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Abstract
We prove exponential decay of transverse correlations in the Spin O(N ) model for
arbitrary non-zero values of the external magnetic field and arbitrary spin dimension
N > 1. Our result is new when N > 3, in which case no Lee–Yang theorem is
available, it is an alternative to Lee–Yang when N = 2, 3, and also holds for a wide
class ofmulti-component spin systemswith continuous symmetry. The key ingredients
are a representation of the model as a system of coloured random paths, a ‘colour-
switch’ lemma, and a sampling procedure which allows us to bound from above the
‘typical’ length of the open paths.

Mathematics Subject Classification 60K35, 60K37, 82B20

List of symbols
N {0, 1, . . .}
N>0 {1, 2, . . .}
G = (V, E) An undirected, simple, finite graph
G = (V , E) The graph G together with the ghost vertex g
e ∈ E or {x, y} ∈ E Undirected edges
x ∼ y Two neighbour vertices, i.e, x, y ∈ V such that {x, y} ∈ E
N ∈ N>0 The number of colours
[N ] {1, . . . , N }
dx , d∗

G The graph degree of x ∈ V and maxx∈V dx
dG(x, y) The graph distance between x and y
MG The set of link cardinalities onG (with G possibly replacing G)
CG(m) The set of colourings for m ∈ MG
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PG(m, c) The set of pairing configurations form ∈ MG and c ∈ CG(m)

w = (m, c, π) A wire configuration with m ∈ MG , c ∈ CG(m), and π ∈
PG(m, c)

WG The set of wire configurations on G
nix (w) The local time of i-objects at x
nx (w)

∑N
i=1 n

i
x (w)

uix (w) The number of unpaired i-links at x
vix (w) The number of pairings of i-links at x
ZG,N ,β,U (x, y) The total weight of configurations with a 1-path from x to y
GG,N ,β,U (x, y) The two-point function between x and y in the random path

model

1 Introduction

The Spin O(N )model is a classical statistical mechanics model whose configurations
are collections of unit vectors, called spins, taking values on the surface of a N − 1
dimensional unit sphere, SN−1 ⊂ R

N , with each spin associated to the vertex of a
graph. Some special cases of the Spin O(N ) model are the Ising model (N = 1), the
XYmodel (N = 2), and the classical Heisenberg model (N = 3). Despite the fact that
it is a very classical model, there remain important gaps in understanding, particularly
in the case N > 2. This paper addresses a basic and important question, namely how
fast do correlations between spins decay with the distance between their associated
vertices when a non-zero external magnetic field is present? More concretely, we
consider transverse correlations in the presence of an external magnetic field parallel
to the eN cartesian vector of arbitrary non-zero intensity, namely correlations between
the i th component of the spins for any i ∈ {1, . . . , N − 1}. Our main result states that,
for anyvalueof the inverse temperature and anynon-zerovalueof the externalmagnetic
field, transverse correlations decay exponentially fast with the graph distance between
the two vertices (in the literature one refers to the exponential decay of correlations as
amass-gap condition). Our proof method is probabilistic, it uses a new representation
of the model as a system of random walks and loops, which employs colours and
pairings, and a sampling procedure which allows us to stochastically bound the length
of a random walks of a given colour by ‘exploring’ the realisation ‘step by step’, thus
enabling a comparison with a simpler stochastic process.

When N = 1, 2, 3, the mass-gap condition for arbitrary non-zero value of the
external field is a consequence of the cluster expansion and of the celebrated Lee–
Yang theorem (see the recent papers [11,12], an alternative approach for the N = 1
case is presented in [15]). The Lee–Yang theorem was proved in [14] when N = 2
(in the same paper results involving the N > 2 cases are also derived, but these
require anisotropic coupling constants), and in [2,10,17] when N = 3, by taking an
appropriate limit of the corresponding quantum system. In the absence of a Lee–Yang
theorem when N > 3, the cluster expansion provides only perturbative results, i.e, the
mass-gap condition can only be proven for large enough (positive or negative) values
of the external magnetic field.
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Our result is new when N > 3 and, for any N > 1, our method provides a new
direct proof of the mass-gap condition for transverse correlations bypassing the Lee–
Yang analiticity result and the cluster expansion. Additionally, our proof is also quite
flexible and, for example, it holds for any graph of bounded degree; it holds onZd with
finite range (not necessarily translation invariant) coupling constants, and it holds for
a class of models with continuous symmetry whose interaction does not necessarily
take the form e−H (withH representing the hamiltonian function) – these models are
‘less physical’ but they lead to interesting random loop models, for example the loop
O(N) model [8,9,16,19] (see Sect. 5.2), see also [3,5] for related models.

1.1 Model andmain result

Wedefine the Spin O(N )model on an arbitrary graphwith uniform coupling constants
and zero boundary conditions and we refer to Sect. 5.2 for extensions. Consider a
finite simple graph G = (V, E) and, for N ∈ N>0, define the configuration space
�G,N := (SN−1)V , whereSN−1 ⊂ R

N is the N−1dimensional unit sphere. Forβ ≥ 0
and h ∈ R we introduce the hamiltonian function acting on ϕ = (ϕx )x∈V ∈ �G,N ,

Hspin
G,N ,β,h(ϕ) = −β

∑

{x,y}∈E
ϕx · ϕy − h

∑

x∈V
ϕN
x , (1.1)

where · denotes the usual inner product onRN , the first sum is over undirected edges,
and ϕi

x is the i
th component of the vector ϕx ∈ S

N−1 ⊂ R
N . We define the expectation

operator 〈·〉spinG,N ,β,h acting on f : �G,N → R by

〈 f 〉spinG,N ,β,h = 1

Zspin
G,N ,β,h

∫

�G,N

dϕ f (ϕ) e−Hspin
G,N ,β,h(ϕ)

, (1.2)

where dϕ = ∏
x∈V dϕx is a product measure with dϕx the uniform measure on SN−1

and Zspin
G,N ,β,h is a normalising constant that ensures 〈1〉spinG,N ,β,h = 1. Our main result

concerns correlations between spins ϕx , ϕy when the graph distance from x to y,
dG(x, y), is large. For any x ∈ V , define the random variable Sx : �G,N 
→ S

N−1

representing the spin at x as, Sx (ϕ) := ϕx , moreover we represent its components as
Sx = (S1x , . . . , S

N
x ).

Theorem 1.1 Let G be an infinite simple graph with bounded degree. For any h �= 0,
β ≥ 0 and N ∈ N≥2 there are positive constants c0 = c0(G, β, h, N ) and C0 =
C0(G, β, h, N ) such that for any finite sub-graph of G, G̃ = (Ṽ, Ẽ), any x, y ∈ Ṽ , we
have that,

〈S1x S1y〉spinG̃,N ,β,h
≤ C0e

−c0 dG(x,y), (1.3)

where dG(x, y) denotes the graph distance between x and y in G. Moreover, the choice
of c0 can be made so that, c0 = O(h2) in the limit as h → 0.
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Our result also holds for non-zero boundary conditions, onZd with finite range (not
necessarily translation invariant) coupling constants, for spin systems whose measure
is not necessarily in the form e−H and for other types of correlation functions, see
extensions in Sect. 5.2.

1.2 Proof method

The first step of the proof is a representation of the Spin O(N ) model as a system
of random undirected walks and loops, which may overlap and intersect each other.
We collectively refer to walks and loops as paths. Each path is given a colour i ∈
{1, . . . , N } and the measure involves an on-site weight function that penalises large
numbers of overlaps. This representation corresponds to a combination of the ones
introduced in [3,13], which are in turn related to the one of Brydges, Fröhlich and
Spencer [7], and the random current representation of the Ising model [1]. In our
representation a ghost vertex, denoted by g, is added to the graph, with edges to
each other vertex representing the external field. The correlation between the first
component of the spins at x and y can be written as a ratio of two partition functions,
the one in the denominator refers to a gas of loops of any colour and walks of colour
N (N -walks) with both end-points at the ghost vertex, the one in the numerator has,
in addition, a 1-walk with end-points x and y.

The first (simple, but important) step of our analysis is a ‘colour-switch lemma’.
We use a map which ‘transforms’ the partition function in the numerator by switching
the colour of the 1-walk to N and adding two more steps to the walk that connect
its end-points to the ghost vertex. This transformation allows us to show that the spin
correlation equals the expected number of N -walks with their two last steps on the
edges {x, g} and {y, g}.

By the colour-switch lemma, deriving the exponential decay of transverse cor-
relations is equivalent to showing that the expected number of such N -walks is
exponentially small with respect to dG(x, y). The general idea of the proof is that
every walk which starts from the edge {x, g} has a positive probability to be paired to
the ghost vertex at each of its steps, thus ‘dying’ at that step, hence it cannot be too long.

The two main mathematical ingredients for turning such a simple description into
a rigorous proof are: (i) An upper bound on the distribution of the local times, which
is defined as the number of visits of walks or loops to a vertices. A small local time
is required since we can show that the probability that a walk ‘dies’ at a given vertex
is uniformly bounded away from 0 if the local time at that vertex not too large. (ii) A
sampling procedure, which consists of sampling the random path configuration step
by step by exploiting the spatial Markov property, thus controlling the various (many)
dependencies by enabling the comparison with simpler stochastic processes.
Organisation In Sect. 2 we introduce the random path representation of the Spin
O(N ) model in the presence of an external magnetic field and present the colour-
switch lemma. In Sect. 3 we provide bounds for the distribution of the local times. In
Sect. 4 we introduce the sampling procedure. In Sect. 5 we present the proof of our
main theorem and discuss some extensions.
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2 The random path representation

In this section we introduce a random path representation for the Spin O(N ) model
in the presence of an external magnetic field. We refer to this representation as the
Random Path Model (RPM). This representation corresponds to a combination of the
one introduced in [3,13], which was also used in [18] in the study of the dimer model
in Z

d , d ≥ 3, and of the random current representation of the Ising model [1]. Two
key aspects of the representation are pairings and colours, these are two ingredients
which are not present (or necessary) in the N = 1 case [1], the well-known Ising
model, but which play a crucial role in our analysis, which involves the N > 1 cases.
A random loop model (of different nature than ours) was also used in [6] for the study
of quantum spin systems.

2.1 Random pathmodel

We consider a general finite undirected simple graph G = (V, E). Let N ∈ N>0
be the number of colours. A realisation of the RPM can be viewed as a collection
of undirected (closed or open) paths with colours in [N ] := {1, . . . , N }. A path is
identified by a collection of links, a colouring and by pairings.

To begin, denote by m ∈ MG := N
E a collection of links on E . More specifically,

m = (
me
)
e∈E ,

where me ∈ N represents the number of links on e ∈ E . We say a link is incident to
x ∈ V if it is on an edge incident to x .

Given m ∈ MG , a colouring c = (ce)e∈E , with ce : {1, . . . ,me} 
→ [N ] is a
function which assigns an integer (colour) in [N ] to each link. More precisely, we
use (e, p) to represent the pth link on the edge e, with p ∈ {1, . . . ,me}, and we let
c
(
(e, p)

) ∈ [N ] be the colour of the pth link on e ∈ E . A link with colour i ∈ [N ] is
called an i-link. For e ∈ E and i ∈ [N ], we denote by mi

e the number of i-links on e.
We let CG(m) be the set of possible colourings c = (ce)e∈E for m.

Given a link configuration m ∈ MG , and a colouring c ∈ CG(m), we say π =
(πx )x∈V is a pairing of (m, c) if, for each x ∈ V , πx pairs links on the edges incident
to x in such a way that if two links are paired, then they have the same colour. A link
incident to x is paired to at most one other link incident to x and, possibly, it is not
paired to any link at x (formally, πx is a partition of the set of links touching x so that
each element of the partition is a set containing either only one link or two links of
the same colour). We say two links are paired if there is an x ∈ V such that the links
are paired at x . A link can be paired to at most two other links, one at each end point
of its edge. We remark that, by definition, a link cannot be paired to itself. Denote by
PG(m, c) the set of all such pairings form ∈ MG and c ∈ CG(m). Note thatPG(m, c)
generally has many elements, corresponding to the number of ways the links can be
paired.

A wire configuration on G is an element w = (m, c, π) such that m ∈ MG ,
c ∈ CG(m), and π ∈ PG(m, c). Let WG be the set of wire configurations on G. As
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1104 B. Lees, L. Taggi

Fig. 1 A configuration w = (m, c, γ ) ∈ WG , where G corresponds to the graph {1, 2, 3} × {1, 2, 3} with
edges connecting nearest neighbours and the lowest leftmost vertex corresponds to (1, 1). On every edge
e, the links are ordered and receive a label from 1 to me . In the figure, the numbers 1, 2, ... are used for the
identification of the links and the letters b and r are used for the colours which are assigned to the links
by c (we assume that N = 2 and that each link might be either blue or red). Paired links are connected
by a dotted line. For example, the first link on the edge connecting the vertices (1, 1), (2, 1) is coloured
red, it is paired at (1, 1) with the third link on the same edge and it is unpaired at (2, 1). Moreover, both
links touching the vertex (3, 3) are red and they are unpaired at (3, 3). Finally, no link is on the edge which
connects the vertices (1, 2) and (2, 2)

we can see from the example in Fig. 1, it follows that any w ∈ WG can be viewed
as a collection of closed or open paths, open paths will be called walks and closed
paths will be called loops (see the Appendix for a formal definition of such objects).
For example, Fig. 1 presents three loops and four walks. If the links of a loop or a
walk have colour i , we might refer to it as an i-loop or an i-walk respectively. By a
slight abuse of notation, we will also view m : WG 
→ MG as a function such that,
for w′ = (m′, c′, π ′), m(w′) = m′.

Let uix (w) be the number of i-links incident to x which are unpaired at x (i.e. the
number of walk end-points at x). Let vix (w) be the number of i-links incident to x
which are paired to another link at x , divided by two (i.e. the number of times a path
passes through x),

vix (w) := 1

2

(∑

y∼x

mi{x,y} − uix (w)
)
. (2.1)

Moreover, let nix (w) := vix (w)+uix (w) be the local time of i-objects at x . Unpaired
end-points of links touching x and pairs of paired links touching x both contribute +1
to the local time.

Let G = (V, E) be an arbitrary finite simple undirected graph.Wewant to introduce
a representation for the Spin O(N )model on G in the presence of an external magnetic
field. Hence, we introduce a ghost vertex g /∈ V , and the graph G = (V , E), with
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Exponential decay of transverse correlations 1105

V = V ∪ {g} E = E ∪ {{x, g} : x ∈ V}.

We call any edge which is incident to the ghost vertex a ghost edge and any edge which
is not an original edge. We also call any vertex in V an original vertex.

We now introduce the set of configurationW ′
G ⊂ WG such that at the ghost vertex

only unpaired end-points of N -links are allowed, while at the original vertices either
paired links of any colour or unpaired 1-links are allowed. Hence, any configuration
in W ′

G consists of open paths of colour N with both end-points at the ghost vertex,
open paths of colour 1 with end-points at original vertices, and closed paths of any
colour. Closed paths of colour 1, . . . , N − 1 lie entirely in G ⊂ G, as do open paths
of colour 1. We also define a measure on the set W ′

G .

Definition 2.1 We let W ′
G be the set of configurations w ∈ WG such that vN

g (w) =
n1g(w) = . . . = nN−1

g (w) = 0 and u2x (w) = . . . = uN
x (w) = 0 for every x ∈ V . Given

N ∈ N>0, β ∈ R≥0, h ∈ R, we define the non-negative (not necessarily probability)
measure μG,N ,β,h on W ′

G as follows, for any w = (m, c, π) ∈ W ′
G ,

μG,N ,β,h(w) :=
(∏

e∈E

βme

me!
) ( ∏

x∈V

hm{x,g}

m{x,g}!
) ( ∏

x∈V
Ux (w)

)
, (2.2)

where Ux (w) := U(nx (w)), with

∀r ∈ N U(r) := �( N2 )

2r �(r + N
2 )

, (2.3)

and nx = ∑
i n

i
x is the local time at x . Given a function f : W ′

G → R, we
use the same notation for the expectation of f under μG,N ,β,h , μG,N ,β,h( f ) :=∑

w∈W ′
G
f (w) μG,N ,β,h(w).

Notice that, because all open paths necessarily have two end-points, the power of
h in μG,N ,β,h(w) is always even, hence the results we obtain for h and −h will be
identical. With this in mind we will in often take h > 0.

The central quantity of interest is the two-point function. For the definition of the
two-point function we will allow only one walk of colour 1.

Definition 2.2 For A ⊂ V , define S(A) to be the set of configurations w ∈ W ′
G such

that u1z (w) = 1 for every z ∈ A and u1z (w) = 0 for every z ∈ V \ A. We define
ZG,N ,β,h(A) = μG,N ,β,h(S(A)) and Z�

G,N ,β,h = μG,N ,β,h
(S(∅)

)
. Finally, we define

the point-to-point correlation functions by,

GG,N ,β,h(A) := ZG,N ,β,h(A)

Z�
G,N ,β,h

.

We call the cases where |A| = 2 two-point functions. When A = {x, y} for x �= y
we write ZG,N ,β,h(x, y) and GG,N ,β(x, y) for ZG,N ,β,h(A) and GG,N ,β(A) respec-
tively. We also write SG for S(∅).
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1106 B. Lees, L. Taggi

2.2 Equivalence of two-point functions and the ‘colour-switch’ lemma

The next proposition connects the correlation function which was defined above to the
spin correlations of the Spin O(N ) model.

Proposition 2.3 Let G = (V, E) be an undirected, finite, simple graph and let G =
(V , E) be obtained from G by adding a ghost vertex g as described above. Let N ∈
N>0, β ≥ 0 and h ∈ R. We have that,

GG,N ,β,h(A) =
〈 ∏

x∈A

S1x

〉spin

G,N ,β,h
. (2.4)

Proof The proof is very similar to [13, Proposition 2.3], where only the case of A
consisting of two points and no external magnetic field was considered, and to [3,
Proposition 6.1], where other type of correlations and no external magnetic field were
considered. To begin, for A ⊂ V we define

Zspin
G,N ,β,h(A) := Zspin

G,N ,β,h

〈 ∏

x∈A

S1x

〉spin

G,N ,β,h

=
∫

�G,N

dϕ

(
∏

x∈A

ϕ1
x

)

e−Hspin
G,N ,β,h(ϕ)

.

(2.5)

Now we expand the exponential term, we will define ϕg := (0, . . . , 0, 1) in order
to have a consistent notation and cleaner expressions in the expansion. The reader
should understand the the ‘spin’ at g is fixed to (0, . . . , 0, 1). For convenience we will
define a coupling parameter that incorporates β and h. For {x, y} ∈ E and i ∈ [N ]

J i{x,y} =

⎧
⎪⎨

⎪⎩

β if {x, y} ∈ E,

h if g ∈ {x, y} and i = N ,

0 otherwise.

(2.6)

This will enable us to write our expansion in terms of a single variable, J ie , instead
of having to constantly differentiate between different cases. To begin we write the
exponential term as,

exp

{ ∑

{x,y}∈E

N∑

i=1

J i{x,y}ϕi
xϕ

i
y

}

=
∏

{x,y}∈E

N∏

i=1

eJ
i{x,y}ϕi

xϕ
i
y . (2.7)

and expand

eJ
i{x,y}ϕi

xϕ
i
y =

∑

mi{x,y}≥0

(J i{x,y})
mi{x,y}

mi{x,y}!
(ϕi

xϕ
i
y)

mi{x,y} . (2.8)
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For B ⊂ V we define sets

M̃G(B) =
{

m∈MG : ∀x ∈ B
∑

e∈E :x∈e
me ∈ 2N + 1, ∀x ∈ V \ B

∑

e∈E :x∈e
me ∈ 2N

}

(2.9)

MG(B) = M̃G(B) ∩
{

m ∈ MG :
∑

x∈V
m{x,g} = 0

}

. (2.10)

We also define qix (m) = ∑
e�x mi

e and qx (m) = ∑N
i=1 q

i
x (m). We have

Zspin
G,N ,β,h(A)

=
∑

m1∈MG (A)

∑

m2,...,mN−1∈MG (∅)

∑

mN∈M̃G (∅)

[
∏

e∈E

(
N∏

i=1

(J ie )
mi
e

mi
e!

)]

∫

�G,N

dϕ

(
∏

x∈A

(ϕi
x )

qix+1(ϕ2
x )

q2x . . . (ϕN
x )q

N
x

)

⎛

⎝
∏

x∈V \A
(ϕi

x )
qix (ϕ2

x )
q2x . . . (ϕN

x )q
N
x

⎞

⎠ . (2.11)

Now we use the following identity from [8, Appendix A]

∫

SN−1
(ϕ1

o)
n1 . . . (ϕN

o )nN dϕ0 =

⎧
⎪⎨

⎪⎩

�
( N
2

)∏N
i=1(ni−1)!!

2
n
2 �
( n+N

2

) if ni ∈ 2N for i ∈ [N ],
0 otherwise,

(2.12)

with n = ∑N
i=1 ni and o ∈ V . Additionally, we sum over uncoloured link configura-

tions and over ways to distribute the colours of these configurations to obtain

Zspin
G,N ,β,h(A) =

∑

m∈M̃G (A)

(
∏

e∈E

1

me!

)
∑

m1∈MG (A),mN∈M̃G (∅)

m2,...,mN∈MG (∅)
∑N

i=1 m
i=m

(
∏

e∈E

me!
m1

e ! . . .mN
e !

N∏

i=1

(J ie )
mi
e

)

(
∏

x∈A

�
( N
2

)

2(qx+1)/2�
( qx+1+N

2

)q1x !!
N∏

i=2

(qix − 1)!!
)

⎛

⎝
∏

x∈V \A

�
( N
2

)

2qx/2�
( qx+N

2

)

N∏

i=1

(qix − 1)!!
⎞

⎠ . (2.13)
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1108 B. Lees, L. Taggi

Now if q ∈ 2N then (q − 1)!! is the number of pairings of q objects, whereas if
q ∈ 2N + 1 then q!! is the number of pairings of q objects that leaves one object on
its own (i.e. there are (q − 1)/2 tuples and one single object).

For m ∈ M̃G(A) let CG(m, A) be the set of colourings such that for every x ∈ V
the number of 1-links incident to x is odd if x ∈ A and is even otherwise and all links
incident to g are N -links. For i ∈ {2, . . . , N } there are an even number of i-links
incident to x for every x ∈ V .

Further, for m ∈ M̃G(A) and c ∈ CG(m, A) let PG(m, c, A) be the set of pairings
such that there is precisely one unpaired 1-link at each x ∈ A (and no other unpaired
1-links), additionally for i ∈ {2, . . . , N } and every x ∈ V each i-link incident to x is
paired at x and no N -links incident to g are paired. Given such a triple (m, c, π) and
x ∈ V let nx (m, c, π) = ∑N

i=1 n
i
x (m, c, π) be the local time at the vertex x , we have

Zspin
G,N ,β,h(A) =

∑

m∈M̃G (A)

∑

c∈CG (m,A)

(
∏

e∈E

1

me!
N∏

i=1

(J ie )
mi
e

)

∑

π∈PG (m,c,A)

(
∏

x∈A

�
( N
2

)

2nx (m,c,π)�
(
nx (m, c, π) + N

2

)

)

⎛

⎝
∏

x∈V \A

�
( N
2

)

2nx (m,c,π)�
(
nx (m, c, π) + N

2

)

⎞

⎠ .

(2.14)

We used that, if w = (m, c, π) ∈ WG and qx links are incident to x then if x ∈ A,
qx + 1 = 2nx (w). Similarly if x ∈ V \ A then qx = 2nx (w).

Now ifwe defineUx as inDefinition 2.1, we recall the definition ofW ′
G and perform

the same expansion for Zspin
G,N ,β,h = Zspin

G,N ,β,h(∅) we have the result. ��
The previous proposition connects the spin–spin correlation of the Spin O(N )

model to the correlation functions of the random path model. The starting point of our
analysis is Lemma 2.5 below, which connects the two-point correlation function to the
expected number of N -walks with extremal links (defined below Definition 2.4) on
{x, g} and {y, g} in a random path configuration with loops of any colour and N -walks
with both end-points at the ghost vertex (and no walks of colour 1). The next definition
introduces the probability measure and expectation which describes such a random
path model.

Definition 2.4 We define the probability measure on SG ⊂ W ′
G ,

∀w ∈ SG PG,N ,β,h
(
w) := 1

Z�
G,N ,β,h

μG,N ,β,h(w), (2.15)

and we denote by EG,N ,β,h the expectation with respect to PG,N ,β,h .

We now introduce the definition of an extremal link. A link is called extremal if at
least one of its end-points is unpaired. Given a walk consisting of at least two links,
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Exponential decay of transverse correlations 1109

Fig. 2 We suppose that N = 2, we represent the colour 1 by blue and the colour N = 2 by red, we assume
that G is a connected subset of Z with five vertices and edges connecting nearest neighbour vertices and
the vertical links are on edges connecting the vertices of G to g, the ghost vertex is not represented in the
figure. Left: A configuration w ∈ SN ({x, y}) such that Mx,y(w) = 2 (see the definitions in the proof of
Lemma 2.5). Right: A configuration FN (w), which is obtained from w by removing the extremal links of
the two ({x, g}, {y, g}) - extremal walks and by leaving unpaired the links to which such external links were
paired

we call its two links which have an unpaired end-point the extremal links of the walk.
If a walk has its two extremal links on the edges e1, e2 ∈ E , we write that it is (e1, e2)
- extremal. Notice that N -walks have both end-points at the ghost vertex PG,N ,β,h -
almost surely, hence they have at least two links.

The next lemma is key for our approach.

Lemma 2.5 (Colour-Switch lemma). Let N ∈ N≥2, β ≥ 0 and h ∈ R \ {0}. Choose
an arbitrary pair of distinct vertices x, y ∈ V . We let Mx,y be the number of N-walks
which have one extremal link on {x, g} and the other extremal link on {y, g}. Then,

GG,N ,β,h(x, y) = 1

h2
EG,N ,β,h

(
Mx,y

)
. (2.16)

Proof We let SN ({x, y}) ⊂ SG be the set of configurations in SG with no 1-walks
and with at least one N -walk whose extremal links are on the edges {x, g} and {y, g},
recall that S({x, y}) is the set of configurations with a unique 1-walk having x and
y as end-points. The proof consists of partitioning the sets SN ({x, y}) and S({x, y}),
identifying a bijection between the elements of the partition in SN ({x, y}) and those
in S({x, y}), and comparing the weights of such elements.

To begin, we define a map FN : SN ({x, y}) 
→ WG which acts by removing the
extremal links of the ({x, g}, {y, g}) - extremal walks and by leaving unpaired the
links to which these extremal links were paired, as in the example in Fig. 2.

Further, we define a map F1 : S({x, y}) 
→ WG which acts by first applying FN

to w ∈ S({x, y}) (in the analogous way as on SN ({x, y})) and then by changing to
N the colour of all the links belonging to the unique 1-walk with end-points x and y.
We note that

R := F1
(S({x, y})) = FN

(SN ({x, y})) ⊂ WG (2.17)

The configurations in R have at least one N -walk having x and y as end-points.
For any w ∈ R, we let Mr

x,y(w) be the number of N -walks with end-points x and y
in w. We note that, for any w,w′ ∈ R such that w �= w′,

F−1
1 (w) ∩ F−1

1 (w′) = ∅ F−1
N (w) ∩ F−1

N (w′) = ∅. (2.18)
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1110 B. Lees, L. Taggi

Here, for any w ∈ R, F−1
N (w) corresponds to the set of configurations which are

obtained from w by inserting Mr
x,y(w) N -links on {x, g} and {y, g} and by pairing

them at x and y to the links of the Mr
x,y(w) N -walks with end-points x and y in some

arbitrary manner. Similarly, F−1
1 (w) corresponds to the set of configurations which

are obtained from w by choosing one of the N -walks with end-points x and y, turning
the colour of all its links to 1, inserting Mr

x,y(w) − 1 N -links on {x, g} and {y, g}
and pairing them at x and y to the links of the Mr

x,y(w) − 1 remaining N -walks with
end-points x and y in some arbitrary manner. It follows that, if w �= w′ ∈ R, then
each configuration in F−1

1 (w) differs from each configuration in F−1
1 (w′) and the

same holds for F−1
N , giving (2.18).

We note that, for any w′ = (m′, c′, π ′) ∈ R, we have that,

∣
∣F−1

N (w′)
∣
∣ =

(
Mr

x,y(w
′) + m′{x,g}

Mr
x,y(w

′)

)(
Mr

x,y(w
′) + m′{y,g}

Mr
x,y(w

′)

)

(Mr
x,y(w

′)!)2

= (Mr
x,y(w

′) + m′{x,g})!
m′{x,g}!

(Mr
x,y(w

′) + m′{y,g})!
m′{y,g}!

(2.19)

where the first two factors in the right-hand side of the first identity correspond to the
number of ways Mr

x,y(w
′) N -links can be inserted on {x, g} and on {y, g} among the

ones already present inw′ and the third factor corresponds to the number of ways such
new links can be paired at x and y to the Mr

x,y(w
′) links of the N -walks of w′ with

end-points x and y. Similarly, we obtain that,

∣
∣F−1

1 (w′)
∣
∣ = Mr

x,y(w
′)
(
Mr

x,y(w
′) − 1 + m′{x,g}

Mr
x,y(w

′) − 1

)(
Mr

x,y(w
′) − 1 + m′{y,g}

Mr
x,y(w

′) − 1

)

((Mr
x,y(w

′) − 1)!)2

= Mr
x,y(w

′)
(Mr

x,y(w
′) − 1 + m′{x,g})!
m′{x,g}!

(Mr
x,y(w

′) − 1 + m′{y,g})!
m′{y,g}!

,

(2.20)

where the first factor in the right-hand side of the first identity corresponds to the
number of ways for choosing which of the Mr

x,y(w
′) N -walks is turned into an 1-walk

and the remaining weights are analogous to those in the previous display.
We now note that, from Definition 2.1, for any w′ = (m′, c′, π ′) ∈ R and any

w = (m, c, π) ∈ F−1
N (w′), we have that,

μG,N ,β,h(w) =
∏

e∈E

βm′
e

m′
e!

∏

z∈V\{x,y}

hm
′{z,g}

m′{z,g}!
∏

z∈V
Uz(w

′)

∏

z∈{x,y}

hMx,y(w
′)+m′{z,g}

(Mx,y(w′) + m′{z,g})!
. (2.21)
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and, similarly, that for any w′ = (m′, c′, π ′) ∈ R and any w = (m, c, π) ∈ F−1
1 (w′)

we have that,

μG,N ,β,h(w) =
∏

e∈E

βm′
e

m′
e!

∏

z∈V\{x,y}

hm
′{z,g}

m′{z,g}!
∏

z∈V
Uz(w

′)
∏

z∈{x,y}

hMr
x,y(w

′)−1+m′{z,g}

(Mr
x,y(w

′) − 1 + m′{z,g})!
. (2.22)

Note that the two previous displays differ from each other only in the last factor.
Thus, combining the last four displays we deduce that, for any w′ ∈ R,

μG,N ,β,h

(
F−1
1 (w′)

)
= 1

h2
Mr (w′) μG,N ,β,h

(
F−1
N (w′)

)
. (2.23)

The previous identity can be deduced from (2.19), (2.20), (2.21), (2.22) since (2.19)
and (2.20) give the cardinalities of the sets in the left- and right-hand side of (2.23)
respectively and (2.21), (2.22) give the weight of each element of the sets. Thus, we
obtain that,

ZG,N ,β,h(x, y) =
∑

w∈S({x,y})
μG,N ,β,h(w) =

∑

w′∈R

μG,N ,β,h
(
F−1
1 (w′)

)

= 1

h2
∑

w′∈R

μG,N ,β,h
(
F−1
N (w′)

)
Mr

x,y(w
′)

= 1

h2
∑

w∈SN ({x,y})
μG,N ,β,h(w) Mx,y(w)

= 1

h2
∑

w∈SG

μG,N ,β,h(w) Mx,y(w) = Z�
G,N ,β,h

1

h2
EG,N ,β,h

(
Mx,y

)
,

where for the second identity we used (2.18), for the third identity we used (2.23),
for the fourth identity we used again (2.18) and the fact that, for any w′ ∈ R and
w ∈ F−1

N (w′), Mr
x,y(w

′) = Mx,y(w), for the last identity we used Definitions 2.2
and 2.4. From the last expression and Definition 2.2 we deduce (2.16) and conclude
the proof. ��

3 A bound on local times

The next lemma provides an upper bound for the joint distributions of local times of
vertices when the maximum degree of G, d∗

G , is finite. Since the measure in Defini-
tion 2.1 is invariant with respect to a sign inversion of the external magnetic field (the
number of unpaired end-points of N -links can only be even), we can, without loss of
generality, take h ≥ 0. In the whole section we fix an integer N ∈ N>0 and values
β, h ≥ 0.
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1112 B. Lees, L. Taggi

Further notation. Recall that for an arbitrary finite directed graph G = (V, E) we
denote by G = (V , E) the graph obtained from G by adding a ghost vertex, as
described above Definition 2.1. Given a set of original vertices A ⊂ V , we introduce
the following notation for the complement and for the edge and vertex boundaries of
A. We define Ac := V \ A, note that this set only contains original vertices. We let EA

be the set of edges in E which have at least one end-point in A (these can be original
or ghost), we let ∂EA be the set of edges in E which have one end-point in A and the
other end-point in Ac, and we let Eg

A be the set of edges which connect a vertex in A
to the ghost vertex. We denote the external boundary of A by ∂e A - the set of vertices
in x ∈ Ac which have a neighbour in A - and the internal boundary by ∂ i A - the set
of vertices in A which have a neighbour in Ac. By definition, ∂ i A, ∂e A ⊂ V .

Lemma 3.1 For any k ∈ N there exists c1 = c1(d∗
G, k, N , β, h) ∈ (0,∞) satisfying

limk→∞ c1 = 0 such that, for any set A ⊂ V and z ∈ A,

PG,N ,β,h(∀ x ∈ A, nx ≥ k) ≤ c|A|
1 , (3.1)

EG,N ,β,h
(
m{z,g}1l{∀x∈A nx≥k}

) ≤ h c|A|
1 . (3.2)

Proof To begin, we define a measure on SG ,

∀w ∈ SG μ̃(w) := PG,N ,β,h(w) Z�
G,N ,β,h .

We define by 
G the set of elements ξ = (ξ ie)e∈E,i∈[N ] ∈ {0, 1}E×[N ] such that, for
any x ∈ V and i ∈ [N ], we have that∑y∼x ξ i{x,y} ∈ 2N. ξ encodes the parity of the
number of links of any colour i . We have that,

μ̃
(∀x ∈ A, nx ≥ k

) =
∑

ξ∈
G

μ̃
({∀x ∈ A, nx ≥ k

}

∩{∀i ∈ [N ],∀e ∈ E,mi
e(w) ∈ 2N + ξ ie

})
. (3.3)

For (n1, . . . , nN ) ∈ N
N we define the quantity,

X (n1, . . . , nN ) :=
∫

SN−1
dϕ0

N∏

i=1

(ϕi
o)

2ni

= 1

2
∑

i∈[N ] ni
�( N2 )

�(
∑

i∈[N ] ni + N
2 )

N∏

i=1

(2ni − 1)!! (3.4)

which appears in (2.12), and the identity was proven in [8, Appendix A]. We see from
the definition (3.4) that,

X (n1, . . . , ni−1, ni + 1, ni+1, . . . , nN ) ≤ X (n1, . . . , ni−1, ni , ni+1, . . . , nN ),

(3.5)
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for any (n1, . . . , nN ) and i ∈ [N ]. Moreover, we define for any k ∈ N,

Xsup(k) := sup
{X (n1, . . . , nN ) :

N∑

i=1

ni = k
}
,

which satisfies

lim
k→∞Xsup(k) = 0. (3.6)

For any e ∈ E , w ∈ WG and i ∈ [N ], we let Mi
e(w) be the number of i-links on

the edge e and we define the vector Mi (w) = (
Mi

e(w)
)
e∈E . We define 
̃G ⊂ N

E×[N ]
as the set of elements m ∈ N

E×[N ] such that, for any x ∈ V , and any i ∈ [N ],∑
y∼x m

i{x,y} ∈ 2N, and such that for any e ∈ E \ E , and any i ∈ [N − 1], mi
e = 0.

In the next calculation we use the fact that, for any function f : NE×[N ] 
→ R,

∑

w=(m,c,π)∈W ′
G

∏

e∈E

βme

me!
∏

x∈V

hm{x,g}

m{x,g}!
∏

x∈V
Ux (w) f

(
M1(w), . . . , MN (w)

)

=
∑

m∈
̃G

N∏

i=1

∏

e∈E

βmi
e

mi
e!

∏

x∈V

hm
N{x,g}

mN{x,g}!
∏

x∈V
X (nx (m)

)
f
(
m1, . . . ,mN ), (3.7)

where we used the notation nx = (n1x , . . . , n
N
x ) and m = (m1, . . . ,mN ), and we

wrote nx (m) = (n1x (m
1), . . . , nNx (mN )), where nix (m

i ) := 1
2

∑
y∼x m

i{x,y}. For the
previous identity we used the fact for every edge e and every configuration w we have( me
M1(w) ...MN (w)

)
possibilities for choosing Mi (w) links of colour i for each i ∈ [N ].

For any set A ⊂ V we now define the operator MA : NE×[N ] 
→ N
E×[N ] as follows,

∀e ∈ E ∀i ∈ [N ] ∀m = (m1, . . . ,mN ) ∈ N
E×[N ]

(
MA(m)

)i
e :=

{
mi

e mod 2 if e ∈ EA,

mi
e if e ∈ E \ EA.

We obtain that, for any ξ ∈ 
G ,

μ̃
({∀x ∈ A, nx ≥ k

} ∩ {∀i ∈ [N ],∀e ∈ E,mi
e ∈ 2N + ξ ie

})

=
∑

m∈
̃G :
MV (m)=ξ

( ∏

i∈[N ]

∏

e∈E

βmi
e

mi
e!
)( ∏

x∈V

hm
N{x,g}

mN{x,g}!
)( ∏

x∈V
X (nx(m))1{∀ x∈A, nx>k

}(m)

)

, (3.8)

where 1A(m) equals one if m ∈ A and 0 otherwise. We now define the constant

K := inf
{X (n1, . . . , nN ) :

N∑

i=1

ni ≤ (d∗
G + 1)/2

}
,
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1114 B. Lees, L. Taggi

which is finite and positive and corresponds to the smallest “vertex factor” (on-site
weight together with the number all possible pairings) when all incident edges (includ-
ing the edge to the ghost vertex) have at most one link and, using also (3.5), we observe
that for any m satisfying

∑
i∈[N ],y∼x m

i{x,y} > 2k for any x ∈ A, we have that,

∏

x∈V
X (nx(m)

) ≤
(Xsup(k)

K
)|A| ∏

x∈V
X
(
nx
(
MA(m)

))
.

Moreover, for each edge which is incident on at least one vertex in A and for any
colour we use the bound,

∑

n∈2N+q

un

n! ≤ uq eu,

which holds for any q ∈ {0, 1}. Using these two bounds in (3.8) and the fact that,
if m satisfies MV (m) = ξ and mi

e = ξ ie for any e ∈ EA and i ∈ [N ], then
X (nx(MA(m)

) = X (nx(m)
)
, we obtain that,

μ̃
({∀x ∈ A, nx ≥ k

} ∩ {∀i ∈ [N ],∀e ∈ E,mi
e ∈ 2N + ξ ie

})

≤
(
Xsup(k)

eh + N β (d∗
G+1)

K
)|A| ∑

m∈
̃G :
MV (m)=ξ,

mi
e=ξ ie ∀e∈EA,∀i∈[N ]

( ∏

i∈[N ]

∏

e∈E

βmi
e

mi
e!
)

(∏

x∈V

hm
N{x,g}

mN{x,g}!
)(∏

x∈V
X (nx(m)

))
(3.9)

=
(

Xsup(k)
eh +N β (d∗

G+1)

K
)|A|

μ̃

( ⋂

i∈[N ]

{∀e ∈ EA,mi
e = ξ ie ,∀e ∈ E \ EA,mi

e ∈ 2N + ξ ie
}
)

.

From the previous inequality and (3.3) we deduce that,

μ̃
(
∀x ∈ A, nx ≥ k

)

≤
(
Xsup(k)

eh + N β (d∗
G+1)

K
)|A| ∑

ξ∈
G

μ̃

(
∀i ∈ [N ],∀e ∈ E \ EA,mi

e ∈ 2N + ξ ie

)

≤
(
Xsup(k)

eh + N β (d∗
G+1)

K
)|A|

μ̃(SG).

From (3.6), we deduce that the quantity inside the brackets on the right-hand side
goes to zero with k, thus we conclude the proof of (3.1) and we obtain an explicit
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expression for the constant c1,

c1 := Xsup(k)
eh + N β (d∗

G+1)

K . (3.10)

The proof of (3.2) is analogous, suppose that z ∈ A, denote by Ẽ the expectation
with respect to μ̃. In the first step we have that, for any ξ ∈ 
G ,

Ẽ
(
m{z,g} 1{∀x ∈ A, nx ≥ k,∀i ∈ [N ],∀e ∈ E,mi

e ∈ 2N + ξ ie}
)

=
∑

m∈
̃G :
MV (m)=ξ

( N∏

i=1

∏

e∈E

βmi
e

mi
e!
)( ∏

x∈V\{z}

hm
N{x,g}

mN{x,g}!
)(mN{z,g}h

mN{z,g}

mN{z,g}!
)

(∏

x∈V
X (nx(m))1{∀ x∈A, nx>k

}(m)

)

,

and in the next steps we proceed analogously to the previous case with the exception
that we bound the sum associated to the edge {z, g} by ∑m∈2N+q m

hm
m! ≤ hq+1eh ,

for q ∈ {0, 1}. This concludes the proof. ��

For any ε ∈ (0, 1), x, y ∈ V , and k ∈ N, let Ex,y,ε,k ⊂ WG be the set of
configurations w such that there exists a self-avoiding nearest-neighbour path in G,
γ = (x0, x1, . . . , x�), with x0 = x and x� = y, such that at least ε � vertices z ∈ γ

are such that nz(w) > k. Depending on the context, we might write Ex,y,ε,k ⊂ MG

for the set of link cardinalities m ∈ MG satisfying the same property.

Lemma 3.2 For any ε ∈ (0, 1), there exist C2 = C2(d∗
G, N , β, ε, h) ∈ (0,∞) and

K = K (d∗
G, N , β, h) ∈ N such that, for any k ≥ K,

∀x, y ∈ V EG,N ,β,h
(
m{x,g} 1{Ex,y,ε,k}

) ≤ C2 e−dG(x,y).

Moreover, K (d∗
G, N , β, ε, h) can be chosen to be non-decreasing with h.

Proof Given a self-avoiding walk γ in G, we denote by |γ | the number of vertices
contained in γ and we write

∑
γ :x→y for the sum over all self-avoiding walks starting

from x and ending at y. Below we apply Lemma 3.1, we bound the number of self-
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1116 B. Lees, L. Taggi

avoiding walks of length n by d∗
G
n , and

(n
r

) ≤ 2n , obtaining,

EG,N ,β,h
(
m{x,g} 1{Ex,y,ε,k}

)

≤
∑

γ :x→y

∑

A⊂γ :
|A|>ε|γ |

EG,N ,β,h
(
m{x,g} 1{∀x ∈ A, nx > k})

≤
∑

γ :x→y

|γ |∑

r=�ε|γ |�

(|γ |
r

)

h cr1

≤ h
∑

n≥dG(x,y)

(d∗
G + 1)n

n∑

r=�εn�

(
n

r

)

cr1

≤ h

1 − c1

∑

n≥dG(x,y)

(2 d∗
G cε

1)
n

≤ h

1 − c1

1

1 − 2 d∗
G cε

1

(
2 d∗

G cε
1

)dG(x,y)
,

(3.11)

where for the last inequality we assumed that k is large enough so that 2 d∗
G cε

1 < 1

(see equation (3.10)). Choosing k so large that 2 d∗
G cε

1 < e−1 gives the bound. The
monotonicity property of K follows from the definition of c1 (see equation (3.10)). ��

4 Sampling procedure and number of surviving walks

Themain goal of this section is the proof of the following proposition. The proposition
states that, conditional on having ‘many vertices’ with ‘low’ local time between the
vertices x and y, the expected number of ({x, g}, {y, g})-extremal walks is exponen-
tially small in the distance between x and y.

Below we condition on sets of configurations inW ′
G which have a prescribed link

cardinality and colouring on the edges of G ⊂ G, thus we need to ensure that the event
on which we condition has non-zero probability. For this, we introduce the notion
of admissible pairs. We say that the pair (m, c), with m ∈ MG and c ∈ CG(m)

is admissible if the total number of i-links touching any original vertex is even for
any colour i ∈ [N ] and no i-link is on a ghost edge if i �= N . Recall the definition
of the event Ex,y,ε,k , which was provided above Lemma 3.2. We use the superscript
c to denote the complementary event. In this whole section we again assume that
β, h ∈ R>0.

Proposition 4.1 Assume that G = (V, E) is a finite simple graph and that G = (V , E)

is obtained from G by adding a ghost vertex, as defined above Definition 2.1. Let
h, β ∈ R>0, ε ∈ (0, 1) be arbitrary. There exists a large enough K0 ∈ N and
constants c3,C3 ∈ (0,∞) such that, for any k ≥ K0, x, y ∈ V , any admissible pair
(m̃, c̃) such that m̃ ∈ Ec

x,y,ε,k and c̃ ∈ C(m̃),
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EG,N ,β,h
(
Mx,y

∣
∣me(w) = m̃e, ce(w) = c̃e ∀e ∈ E ) ≤ C3 e

− ε
k c3 dG(x,y), (4.1)

where c3 = c3(d∗
G, N , β, h) = O(h2) in the limit as h → 0 and K0 is non-decreasing

with h.

The idea of the proof is that every time that an N-walk starting from x (i.e, with
extremal link on {x, g}) encounters a vertex with low local time and with at least one
link on the ghost edge incident to it, with considerable probability it pairs to that link
and dies there. Thus, in order for the walk starting from x to reach y, it must happen
that the walk does not die at any vertex with a link on the ghost edge incident to it.
We will show that this happens with exponentially small probability in dG(x, y). The
central technical tool for the proof of the proposition is a sampling procedure, which
allows us to ‘reveal’ the number of ghost links incident to any original vertex step-
by-step, thus allowing the comparison with a simpler stochastic process. A similar
strategy has been used also in [4].

4.1 Sampling procedure

Recall the notation for sets of vertices and their boundaries that was introduced in
Sect. 3. For any A ⊂ V , we define the set,

S A
G :=

{
w = (m, c, π) : m ∈ N

EA , c ∈ CEA(m), π ∈ PA(m, c),

uix (w) = 0 ∀x ∈ A,∀i ∈ [N ], n j
g = 0 ∀ j �= N

}
, (4.2)

where CEA(m) is the set of colourings c = (ce)e∈EA for m, and PA(m, c) is the set of
pairing functions for (m, c), π = (πx )x∈A∪ ∂e A∪ {g}, such that πx = πg = ∅ for any
x ∈ ∂e A (in other words, any link touching a vertex x ∈ ∂e A or g is unpaired at that
vertex). We obtain that if A = V (in which case ∂e A = ∅) then S A

G = SG . Moreover,
let A, B ⊂ V be such that ∂e A ⊂ B and, for any w̃ = (m̃, c̃, π̃) ∈ SB

G , we define

S A,w̃
G :=

{
w = (m, c, π) ∈ S A

G , : me = m̃e ∀e ∈ ∂EA

}
,

to be the set of configurations in S A
G which a agree with w̃ on ∂EA. In other words,

any realisation in S A
G consists of loops of any colour which are entirely contained in

A, walks of colour i ∈ [N − 1] with extremal links on the original edges in ∂EA

(w̃-allowing), and walks of colour N with extremal links on the original (w̃-allowing)
or ghost edges in EA. On this set we define the probability measure,

w = (m, c, π) ∈ S A,w̃
G , P

A,w̃
G,N ,β,h(w)

:= 1

Z A,w̃
G,N ,β,h

( ∏

e∈EA\Eg
A

βme

me!
)(∏

x∈A

hm{x,g}

m{x,g}!
)(∏

x∈A

Ux (w)
)
,

(4.3)
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1118 B. Lees, L. Taggi

where Ux (w) is defined in Definition 2.1, and Z A,w̃
G,N ,β,h is a normalisation constant.

Sometimes we will omit some of the sub-scripts for a lighter notation. The measure
(4.3) can be viewed as a restriction of PG,N ,β,h to subsets of G, with a boundary
condition possibly allowing walks of any colour entering and leaving A from its
boundary.

Restrictions and compositions Given two sets, A, B, such that A ⊂ B ⊂ V , and
a realisation w = (m, c, π) ∈ SB

G , we let w|A be the restriction of w to the vertices

of A, namely w|A = (m′, c′, π ′) is an element of S A,w
G such that

m′
e = me, c′

e = ce ∀e ∈ EA,

and, moreover,

π ′
x = πx ∀x ∈ A ; π ′

x = πg = ∅ ∀x ∈ ∂e A.

Furthermore, given two disjoint sets of vertices, A, B ⊂ V , we say that w =
(m, c, π) ∈ S A

G and w′ = (m′, c′, π ′) ∈ SB
G are compatible if they agree on

∂EA ∩ ∂EB , namely for any e ∈ ∂EA ∩ ∂EB we have that me = m′
e and ce = c′

e
(this condition is always fulfilled when ∂EA ∩ ∂EB = ∅). Finally, given two disjoint
subsets A, B ⊂ V , and two compatible configurations, w = (m, c, π) ∈ S A

G and
w′ = (m′, c′, π ′) ∈ SB

G , we define their composition,

w ∪ w′,

as the configuration in S A∪B
G , w ∪ w′ = (m′′, c′′, π ′′) satisfying,

m′′
e = me, c′′

e = ce ∀e ∈ EA, m′′
e = m′

e, c′′
e = c′

e ∀e ∈ EB,

π ′′
x = πx ∀x ∈ A, π ′′

x = π ′
x ∀x ∈ B.

The sampling procedure depends on a realisation of link cardinalities on original
edges, m̃ ∈ MG , on a colouring of such links, c̃ ∈ CG(m̃), and on a sequence of maps
which we call a strategy, F = (FA)A⊂V , where,

∀A ⊂ V FA : S A
G 
→ V \ A. (4.4)

The strategy establishes which (original) vertex will be sampled next depending
on the outcome of the previous steps. We write w ∼ P to denote that w is sampled
according to P , where here P is some unspecified probability measure.

Definition 4.2 (Sampling procedure). The sampling procedure with strategy F , and
admissible pair (m̃, c̃), with m̃ ∈ MG , c̃ ∈ CG(m̃), is defined recursively by the
following steps. At the first step, n = 0, we select the vertex x0 := F∅(∅) ∈ V and we
sample a configuration,

w′
0 ∼ PG,N ,β,h

(
·
∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E

)
,
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which is an element of SG = SV
G . We define the restriction w0 := (w′

0)
∣
∣{x0}, and set

A0 := {x0}. At any step n > 0, we define

xn := FAn−1(wn−1) ∈ V \ An−1,

(i.e., xn is chosen according to the strategy and depending on the outcome of the
previous steps), which we call the ‘vertex selected at the step n’, or, in short, ‘n-
vertex’. Furthermore, we sample the configuration,

w′
n ∼ P

V\An−1,wn−1
G,N ,β,h

(
·
∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E ∩ EV\An−1

)
,

– which we refer to as a ‘n-sampling configuration’ – which is an element of

SV\An−1,wn−1
G . We define the new configuration,

wn := wn−1 ∪
(
w′
n

∣
∣{xn}

)
,

(noting that the two composed configuration are compatible by construction), which
we refer to as a ‘n-composed configuration’, and the set,

An := An−1 ∪ {xn},

which we refer to as a ‘n-explored set’. This concludes the definition of the step n.
We denote by T := |V| − 1 the last step of the procedure, which, by construction, is
such that T = inf{n ∈ N : An = V}.

In other words, the sampling procedure defines a (random) sequence of sets A0 ⊂
A1 . . . ⊂ AT = V such that An is obtained by adding to An−1 the n-vertex, xn .
Moreover, it defines a (random) sequence of configurations, w1, w2, . . ., wT , with
wn ∈ S An

G , such that each new configuration wn is obtained from the previous one,
wn−1, by adding the (random) links on ghost edges incident to xn and by specifying
all the pairings at xn (the number of links on original edges and their colourings
are not random since they are fixed by the conditioning and specified by m̃ and c̃).
The next proposition states that the configuration wT obtained in the last step of the
procedure, which by construction is an element in WG , is distributed according to
PG,N ,β,h

( · ∣∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E), the measure which was defined
in Definition 2.4.

Proposition 4.3 Let Pm̃,c̃,F be the law of the sampling procedure with link cardinality
m̃ ∈ MG , c̃ ∈ CG(m̃) and strategy F, where (m̃, c̃) is admissible. We have that, for
any w̃ ∈ SG such that, me(w̃) = m̃e and ce(w̃) = c̃e for every e ∈ E , we have that,

Pm̃,c̃,F
(
wT = w̃

) = PG,N ,β,h

(
w̃
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E

)
. (4.5)

Proof Use (�,F ,Pm̃,c̃,F ) to denote the probability space of the sampling procedure
with link cardinality m̃ ∈ MG , colouring c̃ ∈ CG(m̃), and strategy F . Recall that,
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by Definition 4.2, for any realisation ω ∈ � of the sampling procedure and any
n ∈ {0, . . . , T }, w′

n = w′
n(ω) denotes the n-sampling configuration, wn = wn(ω)

denotes the n-composed configuration, xn = xn(ω) denotes the n-vertex, and An =
An(ω) denotes the n-explored set. Define also x̃0 = F∅(∅), Ã0 := {x̃0}, and, for
n ∈ {1, . . . , T }, we define recursively, x̃n := FÃn−1

(w̃| Ãn−1
), and Ãn := Ãn−1 ∪{x̃n}.

The first observation is that, by Definition 4.2, for any ω ∈ �,

wT (ω) = w̃ ⇐⇒ ∀n ∈ {0, . . . , T } xn(ω) = x̃n, An(ω) = Ãn, w′
n(ω)

∣
∣{x̃n} = w̃

∣
∣{x̃n}.

From this, we deduce the first identity below, for which we also define Ã−1 := ∅. For
the second identity, we use the definitions (2.15), (4.3) and the conditional probability
formula,

Pm̃,c̃,F
(
wT = w̃

)

=
T∏

n=0

P
V\ Ãn−1,w̃

G,N ,β,h

(
w ∈ SV\ Ãn−1

G : w|{x̃n } = w̃|{x̃n }

∣
∣
∣

me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\ Ãn−1
∩ E

)

= PG,N ,β,h

(
w̃
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E

)
.

This concludes the proof. ��
We now introduce k-candidate and k-good vertices, for arbitrary k ∈ N.

Definition 4.4 We say that a vertex x ∈ V is k-candidate for w = (m, c, π) ∈ WG ,
or m ∈ MG , if ∑

y∈V :y∼x

m{x,y} ≤ k.

We say that the vertex x ∈ V is k-good for w = (m, c, π) ∈ WG , or m ∈ MG , if it is
k-candidate and, additionally, m{x,g} > 0.

In the sampling procedure, while the link cardinality on the original edges and
their colours are fixed and given by m̃ and c̃, the link cardinality on the ghost edges
is random. The next lemma states that, if the link cardinality on the original edges,
m̃, is such that the vertex z is k-candidate, then, conditional on me(w) = m̃ for each
original edge e and on the colourings, with probability uniformly bounded from below
by a positive constant (which depends only on k and on the model parameters), z is
also k-good. The existence of k-good vertices is important for the proof of our main
theorem since the N -walks starting from x might ‘die’ at such vertices with uniformly
positive probability, hence having ‘many’ k-good vertices between x and y means it
is unlikely for the walks ‘starting from’ {x, g} to reach y.

Lemma 4.5 Let k ∈ N be arbitrary, fix a link cardinality m̃ ∈ N
E , a colouring c̃ ∈

C(m̃), and a strategy F, suppose that (m̃, c̃) is admissible. Let (�,F ,Pm̃,c̃,F ) be the
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probability space of the sampling procedure. For any n ∈ {0, . . . T }, let Fn be the σ -
algebra of the first n-steps of the sampling procedure. Let n ∈ {0, . . . T } be arbitrary
and, recalling Definition 4.2 (Sampling procedure), suppose that ω ∈ � is such that
the n-vertex, xn = xn(ω), is a k-candidate for m̃. Then,

Pm̃,c̃,F

(
xn is k-good forw′

n

∣
∣
∣ Fn−1

)
(ω) ≥ c4, (4.6)

where c4 = c4(N , β, h, k) > 0 whenever h > 0 and, additionally, c4 = O(h2) in the
limit as h → 0.

Proof Let ω ∈ � be as in the statement of the lemma, recall Definition 4.2 and
that An = An(ω) ⊂ V represents the set of vertices which have been ‘explored’
up to the step n, recall also the definition of the n-sampling configuration, w′

n(ω) ∈
S An(ω),wn−1(ω)

G . Since we assume that xn(ω) is k-candidate for m̃ we deduce – after
noting that xn(ω) ∈ Fn−1 – that,

Pm̃,c̃,F

(
xn is k-good for w′

n

∣
∣
∣ Fn

)
(ω)

= P
V\An−1(ω),wn−1(ω)

G,N ,β,h
(
m{xn(ω),g} > 0

∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\An−1(ω) ∩ E

)
. (4.7)

For z ∈ V \ An−1(w)we define qi = qi (z) := ∑
y∈V :y∼z m̃

i{z,y}, and q = ∑N
i=1 q

i ,

and note that qi is even by assumption for any colour i �= N . By using the conditional
probability formula, factorising (and noting that the total number of i-links incident
to any original vertex is almost surely even for each colour i), we obtain that, for any
z ∈ V \ An−1(ω) which is k-candidate in m̃,

P
V\An−1(ω),wn−1(ω)

G,N ,β,h

(
m{z,g}(w) > 0

∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\An−1(ω) ∩ E

)

=
∑

�>0:
qN+�∈2N

P
V\An−1(ω),wn−1(ω)

G,N ,β,h

(
m{z,g}(w) = �

∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\An−1(ω) ∩ E

)

=

∑

�>0:
qN+�∈2N

h� U(
q+�
2 )

(∏N−1
i=1 (qi − 1)!!

)(
qN + � − 1

)!!

∑

�≥0:
qN+�∈2N

h� U(
q+�
2 )

( ∏N−1
i=1 (qi − 1)!!

)(
qN + � − 1

)!!

=

∑

�>0:
qN+�∈2N

h� U(
q+�
2 )

(
q + � − 1

)!!

∑

�≥0:
qN+�∈2N

h� U(
q+�
2 )

(
q + � − 1

)!! = 1

1 + c5
,
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where c5 is defined by the last identity. In the previous formula we also used the fact
that (� − 1)!! corresponds to the total number of pairings of � links of the same colour
touching a vertex, where � is even. We now bound the probability that z is k-good
from below by a uniformly positive constant which depends on k and h, using the fact
that z is k-candidate. By the previous formula, this requires a uniform upper bound
for c5. Now note that, if qN ∈ 2N + 1, then c5 = 0 and the lemma trivially holds
without being necessary to invoke the assumption that z is k-candidate. Otherwise, if
qN ∈ 2N, then,

c5 = U(
q
2 ) (qN − 1)!!

∑

�>0:
qN+�∈2N

h� U(
q+n
2 ) (qN − 1 + �)!!

≤ U(
q
2 ) (qN − 1)!!

h2 U(
q+2
2 ) (qN − 1 + 2)!! = 1

h2
q + 2

qN − 1 + 2
≤ k + 2

h2
< ∞,

where for the second-last inequality we used the assumption that z is k-candidate to
upper bound the c5. Hence, c5 depends on k and h and, for every fixed k > 0, we have
that c5 = O(1/h2) in the limit as h → 0. This concludes the proof. ��

4.2 The walk-tracking sampling strategy

We now define a specific sampling strategy, the walk-tracking sampling strategy. The
walk-tracking sampling strategy consists of selecting at every step n a vertex, xn ,
which belongs to the external boundary of the n-explored set and such that a walk
with an extremal link on {x0, g} leaves the set An−1 precisely from xn , where x0
is the 0-vertex of the sampling procedure. The walk-tracking sampling strategy will
allow a comparison with a simpler stochastic process in order to bound from above
(stochastically) the number of walks with extremal link on {x0, g} which reach the
external boundary of An (namely, which ‘survive’ until the step n) as a function of
n. We will show that this number decays exponentially fast with n and the expected
number of walks with extremal link on {x0, g} ever touching y will turn out to be
exponentially small with the graph distance between x0 and y.

Before introducing the definition of the walk-tracking sampling strategy, we intro-
duce the notions of surviving walks, escape vertex, and selected walk. Given a set A ⊂
V , a vertex x ∈ A, a configurationw ∈ S A

G , and an integer j ∈ {1, . . . ,mN{x,g}(w)}, we
say that the j-th walk of w from x survives in A if there exists an edge {z, q} ∈ ∂EA,
q ∈ A, z ∈ V \ A, such that a walk in w with extremal link ({x, g}, j) and with the
other extremal link on {z, q} exists. In other words, this walk starts from the j-th link
on {x, g} and first leaves the set A on the edge {z, q}. We call such a vertex z the
escape vertex of the j th surviving walk in A for w ∈ S A

G . Moreover, we define,

sx,A(w) := inf{ j ∈ N>0 : the j th walk from x inw survives in A}, (4.8)
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corresponding to the smallest index of all walks of w from x which survive in A and,
if sx,A(w) < ∞, we call the sx,A(w)-th walk of w ∈ S A

G from x surviving in A the
selected walk in (x, A) for w ∈ S A

G . In other words, the selected walk is a surviving
walk which whose extremal link on {x, g} has minimal label.

Definition 4.6 (walk-tracking strategy from x ∈ V). We call the strategy F =
(FA)A⊂V a walk-tracking strategy from x if it satisfies the following two proper-
ties: 1. It starts from x , namely F∅(∅) = {x}. 2. For any A ⊂ V such that x ∈ A, and
for any w ∈ S A

G such that, sx,A = sx,A(w) < ∞, we have that FA(w) := {z}, where
z is the escape vertex of the selected walk in (x, A) for w ∈ S A

G .

In other words, at any step, the walk-tracking strategy ‘selects’ the escape vertex
of the selected walk until such a walk ‘dies’, after that it ‘selects’ the escape vertex
of the next selected walk until this walk also ‘dies’, and it continues this way until
no selected walk exists. Note that the walk-tracking strategy is not uniquely defined,
there might be several walk-tracking strategies from x .

We now provide a formal definition of ‘death of the selected walk’ (or simply
‘death of the walk’). Fix an arbitrary walk-tracking strategy F which starts from
x ∈ V , recall the definition (�,F ,Pm̃,c̃,F ), and recall the definition of the n-composed
configuration,wn = wn(ω)which is provided in Definition 4.2 (Sampling procedure).
We say that the selected walk dies at step n of the procedure if the selected walk,
which by definition has an extremal link on the edge {x, g} inwn , also has an extremal
link on the edge {xn, g} in wn . Note that the event ‘the selected walk dies at step
n’ is measurable in Fn , the σ -algebra generated by the first n steps of the sampling
procedure, and we assume that it is empty if no selected walk exists.

The next lemma states that, when we perform a sampling procedure following a
walk-tracking strategy, if at step n we select a k-candidate vertex in m̃, then with
probability uniformly bounded from below by a positive constant (which depends
only on k and on the model parameters) the selected walk dies at step n. The lemma
is a consequence of Lemma 4.5.

Lemma 4.7 Choose an arbitrary integer k ∈ N, an arbitrary walk-tracking strategy
F which starts from x ∈ V , and an admissible pair (m̃, c̃) with m̃ ∈ N

E , c̃ ∈ CG(m̃),
moreover recall the definition (�,F ,Pm̃,c̃,F ). Suppose that ω ∈ � is such that the
vertex which we sample at step n ∈ N, xn(ω), is a k-candidate for m̃ and, additionally,
assume that a selected walk in (xn(ω), An−1(ω)) for wn−1(ω) exits. Then,

Pm̃,c̃,F
(
the selected walk dies at the step n

∣
∣
∣Fn−1

)
(ω) ≥ c4

k + 1
,

where c4 was defined in Lemma 4.5.

Proof Recall that xn(ω) is the vertex which we select at step n, which – by definition
of the walk-tracking strategy—is the escape vertex of the selected walk, and that the
selected walk in the (n − 1)-composed configuration exists by assumption for the
realisation ω ∈ �. Hence, the selected walk in the (n − 1)-composed configuration,
wn−1 = wn−1(ω), has an extremal link on {x, g} = {x0(ω), g}, and it contains a link
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on an edge connecting a vertex in An−1 = An−1(ω) to xn ∈ V \ An−1, which we refer
to as the escape link. We letR be the event that the escape link is paired at xn(ω) to a
link on the ghost edge {xn(ω), g} (this event is defined to be empty if no link on the
ghost edge exists). We have that, for any ω ∈ � as in the statement of the lemma,

Pm̃,c̃,F
(
the selected walk dies at the step n

∣
∣
∣Fn−1

)
(ω)

=
∞∑

�=1

1lqN (l,m̃)∈2NP
An−1(ω),wn−1(ω)

G,N ,β,h

(
R ∩ {mN

{xn(ω),g} = �}
∣
∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\An−1(ω) ∩ E

)
,

(4.9)

where we used the notation qN = qN (�, m̃) := � +∑
y∈V :y∼xn(ω) m̃

N
{xn(ω),y}. More-

over by Definition 2.4 and by the fact that xn(w) is a k-candidate for m̃ by assumption,
we obtain that, for any � ∈ N,

P
An−1(ω),wn−1(ω)

G,N ,β,h
(R ∣

∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ EV\An−1(ω) ∩ E,mN
{xn(ω),g}(w) = �

)

= �

qN (�, m̃)
≥ 1

k + 1
.

(4.10)

For the previous identity we used the fact that, by the definition of the probability
measure (4.3), conditional on the link cardinalities and colouring on all the edges
which are incident to a given vertex in A ⊂ V , the pairing function at that vertex has
uniform distribution on the set of allowed pairings. By combining (4.9) and (4.10)
and by using the fact that, by Lemma 4.5, conditional on the vertex xn(ω) being k-
candidate, with probability at least c4 it is also k-good, we deduce that, for any ω ∈ �

such that xn(ω) is k-candidate,

Pm̃,c̃,F
(
the selected walk dies at the step n

∣
∣
∣Fn−1)(ω) ≥ c6 := c4

k + 1
,

where the constant c4 was defined in Lemma 4.5. This concludes the proof. ��

4.3 Stochastic comparison and proof of Proposition 4.1

Consider a sampling procedure with walk-tracking strategy, and denote its probability
space by (�,F ,Pm̃,c̃), as introduced above. Recall the definition of the selected walk
provided above Definition 4.6 and the definition of death of the walk provided above
Lemma 4.7. For any realisation of the sampling procedure ω ∈ � we set T0 = 0 and
we define recursively for any j ∈ N>0,
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Tj (ω) := inf{n > Tj−1(ω) : the selected walk in An(ω)

dies at step n and xn(ω) is k-candidate},

the step a selected walk dies for the j th time when a k-candidate vertex is selected
in the course the procedure, using the convention inf{∅} = ∞. Moreover, for any
j ∈ N>0, we denote by

X j (ω) := ∣
∣{n ∈ {Tj−1(ω) + 1, . . . , Tj (ω) ∧ T } : xn(ω) is k-candidate in m̃}∣∣,

the number of times between two consecutive deaths of the selected walk that a
k-candidate vertex is sampled. We now define a sequence of independent random
variables, (Y j ) j∈N>0 , with geometric distribution, Ge(1 − c6), each, where c6 is the
constant which appears in Lemma 4.7 and the average of Y j is 1

c6
. The next lemma

states that the variables Y j stochastically bound from above the variables X j . The
reason is that, by Lemma 4.7, at every step on a k-candidate vertex the selected walk
dies with probability at least c6 uniformly. The proof of the lemma is standard and it
is presented in the appendix.

Lemma 4.8 Let m̃ ∈ N
E be a link cardinality on original edges, let c̃ ∈ CG(m̃) be a

colouring of m̃, assume that (m̃, c̃) is admissible and let F be awalk-tracking sampling
strategy. Then, for any �, r ∈ N,

Pm̃,c̃,F
( �∑

i=1

Xi > r
∣
∣ F0

) ≤ Pm̃,c̃,F
( �∑

i=1

Yi > r
)
,

where we use Pm̃,c̃,F also for the law of the variables (Yn)n∈N, which we assume to
be defined in the same probability space of the sampling procedure and which are
independent from the sampling procedure.

We are now ready to present the proof of Proposition 4.1.

Proof of Proposition 4.1 Suppose that h, β > 0. Choose a pair of vertices x, y ∈ V , a
link cardinality m̃ ∈ Ec

x,y,ε,k , and a colouring c̃ ∈ C(m̃) such that (m̃, c̃) is admissible,
let F be a walk-tracking sampling strategy from x . Let ε ∈ (0, 1) and k ∈ N be
arbitrary. Define the random variables in (�,F ,Pm̃,c̃,F ),

τ := inf
{
u ∈ {1, . . . ,m{x,g}(wT )} :

u∑

i=1

Xi > ε dG(x, y)
}
,

τ ′ := inf
{
u ∈ N :

u∑

i=1

Yi > ε dG(x, y)
}
,

using the convention that inf{∅} = ∞. To begin, note that,

EG,N ,β,h

(
Mx,y

∣
∣ me(w) = m̃e, ce(w) = c̃e, ∀e ∈ E

)
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1126 B. Lees, L. Taggi

= Em̃,c̃,F
(
Mx,y(wT )

)

≤ Em̃,c̃,F

( (
m{x,g}(wT ) − τ

)
1{m{x,g}(wT ) > τ }

)
,

where for the first identity we used Proposition 4.3, while for the inequality we used
the fact that, by assumption on m̃, any self-avoiding path connecting x to y contains
at least ε dG(x, y) k-candidate vertices, hence none of the walks with extremal link
{x, g} which died before the procedure selects at least ε dG(x, y) k-candidate vertices
can reach y.

Now fix the integer � := [ ε dG(x,y) c6
4 ]. We have that,

Em̃,c̃,F

(
(m{x,g}(wT ) − τ)1{m{x,g}(wT ) > τ }

)

≤ Em̃,c̃,F

(
m{x,g}(wT )1{m{x,g}(wT ) > �}

)

+ Em̃,c̃,F

(
(m{x,g}(wT ) − τ)1{m{x,g}(wT ) > τ,m{x,g}(wT ) ≤ �}

)

≤ EG,N ,β,h
(
m{x,g}1{m{x,g} > �})+ Em̃,c̃,F

(
m{x,g}(wT )1{τ ≤ �})

≤ h c�
1 + Em̃,c̃,F

(
m{x,g}(wT )1{τ ≤ �}),

(4.11)

where the last inequality follows from Lemma 3.1, c1 := c1(d∗
G, k, N , β, h) was

defined there and goes to zero as k goes to infinity. We are now going to bound the
second term in the right-hand side. For this, note that,

Em̃,c̃,F
(
m{x,g}(wT )1{τ ≤ �})

= Em̃,c̃,F

(
Em̃,c̃,F

(
m{x,g}(wT )1{τ ≤ �} ∣∣ F0

))

= Em̃,c̃,F

(
m{x,g}(w0) Em̃,c̃,F

(
1{τ ≤ �} ∣∣ F0

))

≤ Em̃,c̃,F

(
m{x,g}(w0) Pm̃,c̃,F

( �∑

i=1

Xi > ε dG(x, y)
∣
∣ F0

))

≤ Em̃,c̃,F
(
m{x,g}(w0)

)
Pm̃,c̃,F

( �∑

i=1

Yi > ε dG(x, y)
)

≤ C7 e
−ε dG(x,y)

c6
10

(4.12)

where for the first identity we used the fact that, since the sampling procedure starts
from x , we have that m{x,g}(w0) = m{x,g}(wT ), for the second inequality we used the
fact that the variables Y j are independent from the sampling procedure, for the third
inequality we used the fact that Em̃,c̃,F

(
m{x,g}(w0)

) ≤ C7 for some finite constant
C7 ∈ (0,∞) by Lemma 3.1 and the Chernoff bound for sum of i.i.d. geometric random
variables, Pm̃,c̃,F

(∑
i∈[�] Yi > λ ρ

) ≤ e−c6 ρ (λ−1−ln(λ)), where ρ = 1
4 ε dG(x, y) is

the average of the sum of variables and λ is any positive real value. By combining
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Exponential decay of transverse correlations 1127

(4.11) and (4.12) and recalling that c6 = c4
k+1 , we obtain,

EG,N ,β,h
(
Mx,y

∣
∣ me(w) = m̃e, ce(w) = c̃e∀e ∈ E)

≤ he
−ε dG(x,y) log( 1

c1
)

c4
4(k+1) + C7 e

−ε dG(x,y)
c4

10 (k+1) .

Thus we deduce that,

EG,N ,β,h
(
Mx,y

∣
∣ me(w) = m̃e, ce(w) = c̃e ∀e ∈ E) ≤ C3 e

− ε
k c3 dG(x,y),

for some positive constant C3 = C3(N , β, h, d∗
G) and,

c3 := 1

40
c4 min

{

log

(
1

c1

)

, 1

}

> 0. (4.13)

We note that there exist K0 large enough such that for any k ≥ K0, we have that
log( 1

c1
) > 1 for any h ∈ (0, 1) (recall equation 3.10). This implies that, under such a

choice of k, log( 1
c1

) = O(1) in the limit as h → 0. Thus, c3 = O(c4) = O(h2) in the
limit as h → 0 uniformly in the admissible pairs (m̃, c̃) (recall that c4 was introduced
in Lemma 4.5). This concludes the proof. ��

5 Proof of Theorem 1.1 and extensions

In this section we prove Theorem 1.1 and discuss its extensions.

5.1 Proof of Theorem 1.1

Consider a finite simple graphG and defineG by adding a ghost vertex toG as described
above. We first use Proposition 2.3 and Lemma 2.5 and after that, using the fact that
Mx,y ≤ m{x,g}, we obtain that, for any ε ∈ (0, 1), k ∈ N, h > 0, β > 0, N ∈ N>1,

〈ϕ1
x ϕ1

y〉spinG,N ,β,h = 1

h2
EG,N ,β,h

(
Mx,y

)

≤ 1

h2
EG,N ,β,h

(
1{Ex,y,ε,k}m{x,g}

) + 1

h2
EG,N ,β,h

(
1{Ec

x,y,ε,k}Mx,y
)
,

(5.1)

where c denotes the complement of the event, and the event Ex,y,ε,k was defined
above Lemma 3.2. We now fix ε = 1

10 and k = max{K0(dG, N , β, h),

K (dG, N , β, h), K0(dG, N , β, 1), K (dG , N , β, 1)}, this allows us to use Lemma 3.2
and Proposition 4.1, where these constants have been introduced. From Lemma 3.2
we deduce that,

EG,N ,β,h
(
m{x,g}1{Ex,y,ε,k}

) ≤ C2 e
− dG(x,y). (5.2)
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For the second term on the right-hand side of (5.1) we use Proposition 4.1 and
obtain,

EG,N ,β,h
(
1{Ec

x,y,ε,k}Mx,y
)

=
∑

m̃∈MG :
m̃∈Ec

x,y,ε,k

∑

c̃∈CG(m̃)
(m̃,c̃)admissible

PG,N ,β,h
(∀e ∈ E,me(w) = m̃e, ce(w) = c̃e

)

EG,N ,β,h
(
Mx,y

∣
∣ ∀e ∈ E,me(w) = m̃e, ce(w) = c̃e

) ≤ C3 e
− 1

10
1
k c3 dG(x,y).

(5.3)

Combining the previous expression with (5.2) in (5.1) we obtain (1.3). Note that
the monotonicity properties of K0 and K guarantee that the chosen value of k does not
depend on h for h ∈ (0, 1). Thus we deduce that the exponent in the right-hand side of
the inequality in (5.3) is O(h2) in the limit as h → 0. This implies that c0 = O(h2).
Now let G be an infinite simple graph of bounded degree, let (GL)L∈N be a sequence
of finite simple graphs such that GL ⊂ G. By noting that dGL (x, y) ≥ dG(x, y) for any
L ∈ N and that the constants c3 and C3 do not depend on L , the proof of the theorem
is concluded.

5.2 Extensions

A first natural extension of our main result is to the Spin O(N) model in Z
d in the

presence of non-homogeneous coupling constants and a non-zero external magnetic
field. More precisely, let J = (Jx,y)x,y∈Zd be a matrix of non-negative real numbers
such that for any x, y ∈ Z

d , Jx,y = Jy,x and Jx,x, = 0. For any set � ⊂ Z
d define

the hamiltonian function,

H�,J ,h(ϕ) := −
∑

x,y∈�

Jx,y ϕx · ϕy − h
∑

x∈�

ϕN
x . (5.4)

Under the assumptions that the coupling constants have finite range and are uni-
formly bounded, namely

∃K < ∞ : ∀x, y ∈ Z
d , Jx,y ≤ K and Jx,y = 0 if ‖x − y‖1 > K ,

our main theorem holds also, with few adaptations in the proof being required. Note
also that, since our theorem holds for arbitrary graphs, it is not difficult to account for
finite boxes in Z

d with periodic or empty boundary conditions.
Our main theorem holds for a much more general setting than the one which was

introduced in Sect. 1.1. Let R ⊂ R
N be an arbitrary set and let the configuration space

� be a product of local spaces R ⊂ R
N , � = RV , let the reference measure dρ be a

product of identical measures on R, dρ = ∏
x∈V dρx . Use Sx : � 
→ R to represent

the spin at x , where Sx (ω) := ωx for anyω = (ωx )x∈V ∈ �. For any n1, . . . , nN ∈ N,
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Exponential decay of transverse correlations 1129

define the quantity,

X̃ (n1, . . . , nN ) :=
∫

R
dρ0 (ω1

0)
n1 . . . (wN

0 )n
N
,

which generalises (3.4), the quantity,

X̃sup(k) := sup
{X̃ (n1, . . . , nN ) :

N∑

i=1

ni = k
}
,

which generalises the analogous quantity appearing in the proof of Lemma 3.1, and

Ũ(n1, . . . , nN ) := X̃ (n1, . . . , nN )
∏N

i=1
(
(ni − 1)!!1l{if ni is even} + ni (ni − 2)!!1l{if ni is odd}

) ,

(5.5)

which is a generalisation of the weight function (2.3). Since the total number of i-links
touching a vertex might be odd in this generalised setting, it might be necessary to
multiply the double factorial (ni − 1)!! (representing the number of ways of pairing
ni links, by the factor ni , representing the number of ways for choosing the unpaired
link). Adapting our method to prove the more general version of our main theorem,
Theorem 5.1 below, requires that local measure space fulfils the conditions (a), (b),
and (c) below, which involve the quantities which have been just defined:

(a) For any (n1, . . . , nN ) ∈ N
N , X̃ (n1, . . . , nN ) ∈ [0,∞) and, if n1 ∈ 2N + 1, then

X̃ (n1, . . . , nN ) = 0.
(b) For any (n1, . . . , nN ) ∈ N

N such that n1 > 0, Ũ(n1 − 1, . . . , nN + 1) ≥
Ũ(n1, . . . , nN ).

(c) For any i ∈ [N ], X̃ (n1, . . . ni + 1, . . . , nN ) ≤ X̃ (n1, . . . ni , . . . , nN ) and, more-
over, lim

k→∞ X̃sup(k) = 0.

The assumption (a) is necessary since it implies that the measure of the random
path model is positive. It also implies that, when we write 〈S1x S1y〉G̃,N ,β,h in terms of
ratios of partition functions of the random path model (recall Proposition 2.3), any
configuration which contributes to the partition function in the numerator is such that
there exists an open path of colour 1 with end-points x and y and all the other paths of
colour 1 are closed. This property is important for our proofs and enables the use of the
colour-switch lemma. Condition (b) is required for our colour-switch lemma, which,
under these more general assumptions, would need to be stated with ‘≤’ replacing ‘=’
in (2.16). Indeed, (b) implies that, when one performs the ‘switch’ of the colour of
the path with end-points x and y from 1 to N , the weight of the output configuration
is not smaller than the weight of the input configuration. Condition (c) is required for
our bounds on the local times in Sect. 3.

These conditions aremore general than thosewhich are necessary for implementing
the approach based on the Lee–Yang theorem and the cluster expansion (which are
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listed in [12], see conditions (C1), (C1’), (C1”), (C2) therein), in particular no rotational
symmetry or compactness of the local space R is required.

Finally, our method also works for spin systems with continuous symmetry, whose
associated measure is not necessarily expressed in terms of Boltzmann weights. For
example, consider the following expectation operator, 〈·〉(k)G,N ,β,h , with k ∈ N ∪ {∞},
β, h ≥ 0, defined by

〈 f 〉(k)G,N ,β,h := 1

Z (k)
G,N ,β,h

∫

�G,N

dρ(ω)
( ∏

{x,y}∈E

( k∑

�=0

β�

(
Sx (ω) · Sy(ω)

)�

�!
))

exp
(
h
∑

x∈V
SNx (ω)

)
f (ω), (5.6)

for any function f : � → R, where dρ is a referencemeasure satisfying the properties
(a), (b), (c) listed above, Z (k)

G,N ,β,h is a normalising constant that ensures 〈1〉kG,N ,β,h = 1,
the graphG = (V, E) is finite and the other terms have been introduced in Sect. 1.1.We
refer to such an expectation operator as the k-truncated Spin O(N )model. Note that the
measure (5.6) corresponds to the Spin O(N )model when k = ∞ and dρ is the product
of Lebesgue measures in S

N−1. The case k = 1 and h = 0, has been considered in
[8,9], its corresponding loop representation (which, in Z

d , uses colours and pairings
like ours [8], while in the hexagonal lattice takes a simpler form [9]) is a model of
interest known as the loop O(N) model. This model is interesting, for example, for
its connections to Schramm-Löwner evolution and other planar statistical mechanics
models. Our measure (5.6) interpolates between the twomodels as k is varied between
1 and ∞. Our main result, Theorem 1.1, can then be generalised as follows (recall the
definitions in Sect. 1.1).

Theorem 5.1 Let G be an infinite simple graph with bounded degree. For any h �= 0,
β ≥ 0, k ∈ N>0 ∪ {∞}, N ∈ N≥2, there are constants c8 = c8(G, N , β, h, k),
C8 = C8(G, N , β, h, k) such that for any finite subgraph of G, G̃ = (Ṽ, Ẽ), for any
pair of sites x, y ∈ Ṽ , we have that,

0 ≤ 〈 S1x S1y 〉(k)G̃,N ,β,h
≤ C8 e−c8 dG(x,y) (5.7)

where dG(x, y) denotes the graph distance between x and y in G. Moreover, the choice
of c8 can be made so that c8 = O(h2) in the limit as h → 0.

Note that (5.6) does not necessarily make physical sense as a spin system for all
values of β ≥ 0, since the measure (given by dρ times the interaction term) might
be signed if β is large. Despite that, the spin–spin correlation, in the left-hand side
of (5.7), is non-negative and exhibits exponential decay for any non-zero value of
the external magnetic field and for any k ∈ N>0, as our theorem states. The only
difference between k < ∞ and k = ∞ case for the random path model associated
to (5.7) is that, when k is finite, on every original edge at most k links are allowed.
Thus, all the steps of our proof apply with almost no difference (and the results of
Sect. 3 are not necessary since every vertex is a.s. d∗

Gk-candidate). In particular, our
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Exponential decay of transverse correlations 1131

result implies that its two point-function (defined as the ratio of partition functions
with a 1-walk connecting x and y and one without) decays exponentially in the graph
distance between x and y.
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Appendix

Formal definition of paths, walks and loopsWewill first define paths, which represent
a connected set of links, after that we will introduce two classes of paths, walks (open
paths) and loops (closed paths). Given w ∈ WG , we use ({x, y}, p) to denote the pth

link of w which is on the edge {x, y}, with p ∈ {1, . . . ,m{x,y}(w)}. We say that a set
of links S in w,

S = {
({x1, y1}, p1), ({x2, y2}, p2), . . . ((x�, y�), p�)

}
,

is pairing-connected in w if, for any pair of links, ({x, y}, p), ({x ′, y′}, p′) ∈ S,
there exists an ordered sequence of links in S,

(
({x ′

1, y
′
1}, p′

1), ({x ′
2, y

′
2}, p′

2), . . .

({x ′
k, y

′
k}, p′

k)
) ⊂ S such that the following two conditions hold simultaneously:

(i) ({x, y}, p) = ({x ′
1, y

′
1}, p′

1), and ({x ′, y′}, p′) = ({x ′
k, y

′
k}, p′

k),
(ii) for any i ∈ {1, . . . , k − 1}, y′

i = x ′
i+1 and ({x ′

i , y
′
i }, p′

i ) is paired to
({x ′

i+1, y
′
i+1}, p′

i+1) at y
′
i = x ′

i+1.

Paths are maximal pairing-connected sets. More precisely, a set of links S of w is a
path in w if it is pairing-connected and there exists no pairing-connected set of links
in w, S′, which is such that S′ ⊃ S and S′ �= S. It is necessarily the case that all links
belonging to the same path have the same colour.

We will now distinguish between different type of paths. A path S of w is called
a loop if it is such that any link ({x, y}, p) ∈ S is paired to another link at both its
end-points. A path S of w is called a walk if |S| = 1 or if |S| ≥ 2 and there exist
precisely two distinct links in S such that each of them is unpaired at one end-point
and paired at the other end-point. Two such links will be called extremal links for the
walk or extremal links for w. From these definitions it follows that any path is either
a loop or a walk, there are no other possibilities.

Proof of Lemma 4.8 Our goal is to show that, for any u ∈ {0, 1, . . . � − 1},

Pm̃,c̃,F
( �−u∑

i=1

Xi +
�∑

i=�−u+1

Yi > r
∣
∣ F0

)

123

http://creativecommons.org/licenses/by/4.0/


1132 B. Lees, L. Taggi

≤ Pm̃,c̃,F
( �−u−1∑

i=1

Xi +
�∑

i=�−u

Yi > r
∣
∣ F0

)
. (5.8)

Using (5.8) iteratively we deduce the lemma. To begin, fix an arbitrary integer
u ∈ {0, 1, . . . � − 1}, and observe that,

Pm̃,c̃,,F
( �−u∑

i=1

Xi +
�∑

i=�−u+1

Yi > r
∣
∣ F0

)

= Em̃,c̃,F

(
Pm̃,c̃,F

(
X�−u > r −

�−u−1∑

i=1

Xi −
�∑

i=�−u+1

Yi
∣
∣
∣ FT�−u−1 , Y�−u+1, . . . , Y�

))
, (5.9)

where Em̃,c̃,F denotes the expectation with respect to Pm̃,c̃,,F , the conditioning is on
the whole history of the sampling procedure up to the stopping time T�−u−1 and on
the variables Yi with i from �−u+1 to �, these variables are independent ofFT�−u−1 .
For a lighter notation, use now P̃(·) for Pm̃,c̃,F

(· ∣∣ FT�−u−1 ,Y�−u+1, . . . ,Y�

)
, and Ẽ

for the expectation with respect to P̃ . Additionally, we set t−1 := −1 and recursively
define the variables,

j ∈ N t j (ω) := inf{n > t j−1(ω) : xn(ω) is k-candidate},

representing the times a k-candidate vertex is selected by the sampling procedure,
again using the convention that inf{∅} = ∞. For any j ∈ N, we denote by d j (ω)

the step of the sampling procedure such that a selected walk dies for the j th time at
a k-candidate vertex, i.e, td j (ω) := Tj (ω), for any integer j ∈ N. Note that, for any
q ∈ N,

P̃(X�−u > q
)

= P̃
(
{no selected walk dies at the steps td�−u−1 , td�−u−1+1, . . . , td�−u−1+q } ∩ {td�−u−1+q < ∞}

)

= Ẽ
(
P̃
({td�−u−1+q < ∞} ∩ {the selected walk does not die at the step td�−u−1+q }

∣
∣ Ftd�−u−1+q−1

)

1{the selected walk does not die at the steps td�−u−1 , . . . , td�−u−1+q } ∩ {td�−u−1+q < ∞}
)

≤ (1 − c6) P̃
(
the selected walk does not die at the steps td�−u−1 , td�−u−1+1, . . . , td�−u−1+q−1

)
,

(5.10)

where for the previous step we used Lemma 4.7. Iterating the previous bound, we
deduce that,

Pm̃,c̃,F
(
X�−u > q

∣
∣ FT�−u−1 ,Y�−u+1, . . . ,Y�

) ≤ (1 − c6)
q = Pm̃,c̃,F (Y�−u > q).

Using the previous inequality in (5.9) and the fact that q was arbitrary, we deduce (5.8)
and thus conclude the proof. ��
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