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Abstract
Schramm–Loewner evolution (SLEκ ) is classically studied via Loewner evolution
with half-plane capacity parametrization, driven by

√
κ times Brownian motion. This

yields a (half-plane) valued random field γ = γ (t, κ;ω). (Hölder) regularity of
in γ (·, κ;ω), a.k.a. SLE trace, has been considered by many authors, starting with
Rohde and Schramm (Ann Math (2) 161(2):883–924, 2005). Subsequently, Johans-
son Viklund et al. (Probab Theory Relat Fields 159(3–4):413–433, 2014) showed a.s.
Hölder continuity of this random field for κ < 8(2− √

3). In this paper, we improve
their result to joint Hölder continuity up to κ < 8/3.Moreover, we show that the SLEκ

trace γ (·, κ) (as a continuous path) is stochastically continuous in κ at all κ �= 8. Our
proofs rely on a novel variation of the Garsia–Rodemich–Rumsey inequality, which
is of independent interest.
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1 Introduction

Schramm–Loewner evolution (SLE) is a random (non-self-crossing) path connecting
two boundary points of a domain. To be more precise, it is a family of such random
paths indexed by a parameter κ ≥ 0. It has been first introduced by [19] to describe sev-
eral random models from statistical physics. Since then, many authors have intensely
studied this random object. Many connections to discrete processes and other geomet-
ric objects have been made, and nowadays SLE is one of the key objects in modern
probability theory.

The typical way of constructing SLE is via the Loewner differential equation (see
Sect. 3) which provides a correspondence between real-valued functions (“driving
functions”) and certain growing families of sets (“hulls”) in a planar domain. For
many (in particular more regular) driving functions, the growing families of hulls (or
their boundaries) are continuous curves called traces. For Brownian motion, it is a
non-trivial fact that for fixed κ ≥ 0, the driving function

√
κB almost surely generates

a continuous trace which we call SLEκ trace (see [16,18]).
There has been a series of papers investigating the analytic properties of SLE, such

as (Hölder and p-variation) regularity of the trace [5,9,15,18]. See also [4,20] for some
recent attempts to understand better the existence of SLE trace.

A natural question is whether the SLEκ trace obtained from this construction varies
continuously in the parameter κ . Another natural question is whether with probability
1 the construction produces a continuous trace simultaneously for all κ ≥ 0. These
questions have been studied in [10] where the authors showed that with probability
1, the SLEκ trace exists and is continuous in the range κ ∈ [0, 8(2 − √

3)[. In our
paper we improve their result and extend it to κ ∈ [0, 8/3[. (In fact, our result is a bit
stronger than the following statement, see Theorems 3.2 and 4.1.)

Theorem 1.1 Let B be a standardBrownianmotion. Then almost surely the SLEκ trace
γ κ driven by

√
κBt , t ∈ [0, 1], exists for all κ ∈ [0, 8/3[, and the trace (parametrised

by half-plane capacity) is continuous in κ ∈ [0, 8/3[ with respect to the supremum
distance on [0, 1].

Stability of SLE trace was also recently studied in [12, Theorem 1.10]. They show
the law of γ κn ∈ C([0, 1],H) converges weakly to the law of γ κ in the topology
of uniform convergence, whenever κn → κ < 8. Of course, we get this as a trivial
corollary of Theorem 1.1 in case of κ < 8/3. Our Theorem 1.2 (proved in Sect. 3.2)
strengthens [12, Theorem 1.10] in three ways:

(i) we allow for any κ �= 8;
(ii) we improve weak convergence to convergence in probability;
(iii) we strengthen convergence inC([0, 1],H)withuniform topology toC p-var([0, 1],H)

with optimal (cf. [5]) p-variation parameter, i.e. any
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Regularity of SLE in (t, κ) and refined GRR estimates 73

p > (1 + κ/8) ∧ 2. The analogous statement for α-Hölder topologies, α <(
1− κ

24+2κ−8
√
8+κ

)
∧ 1

2 , is also true.

Here and below we write ‖ f ‖pp-var;[a,b] := sup
∑

[s,t]∈π | f (t) − f (s)|p, with sup
taken over all partitions π of [a, b]. The following theoremwill be proved as Corollary
3.12.

Theorem 1.2 Let B be a standard Brownian motion, and γ κ the SLEκ trace driven by√
κBt , t ∈ [0, 1], (and parametrised by half-plane capacity). For any κ > 0, κ �= 8

and any sequence κn → κ we then have ‖γ κ − γ κn‖p-var;[0,1] → 0 in probability, for
any p > (1+ κ/8) ∧ 2.

There are two major new ingredients to our proofs. First, we prove in Sect. 5
a refined moment estimate for SLE increments in κ , improving upon [10]. Using
standard notation [14,18], for κ > 0, we denote by (gκ

t )t≥0 the forward SLE flow
driven by

√
κB, j = 1, 2, and by f̂ κ

t = (gκ
t )−1(· +√

κBt ) the recentred inverse flow,
also defined in Sect. 3 below.

Write a � b for a ≤ Cb, with suitable constant C < ∞. The improved estimate
(Proposition 3.5) reads

E| f̂ κ
t (iδ) − f̂ κ̃

t (iδ)|p � |√κ −√
κ̃|p (1)

for 1 ≤ p < 1+ 8
κ
. The interest in this estimate is when p is close to 1+8/κ . No such

estimate can be extracted from [10], as we explain in some more detail in Remark 3.6
below.

Secondly, our way of exploiting moment estimates such as (1) is fundamentally
different in comparison with theWhitney-type partition technique of “(t, y, κ)”-space
[10] (already seen in [18] without κ), combined with a Borel–Cantelli argument. Our
key tool here is a new higher-dimensional variant of the Garsia–Rodemich–Rumsey
(GRR) inequality [7] which is useful in its own right, essentially whenever one deals
with random fields with very “different”—in our case t and κ—variables. The GRR
inequality has been a useful tool in stochastic analysis to pass from moment bounds
for stochastic processes to almost sure estimates of their regularity.

Let us briefly discuss the existing (higher-dimensional) GRR estimates (e.g. [21,
Exercise 2.4.1], [1,3,8]) and their shortcomings in our setting. When we try to apply
one of these versions to SLE (as a two-parameter random field in (t, κ)), we wish to
estimate moments of |γ (t, κ)− γ (s, κ̃)|, where we denote the SLEκ trace by γ (·, κ).
In [5], the estimate

E|γ (t, κ) − γ (s, κ)|λ � |t − s|(λ+ζ )/2

with suitable λ > 1 and ζ has been given. We will show in Proposition 3.3 that

E|γ (s, κ) − γ (s, κ̃)|p � |κ − κ̃|p

for suitable p > 1. Applying this estimate with p = λ, we obtain an estimate for
E|γ (t, κ) − γ (s, κ̃)|λ, and can apply a GRR lemma from [1,3]. The condition for
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applying it is ((λ + ζ )/2)−1 + p−1 = ((λ + ζ )/2)−1 + λ−1 < 1. But in doing so,
we do not use the best estimates available to us. That is, the above estimate typically
holds for some p > λ. On the other hand, we can only estimate the λ-th moment (and
no higher ones) of |γ (t, κ) − γ (s, κ)|. This asks for a version of the GRR lemma
that respects distinct exponents in the available estimates, and is applicable when
((λ + ζ )/2)−1 + p−1 < 1 with p > λ (a weaker condition than above).

We are going to prove the following refined GRR estimates in two dimensions, as
required by our application, noting that extension to higher dimension follow the same
argument.

Lemma 1.3 Let G be a continuous function (defined on some rectangle) such that, for
some integers J1, J2,

|G(x1, x2) − G(y1, y2)| ≤ |G(x1, x2) − G(y1, x2)| + |G(y1, x2) − G(y1, y2)|

≤
J1∑
j=1

|A1 j (x1, y1; x2)| +
J1∑
j=1

|A2 j (y1; x2, y2)|.

Suppose that for all j ,

˚ |A1 j (u1, v1; u2)|q1 j
|u1 − v1|β1 j du1 dv1 du2 < ∞,

˚ |A2 j (v1; u2, v2)|q2 j
|u2 − v2|β2 j dv1 du2 dv2 < ∞.

Then, under suitable conditions on the exponents,

|G(x1, x2) − G(y1, y2)| � |x1 − y1|γ (1) + |x2 − y2|γ (2)
.

Observe that the exponents q1 j , q2 j are allowed to vary, exactly as required for our
application to SLE. We also note that the flexibility to have J1, J2 > 1 is used in the
proof of Theorem 1.2 but not 1.1.

One might ask whether one can further improve Theorem 1.1 to all κ ≥ 0. With
the methods of this paper, it would require a better moment estimate in the style of
(1) with larger exponent on the right-hand side. If such an estimate were to hold true
with arbitrarily large exponent on the right-hand side (and any suitable exponent on
the left-hand side), which is not clear to us, almost sure continuity of the random field
in all (t, κ) with κ �= 8 would follow.

2 A Garsia–Rodemich–Rumsey lemmawithmixed exponents

In this section we prove a variant of the Garsia–Rodemich–Rumsey inequality and
Kolmogorov’s continuity theorem. The classical Kolmogorov’s theorem goes by a
“chaining” argument (see e.g. [13, Theorem 1.4.1] or [23, Appendix A.2]), but can
also be obtained from the GRR inequality (see e.g. [21, Corollary 2.1.5]). In the case
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Regularity of SLE in (t, κ) and refined GRR estimates 75

of proving Hölder continuity of processes, the GRR approach provides more powerful
statements (cf. [6,AppendixA]). In particular,weobtain bounds on theHölder constant
of the process that are more informative and easier to manipulate, which will be useful
in the proof of Theorem 4.1. (Although there are drawbacks of the GRR approach
when generalising to more refined modulus of continuity, see the discussion in [23,
Appendix A.4].)

We discuss some of the extensive literature that deal with the generality of GRR
and Kolmogorov’s theorem. The reader may skip this discussion and continue straight
with the results of this section.

There are some direct generalisations of GRR and Kolmogorov’s theorem to higher
dimensions, e.g. [21, Exercise 2.4.1], [13, Theorem 1.4.1], [1,3,8]. Moreover, there
have been more systematic studies in a general setting under the titles metric entropy
bounds andmajorisingmeasures. They derive bounds and path continuity of stochastic
processes mainly from the structure of certain pseudometrics that the processes induce
on the parameter space, such as dX (s, t) := (E|X(s)− X(t)|2)1/2. A large amount of
the theory is found in the book by Talagrand [23]. These results due to, among others,
R. M. Dudley, N. Kôno, X. Fernique, M. Talagrand, and W. Bednorz. Their main
purpose is to allow different structures of the parameter space and inhomogeneity of
the stochastic process (see e.g. [2,11,23]).

We explain why the existing results do not cover the adaption that we are seeking in
this section. The general idea for applying the theory of metric entropy bounds would
be considering the metric dX (s, t) = (E|X(s) − X(t)|q)1/q for some q > 1.

Let us consider a random process defined on the parameter space T = [0, 1]2 that
satisfies

E|X(s1, s2) − X(t1, s2)|q1 ≤ |s1 − t1|α1 ,
E|X(t1, s2) − X(t1, t2)|q2 ≤ |s2 − t2|α2 , (2)

where q1 and q2 might be different, say q1 < q2. By Hölder’s inequality,

E|X(t1, s2) − X(t1, t2)|q1 ≤ (
E|X(t1, s2) − X(t1, t2)|q2

)q1/q2 . (3)

Write t = (t1, t2), s = (s1, s2). We may let

(E|X(s) − X(t)|q)1/q ≤ |s1 − t1|α1/q1 + |s2 − t2|α2/q2 =: |||s − t ||| =: d(s, t)

where we can take q = q1 (but not q = q2 without knowing any bounds on higher
moments of |X(s1, s2) − X(t1, s2)|).

We explain now that we have already lost some sharpness when we estimated (3)
using Hölder’s inequality. Indeed, all the results [11, Theorem 3], [23, (13.141)], [23,
Theorem B.2.4], [2, Corollary 1] are based on finding an increasing convex function
ϕ such that

Eϕ

( |X(s) − X(t)|
d(s, t)

)
≤ 1. (4)
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76 P. K. Friz et al.

Observe thatwe can takeϕ(x) = xq1 at best. To apply anyof these results, the condition
turns out to be 1

α1
+ q2

q1α2
< 1. In fact, [23, Theorem 13.5.8] implies that we cannot

expect anything better just from the assumption (4). More precisely, the theorem states
that in general, when we assume only (4), in order to deduce any pathwise bounds for
the process X , we need to have

ˆ δ

0
ϕ−1

(
1

μ(B(t, ε))

)
dε < ∞,

with B denoting the ball with respect to the metric d, andμ e.g. the Lebesguemeasure.
In our setup this turns out to the condition 1

α1
+ q2

q1α2
< 1.

We will show in Theorem 2.8 that by using the condition (2) instead of (4), we can
relax this condition to 1

α1
+ 1

α2
< 1. In case 1

α1
+ 1

α2
< 1 < 1

α1
+ q2

q1α2
, this is an

improvement. We have not found this possibility in any of the existing references.
We now turn to our version of the Garsia–Rodemich–Rumsey inequality that allows

us tomake use of different exponents q1 �= q2. In addition to the scenario (2), we allow
also the situation when e.g. |X(s1, s2) − X(t1, s2)| ≤ A11 + A12 with E|A1 j |q1 j ≤
|s1 − t1|α1 j for some q1 j , α1 j , j = 1, 2, where possibility q11 �= q12.

Let (E, d) be a metric space. We can assume E to be isometrically embedded in
some larger Banach space (by the Kuratowski embedding). To ease the notation, we
write |x − y| = d(x, y) both for the distance in E and for the distance in R. For a
Borel set A we denote by |A| its Lebesgue measure and

ffl
A f = 1

|A|
´
A f .

In what follows, let I1 and I2 be two (either open or closed) non-trivial intervals
of R.

Lemma 2.1 Let G ∈ C(I1 × I2) be a continuous function, with values in a metric
space E, such that

|G(x1, x2) − G(y1, y2)| ≤
J1∑
j=1

|A1 j (x1, y1; x2)| +
J2∑
j=1

|A2 j (y1; x2, y2)| (5)

for all (x1, x2), (y1, y2) ∈ I1 × I2, where A1 j : I1 × I1 × I2 → R, 1 ≤ j ≤ J1,
A2 j : I1 × I2 × I2 → R, 1 ≤ j ≤ J2, are measurable functions. Suppose that

˚
I1×I1×I2

|A1 j (u1, v1; u2)|q1 j
|u1 − v1|β1 j du1 dv1 du2 ≤ M1 j , (6)

˚
I1×I2×I2

|A2 j (v1; u2, v2)|q2 j
|u2 − v2|β2 j dv1 du2 dv2 ≤ M2 j (7)

for all j , where qi j ≥ 1, βi := min j βi j > 2, i = 1, 2, and (β1 − 2)(β2 − 2)− 1 > 0.
Fix any a, b > 0. Then

|G(x1, x2) − G(y1, y2)| ≤ C
∑
j

M
1/q1 j
1 j

(
|x1 − y1|γ

(1)
1 j + |x2 − y2|γ

(2)
1 j

)
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+C
∑
j

M
1/q2 j
2 j

(
|x1 − y1|γ

(1)
2 j + |x2 − y2|γ

(2)
2 j

)
(8)

for all (x1, x2), (y1, y2) ∈ I1 × I2, where γ
(1)
1 j = β1 j − 2− b

q1 j
, γ

(2)
1 j =

(β1 j − 2)a − 1

q1 j
, γ

(1)
2 j = (β2 j − 2)b − 1

q2 j
, γ

(2)
2 j = β2 j − 2− a

q2 j
, and C < ∞ is a

constant that depends on (qi j ), (βi j ), a, b, |I1|, |I2|.

Remark 2.2 The statement is already true when qi j > 0 (not necessarily ≥ 1) and can
be shown by an argument similarly as in [21, Theorem 2.1.3 and Exercise 2.4.1]. We
have decided to stick to qi j ≥ 1 since the proof is simpler here.

Proof Note that for any continuous function G and a sequence Bn of sets with
diam({x} ∪ Bn) → 0 we have G(x) = limn

ffl
Bn

G. (Recall that we can view E
as a subspace of some Banach space, so that the integral is well-defined.)

Let (x1, x2), (y1, y2) ∈ I1 × I2. Using the above observation, we will approximate
G(x1, x2) and G(y1, y2) by well-chosen sequences of sets.

We pick a sequence of rectangles I n1 × I n2 ⊆ I1 × I2, n ≥ 0, with the following
properties:

• (x1, x2), (y1, y2) ∈ I 01 × I 02 .• (x1, x2) ∈ I n1 × I n2 for all n.
• |I ni | = R−n

i di , i = 1, 2, with parameters

R1, R2 > 1, d1, d2 > 0

chosen later.

In order for such a sequence of rectangles to exist, we must have

|xi − yi | ≤ di ≤ |Ii |, i = 1, 2,

since we require xi , yi ∈ I 0i ⊆ Ii . Conversely, this condition guarantees the existence
of such a sequence.

We will bound

∣∣∣∣∣G(x1, x2) −
  

I 01×I 02

G

∣∣∣∣∣ ≤
∑
n∈N

∣∣∣∣∣
  

I n1 ×I n2

G −
  

I n−1
1 ×I n−1

2

G

∣∣∣∣∣ .

The same argument applies also to G(y1, y2) where we can pick the same initial
rectangle I 01 × I 02 . Hence, this will give us a bound on |G(x1, x2) − G(y1, y2)|.
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By the assumption (5) we have

∣∣∣∣∣
  

I n1 ×I n2

G −
  

I n−1
1 ×I n−1

2

G

∣∣∣∣∣

=
∣∣∣∣∣
  

I n1 ×I n2

  
I n−1
1 ×I n−1

2

(G(u1, u2) − G(v1, v2)) du1 du2 dv1 dv2

∣∣∣∣∣

≤
∑
j

 
I n1

 
I n−1
1

 
I n2

|A1 j (u1, v1; u2)| +
∑
j

 
I n−1
1

 
I n2

 
I n−1
2

|A2 j (v1; u2, v2)|.

Recall that |I ni | = R−n
i di and that |ui − vi | ≤ CR−n

i di for any ui ∈ I ni , vi ∈ I n−1
i .

This and Hölder’s inequality imply

 
I n1

 
I n−1
1

 
I n2

|A1 j (u1, v1; u2)|

≤ C(R−n
1 d1)

β1 j /q1 j

 
I n1

 
I n−1
1

 
I n2

|A1 j (u1, v1; u2)|
|u1 − v1|β1 j /q1 j

≤ C(R−n
1 d1)

β1 j /q1 j

( 
I n1

 
I n−1
1

 
I n2

|A1 j (u1, v1; u2)|q1 j
|u1 − v1|β1 j

)1/q1 j

≤ C(R−n
1 d1)

β1 j /q1 j
(
(R−n

1 d1)
−2(R−n

2 d2)
−1M1 j

)1/q1 j

= C
(
(R−n

1 d1)
β1 j−2(R−n

2 d2)
−1M1 j

)1/q1 j
.

Similarly,

 
I n−1
1

 
I n2

 
I n−1
2

|A2 j (v1; u2, v2)| ≤ C
(
(R−n

2 d2)
β2 j−2(R−n

1 d1)
−1M2 j

)1/q2 j
.

We want to sum the above expressions for all n, which is possible if and only if

both R
β1 j−2
1 R−1

2 > 1 and R
β2 j−2
2 R−1

1 > 1. The best pick is R2 = R
β1−1
β2−1

1 (the exact
scale of R1 does not matter), and the condition becomes (β1 − 2)(β2 − 2) − 1 > 0
(assuming β1, β2 > 2). In that case, we finally get

|G(x1, x2) − G(y1, y2)|
≤ C

∑
j

(
d

β1 j−2
1 d−1

2 M1 j

)1/q1 j + C
∑
j

(
d

β2 j−2
2 d−1

1 M2 j

)1/q2 j
(9)

It remains to pick d1, d2 > 0. Let d1 := |x1 − y1| ∨ |x2 − y2|a , d2 := |x1 − y1|b ∨
|x2 − y2|, and suppose for the moment that d1 ≤ |I1|, d2 ≤ |I2|. (The conditions
d1 ≥ |x1 − y1|, d2 ≥ |x2 − y2| are satisfied by our choice.). In this case the inequality
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(9) becomes

|G(x1, x2) − G(y1, y2)|
≤ C

∑
j

M
1/q1 j
1 j

(
|x1 − y1|β1 j−2−b + |x2 − y2|(β1 j−2)a−1

)1/q1 j

+ C
∑
j

M
1/q2 j
2 j

(
|x1 − y1|(β2 j−2)b−1 + |x2 − y2|β2 j−2−a

)1/q2 j
.

(10)

This proves the claim in case d1 ≤ |I1|, d2 ≤ |I2|.
It remains to handle the case when d1 > |I1| or d2 > |I2|. In that case we pick

d̂1 = d1 ∧ |I1| and d̂2 = d2 ∧ |I2| instead of d1 and d2. The conditions |x1 − y1| ≤
d̂1 ≤ |I1| and |x2 − y2| ≤ d̂2 ≤ |I2| are now satisfied, and in (9), we instead have

d̂
β1 j−2
1 d̂−1

2 ≤ d2
d2 ∧ |I2| d

β1 j−2
1 d−1

2 =
( |x1 − y1|b

|I2| ∨ 1

)
d

β1 j−2
1 d−1

2 ,

d̂−1
1 d̂

β2 j−2
2 ≤ d1

d1 ∧ |I1| d
−1
1 d

β2 j−2
2 =

( |x2 − y2|a
|I1| ∨ 1

)
d−1
1 d

β2 j−2
2 ,

(11)

i.e. the same result (10) holds with the additional constants
( |x1−y1|b

|I2| ∨ 1
)

and( |x2−y2|a
|I1| ∨ 1

)
(which can be bounded by a constant depending on a, b, |I1|, |I2| since

a, b ≥ 0). ��
Remark 2.3 The dependence of the multiplicative constant C on |I1| and |I2| is spec-
ified in (11). This can be convenient when we want to apply the lemma to different
domains.

A more accurate version is

d̂
β1 j−2
1 d̂−1

2 =
(
d1 ∧ |I1|

d1

)β1 j−2 d2
d2 ∧ |I2| d

β1 j−2
1 d−1

2

=
( |I1|
|x2 − y2|a ∧ 1

)β1 j−2 ( |x1 − y1|b
|I2| ∨ 1

)
d

β1 j−2
1 d−1

2 ,

d̂−1
1 d̂

β2 j−2
2 =

(
d2 ∧ |I2|

d2

)β2 j−2 d1
d1 ∧ |I1| d

−1
1 d

β2 j−2
2

=
( |I2|
|x1 − y1|b ∧ 1

)β2 j−2 ( |x2 − y2|a
|I1| ∨ 1

)
d−1
1 d

β2 j−2
2 .

Remark 2.4 We could have added some more flexibility by allowing the exponents
(qi j ), (βi j ) to vary with u1, u2, but again we will not need it for our result.

Remark 2.5 We have a free choice of a, b ≥ 0 which affects the Hölder exponents
γ

(1)
i j , γ

(2)
i j . In general, it is not simple to spell out the optimal choice of a, b and hence
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the optimal Hölder exponents. Usually we are interested in the overall exponents (i.e.
mini, j γ

(1)
i j , mini, j γ

(2)
i j ), and we can solve

min
j

γ
(1)
1 j = min

j
γ

(1)
2 j ,

min
j

γ
(2)
1 j = min

j
γ

(2)
2 j

to find the optimal choice for a, b.
For instance, in case β1 j = β1 and β2 j = β2 for all j , the best choice is

a = q1(β2 − 2) + q2
q2(β1 − 2) + q1

, b = q2(β1 − 2) + q1
q1(β2 − 2) + q2

,

resulting in

γ (1) = (β1 − 2)(β2 − 2) − 1

q1(β2 − 2) + q2
, γ (2) = (β1 − 2)(β2 − 2) − 1

q2(β1 − 2) + q1

where qi = max j qi j .
In general, we could choose a = β2−1

β1−1 , b = β1−1
β2−1 , resulting in

γ
(1)
1 j = (β1 j − 2)(β2 − 2) − 1+ β1 j − β1

q1 j (β2 − 1)
, γ

(2)
1 j = (β1 j − 2)(β2 − 2) − 1+ β1 j − β1

q1 j (β1 − 1)
,

γ
(1)
2 j = (β1 − 2)(β2 j − 2) − 1+ β2 j − β2

q2 j (β2 − 1)
, γ

(2)
2 j = (β1 − 2)(β2 j − 2) − 1+ β2 j − β2

q2 j (β1 − 1)
.

But this is not necessarily the optimal choice.

Remark 2.6 Notice that the condition to apply the lemma does only depend on (βi j ),
not (qi j ), but the resulting Hölder-exponents will.

Remark 2.7 The proof straightforwardly generalises to higher dimensions.

Using our version of the GRR lemma, we can show another version of the Kol-
mogorov continuity condition. Here we suppose I1, I2 are bounded intervals.

Theorem 2.8 Let X be a random field on I1 × I2 taking values in a separable Banach
space. Suppose that, for (x1, x2), (y1, y2) ∈ I1 × I2, we have

|X(x1, x2) − X(y1, y2)| ≤
J1∑
j=1

|A1 j (x1, y1; x2)| +
J2∑
j=1

|A2 j (y1; x2, y2)| (12)

with measurable real-valued Ai j that satisfy

E|A1 j (x1, y1; x2)|q1 j ≤ C ′ |x1 − y1|α1 j ,
E|A2 j (y1; x2, y2)|q2 j ≤ C ′ |x2 − y2|α2 j (13)
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with a constant C ′ < ∞.
Moreover, suppose qi j ≥ 1, αi = min j αi j > 1, i = 1, 2, and α−1

1 + α−1
2 < 1.

Then X has a Hölder-continuous modification X̂ . Moreover, for any

γ (1) <
(α1 − 1)(α2 − 1) − 1

q1(α2 − 1) + q2
, γ (2) <

(α1 − 1)(α2 − 1) − 1

q2(α1 − 1) + q1
,

where qi = max j qi j , there is a random variable C such that

|X̂(x1, x2) − X̂(y1, y2)| ≤ C
(
|x1 − y1|γ (1) + |x2 − y2|γ (2)

)

and E[Cqmin] < ∞ for qmin = mini, j qi j .

Remark 2.9 In case α1 j = α1 and α2 j = α2 for all j , the expressions for the Hölder
exponents γ (1), γ (2) given above are sharp. In the general case, the exponents may be
improved, following an optimisation described in Remark 2.5.

Remark 2.10 The constants C ′ can be replaced by (deterministic) functions that are
integrable in (x1, x2), without change of the proof. But one would need to formulate
the condition more carefully, therefore we decided to not include it.

We point out that in case J1 = J2 = 1 and q1 = q2, this agrees with the two-
dimensional version of the (inhomogeneous) Kolmogorov criterion [13, Theorem
1.4.1].

Proof Part 1. Suppose first that X is already continuous. In that case we can directly
apply Lemma 2.1. The expectation of the integrals (6) and (7) are finite if βi j < αi j +1
for all i, j . By choosingβi j as large as possible, the conditions (β1−2)(β2−2)−1 > 0
and β1 > 2, β2 > 2 are satisfied if α−1

1 + α−1
2 < 1 and α1 > 1, α2 > 1.

Since the (random) constantsMi j in Lemma 2.1 are almost surely finite, X is Hölder

continuous as quantified in (8), and the Hölder constants M
1/qi j
i j have qi j -th moments

since they are just the integrals (6). The formulas for the Hölder exponents follow
from the analysis in Remark 2.5.
Part 2. Now, suppose X is arbitrary. We need to construct a continuous version of
X . It suffices to show that X is uniformly continuous on a dense set D ⊆ I1 × I2.
Indeed, we can then apply Doob’s separability theorem to obtain a separable (and
hence continuous) version of X , or alternatively construct X̂ by setting X̂ = X on D
and extend X̂ continuously to I1 × I2. Then X̂ is a modification of X because they
agree on a dense set D and are both stochastically continuous [as follows from (12)
and (13)].

We use a standard argument that can be found e.g. in [22, pp. 8–9].
We can assume without loss of generality that X(x̄1, x̄2) = 0 for some (x̄1, x̄2) ∈

I1 × I2 (otherwise just consider Y (x1, x2) = X(x1, x2) − X(x̄1, x̄2)).
In particular, the conditions (12) and (13) imply that X(x1, x2) is an integrable

random variable with values in a separable Banach space for every (x1, x2).
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Fix any countable dense subset D ⊆ I1 × I2. Let

G := σ({X(x1, x2) | (x1, x2) ∈ D}).

We can pick an increasing sequence of finite σ -algebras Gn such that G = σ
(⋃

n Gn
)
.

By martingale convergence, we have

X (n)(x1, x2) → X(x1, x2)

almost surely for (x1, x2) ∈ D where X (n)(x1, x2) := E[X(x1, x2) | Gn].
Moreover, (12) implies

|X (n)(x1, x2) − X (n)(y1, y2)| ≤
J1∑
j=1

|A(n)
1 j (x1, y1; x2)| +

J2∑
j=1

|A(n)
2 j (y1; x2, y2)|

where |A(n)
i j (. . .)| := E[|A(n)

i j (...)| | Gn]. By Jensen’s inequality and (13), we have

E|A(n)
1 j (x1, y1; x2)|q1 j ≤ E|A1 j (x1, y1; x2)|q1 j ≤ C ′ |x1 − y1|α1 j ,

E|A(n)
2 j (y1; x2, y2)|q2 j ≤ E|A2 j (y1; x2, y2)|q2 j ≤ C ′ |x2 − y2|α2 j .

In particular, X (n) is stochastically continuous, and since Gn is finite, X (n) is almost
surely continuous. Applying Lemma 2.1 yields

|X (n)(x1, x2) − X (n)(y1, y2)| ≤ C
∑
j

(M (n)
1 j )1/q1 j

(
|x1 − y1|γ

(1)
1 j + |x2 − y2|γ

(2)
1 j

)

+C
∑
j

(M (n)
2 j )1/q2 j

(
|x1 − y1|γ

(1)
2 j + |x2 − y2|γ

(2)
2 j

)

where M (n)
i j are defined as the integrals (6) and (7) with A(n)

i j .
It follows that on D we have

|X(x1, x2) − X(y1, y2)| ≤ C
∑
j

M̃
1/q1 j
1 j

(
|x1 − y1|γ

(1)
1 j + |x2 − y2|γ

(2)
1 j

)

+C
∑
j

M̃
1/q2 j
2 j

(
|x1 − y1|γ

(1)
2 j + |x2 − y2|γ

(2)
2 j

)

where M̃i j := lim infn M
(n)
i j . By Fatou’s lemma,

EM̃i j ≤ lim inf
n

EM (n)
i j < ∞,

implying that M̃i j < ∞, hence X is uniformly continuous on D. ��
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One-dimensional variants of Lemma 2.1 and Theorem 2.8 can also be derived.
Having shown the two-dimensional results Lemma 2.1 and Theorem 2.8, there is no
need for an additional proof of their one-dimensional variants, since we can extend
any one-parameter function G to a two-parameter function via G̃(x1, x2) := G(x1).
This immediately implies the following results.

Corollary 2.11 Let G be a continuous function on an interval I such that

|G(x) − G(y)| ≤
J∑

j=1

|A j (x, y)|

for all x, y ∈ I , where A j : I × I → R, j = 1, . . . , J , are measurable functions that
satisfy

¨
I×I

|A j (u, v)|q j

|u − v|β j
du dv ≤ Mj

with some q j ≥ 1, β j > 2. Then

|G(x) − G(y)| ≤ C
∑
j

M
1/q j
j |x − y|γ j

for all x, y ∈ I , where γ j = β j−2
q j

, and C < ∞ is a constant that depends on

(q j ), (β j ).

For the sake of completeness we also state the one-dimensional version of Theorem
2.8.

Corollary 2.12 Let X be a stochastic process on a bounded interval I such that

|X(x) − X(y)| ≤
J∑

j=1

|A j (x, y)|

for all x, y ∈ I , where A j , j = 1, . . . , J , are measurable and satisfy

E|A j (x, y)|q j ≤ C ′|x − y|α j

with q j ≥ 1, α j > 1, and C ′ < ∞.

Then X has a continuous modification X̂ that satisfies, for any γ < min j
α j−1
q j

,

|X̂(x) − X̂(y)| ≤ Cγ |x − y|γ

with a random variable Cγ with E[Cqmin
γ ] < ∞ where qmin = min j q j .
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2.1 Further variations on the GRR theme

We give some additional results that are similar or come as consequence of Lemma
2.1. This demonstrates the flexibility and generality that our lemma provides. We do
not aim for a complete survey of all implications of the lemma.

We begin by proving the result of Lemma 2.1 under slightly weaker assumptions.
The assumptions may seem a bit at random, but they will turn out to be what we need
in the proof of Theorem 4.1.

Lemma 2.13 Consider the same conditions as in Lemma 2.1, but instead of (5), we
assume the following weaker condition. Let r j > 1 and θ j > 0 such that

β1 j−2
q1 j

< θ j

for j = 1, . . . , J1.1 Suppose that for some small c > 0, e.g. c ≤ |I1|/4, we have

|G(x1, x2) − G(y1, y2)|

≤
J1∑
j=1

�logr j (c/|x1−y1|)�∑
k=0

r
−kθ j
j |A1 j (z1 + rkj (x1 − z1), z1 + rkj (y1 − z1); x2)|

+
J2∑
j=1

|A2 j (y1; x2, y2)|

(14)

for (x1, x2), (y1, y2) ∈ I1× I2 and z1 ∈ I1 whenever |x1− z1|∨|y1− z1| ≤ 2|x1− y1|
and all the points appearing in the sum are also in the domain I1.

Then the result of Lemma 2.1 still holds, with the constant C depending also on
(r j ), (θ j ).

Proof We proceed similarly as in the proof of Lemma 2.1. We pick the sequence I ni
a bit more carefully. Let di > 0, Ri > 1, i = 1, 2, be as in the proof of Lemma 2.1,
and recall that we can freely pick Ri ≥ 9. It is not hard to see that we can then pick a
sequence of rectangles I n1 × I n2 in such a way that

• |I ni | = 1
9 R

−n
i di ,

• 1
9 R

−n
i di ≤ dist(I ni , I n+1

i ) ≤ R−n
i di ,

• dist(xi , I ni ) → 0 as n → ∞,

and another analogous sequence of rectangles for (y1, y2) that begins with the same
I 01 × I 02 .

The proof proceeds in the same way, but instead of the assumption (5), we apply
(14) with some z1 that we pick now.

Let n ∈ N. We pick z1 := inf(I n1 ∪ I n−1
1 ) if this point is in the left half of I1, and

z1 = sup(I n1 ∪ I n−1
1 ) otherwise. From the defining properties of the sequence (I n1 ) it

follows that |u1 − z1| ∨ |v1 − z1| ≤ 2|u1 − v1| for all u1 ∈ I n1 , v1 ∈ I n−1
1 . Moreover,

all the points z1 + rk(u1 − z1) and z1 + rk(v1 − z1), k ≤ �logr (c/|x1 − y1|)�, are
inside I1 because |rk(u1 − z1)| ≤ c

|u1−v1| |u1 − z1| ≤ 2c and we have chosen z1 to be

1 A slightly different result still holds if
β1 j−2
q1 j

≥ θ j , as one can see in the proof.
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more than distance |I1|/2 ≥ 2c away (in the u1 resp. v1 direction) from the end of the
interval I1.

We now have to bound

∑
k

 
I n1

 
I n−1
1

 
I n2

r−kθ j |A1 j (z1 + rk(u1 − z1), z1 + rk(v1 − z1); u2)| du2 dv1 du1

With the transformation φk(u1) = z1 + rk(u1 − z1) we get

 
I n1

 
I n−1
1

 
I n2

r−kθ j |A1 j (z1 + rk(u1 − z1), z1 + rk(v1 − z1); u2)|

= r−kθ j

 
φk (I n1 )

 
φk (I

n−1
1 )

 
I n2

|A1 j (u1, v1; u2)|

≤ Cr−kθ j (rk R−n
1 d1)

β1 j /q1 j

 
φk (I n1 )

 
φk (I

n−1
1 )

 
I n2

|A1 j (u1, v1; u2)|
|u1 − v1|β1 j /q1 j

≤ Cr−kθ j (rk R−n
1 d1)

β1 j /q1 j

( 
φk (I n1 )

 
φk (I

n−1
1 )

 
I n2

|A1 j (u1, v1; u2)|q1 j
|u1 − v1|β1 j

)1/q1 j

≤ Cr−kθ j (rk R−n
1 d1)

β1 j /q1 j
(
(rk R−n

1 d1)
−2(R−n

2 d2)
−1M1 j

)1/q1 j

= Crk((β1 j−2)/q1 j−θ j )
(
(R−n

1 d1)
β1 j−2(R−n

2 d2)
−1M1 j

)1/q1 j
.

Since we assumed
β1 j−2
q1 j

< θ j this bound sums in k to

C
(
(R−n

1 d1)
β1 j−2(R−n

2 d2)
−1M1 j

)1/q1 j

which is the same bound as in the proof of Lemma 2.1. The rest of the proof is the
same as in Lemma 2.1. ��

The following corollary is only used for Theorem 3.8.

Corollary 2.14 Consider the same conditions as in Lemma 2.1. For x1 ∈ I1, consider
G(x1, ·) as an element in the space of continuous functions C0(I2). Then the p-
variation of x1 �→ G(x1, ·) is at most

C
∑
j

M
1/q1 j
1 j |I1|γ

(1)
1 j + C

∑
j

M
1/q2 j
2 j |I1|γ

(1)
2 j ,

where p = maxi, j
qi j

1+γ
(1)
i j qi j

= max j
q1 j

β1 j−1−b∨max j
q2 j

(β2 j−2)b (with a choice of b ≥ 0),

and C does not depend on |I1|.
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Proof Let t0 < t1 < · · · < tn be a partition of I1. The p-variation of x1 �→ G(x1, ·) ∈
C0(I2) is

sup
partitions of I1

(∑
k

sup
x2∈I2

|G(tk, x2) − G(tk−1, x2)|p
)1/p

.

We estimate the differences using Lemma 2.1, applied to [tk−1, tk]× I2. Observe that
since consider the difference only in the first parameter of G, the constant C in the
statement of Lemma 2.1 does not depend on the size of [tk−1, tk], as we explained in
Remark 2.3. Hence we have

|G(tk, x2) − G(tk−1, x2)| ≤ C
∑
j

(
M1 j

∣∣[tk−1,tk ]
)1/q1 j |tk − tk−1|γ (1)

1 j

+C
∑
j

(
M2 j

∣∣[tk−1,tk ]
)1/q2 j |tk − tk−1|γ (1)

2 j

for all x2 ∈ I2, where we denote by M1 j
∣∣[s,t] and M2 j

∣∣[s,t] the integrals in (6) and (7)
restricted to [s, t] × [s, t] × I2 and [s, t] × I2 × I2, respectively.

Similarly to [6, Corollary A.3], we can show that

ω(s, t) = C p
∑
j

(
M1 j

∣∣[s,t]
)p/q1 j |s − t |pγ (1)

1 j + C p
∑
j

(
M2 j

∣∣[s,t]
)p/q2 j |s − t |pγ (1)

2 j

is a control. ��

3 Continuity of SLE in � and t

In this section we show the main results Theorems 1.1 and 1.2. We adopt notations
and prerequisite from [10]. For the convenience of the reader, we quickly recall some
important notations.

Let U : [0, 1] → R be continuous. The Loewner differential equation is the fol-
lowing initial value ODE

∂t gt (z) = 2

gt (z) −U (t)
, g0(z) = z ∈ H. (15)

For each z ∈ H, the ODE has a unique solution up to a time Tz = sup{t > 0: |gt (z)−
U (t)| > 0} ∈ (0,∞]. For t ≥ 0, let Ht = {z ∈ H: Tz > t}. It is known that gt is a
conformal map from Ht onto H. Define ft = g−1

t and f̂t = ft (· + U (t)). One says
that λ generates a curve γ if

γ (t) := lim
y→0+

ft (iy +U (t)) (16)
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exists and is continuous in t ∈ [0, 1]. This is equivalent to saying that there exists
a continuous H-valued path γ such that for each t ∈ [0, 1], the domain Ht is the
unbounded connected component of H\γ [0, t].

It is known [16,18] that for fixed κ ∈ [0,∞), the driving function U = √
κB,

where B is a standard Brownian motion, almost surely generates a curve, which we
will denote by γ (·, κ) or γ κ . But we do not know whether given a Brownian motion
B, almost surely all driving functions

√
κB, κ ≥ 0, simultaneously generate a curve.

Furthermore, simulations suggest that for a fixed sample of B, the curve γ κ changes
continuously in κ , but only partial proofs have been found so far. We remark that
this question is not trivial to answer because in general, the trace does not depend
continuously on its driver, as [14, Example 4.49] shows.

In [10] the authors show that in the range κ ∈ [0, 8(2−√
3)[ ≈ [0, 2.1[, the answer

to both of the above questions is positive. Our result Theorem 3.2 improves the range
to κ ∈ [0, 8/3[.

We will often use the following bounds for the moments of | f̂ ′t (iy)| that have
been shown by Johansson Viklund and Lawler [9]. In order to state them, we use the
following notation. Let κ ≥ 0. Set

rc = rc(κ) := 1

2
+ 4

κ
,

λ(r) = λ(κ, r) := r
(
1+ κ

4

)
− κr2

8
,

ζ(r) = ζ(κ, r) := r − κr2

8

(17)

for r < rc(κ).
With the scaling invariance of SLE, [9, Lemma 4.1] implies the following.

Lemma 3.1 [5, Lemma 2.1]2 Let κ > 0, r < rc(κ). There exists a constant C < ∞
depending only on κ and r such that for all t, y ∈ ]0, 1]

E[| f̂ ′t (iy)|λ(r)] ≤ Ca(t)yζ(r)

where a(t) = a(t, ζ(r)) = t−ζ(r)/2 ∨ 1.
Moreover, C can be chosen independently of κ and r when κ is bounded away from

0 and ∞, and r is bounded away from −∞ and rc(κ).3

Now, for a standard Brownian motion B, and an SLEκ flow driven by
√

κB, we
write f̂ κ

t , γ
κ , etc.

We also use the following notation from [9].

v(t, κ, y) :=
ˆ y

0
|( f̂ κ

t )′(iu)| du.

2 Note that in [5], λ was called q.
3 Note that in [9], the notation a = 2/κ and q = rc − r is used.
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Observe that v(t, κ, ·) is decreasing in y and

| f̂ κ
t (iy1) − f̂ κ

t (iy2)| ≤
ˆ y2

y1
|( f̂ κ

t )′(iu)| du = |v(t, κ, y1) − v(t, κ, y2)|.

Therefore limy↘0 f̂ κ
t (iy) exists if v(t, κ, y) < ∞ for some y > 0. For fixed t , κ , this

happens almost surely because Lemma 3.1 implies

Ev(t, κ, y) =
ˆ y

0
E|( f̂ κ

t )′(iu)| du < ∞.

So we can define

γ (t, κ) =
{
limy↘0 f̂ κ

t (iy) if the limit exists,

∞ otherwise,

as a random variable. Note that with this definition we can still estimate

|γ (t, κ) − f̂ κ
t (iy)| ≤ v(t, κ, y).

3.1 Almost sure regularity of SLE in (t,�)

In this subsection, we prove our first main result.

Theorem 3.2 Let 0 < κ− < κ+ < 8/3. Let B be a standard Brownian motion. Then
almost surely the SLEκ trace γ κ driven by

√
κB exists for all κ ∈ [κ−, κ+]. Moreover,

there exists a random variable C, depending on κ−, κ+, such that

|γ (t, κ) − γ (s, κ̃)| ≤ C(|t − s|α + |κ − κ̃|η)

for all t, s ∈ [0, 1], κ, κ̃ ∈ [κ−, κ+] where α, η > 0 depend on κ+. Moreover, C can
be chosen to have finite λth moment for some λ > 1.

The theorem should be still true near κ ≈ 0 (Without any integrability statement
for C , it is shown in [10].), but due to complications in applying Lemma 3.1 (cf. [10,
Proof of Lemma 3.3]), we decided to omit it.

As in [5], we will estimate moments of the increments of γ , using Lemma 3.1.
We need to be a little careful, though, when applying Lemma 3.1, that the exponents
do depend on κ . Since we are going to apply that estimate a lot, let us agree on the
following.

For every κ > 0, we will choose some rκ < rc(κ), and we will call λκ = λ(κ, rκ)

and ζκ = ζ(κ, rκ) [where rc, λ, and ζ are defined in (17)]. (The exact choices of rκ
will be decided later.)

We will use the following moment estimates.
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Proposition 3.3 Let 0 < κ− < κ+ < ∞. Let t, s ∈ [0, 1], κ, κ̃ ∈ [κ−, κ+], and
p ∈ [1, 1+ 8

κ+ [. Then (with the above notation) if λκ ≥ 1, then

E|γ (t, κ) − γ (s, κ)|λκ ≤ C(a(t, ζκ) + a(s, ζκ)) |t − s|(ζκ+λκ )/2,

E|γ (s, κ) − γ (s, κ̃)|p ≤ C |√κ − √
κ̃|p,

where C < ∞ depends on κ−, κ+, p, and the choice of rκ (see above).

Remark 3.4 Note that |√κ −√
κ̃| ≤ C |κ − κ̃| if κ, κ̃ are bounded away from 0.

The first estimate is just [5, Lemma 3.2].
The second estimate follows from the following result (which we will prove in

Sect. 5) and Fatou’s lemma.

Proposition 3.5 Let 0 < κ− < κ+ < ∞ and κ, κ̃ ∈ [κ−, κ+]. Let t ∈ [0, T ],
δ ∈ ]0, 1], and |x | ≤ δ. Then, for 1 ≤ p < 1 + 8

κ+ , there exists C < ∞, depending
on κ−, κ+, T , and p, such that

E| f̂ κ
t (x + iδ) − f̂ κ̃

t (x + iδ)|p ≤ C |√κ −√
κ̃|p.

If p > 1 + 8
κ+ , then for any ε > 0 there exists C < ∞, depending on κ−, κ+, T , p,

and ε, such that

E| f̂ κ
t (x + iδ) − f̂ κ̃

t (x + iδ)|p ≤ C |√κ −√
κ̃|pδ1+ 8

κ+ −p−ε
.

Remark 3.6 Following the proof of [10], in particular using [10, Lemma 2.3] and
Lemma 3.1, we can show

E| f̂ κ
t (x + iδ) − f̂ κ̃

t (x + iδ)|2λ−ε ≤ C |√κ − √
κ̃|2λ−εδ−λ+ζ−ε.

If we use this estimate instead, we can estimate

|γ (t, κ) − γ (s, κ̃)| ≤ |γ (t, κ) − γ (s, κ)| + |γ (s, κ) − γ (s, κ̃)|
≤ |γ (t, κ) − γ (s, κ)|
+ |γ (s, κ) − f̂ κ

s (iy)| + | f̂ κ
s (iy) − f̂ κ̃

s (iy)| + | f̂ κ̃
s (iy) − γ (s, κ̃)|

with y = |�κ|. Then, with

E|γ (t, κ) − γ (s, κ)|λ ≤ C |t − s|(ζ+λ)/2,

E|γ (s, κ) − f̂ κ
s (iy)|λ ≤ Cyζ+λ = C |κ − κ̃|ζ+λ,

E| f̂ κ
s (iy) − f̂ κ̃

s (iy)|2λ−ε ≤ C |κ − κ̃|ζ+λ−ε,

Theorem 2.8 applies if (
ζ+λ
2 )−1 + (ζ + λ)−1 < 1 ⇐⇒ ζ + λ > 3, which happens

when κ ∈ [0, 8(2−√
3)[ ∪ ]8(2+√

3),∞[ and with an appropriate choice of r .
Hence, we recover the continuity of SLE in the same range as in [10].
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Notice that for fixed κ > 0 the maximal value that ζ + λ can attain is κ
4

( 1
2 + 4

κ

)2
which is (for κ < 8) less than p = 1 + 8

κ
as in our Proposition 3.3. In other words,

Proposition 3.3 is really an improvement to [10].

Below we write x+ = x ∨ 0 for x ∈ R.

Corollary 3.7 Under the same conditions as in Proposition 3.5 we have

E|( f̂ κ
t )′(iδ) − ( f̂ κ̃

t )′(iδ)|p ≤ C |√κ −√
κ̃|pδ−p−(p−1− 8

κ̃
+ε)+

where C < ∞ depends on κ−, κ+, T , p, and ε.

Proof For a holomorphic function f :H → H, Cauchy Integral Formula tells us that

f ′(iδ) = 1

i2π

ˆ
α

f (w)

(w − iδ)2
dw

where we let α be a circle of radius δ/2 around iδ. Consequently,

|( f̂ κ
t )′(iδ) − ( f̂ κ̃

t )′(iδ)| ≤ 1

2π

ˆ
α

| f̂ κ
t (w) − f̂ κ̃

t (w)|
δ2/4

|dw|.

For all w on the circle α we have �w ∈ [δ/2, 3δ/2] and �w ∈ [−δ/2, δ/2].
Therefore Proposition 3.5 implies

E| f̂ κ
t (w) − f̂ κ̃

t (w)|p ≤ C |�√
κ|pδ−(p−1− 8

κ̃
+ε)+ .

By Minkowski’s inequality,

E|( f̂ κ
t )′(iδ) − ( f̂ κ̃

t )′(iδ)|p ≤
(

1

2π

ˆ
α

(E| f̂ κ
t (w) − f̂ κ̃

t (w)|p)1/p
δ2/4

|dw|
)p

,

and the result follows since the length of α is πδ. ��
With Proposition 3.3, we can now apply Theorem 2.8 to construct a Hölder con-

tinuous version of the map γ = γ (t, κ), whose Hölder constants have some finite
moments.

There is just one detail we still have to take into consideration. In order to apply
Theorem 2.8, we have to use one common exponent λ on the entire range of κ where
we want to apply the GRR lemma. Of course, we can choose new values for λ again
when we consider a different range of κ .

Alternatively, we could formulate our GRR version to allow exponents to vary with
the parameters. But this will not be necessary since we can break our desired interval
for κ into subintervals.
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Proof of Theorem 3.2 Consider the joint SLEκ process in some range κ ∈ [κ−, κ+].
We can assume that the interval [κ−, κ+] is so small that λ(κ) and ζ(κ) are almost
constant. Otherwise, break [κ−, κ+] into small subintervals and consider each of them
separately.

We perform the proof in three parts. First we construct a continuous version γ̃

of γ using Theorem 2.8. Then, using Lemma 2.1, we show that γ̃ is jointly Hölder
continuous in both variables. Finally, we show that for each κ , the path γ̃ (·, κ) is
indeed the SLEκ trace generated by

√
κB.

Part 1For the first part, wewould like to apply Theorem2.8. There is just one technical
detail we need to account for. In the estimates of Proposition 3.3, there is a singularity
at time t = 0, butwe have not formulated Theorem2.8 to allowC ′ to have a singularity.
Therefore, it is easier to apply Theorem 2.8 on the domain [ε, 1]×[κ−, κ+]with ε > 0.
With ε ↘ 0, we obtain a continuous version of γ on the domain ]0, 1] × [κ−, κ+].
Due to the local growth property of Loewner chains, wemust have limt↘0 γ (t, κ) = 0
uniformly in κ , so we actually have a continuous version of γ on [0, 1] × [κ−, κ+].4

Now we apply Proposition 3.3 on the domain [ε, 1] × [κ−, κ+]. For this, we pick
λ ≥ 1, rκ < rc(κ), and p ∈ [1, 1+ 8

κ+ [ in such a way that λκ = λ for all κ ∈ [κ−, κ+].
The condition to apply Theorem 2.8 is then (

ζ+λ
2 )−1 + p−1 < 1.

A computation shows that ζ + λ = κ
4 r
(
1+ 8

κ
− r

)
attains its maximal value

κ
4

( 1
2 + 4

κ

)2
at r = 1

2 + 4
κ
= rc. Note also that λ(rc) = 1+ 2

κ
+ 3

32κ > 1. Recall from
above that we can pick any p < 1+ 8

κ
. Therefore, the condition for the exponents is

2
κ
4

( 1
2 + 4

κ

)2 + 1

1+ 8
κ

< 1 ⇐⇒ κ <
8

3
.

This completes the first part of the proof and gives us a continuous random field γ̃ .
Part 2 Now that we have a random continuous function γ̃ , we can apply Lemma
2.1. As in the proof of Theorem 2.8, we show that the integrals (6) and (7) have finite
expectation, and therefore are almost surelyfinite.Denoting |A1(t, s; κ)| := |γ (t, κ)−
γ (s, κ)|, |A2(s; κ, κ̃)| := |γ (s, κ) − γ (s, κ̃)|, and the corresponding integrals by
M1, M2, we have by Proposition 3.3

EM1 �
˚

(a(t) + a(s))|t − s|(ζ+λ)/2−β1 dt ds dκ,

EM2 �
˚

|κ − κ̃|p−β2 ds dκ d κ̃ .

Picking β1 = ζ+λ
2 + 1− ε, β2 = p + 1− ε, the condition for the exponents is again

(
ζ+λ
2 )−1 + p−1 < 1. Additionally, we need to account for the singularity at t = 0 in

the first integrand. This is not a problem if the function a(t) = t−ζ/2 ∨ 1 is integrable.

4 Alternatively, we could also use the same strategy as in the proof of Theorem 2.8, and deduce the result
directly from Lemma 2.1.
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To make a(t) = t−ζ/2 ∨ 1 integrable, we would like to have ζ < 2.5 Recall that
ζ = r − κr2

8 from (17). In case κ > 1, we always have ζ < 2. In case κ ≤ 1, we have
ζ < 2 for r < 4

κ
(1−√

1− κ), or equivalently λ(r) < 3−√
1− κ . Therefore we can

certainly find r such that ζ < 2 and ζ + λ ≈ 2+ (3−√
1− κ), and p ≈ 9 < 1+ 8

κ
.

The condition (
ζ+λ
2 )−1 + p−1 < 1 is still fulfilled.

This proves the statements about the Hölder continuity of γ̃ .
Part 3 In the final part, we show that for each κ , the path γ̃ (·, κ) is indeed the SLEκ

trace generated by
√

κB.
First, we fix a countable dense subset K in [κ−, κ+]. There exists a set �1 of

probability 1 such that for all ω ∈ �1, all κ ∈ K, γ (κ, t) exists and is continuous in t .
Since γ̃ is a version of γ , for all t ,

P
(
γ (t, κ) = γ̃ (t, κ) for all κ ∈ K) = 1.

Hence, there exists a set �2 with probability 1 such that for all ω ∈ �2, we have
γ (t, κ) = γ̃ (t, κ) for all κ ∈ K and almost all t . Restricted to ω ∈ �3 = �1 ∩ �2,
the previous statement is true for all κ ∈ K and all t . We claim that on the set �3 of
probability 1, the path t �→ γ̃ (t, κ) is indeed the SLEκ trace driven by

√
κB. This can

be shown in the same way as [16, Theorem 4.7].
Indeed, fix t ∈ [0, 1] and let Ht = f κ

t (H). We show that Ht is the unbounded
connected component of H\γ̃ ([0, t], κ).6 Find a sequence of κn ∈ K with κn → κ

and let ( f κn
t ) be the corresponding inverse Loewner maps. Since

√
κn B → √

κB,
the Loewner differential equation implies that f κn

t → f κ
t uniformly on each com-

pact set of H. By the chordal version of the Carathéodory kernel theorem (see
[17, Theorem 1.8]) which can be easily shown with the obvious adaptions, it fol-
lows that Hκn

t → Ht in the sense of kernel convergence. Since κn ∈ K, we have
Hκn
t = H\γ ([0, t], κn) = H\γ̃ ([0, t], κn). Therefore, the definitions of kernel con-

vergence and the uniform continuity of γ̃ imply that Ht is the unbounded connected
component of H\γ̃ ([0, t], κ). ��

By Theorem 3.2, we now know that with probability one, the SLEκ trace γ =
γ (t, κ) is jointly continuous in [0, 1] × [κ−, κ+]. Similarly, applying Corollary 2.14,
we can show the following.

Theorem 3.8 Let 0 < κ− < κ+ < 8/3. Let γ κ be the SLEκ trace driven by
√

κB,
and assume it is jointly continuous in (t, κ) ∈ [0, 1] × [κ−, κ+]. Consider γ κ as an
element of C0([0, 1]) (with the metric ‖ · ‖∞).

Then for some 0 < p < 1/η (with η from Theorem 3.2), the p-variation of κ �→ γ κ ,
κ ∈ [κ−, κ+], is a.s. finite and bounded by some random variable C, depending on
κ−, κ+, that has finite λth moment for some λ > 1.

We know that for fixed κ ≤ 4, the SLEκ trace is almost surely simple. It is natural
to expect that there is a common set of probability 1 where all SLEκ traces, κ < 8/3,
are simple. This is indeed true.

5 Alternatively, we can drop this condition if we make statements about the SLEκ process only on t ∈ [ε, 1]
for some ε > 0.
6 Actually, there is only one component because it will turn out that γ̃ (·, κ) is a simple trace.
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Theorem 3.9 Let B be a standard Brownian motion. We have with probability 1 that
for all κ < 8/3 the SLEκ trace driven by

√
κB is simple.

Proof As shown in [18, Theorem 6.1], due to the independent stationary increments
of Brownian motion, this is equivalent to saying that K κ

t ∩ R = {0} for all t and κ ,
where K κ

t = {z ∈ H | T κ
z ≤ t} (the upper index denotes the dependence on κ).

Let (gt (x))t≥0 satisfy (15) with g0(x) = x and driving function U (t) = √
κBt .

Then Xt = gt (x)−√
κBt√

κ
satisfies

dXt = 2/κ

Xt
dt − dBt ,

i.e. X is a Bessel process of dimension 1+ 4
κ
. The statement K κ

t ∩R = {0} is equivalent
to saying that Xs �= 0 for all x �= 0 and s ∈ [0, t]. This is a well-known property of
Bessel processes, and stated in the lemma below. ��
Lemma 3.10 Let B be a standard Brownian motion and suppose that we have a family
of stochastic processes Xκ,x , κ, x > 0, that satisfy

Xκ,x
t = x + Bt +

ˆ t

0

2/κ

Xκ,x
s

ds, t ∈ [0, Tκ,x ]

where Tκ,x = inf{t ≥ 0 | Xκ,x
t = 0}.

Then we have with probability 1 that Tκ,x = ∞ for all κ ≤ 4 and x > 0.

Proof For fixed κ ≤ 4, see e.g. [14, Proposition 1.21]. To get the result simultaneously
for all κ , use the property that if κ < κ̃ and x > 0, then Xκ,x

t > X κ̃,x
t for all t > 0,

which follows from Grönwall’s inequality. ��

3.2 Stochastic continuity of SLE� in �

In the previous section, we have shown almost sure continuity of SLEκ in κ (in the
range κ ∈ [0, 8/3[). Weaker forms of continuity are easier to prove, and hold on a
larger range of κ .Wewill showhere that stochastic continuity (also continuity in Lq (P)

sense for some q > 1 depending on κ) for all κ �= 8 is an immediate consequence of
our estimates. Below we write ‖ f ‖Cα[a,b] := sup | f (t)− f (s)|

|t−s|α , with sup taken over all
s < t in [a, b].
Theorem 3.11 Let κ > 0, κ �= 8. Then there exists α > 0, q > 1, r > 0, and C < ∞
(depending on κ) such that if κ̃ is sufficiently close to κ (where “sufficiently close”
depends on κ), then

E

[
‖γ (·, κ) − γ (·, κ̃)‖qCα[0,1]

]
≤ C |κ − κ̃|r .

In particular, if κn → κ exponentially fast, then ‖γ (·, κ) − γ (·, κn)‖Cα[0,1] → 0
almost surely.
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Note that without sufficiently fast convergence of κn → κ it is not clear whether
we can pass from Lq -convergence to almost sure convergence.

Proof Fix κ, κ̃ �= 8. We apply Corollary 2.11 to the function G : [0, 1] → C,
G(t) = γ (t, κ) − γ (t, κ̃). We have

|G(t) − G(s)| ≤ (|γ (t, κ) − γ (s, κ)| + |γ (t, κ̃) − γ (s, κ̃)|) 1|t−s|≤|κ−κ̃|
+ (|γ (t, κ) − γ (t, κ̃)| + |γ (s, κ) − γ (s, κ̃)|) 1|t−s|>|κ−κ̃|

=: A1(t, s) + A2(t, s)

where by Proposition 3.3

E|A1(t, s)|λ ≤ C(a1(t) + a1(s)) |t − s|(ζ+λ)/2 1|t−s|≤|κ−κ̃|,
E|A2(t, s)|p ≤ C |κ − κ̃|p 1|t−s|>|κ−κ̃|,

for suitable λ ≥ 1, p ∈ [1, 1+ 8
κ
[.

It follows that, for β1, β2 > 0,

E

¨ |A1(t, s)|λ
|t − s|β1 dt ds ≤ C

¨
|t−s|≤|κ−κ̃|

(a1(t) + a1(s)) |t − s|(ζ+λ)/2−β1 dt ds

≤ C |κ − κ̃|(ζ+λ)/2−β1+1,

E

¨ |A2(t, s)|p
|t − s|β2 dt ds ≤ C |κ − κ̃|p

¨
|t−s|>|κ−κ̃|

|t − s|−β2 dt ds

≤ C |κ − κ̃|p−β2+1

if ζ < 2 and β1 <
ζ+λ
2 + 1.

Recall that if κ �= 8 and κ̃ is sufficiently close to κ , then the parameters λ, ζ are
almost the same for κ and κ̃ , and (see the proof of Theorem3.2) they can be picked such
that ζ < 2 and ζ +λ > 2. Hence, we can pick β1, β2 > 2 such that 2 < β1 <

ζ+λ
2 +1

and 2 < β2 < 1+ p < 2+ 8
κ
.

The result follows from Corollary 2.11, where we take α = β1−2
λ

∧ β2−2
p and

q = λ ∧ p, which implies

E

[
‖G‖qCα[0,1]

]
≤ CE

[(¨ |A1(t, s)|λ
|t − s|β1 dt ds

)q/λ

+
(¨ |A2(t, s)|p

|t − s|β2 dt ds

)q/p
]

.

��
Corollary 3.12 For any κ > 0, κ �= 8 and any sequence κn → κ we then have
‖γ κ − γ κn‖p-var;[0,1] → 0 in probability, for any p > (1+ κ/8) ∧ 2.

Proof Theorem 3.11 immediately implies the statement with ‖·‖∞. To upgrade the
result to Hölder and p-variation topologies, recall the following general fact which
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follows from the interpolation inequalities for Hölder and p-variation constants (see
e.g. [6, Proposition 5.5]):

Suppose Xn , X are continuous stochastic processes such that for every ε > 0
there exists M > 0 such that P(‖Xn‖p-var;[0,T ] > M) < ε for all n. If Xn → X in
probability with respect to the ‖·‖∞ topology, then alsowith respect to the p′-variation
topology for any p′ > p. The analogous statement holds for Hölder topologies with
α′ < α ≤ 1.

In order to apply this fact, we can use [5, Theorem 5.2 and 6.1] which bound the
moments of ‖γ ‖p-var and ‖γ ‖Cα . The values for p and α have also been computed
there. ��

4 Convergence results

Here we prove a stronger version of Theorem 3.2, namely uniform convergence (even
convergence in Hölder sense) of f̂ κ

t (iy) as y ↘ 0. For this result, we really use the
full power of Lemma 2.1 (actually Lemma 2.13 as we will explain later). We point
out that this is a stronger result than Theorem 1.1, and that our previous proofs of
Theorem 1.1 and 1.2 do not rely on this section.

The Hölder continuity in Theorem 3.2 induces an (inhomogeneous) Hölder space,
with (inhomogeneous) Hölder constant that we denote by

‖γ ‖Cα,η := sup
(t,κ) �=(s,κ̃)

|γ (t, κ) − γ (s, κ̃)|
|t − s|α + |κ − κ̃|η .

As before, we write

v(t, κ, y) =
ˆ y

0
|( f̂ κ

t )′(iu)| du.

Theorem 4.1 Let κ− > 0, κ+ < 8/3. Then ‖v(·, ·, y)‖∞;[0,1]×[κ−,κ+] ↘ 0 almost

surely as y ↘ 0. In particular, f̂ κ
t (iy) converges uniformly in (t, κ) ∈ [0, 1]×[κ−, κ+]

as y ↘ 0.
Moreover, both functions converge also almost surely in the same Hölder space

Cα,η([0, 1] × [κ−, κ+]) as in Theorem 3.2.
Moreover, the (random) Hölder constants of v(·, ·, y) and (t, κ) �→ |γ (t, κ) −

f̂ κ
t (iy)| satisfy

E[‖v(·, ·, y)‖λ
Cα,η ] ≤ Cyr and E[‖γ (·, ·) − f̂ ·· (iy)‖λ

Cα,η ] ≤ Cyr

for some λ > 1, r > 0 and C < ∞, and all y ∈ ]0, 1].

As a consequence, we obtain also an improved version of [10, Lemma 3.3].
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Corollary 4.2 Let κ− > 0, κ+ < 8/3. Then there exist β < 1 and a random variable
c(ω) < ∞ such that almost surely

sup
(t,κ)∈[0,1]×[κ−,κ+]

|( f̂ κ
t )′(iy)| ≤ c(ω)y−β

for all y ∈ ]0, 1].

Proof By Koebe’s 1/4-Theorem we have y|( f̂ κ
t )′(iy)| ≤ 4 dist( f̂ κ

t (iy), ∂Hκ
t ) ≤

4v(t, κ, y). Theorem 4.1 and the Borel–Cantelli lemma imply

‖v(·, ·, 2−n)‖∞ ≤ 2−nr ′

for some r ′ > 0 and sufficiently large (depending on ω) n. The result then follows by
Koebe’s distortion theorem (with β = 1− r ′). ��

The same method as Theorem 4.1 can be used to show the existence and Hölder
continuity of the SLEκ trace for fixed κ �= 8, avoiding a Borel-Cantelli argument. The
best way of formulating this result is the terminology in [5].

For δ ∈ ]0, 1[, q ∈ ]1,∞[, define the fractional Sobolev (Slobodeckij) semi-norm
of a measurable function x : [0, 1] → C as

‖x‖W δ,q :=
(ˆ 1

0

ˆ 1

0

|x(t) − x(s)|q
|t − s|1+δq

ds dt

)1/q

.

As a consequence of the (classical) one-dimensional GRR inequality (see [6, Corollary
A.2 and A.3]), we have that for all δ ∈ ]0, 1[, q ∈ ]1,∞[ with δ − 1/q > 0, there
exists a constant C < ∞ such that for all x ∈ C[0, 1] we have

‖x‖Cα [s,t] ≤ C‖x‖W δ,q [s,t]

and

‖x‖p-var;[s,t] ≤ C |t − s|α‖x‖W δ,q [s,t],

where p = 1/δ and α = δ − 1/q, and ‖x‖Cα[s,t] and ‖x‖p-var;[s,t] denote the Hölder
and p-variation constants of x , restricted to [s, t].

Fix κ ≥ 0, and as before, let

v(t, y) =
ˆ y

0
| f̂ ′t (iu)| du.

Recall the notation (17), and let λ = λ(r), ζ = ζ(r) with some r < rc(κ).
The following result is proved similarly to Theorem 4.1.
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Theorem 4.3 Let κ �= 8. Then for some α > 0 and some p < 1/α there almost surely
exists a continuous γ : [0, 1] → H such that the function t �→ f̂t (iy) converges in Cα

and p-variation to γ as y ↘ 0.

More precisely, let κ ≥ 0 be arbitrary, ζ < 2 and δ ∈
]
0, λ+ζ

2λ

[
. Then there exists

a random measurable function γ : [0, 1] → H such that

E‖v(·, y)‖λ
W δ,λ ≤ Cyλ+ζ−2δλ and E‖γ − f̂·(iy)‖λ

W δ,λ ≤ Cyλ+ζ−2δλ

for all y ∈ ]0, 1], where C is a constant that depends on κ , r , and δ. Moreover, a.s.
‖v(·, y)‖W δ,λ → 0 and ‖γ − f̂·(iy)‖W δ,λ → 0 as y ↘ 0.

If additionally δ ∈
]
1
λ
,

λ+ζ
2λ

[
, then the same is true for ‖ · ‖1/δ-var and ‖ · ‖Cα where

α = δ − 1/λ.

Remark 4.4 The conditions for the exponents are the same as in [5]. In particular, the
result applies to the (for SLEκ ) optimal p-variation and Hölder exponents.

Proof of Theorem 4.1 We use the same setting as in the proof of Theorem 3.2. For
κ ≤ κ+ < 8/3, we choose p ∈ [1, 1 + 8

κ+ [, rκ < rc(κ), λ(κ, rκ) = λ ≥ 1, and the
corresponding ζκ = ζ(κ, rκ) as in the proof of Theorem 3.2. Again, we assume that
the interval [κ−, κ+] is small enough so that λ(κ) and ζ(κ) are almost constant.
Step 1 We would like to show that v and f̂ (defined above) are Cauchy sequences
in the aforementioned Hölder space as y ↘ 0. Therefore we will take differences
|v(·, ·, y1) − v(·, ·, y2)| and | f̂ (iy1) − f̂ (iy2)|, and estimate their Hölder norms with
our GRR lemma. Note that it is not a priori clear that v(t, κ, y) is continuous in (t, κ),
but |v(t, κ, y1) − v(t, κ, y2)| = ´ y2

y1
|( f̂ κ

t )′(iu)| du certainly is, so the GRR lemma
can be applied to this function.

Consider the function

G(t, κ) := v(t, κ, y) − v(t, κ, y1) =
ˆ y

y1
|( f̂ κ

t )′(iu)| du.

The strategy will be to show that the condition of Lemma 2.1 is satisfied almost
surely for G. As in the proof of Kolmogorov’s continuity theorem, we do this by
showing that the expectation of the integrals (6), (7) are finite (after defining suitable
A1 j , A2 j ) and converge to 0 as y ↘ 0. In particular, they are almost surely finite, so
Lemma 2.1 then implies that G is Hölder continuous, with Hölder constant bounded
in terms of the integrals (6), (7).

We would like to infer that almost surely the functions v(·, ·, y), y > 0, form a
Cauchy sequence in the Hölder spaceCα,η. But this is not immediately clear, therefore
we will bound the integrals (6), (7) by expressions that are decreasing in y. We will
also define A1 j , A2 j here.

In order to do so, we estimate

|G(t, κ) − G(s, κ̃)|
≤
ˆ y

0

∣∣∣|( f̂ κ
t )′(iu)| − |( f̂ κ

s )′(iu)|
∣∣∣ du +

ˆ y

0

∣∣∣|( f̂ κ
s )′(iu)| − |( f̂ κ̃

s )′(iu)|
∣∣∣ du
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≤
ˆ y

0
|( f̂ κ

t )′(iu) − ( f̂ κ
s )′(iu)| du +

ˆ y

0
|( f̂ κ

s )′(iu) − ( f̂ κ̃
s )′(iu)| du

=: A1∗(t, s; κ) + A2∗(s; κ, κ̃),

Moreover, the function Ĝ(t, κ) := f̂ κ
t (iy) − f̂ κ

t (iy1) also satisfies

|Ĝ(t, κ) − Ĝ(s, κ̃)| ≤ A1∗(t, s; κ) + A2∗(s; κ, κ̃).

Therefore all our considerations for G apply also to Ĝ.
We want to estimate the difference |( f̂ κ

s )′(iu) − ( f̂ κ̃
s )′(iu)| differently for small

and large u (relatively to |�κ|), therefore we split A2∗ into

A2∗(s; κ, κ̃) =
ˆ y∧|κ−κ̃|p/(ζ+λ)

0
|( f̂ κ

s )′(iu) − ( f̂ κ̃
s )′(iu)| du

+
ˆ y

y∧|κ−κ̃|p/(ζ+λ)

|( f̂ κ
s )′(iu) − ( f̂ κ̃

s )′(iu)| du
=: A21(s; κ, κ̃)

+ A22(s; κ, κ̃).

Wewould like to apply Lemma 2.1 with these choices of A1∗, A21, A22. We denote
the integrals (6), (7) by

M1∗ :=
˚ |A1∗(t, s; κ)|λ

|t − s|β1 ds dt dκ,

M21 :=
˚ |A21(s; κ, κ̃)|λ

|κ − κ̃|β2 ds dκ d κ̃,

M22 :=
˚ |A22(s; κ, κ̃)|p

|κ − κ̃|β2 ds dκ d κ̃ .

Suppose that we can show that

E[M1∗] � yr , E[M2 j ] � yr

for some r > 0. This would imply that they are almost surely finite, and that G and Ĝ
are Hölder continuous with ‖G‖Cα,η � M1/λ

A∗ + M1/λ
21 + M1/p

22 (same for Ĝ).
Notice that now A1∗, A21, A22, hence also MA∗, M21, M22 are decreasing in y. So

as we let y, y1 ↘ 0, it would follow that

• E[‖G‖λ
Cα,η ] � yr

′ → 0 (same for Ĝ) with a (possibly) different r ′ > 0. In
particular, as y ↘ 0, the random functions v(·, ·, y) and (t, κ) �→ f̂ κ

t (iy) form
Cauchy sequences in Lλ(P;Cα,η), and it follows that also E[‖v(·, ·, y)‖λ

Cα,η ] �
yr

′ → 0 and E[‖γ (·, ·) − f̂ ·· (iy)‖λ
Cα,η ] � yr

′ → 0 as y ↘ 0.
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• By the monotonicity of MA∗, M21, M22 in y we have that almost surely the func-
tions v(·, ·, y) and (t, κ) �→ f̂ κ

t (iy) are Cauchy sequences in the Hölder space
Cα,η.

This will show Theorem 4.1.
Step 2We now explain that in fact, our definition of A1∗ does not always suffice, and
we need to define A1 j a bit differently in order to get the best estimates. The new
definition of A1 j will satisfy only the relaxed condition (14) [instead of (5)].

The reason is that, when |t−s| ≤ u2, | f̂t (iu)− f̂s(iu)| is estimated by an expression
like | f̂ ′s (iu)||Bt − Bs | which is of the order O(|t − s|1/2). The same is true for the
difference | f̂ ′t (iu)− f̂ ′s (iu)| [see (20) below].When we carry out the moment estimate
for our choice of A1∗, then we will get

E|A1∗(t, s; κ)|λ = O(|t − s|λ/2).

But recall from Proposition 3.3 that

E|γ (t) − γ (s)|λ ≤ C |t − s|(ζ+λ)/2,

which has allowed us to apply Lemma 2.1 with β1 ≈ ζ+λ
2 +1 in the proof of Theorem

3.2. When ζ > 0, this was better than just λ/2.
To fix this, we need to adjust our choice of A1 j . In particular, we should not evaluate

E| f̂ ′t (iu)− f̂ ′s (iu)|λ whenu � |t−s|1/2 (here “�”means “much larger”).As observed
in [9], | f̂ ′s (iu)| does not change much in time when u � |t − s|1/2. More precisely,
we have the following results.

Lemma 4.5 Let (gt ) be a chordal Loewner chain driven by U, and f̂t (z) = g−1
t (z +

U (t)). Then, if t, s ≥ 0 and z = x + iy ∈ H such that |t − s| ≤ C ′y2, we have

| f̂ ′t (z)| ≤ C | f̂ ′s (z)|
(
1+ |U (t) −U (s)|2

y2

)l

, (18)

| f̂t (z) − f̂s(z)| ≤ C | f̂ ′s (z)|
(
|t − s|

y
+ |U (t) −U (s)|

(
1+ |U (t) −U (s)|2

y2

)l
)

,

(19)

| f̂ ′t (z) − f̂ ′s (z)| ≤ C | f̂ ′s (z)|
(
|t − s|
y2

+ |U (t) −U (s)|
y

(
1+ |U (t) −U (s)|2

y2

)l
)

,

(20)

where C < ∞ depends on C ′ < ∞, and l < ∞ is a universal constant.

Proof The first two inequalities (18) and (19) follow from [9, Lemma 3.5 and 3.2].
The third inequality (20) follows from (19) by the Cauchy integral formula in the same
way as in Corollary 3.7. Note that for z ∈ H and w on a circle of radius y/2 around
z, we have | f̂ ′s (w)| ≤ 12| f̂ ′s (z)| by the Koebe distortion theorem. ��
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We now redefine A1 j . Let

A11(t, s; κ) =
ˆ y∧|t−s|1/2

0
| f̂ ′t (iu) − f̂ ′s (iu)| du,

A12(t, s; κ) =
ˆ y

y∧|t−s|1/2
|t − s|
u2

| f̂ ′s (iu)| du,

A13(t, s; κ) =
ˆ y∧2|t−s|1/2

y∧|t−s|1/2
u−1| f̂ ′s (iu)|

(
1+ ‖B‖

C1/2(−)

)2l+1 |t − s|1/2(−)

du,

for s ≤ t , where the exponents 1/2(−) < 1/2 denote some numbers that we can pick
arbitrarily close to 1/2. (Of course, f̂t still depends on κ , but for convenience we do
not write it for now.)

Note that the integrands in A12 and A13 just make fancy bounds of

| f̂ ′t (iu) − f̂ ′s (iu)|,

according to (20). But now, in A13 we are not integrating up to y any more. Thus, the
condition (5) is not satisfied any more. But the relaxed condition (14) of Lemma 2.13
is still satisfied. Indeed, by (20),

A1∗(t, s; κ) ≤ A11(t, s; κ) +
ˆ y

y∧|t−s|1/2
| f̂ ′t (iu) − f̂ ′s (iu)| du

≤ A11(t, s; κ) + A12(t, s; κ)

+
ˆ y

y∧|t−s|1/2
u−1| f̂ ′s (iu)|

(
1+ ‖B‖

C1/2(−)

)l+1 |t − s|1/2(−)

du

where by (18)

ˆ y

y∧|t−s|1/2
u−1| f̂ ′s (iu)|

(
1+ ‖B‖

C1/2(−)

)l+1 |t − s|1/2(−)

du

=
�log4(y2/|t−s|)�∑

k=0

ˆ y∧2(4k |t−s|)1/2

y∧(4k |t−s|)1/2
. . .

=
�log4(y2/|t−s|)�∑

k=0

4−k(1/2(−))|A13(t1 + 4k(t − t1), t1 + 4k(s − t1); κ)|

whenever |s−t1| ≤ 2|t−s| (implying |s−(t1+4k(s−t1))| ≤ (4k−1)2|t−s| ≤ 2u2).
Finally, with this definition of A13, we truly have E|A13(t, s; κ)|λ(−) = O(|t −

s|(ζ+λ)(−)/2) and not just O(|t − s|λ/2); here λ(−) < λ is an exponent that can be
chosen arbitrarily close to λ.
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Proposition 4.6 With the above notation and assumptions, if 1 < β1 <
ζ+λ
2 + 1,

1 < β2 < p + 1, we have

E

˚ |A1 j (t, s; κ)|λ
|t − s|β1 ds dt dκ ≤ Cyζ+λ−2β1+2

¨
a(s, ζκ) ds dκ, j = 1, 2,

E

˚ |A13(t, s; κ)|λ(−)

|t − s|β1 ds dt dκ ≤ Cy(ζ+λ)(−)−2β1+2
¨

a(s, ζκ)1
(−)

ds dκ,

E

˚ |A21(s; κ, κ̃)|λ
|κ − κ̃|β2 ds dκ d κ̃ ≤ Cy(ζ+λ)(p−β2+1)/p

¨
a(s, ζκ) ds dκ,

E

˚ |A22(s; κ, κ̃)|p
|κ − κ̃|β2 ds dκ d κ̃ ≤ Cy(ζ+λ)(p−β2+1)/p,

where C depends on κ−, κ+, λ, p, β1, β2.

Proof These follow from direct computationsmaking use of Lemma 3.1 and Corollary
3.7. They can be found in the appendix of the arXiv version of this paper. ��

Recall that the condition for Lemma 2.1 is (β1 − 2)(β2 − 2) − 1 > 0. With
β1 <

λ+ζ
2 + 1, β2 < p + 1 this is again the condition (

ζ+λ
2 )−1 + p−1 < 1, which

leads to κ < 8
3 .Moreover, we need the additional condition β1−2

λ
< 1/2(−) for Lemma

2.13, which is implied by ζ < 2.
The same analysis of λ and ζ as in the proof of Theorem 3.2 applies here. This

finishes the proof of Theorem 4.1. ��

5 Proof of Proposition 3.5

The proof is based on the methods of [10,15].
Let t ≥ 0 and U ∈ C([0, t];R). We study the chordal Loewner chain (gs)s∈[0,t] in

H driven by U , i.e. the solution of (15). Let V (s) = U (t − s) −U (t), s ∈ [0, t], and
consider the solution of the reverse flow

∂shs(z) = −2

hs(z) − V (s)
, h0(z) = z. (21)

The Loewner equation implies ht (z) = g−1
t (z +U (t)) −U (t) = f̂t (z) −U (t).

Let xs + iys = zs = zs(z) = hs(z) − V (s). Recall that

∂s log |h′
s(z)| = 2

x2s − y2s
(x2s + y2s )

2

and therefore

|h′
s(z)| = exp

(
2
ˆ s

0

x2ϑ − y2ϑ
(x2ϑ + y2ϑ)2

dϑ

)
.
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For r ∈ [0, t], denote by hr ,s the reverse Loewner flow driven by V (s) − V (r),
s ∈ [r , t]. More specifically,

∂s(hr ,s(zr (z)) + V (r)) = −2

(hr ,s(zr (z)) + V (r)) − V (s)
,

hr ,r (zr (z)) + V (r) = zr (z) + V (r) = hr (z),

which implies from (21) that

hr ,s(zr (z)) + V (r) = hs(z)

and zr ,s(zr (z)) = zs(z) for all s ∈ [r , t].

This implies also

|h′
r ,s(zr (z))| = exp

(
2
ˆ s

r

x2ϑ − y2ϑ
(x2ϑ + y2ϑ)2

dϑ

)
.

The following result is essentially [10, Lemma 2.3], stated in a more refined way.

Lemma 5.1 Let V 1, V 2 ∈ C([0, t];R), and denote by (h j
s ) the reverse Loewner flow

driven by V j , j = 1, 2, respectively. For z = x + iy, denoting x j
s + iy j

s = z js =
h j
s (z) − V j (s), we have

|h1t (z) − h2t (z)|
≤ 2(y2 + 4t)1/4

ˆ t

0
|V 1(s) − V 2(s)| 1

|z1s z2s |
1

(y1s y
2
s )

1/4 |(h1s,t )′(z1s )(h2s,t )′(z2s )|1/4 ds.

Proof The proof of [10, Lemma 2.3] shows that

|h1t (z) − h2t (z)|

≤
ˆ t

0
|V 1(s) − V 2(s)| 2

|z1s z2s |
exp

(
2
ˆ t

s

x1ϑ x
2
ϑ − y1ϑ y

2
ϑ

((x1ϑ)2 + (y1ϑ)2)((x2ϑ)2 + (y2ϑ)2)
dϑ

)
ds.

The claim follows by estimating

2
ˆ t

s

x1ϑ x
2
ϑ − y1ϑ y

2
ϑ

((x1ϑ)2 + (y1ϑ)2)((x2ϑ)2 + (y2ϑ)2)
dϑ

≤ 2
ˆ t

s

x1ϑ x
2
ϑ

((x1ϑ)2 + (y1ϑ)2)((x2ϑ)2 + (y2ϑ)2)
dϑ

≤
∏
j=1,2

(
2
ˆ t

s

(x j
ϑ)2

((x j
ϑ)2 + (y j

ϑ)2)2
dϑ

)1/2
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=
∏
j=1,2

(
1

2

ˆ t

s

2((x j
ϑ)2 − (y j

ϑ)2)

((x j
ϑ)2 + (y j

ϑ)2)2
dϑ + 1

2

ˆ t

s

2

(x j
ϑ)2 + (y j

ϑ)2
dϑ

)1/2

=
∏
j=1,2

(
1

2
log |(h j

s,t )
′(z js )| + 1

2
log

y j
t

y j
s

)1/2

≤
∑
j=1,2

(
1

4
log |(h j

s,t )
′(z js )| + 1

4
log

y j
t

y j
s

)

and y j
t ≤ √

y2 + 4t . (In the last line we used
√
ab ≤ a+b

2 for a, b ≥ 0.) ��

5.1 Takingmoments

Let κ, κ̃ > 0, and let V 1 = √
κB, V 2 = √

κ̃B, where B is a standard Brownian
motion. In the following, C will always denote a finite deterministic constant that
might change from line to line.

Lemma 5.1 and the Cauchy–Schwarz inequality imply

E|h1t (z) − h2t (z)|p

≤ C |�√
κ|p E

∣∣∣∣
ˆ t

0
|Bs | 1

|z1s z2s |
1

(y1s y
2
s )

1/4 |(h1s,t )′(z1s )(h2s,t )′(z2s )|1/4 ds
∣∣∣∣
p

≤ C |�√
κ|p E

∏
j=1,2

∣∣∣∣∣
ˆ t

0
|Bs | 1

|z js |2
1

(y j
s )1/2

|(h j
s,t )

′(z js )|1/2 ds
∣∣∣∣∣
p/2

≤ C |�√
κ|p

∏
j=1,2

(
E

∣∣∣∣∣
ˆ t

0
|Bs | 1

|z js |2
1

(y j
s )1/2

|(h j
s,t )

′(z js )|1/2 ds
∣∣∣∣∣
p)1/2

. (22)

Now the flows for κ and κ̃ can be studied separately. We see that as long as the
above integral is bounded, then E|�√

κh
κ
t (z)|p � |�√

κ|p. Heuristically, the typical
growth of ys is like

√
s, as was shown in [15]. Therefore, we expect the integrand to

be bounded by s1/2−1−1/4−β/4 = s−(3+β)/4 which is integrable since β = β(κ) < 1
for κ �= 8.

In order to make the idea precise, we will reparametrise the integral in order to
match the setting in [15] and apply their results.

5.2 Reparametrisation

Let κ > 0. In [15], the flow

∂s h̃s(z) = −a

h̃s(z) − B̃s
, h̃0(z) = z, (23)
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with a = 2

κ
is considered. To translate our notation, observe that

∂shs/κ (z) = −2/κ

hs/κ (z) −√
κBs/κ

.

If we let B̃s = √
κBs/κ , then

hs/κ (z) = h̃s(z) �⇒ hs(z) = h̃κs(z).

Moreover, if we let z̃s = h̃s(z) − B̃s , then zs = hs(z) − √
κBs = z̃κs .

Therefore,

ˆ t

0
|Bs | 1

|zs |2
1

y1/2s

|h′
s,t (zs)|1/2 ds =

ˆ t

0

∣∣∣∣
1√
κ
B̃κs

∣∣∣∣
1

|z̃κs |2
1

ỹ1/2κs

|h̃′
κs,κt (z̃κs)|1/2 ds

=
ˆ κt

0
κ−3/2|B̃s | 1

|z̃s |2
1

ỹ1/2s

|h̃′
s,κt (z̃s)|1/2 ds.

For notational simplicity, we will write just t instead of κt and B, hs, zs instead of
B̃, h̃s, z̃s .

In the next step, we will let the flow start at z0 = i instead of iδ. Observe that

∂s(δ
−1hδ2s(δz)) = −a

δ−1hδ2s(δz) − δ−1Bδ2s
,

so we can write hs(δz) = δh̃s/δ2(z) where (h̃s) is driven by δ−1Bδ2s =: B̃s . Note that

h̃′
s/δ2

(z) = h′
s(δz). As before, we denote zs = hs(δz) − Bs and z̃s = h̃s(z) − B̃s ,

where zs = δz̃s/δ2 . Consequently,

ˆ t

0
|Bs | 1

|zs |2
1

y1/2s

|h′
s,t (zs)|1/2 ds

=
ˆ t

0
|δ B̃s/δ2 |

1

δ2|z̃s/δ2 |2
1

δ1/2 ỹ1/2
s/δ2

|h̃′
s/δ2,t/δ2(z̃s/δ2)|1/2 ds

= δ−3/2
ˆ t

0
|B̃s/δ2 |

1

|z̃s/δ2 |2
1

ỹ1/2
s/δ2

|h̃′
s/δ2,t/δ2(z̃s/δ2)|1/2 ds

= δ1/2
ˆ t/δ2

0
|B̃s | 1

|z̃s |2
1

ỹ1/2s

|h̃′
s,t/δ2(z̃s)|1/2 ds.

Again, for notational simplicity we will stop writing the ˜ from now on.
Now, let z0 = i , and (cf. [15])

σ(s) = inf{r | yr = ear } =
ˆ s

0
|zσ(r)|2 dr
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which is random and strictly increasing in s.
Then

δ1/2
ˆ t/δ2

0
|Bs | 1

|zs |2
1

y1/2s

|h′
s,t/δ2(zs)|1/2 ds

= δ1/2
ˆ σ−1(t/δ2)

0
|Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds.

This is the integral we will work with.
To sum it up, we have the following.

Proposition 5.2 Let z ∈ H, and (hs(δz))s≥0 satisfy (21) with V (s) = √
κBs and a

standard Brownian motion B, and (h̃s(z))s≥0 satisfy (23) with a standard Brownian
motion B̃. Let xs + iys = zs = hs(δz)−V (s), and x̃s + i ỹs = z̃s = h̃s(z)− B̃s . Then,
with the notations above,

ˆ t

0
|Bs | 1

|zs |2
1

y1/2s

|h′
s,t (zs)|1/2 ds

has the same law as

κ−3/2δ1/2
ˆ σ−1(κt/δ2)

0
|B̃σ(s)| 1

ỹ1/2σ(s)

|h̃′
σ(s),κt/δ2(z̃σ(s))|1/2 ds.

(Recall that ỹσ(s) = eas .)

5.3 Main proof

In the following, we fix κ ∈ [κ−, κ+], a = 2

κ
, and let (hs(x + i))s≥0 satisfy (23) with

initial point z0 = x + i , |x | ≤ 1.
Our goal is to estimate

E

∣∣∣∣∣δ
1/2

ˆ σ−1(t/δ2)

0
|Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds

∣∣∣∣∣
p

= E

∣∣∣∣∣δ
1/2

ˆ ∞

0
1σ(s)≤t/δ2 |Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds

∣∣∣∣∣
p

.

With (22) and Proposition 5.2 this will complete the proof of Proposition 3.5.
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From the definition of σ it follows that σ(s) ≥ ´ s
0 e2ar dr = 1

2a (e2as − 1), or
equivalently, σ−1(t) ≤ 1

2a log(1+ 2at). Therefore, σ−1(t/δ2) ≤ 1
a log

C
δ
and

E

∣∣∣∣∣δ
1/2

ˆ σ−1(t/δ2)

0
|Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds

∣∣∣∣∣
p

≤ δ p/2

⎛
⎝
ˆ 1

a log C
δ

0

(
E

[
1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|p/2

])1/p

ds

⎞
⎠

p

(24)

where we have applied Minkowski’s inequality to pull the moment inside the integral.
To proceed, we need to know more about the behaviour of the reverse SLE flow,

which also incorporates the behaviour of σ . This has been studied in [15]. Their tool
was to study the process Js defined by sinh Js = xσ(s)

yσ(s)
= e−as xσ(s). By [15, Lemma

6.1], this process satisfies

d Js = −rc tanh Js ds + dWs

where Ws = ´ σ(s)
0

1
|zr | dBr is a standard Brownian motion and rc is defined in (17).

The following results have been originally stated for an equivalent probability mea-
sure P∗, depending on a parameter r , such that

d Js = −q tanh Js ds + dW ∗
s

with q > 0 and a process W ∗ that is a Brownian motion under P∗. But setting the
parameter r = 0, we have P∗ = P, q = rc, and W ∗ = W . Therefore, under the
measure P, the results apply with q = rc.

Note also that although the results were originally stated for a reverse SLE flow
starting at z0 = i , they can be written for flows starting at z0 = x + i without change
of the proof. One just uses [15, Lemma 7.1 (28)] with cosh J0 = √

1+ x2.

Recall that [9,15] use the notation sinh Js = xσ(s)
yσ(s)

and hence cosh2 Js = 1+ x2
σ(s)

y2
σ(s)

.

Lemma 5.3 [9, Lemma 5.6] Suppose z0 = x + i . There exists a constant C < ∞,
depending on κ−, κ+, such that for each s ≥ 0, u > 0 there exists an event Eu,s with

P(Ec
s,u) ≤ C(1+ x2)rcu−2rc

on which

σ(s) ≤ u2e2as and 1+ x2σ(s)

y2σ(s)

≤ u2/4.
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Fix s ∈ [0, t]. Let

Eu =
{

σ(s) ≤ u2e2as and 1+ x2σ(s)

y2σ(s)

≤ u2
}

and An = Eexp(n)\Eexp(n−1) for n ≥ 1, and A0 = E1. Then

P(An) ≤ P(Ec
exp(n−1)) ≤ C(1+ x2)rc e−2rcn . (25)

(The constant C may change from line to line.)

Lemma 5.4 (see proof of [9, Lemma 5.7]) Suppose z0 = x + i . There exists C < ∞,
depending on κ−, and a global constant α > 0, such that for all s ≥ 0, u >

√
1+ x2,

and k > 2a we have

P

(
σ(s) ≤ u2e2as and 1+ x2σ(s)

y2σ(s)

≥ u2ek
)

≤ C(1+ x2)rcu−2rc e−α(k−2a)2 .

We proceed to estimating

E

[
1An1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|p/2

]

= E

[
1An1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2σ(s)

E

[
|h′

σ(s),t/δ2(zσ(s))|p/2 | Fσ(s)

]]
(26)

where F is the filtration generated by B.
Note that yσ(s) = eas by the definition of σ . Moreover, on the set An , the Brownian

motion is easy to handle since by Hölder’s inequality

E[1An1σ(s)≤t/δ2 |Bσ(s)|p] ≤ E

[
1An1σ(s)≤t/δ2 sup

r∈[0,e2ne2as ]
|Br |p

]

≤ P(An ∩ {σ(s) ≤ t/δ2})1−ε
E

[
sup

r∈[0,e2ne2as ]
|Br |p/ε

]ε

≤ C P(An ∩ {σ(s) ≤ t/δ2})1−ε enpepas (27)

for any ε > 0.

It remains to handle E
[
|h′

σ(s),t/δ2
(zσ(s))|p/2 | Fσ(s)

]
.

The following result is well-known and follows from the Schwarz lemma and
mapping the unit disc to the half-plane.

Lemma 5.5 Let f :H → H be a holomorphic function. Then | f ′(z)| ≤ �( f (z))
�(z) for all

z ∈ H.
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Recall that the Loewner equation implies

�(hσ(s),t/δ2(zσ(s))) = yt/δ2 ≤
√
1+ 2at/δ2 ≤ Cδ−1.

Let ε > 0. By the lemma above, we can estimate

E

[
|h′

σ(s),t/δ2(zσ(s))|p/2 | Fσ(s)

]

≤ (δyσ(s))
−(1−ε)p/2

E

[
|h′

σ(s),t/δ2(zσ(s))|εp/2 | Fσ(s)

]
. (28)

From [9, Lemma 3.2] it follows that there exists some l > 0 such that

|h′
σ(s),t/δ2(zσ(s))| ≤ C

(
1+ x2σ(s)

y2σ(s)

)l

|h′
σ(s),t/δ2(iyσ(s))|. (29)

We claim that

E

[
|h′

σ(s),t/δ2(iyσ(s))|εp/2 | Fσ(s)

]
≤ C (30)

if ε > 0 is sufficiently small.
To see this, first recall that for small ε > 0 we have

E
[|h′

t (i)|ε
] ≤ C (31)

uniformly in t ≥ 1. This follows from [9, Theorem 5.4] or, even more elementary,
from the proof of [18, Theorem 3.2].

Now approximate σ(s) by simple stopping times σ̃ ≥ σ(s). A possible choice is
σ̃ =  σ(s)2n!2−n ∧ t/δ2. It suffices to show

E

[
|h′

σ̃ ,t/δ2(iyσ(s))|εp/2 | Fσ(s)

]
≤ C

and then apply Fatou’s lemma to pass to the limit.
Now that σ̃ is simple, we can apply (31) on each set Fr = {σ̃ = r}. Using the

strong Markov property of Brownian motion and the scaling invariance of SLE, we
get

E

[
1Fr |h′

σ̃ ,t/δ2(ie
as)|εp/2 | Fσ(s)

]
= 1FrE

[
|h′

r ,t/δ2(ie
as)|εp/2

]

= 1FrE
[
|h′

e−2as(t/δ2−r)(i)|εp/2
]

≤ 1Fr C

and the claim follows.
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Combining (28)–(30), we have

E

[
|h′

σ(s),t/δ2(zσ(s))|p/2 | Fσ(s)

]
≤ C δ−(1−ε)p/2 y−(1−ε)p/2

σ(s)

(
1+ x2σ(s)

y2σ(s)

)lεp/2

≤ C δ−(1−ε)p/2 e−(1−ε)pas/2

(
1+ x2σ(s)

y2σ(s)

)lεp/2

(32)

where on the set An we have

1+ x2σ(s)

y2σ(s)

≤ e2n .

Proceeding from (26), we get from (32) and (27)

E

[
1An1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2σ(s)

E

[
|h′

σ(s),t/δ2(zσ(s))|p/2 | Fσ(s)

]]

≤ C E

[
1An1σ(s)≤t/δ2 |Bσ(s)|p e−pas/2 δ−(1−ε)p/2 e−(1−ε)pas/2enlεp

]

≤ C δ−(1−ε)p/2 enlεp e−pas+εpas/2
P(An ∩ {σ(s) ≤ t/δ2})1−ε enpepas

= C δ−(1−ε)p/2 enp+nlεp eεpas/2
P(An ∩ {σ(s) ≤ t/δ2})1−ε. (33)

We would like to sum this expression in n.

Proposition 5.6 Let σ(s) and An be defined as above. Then

∑
n∈N

enp+nlεp
P(An ∩ {σ(s) ≤ t/δ2})1−ε

≤
{
C if p + lεp − 2rc(1− ε) < 0

C(e−as√t/δ)p+lεp−2rc(1−ε) if p + lεp − 2rc(1− ε) > 0

where C < ∞ depends on κ−, κ+, p, and ε.

Proof We distinguish two cases. If n ≤ log(
√
t/δ) − as + 1+ a, we have [by (25)]

∑

n≤log(
√
t/δ)−as+1+a

enp+nlεp
P(An)

1−ε

≤ C
∑

n≤log(
√
t/δ)−as+1+a

enp+nlεpe−2nrc(1−ε)

≤
{
C if p + lεp − 2rc(1− ε) < 0

C(e−as√t/δ)p+lεp−2rc(1−ε) if p + lεp − 2rc(1− ε) > 0.
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For n > log(
√
t/δ) − as + 1+ a, we have e2(n−1)e2as > t/δ2 and therefore (by

the definition of An)

An ∩ {σ(s) ≤ t/δ2} ⊆ Ec
en−1 ∩ {σ(s) ≤ t/δ2}

⊆
{

σ(s) ≤ t/δ2 and 1+ x2σ(s)

y2σ(s)

> e2(n−1)

}
,

so Lemma 5.4, applied to u = e−as√t/δ and k = 2(n − 1) − 2(log(
√
t/δ) − as),

implies

P(An ∩ {σ(s) ≤ t/δ2}) ≤ C (e−as√t/δ)−2rc e−α(2(n−1)−2(log(
√
t/δ)−as)−2a)2

= C (e−as√t/δ)−2rc e−2α(n−(log(
√
t/δ)−as+1+a))2 .

Consequently,

∑

n>log(
√
t/δ)−as+1+a

enp+nlεp
P(An ∩ {σ(s) ≤ t/δ2})1−ε

≤ C(e−as√t/δ)p+lεp
∑
n∈N

enp+nlεp (e−as√t/δ)−2rc(1−ε) e−2α(1−ε)n2

≤ C(e−as√t/δ)p+lεp−2rc(1−ε).

��
Hence, by (33) and Proposition 5.6,

E

⎡
⎣1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2
σ(s)

|h′
σ(s),t/δ2 (zσ(s))|p/2

⎤
⎦

=
∞∑
n=0

E

⎡
⎣1An1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2
σ(s)

|h′
σ(s),t/δ2 (zσ(s))|p/2

⎤
⎦

≤
{
C δ−(1−ε)p/2 eεpas/2 if p + lεp − 2rc(1− ε) < 0

C δ−(1−ε)p/2 (e−as√t/δ)p+lεp−2rc(1−ε) eεpas/2 if p + lεp − 2rc(1− ε) > 0.

(34)

Finally, if p + lεp − 2rc(1− ε) < 0, we estimate (24) with (34), so

E

∣∣∣∣∣δ
1/2

ˆ σ−1(t/δ2)

0
|Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds

∣∣∣∣∣
p

≤ δ p/2

⎛
⎝
ˆ 1

a log C
δ

0

(
E

[
1σ(s)≤t/δ2 |Bσ(s)|p 1

y p/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|p/2

])1/p

ds

⎞
⎠

p
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≤ Cδ p/2

(ˆ 1
a log C

δ

0

(
δ−(1−ε)p/2 eεpas/2

)1/p
ds

)p

= Cδεp/2

(ˆ 1
a log C

δ

0
eεas/2 ds

)p

≤ C .

Since ε > 0 can be chosen as small as we want, the condition to apply this is
p < 2rc = 1+ 8

κ
.

On the other hand, if p + lεp − 2rc(1− ε) > 0, we have

E

∣∣∣∣∣δ
1/2

ˆ σ−1(t/δ2)

0
|Bσ(s)| 1

y1/2σ(s)

|h′
σ(s),t/δ2(zσ(s))|1/2 ds

∣∣∣∣∣
p

≤ Cδ p/2

(ˆ 1
a log C

δ

0

(
δ−(1−ε)p/2 (e−as√t/δ)p+lεp−2rc(1−ε) eεpas/2

)1/p
ds

)p

≤ Cδεp/2−(p+lεp−2rc(1−ε))

(ˆ 1
a log C

δ

0
eas(ε/2−(1+lε−2rc(1−ε)/p)) ds

)p

≤
{
C if ε/2− (1+ lε − 2rc(1− ε)/p) > 0

Cδεp/2−(p+lεp−2rc(1−ε)) if ε/2− (1+ lε − 2rc(1− ε)/p) < 0

=
{
C if 2rc(1− ε) − p(1+ ε(l − 1/2)) > 0

Cδ2rc(1−ε)−p(1+ε(l−1/2)) if 2rc(1− ε) − p(1+ ε(l − 1/2)) < 0.

Since ε > 0 can be chosen as small as we want, the condition to apply this is
p > 2rc = 1+ 8

κ
, and the exponent can be chosen to be greater than 2rc − p− ε′ for

any ε′ > 0.
With this estimate for (24), the proof of Proposition 3.5 is complete.
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