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Abstract
This article investigates the heat kernel of the two-dimensional uniform spanning tree. We improve previous work by demonstrating the occurrence of log-logarithmic fluctuations around the leading order polynomial behaviour for the on-diagonal part of the quenched heat kernel. In addition we give two-sided estimates for the averaged heat kernel, and we show that the exponents that appear in the off-diagonal parts of the quenched and averaged versions of the heat kernel differ. Finally, we derive various scaling limits for the heat kernel, the implications of which include enabling us to sharpen the known asymptotics regarding the on-diagonal part of the averaged heat kernel and the expected distance travelled by the associated simple random walk.
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Appendix: Short LERW paths
Appendix: Short LERW paths
In this section we improve the estimates in [8] to prove Theorem 2.7. We begin by considering the following situation, which is described in terms of parameters \(m,n,N\in {\mathbb {N}}\) satisfying \(4\le n \le m \le m+2n \le N\), cf. [8, Definition 1.4]. Let \(B_m = {B_\infty }(0,m)\), \(B_N={B_\infty }(0,N)\), and \(x \in \partial _R B_m\), where for a square B we write \(\partial _R B\) for the right-hand side of the interior boundary of B. Moreover, let \(x_1= x + (\frac{n}{2},0)\), and define \(A_n(x) = {B_\infty }(x,n/4)\). Finally, we also suppose we are given a subset \(K \subseteq B_m\) that contains a path in \(B_m\) from 0 to x. Importantly, we note that the latter assumption was not made in [8]; it is the key to removing the terms in \(\log (N/n)\) in [8, Lemmas 4.6 and 6.1, and Propositions 6.2 and 6.3]. We also remark that in [8] the balls \(B_n\) and \(B_N\) were in the \(\ell _2\) norm on \({{\mathbb {Z}}}^2\) rather than the \(\ell _\infty \) norm, but this makes no essential difference to the arguments.
The first result of the section concerns the Green’s function G of a simple random walk S on \({\mathbb {Z}}^2\). Given a subset \(A\subsetneq {\mathbb {Z}}^2\), we write \(G_A(y,z)\) for the expected number of visits that S makes to z when it starts at y up until it exits A. In the proof, we write \({{\mathbf {P}}}_x\) for the law of the random walk started from x, and \({{\mathbf {E}}}_x\) for the corresponding expectation.

                  Lemma A.1

                  There exist constants \(c_i\) such that, for \(y,z \in A_n(x)\),
$$\begin{aligned} c_1 \log \left( \frac{n}{1\vee |y-z|}\right) \le G_{B_N \backslash K }(y,z) \le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) . \end{aligned}$$

                    (A.1)
                


                
                  Proof

                  Set \(A_1= B_{5n/16}(x_1)\) and \(A_2= B_{3n/8}(x_1)\). We note that
$$\begin{aligned} c_1 \log \left( \frac{n}{1\vee |y-z|}\right) \le G_{A_1}(y,z) \le G_{A_2}(y,z)\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) . \end{aligned}$$

(Cf. The applications of results from [27, Chapter 6] that appear as [8, Proposition 2.4].) Hence, since \(G_{B_N\backslash K }(y,z) \ge G_{A_1}(y,z)\), the lower bound is immediate. For the upper bound, writing \(T_A\) and \(\tau _A\) for the hitting and exit time of a subset \(A\subseteq {\mathbb {Z}}^2\) by the simple random walk S, respectively, we have
$$\begin{aligned} G_{B_N \backslash K }(y,z)&= G_{A_2}(y,z) + {{\mathbf {E}}}_y\left( G_{B_N \backslash K }( S_{\tau _{A_2}},z)\right) \\&\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) + \max _{w \in \partial A_2} {{\mathbf {P}}}_w( T_{A_1} < T_K) \max _{w' \in \partial A_1} G_{B_N \backslash K }(w',z). \end{aligned}$$

By the discrete Harnack inequality (see [27, Theorem 6.3.9], for example) and the fact that K contains a path from x to 0, we have that \({{\mathbf {P}}}_w( T_{A_1} < T_K) \le 1-c_3\) for all \(w \in \partial A_2\). Further, for \(w' \in \partial A_1\) we have
$$ {{\mathbf {P}}}_{w'}( T_z < \tau _{A_2}) \le 1\wedge \frac{c_4}{\log n} . $$

(Again, cf. [8, Proposition 2.4].) Combining these estimates gives \(G_{B_N \backslash K }(z,z) \le c_2 \log (n) +(1-c_3)G_{B_N \backslash K }(z,z)\), and thus \(G_{B_N \backslash K }(z,z)\le \frac{c_2}{c_3}\log (n)\). Hence
$$\begin{aligned} G_{B_N \backslash K }(y,z)&\le c_2 \log \left( \frac{n}{1\vee |y-z|}\right) +c_5, \end{aligned}$$

which yields the bound (A.1). \(\square \)

                Next, let \({\tilde{S}}\) be a random walk started at x and conditioned to leave \(B_N\) before its first return to K. We write \({\tilde{G}}(\cdot , \cdot )\) for the Green’s function of \({\tilde{S}}\).

                  Lemma A.2

                  (Cf. [8, Lemma 4.6]). There exist constants \(c_i\) such that, for \(z \in A_n(x)\) we have \(c_1 \le {\tilde{G}}(x,z) \le c_2\).

                
                  Proof

                  We follow the proof in [8]. Taking \(y=z\) in (A.1) we can improve the upper bound on \(G_{B_N \backslash K }(z,z)\) in [8, (4.10)] to \(c \log n\). Using Lemma A.1 again, we can improve the upper bound in the equation above [8, (4.11)], and hence improve the upper bound in [8, (4.11)] from \(c \log (N/n)/\log N\) to \(c /\log n\). With these new bounds the argument of [8, Lemma 4.6] gives that \({\tilde{G}}(x,z) \le c_2\). \(\square \)

                The following two results refine some conditional hitting time estimates from [8].

                  Lemma A.3

                  (cf. [8, (6.1)]). There exists a constant \(c_1\) such that if \(D_1 = \partial _R {B_\infty }(x,n/16)\) and \(K'=K\backslash \{x\}\), then, for \(v \in D_1\),
$$\begin{aligned} {{\mathbf {P}}}_v \left( T_x< \tau _{{B_\infty }(x,n/8)} \,|\, T_x <T_{K'} \wedge \tau _{B_N} \right) \ge c_1>0. \end{aligned}$$


                
                  Proof

                  Write \(B'={B_{n/8}(x)}\). The second displayed equation on [8, p. 2409] gives
$$\begin{aligned}&{{\mathbf {P}}}_v \left( T_x< \tau _{B_{n/8}(x)} \,|\, T_x<T_{K'} \wedge \tau _{B_N} \right) \nonumber \\&\quad = \frac{ G_{B'\backslash K}(v,v) }{ G_{B_N\backslash K}(v,v) }\times \frac{ {{\mathbf {P}}}_x ( T_v< \tau _{B'} \wedge T^+_K ) }{ {{\mathbf {P}}}_x ( T_v < \tau _{B_N} \wedge T^+_K )}, \end{aligned}$$

                    (A.2)
                

where \(T^+_K= \min \{ j \ge 1: S_j \in K\}\). As in Lemma A.1 we have that \(G_{B_N\backslash K}(v,v) \le c \log n\), and so the ratio of Green’s functions in (A.2) is bounded below by a constant \(c>0\). Using the strong Markov property at \(\tau _{B'}\) we obtain
$$\begin{aligned} {{\mathbf {P}}}_x ( T_v< \tau _{B_N} \wedge T^+_K )&\le {{\mathbf {P}}}_x ( T_v< \tau _{B'} \wedge T^+_K ) \\&\quad + {{\mathbf {P}}}_x ( \tau _{B'} \le T^+_K ) \max _{y \in \partial B'} {{\mathbf {P}}}_y( T_v < \tau _{B_N} \wedge T^+_K ). \end{aligned}$$

The argument at the top of [8, p. 2410] gives that
$$ {{\mathbf {P}}}_x ( \tau _{B'} \le T^+_K ) \le c (\log n) \, {{\mathbf {P}}}_x ( T_v < \tau _{B'} \wedge T^+_K ) . $$

Moreover, for \(y \in \partial B'\),
$$ {{\mathbf {P}}}_y(T_v < \tau _{B_N} \wedge T^+_K ) \le \frac{ G_{{{\mathbb {Z}}}^2 \backslash K}(y,v) }{ G_{{{\mathbb {Z}}}^2\backslash K}(v,v) }, $$

and as in Lemma A.1 we have \(G_{{{\mathbb {Z}}}^2 \backslash K}(y,v) \le c\), \(G_{{{\mathbb {Z}}}^2 \backslash K}(v,v) \ge c \log n\). Combining these estimates concludes the proof. \(\square \)

                
                  Lemma A.4

                  (cf. [8, (6.2)]). There exists a constant \(c>0\) such that if \(w \in \partial _R {B_\infty }(x,n)\), then
$$\begin{aligned} {{\mathbf {P}}}_w \left( \tau _{B_N}< T_{{B_\infty }(x,7n/8)} \,|\, \tau _{B_N} < T_K \right) \ge c. \end{aligned}$$

                    (A.3)
                


                
                  Proof

                  As on [8, p. 2410], we let \(y_0\) be the point in \(B_n(x)\) that maximises \({{\mathbf {P}}}_y( \tau _{B_N} < T_K )\). Writing \(B_7= {B_\infty }(x,7n/8)\), \(T_7= T_{B_7}\), we have
$$\begin{aligned} {{\mathbf {P}}}_{y_0} ( \tau _{B_N}< T_K )&= {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + {{\mathbf {E}}}^{y_0} ( {\mathbf {1}}_{\{T_7< \tau _{B_N} \wedge T_K\} } {{\mathbf {P}}}_{S_{T_7}}( \tau _{B_N}< T_K ) ) \\&\le {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + \max _{v \in \partial B_7} {{\mathbf {P}}}_v( \tau _{B_N} < T_K). \end{aligned}$$

Since K contains a path from 0 to x, the discrete Harnack inequality (again, see [27, Theorem 6.3.9], for example) gives us that there exists a constant \(p_1>0\) such that
$$ {{\mathbf {P}}}_v( \tau _{{B_\infty }(x,n)} < T_K) \le 1-p_1,\qquad \text{ for } \text{ all } v \in \partial B_7.$$

Thus
$$ {{\mathbf {P}}}_{y_0} ( \tau _{B_N}< T_K ) \le {{\mathbf {P}}}_{y_0}( \tau _{B_N}< T_K \wedge T_7 ) + (1-p_1) {{\mathbf {P}}}_{y_0} ( \tau _{B_N} < T_K ), $$

which proves (A.3) in the case \(w=y_0\). We can now use a reflection argument as on [8, p. 2410-2411] to obtain the general case. \(\square \)

                These estimates now lead to an improved lower bound on the length of a LERW. Recall the definition of the conditioned r.w. \({{\tilde{S}}}\), and set \(L_1 = {{\mathcal {L}}}( {{\mathcal {E}}}_{B_N}({\tilde{S}}))\), \(L_2 = {{\mathcal {E}}}_{B_n(x)}(L_1)\).

                  Lemma A.5

                  (cf. [8, Lemma 6.1]). There exists a constant \(c>0\) such that, for any \(z \in A_n(x)\),
$$\begin{aligned} {{\mathbf {P}}}( z \in L_2 ) \ge c n^{\kappa -2}. \end{aligned}$$


                
                  Proof

                  Using Lemmas A.4 and A.3 to replace [8, (6.1),(6.2)], this follows as in [8]. \(\square \)

                
                  Proposition A.6

                  (cf. [8, Proposition 6.2 and 6.3]). There exist constants \(c_1,c_2\) and \(p>0\) such that
$$\begin{aligned}&c_1 n^\kappa \le {{\mathbf {E}}}M \le c_2 n^\kappa , \nonumber \\&{{\mathbf {E}}}(M^2 ) \le c_2 n^{2\kappa }, \nonumber \\&{{\mathbf {P}}}( M \le c_3 n^\kappa ) \le 1-p. \end{aligned}$$

                    (A.4)
                


                
                  Proof

                  Given Lemmas A.5 and A.2 the bounds on \({{\mathbf {E}}}(M)\) and \({{\mathbf {E}}}(M^2)\) follow as in [8]. The final inequality is then immediate from a second moment bound. \(\square \)

                
                  Proof of Theorem 2.7

                  We follow the proof of [8, Proposition 6.6], first proving the result in the case when \(D= B_N(0)\), where \(N/2 \le nk \le 3N/4\) for some \(k \ge 4\). Set \(L = {{\mathcal {L}}}( {{\mathcal {E}}}_{B_N(0)}(S^0))\), and, for \(j=1, \dots k\), let \(\gamma _j = {{\mathcal {E}}}_{B_{j n}(0)}(L)\). Let \(x_j\) be the point where L first exits \(B_{j n}(0)\), and \(B_j = B_{n}(x_j)\). Let \(\alpha _j\) be the path L from \(x_{j-1}\) to its first exit from \(B_{j-1}\), and \(V_j\) be the number of hits by \(\alpha _j\) on the set \(B_{j-1}\). Let \({{\mathcal {F}}}_j\) be the \(\sigma \)-field generated by \(\gamma _j\). Using the domain Markov property for the LERW (see [23]) and then (A.4), we have
$$\begin{aligned} {{\mathbf {P}}}\left( V_j \le c_3 n^\kappa | {{\mathcal {F}}}_{j-1} \right) = {{\mathbf {P}}}\left( M^{\gamma _{j-1}}_{(j-1)n,n,N,x_{j-1}} \le c_3 n^\kappa \right) \le 1-p. \end{aligned}$$

                    (A.5)
                

Let \(\eta _j = {\mathbf {1}}_{\{V_j \le c_3 n^\kappa \}}\). By (A.5), \(\sum _{j=1}^k \eta _j\) stochastically dominates a binomial random variable with parameters k and p, and so there exists a constant \(c>0\) such that
$$ {{\mathbf {P}}}\left( \sum _{j=1}^k \eta _j < {\tfrac{1}{2}}p k \right) \le e^{-c k}. $$

Setting \(L' = {{\mathcal {E}}}_{B_{nk}(0)}(L)\), we have \( | L' | \ge c_3 n^\kappa \sum _{j=1}^k \eta _j\), and thus as \(N/2 \le nk \le 3N/4\) we obtain
$$\begin{aligned} {{\mathbf {P}}}\left( |L' | < c k^{-1/4} N^\kappa \right) \le e^{-c k}; \end{aligned}$$

taking \(k = c \lambda ^{1/(\kappa -1)} = c\lambda ^4\) this gives the result when \(D=B_N\). Note that the proof above actually gives the lower bound for the length of \(L'\) rather than L, so we can use Lemma 2.1 with \(D_1= B_N\), \(D_2=D\) to obtain a lower bound of the same form for \(|{{\mathcal {E}}}_{B_N(0)} ({{\mathcal {L}}}({{\mathcal {E}}}_{D}(S^0)))|\). \(\square \)

                

Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Barlow, M.T., Croydon, D.A. & Kumagai, T. Quenched and averaged tails of the heat kernel of the two-dimensional uniform spanning tree.
                    Probab. Theory Relat. Fields 181, 57–111 (2021). https://doi.org/10.1007/s00440-021-01078-w
Download citation
	Received: 07 April 2021

	Revised: 05 July 2021

	Accepted: 09 July 2021

	Published: 04 August 2021

	Issue Date: November 2021

	DOI: https://doi.org/10.1007/s00440-021-01078-w


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Uniform spanning tree
	Random walk
	Heat kernel

Mathematics Subject Classification
	60K37 (primary)
	60D05
	60G57








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					3.231.229.83
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    