Skip to main content
Log in

Quenched and averaged tails of the heat kernel of the two-dimensional uniform spanning tree

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

This paper is dedicated to the memory of Harry Kesten, a pioneer in the study of anomalous random walks in random media

Abstract

This article investigates the heat kernel of the two-dimensional uniform spanning tree. We improve previous work by demonstrating the occurrence of log-logarithmic fluctuations around the leading order polynomial behaviour for the on-diagonal part of the quenched heat kernel. In addition we give two-sided estimates for the averaged heat kernel, and we show that the exponents that appear in the off-diagonal parts of the quenched and averaged versions of the heat kernel differ. Finally, we derive various scaling limits for the heat kernel, the implications of which include enabling us to sharpen the known asymptotics regarding the on-diagonal part of the averaged heat kernel and the expected distance travelled by the associated simple random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Athreya, S., Löhr, W., Winter, A.: The gap between Gromov-vague and Gromov–Hausdorff-vague topology. Stoch. Process. Appl. 126(9), 2527–2553 (2016)

    Article  MathSciNet  Google Scholar 

  2. Athreya, S., Löhr, W., Winter, A.: Invariance principle for variable speed random walks on trees. Ann. Probab. 45(2), 625–667 (2017)

    Article  MathSciNet  Google Scholar 

  3. Barlow, M.T.: Random Walks and Heat Kernels on Graphs, London Mathematical Society Lecture Note Series, vol. 438. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Barlow, M.T., Croydon, D.A., Kumagai, T.: Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree. Ann. Probab. 45(1), 4–55 (2017)

    Article  MathSciNet  Google Scholar 

  5. Barlow, M.T., Járai, A.A.: Geometry of uniform spanning forest components in high dimensions. Canad. J. Math. 1–25 (2019)

  6. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278(2), 385–431 (2008)

    Article  MathSciNet  Google Scholar 

  7. Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50(1–4), 33–65 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Barlow, M.T., Masson, R.: Exponential tail bounds for loop-erased random walk in two dimensions. Ann. Probab. 38(6), 2379–2417 (2010)

    Article  MathSciNet  Google Scholar 

  9. Barlow, M.T., Masson, R.: Spectral dimension and random walks on the two dimensional uniform spanning tree. Commun. Math. Phys. 305(1), 23–57 (2011)

    Article  MathSciNet  Google Scholar 

  10. Barlow, M.T., Murugan, M.: Stability of the elliptic harnack inequality. Ann. Math. 187, 1–47 (2018)

    Article  MathSciNet  Google Scholar 

  11. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001)

    Article  MathSciNet  Google Scholar 

  12. Burdzy, K., Chen, Z.-Q.: Weak convergence of reflecting Brownian motions. Electron. Commun. Probab. 3, 29–33 (1998)

    Article  MathSciNet  Google Scholar 

  13. Croydon, D.A.: Scaling limits of stochastic processes associated with resistance forms. Ann. Inst. Henri Poincaré Probab. Stat. 54(4), 1939–1968 (2018)

    Article  MathSciNet  Google Scholar 

  14. Croydon, D.A., Hambly, B.M.: Local limit theorems for sequences of simple random walks on graphs. Potential Anal. 29(4), 351–389 (2008)

    Article  MathSciNet  Google Scholar 

  15. Croydon, D.A., Kumagai, T.: Random walks on Galton–Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. 13(51), 1419–1441 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Relat. Fields 131(4), 553–603 (2005)

    Article  Google Scholar 

  17. Holden, N., Sun, X.: SLE as a mating of trees in Euclidean geometry. Commun. Math. Phys. 364(1), 171–201 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185(2), 239–286 (2000)

    Article  MathSciNet  Google Scholar 

  19. Kigami, J.: Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Am. Math. Soc. 216(1015), vi+132 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Kumagai, T.: Random walks on disordered media and their scaling limits, Lecture Notes in Mathematics, vol. 2101. Springer, Cham (2014)

  21. Kumagai, T., Misumi, J.: Heat kernel estimates for strongly recurrent random walk on random media. J. Theor. Probab. 21(4), 910–935 (2008)

    Article  MathSciNet  Google Scholar 

  22. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47(3), 655–693 (1980)

    Article  MathSciNet  Google Scholar 

  23. Lawler, G.F.: Intersections of random walks. Probability and its Applications. Birkhäuser Boston Inc, Boston, MA (1991)

  24. Lawler, G.F.: Loop-erased random walk, perplexing problems in probability. Prog. Probab. 44, 197–217 (1999)

    MATH  Google Scholar 

  25. Lawler, G.F.: The probability that planar loop-erased random walk uses a given edge. Electron. Commun. Probab. 19(51), 13 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Lawler, G.F., Limic, V.: The Beurling estimate for a class of random walks. Electron. J. Probab. 9(27), 846–861 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Lawler, G.F., Limic, V.: Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

  28. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MathSciNet  Google Scholar 

  29. Lawler, G.F., Viklund, F.: Convergence of loop-erased random walk in the natural parametrization. Duke Math. J. Advance Publication 1–82 (2021)

  30. Le Gall, J.-F.: Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15(1), 35–62 (2006)

    Article  MathSciNet  Google Scholar 

  31. Lyons, R., Peres, Y.: Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

  32. Masson, R.: The growth exponent for planar loop-erased random walk. Electron. J. Probab. 14(36), 1012–1073 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)

    Article  MathSciNet  Google Scholar 

  34. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MathSciNet  Google Scholar 

  35. Wilson, D.B.: Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 296–303. ACM, New York (1996)

Download references

Acknowledgements

We thank Zhen-Qing Chen for asking us whether the elliptic Harnack inequalities hold for large scale in this model, which motivated us to work on Sect. 7, and for the analogy with reflecting Brownian motion in a planar domain with a slit removed given in Remark 8.3. This research was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Croydon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

M. T. Barlow: Research partially supported by NSERC (Canada). D. A. Croydon: Research partially supported by JSPS KAKENHI Grant Numbers 18H05832, 19K03540. T. Kumagai: Research partially supported by JSPS KAKENHI Grant Number JP17H01093 and by the Alexander von Humboldt Foundation.

Appendix: Short LERW paths

Appendix: Short LERW paths

In this section we improve the estimates in [8] to prove Theorem 2.7. We begin by considering the following situation, which is described in terms of parameters \(m,n,N\in {\mathbb {N}}\) satisfying \(4\le n \le m \le m+2n \le N\), cf. [8, Definition 1.4]. Let \(B_m = {B_\infty }(0,m)\), \(B_N={B_\infty }(0,N)\), and \(x \in \partial _R B_m\), where for a square B we write \(\partial _R B\) for the right-hand side of the interior boundary of B. Moreover, let \(x_1= x + (\frac{n}{2},0)\), and define \(A_n(x) = {B_\infty }(x,n/4)\). Finally, we also suppose we are given a subset \(K \subseteq B_m\) that contains a path in \(B_m\) from 0 to x. Importantly, we note that the latter assumption was not made in [8]; it is the key to removing the terms in \(\log (N/n)\) in [8, Lemmas 4.6 and 6.1, and Propositions 6.2 and 6.3]. We also remark that in [8] the balls \(B_n\) and \(B_N\) were in the \(\ell _2\) norm on \({{\mathbb {Z}}}^2\) rather than the \(\ell _\infty \) norm, but this makes no essential difference to the arguments.

The first result of the section concerns the Green’s function G of a simple random walk S on \({\mathbb {Z}}^2\). Given a subset \(A\subsetneq {\mathbb {Z}}^2\), we write \(G_A(y,z)\) for the expected number of visits that S makes to z when it starts at y up until it exits A. In the proof, we write \({{\mathbf {P}}}_x\) for the law of the random walk started from x, and \({{\mathbf {E}}}_x\) for the corresponding expectation.

Lemma A.1

There exist constants \(c_i\) such that, for \(y,z \in A_n(x)\),

$$\begin{aligned} c_1 \log \left( \frac{n}{1\vee |y-z|}\right) \le G_{B_N \backslash K }(y,z) \le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) . \end{aligned}$$
(A.1)

Proof

Set \(A_1= B_{5n/16}(x_1)\) and \(A_2= B_{3n/8}(x_1)\). We note that

$$\begin{aligned} c_1 \log \left( \frac{n}{1\vee |y-z|}\right) \le G_{A_1}(y,z) \le G_{A_2}(y,z)\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) . \end{aligned}$$

(Cf. The applications of results from [27, Chapter 6] that appear as [8, Proposition 2.4].) Hence, since \(G_{B_N\backslash K }(y,z) \ge G_{A_1}(y,z)\), the lower bound is immediate. For the upper bound, writing \(T_A\) and \(\tau _A\) for the hitting and exit time of a subset \(A\subseteq {\mathbb {Z}}^2\) by the simple random walk S, respectively, we have

$$\begin{aligned} G_{B_N \backslash K }(y,z)&= G_{A_2}(y,z) + {{\mathbf {E}}}_y\left( G_{B_N \backslash K }( S_{\tau _{A_2}},z)\right) \\&\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) + \max _{w \in \partial A_2} {{\mathbf {P}}}_w( T_{A_1} < T_K) \max _{w' \in \partial A_1} G_{B_N \backslash K }(w',z). \end{aligned}$$

By the discrete Harnack inequality (see [27, Theorem 6.3.9], for example) and the fact that K contains a path from x to 0, we have that \({{\mathbf {P}}}_w( T_{A_1} < T_K) \le 1-c_3\) for all \(w \in \partial A_2\). Further, for \(w' \in \partial A_1\) we have

$$ {{\mathbf {P}}}_{w'}( T_z < \tau _{A_2}) \le 1\wedge \frac{c_4}{\log n} . $$

(Again, cf. [8, Proposition 2.4].) Combining these estimates gives \(G_{B_N \backslash K }(z,z) \le c_2 \log (n) +(1-c_3)G_{B_N \backslash K }(z,z)\), and thus \(G_{B_N \backslash K }(z,z)\le \frac{c_2}{c_3}\log (n)\). Hence

$$\begin{aligned} G_{B_N \backslash K }(y,z)&\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) +c_5, \end{aligned}$$

which yields the bound (A.1). \(\square \)

Next, let \({\tilde{S}}\) be a random walk started at x and conditioned to leave \(B_N\) before its first return to K. We write \({\tilde{G}}(\cdot , \cdot )\) for the Green’s function of \({\tilde{S}}\).

Lemma A.2

(Cf. [8, Lemma 4.6]). There exist constants \(c_i\) such that, for \(z \in A_n(x)\) we have \(c_1 \le {\tilde{G}}(x,z) \le c_2\).

Proof

We follow the proof in [8]. Taking \(y=z\) in (A.1) we can improve the upper bound on \(G_{B_N \backslash K }(z,z)\) in [8, (4.10)] to \(c \log n\). Using Lemma A.1 again, we can improve the upper bound in the equation above [8, (4.11)], and hence improve the upper bound in [8, (4.11)] from \(c \log (N/n)/\log N\) to \(c /\log n\). With these new bounds the argument of [8, Lemma 4.6] gives that \({\tilde{G}}(x,z) \le c_2\). \(\square \)

The following two results refine some conditional hitting time estimates from [8].

Lemma A.3

(cf. [8, (6.1)]). There exists a constant \(c_1\) such that if \(D_1 = \partial _R {B_\infty }(x,n/16)\) and \(K'=K\backslash \{x\}\), then, for \(v \in D_1\),

$$\begin{aligned} {{\mathbf {P}}}_v \left( T_x< \tau _{{B_\infty }(x,n/8)} \,|\, T_x <T_{K'} \wedge \tau _{B_N} \right) \ge c_1>0. \end{aligned}$$

Proof

Write \(B'={B_{n/8}(x)}\). The second displayed equation on [8, p. 2409] gives

$$\begin{aligned}&{{\mathbf {P}}}_v \left( T_x< \tau _{B_{n/8}(x)} \,|\, T_x<T_{K'} \wedge \tau _{B_N} \right) \nonumber \\&\quad = \frac{ G_{B'\backslash K}(v,v) }{ G_{B_N\backslash K}(v,v) }\times \frac{ {{\mathbf {P}}}_x ( T_v< \tau _{B'} \wedge T^+_K ) }{ {{\mathbf {P}}}_x ( T_v < \tau _{B_N} \wedge T^+_K )}, \end{aligned}$$
(A.2)

where \(T^+_K= \min \{ j \ge 1: S_j \in K\}\). As in Lemma A.1 we have that \(G_{B_N\backslash K}(v,v) \le c \log n\), and so the ratio of Green’s functions in (A.2) is bounded below by a constant \(c>0\). Using the strong Markov property at \(\tau _{B'}\) we obtain

$$\begin{aligned} {{\mathbf {P}}}_x ( T_v< \tau _{B_N} \wedge T^+_K )&\le {{\mathbf {P}}}_x ( T_v< \tau _{B'} \wedge T^+_K ) \\&\quad + {{\mathbf {P}}}_x ( \tau _{B'} \le T^+_K ) \max _{y \in \partial B'} {{\mathbf {P}}}_y( T_v < \tau _{B_N} \wedge T^+_K ). \end{aligned}$$

The argument at the top of [8, p. 2410] gives that

$$ {{\mathbf {P}}}_x ( \tau _{B'} \le T^+_K ) \le c (\log n) \, {{\mathbf {P}}}_x ( T_v < \tau _{B'} \wedge T^+_K ) . $$

Moreover, for \(y \in \partial B'\),

$$ {{\mathbf {P}}}_y(T_v < \tau _{B_N} \wedge T^+_K ) \le \frac{ G_{{{\mathbb {Z}}}^2 \backslash K}(y,v) }{ G_{{{\mathbb {Z}}}^2\backslash K}(v,v) }, $$

and as in Lemma A.1 we have \(G_{{{\mathbb {Z}}}^2 \backslash K}(y,v) \le c\), \(G_{{{\mathbb {Z}}}^2 \backslash K}(v,v) \ge c \log n\). Combining these estimates concludes the proof. \(\square \)

Lemma A.4

(cf. [8, (6.2)]). There exists a constant \(c>0\) such that if \(w \in \partial _R {B_\infty }(x,n)\), then

$$\begin{aligned} {{\mathbf {P}}}_w \left( \tau _{B_N}< T_{{B_\infty }(x,7n/8)} \,|\, \tau _{B_N} < T_K \right) \ge c. \end{aligned}$$
(A.3)

Proof

As on [8, p. 2410], we let \(y_0\) be the point in \(B_n(x)\) that maximises \({{\mathbf {P}}}_y( \tau _{B_N} < T_K )\). Writing \(B_7= {B_\infty }(x,7n/8)\), \(T_7= T_{B_7}\), we have

$$\begin{aligned} {{\mathbf {P}}}_{y_0} ( \tau _{B_N}< T_K )&= {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + {{\mathbf {E}}}^{y_0} ( {\mathbf {1}}_{\{T_7< \tau _{B_N} \wedge T_K\} } {{\mathbf {P}}}_{S_{T_7}}( \tau _{B_N}< T_K ) ) \\&\le {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + \max _{v \in \partial B_7} {{\mathbf {P}}}_v( \tau _{B_N} < T_K). \end{aligned}$$

Since K contains a path from 0 to x, the discrete Harnack inequality (again, see [27, Theorem 6.3.9], for example) gives us that there exists a constant \(p_1>0\) such that

$$ {{\mathbf {P}}}_v( \tau _{{B_\infty }(x,n)} < T_K) \le 1-p_1,\qquad \text{ for } \text{ all } v \in \partial B_7.$$

Thus

$$ {{\mathbf {P}}}_{y_0} ( \tau _{B_N}< T_K ) \le {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + (1-p_1) {{\mathbf {P}}}_{y_0} ( \tau _{B_N} < T_K ), $$

which proves (A.3) in the case \(w=y_0\). We can now use a reflection argument as on [8, p. 2410-2411] to obtain the general case. \(\square \)

These estimates now lead to an improved lower bound on the length of a LERW. Recall the definition of the conditioned r.w. \({{\tilde{S}}}\), and set \(L_1 = {{\mathcal {L}}}( {{\mathcal {E}}}_{B_N}({\tilde{S}}))\), \(L_2 = {{\mathcal {E}}}_{B_n(x)}(L_1)\).

Lemma A.5

(cf. [8, Lemma 6.1]). There exists a constant \(c>0\) such that, for any \(z \in A_n(x)\),

$$\begin{aligned} {{\mathbf {P}}}( z \in L_2 ) \ge c n^{\kappa -2}. \end{aligned}$$

Proof

Using Lemmas A.4 and A.3 to replace [8, (6.1),(6.2)], this follows as in [8]. \(\square \)

Proposition A.6

(cf. [8, Proposition 6.2 and 6.3]). There exist constants \(c_1,c_2\) and \(p>0\) such that

$$\begin{aligned}&c_1 n^\kappa \le {{\mathbf {E}}}M \le c_2 n^\kappa , \nonumber \\&{{\mathbf {E}}}(M^2 ) \le c_2 n^{2\kappa }, \nonumber \\&{{\mathbf {P}}}( M \le c_3 n^\kappa ) \le 1-p. \end{aligned}$$
(A.4)

Proof

Given Lemmas A.5 and A.2 the bounds on \({{\mathbf {E}}}(M)\) and \({{\mathbf {E}}}(M^2)\) follow as in [8]. The final inequality is then immediate from a second moment bound. \(\square \)

Proof of Theorem 2.7

We follow the proof of [8, Proposition 6.6], first proving the result in the case when \(D= B_N(0)\), where \(N/2 \le nk \le 3N/4\) for some \(k \ge 4\). Set \(L = {{\mathcal {L}}}( {{\mathcal {E}}}_{B_N(0)}(S^0))\), and, for \(j=1, \dots k\), let \(\gamma _j = {{\mathcal {E}}}_{B_{j n}(0)}(L)\). Let \(x_j\) be the point where L first exits \(B_{j n}(0)\), and \(B_j = B_{n}(x_j)\). Let \(\alpha _j\) be the path L from \(x_{j-1}\) to its first exit from \(B_{j-1}\), and \(V_j\) be the number of hits by \(\alpha _j\) on the set \(B_{j-1}\). Let \({{\mathcal {F}}}_j\) be the \(\sigma \)-field generated by \(\gamma _j\). Using the domain Markov property for the LERW (see [23]) and then (A.4), we have

$$\begin{aligned} {{\mathbf {P}}}\left( V_j \le c_3 n^\kappa | {{\mathcal {F}}}_{j-1} \right) = {{\mathbf {P}}}\left( M^{\gamma _{j-1}}_{(j-1)n,n,N,x_{j-1}} \le c_3 n^\kappa \right) \le 1-p. \end{aligned}$$
(A.5)

Let \(\eta _j = {\mathbf {1}}_{\{V_j \le c_3 n^\kappa \}}\). By (A.5), \(\sum _{j=1}^k \eta _j\) stochastically dominates a binomial random variable with parameters k and p, and so there exists a constant \(c>0\) such that

$$ {{\mathbf {P}}}\left( \sum _{j=1}^k \eta _j < {\tfrac{1}{2}}p k \right) \le e^{-c k}. $$

Setting \(L' = {{\mathcal {E}}}_{B_{nk}(0)}(L)\), we have \( | L' | \ge c_3 n^\kappa \sum _{j=1}^k \eta _j\), and thus as \(N/2 \le nk \le 3N/4\) we obtain

$$\begin{aligned} {{\mathbf {P}}}\left( |L' | < c k^{-1/4} N^\kappa \right) \le e^{-c k}; \end{aligned}$$

taking \(k = c \lambda ^{1/(\kappa -1)} = c\lambda ^4\) this gives the result when \(D=B_N\). Note that the proof above actually gives the lower bound for the length of \(L'\) rather than L, so we can use Lemma 2.1 with \(D_1= B_N\), \(D_2=D\) to obtain a lower bound of the same form for \(|{{\mathcal {E}}}_{B_N(0)} ({{\mathcal {L}}}({{\mathcal {E}}}_{D}(S^0)))|\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlow, M.T., Croydon, D.A. & Kumagai, T. Quenched and averaged tails of the heat kernel of the two-dimensional uniform spanning tree. Probab. Theory Relat. Fields 181, 57–111 (2021). https://doi.org/10.1007/s00440-021-01078-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01078-w

Keywords

Mathematics Subject Classification

Navigation