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Abstract
We survey the published work of Harry Kesten in probability theory, with emphasis
on his contributions to random walks, branching processes, percolation, and related
topics.
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18 G. R. Grimmett

1 Overview

Harry Kesten was a prominent mathematician and personality in a golden period of
probability theory from 1956 to 2018. At the time of Harry’s move from the Nether-
lands to the USA in 1956, as a graduate student aged 24, much of the foundational
infrastructure of probability was in place. The central characters of probability had
long been identified (including random walk, Brownian motion, the branching pro-
cess, and the Poisson process), and connections had beenmade and developed between
‘pure theory’ and cognate areas ranging from physics to finance. In the half-century
or so since 1956, a coordinated and refined theory has been developed, and proba-
bility has been recognised as a crossroads discipline in mathematical science. Few
mathematicians have contributed as much during this period as Harry Kesten.

Following a turbulent childhood (see [67]), Harry studied mathematics with David
van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by
Mark Kac entitled “Some probabilistic aspects of potential theory”. This encounter
appears to have had a decisive effect, in that Harrymoved in 1956 to Cornell University
to work with Kac. In due course, and together with his colleagues including his fellow
emigrés Frank Spitzer and later Eugene Dynkin, Harry’s work and influence supported
the Cornell Mathematics Department as a leading institution worldwide in probability
and beyond. Many visitors were attracted to this extraordinary academic niche in
upstate New York, where they were received with warmth, and invited to participate
in a variety of mathematical and physical activities.

Mark Kac had a lasting influence on Harry, and it was apposite that Harry should
write an appreciation of the former’s work on his death in 1984 (as he did for Spitzer
in 1993 (see [K92,K129]1). Coincidentally, Mark Kac’s first publication was dated
the year of Harry’s birth, 1931, and his last appeared shortly after one of Harry’s best
known results, namely his proof in 1980 that the critical probability of bond percolation
on Z

2 equals 1
2 .

A number of further individuals influenced Harry’s work, including particularly
his friend and colleague Frank Spitzer, and more distantly John Hammersley, whose
earlier papers on self-avoiding walks, percolation, first-passage percolation, and sub-
additivity are frequently reflected in Harry’s own papers. Harry had in common with
Hammersley a preference for what the latter termed “implicated” mathematics over
the “contemplative” sort, and the solving of problems featured strongly in both their
scientific lives (see [71, p. 1132]).

While Harry’s publications lie largely within probability theory, his broader exper-
tise extended into neighbouring areas of mathematics, including topics in algebra,
analysis, geometry, and statistical physics. Already by 1960 he had substantial results
for random walks on groups, products of random matrices, and aspects of what we
call here ‘probabilistic Diophantine approximation’. These interests expanded over the
next decade to include random walk and potential theory, stable and Lévy processes,
self-avoiding walks, and branching processes, and in the 1980s to random walk in
random environments, and random recurrence relations.

1 References to Harry’s work are labelled with the letter K, and are numbered in accordance with the list
of his publications preceding this memoir.
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Harry Kesten’s work in probability theory 19

Harry’s careerwas punctuated in 1980 by his proof that pc = 1
2 for bond percolation

on the square lattice. Before then, he worked largely on random walks and branching
processes, and afterwards his interests shifted towardsmathematical processes inspired
by physics. Common themes and strands are discernible. For example, subadditivity
crops up first in his 1960 paper on random matrices, and much later in first-passage
percolation and random flows, with self-avoiding walks in between. Local surgery and
exponential estimates are techniques which he used in a number of contexts.

He had a taste for hard problems, and he developed a fearsome reputation as a
problem-solver. He would plough on beyond the capacities of others when confronted
with technical difficulties or complications, and it could be years before the community
caught upwith him.A number of hismajor works have later been overtaken by ‘neater’
proofs of others, though his original methods, being more ‘hands on’, can prove more
robust as the assumptions are perturbed.

Certain decisions had to be confronted in writing this summary of Harry’s work. On
the one hand, a chronological account allows the reader to witness the development
of Harry’s interests, and more generally the evolution of probability theory; on the
other hand, many readers may find his work on physical systems more approachable
than his somewhat more technical work on the mathematics of random walks and the
like. The strategy adopted in the current article is to present the author’s choice of
highlights of Harry’s research (in Sect. 2) followed by the fuller, more chronological
survey of Sects. 3–7.

The time-ordered framework of this article is subject to frequent local deviations.
Thus, we begin in Sect. 3 with random walks in their various forms, followed by
products of random matrices, self-avoiding walks, and branching processes; thence to
classical and first-passage percolation, and the many related problems that attracted
Harry. Certain later results are dovetailed into earlier sections, where they risk dis-
turbing the chronological flow with brief reviews. Some important papers that do not
fit easily into this programme are deferred to the final Sect. 8.

The author acknowledges the incompleteness of this personal perspective, and he
pleads limited knowledge and lack of space. He apologises to those whose relevant
work is not listed. Special mention is made of Rick Durrett’s excellent article [50]
written for the 1999 Festschrift for Harry (see [19]), which has been a support in the
writing of the current work.

Not quite all of Harry’s work is publically available. In addition to his two as yet
unpublished articles on arxiv.org, which are included in the appended bibliography,
there is a handful of papers whose lengths he considered to be disproportionate to their
novelty. He kept these in his bottom drawer, and we have abided by his judgement.

Mention ismade of some ofHarry’s professional activities beyond his own research.
In addition to serving on the Editorial Boards of a number of journals (including the
current journal, then known as ZfW), he was the Managing Editor of The Annals
of Probability from 1982–1984, in fact the fourth such Editor since the journal’s
inception in 1972. He served as an Elected Member of the Council of the Institute for
Mathematical Statistics from 1988–1991. Futher details of his career may be found in
[67].

Harry Kesten’s impact on mathematics was broader than his decidedly outstanding
written output. Hewas in addition a very popular and respected figure, and an excellent
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20 G. R. Grimmett

collaborator and correspondent. As a role model and friend for younger colleagues, his
positive influence on the intellectual and personal values of the probability community
is amongst his greatest legacies.

2 Highlights of Harry Kesten’s research

This section contains very brief accounts of some of the highlights of Harry’s work,
taken out of chronological order and context. Readers may follow the links to the fuller
accounts presented in Sects. 3–8.

2.1 Percolation

Critical probability of bond percolation onZ
2 (Sect. 7)

Harry’s proof that pc = 1
2 for bond percolation on Z

2 was a watershed for the subject.
It solved a notorious old problem and introduced a number of new ideas. In so doing,
it illuminated percolation theory as a key process of probability, and it contributed to
a development of disordered systems that is very active at the time of writing.

The van den Berg–Kesten inequality (Sect. 7.2)

Correlation inequalities are key to the study of interacting systems. The so-called
FKG inequality has been especially important, and it asserts that increasing events
are positively correlated (for suitable probability measures). Negative correlation is a
more elusive concept than its positive sibling. Probably the most important negative
correlation inequality for product measures is that of van den Berg and Kesten from
1985. They introduced the notable concept of the ‘disjoint occurrence’ of events, and
they proved the associated inequality. It has been very useful since.

Uniqueness of the infinite cluster (Sect. 7.3)

How many infinite open clusters does a supercritical percolation process on Z
d

possess? Aizenman, Kesten, and Newman showed the answer to be a.s. one. They
introduced methods that have since been useful elsewhere, and they opened the door
to a series of important papers by others on disordered systems on graphs of a variety
of types. It turns out that the answer is always one for amenable graphs, whereas the
picture is more diverse for non-amenable graphs.

Incipience and subdiffusivity (Sect. 7.4)

Critical percolation is believed (and in most dimensions known) to have only finite
open clusters. From physics came the idea of studying the infinite percolation cluster
that critical percolation is ‘trying to form’. Harry made sense of this notion in two
dimensions with his proof of the existence of a probability measure defined as the limit
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Harry Kesten’s work in probability theory 21

of the (critical) productmeasure conditioned on the origin lying in an increasingly large
cluster. He called this limit the incipient percolation cluster ˜C .

He was able to show a fractal-like structure of ˜C , in part by utilising de Gennes’
proposal of setting in motion a random walker. Whereas the natural normalization of
a random walk (Xn) on Z

2 is
√
n, it turns out that, for a walk (Xn) on ˜C , there exists

ε > 0 such that n− 1
2+εXn → 0. This ‘subdiffusivity’ occurs because the walk spends

a lot of its time in blank alleys of ˜C .

Scaling relations in two dimensions (Sect. 7.6)

There is a full physical picture of the percolation phase transition in two dimensions.
A great deal is ‘known’ but, even today, relatively little has been proved (with the
exception of site percolation on the triangular lattice). It is expected that functions
have power-law singularities at and near the critical point pc, and that their ‘critical
exponents’ satisfy the so-called scaling relations.

Amajor step forward was taken by Harry in 1987 towards an understanding of such
exponents and relations. Under the assumption of the existence of two exponents, he
proved the existence of five more, and the validity of the associated scaling relations.
On the way to this, he studied the so-called ‘arm events’ that have been so important
in more recent work. This article has had a major impact on the rigorous theory of the
percolation phase transition in two dimensions.

Random flows (Sect. 7.7)

‘First-passage percolation’ is the study of the rate of spread of material through a
randommedium. Harrymade a systematic study of the related problem of themaximal
flow through a medium subject to random edge-capacities. Careful control of dual
surfaces is required in three or more dimensions.

2.2 Randomwalks

Randomwalks on groups (Sect. 3.2)

In his distinctively innovative PhD thesis from 1958, Harry introduced the theory of
random walks on countable discrete groups. He proved that the probability of return
to the starting point after 2n steps behaves in the manner of λ2n where λ is the spectral
radius. Moreover, λ = 1 if and only if the group is amenable. This condition for
amenability has become one of the tools of geometric group theory, and the field that
he initiated remains active today.

Randomwalk in random environment (Sect. 3.5)

Undergraduates learn about random walks on Z that, when at x ∈ Z, jump one step to
the right (respectively, left) with probability α (respectively, β = 1−α). Life becomes
much more complicated if the value of α at the point x is a random variable αx . It
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22 G. R. Grimmett

turns out that the long-term behaviour of the walker is heavily influenced by domains
D of Z where the (αx : x ∈ D) conspire to slow it down. With Kozlov and Spitzer,
Harry proved a very precise result about the walker’s position, in terms of a stable law
of index κ , where κ is given by E((β0/α0)

κ) = 1.

Diffusion limited aggregation (Sect. 3.6)

This famousmodel for aggregation has resistedmany attempts to build rigorous theory.
Drifting particles aggregate at the first point of a composite that they hit. Simulations
support the belief that growth is dendritic and fractal. In 1987 Harry proved one of
the few rigorous results, namely that (in two dimensions) the radius of the composite

grows no faster than n
2
3 .

2.3 Branching processes and L log L (Sect. 6)

Harry liked necessary and sufficient conditions, as exemplified in his most prominent
works on branching processes. Consider a supercritical branching process (Zn) with
one progenitor and mean family-size μ ≥ 1. The limit W = limn→∞ Zn/μ

n exists,
by martingale convergence. With Stigum, Harry found the necessary and sufficient
condition for E(W ) = 1, namely E(Z1 log+ Z1) < ∞. Around the same time, with
Ney and Spitzer, he established necessary and sufficient conditions for the Yaglom
and Kolmogorov laws for critical branching processes.

2.4 Products of randommatrices (and scalars) (Sect. 4)

In early work with Furstenberg from 1960, Harry investigated the limiting behaviour
of the partial products Yn of a stationary, ergodic sequence (Mn) of random matrices.
They proved in particular that the limit of n−1 log ‖Yn‖ exists, and furthermore that a
central limit theorem holds under suitable assumptions.

Harry studied later the stochastic recurrence equation Yn = MnYn−1 + Qn , as
well as the apparently simpler case of a scalar random variable Y such that Y and
MY + Q have the same distributions. His proof that Y is generically heavy-tailed
has had enormous influence in numerous areas of applied probability, statistics, and
finance.

2.5 Self-avoiding walks (Sect. 5)

What can be said about the numberχn ofn-step self-avoidingwalks (SAWs) on a lattice
L, with a given starting point? The combinatorics of SAWs are especially complicated,
and asymptotics for χn are challenging to derive. It is classical that χ

1/n
n → κ for some

connective constant κ associated with the lattice L. When L = Z
d , Harry proved the

more refined ratio limit theorem χn+2/χn → κ2, and in so doing introduced a ‘pattern
theorem’ which has had lasting impact in this challenging and visible field.
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Harry Kesten’s work in probability theory 23

2.6 Polar points of Lévy processes (Sect. 3.3)

Let (Xt ) be a d-dimensional Lévy process, and define the hitting probability h(r) =
P(Xt = r for some t > 0) for r ∈ R

d . The point r is called polar if h(r) = 0. The
identification of the polar points became a prominent problem in the 1960s. Harry
identified the set of polar points in one dimension, and proved (subject to reasonable
conditions) that polarity is the norm in two or more dimensions.

2.7 Probabilistic Diophantine approximation (Sect. 8.1)

Perhaps inspired by an early collaboration with Mark Kac, Harry wrote several papers
around 1960 on aspects of Diophantine approximation, using frequently the language
and methods of probability theory. His best known work is a paper which set the scene
for the more recent theory of bounded remainder sets. Let {x} = x − �x	 denote the
fractional part of the real number x . With 0 ≤ a < b ≤ 1 and b − a < 1, let Sn(x)
be the number of integers k ∈ {1, 2, . . . , n} such that {kx} ∈ [a, b). In proving that
Sn(x) − n(b − a) is bounded in n if and only if b − a = { j x} for some integer j ,
Harry answered a question of Erdős and Szüsz.

3 Randomwalk

3.1 Randomwalk

The purist might view probability theory as finite measure theory plus conditional
expectation. The concept of ‘independence’ is fundamental to the theory, as is its
negation ‘dependence’. As Kac wrote in [84]: “This notion [statistical independence]
originated in probability theory and for a long time was handled with vagueness which
bred suspicion as to its being a bona fide mathematical notion.” Independence was
considered historically as a basis for the multiplication of probabilities, and it seems to
have been Steinhaus (student of Hilbert, advisor to Banach and Kac) who introduced
the now familiar definition of independence for a countable family of random variables
(as reported by Kac [83]); see also [K92, p. 1104]).

Random walk is the theory of the partial sums of a sequence of independent, iden-
tically distributed (iid) random variables. Such partial sums are viewed as a process,
suitably indexed, and the emphasis is generally upon the geometrical aspects of this
process. Randomwalk is arguably themost fundamental process of probability. Recent
books on the topic include [93,94].

3.2 Randomwalk on groups

It is not surprising, given the circumstances of his arrival at Cornell, that Harry’s PhD
thesis was concerned with random walk, albeit in the novel context of groups. In his
35 page thesis of 1958 ([K7], published as [K11]), he initiated the theory of random
walks on groups, a healthy topic even 60 years later.
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24 G. R. Grimmett

The usual randomwalk takes jumps around the abelian groupsZ
d orR

d under addi-
tion. More generally, let G be a countable (additive) group, and let A = {a1, a2, . . . }
be a generating set for G and P = (p1, p2, . . . ) a strictly positive vector with sum
1
2 . The triple (G, A, P) gives rise to a random walk X = (Xn : n ≥ 0) on G that,
when at g ∈ G, moves at the next step to g ± ai with probability pi (for each i).
Harry investigated the relationship between the spectrum of the transition matrix M
(considered as an operator on l2(G)) and the properties of the group G. The spectral
radius λ(G, A, P) of M is the supremum of |λ| taken over all eigenvalues λ of M .
Write 0 for the zero element of G, and Px for the law of X given X0 = x .

Theorem 3.1 [K11]

(a) The spectral radius λ(G, A, P) equals the maximal eigenvalue of M.
(b) We have that λ(G, A, P) = limn→∞ P0(X2n = 0)1/(2n).
(c) Whether or not λ(G, A, P) = 1 depends only on the structure of the group G, in

the following sense. We have that λ(G, A, P) = 1 if and only if λ(G, B, Q) = 1
for some generating set B and strictly positive Q.

Write λ(G) = 1 when the common value of part (c) satisfies λ(G, A, P) = 1. The
following criterion for amenability is a fundamental result in geometric group theory.

Theorem 3.2 [K9] The group G is amenable if and only if λ(G) = 1.

In the collaboration that followed, Kesten and Spitzer [K31] asked about potential
kernels for randomwalks on countably infinite abelian groups. They presented a crite-
rion for recurrence, and they established a potential theory. In his Berkeley symposium
paper [K37], Harry collected together a number of related open problems, including
what came to be known as ‘Kesten’s conjecture’: the only recurrent groups are the
finite extensions of {0}, Z, and Z

2. This prominent conjecture was finally verified in
its generality in 1986 by Varopoulos [118] (see [72]).

Random walks on groups have attracted much attention in recent years; see [123].
In the case of finite groups, it is appropriate to mention Saloff-Coste’s chapter [107],
included in the collection [K177] edited by Harry.

3.3 General theory of randomwalk

The decade of the 1960s was a rich period for the theory of randomwalk, with the first
edition of Spitzer’s important book [113] published in 1964. Harry wrote a number
of significant articles around this time, of which four were concerned with ratio limit
theorems.

Theorem 3.3 Let X be an irreducible random walk on Z
d where d ≥ 1. Assume

X0 = 0, and let T be the time of the first return by X to 0.

(a) [K27] The probabilities rn = P0(T > n) satisfy rn+1/rn → 1 as n → ∞.
(b) [K22] Furthermore, the limit

lim
n→∞

Px (T > n)

P0(T > n)
= δ0,x + a(x)
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Harry Kesten’s work in probability theory 25

exists for x ∈ Z
d , where a(x) is the potential kernel

a(x) =
∞
∑

n=0

[

P0(Xn = 0) − Px (Xn = 0)
]

< ∞.

Part (a) is a key part of the proof of part (b), due to Kesten, Ornstein, and Spitzer.
The main purpose of [K27] was to extend part (b) to the number of visits of X to an
arbitrary finite subset Ω of Z

d , that is, to exhibit an expression for the limit of the
ratio Px (n, r ,Ω)/P0(T > n) as n → ∞, where the numerator is the probability that
X makes exactly r visits to Ω up to time n. This is a ratio of sums, and one may
in principle obtain more refined results by examining the ratios of certain individual
terms in these sums. This last project was pursued by Harry alone in [K26]. It was left
there as a conjecture to show that f (r)

n := P0(n, r , {0}) − P0(n − 1, r , {0}) satisfies

lim
n→∞

f (r)
n

f (1)
n

= r , r = 2, 3, . . .

the proof of which (for aperiodic, recurrent, symmetric chains) was delayed until
[K46].

While at The Hebrew University in 1960, Harry began his work on α-stable pro-
cesses X , in an investigation of the intervals of time during which Xt > 0. He derived
asymptotics for the number N (ε) of such intervals with length greater than ε, and
observed that his answers for α �= 1 coincided with results of Chung and Kac [33]
on changes of sign in sums of iid variables with a stable distribution. This led to a
correspondence with Chung and Kac about the validity of their claims when α = 1
(see [K92, p. 1119]). Harry wrote up his results in [K25].

In the two linked papers [K15,K16], Harry extended earlier results of Spitzer and
Stone [114] concerning the mean number of visits by a random walk on Z to a given
state before exiting a given bounded interval. He was principally motivated to consider
random walks with α-stable jumps. This work led naturally to two subsequent papers,
the first of which, [K30], answered a question of Erdős with an iterated logarithm
law for the number of visits by a random walk to its most visited state. In the later
paper [K39], Harry proved that, if the mean number of visits to a given interval I up
to time n grows in the manner of n1−1/α with α ∈ (1, 2], then the jumps belong to the
domain of attraction of a symmetric α-stable law. This answered a question of Spitzer
concerning a converse result of Darling and Kac [40].

Let X be a d-dimensional Lévy process, that is, a random process taking values
in R

d with stationary independent increments. Announced in [K40] and proved in
his AMS Memoir [K42] are Harry’s results on the question: when is it the case that
the hitting probability h(r) = P(Xt = r for some t > 0) satisfies h(r) > 0? He
identified seven cases when d = 1, and included a criterion (see Theorem 3.4) for the
statement h(r) = 0 for all r ∈ R, while warning the reader that “In most practical
situations one will have a hard time applying the criterion . . . ”. The cases d ≥ 2 are
more complicated still. His d = 1 result was motivated by and answered a question
of Chung on solutions to a certain convolution equation.
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26 G. R. Grimmett

From the spread of results in his paper, we extract one in the following paraphrase.
The point r ∈ R

d is called polar if h(r) = 0, and we let P denote the set of polar
points.

Theorem 3.4 [K42] Let X be aone-dimensional Lévy processwhich is not a compound
Poisson process. ThenP = R if and only if the characteristic exponentΨ of the process
X satisfies

∫ ∞

−∞
�

(

1

1 + Ψ (u)

)

du = ∞,

where �(z) denotes the real part of z.

Shortly after the publication of this paper, Bretagnolle “obtained very elegant and
powerful probabilistic arguments and thereby obtain[ed] considerably simpler proofs
of the [Harry’s] results” (quotation from Harry’s review of Bretagnolle’s paper [20]).
Of the numerous modern accounts of Lévy processes, we mention the books [18,45,
92].

Harry delivered the 1971 Rietz Lecture of the Institute of Mathematical Statistics.
In the resulting article [K51], he surveyed three aspects of the theory of the sum Sn of n
independent randomvariables Xi , namely, (i) spread of distributions and concentration
functions, (ii) ratio limit theorems and potential kernels, (iii) the set of accumulation
points of Sn/γn for suitable γ = (γn), when the Xi are iid. His inclusion in the title of
“without moment conditions” (and omission of “identically distributed”), is typical of
his inveterate search for generality, but he resisted a temptation to move much beyond
one dimension. Parts (i) and (ii) are important surveys of earlier distributional theory
of Harry and others, including [K41] and thematerial on ratio limit theorems remarked
above.

Part (iii) of [K51] is concerned with the ‘strong’ theory of Sn/γn . Let

A(S, γ ) =
∞
⋂

m=1

{

Sn/γn : n ≥ m
}

.

For any given distribution function F of the Xi , there exists a deterministic closed
subset B(F, γ ) of the extended real line R such that A(S, γ ) = B(F, γ ) a.s. The
strong law of large numbers and the law of the iterated logarithm may be viewed
as determinations of B(F, γ ) for γn = n and γn = √

2n log log n under suitable
conditions. Harry ended his paper with a very general law of the iterated logarithm
for the sums of an iid sequence, subject to the necessary and sufficient condition that
their common distribution F lies in the domain of partial attraction of the normal law.

Theorem 3.5 [K43,K51]

(a) If B(F, (n)) contains two or more points, then it contains +∞ and −∞.
(b) For any closed subset B of R containing {−∞,+∞}, there exists F such that

B(F, (n)) = B.
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Harry Kesten’s work in probability theory 27

Harry asked about the set B(F, (nα)), and he returned to this question in joint work
with Erickson. Let Bs(F, (nα)) be the set of b ∈ R such that there exists a non-random
sequence nk satisfying Snk/n

α
k → b a.s. as k → ∞. It is interesting to investigate the

relationship between B(F, (nα)) and its subset Bs(F, (nα)) of ‘strong limits’.

Theorem 3.6 [K53]

(a) Let α > 1
2 , α �= 1, and suppose Bs(F, (nα)) ∩ R �= ∅. Then Bs(F, (nα)) ∩ R

equals one of (−∞, 0], [0,∞), R, and each of these three possibilities can occur.
(b) Let α = 1. For any closed subset B of R, there exists F such that Bs(F, (n)) = B.

Harry later verified a conjecture of Erickson [54] that a general d-dimensional
random walk diverges at least as fast as does a simple symmetric random walk.

Theorem 3.7 [K64] Let (Xi ) be iid Z
d-valued random variables whose support is

contained in no hyperplane, and let Sn = ∑n
i=1 Xi . Let ψ : [1,∞) → (0,∞) be

such that ψ(t)/t
1
2 → 0 as t → ∞, and let (S∗

n ) be a simple symmetric random walk
on Z

d . If |S∗
n |/ψ(n) → ∞ a.s. as n → ∞, then |Sn|/ψ(n) → ∞ a.s. as n → ∞.

In joint work with Durrett and Lawler published under the banner of gambling,
Harry investigated the long-term behaviour of a walk (Sn) onZwith independent steps
(Xi ), each of which may have one of a given finite setD of zero-mean distributions. In
an answer to a question of Spătaru, they showed that any of the following may occur:
(i) P(Sn → ∞) = 1, or (ii) P(Sn → −∞) = 1, or (iii) there are transient oscillations
between ±∞. Condition (i) is equivalent to P(Sn > 0) → 1, and similarly for (ii).
Now suppose D = {F1, F2} where Fi has infinite variance but finite qi th moment,
with qi ∈ (1, 2). When q1+q2 > 3, we have simultaneously that lim supn→∞ P(Sn <

0) > 0 and lim supn→∞ P(Sn > 0) > 0, whatever the choice of the distributions of
the (Xi ).

3.4 Randomwalk after 1992

Following his solution in 1980 to the percolation problem on Z
2 (see Theorem 7.1),

Harry’s interests shifted towards percolation and related areas. He returned to more
classical problems on a visit to Australia in 1990, and between 1992 and 2004 he pub-
lished 10 papers with RossMaller on randomwalks. This work is somewhat technical,
and complete statements of their results (including the modes of convergence) are not
included here.

Let (Xi ) be an iid sequence with sums Sn = ∑n
i=1 Xi . For given n ≥ 1, let

X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the (decreasing) order statistics of the subsequence
(Xi : i = 1, 2, . . . , n), and let X (1), X (2), . . . , X (n) be the subsequence reordered in
decreasing order of absolute values. The ‘trimmed sums’ are defined as

(r)Sn = Sn − X(1) − · · · − X(r),
(r)Sn = Sn − X (1) − · · · − X (r),

for r = 0, 1, 2, . . . , n, and they express in two ways the degree of dominance of the
overall sum Sn over the summands. Working with the trimmed sums for fixed r is
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termed ‘light trimming’. The results of [K124] include necessary and sufficient condi-
tions for the lightly trimmed sums to satisfy (r)Sn/X(r) → ∞ and (r)Sn/|X (r)| → ∞
as n → ∞. In [K150], Kesten and Maller studied the validity of the limits Sn → ∞
and Sn/n → ∞, and obtained conditions under which ∞ ∈ Bs(F, 1) and/or
∞ ∈ Bs(F, n), in the notation of Theorem 3.6. They turned in [K176] to the effect of
trimming on a generalized law of the iterated logarithm.

In papers [K135,K140], Kesten and Maller established necessary and sufficient
conditions for (r)Sn/Cn → ±∞ and (r)Sn/Cn → ±∞ as n → ∞, where the Cn are
non-random.The results are of course related toHarry’s earlierwork on strong limits of
the ratio Sn/γn ; see Theorems 3.5–3.6. They imply, for example, that P(Sn > 0) → 1
if and only if Sn → ∞ in probability, a fact of interest to compulsive gamblers with
deep pockets.

Moments of the first and last exit times of an interval (−∞, x] are explored in
[K147], and the orders of magnitude of such moments are established as x → ∞. The
so-called ‘stability’ of exit times from a strip or half-plane of R

2 is studied in [K158],
with potential connections to sequential analysis.

In two linked articles [K154, K155], the authors investigated the ratio Sn/nκ as
n → ∞. Suppose that P(Sn → ∞) = 1, and let κ ≥ 0, κ �= 1, and when κ > 1
assume also that E(|X1|1/κ) = ∞. Then the probability that S crosses the curve
y = axκ before it crosses y = −axκ tends to 1 as a → ∞. This intuitively clear
statement is not simple to prove, and indeed it is false when κ = 1. These results are
connected in the second paper to the almost-sure limits lim supn→∞ Sn/nκ = ∞ and
lim supn→∞ |Sn|/nκ = ∞, for which necessary and sufficient conditions are given.

The range Rn of a random walk is the number of distinct points visited up to time
n. Hamana and Kesten [K166,K169] proved a large-deviation principle for the range
of a random walk on Z

d with d ≥ 1. The subadditivity of the sequence (Rn) is useful,
and for once it turns out that the proof is hardest when d = 1. Certain results and
conjectures for the range of random walk on a Cayley graph are presented in [K181].

3.5 Randomwalk in random environment

Random walks commonly live on either Z (or Z
d), or more generally on R

d for some
d ≥ 1. Groups provide a more general setting as in Sect. 3.2, and lately there has been
great interest in random walks on general connected graphs. In all such settings, the
underlying graph G is fixed, the randomness is associated with the walk only, and the
ensuing process constitutes a Markov chain. The situation is much more complex if
the environment is random also. In such a case, the position of the walker is no longer a
Markov chain, and there are generally sub-domains of the environment where the walk
moves anomalously. Such a process is termed ‘random walk in random environment’
(RWRE).

On the one-dimensional line Z, simple RWRE amounts to: (i) sampling random
variables for each site, that prescribe the transition probabilities (left or right?) when
the walker reaches the site, and (ii) performing a random walk (or more precisely a
Markov chain) with those transition probabilities. RWRE is a Markov chain given the
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environment of transition probabilities, but it is not itself Markovian because, as the
walker moves, it accrues information about the random environment.

Let A = {αx : x = . . . ,−1, 0, 1, . . . } be iid random variables taking values in
[0, 1], and let βx = 1 − αx . Conditional on A, let X = (Xn) be a random walk on Z

which, when at position x , moves one step rightwards (respectively, leftwards) with
probability αx (respectively, βx ).

Let ρ = β0/α0. Suppose that there exists κ ∈ (0,∞) such that

E log ρ < 0, E(ρκ) = 1, E(ρκ log+ ρ) < ∞,

and in addition log ρ is non-arithmetic. The following, amongst other things, was
proved by Kesten, Kozlov, and Spitzer in 1975.

Theorem 3.8 [K56] There exist constants Aκ , Bi > 0, and stable laws Lκ with index
κ , such that the following hold as n → ∞, for all appropriate x ∈ R.

(a) If κ < 1, P(Xn ≤ xnκ ) → 1 − Lκ(x−1/κ ).
(b) If κ = 1, for suitable δn ∼ n/(A1 log n),

P
(

Xn − δn ≤ xn/(log n)2
) → 1 − L1(−x A2

1).

(c) If 1 < κ < 2,

P
(

Xn − (n/Aκ) ≤ xn1/κ
) → 1 − Lκ(−x A1+1/κ

κ ).

(d) If κ = 2,

P
(

Xn − (n/A2) ≤ x(n log n)
1
2 B1A

−3/2
2

) → Φ(x).

(e) If κ > 2,

P
(

Xn − (n/B3) ≤ xn
1
2 B2B

−3/2
3

) → Φ(x).

Here Lκ is concentrated on [0,∞) if κ < 1, and has mean zero when κ > 1. The
standard normal distribution function is denoted Φ.

In particular, when κ < 1, Xn has order nκ . The complexities of the main theorem
of [K56] are reproduced above in illustration of Harry’s determination and ability to
get right to the heart of a problem.

In the critical (recurrent) case,whenρ is bounded away from0 and 1, and in addition
satisfies

E log ρ = 0, σ 2 := E[(log ρ)2] ∈ (0,∞),

Sinai [111] showed that σ 2Xn/(log n)2 ⇒ L under the annealed measure P, for some
functional L of the standard Wiener process. Harry was able to calculate the density
function of L (see also [61]).
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Theorem 3.9 [K93] The random variable L has density function

d

dx
P(L ≤ x) = 2

π

∞
∑

k=0

(−1)k

2k + 1
exp

{

− (2k + 1)2π2

8
|x |

}

, x ∈ R.

Harry returned to this RWRE in [K62], showing, subject to the condition Eρ < 1,
that the environment seen from the position of the walker has a limit distribution.
Partial results when Eρ = 1 were stated also, with proofs “available from the author”.

The above may be viewed as early contributions to the theory of RWRE, and to
the related area of homogenization of differential operators with random coefficients.
RWRE in higher dimensions requires different techniques, and major progress has
been made by Bricmont and Kupiainen [21] and others (see also the references in
Sznitman’s paper [116]).

There are a number of variants of the RWRE problem. One such variant arises
when the walk lives on a random graph such as a tree or part of a lattice, and Harry’s
work in these settings is summarised in Theorems 6.3 and 7.6–7.7. In other systems,
the environment evolves in time in a manner that depends on the trajectory of the
random walk. In the edge-reinforced random walk model, each edge is traversed with
a probability depending on its weight, and its weight increases as it is traversed. With
Durrett and Limic [K168], Harry showed that ‘once-reinforced’ walk (ORRW) of
[41] on a tree is transient, and the distance of the walker from its starting point grows
linearly with time. The ORRW model has attracted attention since, and the reader is
referred to [34] for recent results.

Finally, den Hollander, Kesten, and Sidoravicius [K192] studied a two-type particle
system on Z

d in which the jump-distribution of a type-2 particle depends on whether
or not there is type-1 particle present.

Whereas the above is set in discrete space–time, Harry’s two papers [K68,K75]
with Papanicolaou from 1979/1980 are directed at diffusion in a continuous random
environment. In a model for turbulent diffusion, they considered the stochastic dif-
ferential equation ẋ(t) = v + εF(x(t)) where v �= 0 is a fixed vector and F is a
zero-mean stationary process satisfying a smoothness condition. Their main result is
that diffusivity holds in the limit as ε ↓ 0. Stochastic acceleration, and the equation
ẍ(t) = εF(x, ẋ) in d ≥ 3 dimensions, is the topic of the second paper, where they
conclude that x converges to a diffusion process as ε ↓ 0.

3.6 Diffusion limited aggregation

Diffusion limited aggregation (DLA) is a stochasticmodel believed to exhibit dendritic
growth and power-law correlations, which was introduced in finite volumes byWitten
and Sander [122] (see Fig. 1). We describe next Harry’s results for a DLA model for
a growing cluster on the lattice Z

d with d ≥ 2.
Let A0 be the origin ofZ

d . The intuition of growth is as follows. Conditional on the
set An , the set An+1 is obtained by starting a random walk ‘at infinity’ and stopping
it when it reaches a point that is adjacent to An , and then adding that point to the set
An . The concept of ‘release at infinity’ may be interpreted as starting at a point x and
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Fig. 1 A simulation of a
two-dimensional diffusion
limited aggregation. (By
courtesy of Aliette Mandelbrot.)

then letting |x | → ∞. When d = 2, this random walk hits An with probability 1,
whereas when d ≥ 3 the limit probability of hitting An is 0. In the latter case, one
conditions on hitting An , and then passes to the limit as |x | → ∞. This mechanism
may be formalised using so-called harmonic measure ([K97,K119]).

Computer simulations of [122] and others indicate that An grows in the manner of
a fractal set, with arms that extend across space. and whose embrace tends to trap the
incoming particle when it is still far from the origin. One way of measuring this effect
is via the radius of An , rad(An) = max{|a| : a ∈ An}, and it is believed that rad(An)

grows in the manner of nα for some α. It is immediate by the isoperimetric inequality
that such α satisfies d−1 ≤ α ≤ 1.

Theorem 3.10 [K98,K113] There exists a constant C = C(d) such that, a.s. eventu-
ally,

rad(An) ≤
{

Cn2/(d+1) if d ≥ 2, d �= 3,

C(n log n)1/2 if d = 3.

The d = 3 bound has been improved slightly by Lawler [93, Thm 2.6.1] to
rad(An) ≤ Cn1/2(log n)1/4. Subject to this, the results of Theorem 3.10 (dated 1990)
remain the best rigorous results currently known for DLA on Z

d . No non-trivial lower
bound on α is currently known.

Simulations suggest that rad(An) ∼ Cnα where the ‘dimension’ 1/α satisfies

1

α
≈

⎧

⎨

⎩

1.7 if d = 2,
d2 + 1

d + 1
when d is large.

See, for example, [119].
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3.7 Randomwalk in random scenery

The subject of random walk in random scenery (RWRS) seems to have been initiated
by Kesten and Spitzer [K69].2 Let {ξ(x) : x ∈ Z} be iid random variables, and let
Wn = ∑n

i=1 ξ(Sn) be the cumulative scenery of an independent random walk (Sn).
The process (Wn), when suitably normalized, converges to a self-similar process, under
the assumption that the ξ(x) and the steps Xi belong to the domains of attraction of
stable laws.

A number of authors, including Kasteleyn [87] and Keane and den Hollander [88],
developed the ergodic theory of the scenery process viewed progressively by the
random walk.

In a more recently considered RWRS problem, suppose there are only two pos-
sible sceneries ξ , ξ ′ on a graph G. By progressive observation of its local scenery,
can a random walker on G = (V , E) decide which of the two is the true scenery?
In a randomized version of this question, the set of sceneries is taken as Ξ(k) =
{0, 1, . . . , k}V , and a random scenery η ∈ Ξ is picked according to uniform product
measure on Ξ(k). The concept of ‘distinguishability between sceneries’ requires a
definition, and once that is done, one arrives at the following theorem of Benjamini
and Kesten.

Theorem 3.11

(a) [K142] For G = Z, Z
2 and k = 1, and any fixed scenery ξ ∈ Ξ(1), we have that

almost every η is distinguishable from ξ .
(b) [K144] Let G = Z, and let̂ξ be obtained from the scenery ξ ∈ Ξ(k) by altering

the value ξ(0) at the origin only. If k ≥ 5, for almost every η ∈ Ξ(k), we have
that η and η̂ are distinguishable.

There has been a great deal of progress with this beautiful problem since the above,
due in part to Henry Matzinger, one of Harry’s former PhD students. The reader is
directed to [98] for relevant references.

4 Products of randommatrices

Harry Kesten and Hillel Furstenberg spent the academic year 1958–9 as instructors
at Princeton University, where they became interested in recent work of Bellman.
In the article [15], one of 19 works by Bellman listed on MathSciNet for 1954, he
derived some results for the asymptotic behaviour of the product of n independent,
random 2 × 2 matrices. Furstenberg and Kesten were able to extend these results
very considerably in their now well-known paper, which was described by Bellman
as “difficult and ingenious”.

2 Published in a volume of the Zeitschrift für Wahrscheinlichkeitstheorie und verw. Geb. and dedicated to
its first editor, Leopold Schmetterer, on his 60th birthday in 1979.
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Theorem 4.1 [K13]Let M1, M2, . . . be a stationary ergodic sequence of randomd×d
matrices, such that E log+ ‖M1‖ < ∞. Then Yn = MnMn−1 · · · M1 satisfies

lim
n→∞

1

n
log ‖Yn‖ = E a.s.,

where

E = lim
n→∞

1

n
E

(

log ‖Yn‖
)

.

here ‖A‖ = maxi
∑

j |ai j | for A = (ai j ). A central limit theorem holds subject to
appropriate conditions on the Mn .

Their analysis made use of some subadditivity, but they did not anticipate the
forthcoming theory of subadditive stochastic processes (see Sect. 7.7), which would
later furnish a short proof of some of their results. The Oseledec multiplicative ergodic
theorem, which appeared a few years later [103], may be viewed as a generalization
of the results of [K13].

In the article [K52], Harry studied the stochastic recurrence Yn = MnYn−1 + Qn ,
where the (Mn, Qn) are independent, identically distributed pairs of d × d matrices,
and the Yn are d-vectors. He noted that such equations occur in a variety of settings
including RWRE, branching processes in a random environment, control theory, and
models for evolution and cultural inheritance. Key to this study is the behaviour of
the products M1M2 · · · Mn . His results include a connection to the stable laws, and
a renewal theory for products of random matrices. Near the heart of the work (when

d = 1) lies the stochastic equation Y
d= MY + Q, and the conclusion that such Y can

be heavy-tailed. This work has generated a considerable amount of interest since in
probability, statistics, and mathematical finance, as noted by the authors of [23]: “The
highly praised Kesten paper has motivated several generations of researchers to work
on closely related topics”.

Later, in work motivated by the potlatch process, Kesten and Spitzer [K85] investi-
gated theweak convergence of products of independent non-negative randommatrices,
and particularly conditions under which the product converges weakly, without nor-
malization, to a measure that is not concentrated on the zero matrix.

5 Self-avoiding walks

A self-avoiding walk (SAW) on a graph is a path that visits no vertex more than once.
SAWs were introduced by Orr [102] as a simple model for long-chain polymers (see
Flory [56]), and counting SAWs on a given graph is a fundamental combinatorial
problem with ramifications in both mathematics and physics.

Let Z
d be the d-dimensional hypercubic lattice with d ≥ 2, and let χn be the

number of n-step SAWs starting at the origin. The principal counting problem is to
establish the asymptotic behaviour of χn as n → ∞, and to determine the radius of
a ‘typical’ SAW of length n. In a notable paper [73], Hammersley and Morton used
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subadditivity to show that that there exists a ‘connective constant’ κ = κ(Zd) given
by

1

n
logχn → log κ as n → ∞,

which is to say that χn = κn(1+o(1)).
Self-avoiding walks have earned a reputation for being hard to study, and there

remains much to understand despite progress over more than 50 years. For example it
remains an open problem to prove that

χn+1/χn → κ as n → ∞,

despite Harry’s ratio-limit theorem from 1963.

Theorem 5.1 Let d ≥ 2.

(a) [K24] The number χn of n-step SAWs on Z
d starting at the origin satisfies

∣

∣

∣

∣

χn+2

χn
− κ2

∣

∣

∣

∣

≤ An− 1
3 ,

for some constant A.
(b) [K28] We have that χn ≤ κn exp{Bn2/(d+2) log n} for some constant B.

Part (a) was proved using a surgery that replaces one part of a SAW by another; the
2 appears because, sinceZ

d is bipartite, parity of lengths is preserved in surgery. In the
proof, Harry introduced an argument known now as ‘Kesten’s pattern theorem’, which
has since been very useful in a number of contexts. It states that any configuration of
k consecutive steps, that has the property that it can occur more than once in an n-step
SAW, has to occur at least an times, for some a > 0, in all but ‘exponentially few’
such SAWs.

While it is a simple consequence of subadditivity that χn ≥ κn , upper bounds
on χn are harder to derive. Hammersley and Welsh [74] had earlier proved that χn ≤
κn exp{Bn 1

2 } for all d ≥ 2, and Theorem 5.1(b) was an improvement of this for d ≥ 3.
The Hammersley–Welsh inequality remained the best available when d = 2 until the

appearance in 2018 of [47] with an improved exponent of order n
1
2−ε . In 1992, Hara

and Slade [77,78] developed a lace expansion for SAWs that yielded χn ∼ Cκn when
d ≥ 5. Part (b), above, remains the best current upper bound when d = 3, 4. As
remarked in [97, p. 69], Harry stated part (b), but he proved only a weaker bound in
[K28] since he hoped someone would find a sharper inequality.

The theory of self-avoiding walks on two-dimensional lattices is an important
topic of current research. Duminil-Copin and Smirnov [49] proved the longstand-
ing conjecture that the connective constant of the hexangular lattice H satisfies

κ(H) =
√

2 + √
2, and in so doing presented a rigorous connection between two-

dimensional SAWs and conformal invariance. It is a notorious open problem to prove
that, when suitably rescaled, a uniformly random n-step SAW on H converges as
n → ∞ to so-called SLE8/3.
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6 Branching processes

The branching process (or, asHarry liked in later years towrite, theBienaymé–Galton–
Watson process) is themost fundamental stochasticmodel for population growth. Each
individual has a family of offspring, and the family-sizes are drawn independently from
a given distribution. Branching processes have been used in a multitude of application
areas, and they continue to be a source of wonderful mathematical problems.

Let Zn be the size of the nth generation of a branching process, and suppose
Z0 = 1 and μ = E(Z1) < ∞. It is easy to see that E(Zn) = μn , so that μ may
be viewed as the average rate of population growth. It is an undergraduate exercise
(due to Christensen and Steffensen in 1930, see [2]) that the process Z becomes a.s.
extinct, in that a.s. Zn = 0 for large n, if μ < 1, and not if μ > 1. In the latter case,
the extinction probability η is easily calculated. This and very much more is explained
in Harris’s influential book [80] from 1963 on the subject, which includes an account
of ‘multitype’ processes with more than one type of individual.

Harry wrote a number of significant articles about branching processes. Perhaps his
widest knownwork is his paper [K34], one of three joint works with Stigum concerned
with multitype branching processes, written around 1966, namely [K33,K34,K38].
They extended work of Levinson [95] concerning the convergence of supercritical
multitype branching processes, and gave a necessary and sufficient condition con-
cerning the mean of the associated martingale Wn = Zn/μ

n . This condition was new
even for processes with only one type, and it is in this simpler form that it is presented
here.

Theorem 6.1 [K34] Let Z = (Zn) be a branching process with Z0 = 1 and μ :=
E(Z1) > 1. The almost-sure limit W = limn→∞ Wn satisfies E(W ) = 1 if and only
if E(Z1 log+ Z1) < ∞. Under this condition, W has an atom of size η at 0, and is
absolutely continuous on (0,∞).

These conclusions were known already subject to a second moment condition,
and the authors of [K34] observed that the main novelty of their work lay in the
identification of the condition E(Z1 log+ Z1) < ∞. An interesting discussion of
these and further results is found in [96].

Celebrated theorems of Kolmogorov [90] and Yaglom [124] identified the speed of
extinction of a critical branching process (whenμ = 1), and its weak limit conditional
on non-extinction. With Ney and Spitzer, Harry weakened their third-moment con-
dition to the necessary and sufficient second-moment condition, using “traditional”
tools.

Theorem 6.2 [K32] Let Z = (Zn) be a branching process with Z0 = 1 and μ :=
E(Z1) = 1. If σ 2 := var(Z1) satisfies 0 < σ 2 ≤ ∞, then

nP(Zn > 0) → 2

σ 2 , P(Zn > nx | Zn > 0) → e−2x/σ 2
,

as n → ∞.

The incipient infinite percolation cluster ˜C is a connected subgraph of Z
2 with

fractal-like qualities. One way to understand something about the geometry of ˜C is
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to study the variance of random walk thereon, and in particular to show that it is
subdiffusive (see Sect. 7.4). Perhaps as a warm-up to this problem, Harry included in
his paper [K94] an account of random walk on the family tree of a critical branching
process conditioned on non-extinction, and his results include the following.

Theorem 6.3 [K94] Let Z be a critical branching process satisfying Z0 = 1 and
0 < var(Z1) < ∞, and let T be a rooted tree with the law of Z conditioned on
non-extinction. Let X = (Xn) be a random walk on T , and write P for the annealed

law of X. The height h(Xn) is such that n− 1
3 h(Xn) converges weakly (under P) to a

distribution with no mass at 0.

The quenched version of the above statement is left open. A corresponding invari-
ance principle is stated but not proved in [K94], since “at this time we only have a
monstrously long proof of [· · · ] and we therefore restrict ourselves to the following

weaker result . . . ”. The n
1
3 scaling is consistent with the so-called Alexander–Orbach

conjecture in the setting of a critical branching process conditioned on non-extinction
[5].

Harry continued his work on the family-tree T of a critical branching process in
several papers, including [K63] on branching Brownian motion, and [K134] on an
application to river basin hydrology published in the Dynkin festschrift. Kesten and
Pittel [K148] established an asymptotic formula for the joint distribution for the height
and number of leaves of T .

With Durrett andWaymire in [K116], Harry studied the family-tree Tn of a branch-
ing process, when conditioned to have total size n. The issue in question was to
understand the growth of the weighted height of Tn , when iid weights are associated
with the edges of Tn . They explored the manner in which the answer depends on the
power-law of the weight distribution. Harry returned in [K138] to this edge-weighted
process, viewed as a critical branching random walk in which a vertex w is displaced
from its parent v by the weight of the corresponding edge 〈v,w〉. Let Mn be the
maximal displacement of the nth generation. If the edge-weights have mean 0 then,

conditional on non-extinction at time βn where β ∈ (0,∞), the sequence n− 1
2 Mn

converges in distribution. This is related to results for Aldous’s continuum random
tree and Le Gall’s Brownian snake.

Harry considered in [K50] a probabilistic model for “zygotic mutation without
selection at one locus” in population genetics. Subject to a quite technical assumption,
he proved a convergence theorem for this model which generalises the principal limit
theorem for a supercritical branching process.

Estimates concerning the geometry of a branching process turn out to be key to
Harry’s study with Grimmett of the electrical resistance of a complete graph ([K82,
K165]). In [K109], he developed detailed asymptotics for a supercritical branching
process with a countable infinity of types, in order to derive properties of projections
of random Cantor sets.
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Fig. 2 A simulation of bond percolation on Z
2 with p = 0.51

7 Percolation theory

7.1 The critical probability in two dimensions

The percolation process is a canonical model for a disordered medium. For concrete-
ness, consider the d-dimensional hypercubic lattice Z

d with d ≥ 2, and let p ∈ [0, 1].
We declare an edge of Z

d to be open with probability p, and closed otherwise, dif-
ferent edges having independent states. What can be said about the geometry of the
subgraph induced by the open edges (as illustrated in Fig. 2), and in particular for
what values of p does this graph possess an infinite cluster?

AsHarry reflected in the preface of [K80], percolation is both a source of fascinating
problems, and a central topic in the physical theory of phase transitions. The math-
ematical theory originated in work of Broadbent and Hammersley [22] on diffusion
through a random medium, as a model for the transmission of particles through a face
mask. Percolation theory is now a key tool in the mathematics of interacting systems,
and a testbed for new techniques. The two-dimensional theory has been especially
prominent in the currently active theory of random planar geometry.

The percolation probability is the function

θ(p) = Pp
(

the origin lies in an infinite open cluster
)

,

and the critical probability is given by

pc(Z
d) = sup{p : θ(p) = 0}.

It is fundamental that 0 < pc(Zd) < 1 when d ≥ 2 (see [62] for a general account
of percolation). The obvious problem of the exact calculation of pc(Zd) is intractable
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when d ≥ 3. The case d = 2 is, however, very special, because of a property of self-
duality possessed by the square lattice, which motivated the then notorious conjecture
that pc(Z2) = 1

2 . Harry proved this in 1980.

Theorem 7.1 [K70] The critical probability of bond percolation on the square lattice
is pc(Z2) = 1

2 .

The conjecture that pc(Z2) = 1
2 went back at least to 1960. In that year, Harris [79]

proved that θ( 12 ) = 0, whence pc(Z2) ≥ 1
2 , using a clever geometrical argument com-

bined with a positive-correlation inequality, both of which have lasting significance.
Hammersley’s numerical simulations indicated a value strictly less than 1

2 (“what bet-
ter evidence could there be for pc(Z2) = 1

2”, he would say). There were important
papers by Russo and Seymour/Welsh that led to Harry’s famous article [K70] where he
quantified the idea of ‘sharp threshold’ and hence derived a proof of Theorem 7.1. The
related concept of ‘influence’ has since been independently systematised in general
settings by Kahn, Kalai, Linial [85], Talagrand [117], and their successors (see [63,
Chap. 4]).

Harry’s subsequent volume [K80] is a fairly formidable work on percolation in
two dimensions, designed unapologetically for the mathematician. These two works
[K70,K80] brought prominence to percolation, and ushered in a period of intense
activity, initially in two dimensions and later more generally. The exact calculation
of Theorem 7.1 has been vastly extended since to percolation on a large family of
isoradial graphs [69], that is, graphs embedded in R

2 in such a way that every face is
convex with a circumcircle of given radius. Such exact values were later extended to
the critical points of random-cluster models on isoradial graphs [48].

7.2 Disjoint occurrence and the van den Berg–Kesten (BK) inequality

Correlation inequalities play a very important role in the theory of disordered systems
in mathematics and physics. The most prominent such inequality for percolation is the
so-called (Harris–)FKG inequality, which states that increasing events are positively
associated. In investigating a converse inequality, van den Berg made a conjecture
which he proved jointly with Harry.

Let |E | < ∞ and Ω = {0, 1}E , endowed with a product measure P. Let A, B
be increasing events in the finite product space (Ω, P). For ω ∈ Ω and F ⊆ E , let
ωF denote the configuration which agrees with ω on F and equals 0 elsewhere. The
disjoint occurrence event A ◦ B is defined by

A ◦ B =
{

ω ∈ {0, 1}E : ∃F ⊆ E such that ωF ∈ A, ωE\F ∈ B
}

.

Theorem 7.2 [K87] For increasing events A, B ⊆ Ω , we have that P(A ◦ B) ≤
P(A)P(B).

This ‘BK inequality’ is a delicate and tantalising result, with a number of useful
applications. It was extended by Reimer [105] to a disjoint-occurrence inequality
without the assumption that the events be increasing. Van den Berg and Jonasson [16]
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have proved Theorem 7.2 with P replaced by the uniform measure on subsets of E
with given fixed cardinality.

7.3 Uniqueness of the infinite cluster

When p > pc, there exists a.s. at least one infinite open cluster, but how many?
This uniqueness problem was answered by Harry in joint work with Aizenman and
Newman. The proof is very general, but we state it here for the bond model on Z

d .

Theorem 7.3 [K95] Consider bond percolation on Z
d with d ≥ 2, and let p ∈ [0, 1].

The number N of infinite open clusters satisfies

either Pp(N = 0) = 1 or Pp(N = 1) = 1.

Paper [K95] was soon superseded by the elegant argument of Burton and Keane
[24], but it remains important as a source of quantitative estimates, as, for example,
for the lower bound of [28] on the so-called two-arm exponent.

Harry worked also on uniqueness in long-range models on subgraphs of Z
d . When

d = 1, he and Durrett [K111] extended a special calculation of Shepp [110] in which
sites i and j are connectedwith probability p(i, j), where p is a homogeneous function
of order−1. Turning to (spatially homogeneous) long-range percolation, let p : Z

d →
[0, 1] be symmetric. An undirected edge is positioned between sites i and j with
probability p( j−i). When is the ensuing random graph a.s. connected? The necessary
and sufficient condition according to Grimmett, Keane, and Marstrand [66] is that
∑

z p(z) = ∞ (subject to a natural irreducibility assumption on the support of p).
The argument used there fails for subspaces of the form Z

d−e × Z
e+ with e ≥ 1, and

likewise the methods of [K95] and [24,86] do not seem to apply for d ≥ 2, e ≥ 1.
Harry showed in [K122] that a corresponding summability condition is both necessary
and sufficient.

7.4 Incipience and randomwalk

Whereas Harris proved in [79] that θ( 12 ) = 0 when d = 2, the proof that θ(pc(Zd)) =
0 for all d ≥ 3 has so far resisted allcomers (it is now known for d ≥ 11, [55], using
an elaboration of the lace expansion of [76]). There was interest among physicists in
the idea that a large two-dimensional cluster is ‘nearly infinite’ when p = 1

2 . Harry’s
response to this speculation was a pair of coordinated limit theorems.

Theorem 7.4 [K90] Consider bond percolation on Z
2, and let C denote the open

cluster containing the origin 0. The following two conditional probability measures
converge, and they have the same limit ν:

1. P 1
2
(· | Kn) as n → ∞, where Kn is the event that 0 is connected by an open path

to some lattice point with distance n from 0,
2. Pp(· | C is infinite) as p ↓ 1

2 .
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The measure ν (and the open cluster ˜C at the origin under ν) is called the incipient
infinite cluster. While the fractal nature of ˜C is still not properly understood, Harry
exhibited its mass dimension in terms of that of the P-probability πn that the origin is
connected to the half-space [n,∞) × Z.

Theorem 7.5 [K90] As ε ↓ 0, uniformly in n,

ν

(

ε <
|˜C ∩ Bn|
n2πn

<
1

ε

)

→ 1,

where Bn = [−n, n]2.
Theorem 7.5 is complemented in [K90] by the inequalities

C1n
− 1

2+η1 ≤ πn ≤ C2n
−η2 ,

for some ηi > 0. The sizes of large open clusters of Bn were studied in [K163] by
Borgs, Chayes, Kesten, and Spencer for an interval of values of p around the critical
value pc, with similar results for 3 ≤ d ≤ 6 subject to an extensive set of hypotheses.

De Gennes proposed in [42] the metaphor of a random ant in order to explore the
geometry of a random set. In a continuation of the above work, Harry studied a random
walk X = (Xn : n ≥ 0) on the incipient infinite cluster ˜C starting at the origin.

Theorem 7.6 [K94] For some ε > 0, (n− 1
2+εXn : n ≥ 0) is tight.

In particular, there exists ε > 0 such that n− 1
2+εXn → 0 as n → ∞. Since a

diffusion process grows in the manner of n
1
2 , this implies the subdiffusivity of X . This

slowing occurs because of the dangling regions and blind allies on a multiplicity of
scales that are found in the random graph ˜C . More detailed results are available in the
related situation of a random walk on the family tree of a critical branching process
conditioned on non-extinction; see [K94] and Theorem 6.3.

The incipient infinite cluster, with the random walk thereon, has attracted much
attention in a variety of further contexts since Harry’s work on Z

2. See, for example,
the book of Heydenreich and van der Hofstad [81] and the references therein. A well-
known prediction of Alexander and Orbach [5] states that, for random walk X on the
incipient infinite cluster of Z

d (if it exists), we have

P(X2n = 0) ≈ n− 2
3 as n → ∞.

This is believed to hold when d ≥ 6, but has so far been proved (by Kozma and
Nachmias) only in the large-d case, which these days means d ≥ 11 (see [91] and
[55,81]).

De Genne’s ‘ant in a labyrinth’ is relevant also to random walk on the infinite open
(supercritical) percolation cluster, where it provided a concrete example of a non-
elliptic RWRE. With Grimmett and Zhang, Harry showed the following early result
in the area.
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Theorem 7.7 [K127] Let d ≥ 2 and p > pc(Zd). Random walk on the a.s. unique
infinite open cluster is recurrent if and only if d = 2.

Precise estimates have been obtained since for the transition probabilities and cen-
tral limit theory of this random walk, and the reader is referred to the papers [6,10] for
accounts of recent work.

7.5 Supercritical percolation

The size |C | of the cluster at the origin has an exponentially decaying tail in the
subcritical phase when p < pc. The situation is different when p > pc, in that the
distribution of |C | is in part controlled by the size of its surface. The isoperimetric
inequality suggests a stretched exponential distribution. There was a proof by Aizen-
man, Delyon, and Souillard [1] that Pp(|C | = n) ≥ e−βn(d−1)/d

for some β(p) > 0.
Kesten and Zhang [K114] showed the complementary inequality, by a novel block
argument that has been useful since.

Theorem 7.8 [1] [K114] Let d ≥ 3 and pc(Zd) < p < 1. There exist functions β, γ ,
taking values in (0,∞), such that

e−βn(d−1)/d ≤ Pp(|C | = n) ≤ e−γ n(d−1)/d
, n ≥ 1.

When d ≥ 3, the authors of [K114] were in fact only able to show the above upper
bound for p exceeding a certain value pslab, but the full conclusion for p > pc fol-
lowed once Grimmett and Marstrand [70] had proved the slab limit pc = pslab. Sharp
asymptotics and the associated Wulff contruction were established later by Alexan-
der, Chayes, and Chayes [4] when d = 2, and by Cerf [26,27] in the substantially
more challenging situation of d = 3. The Kesten/Zhang construction of [K114] has
recently proved key to the proof of analyticity for the percolation probability θ in
d ≥ 3 dimensions; see [60].

7.6 Scaling theory

The critical probability pc marks a point of singularity separating the subcritical phase
(all open clusters are finite) from the supercritical phase (there exists an infinite open
cluster). The singularity at pc has much in common with the phase transitions of
statistical physics,

Let C denote the open cluster containing the origin. According to scaling theory,
macroscopic functions such as the percolation probability θ(p) = Pp(|C | = ∞) and
themean cluster size χ(p) = Ep|C | have singularities at pc of the form |p− pc| raised
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Fig. 3 An example of a percolation figure by Harry Kesten, taken from his paper [K102] on scaling theory

to an appropriate power called a critical exponent. More generally, it is believed that

θ(p) ≈ (p − pc)
β, χ(p) ≈ (p − pc)

−γ , as p ↓ pc,

κ ′′′(p) ≈ |p − pc|−1−α, ξ(p) ≈ |p − pc|−ν, as p → pc,

Ep(|C |k+1; |C | < ∞)

Ep(|C |k; |C | < ∞)
≈ |p − pc|−Δ, for k ≥ 1, as p → pc,

where κ(p) is the mean number of clusters per site, and ξ(p) is the correlation length.
The asymptotic relation ≈ is to be interpreted logarithmically (stronger asymptotics
are also expected to hold).

In similar fashion, when p = pc, several random variables associated with the open
cluster at the origin are expected to have power-law tails. More specifically,

Ppc(|C | = n) ≈ n−1−1/δ, Ppc(rad(C) = n) ≈ n−1−1/ρ,

Ppc(0 ↔ x) ≈ |x |2−d−η,

as n, |x | → ∞.
The set of critical exponents (including the eight given above) describes the nature

of the singularity, and they are supposedly ‘universal’ in that their values depend on
the number d of dimensions but not on the choice of lattice. They are expected in
addition to satisfy the so-called ‘scaling relations’ of statistical physics. It is an open
problem to prove almost any of the above in general dimensions.

Extraordinary (but incomplete) progress has been made towards the above when
d = 2. Harry’s work has been a key part of this program. Article [K77] describes
early progress in the rigorous study of (non-)smoothness of macroscopic functions.
Probably his most important paper in this context was [K102] on the scaling relations
(see Fig. 3).
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Theorem 7.9 [K101,K102] Let d = 2. If the limits defining δ and ν exist, then

β = 2ν

δ + 1
, γ = 2ν

δ − 1

δ + 1
, Δ = 2ν

δ

δ + 1
, η = 4

δ + 1
, 2ρ = δ + 1.

This list of relations may seem somewhat sterile when stated in this bald manner.
Underlying these relations is amethod for relating near-critical and critical percolation,
supported by a number of complex geometrical estimates of probabilities (somewhat
systematised in [100]). Thesemethods, together with Theorem 7.9 itself, are an impor-
tant part of the proof of the exact values of critical exponents for site percolation on
the triangular lattice T:

β = 5
36 , δ = 91

5 , γ = 43
18 , η = 5

24 , ν = 4
3 .

This, and much more, has been proved over the last 20 years by Smirnov, Schramm,
Lawler, Werner and others (see, for example, [120]). The proof of the existence of
critical exponents (for site percolation on T) had to wait for the invention of the
SLE processes by Schramm [108]; Smirnov proved Cardy’s formula, and explained
conformal invariance (see [25,112]); and, finally, the team of Lawler, Schramm, and
Werner built a theory of SLE and certain related lattice systems (see, for example,
[109]).

The impact of Harry’s papers [K101,K102] has been enormous across two-
dimensional percolation and related ‘percolative’ systems including models such as
dynamical, frozen, and invasion percolation’; see, for example, [17,39,58].

7.7 First-passage percolation

In this time-dependent percolation model on Z
d , the edges are assigned independent

non-negative ‘time coordinates’, interpreted as the time required to pass along the
edge. One studies the region reached from the origin within a given time. This process
was introduced by Hammersley and Welsh [75] in 1965. They proved that, subject to
certain conditions, the first passage time a0,n from the origin to the point (n, 0, . . . , 0)
satisfies a0,n/n → μ for some ‘time constant’ μ. In so doing, they introduced the
notion of stochastic subadditivity, and they proved a version of the subadditive ergodic
theorem. Subadditivity became recognised as an important technique in probability
and combinatorics, and it was a perennial theme in Harry’s work. Indeed, it provides
an elegant proof of part of his result with Furstenberg, Theorem 4.1, on the products
of random matrices.

Harry and his co-authors resolved a number of significant problems in first-passage
percolation, and posed others, in a series of papers spanning nearly 20 years. He
established several fundamental properties of the time constant in two dimensions,
including positivity and continuity. Let U be the law of the time coordinates, and
μ = μ(U ) the time constant.

Theorem 7.10 Consider first-passage percolation on Z
2.

(a) [K73] If U (0) < 1
2 , then μ(U ) > 0.
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(b) [K76] If Uk ⇒ U in the sense of weak convergence, then μ(Uk) → μ(U ).
(c) [K132] Let U1 and U2 be probability measures on [0,∞) with finite means such

that U2 is “useful”. If U1 ≤st U2 but U1 �= U2, then μ(U1) < μ(U2).

Concerning part (a), it is immediate that μ(U ) = 0 if U (0) > 1
2 . Matters are

more delicate whenU (0) = 1
2 , but nevertheless μ(U ) = 0, and moreover Kesten and

Zhang [K152] proved a central limit theorem for the sequence (a0,n), when suitably
normalised, using martingale central limit theory. This work has been continued by
several authors, including in the recent papers [8,37,38].

Part (b), which was joint with Cox, was extended only in 2017 by Garet, Marchand,
Procaccia, and Théret [59] to Z

d with d ≥ 3. For an explanation of the ‘usefulness’
condition of part (c), the reader is referred to the original paper. It implies in particular
that μ(U2) > 0. Stochastic ordering is denoted by ≤st.

Mention should also be made of [K130], which addresses the problem of the rate of
convergence of a0,n/n, and of the degree of roughness of the boundary of the region
reached from the origin up to time n. The scaling theory of such roughness remains
an important open problem which has been considered since by several authors (see
[30,36],[K188]). It is generally a hard problem to obtain decent lower bounds for a
subadditive stochastic process (see the relevant comments in [8, p. 140]).

Exponential estimates and box arguments were a regular theme of Harry’s work,
and they featured in his large-deviation theorem for first passage times.

Theorem 7.11 [K81] Consider first-passage percolation on Z
d with d ≥ 2, and let

ε > 0.

(a) If U has finite variance, there exist A, B > 0 such that

P
(

a0n < n(μ − ε)
) ≤ Ae−Bn, n ≥ 1.

(b) If
∫

eγ x U (dx) < ∞ for some γ > 0, there exist C, D > 0 such that

P
(

a0n > n(μ + ε)
) ≤ Ce−Dn, n ≥ 1.

More refined analysis shows that the upper large deviations of part (b) can decay
exponentially in nd , whereas the order of the lower deviations given above is typi-
cally correct. The contrast between lower and upper large deviations for subadditive
functionals has attracted quite a lot of attention since Harry’s work. See, for example,
[32,35].

Theorem 7.11 has applications to the theory of random electrical networks, and
to the diffusion constant in a random medium. This connection led Harry to a fairly
systematic study of the ‘random flow’ problem: what can be said about the maximal
flow across a cube of Z

d with random capacities assigned to the edges. For the sake
of definiteness, consider the box An,k = [0, n] × [0, k]2 in Z

3, with bottom Bn,k =
{0} × [0, k]2 and top Tn,k = {n} × [0, k]2. To the edges e of An,k are assigned iid
capacities C(e) ≥ 0. Let Φn,k be the maximum flow from Bn,k to Tn,k inside An,k

subject to the constraint that the absolute value of the flow along any e is no larger
than C(e). The following is an exemplar of Harry’s results.
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Theorem 7.12 [K88,K103] Let n = n(k) → ∞ as k → ∞ in such a way that, for
some δ > 0, k−1+δ log n → 0. There exists p0 > 0 such that, if P(C = 0) < p0 and
E(eγC ) < ∞ for some γ > 0, then the limit

ν = lim
k→∞

1

k2
Φn,k

exists a.s. and in L1. Furthermore, ν ∈ (0,∞).

Some tricky geometrical issues arise in the proof, concerning the combinatorics
and topology of dual surfaces in R

3. The condition involving p0 has been removed
recently by Zhang [125], who proved that the limit ν is strictly positive if and only if
P(C = 0) < 1− pc(Zd). The problem of lower large-deviations of the Φn,k has been
settled by Rossignol and Théret [106] and Cerf and Théret [29].

For recent accounts of percolation and first-passage percolation, the reader is
referred to [K188], [9].

7.8 Word percolation

The ‘word percolation’ problem originated in work of Dekking [43] on trees, and
was developed by Benjamini and Kesten as a generalisation of site percolation and
its variant called AB percolation. We start with the site percolation model on a given
graph G = (V , E) with density p, that is, a family (Xv : v ∈ V ) of independent
Bernoulli variables with Pp(Xv = 1) = 1 − Pp(Xv = 0) = p. Consider an alphabet
of two letters 0, 1, and write Ξ = {0, 1}N for the set of infinite words in this alphabet.
A word w = (wi : i ∈ N) ∈ Ξ is said to be ‘seen from vertex v’ if there exists a
self-avoiding walk (v1, v2, v3, . . . ) from v1 = v such that Xvi = wi for all i ; w is
said to be ‘seen’ if it is seen from some v. The site percolation problem corresponds
to the word (1, 1, 1, . . . ), and AB percolation to the word (1, 0, 1, 0, . . . ).

The questions of interest are: which words are seen from a given v with strictly pos-
itive probability, and which words are seen somewhere in G with probability 1? Harry
wrote three papers on this topic with subsets of Benjamini and Sidoravicius/Zhang.
Let Sv be the set of words seen from v, and let S∞ = ⋃

v Sv .

Theorem 7.13 Consider word percolation on the graph G.

(a) [K136] Let G = Z
d and P := P 1

2
. Then

P(S∞ = Ξ) = 1 if d ≥ 10,

P(Sv = Ξ for some v) = 1 if d ≥ 40.

(b) [K156] Let G be the triangular lattice T and P := P 1
2
. With P-probability 1,

every periodic word except (1, 1, 1, . . . ) and (0, 0, 0, . . . ), and almost every non-
periodic word, is seen. Here, ‘almost every word’ means with μβ -probability 1
where μβ is product measure on Ξ with some given density β ∈ (0, 1).
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(c) [K167] Let G be obtained from Z
2 by adding two diagonals to each face. We

have Pp(S∞ = Ξ) = 1 whenever p ∈ (1 − pc, pc), with pc (< 1
2 ) the critical

probability of site percolation on G.

The word problem continues to fascinate probabilists, as exemplified by [101],
where Theorem 7.13(a) is extended to the statement that P(S∞ = Ξ) = 1 for d ≥
3. Mention is made of three related embedding problems which are proving to be
challenging: the Lipschitz embeddings of [64,65], the quasi-isometric embeddings of
[11,12], and the Winkler compatibility problem [K193].

7.9 Related processes

The percolation model is only the beginning of a rich modern theory of disordered
discrete systems, often indexed by lattices such as Z

d . Brief accounts of Harry’s
contributions to a selection of related areas follow.

Greedy lattice animals

To the vertices v of Z
d are assigned iid random variables Xv satisfying Xv ≥ 0. The

weight of a subset U ⊆ V is defined as the sum W (U ) = ∑

v∈U Xv . Let Mn be
the maximal weight of connected subgraphs (also known as ‘lattice animals’) with n
vertices and containing the origin. It was shown by Cox, Gandolfi, Griffin, and Kesten
in [K126,K133] that, subject to a suitable moment condition on the Xv , the ratio Mn/n
converges as n → ∞. A similar result holds for n-step self-avoiding walks (SAWs)
from the origin. Partial results without the positivity assumption on the Xv are found
in [K164].

�-percolation

Consider site percolation on Z
d with d ≥ 2 and density p, and let ρ ∈ (0, 1].

Menshikov and Zuev [99] initated the study of so-called ρ-percolation: we say that
ρ-percolation occurs if there exists, with strictly positive probability, an infinite SAW
w = (w0, w1, . . . ) from the origin w0 = 0 such that the proportion πn of open ver-
tices in the first n vertices of w satisfies lim infn→∞ πn ≥ ρ. Thus, ρ-percolation is
connected to the greedy problem for SAWs above.

In [K160], Kesten and Su studied ρ-percolation on the directed graph obtained from
Z
d by orienting every edge according to increasing coordinate direction. Let pc(ρ) be

the critical value of p for given ρ. They proved that

d1/ρ pc(ρ) → θ1/ρ

eθ − 1
as d → ∞,

where θ = θ(ρ) is the unique solution of a certain given equation. This further example
of Harry’s interest in the large-d behaviour of interacting systems is complemented
by [K107] on the Ising model, [K110] on Potts and Heisenberg models, [K112] on
percolation, and [K118] on the random-cluster model.
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Fig. 4 A uniform spanning tree (UST) on a square of the square lattice. It contains a unique path between
any two given boundary vertices, and this path has the law of a loop-erased random walk. (By courtesy of
Oded Schramm.)

Uniform spanning forest

A uniform spanning tree (UST) in a finite connected graph is a spanning tree chosen
uniformly at random from the set of all such trees. A uniform spanning forest (USF)
in Z

d is defined as the weak limit of USTs on larger and larger boxes (see Fig. 4).
Pemantle [104] proved that USF is a.s. connected if and only if d ≤ 4. The surprising
fact was discovered by Benjamini, Kesten, Peres, and Schramm [K174] that further
transitions take place as d passes through the multiples of 4. Suppose each tree in
the USF is shrunk to a single vertex, and consider the graph C thus obtained. They
showed that the diameter of C increases by 1 every time the dimension increases by
4. This unusual conclusion has been extended further by Hutchcroft and Peres [82] in
their proof that the USF with d ≥ 4 undergoes a qualitative change to its connectivity
every time the dimension increases.

Minimal spanning tree

Drop n points X1, X2, . . . , Xn uniformly at random into the unit cube [0, 1]d , where
d ≥ 2. Beardwood, Halton, and Hammersley [13] initiated the study of graphical
objects with vertex set {Xi }, in their study (using subadditivity) of the length of the
shortest travelling salesman path. Aldous and Steele [3,115] asked about the minimal
spanning tree on {Xi }, and proved that its α-length Mn,α (with an edge of length l
contributing length lα forα ∈ (0, 2]) is asymptotic to n(d−α)/d . Kesten and Lee [K146]
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proved a central limit theorem for this Mn,α by expressing it as a sum of martingale
differences. Bounds on the rate of convergence in this last limit were established
recently by Chatterjee and Sen [31] using Stein’s method.

8 Further work

8.1 Probabilistic Diophantine approximation

Harry wrote several works related to Diophantine approximation, frequently using
probabilistic notation and methodology. His first and only paper [K8] with Kac
addressed a central limit theorem for the number of appearances of a specified digit
in the continued fraction expansion of a ‘typical’ number. This was achieved in the
general context of the partial sums of a rapidly mixing sequence of iterates of a
measure-preserving map. The authors noted in an addendum that their results for
continued fractions had been obtained earlier by Doeblin [44] in 1940.

Let x, y ∈ [0, 1], and let 0 ≤ a ≤ b ≤ 1. Define

Sn(x, y) =
n

∑

k=1

1
({y + kx} ∈ [a, b]),

where 1(A) is the indicator function of A and {z} = z − �z	 is the fractional part
of z. Weyl [121] proved that Sn(x, 0)/n → b − a as n → ∞, for irrational x . In
[K14,K18], Harry established a fluctuation theory of Sn(X ,Y ), where X and Y are
uniformly distributed on [0, 1], namely that

1

log n
[Sn(X ,Y ) − n(b − a)] ⇒ Z/ρ,

where Z has the Cauchy distribution, and ρ depends on b − a and is constant for
irrational b − a. This work was extended in [K29] to an iterated logarithm law. It
is complemented in [K35,K36] by a proof of a conjecture of Erdős and Szüsz that
Sn(x, 0) − n(b − a) is bounded in n if and only if b − a = { j x} for some integer
j . This last result has motivated the study of so-called bounded remainder sets (see
[46]).

In a related work [K19], Ciesielski and Kesten considered the process

Xn(t) = 1√
n

n−1
∑

k=0

[

1
({2k X} ≤ t

) − t
]

, t ∈ [0, 1],

where X is uniformly distributed on [0, 1]. They answered a question of Kac with
their proof via an invariance principle that

lim
n→∞ P

(

sup
t∈[0,1]

|Xn(t)| < u

)

= P

(

sup
t∈[0,1]

|X(t)| < u

)

, u ∈ [0, 1],
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where X is the Gaussian process that is the weak limit limn→∞ Xn .
Let 〈x〉 denote the distance from x to its closest integer. In an extension [K21]

of work of Friedman and Niven [57] and Erdős, Szüsz, and Turán [52,53], Harry
showed three theorems, including that, if X is uniformly distributed on [0, 1], then
m·min{〈kX〉 : 1 ≤ k ≤ m} converges in distribution asm → ∞. Recent developments
of Athreya and Ghosh may be found in [7].

8.2 Random growth

First-passage percolation is an example of a random growthmodel, and there are many
others, including the classic Eden model [51]. Kesten and Schonmann [K41] explored
a variant of the Eden model, proving an asymptotic growth rate and shape.

Kesten and Sidoravicius [K178,K180,K184,K185] studied a population model on
Z
d with two types of particle. Type-A particles move as independent random walks in

continuous timewith rate DA, and type-Bparticles behave similarly at rate DB .When a
type-B particle meets a type-A particle, the latter changes its type to B instantaneously.
The problem was to prove a shape theorem for the spread of type-B particles. This
process has been called the frog model in the special case DA = 0. Recent work on a
continuum variant of this problem includes [14,68].

8.3 Population genetics

Inspired by a lecture course given by Kingman in 1979, Harry dabbled briefly in
population genetics, with work on the so-called Ohta–Kimura model for the evolution
of allelic frequencies in a certain finite (but large) population. Each generation has
a fixed size N , from which a random sample of size n is taken. Let Λ(n, N , t) be
the number of distinguishable alleles present in such a sample from generation t , and
let Λ(n, N ) be the weak limit of Λ(n, N , t) as t → ∞ (this limit exists by a result
of Kingman [89]). Kimura and Ohta’s analysis suggested that EΛ(N , N ) remains
bounded as N → ∞, whereas Moran showed heuristically that Λ(N , N ) → ∞. It
turned out that, in a fashion, both were correct.

Let γk denote tetration (or the power tower) of height k, γk := ee
··e
, and let λ(n) =

max{k : γk ≤ n} denote its inverse. Harry showed in [K71,K72] that, in the limit
as n, N → ∞ with n ≤ N , Λ(n, N )/λ(n) converges in probability to an explicit
limit. He pointed out that, for all practical purposes, Λ(N , N ) remains bounded, and
he illustrated this with the observation that, for 3814280 ≤ N ≤ 101656520, we have
λ(N ) = 3. After lecturing on this at Stanford University, he commented on the evident
mystification of the biologists present, and on Karlin’s expression of satisfaction at
having predicted the boundedness of Λ(N , N ).

8.4 Quasi-stationary distributions of Markov chains

Let X be a discrete-time Markov chain with an absorbing state labelled 0. What
can be said about Xn conditional on Xn �= 0? This classical question has led to a
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theory of so-called quasi-stationary distributions (qsd). Harry, in combinations with
Ferrari, Martínez, and Picco, proved several fundamental results concerning qsds.
They proved in [K137] that, subject to a certain condition, a qsd exists if and only if
the time to absorption has an exponentially-decaying tail. The required condition fails
for an important class of Markov chains arising from spatially distributed interacting
particle systems including the (discrete-time) subcritical contact model on Z

d . This
was rectified in the significant work [K143], with a study based around the property of
so-called R-positive-recurrence. On his way to these results, Harry [K144] revisited
the topic of ratio limit theorems, with proofs that ratio limits exist for Markov chains
on the non-negative integers with an absorbing state 0, conditional on not yet being
absorbed.

8.5 Annihilating and coalescing randomwalks

Interacting random walks of these two types have been studied since the 1970s as
duals to the antivoter and voter models of interacting particle systems. In a model first
studied by van den Berg and Kesten [K162], particles are placed at each vertex of
Z
d , and each moves in the manner of a Markov chain. When a particle jumps to a

vertex already occupied by j particles, it is removed with some given probability q j .
Let p(t) be the mean density of occupied vertices at time t . The authors showed that
p(t) ∼ C/t if d ≥ 6. Subject to an extra condition, this was extended in [K171] to
d ≥ 3.

This project was continued by Harry in [K159] with a proof that p(t) ∼ C/t when
d ≥ 9 for similar models in which the annihilation/coalescence can take place within
the set of neighbours of the moving particle.

In one of Harry’s final papers, he returned with Benjamini, Foxall, Gurel-Gurevich,
and Junge [K194] to coalescing random walks, this time in the context of a connected,
locally finite graph G. They asked when such walks are ‘site recurrent’ in that every
site is a.s. visited infinitely often. Site recurrence is equivalent to

∫ ∞
0 pv(t) dt = ∞

for all vertices v, where pv(t) is the probability that v is occupied at time t . They
showed that pv(t) ≥ C/(1+ t) when G has bounded degree, and pv(t) ≥ C/(t log t)
when G is a branching process whose family-sizes have an exponentially decaying
tail, thereby verifying site recurrence in both cases.
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