC(�) for small ε > 0 as mentioned
before (after Hypothesis 1), the approximation XN := PNX is a continuous function,
so the exponential exp(αXN ) is well-defined. However, to take a limit as N → ∞,
we need an approximation with renormalization

exp�N (αX)(x) := exp

(
αXN (x)− α2

2
CN

)
, N ∈ N, (2.2)

where

CN := E[XN (x)
2] = 1

4π2

∑

k∈Z2

ψN (k)2

1+ |k|2 .

The following is the main theorem of this section.

Theorem 2.1 Assume thatψ satisfiesHypothesis 1. Let |α| < √
8π and choose param-

eters p, β such that

p ∈
(
1,

8π

α2
∧ 2

)
, β ∈

(
α2

4π
(p − 1),

2

p
(p − 1)

)
. (2.3)

Then the sequence {exp�N (αX)}N∈N converges in the space B−β
p,p, P-almost surely and

in L p(P).Moreover, by regarding exp�N (αX)as the randomnonnegativeBorelmeasure
exp�N (αX)(x)dx on � for N ∈ N, one has the weak convergence of {exp�N (αX)}N∈N
almost surely. The limits obtained by different ψ’s coincide with each other almost
surely.

Remark 2.2 The conclusion of Theorem 2.1 holds under the estimates (2.5) and (2.6)
in Proposition 2.5 below, evenwithout Hypothesis 1. SeeRemark 2.6 below for details.
In most references, approximations with continuous parameter are used for the con-
vergence in probability and in L p(P). It is associated to adopt ψε := ψ(ε·) instead
of ψN for the approximation. For almost-sure convergence we need discretization of
the approximation parameter and sufficiently high speed of the approximation with
respect to the parameter in order to control the P-null sets. This is the reason why we
choose approximations with discrete parameter as appeared in the definition of ψN

in Theorem 2.1. Here, we remark that for the convergence in L p(P) (in particular the
convergence in probability), we do not need to discretize the approximation parameter.
Furthermore we remark that we choose the exponential speed 2−N for the definition
ψN because of the simplicity of the proof, and N−r with sufficiently large r > 0
instead of 2−N is also sufficient for the almost-sure convergence. See the proof of
Theorem 2.1 in the last part of Sect. 2.4.

We denote the (P-almost-sure) unique limit by

exp�(αX).
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exp(�)2-model in L1-regime 405

When the probability space (�,P) is (D′(�), μ0), the canonical map φ �→ φ is
obviously a GFF. We denote by exp�(αφ) the associated Wick exponential. Since
the approximation (2.2) is nonnegative, we can define the exp(�)2-measure μ(α) as
follows.

Corollary 2.3 On the Borel probability space (D′(�), μ0), the probability measure

μ(α)(dφ) = 1

Z (α)
exp

(
−

∫

�

exp�(αφ)(x)dx
)
μ0(dφ)

is defined as the limit of the approximating measures {μ(α)
N }N∈N given by (1.7) in weak

topology. Moreover, the following holds.

(i) The Radon-Nikodym derivatives
{
dμ(α)

N
dμ0

}
N∈N are uniformly bounded.

(ii) dμ(α)

dμ0
is bounded and strictly positive μ0-almost everywhere. Hence μ(α) and μ0

are absolutely continuous with respect to each other.

Proof Denote M (α)
φ,N = exp�N (αφ) and M (α)

φ = exp�(αφ) in short, and regard them as
the corresponding random nonnegative Borel measures on �, according to Theorem
1.11.

Although the proof of (i) is completely the same as Hoshino et al. [33, Corollary
2.3], we note the fact on the uniform positivity of the normalizing constants

Z (α)
N :=

∫

D′(�)
exp

(− M (α)
φ,N (�)

)
μ0(dφ), N ∈ N,

which is used in the next corollary. By Jensen’s inequality,

Z (α)
N ≥ exp

(
−

∫

D′(�)
M (α)
φ,N (�)μ0(dφ)

)
= exp

(
−

∫

�

dx
)
> 0.

Here we used the fact that
∫
D′(�) M

(α)
φ,N (x)μ0(dφ) = 1 for any x ∈ �, which follows

from the definition.
Next we show (ii). Let p and β be as in Theorem 2.1. For any n ∈ N, we have

μ0

(
M (α)
φ (�) ≥ n

)
≤ 1

n p

∫

D′(�)

(
M (α)
φ (�)

)p
μ0(dφ)

� 1

n p

∫

D′(�)

∥∥M (α)
φ

∥∥p

B−β
p,p
μ0(dφ),

since 1� ∈ C∞(�) ⊂ Bβ

p′,p′ (1/p+1/p′ = 1) and Bβ

p′,p′ is a dual space of B
−β
p,p (see

e.g., [10, Proposition 2.76]). Letting n → ∞, we haveμ0(M
(α)
φ (�) = ∞) = 0. Since

Z (α) := ∫
D′(�) exp

(−M (α)
φ (�)

)
μ0(dφ) is positive by the above estimate of Z (α)

N and

the dominated convergence theorem, this implies dμ(α)

dμ0
is bounded and strictly positive

μ0-almost everywhere. ��
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Even though Theorem 2.1 and Corollary 2.3 imply that the random variable
φ �→ exp�(αφ) belongs to L p(μ(α); B−β

p,p), the state space can be chosen smaller.
The following fact plays a crucial role in Sects. 5 and 6.

Corollary 2.4 If |α| < √
8π , then there exists an exponent s ∈ (0, 1) such that

sup
N∈N

∫

D′(�)
‖ exp�N (αφ)‖2H−sμ

(α)
N (dφ) < ∞. (2.4)

Moreover, the random variable φ �→ exp�(αφ) belongs to L2(μ(α); H−s).

Proof Recall that H−s = B−s
2,2 for s ∈ R. By the interpolation between Besov spaces

(Proposition 1.8),

‖M (α)
φ,N‖H−s ≤ ‖M (α)

φ,N‖p/2B−β
p,p

‖M (α)
φ,N‖1−p/2

B−2∞,∞

for p, β in (2.3), and −s := −β p
2 − 2(1− p

2 ) > −1. Since M (α)
φ,N is nonnegative, we

have

‖et�M (α)
φ,N‖L∞ � t−1M (α)

φ,N (�), t ∈ (0, 1]

by the bound of the heat kernel in spacial component. By Proposition 1.10 we have

‖M (α)
φ,N‖B−2∞,∞ � M (α)

φ,N (�).

Since the function x2−pe−x is bounded on x ∈ (0,∞),

∫

D′(�)
‖M (α)

φ,N‖2H−s e
−M(α)

φ,N (�)μ0(dφ) �
∫

D′(�)
‖M (α)

φ,N‖pB−β
p,p

(
M (α)
φ,N (�)

)2−p
e−M(α)

φ,N (�)μ0(dφ)

�
∫

D′(�)
‖M (α)

φ,N‖pB−β
p,p
μ0(dφ).

Since {M (α)
φ,N }N∈N are bounded in the space L p(μ0; B−β

p,p) as in Theorem 2.1, and

{Z (α)
N }N∈N are uniformly positive as stated in the proof of Corollary 2.3, we have

the uniform bound (2.4). Since 〈M (α)
φ,N , ek〉 → 〈M (α)

φ , ek〉 for any k ∈ Z
2 almost

everywhere, by using Fatou’s lemma we have

∫

D′(�)

∥∥M (α)
φ

∥∥2
H−sμ

(α)(dφ) ≤ lim inf
N→∞

∫

D′(�)

∥∥M (α)
φ,N

∥∥2
H−sμ

(α)
N (dφ) < ∞.

Thus we complete the proof. ��
Below, we give a self-contained proof of Theorem 2.1. For the proof we prepare a

lot of technical results, and in the end of Sect. 2, Theorem 2.1 is proved.
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2.2 Approximation of the Green function

By definition, the random field XN = PNX has the covariance function

GM,N (x, y) := E[XM (x)XN (y)] = 1

2π

∑

k∈Z2

ψM (k)ψN (k)

1+ |k|2 ek(x − y)

for any M, N ∈ N. Recall that ψN = ψ(2−N ·). By definition, CN = E[X2
N (x)] =

GN ,N (x, x). The function GM,N approximates the Green function G� defined by
(2.1). In the following proposition, we summarize the properties of the functionGM,N

used in the proof of Theorem 2.1. We regard GM,N as a periodic function onR2×R
2,

rather than a function on �×�.

Proposition 2.5 Assume that ψ satisfies Hypothesis 1. Then for any x, y ∈ R
2 with

|x − y| < 1 and any M, N ∈ N,

GM,N (x, y) = − 1

2π
log

(
|x − y| ∨ 2−M ∨ 2−N

)
+ RM,N (x, y), (2.5)

where the remainder term RM,N (x, y) is uniformly bounded over x, y,M, andN.
Moreover, there exist constants C > 0 and θ > 0 such that, for any M, N ∈ N,

∫∫

�×�
∣∣GM,N+1(x, y)− GM,N (x, y)

∣∣dxdy ≤ C2−θN . (2.6)

Since the proof of Proposition 2.5 is long and technical, we provide it in Appendix
A. We remark that (2.6) can be improved by L p-estimate for all p ∈ [1,∞) (see
Proposition A.5).

Remark 2.6 Theorem 2.1 holds true for any multiplier ψ such that the function GM,N

defined fromψ satisfies the estimates (2.5) and (2.6). Indeed, in the proof of Theorem
2.1 after Proposition 2.5, we use only (2.5) and (2.6), but do not use Hypothesis 1.
The class of approximations satisfying (2.5) and (2.6) is quite large, and includes the
approximations by averaging, treated in [12], in particular the circle average approx-
imation (see Sect. A.3). Moreover, our proofs would go similarly even if we replace
the torus � with the Lebesgue measure dx and the Gaussian field X generated by
free field measure, by a two-dimensional compact Riemannian manifold M with its
volume measure σ and a Gaussian random field XM onM with covariance function
GM satisfying (2.5) and (2.6) with replacement of |x− y| by the metric d(x, y) inM,
respectively. However, in the case of M and X

M
N , CN (x) := E[XM

N (x)2] appeared
in (2.2) for renormalization, which is a constant in the case of the torus with the
Lebesgue measure dx , will depend on x ∈ M generally. We are also able to extend
it to compact Riemannian manifold with other dimensions. In the case the range of
the charge constant α should be changed according to the dimension. Even though we
have such extensions, for simplicity, we discuss our problem only on the torus� with
the Lebesgue measure dx in the present paper.
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2.3 Uniform integrability

Using the first property (2.5) of Proposition 2.5, we first prove the uniform bound of
{exp�N (αX)}N∈N in L p(P; B−β

p,p). Below, we usually denote

M
(α)
N = exp�N (αX)

in short. At the beginning, we present Kahane’s convexity inequality (cf. [35]), which
plays a significant role in the proof.

Lemma 2.7 (See [14, Proposition 5.6]) Let D be an open and bounded subset of
R
2. Let ϕ1, ϕ2 be continuous Gaussian random fields on D with mean zero and with

covariance functions C1,C2 : D × D → R, respectively. If C1(x, y) ≤ C2(x, y) for
any x, y ∈ D, then one has

E

[{∫

D
exp

(
ϕ1(x)− 1

2
C1(x, x)

)
dx

}p]
≤ E

[{∫

D
exp

(
ϕ2(x)− 1

2
C2(x, x)

)
dx

}p]

for any p ∈ [1,∞).

The following estimate is useful to determine the regularity of M(α)
N . The estimate

is called a multifractal property and is proved also in previous results (see e.g. [13,
Theorem 3.23], [26, Proposition 3.9] and [45, Theorem 2.14]). As mentioned in
Remark 2.6, our arguments work in the case of more general approximations than
those treated in the previous results.

Proposition 2.8 For any α ∈ R and p ∈ [1,∞) there exists a constant C > 0 such
that, for any N ∈ N and λ ∈ (0, 1],

E

[(∫

B(0,λ/2)
M

(α)
N (x)dx

)p]
≤ Cλ2p−α2 p(p−1)/4π

E

[(∫

�

M
(α)
N (x)dx

)p]
.

Proof Consider the random field x �→ XN (λx). The inequality

log
(
|λx | ∨ 2−N

)
≥ log

(
|x | ∨ 2−N

)
+ log λ

is easily checked by considering the three cases separately; λ|x | < |x | ≤ 2−N ,
λ|x | ≤ 2−N < |x |, and 2−N < λ|x | < |x |. By the estimate (2.5), for x, y ∈ R

2 with
|x | ∨ |y| < 1/2,

E[XN (λx)XN (λy)] = − 1

2π
log

(
|λ(x − y)| ∨ 2−N

)
+ O(1)

≤ − 1

2π
log

(
|x − y| ∨ 2−N

)
− 1

2π
log λ+ O(1)

≤ E[XN (x)XN (y)] − 1

2π
log λ+ c
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for some constant c > 0 independent of λ, x , y, and N . Hence by introducing a
centered Gaussian random variable Yλ with variance−(1/2π) log λ+ c, independent
of X, we have

E[XN (λx)XN (λy)] ≤ E[(XN (x)+ Yλ)(XN (y)+ Yλ)].
Then Lemma 2.7 yields

E

[(∫

|x |<1/2
M

(α)
N (λx)dx

)p]

≤ E

[
exp

(
α pYλ − α2 p

2
E[Y 2

λ ]
)]

E

[(∫

|x |<1/2
M

(α)
N (x)dx

)p]

= C exp

(
−α2 p(p − 1)

4π
log λ

)
E

[(∫

|x |<1/2
M

(α)
N (x)dx

)p]

for some constant C > 0. By changing the variable y = λx we obtain the assertion. ��
The following lemmas are useful to show theuniform integrability of

∫
�
M

(α)
N (x)dx .

Lemma 2.9 For α ∈ R and p ∈ [1, 2] there exists a constant C > 0 such that, for any
N ∈ N and δ ∈ (0, 1/4],

E

[(∫∫

|x |∨|y|<1/2, |x−y|<δ
M

(α)
N (x)M(α)

N (y)dxdy

)p/2
]

≤ Cδ(2−α2 p/4π)(p−1)
E

[(∫

�

M
(α)
N (x)dx

)p]
.

Proof For any δ ∈ (0, 1/4] we can choose {xi ; i = 1, 2, . . . , nδ} such that

B(0, 1/2) ⊂
nδ⋃
i=1

B(xi , δ), nδ ≤ cδ−2,

where c is an absolute constant. Since∫∫

|x |∨|y|<1/2, |x−y|<δ
M

(α)
N (x)M(α)

N (y)dxdy

≤
∫

|x |<1/2
M

(α)
N (x)

(∫

B(x,δ)
M

(α)
N (y)dy

)
dx

≤
nδ∑
i=1

∫

B(xi ,δ)
M

(α)
N (x)

(∫

B(x,δ)
M

(α)
N (y)dy

)
dx

≤
nδ∑
i=1

(∫

B(xi ,δ)
M

(α)
N (x)dx

)(∫

B(xi ,2δ)
M

(α)
N (y)dy

)

≤
nδ∑
i=1

(∫

B(xi ,2δ)
M

(α)
N (x)dx

)2

,
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we have by the elementary inequality (a + b)p/2 ≤ a p/2 + bp/2 for a, b ≥ 0 and the
shift invariance of the law of M(α)

N ,

E

[(∫∫

|x |∨|y|<1/2, |x−y|<δ
M

(α)
N (x)M(α)

N (y)dxdy

)p/2
]

≤ cδ−2
E

[(∫

B(0,2δ)
M

(α)
N (x)dx

)p]
.

Hence Proposition 2.8 yields the conclusion. ��
Lemma 2.10 For any α ∈ R there exists a constant C > 0 such that, for any N ∈ N

and δ ∈ (0, 1/4],

E

[∫∫

|x |∨|y|<1/2, |x−y|≥δ
M

(α)
N (x)M(α)

N (y)dxdy

]
≤ C(1+ δ2−α2/2π ).

Proof By the estimate (2.5),

E

[∫∫

|x |∨|y|<1/2, |x−y|≥δ
M

(α)
N (x)M(α)

N (y)dxdy

]

= e−α2CN

∫∫

|x |∨|y|<1/2, |x−y|≥δ
E
[
exp (α(XN (x)+ XN (y)))

]
dxdy

=
∫∫

|x |∨|y|<1/2, |x−y|≥δ
eα

2GN ,N (x,y) dxdy

�
∫∫

|x |∨|y|<1/2, |x−y|≥δ
|x − y|−α2/2π dxdy � 1+ δ2−α2/2π .

��
By using above estimates, we prove L p-boundedness, in particular the uniform

integrability, of
∫
�
M

(α)
N (x)dx . It has also proved in previous results (see e.g. [13,

Theorem3.26] and [46, Proposition 3.5]). Asmentioned inRemark 2.6, our arguments
work in the case of more general approximations than those treated in the previous
results.

Proposition 2.11 For any |α| < √
8π and p ∈ (1, 8π/α2) ∩ (1, 2],

sup
N∈N

E

[(∫

�

M
(α)
N (x)dx

)p]
< ∞.

Proof Choosing finite points {xi } such that� = [−π, π)2 ⊂ ⋃
i B(xi , 1/2) and using

the shift invariance of the law of M(α)
N ,

E

[(∫

�

M
(α)
N (x)dx

)p]
≤ C p

E

[(∫

B(0,1/2)
M

(α)
N (x)dx

)p]
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for an absolute constant C > 0. Let δ ∈ (0, 1/4] and we decompose

E

[(∫

B(0,1/2)
M

(α)
N (x)dx

)p]

≤ E

[(∫∫

|x |∨|y|<1/2, |x−y|<δ
M

(α)
N (x)M(α)

N (y)dxdy

)p/2
]

+ E

[(∫∫

|x |∨|y|<1/2, |x−y|≥δ
M

(α)
N (x)M(α)

N (y)dxdy

)p/2
]

≤ E

[(∫∫

|x |∨|y|<1/2, |x−y|<δ
M

(α)
N (x)M(α)

N (y)dxdy

)p/2
]

+ E

[∫∫

|x |∨|y|<1/2, |x−y|≥δ
M

(α)
N (x)M(α)

N (y)dxdy

]p/2

.

In the second inequality, we use p ≤ 2 and the nonnegativity of M(α)
N . Applying

Lemmas 2.9 and 2.10, we have

E

[(∫

�

M
(α)
N (x) dx

)p]
≤ C ′δ(2−α2 p/4π)(p−1)

E

[(∫

�

M
(α)
N (x) dx

)p]
+ C ′δ p(1−α2/4π),

where the constant C ′ is independent of N and δ. Since α2 p < 8π , by choosing
sufficiently small δ, we complete the proof. ��
Corollary 2.12 For any parameters p and β as in (2.3), one has

sup
N∈N

E

[∥∥M(α)
N

∥∥p

B−β
p,p

]
< ∞.

Proof By definition of the Besov norm,

E

[∥∥M(α)
N

∥∥p

B−β
p,p

]
=

∞∑
j=−1

2− jβ p
E

[∥∥� jM
(α)
N

∥∥p
L p

]

=
∞∑

j=−1

2− jβ p
∫

�

E

[∣∣� jM
(α)
N (x)

∣∣p] dx .

By the shift invariance of the law ofM(α)
N , it is sufficient to considerE

[|� jM
(α)
N (0)|p].

The bounds for j = −1, 0 are obvious in view of Proposition 2.11. For j ≥ 1, by
usingMikowski’s inequality, rapid decay of the Schwartz functionF−1ρ, and the shift
invariance of the law of M(α)

N ,

E

[∣∣� jM
(α)
N (0)

∣∣p]1/p =
∥∥∥∥
∫

R2
(F−1ρ)(x)M(α)

N (2− j x)dx

∥∥∥∥
L p(P)

�
∑

k∈Z2

(1+ |k|)−3
∥∥∥∥
∫

B(k,1)
M

(α)
N (2− j x)dx

∥∥∥∥
L p(P)
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�
∥∥∥∥
∫

B(0,1)
M

(α)
N (2− j x)dx

∥∥∥∥
L p(P)

.

Hence by Proposition 2.8,

E

[∣∣� jM
(α)
N (0)

∣∣p]1/p � (2− j )−α2(p−1)/4π .

Therefore, we obtain E
[∥∥M(α)

N

∥∥p

B−β
p,p

]
� 1 for β > α2(p − 1)/4π . ��

2.4 Almost-sure convergence

In this subsection, we show the almost-sure weak convergence of M(α)
N as N → ∞

in the space of positive Borel measures on �, and we finally complete the proof of
Theorem 2.1. We apply the following proposition several times, which follows from
direct computation.

Proposition 2.13 Let X be an n-dimensional centered Gaussian random vector with
a covariance matrix V . Then, for a ∈ R

n and a Borel function f on R
n,

E

[
ea·X f (X)

]
= ea·(Va)/2

E [ f (X + Va)] .

The following theorem plays a crucial role to prove Theorem 2.1.

Theorem 2.14 Let |α| < √
8π . Then, there exist positive constants c and C such that

E
[∣∣〈 f ,M(α)

N+1

〉− 〈
f ,M(α)

N

〉∣∣] ≤ C‖ f ‖C(�)2−cN (2.7)

for any N ∈ N and f ∈ C(�).

Proof Our proof is based on the same spirit as [12, Sects. 3 and 4]. It is well-known
that the limiting measure M(α) must be supported on the points x such that

lim
N→∞

XN (x)

CN
= α,

called α-thick points. An essential point of [12] is to decompose M(α)
N into two parts:

M
<
N (x) := M

(α)
N (x)

∏
n0≤n≤N

1{Xn(x)≤α(1+δ)Cn}, M
>
N (x) := M

(α)
N (x)−M

<
N (x),

for some fixed n0 ∈ N and δ > 0. Then, L1 contribution of M>
N can be eliminated,

while M<
N has a good control in L2 depending on the choice of n0 and δ. However,

we need the following modifications to obtain the stronger estimate (2.7).

• Let n0 = δ3N be a variable depending on δ and N .
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• Replace the indicator function 1 with some Lipschitz function.

Now we start the proof of this theorem. Denote by B̃(x, r) the open ball in �

centered at x and with radius r under the canonical metric of �. It is sufficient to
show (2.7) for f ∈ C(�) with supp f ⊂ B̃(0, 1/2). Indeed, we obtain the assertion
for general f ∈ C(�), once we apply the finite decomposition f = ∑

k fk with fk
supported in some ball B̃(xk, 1/2) and the shift invariance of the law ofM(α)

N . Hence
we assume |x | ∨ |y| < 1/2 throughout this proof.

As introduced in Sect. 2.2, we setGM,N (x, y) = E[XM (x)XN (y)] and setCM,N =
GM,N (x, x) for M, N ∈ N. By the estimate (2.5), for any x, y ∈ R

2 with |x | ∨ |y| <
1/2 and any M, N ∈ N with M ≤ N , we have

GM,N (x, y) = − 1

2π
log

(
|x − y| ∨ 2−M

)
+ O(1), CM,N = M

2π
log 2+ O(1).

These yield the following: for any sufficiently small δ > 0, there exists an integer N ′
δ

depending on δ such that, for any N ′
δ ≤ M ≤ N and |x | ∨ |y| < 1/2

1

C̃M
≤ δ3,

∣∣∣∣∣
CM,N − C̃M

C̃M

∣∣∣∣∣ ≤ δ3,

∣∣∣∣∣
GM,N (x, y)− G̃M (x, y)

C̃M

∣∣∣∣∣ ≤ δ3, (2.8)

where

C̃M := M

2π
log 2, G̃M (x, y) := − 1

2π
log

(
|x − y| ∨ 2−M

)
.

The parameter δ is to be chosen later, as a sufficiently small number compared with
1− α2/8π and the exponent θ in the estimate (2.6).

Furthermore, let χδ be a function on R such that

χδ(τ ) =

⎧⎪⎨
⎪⎩

1, τ ≤ δ,

− τ/δ + 2, δ ≤ τ ≤ 2δ,

0, τ ≥ 2δ.

Then we define for each N , i ∈ N such that N ≤ i (actually we will let i = N or
N + 1),

M
<
N ,i (x) := M

(α)
i (x)

∏

δ3N≤n≤i
χδ

(
Xn(x)− αCn,i

αC̃n

)
,

M
>
N ,i (x) := M

(α)
i (x)−M

<
N ,i (x).

Let Nδ be an integer such that Nδ ≥ N ′
δ/δ

3. From (2.8) we have that, if N ≥ Nδ , then
for any integers m, n with δ3N ≤ m ≤ n and |x | ∨ |y| < 1/2,

1

C̃m
≤ δ3,

∣∣∣∣∣
Cm,n − C̃m

C̃m

∣∣∣∣∣ ≤ δ3,

∣∣∣∣∣
Gm,n(x, y)− G̃m(x, y)

C̃m

∣∣∣∣∣ ≤ δ3. (2.9)
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We assume N ≥ Nδ throughout this proof, and decompose

M
(α)
N+1 −M

(α)
N = (M<

N ,N+1 −M
<
N ,N )+ (M>

N ,N+1 −M
>
N ,N ).

(1) The terms M
>
N ,N+1 and M

>
N ,N . For any fixed i ∈ {N , N + 1} and x ∈ �,

we apply Proposition 2.13 to the (i − [δ3N ] + 1)-dimensional random vector
X = (Xn(x))δ3N≤n≤i and a fixed vector a = (0, . . . , 0, α). Then, since Va =
(αCn,i )δ3N≤n≤i , we have

E[M>
N ,i (x)] = E

[
ea·X−a·Va/2

{
1−

∏

δ3N≤n≤i
χδ

(
Xn(x)− αCn,i

αC̃n

)}]

= E

[
1−

∏

δ3N≤n≤i
χδ

(
Xn(x)

αC̃n

)]

≤
∑

δ3N≤n≤i
E

[
1− χδ

(
Xn(x)

αC̃n

)]

≤
∑

δ3N≤n≤i
P

(
Xn(x) ≥ δαC̃n

)
,

where we used the elementary inequality

1−
K∏

n=1

an ≤
K∑

n=1

(1− an), a1, . . . , aK ∈ [0, 1].

Since Xn(x) has a variance Cn,n and (2.9) implies Cn,n = (1+ o(δ))C̃n , we have by
the tail estimate of the normal distribution,

E[M>
N ,i (x)] ≤

∑

δ3N≤n≤i
P

(
Xn(x)√
Cn,n

≥ α(δ + o(δ))
√
C̃n

)

≤ Cδ

∑

δ3N≤n≤i
e−α2(δ+o(δ))2C̃n/2 ≤ C ′

δ2
−α2(δ+o(δ))2δ3N/4π

for some positive constants Cδ and C ′
δ depending on δ. Therefore, we obtain the

exponential decay (2.7) for E
[
|〈 f ,M>

N ,N+1〉 − 〈 f ,M>
N ,N 〉|

]
.

(2) The difference M<
N ,N+1 −M

<
N ,N . We actually show the stronger estimate

E

[∣∣〈 f ,M<
N ,N+1

〉− 〈
f ,M<

N ,N

〉∣∣2] ≤ Cδ‖ f ‖2C(�)2−cδN
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than (2.7) with replacement ofM(α)
N+1 andM

(α)
N byM<

N ,N+1 andM
<
N ,N , respectively.

We write the expectation as the form
∫∫

�2 f (x) f (y)MN (x, y)dxdy, where

MN (x, y) = E
[(
M

<
N ,N+1(x)−M

<
N ,N (x)

) (
M

<
N ,N+1(y)−M

<
N ,N (y)

)]
,

and consider the integral

∫∫

|x |∨|y|<1/2
|MN (x, y)| dxdy. (2.10)

Moreover, we decompose the integrand by

MN (x, y) = IN+1,N+1(x, y)− IN+1,N (x, y)− IN ,N+1(x, y)+ IN ,N (x, y),

where Ii, j (x, y) := E[M<
N ,i (x)M

<
N , j (y)] (i, j = N , N + 1). For any fixed x, y ∈ �,

we apply Proposition 2.13 to the multidimensional Gaussian random variable

X =
(
(Xn(x))δ3N≤n≤i , (Xm(y))δ3N≤m≤ j

)

and a fixed vector a ∈ R
(i−[δ3N ]+1)+( j−[δ3N ]+1) such that a ·X = α(Xi (x)+X j (y)).

Since the covariance matrix V of X is given by

Va = α
(
(Cn,i + Gn, j (x, y))δ3N≤n≤i , (Gm,i (x, y)+ Cm, j )δ3N≤m≤ j

)
,

a · Va = α2(Ci,i + C j, j + 2Gi, j (x, y)),

Proposition 2.13 yields

Ii, j (x, y)

= eα
2Gi, j (x,y)E

[
ea·X−a·Va/2

∏

δ3N≤n≤i
χδ

(
Xn(x)− αCn,i

αC̃n

) ∏

δ3N≤m≤ j

χδ

(
Xm(x)− αCm, j

αC̃m

)]

= eα
2Gi, j (x,y)E

[ ∏

δ3N≤n≤i
χδ

(
Xn(x)+ αGn, j (x, y)

αC̃n

) ∏

δ3N≤m≤ j

χδ

(
Xm(y)+ αGm,i (x, y)

αC̃m

)]
.

We decompose the integral (2.10) into the two regions

|x − y| < 2−δ3N , 2−δ3N ≤ |x − y| < 1.

(2-1) The integral over |x − y| < 2−δ3N . We estimate each Ii, j (i, j = N , N + 1)
separately. Assume i ≤ j without loss of generality.We further decompose the integral
into two regions

|x − y| < 2−i , 2−i ≤ |x − y| < 2−δ3N .
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(2-1-1) The integral over |x − y| < 2−i . Since χδ ≤ 1,

Ii, j (x, y) ≤ eα
2Gi, j (x,y)E

[
χδ

(
Xi (x)+ αGi, j (x, y)

αC̃i

)]
.

Since |x − y| < 2−i , (2.9) implies that

Gi, j (x, y) = G̃i (x, y)+ o(δ)C̃i = (1+ o(δ))C̃i .

Hence we have

E

[
χδ

(
Xi (x)+ αGi, j (x, y)

αC̃i

)]
≤ P

(
Xi (x) ≤ (−1+ 2δ + o(δ))αC̃i

)

� e−(1+O(δ))α2C̃i /2 � 2−(1+O(δ))α2N/4π .

Since eα
2Gi, j (x,y) � |x − y|−α2/2π � 2α

2N/2π by the estimate (2.5), we obtain

∫∫

|x |∨|y|<1/2, |x−y|<2−i
Ii, j (x, y) dx dy �

∫∫

|x |∨|y|<1/2, |x−y|<2−i
2(1+O(δ))α2N/4π dx dy

� 2N
(
α2/4π−2+O(δ)

)
.

This decays exponentially if α2 < 8π and δ is chosen sufficiently small.
(2-1-2) The integral over 2−i ≤ |x − y| < 2−δ3N . The argument is similar to
(2-1-1). For any x, y in this region, there exists an integer nx,y ∈ [δ3N , i] satisfy-
ing 2−nx,y ≤ |x − y| < 2−nx,y+1. For such nx,y , we have

Ii, j (x, y) ≤ eα
2Gi, j (x,y)E

[
χδ

(
Xnx,y (x)+ αGnx,y , j (x, y)

αC̃nx,y

)]
.

Since (2.9) implies

Gnx,y , j (x, y) = G̃nx,y (x, y)+ o(δ)C̃nx,y = (1+ o(δ))C̃nx,y ,

similarly to the argument in (2-1-1) we have

E

[
χδ

(
Xnx,y (x)+ αGnx,y , j (x, y)

αC̃nx,y

)]
≤ P

(
Xnx,y (x) ≤ (−1+ 2δ + o(δ))αC̃nx,y

)

� e−(1+O(δ))α2C̃nx,y /2

� 2−(1+O(δ))α2nx,y/4π � |x − y|(1+O(δ))α2/4π .

On the other hand, by the estimate (2.5), eα
2Gi, j (x,y) � |x − y|−α2/2π . Hence we have

∫∫

|x |∨|y|<1/2, 2−i≤|x−y|<2−δ3N
Ii, j (x, y)dxdy
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�
∫∫

|x |∨|y|<1/2, 2−i≤|x−y|<2−δ3N
|x − y|−α2/4π+O(δ) dxdy

�
∫

2−i≤|x |<2−δ3N
|x |−α2/4π+O(δ) dx

�
∫ 2−δ3N

2−i
r−α2/4π+1+O(δ) dr

� 2δ
3N

(
α2/4π−2+O(δ)

)

if α2 < 8π . This decays exponentially if δ is chosen sufficiently small.
(2-2)The integral over |x−y| ≥ 2−δ3N .Wehave to consider combinations of I terms.
We consider only IN+1,N − IN ,N , since the other difference IN+1,N+1 − IN ,N+1 is
estimated by a similar way. For simplicity, we write

χ
j
n (x) = χδ

(
Xn(x)+ αGn, j (x, y)

αC̃n

)
, χ i

m(y) = χδ

(
Xm(y)+ αGm,i (x, y)

αC̃n

)
.

Now we decompose

IN+1,N (x, y)− IN ,N (x, y)

= eα
2GN+1,N (x,y)E

[ ∏

δ3N≤n≤N+1

χN
n (x)

∏

δ3N≤m≤N

χN+1
m (y)

]

− eα
2GN ,N (x,y)E

[ ∏

δ3N≤n≤N

χN
n (x)

∏

δ3N≤m≤N

χN
m (y)

]

=
(
eα

2GN+1,N (x,y) − eα
2GN ,N (x,y)

)
E

[ ∏

δ3N≤n≤N+1

χN
n (x)

∏

δ3N≤m≤N

χN+1
m (y)

]

+ eα
2GN ,N (x,y)E

[ (
χN
N+1(x)− 1

) ∏

δ3N≤n≤N

χN
n (x)

∏

δ3N≤m≤N

χN+1
m (y)

]

+ eα
2GN ,N (x,y)E

[ ∑

δ3N≤m0≤N

{( ∏

δ3N≤n≤N

χN
n (x)

) (
χN+1
m0

(y)− χN
m0
(y)

)

×
∏

δ3N≤m<m0

χN
m (y)

∏
m0<m≤N

χN+1
m (y)

}]

=: J1(x, y)+ J2(x, y)+ J3(x, y).

In the region |x − y| ≥ 2−δ3N , we have no choice but to do

∏

δ3N≤n≤N

χN
n (z) ≤ 1.
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However, we can use the estimate (2.6). Indeed,

∣∣eα2GN+1,N (x,y) − eα
2GN ,N (x,y)

∣∣
� |GN+1,N (x, y)− GN ,N (x, y)|

(
eα

2GN+1,N (x,y) ∨ eα
2GN ,N (x,y)

)

� |GN+1,N (x, y)− GN ,N (x, y)| · |x − y|−α2/2π

and ∣∣∣χN+1
m0

(y)− χN
m0
(y)

∣∣∣

=
∣∣∣∣∣χδ

(
Xm0(y)+ αGm0,N+1(x, y)

αC̃m0

)
− χδ

(
Xm0(y)+ αGm0,N (x, y)

αC̃m0

)∣∣∣∣∣
�δ

∣∣Gm0,N+1(x, y)− Gm0,N (x, y)
∣∣ .

Hence by the estimate (2.6) we have
∫∫

|x |∨|y|<1/2, |x−y|≥2−δ3N
(|J1(x, y)| + |J3(x, y)|) dx dy

�
∑

δ3N≤m0≤N

∫∫

|x |∨|y|<1/2, |x−y|≥2−δ3N
|Gm0,N+1(x, y)− Gm0,N (x, y)| |x − y|−α2/2π dx dy

� 2δ
3Nα2/2π

∑

δ3N≤m0≤N

∫∫

|x |∨|y|<1/2
|Gm0,N+1(x, y)− Gm0,N (x, y)| dx dy

� N2N (δ
3α2/2π−θ).

Since θ > 0, this decays exponentially if δ is chosen sufficiently small.
Finally we consider J2. The estimate (2.5) implies that for 2−δ3N ≤ |x − y| ≤ 1,

∣∣∣∣
GN+1,N (x, y)

C̃N+1

∣∣∣∣ ≤
1

C̃N+1

(
− 1

2π
log |x − y| + O(1)

)

≤ 1

C̃N+1

(
δ3N

2π
log 2+ O(1)

)

= o(δ).

Hence we have

E

[ ∣∣∣χN
N+1(x)− 1

∣∣∣
]
= E

[ ∣∣∣∣χδ
(
XN+1(x)+ αGN+1,N (x, y)

αC̃N+1

)
− 1

∣∣∣∣
]

≤ P

(
XN+1(x)+ αGN+1,N (x, y) ≥ δαC̃N+1

)

≤ P

(
XN+1(x) ≥ (δ + o(δ))αC̃N+1

)

�δ e
−(δ+o(δ))2α2C̃N+1/2

� 2−(δ+o(δ))2Nα2/4π .
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Therefore,

∫∫

|x |∨|y|<1/2, |x−y|≥2−δ3N
|J2(x, y)|dxdy

�
∫∫

|x |∨|y|<1/2, |x−y|≥2−δ3N
|x − y|−α2/2π2−(δ+o(δ))2Nα2/4π dxdy

� 2−cδN

with cδ = (δ + o(δ))2α2/4π − δ3α2/2π . Since cδ is positive for sufficiently small δ,
this completes the proof. ��
Corollary 2.15 For any f ∈ C(�), the sequence {〈 f ,M(α)

N 〉}N∈N converges almost
surely and in L1(P). This limit is independent to the choice of ψ .

Proof Almost-sure convergence follows from Theorem 2.14. Denote by 〈 f ,M(α)∞ 〉
the limit. The uniqueness follows completely in the same way as the argument in
[12, Sect. 5], but we provide a sketch of the proof for readers’ convenience. Let
ψ̄ = 1B(0,1), the indicator function of the ball B(0, 1), and define P̄N and M̄

(α)
N in

a similarly way to PN and M
(α)
N , respectively, by ψ̄ instead of ψ . Since ψ̄ satisfies

Hypothesis 1, there exists an almost-sure and L1-limit 〈 f , M̄(α)∞ 〉. Denote by Fn the
filtration generated by {X̂(k)}|k|<2n . Since (1− P̄n)XN is independent ofFn , we have

E[〈 f ,M(α)
N 〉|Fn] = 〈 f , M̄(α)

N ,n〉,

where

M̄
(α)
N ,n := exp

(
α P̄nXN − α2

2
C̄N ,n

)
, C̄N ,n = E[(P̄nXN (x))

2].

Since P̄nXN converges as N → ∞ to P̄nX uniformly in x ∈ � almost surely for each
n, we have

〈 f , M̄(α)
n 〉 = lim

N→∞〈 f , M̄(α)
N ,n〉 = lim

N→∞E[〈 f ,M(α)
N 〉|Fn] = E[〈 f ,M(α)∞ 〉|Fn].

Letting n → ∞, we have 〈 f , M̄(α)∞ 〉 = 〈 f ,M(α)∞ 〉 almost surely. ��
Corollary 2.16 Regard M

(α)
N as a measure as in Theorem 2.1. Then, the sequence

{M(α)
N }N∈N converges in the weak topology, almost surely.

Proof Let D be a countable dense set in C(�) which includes the constant function
1. Then, by Corollary 2.15 we have

P

(
lim

N→∞〈 f ,M(α)
N 〉 exists for all f ∈ D

)
= 1.
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Fromnow, in order to clarify the dependence of the randomnessω ∈ �,wedenoteM(α)
N

with a sampleω ∈ � byM(α)
N (ω). LetN ∈ F be the event that limN→∞〈 f ,M(α)

N (ω)〉
does not exists for some f ∈ D. For each ω ∈ � \N , define an operator M̊(α)∞ (ω) on
C(�) with domain D by

M̊
(α)∞ (ω)( f ) := lim

N→∞〈 f ,M(α)
N (ω)〉, f ∈ D.

Then, forω ∈ �\N , it is easy to see that M̊(α)∞ (ω) can be extended to a linear operator
on the space linearly spanned by D. Moreover, since D includes the constant function
1,

sup
N∈N

∫

�

M
(α)
N (ω)dx < ∞, (2.11)

and hence, for f ∈ D

∣∣∣M̊(α)∞ (ω)( f )
∣∣∣ = lim

N→∞

∣∣∣〈 f ,M(α)
N (ω)〉

∣∣∣ ≤ ‖ f ‖C(�) sup
N∈N

∫

�

M
(α)
N (ω)dx � ‖ f ‖C(�).

In view of these facts, forω ∈ �\N , M̊(α)∞ (ω) is extended to a bounded linear operator
M

(α)∞ (ω) onC(�). By the denseness of D inC(�) and (2.11), we have forω ∈ �\N ,
M

(α)∞ (ω)( f ) = limN→∞〈 f ,M(α)
N (ω)〉 for f ∈ C(�). Nonnegativity ofM(α)∞ follows

from that of {M(α)
N }N∈N. ��

Proof of Theorem 2.1 Since convergence of the corresponding measures follows from
Corollary 2.16, we prove convergence in the Besov space and independence of the
limit in ψ .

First we show the convergence ofM(α)
N in B−β

p,p. By Theorem 2.14, for small δ > 0
and any N ≥ Nδ ,

E

[∥∥� jM
(α)
N+1 −� jM

(α)
N

∥∥
L1

]
=

∫

�

E
[∣∣〈ρ̌ j (x − ·),M(α)

N+1 −M
(α)
N

〉∣∣]dx
� Cδ2

2 j2−cδN ,

where ρ̌ j = ∑
k∈Z2(F−1ρ j )(· + 2πk). This means

E

[∥∥M(α)
N+1 −M

(α)
N

∥∥
B−γ
1,1

]
� Cδ2

−cδN

for any γ > 2. On the other hand, by Corollary 2.12, for any parameters p′, β ′
satisfying (2.3),

sup
N∈N

E

[∥∥M(α)
N+1 −M

(α)
N

∥∥p′

B−β′
p′,p′

]
< ∞.
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Fix parameters p and β satisfying (2.3). For any ε ∈ (0, 1), let pε and βε be parameters
defined by 1/p = ε+(1−ε)/pε and β = εγ +(1−ε)βε. Since pε → p and βε → β

as ε → 0, pε and βε satisfy (2.3) for small ε > 0. For such ε, by the interpolation
(Proposition 1.8), we have

E

[∥∥M(α)
N+1 −M

(α)
N

∥∥p

B−β
p,p

]

≤ E

[∥∥M(α)
N+1 −M

(α)
N

∥∥
B−γ
1,1

]εp
E

[∥∥M(α)
N+1 −M

(α)
N

∥∥pε
B−βε
pε,pε

](1−ε)p/pε
≤ C ′

δ2
−c′δN

for some constants C ′
δ, c

′
δ > 0 depending on p, β, and ε. This implies the L p(P)-

convergence of {M(α)
N } in B−β

p,p(�). Moreover, since

∞∑
N=Nδ

E
[∥∥M(α)

N+1 −M
(α)
N

∥∥
B−β
p,p

]
< ∞,

by the Borel-Cantelli lemma we obtain the almost-sure convergence of {M(α)
N }N∈N.

Finally we show the uniqueness of the limit. Consider two multipliers ψ and ψ̄

satisfyingHypothesis 1 and define the limitsM(α)∞ and M̄(α)∞ , respectively. ByCorollary
2.15, 〈M(α)∞ , ek〉 = 〈M̄(α)∞ , ek〉 for any k ∈ Z

2 almost surely, so � jM
(α)∞ = � jM̄

(α)∞
for any j ≥ −1 almost surely. Hence M(α)∞ = M̄

(α)∞ in B−β
p,p almost surely. ��

3 Wick exponentials of Ornstein–Uhlenbeck processes

For φ ∈ D′(�) and an L2(�)-cylindrical Brownian motion W , let X = X(φ) be the
unique solution of the initial value problem

⎧⎨
⎩
∂t Xt = 1

2
(�− 1)Xt + Ẇt , t > 0,

X0 = φ.

(3.1)

In this section, we consider theWick exponential of the infinite-dimensional Ornstein–
Uhlenbeck (OU in short) process X . First we recall the basic estimate of X in [33].

Proposition 3.1 For ε > 0, δ ∈ (0, 1), m ∈ N, and T > 0, there exists a constant
C > 0 such that one has the a priori estimate

E

[
‖X(φ)‖mC([0,T ];H−ε)∩Cδ/2([0,T ];H−ε−δ)

]
≤ C(1+ ‖φ‖mH−ε ). (3.2)

Moreover, for any ε > 0 and φ1, φ2 ∈ H−ε,

‖X(φ1)− X(φ2)‖C([0,T ];H−ε) ≤ ‖φ1 − φ2‖H−ε . (3.3)
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Proof See [33, Proposition 2.1] for the proof of (3.2). The estimate (3.3) is obtained
by writing down the mild form of (3.1). ��

It is known that the GFF measure μ0 is the invariant measure of the process X (see
e.g., [19, Theorem 6.2.1]). Therefore, the random variable

�×D′(�) � (ω, φ) �→ Xt (φ)(ω) ∈ D′(�)

is also a GFF under the probability measure P⊗μ0 for any t > 0. Thus the existence
of the Wick exponential of X is an immediate consequence of Theorem 2.1.

Theorem 3.2 Assume thatψ satisfiesHypothesis 1. Let |α| < √
8π and choose param-

eters p and β as in (2.3). Then the functions

X N
t (φ)(x) := exp

(
α
(
PN Xt (φ)

)
(x)− α2

2
CN

)
, N ∈ N

are uniformly bounded in the space L p(P ⊗ μ0; L p([0, T ]; B−β
p,p)) for any T > 0.

Moreover, the function X N converges as N → ∞ in the space L p([0, T ]; B−β
p,p),

P⊗μ0-almost surely and in L p(P⊗μ0). The limits obtained by differentψ’s coincide
with each other, P⊗ μ0-almost surely.

Proof Using the invariance ofμ0 with respect to Xt and using Theorems 2.1 and 2.14,
we have the exponential decay

E
P⊗μ0

[∥∥∥X N+1 − X N
∥∥∥
p

L p([0,T ];B−β
p,p)

]

=
∫

D′(�)

∫ T

0
E

[∥∥∥X N+1
t (φ)− X N

t (φ)

∥∥∥
p

B−β
p,p

]
dt μ0(dφ)

= TE

[∥∥exp�N+1(αX)− exp�N (αX)
∥∥p

B−β
p,p

]

≤ TC2−cN

for some positive constants c and C , where X is a GFF under the probability P. Then
the assertion is obtained by a similar way to the proof of Theorem 2.1. ��

Denote byX∞ := limN→∞ X N theP⊗μ0-almost-sure limit. The following result
is an immediate consequence of the P⊗μ0-almost-sure convergence in Theorem 3.2.

Corollary 3.3 Forμ0-almost every φ ∈ D′(�), the random functionX N (φ) converges
to X∞(φ) in the space L p([0, T ]; B−β

p,p) almost surely.

In Sect. 5, the following “stability” result of X∞(φ) with respect to φ makes an
important role.
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Lemma 3.4 Let ε > 0, and let {ξN }N∈N∪{∞} be H−ε-valued random variables inde-
pendent of W . Assume that the law νN of ξN is absolutely continuous with respect

to μ0 for any N ∈ N ∪ {∞}, and Radon–Nikodym derivatives
{
dνN
dμ0

}
N∈N∪{∞} are

uniformly bounded. If limN→∞ ξN = ξ∞ in H−ε almost surely, then for any T > 0,

lim
N→∞X∞(ξN ) = X∞(ξ∞)

in L p([0, T ]; B−β
p,p) in probability.

Proof The proof is very similar to [33, Lemma 2.5] and done by a slight modification.
For any fixed M ∈ N, by the estimate (3.3),

‖PM X(ξN )− PM X(ξ∞)‖C([0,T ];C(�)) �M ‖X(ξN )− X(ξ∞)‖C([0,T ];H−ε)

� ‖ξN − ξ∞‖H−ε
N→∞−−−−→ 0,

almost surely. In the first inequality, we use the fact that PM sends H−ε to C(�), as
mentioned after Hypothesis 1. Hence for any fixed M ∈ N,

lim
N→∞‖X M (ξN )− X M (ξ∞)‖C([0,T ];C(�)) = 0

almost surely, from the definition of the Wick exponential X M . On the other hand,
since Radon–Nikodym derivatives dνN

dμ0
are uniformly bounded, by using Theorem 3.2,

sup
N∈N∪{∞}

E

[
‖X M (ξN )− X∞(ξN )‖p

L p([0,T ];B−β
p,p)

]

� sup
N∈N∪{∞}

E

[∫

D′(�)
‖X M (φ)− X∞(φ)‖p

L p([0,T ];B−β
p,p)

νN (dφ)

]
M→∞−−−−→ 0.

Hence, by using the inequality (a + b) ∧ 1 ≤ a + (b ∧ 1) for a, b ≥ 0, we have

E

[
‖X∞(ξN )− X∞(ξ∞)‖

L p([0,T ];B−β
p,p)

∧ 1
]

≤ 2 sup
N∈N∪{∞}

E

[
‖X M (ξN )− X∞(ξN )‖L p([0,T ];B−β

p,p)

]

+ E

[
‖X M (ξN )− X M (ξ∞)‖

L p([0,T ];B−β
p,p)

∧ 1
]
.

Letting N → ∞ first and then M → ∞, we have

lim
N→∞E

[
‖X∞(ξN )− X∞(ξ∞)‖

L p([0,T ];B−β
p,p)

∧ 1
]
= 0.

Thus we have the assertion. ��
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4 Global well-posedness of the strong solution

In this section, we consider the approximating equation (1.6):

⎧⎨
⎩
∂t�

N
t = 1

2
(�− 1)�N

t − α

2
exp

(
α�N

t − α2

2
CN

)
+ PN Ẇt , t > 0,

�N
0 = PNφ,

and prove Theorem 1.1. The proof goes in a similar way to Hoshino et al. [33, Sect. 3]
with a slight modification. Similarly to the previous paper, we use the Da Prato–
Debussche trick, that is, we decompose the solution of (1.6) by �N = XN + Y N ,
where XN and Y N solve

{
∂t X

N
t = 1

2
(�− 1)XN

t + PN Ẇt , t > 0,

XN
0 = PNφ,

(4.1)

⎧
⎨
⎩
∂t Y

N
t = 1

2
(�− 1)Y N

t − α

2
exp(αY N

t ) exp

(
αXN

t − α2

2
CN

)
, t > 0,

Y N
0 = 0.

(4.2)

Note that XN = PN X(φ), where X(φ) is the solution of (3.1) with the initial value
φ. Hence the renormalized exponential of XN in (4.2) is equal to

exp

(
αXN

t − α2

2
CN

)
= X N

t (φ).

SinceX N converges toX∞ in L p([0, T ]; B−β
p,p) as stated in Corollary 3.3, we consider

the solution map of the deterministic equation

∂tϒt = 1

2
(�− 1)ϒt − α

2
eαϒtXt , t ∈ [0, T ]

for any generic nonnegative X ∈ L p([0, T ]; B−β
p,p).

4.1 Products of continuous functions and nonnegative distributions

Since any nonnegative distribution is regarded as a nonnegative Borel measure by
Theorem 1.11, the product of a function f ∈ C(�) and a nonnegative distribution
ξ ∈ D′(�) is well-defined as a Borel measure.

Definition 4.1 For any f ∈ C(�) and any nonnegative ξ ∈ D′(�), we define the
signed Borel measure

M( f , ξ)(dx) := f (x)μξ (dx),

where μξ (dx) is the Borel measure associated with ξ , as in Theorem 1.11.
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We recall some properties of the product map M from [33, Sect. 3.1]. Recall that
Bs,+
p,q (�) denotes the set of nonnegative elements in Bs

p,q(�).

Theorem 4.2 [33, Theorems 3.4 and 3.5] Let s > 0 and p, q ∈ [1,∞]. The map

M : C(�)× B−s,+
p,q → B−s

p,q

is continuous, and bounded in the sense that

‖M( f , ξ)‖B−s
p,q

� ‖ f ‖C(�)‖ξ‖B−s
p,q

for any f ∈ C(�) and ξ ∈ B−s,+
p,q .

Theorem 4.3 [33, Theorem 3.6] Let s > 0, p, q ∈ [1,∞], and r ∈ (1,∞]. For
any space-time functions (Y ,X ) ∈ L1([0, T ];C(�)) × Lr ([0, T ]; B−s,+

p,q ) and any
function f ∈ C1

b(R), consider the time-dependent distribution

M( f (Y ),X )(t) := M( f (Yt ),Xt ).

Then the correspondence (Y ,X ) �→ M( f (Y ),X ) is well-defined as a map

L1([0, T ];C(�))× Lr ([0, T ]; B−s,+
p,q ) → Lr ′([0, T ]; B−s

p,q).

for any r ′ ∈ [1, r ]. Moreover, if r ′ < r , this map is continuous.

4.2 Global well-posedness of7

In this part, we can consider more general parameters

p ∈ (1,∞), β ∈
(
0,

2

p
(p − 1)

)
, (4.3)

than those in (2.3). We fix such parameters p, β and the time interval [0, T ]. We
consider the initial value problem

{
∂tϒt = 1

2 (�− 1)ϒt − α
2M(eαϒt ,Xt ), t ∈ (0, T ],

ϒ0 = υ,
(4.4)

for any given X ∈ L p([0, T ]; B−β,+
p,p ) and υ ∈ B2−β

p,p . To solve the equation (4.4), we
introduce the space

YT = {
ϒ ∈ L p([0, T ];C(�)) ∩ C([0, T ]; L p) ; eαϒ ∈ L∞([0, T ];C(�))}

as a solution space. The purpose of this section is showing the following theorem:
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Theorem 4.4 Assume that p and β satisfy (4.3). Let X ∈ L p([0, T ]; B−β,+
p,p ) and

υ ∈ B2−β
p,p . Then there exists the unique mild solution ϒ ∈ YT of (4.4), that is, ϒ

satisfies the equation

ϒt = et(�−1)/2υ − α

2

∫ t

0
e(t−s)(�−1)/2M(eαϒs ,Xs)ds (4.5)

for any t ∈ (0, T ]. Moreover, this solution belongs to the space

L p([0, T ]; B2/p+δ
p,p ) ∩ C([0, T ]; Bδ

p,p)

for any δ ∈ (0, 2
p (p − 1)− β), and the mapping

S : B2−β
p,p × L p([0, T ]; B−β,+

p,p ) � (υ,X ) �→ ϒ ∈ L p([0, T ]; B2/p+δ
p,p ) ∩ C([0, T ]; Bδ

p,p)

is continuous.

Recall the following Schauder estimates for the heat semigroup.

Proposition 4.5 [37, Lemma 2.2] and [41, Proposition 6] Let s ∈ R and p, q ∈
[1,∞].
(i) For every δ ≥ 0, ‖et(�−1)/2u‖Bs+2δ

p,q
� t−δ‖u‖Bs

p,q
uniformly over t > 0.

(ii) For every δ ∈ [0, 1], ‖(et(�−1)/2 − 1)u‖Bs−2δ
p,q

� tδ‖u‖Bs
p,q

uniformly over t > 0.

Remark 4.6 We remark that, if �− 1 is replaced by �, then

‖et�/2u‖Bs+2δ
p,q

� (1+ t−δ)‖u‖Bs
p,q

is the right t-uniform estimate ([37, Lemma 2.2]). The constant 1 comes from the
bound of et�/2�−1u. In the above proposition, we can omit this constant by using the
factor e−t .

Proposition 4.7 [33, Proposition A.3] Let θ ∈ R, p, q ∈ [1,∞], and r ∈ (1,∞]. Let
U be an element of Lr ([0, T ]; Bθ

p,q), and let u be the mild solution of the equation

∂t u = 1

2
(�− 1)u +U , t > 0,

with initial value u0 ∈ Bθ+2
p,q . Then for any ε > 0 and δ ∈ (0, 2/r ′), one has

‖u‖
Lr ([0,T ];Bθ+2−ε

p,q )∩C([0,T ];Bθ+2/r ′−ε
p,q )∩Cδ/2([0,T ];Bθ+2/r ′−ε−δ

p,q )

� ‖u0‖Bθ+2
p,q

+ ‖U‖Lr ([0,T ];Bθ
p,q )

,

where r ′ ∈ [1,∞) is such that 1/r + 1/r ′ = 1.
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We first show the uniqueness of the solution, by following Hoshino et al. [33,
Lemma 3.8]. Since the function x �→ |x |p is not twice differentiable if p < 2, we
need to modify the previous argument.

Lemma 4.8 For anyX ∈ L p([0, T ]; B−β,+
p,p ) and υ ∈ B2−β

p,p , there is at most one mild
solution ϒ ∈ YT of (4.4).

Proof Let ϒ,ϒ ′ ∈ YT be two solutions of (4.4) with the same X and υ. Then Z =
ϒ −ϒ ′ solves the equation

{
∂t − 1

2
(�− 1)

}
Zt = −α

2
M(eαϒt − eαϒ

′
t ,Xt ) =: Dt ,

where D ∈ L p([0, T ]; B−β
p,p), because of definition ofYT and Theorem 4.2. Let ε > 0

and define Z ε = eε�Z . Then Z ε solves the equation
{
∂t − 1

2
(�− 1)

}
Z ε = eε�D.

By the regularizing effect of the heat semigroup (Proposition 4.5), eε�D belongs to
L p([0, T ];C∞(�)). Then by the Schauder estimate (Proposition 4.7), we have that
Z ε belongs to C([0, T ];C∞(�)). Hence for any f ∈ C2(R), we have

∫

�

f (Z ε
t (x)) dx

= f (0)|�| +
∫ t

0

∫

�

f ′(Z ε
s (x))∂s Z

ε
s (x) dxds

= f (0)|�| + 1

2

∫ t

0

∫

�

f ′(Z ε
s (x))(�− 1)Z ε

s (x) dxds

+
∫ t

0

∫

�

f ′(Z ε
s (x))e

ε�Ds(x) dxds

= f (0)|�| − 1

2

∫ t

0

∫

�

f ′′(Z ε
s (x))|∇Z ε

s (x)|2 dxds

− 1

2

∫ t

0

∫

�

f ′(Z ε
s (x))Z

ε
s (x) dxds +

∫ t

0

∫

�

f ′(Z ε
s (x))e

ε�Ds(x) dxds,

where the first equality is justified as a Riemann–Stieltjes integral, because

∂s Z
ε = 1

2
(�− 1)Z ε + eε�D ∈ L p([0, T ];C∞(�)).

For λ > 0, let

fλ(x) = (λ2 + x2)p/2, x ∈ R,

and for R > 0, let ϕR ∈ C∞(R) be a nonnegative even smooth function such that
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ϕR(x) =
{
1, |x | < R,

0, |x | > R + 1.

Then we define fλ,R ∈ C2(R) by the function determined by

⎧
⎨
⎩

f ′′λ,R(x) = f ′′λ (x)ϕR(x), x ∈ R,

f ′λ,R(0) = 0,
fλ,R(0) = λp.

Since we easily have the properties

• f ′′λ,R ≥ 0,
• f ′λ,R is bounded and x f ′λ,R(x) ≥ 0,
• fλ,R(x) ↑ fλ(x) as R → ∞,

we have the inequality

∫

�

fλ,R(Z
ε
t (x))dx ≤ λp|�| +

∫ t

0

∫

�

f ′λ,R(Z ε
s (x))e

ε�Ds(x)dxds.

Once we let ε → 0, eε�D → D in L p([0, T ]; B−β−κ
p,p ) for any κ > 0 by Proposition

4.5, and hence Z ε → Z in L p([0, T ]; B2−β−2κ
p,p ) by Proposition 4.7. Since B2−β−2κ

p,p ⊂
C(�) for small κ > 0, by using Theorem 4.3 we have

∫

�

fλ,R(Zt (x))dx ≤ λp|�| +
∫ t

0

∫

�

f ′λ,R(Zs(x))Ds(x)dxds (4.6)

for almost every t . Here, we used the boundedness of f ′λ,R and that eε�D is a difference
of two nonnegative functions, for the convergence of the second term of the right-hand
side. We can deduce the term as

∫

�

f ′λ,R(Zs(x))Ds(x)dx

= −α

2

∫

�

(eαϒs (x) − eαϒ
′
s (x)) f ′λ,R(Zs(x))Xs(x)dx

= −α2

2

∫

�

eA(αϒs (x),αϒ ′
s (x))Zs(x) f

′
λ,R(Zs(x))Xs(x)dx ≤ 0,

where A(x, y) is a continuous function on R
2 defined by

A(x, y) =
{
log ex−ey

x−y , x  = y,

x x = y.

Hence letting R → ∞ in (4.6), we have

∫

�

fλ(Zt (x))dx ≤ λp|�|
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for almost every t . Letting λ → 0, we have ‖Zt‖L p(�) = 0, which implies ϒ = ϒ ′
for almost every (t, x), thus ϒ = ϒ ′ in YT . ��

Nextwe show the existence of the solution, by followingHoshino et al. [33, Lemma
3.10]. Since the only difference is that we use Besov spaces instead of Sobolev spaces,
we omit some details in this part. The following embedding theorem is frequently used
below.

Lemma 4.9 [48, Corollary 5]LetA ⊂ B ⊂ C beBanach spaces such that the inclusion
A ↪→ B is compact. Then for any p ∈ [1,∞] and s > 0, the embeddings

L p([0, T ];A) ∩ Cs([0, T ]; C) ↪→ L p([0, T ];B),
C([0, T ];A) ∩ Cs([0, T ]; C) ↪→ C([0, T ];B)

are compact.

Lemma 4.10 For any X ∈ L p([0, T ]; B−β,+
p,p ) and υ ∈ B2−β

p,p , there is at least one
mild solutionϒ ∈ YT . Moreover, for any δ ∈ (0, 2

p (p−1)−β), there exists a constant
C > 0 independent of X and υ such that one has the a priori estimate

‖ϒ‖
L p([0,T ];B2/p+δ

p,p )∩C([0,T ];Bδ
p,p)∩Cδ/2([0,T ];L p)

≤ C
{
‖υ‖

B2−β
p,p

+ e|α|‖υ‖C(�)‖X‖
L p([0,T ];B−β

p,p)

}
. (4.7)

Proof As discussed in [33, Lemma 3.10], for any X ∈ L p([0, T ]; B−β,+
p,p ), there

exists a family {X N }N∈N of nonnegative continuous functions on [0, T ]×� such that
X N → X in L p([0, T ]; B−β,+

p,p ) as N → ∞. For such X N , we consider the classical
global solutions of the approximating equations

⎧⎨
⎩
∂tϒ

N
t = 1

2
(�− 1)ϒN

t − α

2
eαϒ

N
t X N

t ,

ϒN
0 = υ.

Note that αϒN
t ≤ |α|‖υ‖C(�) follows from the comparison principle. By applying the

Schauder estimate (Proposition 4.7) and Theorem 4.2, for any δ′ ∈ (δ, 2
p (p− 1)−β)

we have

‖ϒN‖
L p([0,T ];B2/p+δ′

p,p )∩Cδ′/2([0,T ];L p)

� ‖υ‖
B2−β
p,p

+ ‖M(eαϒ
N
,X N )‖

L p([0,T ];B−β
p,p)

� ‖υ‖
B2−β
p,p

+ ‖eαϒN ‖L∞([0,T ];C(�))‖X N‖
L p([0,T ];B−β

p,p)

� ‖υ‖
B2−β
p,p

+ e|α|‖υ‖C(�)‖X N‖
L p([0,T ];B−β

p,p)
.
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By Lemma 4.9, the embeddings

L p([0, T ]; B2/p+δ′
p,p ) ∩ Cδ′/2([0, T ]; L p) ↪→ L p([0, T ]; B2/p+δ

p,p ),

C([0, T ]; Bδ′
p,p) ∩ Cδ′/2([0, T ]; L p) ↪→ C([0, T ]; Bδ

p,p)

are compact. Here, recall that the embedding Bs
p,p ↪→ Bs′

p,p is compact for any s′ < s
(see [10, Corollary 2.96]). Hence there exists a subsequence {Nk} such that

ϒNk → ϒ in L p([0, T ]; B2/p+δ
p,p ) ∩ C([0, T ]; Bδ

p,p).

This yields the bound (4.7) for ϒ , thus in particular ϒ ∈ YT .
We have that ϒ solves the mild equation (4.5) by a similar argument to Hoshino et

al. [33, Lemma 3.10]. Since αϒN is uniformly bounded from above, we can apply
Theorem 4.3 to the function f ∈ C1

b(R) such that f (x) = ex on some half line
x ∈ (−∞, a] and obtain

M(eαϒ
Nk
,X Nk ) → M(eαϒ,X ) in Lq([0, T ]; B−β

p,p)

for any q < p. Then letting Nk → ∞ on both sides of (4.5) and applying the Schauder
estimate (Proposition 4.7), we have that (ϒ,X ) solves the same equation in the space
C([0, T ]; Bδ

p,p). ��

By Lemmas 4.8 and 4.10, the solution map S : (υ,X ) �→ ϒ is well-defined. The
continuity of the map

S : B2−β
p,p × L p([0, T ]; B−β,+

p,p ) � (υ,X ) �→ ϒ ∈ L p([0, T ]; B2/p+δ
p,p ) ∩ C([0, T ]; Bδ

p,p)

follows from a similar compactness argument as above, and from uniqueness of
the solution. Indeed, by the a priori estimate (4.7), any convergent sequence of

B2−β
p,p × L p([0, T ]; B−β,+

p,p ) is sent to a bounded sequence of L p([0, T ]; B2/p+δ′′
p,p ) ∩

C([0, T ]; Bδ′′
p,p) by the map S, for any δ′′ ∈ (δ, 2

p (p− 1)− β). This sequence is pre-

compact in L p([0, T ]; B2/p+δ
p,p )∩C([0, T ]; Bδ

p,p). By the same argument as before, we
see that any accumulation point solves (4.5), which is unique. Hence this precompact
sequence converges. This completes the proof of Theorem 4.4.

4.3 Proof of Theorem 1.1

From Theorem 4.4, the first main result of this paper (Theorem 1.1) immediately
follows.

Proof of Theorem 1.1 By theDaPrato–Debussche decomposition (4.1)–(4.2), the solu-
tion �N (φ) of (1.6) satisfies
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�N (φ) = PN X(φ)+ S(0,X N (φ)).

For μ0-almost every φ, X(φ) ∈ C([0, T ]; H−ε) for any ε > 0, in view of Proposi-
tion 3.1. Hence the first term PN X(φ) of the right-hand side converges almost surely
to X(φ) in C([0, T ]; H−ε) for any ε > 0, under Hypothesis 1. The second term
S(0,X N (φ)) converges almost surely to S(0,X∞(φ)) in C([0, T ]; Bδ

p,p) (see The-
orems 3.2 and 4.4). Hence �N (φ) converges to

�(φ) = X(φ)+ S(0,X∞(φ))

in the space C([0, T ]; B−ε
p,p) for any ε > 0 almost surely, for μ0-almost every φ. ��

5 Stationary solution

In this section, we prove Theorem 1.5 and Corollary 1.6 by assuming that ψ satisfies
Hypotheses 1 and 2. Recall that �̃N = �̃N (φ) is a unique solution of the SPDE (1.8):

⎧
⎨
⎩
∂t�̃

N
t = 1

2
(�− 1)�̃N

t − α

2
PN exp

(
αPN �̃

N
t − α2

2
CN

)
+ Ẇt , t > 0,

�̃N
0 = φ ∈ D′(�),

and � = �(φ) is the strong solution obtained by Theorem 1.1. Since the nonlinear
term of (1.8) is given by the log-derivative of the approximating measure μ(α)

N defined

by (1.7), it is easy to show that μ(α)
N is an invariant measure of the process �̃N (see

[33, Sect. 4] for details). Therefore, if ξN is a random variable with the law μ
(α)
N and

independent of W , then

�̃N ,stat := �̃N (ξN )

is a stationary process. Let ξ be a D′(�)-valued random variable with the law μ(α)

and independent of W , and define

�stat := �(ξ).

The proof of Theorem 1.5 consists of showing the following two facts:

(i) {�̃N ,stat}N∈N is tight in the space C([0, T ]; H−ε) for any ε > 0.
(ii) �̃N ,stat converges in law to �stat in the space C([0, T ]; B−ε

p,p) for any ε > 0.

Once they are proved, Theorem 1.5 is obtained as follows: (i) implies that there exists
a subsequence {�̃Nk ,stat}k∈N converging in law to a stochastic process � in the space
C([0, T ]; H−ε).On the other hand, {�̃Nk ,stat}k∈N converges to�stat inC([0, T ]; B−ε

p,p)
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by (ii). Since C([0, T ]; H−ε) is continuously embedded into C([0, T ]; B−ε′
p,p) for any

ε′ > ε, the laws of � and �stat in C([0, T ]; B−ε′
p,p) coincide. Since H−ε and B−ε′

p,p are
separable, by Lusin–Souslin’s theorem (cf. [36, Theorem 15.1]), C([0, T ]; H−ε) is
a measurable subset of C([0, T ]; B−ε′

p,p). Therefore,

P
(
�stat ∈ C([0, T ]; H−ε)

) = P
(
� ∈ C([0, T ]; H−ε)

) = 1,

and hence �
d= �stat in C([0, T ]; H−ε). This implies that the accumulation point of

the laws of {�̃N ,stat}N∈N in C([0, T ]; H−ε) is unique, therefore �̃N ,stat converges in
law to �stat in the space C([0, T ]; H−ε). For any bounded continuous function f on
H−ε, by Corollary 2.3,

E
[
f (�stat

t )
] = lim

k→∞E
[
f (�̃Nk ,stat

t )
]

= lim
k→∞

∫

H−ε
f (φ)μ(α)

Nk
(dφ) =

∫

H−ε
f (φ)μ(α)(dφ)

for any t ≥ 0. This means that �stat
t has a law μ(α) for any t > 0.

Corollary 1.6 is obtained as follows. Since

∫

D′(�)
P
(
�(φ) ∈ C([0, T ]; H−ε)

)
μ(α)(dφ) = P

(
�stat ∈ C([0, T ]; H−ε)

) = 1,

we have

P
(
�(φ) ∈ C([0, T ]; H−ε)

) = 1

for μ(α)-almost every φ ∈ D′(�). Since μ(α) and μ0 are absolutely continuous with
respect to each other (Corollary 2.3), “μ(α)-almost every φ” can be replaced by “μ0-
almost every φ”.

We now turn to proofs of (i) and (ii). The proofs go in very similar ways to Hoshino
et al. [33, Sect. 4].

Proof of (i) By the definition (3.1) of the OU process X , we can decompose �̃N ,stat =
X(ξN )+ YN , where YN solves

⎧⎨
⎩
∂tYN

t = 1

2
(�− 1)YN

t − α

2
PN exp�N (α�̃

N ,stat
t ),

YN
0 = 0.

For X(ξN ), it is easy to check that

sup
N∈N

E
[‖X0(ξN )‖H−ε

]+ sup
N∈N

E

[
sup

s,t∈[0,T ]
‖Xt (ξN )− Xs(ξN )‖H−ε

|t − s|δ
]
< ∞
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for sufficiently small δ, ε > 0, by the a priori estimate of the OU process (Proposition

3.1) and the uniform bound of Radon–Nikodym derivatives
dμ(α)

N
dμ0

(Corollary 2.3). For

YN , by the Schauder estimate (Proposition 4.7), the invariance of μ(α)
N under �̃N , and

Corollary 2.4, for any small δ > 0 we have

E
[‖YN‖2Cδ([0,T ];L2)

]
� E

[ ∥∥∥PN
{
exp�N (α�̃

N ,stat)
}∥∥∥

2

L2([0,T ];H−s )

]

≤ E

[ ∥∥∥exp�N (α�̃N ,stat)

∥∥∥
2

L2([0,T ];H−s )

]

=
∫

D′(�)
μ
(α)
N (dφ)

∫ T

0
E

[ ∥∥∥exp�N (α�̃N
t (φ))

∥∥∥
2

H−s

]
dt

= T
∫

D′(�)
‖ exp�N (αφ)‖2H−sμ

(α)
N (dφ) � 1.

Thenbya similar argument to [33, Theorem4.2],wehave the tightness of {�̃N ,stat}N∈N
in C([0, T ]; H−ε). ��
Proof of (ii) By a similar argument to the proof of [33, Theorem 1.3], we can assume
that ξN converges to ξ in H−ε almost surely. Then we can complete the proof of (ii)
by showing that

�̃N ,stat → �stat

in C([0, T ]; B−ε
p,p), in probability. To do this, we decompose �̃N ,stat = X(ξN )+YN ,

as in the proof of (i), and decompose �stat = X(ξ) + Y, where Y = S(0,X∞(ξ)).
Since

X(ξN ) → X(ξ), in C([0, T ]; H−ε) almsot surely,

X N (ξN ) → X∞(ξ), in L p([0, T ]; B−β
p,p) in probability,

by (3.3) of Proposition 3.1 andLemma3.4,we consider the solutionϒN = SN (0,X N )

of the deterministic initial value problem

⎧⎨
⎩
∂tϒ

N
t = 1

2
(�− 1)ϒN

t − α

2
PN

(
eαPNϒ

N
t X N

t

)
,

ϒN
0 = 0

for any nonnegative functions {X N }N∈N ⊂ C([0, T ]×�). Then, the proof completes,
once we show that; if

X N → X in L p([0, T ]; B−β
p,p),

then

SN (0,X N ) → S(0,X ) in C([0, T ]; Bδ
p,p).
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This is obtained by a similar way to Lemma 4.10. Indeed, the a priori estimate (4.7)
holds forϒN uniformly over N , since {PN } are nonnegative and uniformly bounded as
operators on B−β

p,p, in view of Hypothesis 2. If {ϒNk }k∈N is a convergent subsequence,
then the limit ϒ solves (4.5) as a consequence of the continuity of PN as N → ∞,
which is assumed by Hypothesis 2. ��

6 Relation with Dirichlet form theory

In this section, we prove Theorem 1.7. Although the proof goes in a very similar way
to one in [33], we provide a sketch of the proof for readers’ convenience.

We fix the parameter s ∈ (0, 1) appearing in Corollary 2.4 and set D =
Span{ek; k ∈ Z

2}, H = L2 and E = H−s . In what follows, 〈·, ·〉 stands for the
pairing of E and its dual space E∗ = Hs . By Corollary 2.4, the map φ �→ exp�(αφ)
can be regarded as a B(E)/B(E)-measurable map. Let (E,FC∞

b ) be the pre-Dirichlet
form defined by (1.9), that is,

E(F,G) = 1

2

∫

E

(
DH F(φ), DHG(φ)

)
Hμ

(α)(dφ), F,G ∈ FC∞
b .

Then we obtain the following:

Proposition 6.1 It holds that

E(F,G) = −
∫

E
LF(φ)G(φ)μ(α)(dφ), F,G ∈ FC∞

b , (6.1)

where LF ∈ L2(μ(α)) is given by

LF(φ) = 1

2

n∑
i, j=1

∂i∂ j f (〈φ, l1〉, . . . , 〈φ, ln〉)〈li , l j 〉

− 1

2

n∑
j=1

∂ j f (〈φ, l1〉, . . . , 〈φ, ln〉) ·
{〈
(1−�)φ, l j

〉+ α
〈
exp�(αφ), l j

〉}

for F(φ) = f (〈φ, l1〉, . . . , 〈φ, ln〉) with f ∈ C∞
b (Rn), l1, . . . ln ∈ D.

Proof Let ψ = 1[−1,1]2 , which satisfies Hypothesis 1. Applying the Gaussian integra-
tion by parts formula with respect to μ0 (see [27, page 207]), we have

∫

E

(
DH F(φ), h

)
H exp

(
−

∫

�

exp�N (αφ)(x) dx
)
μ0(dφ)

=
∫

E
F(φ)

(
〈φ, (1−�)h〉 − α〈exp�N (αφ), PNh〉

)
exp

(
−

∫

�

exp�N (αφ)(x) dx
)
μ0(dφ)

for all F ∈ FC∞
b , h ∈ D and N ∈ N.
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Now we recall Theorem 2.1, Corollary 2.4 and limN→∞ Z (α)
N = Z (α) > 0. Taking

the limit N → ∞ on both sides of the above equality, we obtain

∫

E

(
DH F(φ), h

)
Hμ

(α)(dφ) =
∫

E
F(φ)

(
〈φ, (1−�)h〉 − α〈exp�(αφ), h〉

)
μ(α)(dφ)

and this leads us to the desired integration by parts formula (6.1). Besides, applying
Corollary 2.4 again, we obtain LF ∈ L2(μ(α)). This completes the proof. ��

Proposition 6.1 implies that (E,FC∞
b ) is closable on L2(μ(α)). We denote the

closure by (E,D(E)). As mentioned in Sect. 1.2, (E,D(E)) is a quasi-regular Dirich-
let form on L2(μ(α)), and thus we obtain an E-valued diffusion process M =
(�,G, (Gt )t≥0, (�t )t≥0, (Qφ)φ∈E ) properly associated with (E,D(E)). By recalling
Corollary 2.4 and applying [9, Lemma 4.2], we have

E
Qφ

[ ∫ T

0

∥∥ exp�(α�t )
∥∥
E dt

]
< ∞, T > 0, μ(α)-a.e. φ.

In particular,

Qφ

( ∫ T

0

∥∥ exp�(α�t )
∥∥
E dt < ∞

)
= 1, T > 0, μ(α)-a.e. φ.

Thus we are able to apply [9, Lemma 6.1 and Theorem 6.2] and [44, Theorem 13] as
in [33]. As a result, there exists an H -cylindrical (Gt )-BrownianmotionW = (Wt )t≥0
defined on (�,G,Qφ) such that

�t = et(�−1)/2φ − α

2

∫ t

0
e(t−s)(�−1)/2 exp�(α�s) ds

+
∫ t

0
e(t−s)(�−1)/2 dWs, t ≥ 0, Qφ-a.s., μ

(α)-a.e. φ.

Now we are going to prove Theorem 1.7. Precisely, we prove that the process �
coincides with the strong solution � driven by the cylindrical Brownian motion W .
We decompose � = X(φ)+Y, where

X(φ)t := et(�−1)/2φ +
∫ t

0
e(t−s)(�−1)/2 dWs,

Yt := −α

2

∫ t

0
e(t−s)(�−1)/2 exp�(α�s) ds, t ≥ 0. (6.2)

From the Da Prato–Debussche trick as used in Sect. 4, it is sufficient to show that

Qφ

(
Y = S(0, exp�(αX(φ)))

)
= 1, μ(α)- a.e. φ.

We prepare the following lemma.
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Lemma 6.2 Assume that the mollifier ψ satisfies Hypothesis 1. Let E0 be the set of all
φ ∈ E such that the convergence

exp�(αφ) = lim
N→∞ exp�N (αφ)

holds in B−β
p,p. Then, for any f ∈ H1+ε and φ ∈ E0 such that f + φ ∈ E0, one has

exp�(α( f + φ)) = exp(α f ) exp�(αφ).

Proof Let f ∈ H1+ε and φ ∈ E0. PN f converges to f in H1+ε by Hypothesis
1. Since H1+ε ⊂ C(�), exp(αPN f ) converges to exp(α f ) in C(�). Therefore, by
Theorem 4.2,

exp�N (α( f + φ)) = exp(αPN f ) exp�N (αφ)
N→∞−−−−→ exp(α f ) exp�(αφ)

in B−β
p,p. If f + φ ∈ E0, exp�N (α( f + φ)) converges to exp�(α( f + φ)). From these

convergences the assertion follows. ��
Proof of Theorem 1.7 It is sufficient to check thatY belongs to the spaceYT and solves
the mild equation (4.5). By the invariance of μ(α) under � and Corollary 2.4,

∫

E
E
Qφ

[∥∥ exp�(α�)
∥∥2
L2([0,T ];H−s )

]
μ(α)(dφ) =

∫ T

0
dt

∫

E

∥∥ exp�(αφ)∥∥2H−sμ
(α)(dφ) < ∞.

In particular,

Qφ

(
exp�(α�) ∈ L2([0, T ]; H−s)

)
= 1, μ(α)-a.e.φ.

By the Schauder estimate (Proposition 4.7),

Qφ

(
Y ∈ L2([0, T ]; H1+κ) ∩ C([0, T ]; Hκ)

)
= 1, μ(α)-a.e. φ (6.3)

for small κ > 0. Since αY is nonpositive, we have

Qφ

(
Y ∈ YT

) = 1, μ(α)-a.e. φ.

Finally we show that Y solves the mild equation (4.5) with (υ,X ) = (0,X). By
the definition (6.2) of Y, it is sufficient to show that

Qφ

(
exp�(α�t ) = eαYt · exp�(αXt ), a.e. t

)
= 1, μ0-a.e. φ. (6.4)

Recall the definition of the subset E0 in Lemma 6.2. Thenμ0(E0) = 1, soμ(α)(E0) =
1 by the absolute continuity (see Corollary 2.3). By using the invariance of μ(α) under
�,
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∫

E
E
Qφ

[∫ T

0
1Ec

0
(�t ) dt

]
μ(α)(dφ) =

∫ T

0
dt

∫

E
1Ec

0
(φ)μ(α)(dφ)

= Tμ(α)(Ec
0) = 0.

Similarly, by the invariance of μ0 under X,

∫

E
E
Qφ

[∫ T

0
1Ec

0
(Xt ) dt

]
μ0(dφ) =

∫ T

0
dt

∫

E
1Ec

0
(φ)μ0(dφ)

= Tμ0(E
c
0) = 0.

From these equalities and (6.3), we have

Qφ

(
�t ∈ E0, Xt ∈ E0, Yt ∈ H1+κ , a.e. t

)
= 1

for μ0-almost every φ. Therefore, Lemma 6.2 implies (6.4). ��
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A Green functions and their approximation

In this appendix, we provide some properties of Green functions and their approxi-
mation on the whole space and the torus. In the end, we prove a proposition, which
yields Proposition 2.5.

A.1 Green function on the whole plane

Recall that ψ is a function satisfying Hypothesis 1, ψN = ψ(2−N ·), and

GM,N (x, y) = 1

2π

∑

k∈Z2

ψM (k)ψN (k)

1+ |k|2 ek(x − y), M, N ∈ N.
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We regard GM,N as a periodic function on R
2 × R

2, rather than a function on � ×
�. Then by the Poisson summation formula, we can write it as an infinite sum of
decreasing functions

GM,N (x, y) =
∑

k∈Z2

KM,N (x − y + 2πk), KM,N := 1

2π
F−1

(
ψMψN

1+ | · |2
)
.

Hence we need to observe the behavior of KM,N for our purpose. Setting ρM,N =
1
2πF−1 (ψMψN ), we can write KM,N as a convolution

KM,N (x) = (1−�R2)−1ρM,N (x) =
∫

R2
K (x − y)ρM,N (y) dy,

where �R2 is the Laplacian on R
2, and K is the Green function of 1−�R2 .

Proposition A.1 The function K : R2 \ {0} → R is positive and has the estimates

K (x)

⎧⎨
⎩

= − 1

2π
log |x | + O(1), |x | < 1,

� e−|x |/2, |x | ≥ 1.
(A.1)

Proof By the relation between the heat semigroup and the resolvent kernel, we have

K (x) = 1

4π

∫ ∞

0
exp

(
−t − |x |2

4t

)
dt

t

for x  = 0. Since the integral over (0, |x |/2) and (|x |/2,∞) are equal in view of the
change of variables by s = |x |2/4t , we have

K (x) = 1

2π

∫ ∞

|x |/2
exp

(
−t − |x |2

4t

)
dt

t
= 1

2π

∫ ∞

1
exp

(
−|x |

2

(
t + 1

t

))
dt

t
.

Hence we observe the behavior of the function

g(r) =
∫ ∞

1
exp

(
− r

2

(
s + 1

s

))
ds

s
, r ∈ (0,∞).

Since the integrand is bounded by e−rs/2 on s ≥ 1, we have g(r) � e−r/2 for r ≥ 1,
so the latter part of (A.1) follows. To consider the estimate on r < 1, we decompose

g(r) =
∫ 1/r

1

ds

s
+

∫ 1/r

1

{
exp

(
− r

2

(
s + 1

s

))
− 1

}
ds

s
+

∫ ∞

1/r
exp

(
− r

2

(
s + 1

s

))
ds

s
.

The first term is equal to − log r . The other terms are O(1), since

∫ 1/r

1

∣∣∣∣exp
(
− r

2

(
s + 1

s

))
− 1

∣∣∣∣
ds

s
≤

∫ 1/r

1

r

2

(
s + 1

s

)
ds

s
≤ 1

2
,
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and
∫ ∞

1/r
exp

(
− r

2

(
s + 1

s

))
ds

s
≤

∫ ∞

1/r
r exp

(
− r

2
s
)
ds ≤ 2e−1/2.

Thus we have the former part of (A.1). ��
Next we consider the convolution of K and a function with sufficient decay.

Lemma A.2 [46, Lemma 4.1] For any function ρ on R2 such that

|ρ(x)| ≤ C(1+ |x |)−2−γ

for some C > 0 and γ > 0, one has

sup
|x |>1

∣∣∣∣
∫

R2
|ρ(y)| log |x |

|x − y| dy
∣∣∣∣ < ∞.

Lemma A.3 Let ρ be a function on R
2 such that

∫
R2 ρ(x) dx = 1 and

|ρ(x)| ≤ C(1+ |x |)−4−2γ (A.2)

for some C > 0 and γ > 0. Set ρN = 22Nρ(2N ·) for N ∈ N. Then for any |x | < 1
and N ∈ N,

K ∗ ρN (x) = − 1

2π
log

(
|x | ∨ 2−N

)
+ O(1). (A.3)

Moreover, for any x ∈ R
2 and N ∈ N,

|K ∗ ρN (x)| � |x |−2−γ . (A.4)

Proof First we prove (A.3). By Proposition A.1, we can decompose

K (x) = − 1

2π
log(|x | ∧ 1)+ R(x),

where R is a bounded function with rapid decay as |x | → ∞. Since R∗ρN is bounded,
it is sufficient to show that

(ρN ∗ log(| · | ∧ 1)) (x) = log
(
|x | ∨ 2−N

)
+ O(1).

We decompose

(ρN ∗ log(| · | ∧ 1)) (x) =
∫

R2
ρN (y) log |x − y| dy −

∫

|x−y|>1
ρN (y) log |x − y| dy.

(A.5)
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Since |x | < 1, the second term of the right-hand side is bounded. Indeed, since
1 < |x − y| ≤ 1+ |y|,

∫

|x−y|>1
ρN (y) log |x − y| dy ≤

∫

R2
|ρN (y)| log(1+ |y|) dy

=
∫

R2
|ρ(z)| log(1+ 2−N |z|) dz

≤
∫

R2
|ρ(z)| log(1+ |z|) dz < ∞.

Consider the first term of the right-hand side of (A.5). When |x | > 2−N , by Lemma
A.2,

∫

R2
ρN (y) log |x − y| dy = log 2−N +

∫

R2
ρ(y) log |2N x − y| dy

= log 2−N + log |2N x | + O(1) = log |x | + O(1).

When |x | ≤ 2−N , by the calculation

∣∣∣∣
∫

R2
ρ(y) log |2N x − y| dy

∣∣∣∣

≤
∣∣∣∣
∫

|2N x−y|<1
ρ(y) log |2N x − y| dy

∣∣∣∣ +
∣∣∣∣
∫

|2N x−y|≥1
ρ(y) log |2N x − y| dy

∣∣∣∣

≤
(∫

R2
ρ2(y) dy

)1/2 (∫

|y|<1
(log |y|)2 dy

)1/2

+
∫

R2
ρ(y) log(1+ |y|) dy < ∞,

we have
∫

R2
ρN (y) log |x − y| dy = log 2−N + O(1).

Thus, we have (A.3).
Next we prove (A.4). By Proposition A.1, K ∈ L p(R2) for any p ∈ [1,∞) and

sup
x∈R2

|x |2+γ K (x) < ∞.

Hence we have

|x |2+γ |K ∗ ρN (x)|
�

∫

R2
|y|2+γ K (y)|ρN (x − y)| dy +

∫

R2
|x − y|2+γ K (y)|ρN (x − y)| dy

=
∫

R2
|y|2+γ K (y)|ρN (x − y)| dy +

∫

R2
K (x − y)|y|2+γ |ρN (y)| dy

123



exp(�)2-model in L1-regime 441

�
∫

R2
|ρN (y)| dy +

(∫

R2

(
|y|2+γ |ρN (y)|

)q
dy

)1/q

for any q ∈ (1,∞). By the condition (A.2),

∫

R2

(
|y|2+γ |ρN (y)|

)q
dy = 2−N (2+γ q)

∫

R2

(
|y|2+γ |ρ(y)|

)q
dy

�
∫

R2
(1+ |y|)−(2+γ )q dy < ∞.

Thus we have (A.4). ��

A.2 Green function on the torus

We return to the proof of Proposition 2.5.

Lemma A.4 Let ψ be a function satisfying Hypothesis 1. Then there exists a smooth
function ψ̄ with the following properties:

• ψ̄ satisfies Hypothesis 1.
• 0 ≤ ψ ≤ ψ̄ on R

2.
• For any k ∈ N

2 there exists a constant Ck such that

|∂kψ̄(x)| ≤ Ck(1+ |x |)−2−κ−|k|1 (A.6)

for any x ∈ R
2, where κ is a constant as in Hypothesis 1(ii) and |k|1 := |k1|+ |k2|

for each k = (k1, k2) ∈ N
2.

Proof By Hypothesis 1(ii),

|ψ(x)| ≤ C(1+ |x |)−2−κ

for some constants C, κ > 0. Then, there exists a radial smooth function ψ̄ such that
0 ≤ ψ ≤ ψ̄ on R2, ψ̄(x) = 1 on x ∈ B(0, r) for some r > 0, and

ψ̄(x) = C(1+ |x |)−2−κ

on x ∈ B(0, R)c for some R > r . Obviously, ψ̄ satisfies all the required properties. ��
Nowweprove the following proposition,which yields Proposition 2.5. The estimate

(A.8) in the following proposition is better than (2.6), because (A.8) is L p-estimate
for all p ∈ [1,∞).

Proposition A.5 Assume that ψ satisfies Hypothesis 1. Then for any x, y ∈ R
2 with

|x − y| < 1 and any M, N ∈ N,

GM,N (x, y) = − 1

2π
log

(
|x − y| ∨ 2−M ∨ 2−N

)
+ RM,N (x, y), (A.7)
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where the remainder term RM,N (x, y) is uniformly bounded over x, y,M, andN.
Moreover, for any p ∈ [1,∞), there exist constants C > 0 and θ > 0 such that, for
any M, N ∈ N,

∫∫

�×�
|GM,N+1(x, y)− GM,N (x, y)|p dxdy ≤ C2−θN . (A.8)

Proof First, we prove (A.7). Let M ≤ N without loss of generality. First we assume
thatψ satisfies (A.6) in addition toHypothesis 1. By (A.6), the functionρ0 = 1

2πF−1ψ

satisfies that for all n ∈ N

(1+ |x |2)n|ρ0(x)| = 1

2π

∣∣∣F−1 {
(1−�)nψ}

(x)
∣∣∣

≤ 1

2π

∫

R2

∣∣(1−�)nψ(ξ)∣∣ dξ < ∞.

Recall thatρM,N = 1
2πF−1(ψMψN ). LetρN = 1

2πF−1ψN . SinceρN = 22Nρ0(2N ·),
we have

ρM,N = ρM ∗ ρN = 22M (ρ0 ∗ ρN−M )(2
M ·).

Let ρ̃M,N = ρ0 ∗ ρN−M . Then from the above estimate of ρ0, we have the uniform
estimates

|ρ̃M,N (x)| � (1+ |x |)−6.

Indeed, for |x | < 1, since ρ̃M,N is uniformly bounded, this estimate is obvious. For
|x | ≥ 1,

|x |6|ρ̃M,N (x)|
�

∫

R2
|y|6|ρ0(y)||ρN−M (x − y)| dy +

∫

R2
|x − y|6|ρ0(y)||ρN−M (x − y)| dy

�
∫

R2
|ρN−M (y)| dy +

∫

R2
|y|6|ρN−M (y)| dy

�
∫

R2

(
|ρ0(y)| + |y|6|ρ0(y)|

)
dy < ∞.

Since
∫
R2 ρ̃M,N (x) dx = 1, ρ̃M,N satisfies the conditions of Lemma A.3 with γ = 1.

Therefore, the estimates (A.3) and (A.4) yield

GM,N (x, y) =
∑

k∈Z2

(K ∗ ρM,N )(x − y + 2πk) = − 1

2π
log

(
|x − y| ∨ 2−M

)
+ O(1)

for |x − y| < 1.
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Next letψ be an arbitrary function satisfyingHypothesis 1. Let ψ̄ be a smooth func-
tion in LemmaA.4, and define the function ḠM,N similarly toGM,N with replacement
ψ by ψ̄ . As shown above, ḠM,N satisfies the estimate

ḠM,N (x, y) = − 1

2π
log

(
|x − y| ∨ 2−M

)
+ O(1).

Since 0 ≤ ψ ≤ ψ̄ ,

|GM,N (x, y)− ḠM,N (x, y)| ≤ 1

4π2

∑

k∈Z2; |k|≤2M

ψ̄M (k)ψ̄N (k)− ψM (k)ψN (k)

1+ |k|2

+ 1

4π2

∑

k∈Z2; |k|>2M

ψ̄M (k)ψ̄N (k)− ψM (k)ψN (k)

1+ |k|2 .

(A.9)

Hypothesis 1(iii) and the property of ψ̄ imply that for sufficiently small ζ > 0,

|ψ(x)− 1| + |ψ̄(x)− 1| ≤ C |x |ζ , x ∈ R
2,

with a positive constant C . Hence, by the boundedness of ψ and ψ̄ ,

∑

k∈Z2; |k|≤2M

ψ̄M (k)ψ̄N (k)− ψM (k)ψN (k)

1+ |k|2

�
∑

k∈Z2; |k|≤2M

|ψ̄(2−Mk)ψ̄(2−Nk)− 1| + |ψ(2−Mk)ψ(2−Nk)− 1|
1+ |k|2

�
∑

k∈Z2; |k|≤2M

2−Mζ |k|ζ
1+ |k|2

� 1.

Besides, since 0 ≤ ψ ≤ ψ̄ and ψ̄(x) � (1+ |x |)−2−κ ,
∑

k∈Z2; |k|>2M

ψ̄M (k)ψ̄N (k)− ψM (k)ψN (k)

1+ |k|2 ≤
∑

k∈Z2; |k|>2M

ψ̄M (k)

1+ |k|2

�
∑

k∈Z2; |k|>2M

1

(1+ |k|2)(1+ |2−Mk|)2+κ

�
∑

k∈Z2; |k|>2M

2(2+κ)M

(1+ |k|)4+κ

� 2(2+κ)M
∫

|x |>2M

1

|x |4+κ dx

� 1.
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These inequalities and (A.9) yield the estimate (A.7) for GM,N .
Finally,we prove (A.8). Let p ∈ [1,∞). In viewof the shift invariance ofGM,N (·, ·)

and the compactness of �, it is sufficient to show

∫

�

∣∣GM,N+1(x, 0)− GM,N (x, 0)
∣∣p dx � 2−θN (A.10)

for some θ > 0. Hypothesis 1(iii) implies that for sufficiently small ζ > 0,

|ψ(x)− 1| ≤ C |x |ζ , x ∈ R
2,

with another positive constant C . Then, by Plancherel’s formula we have

∥∥GM,N+1(·, 0)− GM,N (·, 0)
∥∥2
H1−ζ �

∑

k∈Z2

|ψN+1(k)− ψN (k)|2
(1+ |k|2)2(1−ζ )

�
∑

k∈Z2

|ψ(2−N−1k)− 1|2 + |ψ(2−Nk)− 1|2
(1+ |k|2)2(1−ζ )

� 2−2Nζ
∑

k∈Z2

|k|2ζ
(1+ |k|2)2(1−ζ )

� 2−2Nζ
∑

k∈Z2

1

(1+ |k|2)2−3ζ

� 2−2Nζ

for sufficiently small ζ . Since the Sobolev embedding theorem implies H1−ζ ⊂ L p

for ζ ≤ 2/p, by talking ζ sufficiently small we have the estimate (A.10). ��

A.3 Approximations by averaging

We introduce a class of approximations of the Gaussian free field, which contains the
circle average (see e.g. [12, 13, 22]), and show that the associated kernels also satisfy
(2.5) and (2.6) in Proposition 2.5. This implies that our construction ofWick exponen-
tials of the Gaussian free field in Sect. 2 includes the circle averaging approximation.

Let X be the Gaussian free field on � = T
2 as defined in Sect. 2.1, and extend X

on R
2 periodically. Let ν be a probability measure on R

2 supported in the unit ball
B(0, 1) such that

sup
|x |≤2

∫

R2
| log(x − y)|ν(dy) < ∞. (A.11)
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For N ∈ N denote by νN the measure given by νN (A) = ν(2N A) for a Borel set A.
Define the approximation XN of X by

XN (x) := X ∗ νN (x) :=
∫

R2
X(x − y)νN (dy).

Then the random field XN has the covariance function

GM,N (x, y) := E[XM (x)XN (y)] = 1

2π

∑

k∈Z2

(FνM )(k)(FνN )(k)

1+ |k|2 ek(x − y)

for M, N ∈ N, where

(Fμ)(ξ) := 1

2π

∫

R2
e−

√−1ξ ·xμ(dx), ξ ∈ R
2

for a probability measure μ.

Proposition A.6 The sequence GM,N (x, y) defined as above satisfies (2.5) and (2.6)
in Proposition 2.5.

Proof The estimate (2.5) is obtained in [12, Lemma 3.5]. We show the estimate (2.6).
It is easy to see

(FνN )(k) = (Fν)(2−Nk), k ∈ Z
2,

|(Fν)(ξ)| ≤ 1

2π

∫

R2
ν(dy), ξ ∈ R

2,

|(Fν)(ξ1)− (Fν)(ξ2)| ≤ 1

2π

∫
|e−

√−1ξ1·y − e−
√−1ξ2·y |ν(dy)

� |ξ1 − ξ2|
∫

|y|≤1
|y|ν(dy), ξ1, ξ2 ∈ R

2.

From these inequalities it follows that Fν is bounded and ζ -Hölder continuous for
any ζ ∈ (0, 1]. Hence, the estimate (2.6) is obtained in the same way as the proof of
(A.8) in Proposition A.5. ��
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