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Abstract
We introduce a new percolation model on planar lattices. First, impurities (“holes”)
are removed independently from the lattice. On the remaining part, we then consider
site percolation with some parameter p close to the critical value pc. The mentioned
impurities are not only microscopic, but allowed to be mesoscopic (“heavy-tailed”, in
some sense). For technical reasons (the proofs of our results use quite precise bounds
on critical exponents in Bernoulli percolation), our study focuses on the triangular
lattice. We determine explicitly the range of parameters in the distribution of impu-
rities for which the connectivity properties of percolation remain of the same order
as without impurities, for distances below a certain characteristic length. This gener-
alizes a celebrated result by Kesten for classical near-critical percolation (which can
be viewed as critical percolation with single-site impurities). New challenges arise
from the potentially large impurities. This generalization, which is also of indepen-
dent interest, turns out to be crucial to study models of forest fires (or epidemics).
In these models, all vertices are initially vacant, and then become occupied at rate
1. If an occupied vertex is hit by lightning, which occurs at a very small rate ζ , its
entire occupied cluster burns immediately, so that all its vertices become vacant. Our
results for percolation with impurities are instrumental in analyzing the behavior of
these forest fire models near and beyond the critical time (i.e. the time after which,
in a forest without fires, an infinite cluster of trees emerges). In particular, we prove
(so far, for the case when burnt trees do not recover) the existence of a sequence of
“exceptional scales” (functions of ζ ). For forests on boxes with such side lengths, the
impact of fires does not vanish in the limit as ζ ↘ 0. This surprising behavior, related
to the non-monotonicity of these processes, was not predicted in the physics literature.
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1 Introduction andmain results

Self-organized criticality is a fascinating phenomenon that may be used to explain
the emergence of complex structures in nature, in particular fractal shapes. It refers,
roughly speaking, to the spontaneous approximate arising of a critical regime without
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any fine-tuning of a parameter. Numerous works have been devoted to it, mostly
in statistical physics (see e.g. [4,22,35], and the references therein), but also on the
mathematical side.

In various models where this phenomenon occurs, the (near-) critical regime of
independent percolation seems to play a crucial role, even though this is not obvious
at all from the rules (dynamics) of the process. An example is a model for the displace-
ment of oil by water in a random medium [15,19,48]. Another paradigmatic example,
much less understood than the previous one, is a mathematical model of forest fires,
or, more generally, of excitable media which also include certain epidemics (where
infections from outside the population are rare, but spread out very fast) and neu-
ronal or sensor/communication networks; such models were introduced by Drossel
and Schwabl [16] in 1992. In the present paper we study versions of such processes,
where we focus on a model where burnt trees cannot be “replaced” by new trees (or,
in a sensor/communication network context, each node, i.e. sensor-transmitter in the
network, can only once send a signal to neighboring nodes). We will refer to this
version as “forest fires without recovery”, abbreviated as FFWoR.

Even though forest fire processes attracted a lot of attention, very little is known
about their long-time behavior. They are notoriously difficult to study, due to the exis-
tence of competing effects on the connectivity of the forest: since the rate of lightning
is tiny, large connected components of trees can arise, and when such components
eventually burn, they create lasting “scars” on the lattice which seem to function as
“fire lanes”, hindering the appearance of new large components. It turns out that, apart
from exceptional cases, these scars are essentially only formed near the so-called
critical percolation time. Due to the non-monotonicity, standard tools from statistical
mechanics for models on lattices cannot be used. Hence, new techniques and ideas
are required to understand the effect of large-scale connections, which play a central
role in the spread of fires.

In this work, we obtain a rigorous qualitative description of forest fire processes
near and after the critical percolation time, emphasizing their peculiar behavior and
rich structure (in particular the existence of exceptional scales) as the lightning rate
tends to 0. As we explain later in this Introduction, this relies on very accurate results
for critical and near-critical percolation in two dimensions, provided by the works of
Kesten [26], Lawler, Schramm andWerner [29,30], and Smirnov [43], in particular the
exact values of critical exponents [31,44]. For instance, to analyze the combined effect
of burnt regions when the process approaches the critical time, we use the inequality
α2 ≥ α4 − 1 for the so-called two-arm and four-arm exponents (see Sect. 1.3.2).

1.1 Frozen percolation and forest fire processes

We now describe in more detail the processes studied in, or relevant for, this paper:
Bernoulli percolation, frozen percolation, and, one of the twomain topics in this work,
forest fire processes (the other one being percolation with “heavy-tailed” impurities
as will be explained later).

First, for the study of forest fire models, it appears to be very convenient to compare
(couple) them with the classical percolation model, introduced by Broadbent and
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Hammersley [13] in 1957. More precisely, we consider Bernoulli site percolation
with parameter p ∈ [0, 1] on a connected, countably infinite, graph G = (V , E). In
this model, each vertex v ∈ V is occupied (or open, denoted by 1), with probability p,
and vacant (or closed, denoted by 0), with probability 1− p, independently of the other
vertices. There is a critical value pc = psitec (G) ∈ [0, 1] for the parameter p, below
which (almost surely) all occupied clusters are finite, and above which there may be
an infinite occupied cluster. This model and variations, such as bond percolation, have
been widely studied (see for instance [20,47]), especially on “nice” planar lattices like
the square and the triangular lattices, and on the hypercubic lattices Z

d , d ≥ 3, with
nearest-neighbor edges.

We now turn to the “non-monotone” models that we are interested in. We studied
versions of the following model in [10] and, together with Kiss, in [9], motivated
by work by Aldous [2], who in turn was inspired by phenomena concerning sol-gel
transitions [45]. We will call it the N -volume-frozen percolation model, or, some-
times, simply parameter-N model. It has a parameter N ≥ 1, typically very large,
and it is defined in terms of i.i.d. random variables (τv)v∈V uniformly distributed on
[0, 1]. Each vertex v is vacant at time 0, and becomes occupied at time τv unless some
neighbor of v already belongs to an occupied cluster with size (i.e. number of vertices)
at least N (in which case v remains vacant). In other words, a cluster stops growing
as soon as it has size ≥ N : such a large cluster is said to be frozen, or “giant”.

What can we say about the probability that a given vertex eventually (i.e. at time
1) belongs to a giant cluster? Of course, this is a function of N , and we are interested
in what happens as N → ∞. Does the above-mentioned probability go to 0? Or is it
bounded away from 0? What is, typically, the final size (at time 1) of the cluster of a
given vertex? Of course, it cannot be larger than d(N −1)+1, where d is the maximal
degree of the graph, but is it typically smaller than N , and even of smaller order than
N?

In the casewhere the graph is a binary tree, we showedwithKiss in [8], by extending
ideas from [2], that with high probability as N → ∞, the final cluster of a given vertex
is either giant (i.e. has size ≥ N ) or “microscopic” (of order 1). For the square lattice
(and other “nice” planar lattices), we showed in [10] the existence of a sequence of
functions (

√
N �) f1(N ) � f2(N ) � . . ., thatwe called exceptional scales, such that

the following surprising behavior holds: for each i , for the model in the box with side
length fi (N ), the probability that 0 is eventually in a giant cluster is bounded away from
0 as N → ∞; however, for every function f (N )with fi (N ) � f (N ) � fi+1(N ), the
above-mentioned probability goes to 0 as N → ∞. In [9], we showed (in the particular
case of the triangular lattice) that this probability also tends to 0 if f (N ) 
 fi (N ) for
every i ≥ 1, as well as for the process on the entire lattice.

As suggested above, the N -volume-frozen percolation model above can be inter-
preted as a simple model for gelation (sol-gel transition). It could also be interpreted as
amodel of forest fires (or epidemics) without recovery, where the ignitions (infections)
are very rare (N being very large), but once an ignition takes place, the fire spreads
very fast, in effect wiping out instantaneously the entire occupied cluster. Initially, at
each vertex there is one seed; once this seed has become a plant and this plant is burnt
by fire, no other plant will grow at its location, and neither at neighboring locations.
However, the role of the parameter N , i.e. that a cluster with size ≤ N cannot burn,
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Fig. 1 Final configuration (i.e. at time t = +∞) for the forest fires without recovery (FFWoR) process on
Z
2 with rate ζ = 0.01, in a boxwith side length 200. All sites are burnt, a lighter shade of blue corresponding

to a later time of burning

is not very realistic for this interpretation: it makes the dynamic quite rigid. Also, the
rule that nothing can grow anymore on the sites along the external boundary of a burnt
cluster of plants looks a bit artificial.

More realistic, as a model of forest fires without recovery, is the following, where
time is now indexed by [0,+∞), and which has a parameter ζ > 0, typically very
small. Again, at time 0, all vertices are vacant or, better, contain a seed. Independently
of each other, they become occupied, i.e. the seeds become plants, at rate 1. Each
occupied vertex (plant) is ignited at rate ζ , in which case its entire occupied cluster is
instantaneously burnt (and remains so: no new plant can grow on a burnt cluster). Note
that in this process, there are three possible states for a vertex: 0 (vacant, or “seed”:
initially, all vertices are in this state), 1 (occupied, or “plant”), and−1 (burnt). We will
denote this process by the earlier-mentioned abbreviation FFWoR. It is clear from the
description above that, for each ζ > 0, the probability that a given vertex is eventually
in state−1 (i.e. burnt) is equal to 1. An example of a final configuration is depicted in
Fig. 1.

Analogs of some of the earlier questions are the following. Does, for each t > 0,
the probability that a given vertex burns before time t go to 0 as ζ ↘ 0? Or are there
values of t for which this probability is bounded away from 0 as ζ ↘ 0? The answer
depends very much, like before, on the side length (now as a function of ζ ) of the
box, i.e. the forest. We will prove that, again, there is a sequence of exceptional scales.
At first sight, one might expect that this model can be analyzed in the same way as
the “parameter-N model”, with (roughly) N replaced by 1

ζ
. Apart from the fact that
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this replacement is too naive, the arguments become considerably more complicated,
due to quite delicate problems concerning what we call “near-critical percolation with
impurities”, as we heuristically indicate now.

1.2 Heuristic derivation of exceptional scales

In this heuristic section, the lattice to have in mindmay be any “nice” two-dimensional
lattice, and the most natural one is probably the square lattice. Later, to turn the
heuristic arguments concerning the FFWoR model into a rigorous proof, we will
restrict to the triangular lattice. The reason is that we need very precise bounds for
certain arm exponents in Bernoulli percolation which, although believed to hold for
all “reasonable” 2D lattices, have so far only been proved for the triangular lattice.

We will derive a sequence of exceptional scales for the FFWoR model, which
illustrates the non-monotonicity of this process (and indicates a rather convoluted
behavior for the process in the full plane). We will compare the FFWoR process with
parameter ζ in a box with side length g(ζ ) with the parameter-N model in a box with
side length f (N ). However, as we will see, the situation for the FFWoR model is
much more complicated, due to the occurrence of many microscopic (and possibly
“mesoscopic”) fires. This will lead us naturally, as explained in Sect. 1.3, to introduce a
newmodel of percolation with (potentially large) impurities. This percolation process,
on a graph obtained by removing randomly entire regions from the lattice, is a central
object of study in the present paper.

Let us first explain the heuristic arguments (made rigorous in [10]) for the parameter-
N model on the square lattice. If f (N ) = C

√
N with C > 1, then, clearly (since the

total number of vertices is > N ) at least one freezing event will take place. Hence,
a positive fraction (≥ 1

C2 ) of the vertices will freeze, which suggests (and this can
be quite easily proved) that the probability that 0 eventually freezes is bounded away
from 0 (in fact, has limit 1

C2 ) as N → ∞. Even though the above-mentioned limit
1
C2 tends to 0 as C → ∞, it is possible to find a function f (N ) 
 √

N such that
the probability that 0 freezes is also bounded away from 0 uniformly in N (in other
words, we cannot exchange limits naively). To do this, let τ denote the first time that
a giant cluster arises (recall that the time line in this model is the interval [0, 1]). The
biggest cluster at this (supercritical) time τ has size roughly θ(τ ) f (N )2, where θ(τ )

is the probability (for Bernoulli site percolation on the whole lattice) that 0 lies in an
infinite occupied cluster at time τ . We thus want

θ(τ ) f (N )2 � N . (1.1)

The freezing of this cluster disconnects the box into “islands” of diameter roughly
of order L(τ ), the characteristic length for percolation with parameter τ (see Sect. 2
for precise definitions of this and other notions). So if τ is such that L(τ ) is of order√
N , then 0 will (after this freezing event) typically be in the interior of an island with

diameter of order
√
N , and hence be in a similar situation as the previous case (i.e.

the case where the box has side length C
√
N ), so that the probability that 0 freezes

is bounded away from 0. So we may choose f (N ) such that besides (1.1), also the
following equation holds:
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L(τ ) � √
N (1.2)

(in particular, this implies that τ → pc as N → ∞).
A celebrated and classical result by Kesten [26] says that θ(τ ) � π1(L(τ )) [see

(2.10) below], where π1(.) is the one-arm probability at pc (defined in (2.1)). Com-
bining (1.1) and (1.2) with this result gives π1(

√
N ) f (N )2 � N , hence

f (N ) �
√

N

π1(
√
N )

. (1.3)

As a conclusion, if f (N ) is indeed of this order, then, for the parameter-N model in a
box with side length f (N ), the probability that 0 freezes is bounded away from 0 as
N → ∞. On the other hand, if the side length of the box is much larger than

√
N but

much smaller than the r.h.s. of (1.3), then, for similar reasons as above, 0 is, after the
first freezing event in the box, very likely to be located in an island with diameter much
smaller than

√
N , and therefore not to freeze. We say that

√
N is the first exceptional

scale, and the r.h.s. of (1.3) above is the second. Iterating this procedure produces a
sequence of exceptional scales.

We now turn to the FFWoR model with parameter ζ > 0. It turns out that, again,
the existence of a sequence of exceptional scales can be proved (see Theorem 1.3
in Sect. 1.3.2). However, the proof is much harder than for the parameter-N model.
During and directly after the following heuristic sketch, we briefly point out the main
source of new complications, which had to be handled.

First of all, similarly as in the parameter-N model, it is not hard to see that for
the process in a box with side length � 1√

ζ
, for each t > tc, the probability that 0

burns before time t is bounded away from 0 as ζ ↘ 0. Here time t is related to the
percolation parameter p by p = 1−e−t . In particular, the critical time tc is defined by
the relation pc = 1− e−tc . Note that tc is the time after which, in the process without
fires, an infinite occupied cluster emerges.

The heuristic argument to find the next scale (call it g(ζ ) for the moment) for which
this happens is now as follows. Let τ be the first time that a big burning takes place,
after which 0 is separated from the boundary of the box. Analogously to the beginning
of the argument for the parameter-N model, the size of the biggest cluster at time
τ > tc is

θ(1− e−τ )g(ζ )2. (1.4)

At time tc it is much smaller, but at time tc+τ
2 it has already a size of order (1.4). So,

to have a reasonable chance that the cluster burns “near” time τ , we need

ζ(τ − tc)θ(1− e−τ )g(ζ )2 � 1. (1.5)

We apply again the earlier-mentioned relation by Kesten, which in the current notation
is

θ(1− e−τ ) � π1(L(1− e−τ )), (1.6)
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218 J. van den Berg, P. Nolin

Fig. 2 In order to analyze the behavior around time tc of the FFWoR process, we first consider the process
where ignitions stop at a slightly earlier time, tc − ε. The clusters burnt before that time are depicted in red,
and may be viewed as “impurities”. Here, ε = 0.1

as well as the following relation, also established by Kesten in [26] (see (2.11) below):

(τ − tc)π4(L(1− e−τ ))L(1− e−τ )2 � 1 (1.7)

(π4(.) is the probability at pc of observing four arms with alternating types from a
given vertex, see (2.1)). Combining (1.5), (1.6) and (1.7) gives

ζπ1(L(1− e−τ ))g(ζ )2 � π4(L(1− e−τ ))L(1− e−τ )2. (1.8)

Analogously as for the parameter-N case, wewant to take g(ζ ) such that L(1−e−τ ) �
1√
ζ
(so that after the burning, 0 finds itself roughly in the same situation as before, i.e.

the probability that 0 burns before time t does not vanish as ζ ↘ 0). Plugging this
requirement into (1.8), we get, as an analog of (1.3),

g(ζ ) � 1

ζ

√√√√π4
( 1√

ζ

)
π1
( 1√

ζ

) (1.9)

(and the next exceptional scales can be derived in a similar way).
Note that the heuristics (and the formula: (1.9) involves not only π1, but, contrary to

(1.3), also π4) for the FFWoR process is more “tricky” than that for the parameter-N
model. Moreover, there is a much more serious complication. Although the reasoning
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Fig. 3 A typical random environment induced by the fires up to time tc − ε (here, ε = 0.1), where each
burnt cluster is replaced by an L∞ ball centered on the ignited vertex. Connections with the actual FFWoR
process and with a percolation model with impurities are explained in Sects. 6.2 and 6.4 respectively

leading to (1.9) might look sound, there is a delicate issue which was “swept under
the rug” and which has no analog in the parameter-N model. Namely, we ignored
the smaller burnings which took place already before time τ and created “impurities”
in the lattice (see Fig. 2, produced by using the same birth and ignition times as for
Fig. 1). For instance, the estimate (1.4) comes from ordinary percolation, but how do
we know that in a model with impurities, this formula is still (more or less) correct?

In fact, as we will see, the impurities are far frommicroscopic. Indeed, even though
the clusters burning at small times are tiny, larger and larger ones may burn as time
approaches tc. We can actually consider them as “heavy-tailed”, and we have to under-
stand their cumulative effect on the connectivity of the lattice, and examine whether
in the complement of these impurities, the percolation configuration is still essentially
near-critical. This effect turns out to be much more complicated and interesting than
we anticipated in the short, speculative, last section of [9]. Figure 3 gives an illustration
of the type of environments that we have to analyze.

This motivated (or even “forced”) us to define and study a class of percolation
models with impurities. This is done in the next subsection. Later we will see that
such models provide a good picture of the state of the forest in the FFWoR process
slightly before time tc, in particular whether it is sufficiently connected to enable large-
scale fires. It turned out that investigating a more general class than what corresponds
to the FFWoR process gave substantially more insight, while requiring little extra
effort. Moreover, this more general setup may be useful for the analysis of other forest
fire models.
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1.3 Percolation with impurities and statement of results

In Sect. 1.3.1 below, we define a class of percolation models with impurities. The
models make sense for any graph embedded in the plane. However, for reasons men-
tioned before, we will soon (starting in Sect. 1.3.2) restrict to the triangular lattice
(with its standard embedding in the plane, i.e. there is a vertex at the origin, and each
face of the lattice is a triangle with sides of length 1, one of which being parallel to
the x-axis).

These models happen to be crucial for a thorough analysis of the behavior of forest
fire processes near (and beyond) the critical time, and in particular for handling the
delicate issue mentioned at the end of Sect. 1.2. Roughly speaking, we will show
that, for a certain class of “impurities”, the “global” connectivity properties of the
percolation model are not (too) much worse than in the model without impurities
(i.e. ordinary percolation). This generalizes, but also makes heavy use of, results and
techniques in Kesten’s celebrated paper [26].

A precise formulation of our main results for percolation with impurities, and of our
FFWoR results forwhich theywere needed, is given in Sect. 1.3.2. Section 1.3.3 briefly
discusses some ideas for further extensions of our results, and Sect. 1.3.4 mentions
works on related subjects in the literature.

1.3.1 Definition of the model with impurities

The models of impurities that we introduce and study are parametrized by a positive
integer denoted by m, and they can be described as follows. Each vertex v ∈ V ,
independently of the other vertices, is the center of an impurity (a square box with
a random radius) with a probability that we denote by π(m). If there is an impurity
centered at v, the probability that it has a radius (with respect to the L∞ norm) ≥ r
is written as ρ(m)([r ,+∞)), for all r ≥ 0. After removing all the impurities from the
lattice, we perform Bernoulli percolation with a parameter p on the remaining graph.
In other words, all vertices in the impurities are declared vacant, and for each other
vertex we flip a coin: if the outcome is “heads” (which happens with probability p),
we declare the vertex occupied, and otherwise we declare it vacant. We will refer to
this percolation model as percolation with impurities.

Let us describe our choice of π(m) and ρ(m) more precisely. Let c1, c2, c3 > 0 be
constants, as well as α and β. We suppose that ρ(m) and π(m) are of the form

ρ(m)
([r ,+∞)

) = c1r
α−2e−c2r/m (r ≥ 1) and π(m) = c3m

−β. (1.10)

Note that this model can be seen as a generalization of classical near-critical percola-
tion, which corresponds to critical percolation with single-site impurities, i.e. the case
α = −∞ formally.

Despite its key importance for forest fires and related processes, this model has, to
our knowledge, not been studied before. It was actually surprising to us that forest fire
processes can be adequately approximated, even well into the near-critical regime, by
a model with independent impurities having a rather simple size distribution of the
form (1.10) (for some specific m = m(ζ ) → ∞ as the ignition rate ζ ↘ 0).
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1.3.2 Main results

From now on, we restrict to the triangular lattice T, although we believe that our
results hold for all planar lattices with enough symmetries, such as Z

2. For Bernoulli
site percolation on T, many precise results are known (especially (2.7) below), thanks
to the SLE (Schramm-Loewner Evolution) technology. The proofs of our main results
require a good control on arm events, as explained in the beginning of Sect. 4.3. At
the moment, the bounds available for other lattices are not sufficiently accurate.

We establish two kinds of results.

(I) Stability properties for percolation with impurities. Results of this type say that
the percolation model with impurities, introduced in the previous subsection,
satisfies, under certain conditions, connectivity properties comparable to these of
the pure percolation model. In particular, we show that, under some hypotheses
on the values of α and β in (1.10), and on the relation between m and L(p), the
four-arm probabilities are (at most) of the same order as those for the Bernoulli

model without impurities. More precisely, if we denote by P
(m)

p the probability
measure governing the percolation model with impurities, we have the following.

Theorem 1.1 Let, for fixed c1, c2, c3 > 0, ρ(m) and π(m) be as in (1.10), with α ∈( 3
4 , 2
)
and β > α. There exists C such that: for all m large enough, all p ∈ (0, 1) and

all n ≤ m ∧ L(p),

P
(m)

p

(
there are “four arms” from 0 to vertices at a distance n

) ≤ Cπ4(n).

Here, “four arms” means four disjoint paths of alternating types (occupied/vacant),
each starting from a neighbor of 0. Actually, for later applications of this result, we
prove a stronger, more general version, namely Theorem 4.1 (however, we do not see
a proof of Theorem 1.1 which is essentially simpler than that of Theorem 4.1).

The four-arm stability result (Theorem 4.1) turns out to be rather subtle. Indeed,
we have to understand the effect of (possibly “mesoscopic”) impurities on “pivotal”
events, which relies on a delicate balance between “helping” vacant arms with the
impurities, but “hindering” occupied arms. Our proof uses the inequality α2 ≥ α4 −
1 between the two- and four-arm exponents for critical percolation, which can be
checked (it is even an equality) from the actual values of these exponents, which were
established in [44] using conformal invariance and Schramm-Loewner Evolutions.
See (2.7), Remark 4.2 and Sect. 4.3 for more background and details.

Four-arm events are crucial to estimate connection probabilities, such as, for
instance, one-arm probabilities: roughly speaking, a vertex (or, in our situation with
impurities, a “region”) whose state is “pivotal” for the existence of a certain one-arm
event is the “center” of a four-arm event (see Fig. 9). Indeed, we then use the above the-
orem to show stability results for one-arm probabilities and box-crossing probabilities
(Propositions5.1 and 5.2). Finally, we use those to extend, to the percolation model
with impurities, a classical estimate in Bernoulli percolation for the largest cluster in
a big box (see [11]). Note that in the result below, the sequence (pm)m≥1 approaches
pc from above as m → ∞, but not “too fast”.
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Proposition 1.2 Let ρ(m) and π(m) be as in Theorem 1.1, and let (pm)m≥1 be a
sequence in (pc, 1) such that L(pm) � m. Further, let (nm)m≥1 be a sequence of
integers such that nm 
 m(logm)2 as m → ∞. Then

|CmaxBnm
|

|Bnm |θ(pm)
−−−−→
m→∞ 1 (1.11)

in probability (w.r.t. the sequence of measures P
(m)

pm ), where Bnm is the box with side
length nm centered at 0, and |CmaxBnm

| is the volume of the largest occupied cluster in
this box.

Again, we prove (for later purposes in the paper, in particular to control the occurrence
of “macroscopic” fires in the FFWoR process) a stronger form, involving a so-called
“net”: see Proposition5.5 (and Remark 5.6).

We want to underline that (1.11) is far from obvious, and does not simply follow
from the fact that the probability to belong to an impurity tends to 0 as m → ∞. For
example, if α < β < 3

4 , as we explain in Sect. 1.4, the configuration is essentially
subcritical, so that the ratio in the left-hand side of (1.11) goes to 0 as m → ∞, even
though the density of impurities tends to 0.

II. Exceptional scales for forest fires with Poisson ignitions. The results of type I
abovewill then be used to derive the second type of results, involving applications
to themodel of forest fireswithout recovery (i.e. the FFWoRmodel). In particular,
this includes a rigorous proof of the existence of exceptional scales mentioned
(and heuristically predicted) in Sect. 1.2. This is done in Sect. 6 (where the relation
with the general model with impurities is proved), and Sect. 7.More precisely, we
establish the following property of the FFWoR process as the ignition rate ζ ↘ 0.
There exists a sequence of functions 1√

ζ
� m1(ζ ) � m2(ζ ) � m3(ζ ) � . . .,

where each mk+1 is related to mk in a way similar to (1.9), namely

mk+1(ζ ) � mk(ζ )√
ζ

√
π4
(
mk(ζ )

)
π1
(
mk(ζ )

) ,
such that the following dichotomy holds.

Theorem 1.3 Let M(ζ ) be a function of ζ , and consider the FFWoR process with
ignition rate ζ on the box BM(ζ ) (with center 0 and side length M(ζ )).

(i) If M(ζ ) � mk(ζ ) for some k ≥ 1, then: for all t > tc,

lim inf
ζ↘0

P
(
on BM(ζ ), 0 burns before time t

)
> 0.

(ii) If mk(ζ ) � M(ζ ) � mk+1(ζ ) for some k ≥ 1, then: for every t > 0,

lim
ζ↘0

P
(
on BM(ζ ), 0 burns before time t

) = 0.
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Again, we actually prove stronger, more “uniform” results, Theorems7.1 and 7.2.
These stronger forms, which arise naturally from the proofs, are more flexible, and
seem better suited for potential future use, in particular for studying the FFWoRmodel
on boxes having side length M(ζ ) 
 mk(ζ ) for every k (or on the full lattice), and
for studying forest fires with recovery (see Sect. 8).

1.3.3 Extensions and future work

As said earlier, our main motivation in this paper comes from the FFWoR model,
but we expect that the techniques on near-critical percolation with impurities that we
develop are also instrumental for obtaining new results about other related models.

In the FFWoR model, when a vertex v is ignited, its occupied cluster burns, but
not the vacant sites along its boundary: these vertices will thus become occupied (and
then burn) at later times. However, let us mention that our proofs of Theorems 7.1 and
7.2 also apply in the case when the occupied cluster is burnt together with its outer
boundary, i.e. the seeds on the boundary “die” and never become a tree. In addition,
we hope that, with extra work (and a suitable generalization of the results of [27]), our
results can be extended to forest fires with recovery, see the discussion in Sect. 8.

The results in [10] were an important ingredient in our earlier-mentioned joint
paper [9] with Kiss, where it was proved that the parameter-N model in the full plane
exhibits a deconcentration property for the size of the final cluster of the origin. We
hope that the results in the present paper will yield similar deconcentration results for
the full-plane FFWoR process, and so reach a rather complete description of the final
configuration in this model. This, again provided that a proper extension of [27] can
be derived, could also give considerable new insight into the behavior of forest fire
processes with recovery near tc (and up to a time strictly larger than tc).

1.3.4 Other related works

We conclude this section by mentioning other works in the mathematics literature
where versions of forest fires, frozen percolation and related models have been studied
(although the questions and techniques in our paper are quite different in nature).
It is a relatively young subject and the vocabulary (or “practical” interpretation of
mathematical models) varies between authors. For instance, the process studied in the
paper [36] may also be interpreted as a model of forest fires without recovery (on a
complete graph), where the growth mechanism does not involve the vertices, but the
edges.

Quite explicit quantitative results have been obtained for models where the under-
lying graph is a tree (e.g. in [2], and in the very recent preprint [37]), a complete
graph (see, for instance, [38], and the already mentioned paper [36]), and the one-
dimensional lattice (see e.g. [12]). A problem related to forest fires on Z

d , with high
d, has been studied in [1]. An extensive list of papers on forest fires and frozen perco-
lation (with a brief summary of the main results of each paper) is given in Section 1.7
of [37].

Percolation on fractal-like graphs has been studied in e.g. [21,23,28,40–42] (see
also the discussion in Section 2.1 of [32]). There is also an extensive literature about a
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Fig. 4 Near-critical percolation with impurities displays different behaviors according to the values of the
exponents α and β. Here, 34 = 1

ν , where ν is the critical exponent for the characteristic length L

randomwalk/Brownianmotion among randomlydistributedobstacles: see for example
the classical reference [46], the recent review [3], and the references therein.

1.4 Further discussion about the process with impurities

In this sectionwe comment a bit further on the percolation processwith impurities, still
assuming that ρ(m) andπ(m) are of the form (1.10). Different behaviors arise according
to the values ofα andβ, and, remarkably,we are able to obtain the full “phase diagram”,
depicted in Fig. 4. After the present section, we will focus exclusively on Domain I
in that figure, i.e. α ∈ ( 34 , 2) and β > α (this is Assumption 2 in Sect. 3.1), which
contains the relevant values for forest fires: typically, α = 55

48 +υ and β = α+υ ′, for
some arbitrarily small υ, υ ′ > 0.

We want to emphasize that also the other parts of the phase diagram (Domains II,
III, and IV) can be established completely rigorously, even though we do not give all
the details for the sake of conciseness. These other domains are not required for the
understanding of the rest of the paper.

First, note that as a special case, our framework contains classical near-critical
percolation, studied in [14,18,26,34]. Indeed, near-critical percolation with parameter
p < pc can be constructed from the critical regime by performing single-site updates,
i.e. letting the sites independently switch from occupied to vacant. It is obtained by
taking ρ(m) = δ0 (i.e. the Dirac mass at 0, so that only impurities of radius 0 are

created) and π(m) � 1
m2π4(m)

= m− 1
ν
+o(1), where ν = 4

3 is the critical exponent
associated with L . This means that if we start from the critical regime and update
the sites with a probability π(m) � m−β , the resulting configuration is subcritical for
β < 1

ν
= 3

4 , and it stays near-critical for β > 1
ν
.
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We now briefly discuss the various domains in Fig. 4. Observe that a short compu-
tation (similar to the one in Lemma 3.2 below) shows that the “density” of impurities,
i.e. the probability for each vertex to be contained in at least one impurity, is of order
mα+−β (where α+ = max(α, 0)).

• Domain I: Asmentioned in the previous section, wewill show that under appropri-
ate hypotheses, percolation in the complement of the impurities stays comparable,
in terms of connectedness, to ordinary percolation near criticality.Wewant to high-
light that this behavior holds even when β is very close to α, which means that the
exponent α−β for the density of impurities can bemade arbitrarily close to 0. This
stands in contrast with the usual case of single-site updates, where this density has

to stay below m− 3
4+o(1). Roughly speaking, the behavior exhibited in Domain I

comes from the particular way in which updates of sites are “arranged” spatially.
Since they are grouped into balls, each of them has individually less effect. It
emerges from explicit computations that the contribution of pivotal impurities is
mainly produced by large impurities, with a radius of order m.

• Domain II: Similar properties as in Domain I hold in this case, which is essentially
covered by our proofs (see Sect. 4.2.4 below). However, the phenomenology in
this domain is rather different since the main contribution of pivotal impurities is
produced by microscopic impurities. Hence, the fact that the percolation configu-
ration stays near-critical comes essentially from the same reasons as for single-site
updates (this classical case corresponds to α = −∞ formally). Furthermore, for a
given α < 3

4 , the exponent α+ − β in the density of impurities stays smaller than
α+ − 3

4 , and so cannot be made arbitrarily close to 0, contrary to Domain I.
• Domain III: In this case, the configuration with impurities is clearly dominated
by a configuration of Bernoulli percolation, obtained by using the same π(m), but
with single-site updates (i.e. ρ(m) = δ0). We know that in this case, the resulting
configuration is subcritical for β < 3

4 .• Domain IV: When α > β, the process is completely “degenerate”. For example,
it is easy to see that for all K > 0, with high probability (as m → ∞), there exists
an impurity centered on some v ∈ BKm that covers entirely BKm .

1.5 Organization of the paper

Section 2 contains preliminaries about usual Bernoulli percolation. We first set
notations, and then we collect classical results on the behavior of two-dimensional
percolation through its phase transition, i.e. at and near its critical point.

In Sects. 3 to 5, we analyze the percolation process with impurities. In Sect. 3
we revisit and slightly extend its construction, and prove some elementary but useful
properties. Section 4 is devoted to stating and proving a stability result for four-
arm events in the near-critical regime. This property is instrumental to derive further
stability results, which we do in Sect. 5, culminating with a volume estimate for the
largest connected component in a box.

We then make the connection with forest fire processes in Sect. 6: we introduce
the exceptional scales (mk(ζ ))k≥1, and we collect some of their properties. We also
explain how forest fires can be coupled to the process with impurities. In Sect. 7, we
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present applications of the results developed earlier: we show that the scales mk are
indeed exceptional for forest fire processes without recovery. Finally, in Sect. 8, we
briefly discuss forest fire processes with recovery.

2 Phase transition of two-dimensional Bernoulli percolation

The proofs of our main results in Sect. 1.3.2 rely heavily on a precise understanding
of 2D Bernoulli percolation at and near criticality. We start by setting notations in
Sect. 2.1. We then list in Sect. 2.2 all the classical properties which are needed later,
before deriving some additional results in Sect. 2.3.

2.1 Setting and notations

We work with the triangular lattice T = (V , E), with vertex set

V := {x + yeiπ/3 ∈ C : x, y ∈ Z
}

and edge set E := {{v, v′} : v, v′ ∈ V with |v − v′| = 1} (using the standard
identification R

2 � C). Two vertices v, v′ ∈ V are said to be neighbors if they are
connected by an edge, and we denote it by v ∼ v′. From now on, we always use the
L∞ norm ‖.‖ = ‖.‖∞. The inner (resp. outer) boundary of a subset A ⊆ V is defined
as ∂ inA := {v ∈ A : v ∼ v′ for some v′ ∈ Ac} (resp. ∂outA := ∂ in(Ac)), and its
volume, denoted by |A|, is simply the number of vertices that it contains.

Recall that Bernoulli site percolation on T with parameter p ∈ [0, 1] is obtained by
declaring each vertex v ∈ V either occupied or vacant, with respective probabilities
p and 1− p, independently of the other vertices. We denote by Pp the corresponding
product probability measure on configurations of sites (ωv)v∈V ∈ {0, 1}V =: �.

A path of length k (k ≥ 0) is a sequence of vertices v0 ∼ v1 ∼ . . . ∼ vk . Two
vertices v, v′ ∈ V are connected (denoted by v ↔ v′) if there exists a path of length
k from v to v′, for some k ≥ 0, containing only occupied sites (in particular, v and
v′ have to be occupied). More generally, two subsets A, A′ ⊆ V are connected if
there exist v ∈ A and v′ ∈ A′ such that v ↔ v′, which we denote by A ↔ A′.
Occupied vertices can be grouped into maximal connected components, or clusters.
For a vertex v ∈ V , we denote by C(v) the occupied cluster of v, setting C(v) = ∅
when v is vacant. We write v ↔ ∞ for the event that |C(v)| = ∞, i.e. v lies in an
infinite occupied cluster, and we introduce θ(p) := Pp(0 ↔ ∞). Site percolation on
T displays a phase transition at the percolation threshold pc = psitec (T), and it is now
a classical result [24] that pc = 1

2 . Moreover, it is also known that θ(pc) = 0. Hence,
for each p ≤ pc = 1

2 , there is almost surely no infinite cluster, while for p > 1
2 , there

is almost surely a unique such cluster. The reader can consult the classical references
[20,25] for more background on percolation theory.

For a rectangle of the form R = [x1, x2] × [y1, y2] (x1 < x2, y1 < y2), an
occupied path in R “connecting the left and right (resp. top and bottom) sides” is
called a horizontal (resp. vertical) crossing. Here, we use quotation marks because R
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does not exactly “fit” the triangular lattice T, so the definition needs to be made more
accurate: this can be done easily, see for instance Definition 1 in Section 3.3 of [25]
(the same remark applies to arm events, defined below). The event that such a crossing
exists is denoted by CH (R) (resp. CV (R)). We also write C∗H (R) and C∗V (R) for the
corresponding events with paths of vacant vertices.

Let Bn := [−n, n]2 be the ball of radius n ≥ 0 around 0 for ‖.‖∞. For 0 ≤ n1 < n2,
we denote by An1,n2 := Bn2 \ Bn1 the annulus with radii n1 and n2 centered at 0. For
z ∈ C, we write Bn(z) := z + Bn , and An1,n2(z) := z + An1,n2 . Finally, we denote
An1,∞(z) := (Bn1(z))

c. For an annulus A = An1,n2(z) (0 ≤ n1 < n2 < ∞, z ∈ C),
a circuit in A is a path v0 ∼ v1 ∼ . . . ∼ vk with some length k, where the vertices
v0, . . . , vk−1 are distinct and v0 = vk , which surrounds Bn1(z). We denote by O(A)

(resp. O∗(A)) the existence of an occupied (resp. vacant) circuit in A. For k ≥ 1
and σ ∈ Sk := {o, v}k (where o and v stand for “occupied” and “vacant”, resp.),
we introduce the arm event Aσ (A) that there exist k disjoint paths (γi )1≤i≤k in A,
in counter-clockwise order, each with type prescribed by σi (i.e. occupied or vacant
path) and connecting ∂outBn1(z) to ∂ inBn2(z). We use the notation

πσ (n1, n2) := Ppc

(
Aσ (An1,n2)

)
, (2.1)

and we write πσ (n) := πσ (1, n). For k ≥ 1, we use the shorthand notations Ak and
πk in the particular case when σ = (ovo . . .) ∈ Sk is alternating.

2.2 2D percolation at and near criticality

The usual characteristic length L is defined by:

for p < pc = 1

2
, L(p) := min

{
n ≥ 1 : Pp

(
CV ([0, 2n] × [0, n])) ≤ 0.001

}
,

(2.2)

and L(p) = L(1− p) for p > pc. It follows from the Russo-Seymour-Welsh (RSW)
bounds that at p = pc, the probability in the right-hand side of (2.2) is> 0.001 for all
n ≥ 1, so L(p) → ∞ as p → pc, and we define L(pc) := ∞. In the present paper,
we consider a regularized version L̃ , defined as follows. First, we set L̃(p) = L(p) at
each point of discontinuity p ∈ (0, pc)∪ (pc, 1) of L , L̃(0) = L̃(1) = 0, and then we
extend linearly L̃ to [0, 1] \ {pc}. The function L̃ has the additional property of being
continuous and strictly increasing (resp. strictly decreasing) on [0, pc) (resp. (pc, 1]).
In particular, it is a bijection from [0, pc) (resp. (pc, 1]) to [0,∞). In the following,
we simply write L instead of L̃ .

Throughout the paper,wemake use of the following classical properties ofBernoulli
percolation, at and near the critical point pc.

(i) RSW-type bounds. For all K ≥ 1, there exists a constant δ4 = δ4(K ) > 0 such
that: for all p ∈ (0, 1) and n ≤ K L(p),

Pp
(
CH ([0, 4n] × [0, n])) ≥ δ4 and Pp

(
C∗H ([0, 4n] × [0, n])) ≥ δ4. (2.3)
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Note that since L(pc) = ∞, the first inequality actually holds for all p ≥ pc
and n ≥ 1.

(ii) Exponential decay property. There exist universal constants C1,C2 > 0 such
that: for all p > pc and n ≥ 1,

Pp
(
CH ([0, 4n] × [0, n])) ≥ 1− C1e

−C2
n

L(p) (2.4)

(see Lemma 39 in [33]).
(iii) Extendability of arm events. For all k ≥ 1 and σ ∈ Sk , there exists a constant

C > 0 (that depends on σ only) such that: for all 0 ≤ n1 < n2,

πσ

(n1
2

, n2
)
, πσ (n1, 2n2) ≥ Cπσ (n1, n2) (2.5)

(see Proposition 16 in [33]).
(iv) Quasi-multiplicativity of arm events. For all k ≥ 1 and σ ∈ Sk , there exist

C1,C2 > 0 (depending only on σ ) such that: for all 0 ≤ n1 < n2 < n3,

C1πσ (n1, n3) ≤ πσ (n1, n2)πσ (n2, n3) ≤ C2πσ (n1, n3) (2.6)

(see Proposition 17 in [33]).
(v) Arm exponents at criticality. For all k ≥ 1, and σ ∈ Sk , there exists ασ > 0

such that

πσ (k, n) = n−ασ+o(1) as n → ∞. (2.7)

Moreover, the value of ασ is known, except in the monochromatic case (for
k ≥ 2 arms of the same type).

• For k = 1, ασ = 5
48 .

• For all k ≥ 2, and σ ∈ Sk containing both types, ασ = k2−1
12 .

These armexponentswere derived in [31,44], based on the conformal invariance
property of critical percolation [43] and properties of the Schramm-Loewner
Evolution (SLE) processes (with parameter 6, here) [29,30].

(vi) Upper bound on monochromatic arm events. For all k ≥ 2, let σ = (o . . . o) ∈
Sk be the monochromatic sequence of length k. There exist Ck, βk > 0 such
that: for all 0 ≤ n1 < n2,

πσ (n1, n2) ≤ Ck

(
n1
n2

)βk

πk(n1, n2). (2.8)

This follows from the proof of Theorem 5 in [5] (see in particular Step 1).
(vii) Stability for arm events near criticality. For all k ≥ 1, σ ∈ Sk , and K ≥ 1,

there exist constants C1,C2 > 0 (depending on σ and K ) such that: for all
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p ∈ (0, 1), and all 0 ≤ n1 < n2 ≤ K L(p),

C1πσ (n1, n2) ≤ Pp
(
Aσ (An1,n2)

) ≤ C2πσ (n1, n2) (2.9)

(see Theorem 27 in [33]).
(viii) Asymptotic equivalences for θ and L . We have

θ(p) � π1(L(p)) as p ↘ pc (2.10)

(see Theorem 2 in [26], or (7.25) in [33]), and

∣∣p − pc
∣∣L(p)2π4

(
L(p)

) � 1 as p → pc (2.11)

(see (4.5) in [26], or Proposition 34 in [33]).
(ix) A-priori bounds on arm events. There exist universal constants Ci > 0 (1 ≤

i ≤ 4) and β j > 0 (1 ≤ j ≤ 3) such that the following inequalities hold. For
all p ∈ (0, 1) and 0 ≤ n1 < n2 ≤ L(p),

C1

(
n1
n2

)1/2
≤ Pp

(
A1(An1,n2)

) ≤ C2

(
n1
n2

)β1

(2.12)

(the upper bound is an immediate consequence of (2.3), while the lower bound
follows from the van den Berg-Kesten inequality), and

C3

(
n1
n2

)2−β2

≤ Pp
(
A4(An1,n2)

) ≤ C4

(
n1
n2

)1+β3

. (2.13)

The left-hand inequality in (2.13) follows from the “universal” arm exponent
for A5 which is equal to 2 (see Theorem 24 (3) in [33]) together with (2.12),
and the right-hand inequality is proved in Appendix B of [39].

(x) Volume estimates. Let (nk)k≥1 be a sequence of integers, with nk → ∞ as
k → ∞, and (pk)k≥1 satisfying pc < pk < 1. If L(pk) � nk as k → ∞, then

for all ε > 0, Ppk

( |Cmax
Bnk

|
|Bnk |θ(pk)

/∈ (1− ε, 1+ ε)

)
−−−→
k→∞ 0, (2.14)

where we denote by |Cmax
Bnk

| the volume of the largest occupied cluster in Bnk

(see Theorem 3.2 in [11]).

2.3 Additional results

The following geometric construction is used repeatedly in our proofs.
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0

Bn

κ

2κ

Fig. 5 This figure depicts the eventNp(n, κ) that there exists a net “spanning” the box Bn . The definition
of this event only involves the sites in the gray areas: in particular, it does not depend on the sites in Bκ

Definition 2.1 For κ, n ≥ 1, let Np(n, κ) be the event that there exists a p-occupied
crossing in the long direction in each of the (horizontal and vertical) rectangles of the
form

κ

2

([−4, 4] × [−1, 1] + (6i, 6 j − 3)
)

and
κ

2

([−1, 1] × [−4, 4] + (6i − 3, 6 j)
)

(i , j integers) that intersect the box Bn (see Fig. 5).

For the percolation configuration inside Bn , the event Np(n, κ) implies the exis-
tence of a p-occupied connected set N such that all the connected components of its
complement (so in particular, all the p-occupied and p-vacant connected components
other than the cluster CN of N in Bn) have a diameter at most 4κ . Such a set N is
called net with mesh κ . Note also that Np(n, κ) does not depend on the sites in Bκ .

Lemma 2.2 There exist universal constants C1,C2 > 0 such that: for all n ≥ κ ≥ 1
and p > pc,

P
(
Np(n, κ)

) ≥ 1− C1

(n
κ

)2
e−C2

κ
L(p) . (2.15)

Proof of Lemma 2.2 Observe that the definition of Np(n, κ) involves of order
( n

κ

)2
rectangles, eachwith side lengths κ and 4κ . Hence, (2.15) is an immediate consequence
of the exponential decay property (2.4). ��

Recall the following exponential upper bound for the probability of observing
abnormally large clusters (see Lemma 4.4 in [9]).
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Lemma 2.3 There exist universal constants C1,C2, X > 0 such that: for all p > pc,
n ≥ L(p), and x ≥ X,

Pp

(∣∣CmaxBn

∣∣ ≥ xn2θ(p)
)
≤ C1e

−C2x
n2

L(p)2 . (2.16)

Remark 2.4 Note that with high probability as k → ∞, Cmax
Bnk

in (2.14) contains a net

N with mesh (nk L(pk))1/2. Indeed, it follows from Lemma 2.2 that N exists with
high probability, and such anN then subdivides Bnk into of order

nk
L(pk )

“cells”, each

with a diameter at most 4(nk L(pk))1/2. Hence, Lemma 2.3 implies that the probability
that one cluster, other than CN , has a volume ≥ 1

2θ(pk)|Bnk | is at most

C ′
1

nk
L(pk)

e
−C2x

(4(nk L(pk ))1/2)2

L(pk )2 , (2.17)

with x = 1
2 |Bnk |/(4(nk L(pk))1/2)2 � nk/L(pk) → ∞ as k → ∞.

We will also need a more uniform version of (2.7).

Lemma 2.5 For all k ≥ 1, σ ∈ Sk , and ε > 0, there exist 0 < C1 < C2 (depending
on σ and ε) such that: for all 0 ≤ n1 < n2,

C1

(
n1
n2

)ασ+ε

≤ πσ (n1, n2) ≤ C2

(
n1
n2

)ασ−ε

. (2.18)

Proof of Lemma 2.5 This follows easily from (2.6), and the property that: for all k ≥ 1
and σ ∈ Sk ,

lim
n→∞πσ (n, λn) = λ−ασ+o(1) as λ → ∞ (2.19)

(see e.g. [44]). ��

3 Percolation with impurities: elementary results

We now return to the percolation process with impurities, introduced in Sect. 1.3.1.
First, in Sect. 3.1, we repeat the definition of the process, in a slightly more general
form than before. Then, in Sect. 3.2, we establish an elementary upper bound on the
probability of having “large” impurities in an annulus, which will be quite useful in
the subsequent sections.

3.1 Definition (revisited)

We already gave a concise introduction to the percolation model with impurities in
Sect. 1.3.1. That was necessary to formulate our main results in Sect. 1.3.2. For

123



232 J. van den Berg, P. Nolin

Fig. 6 The lattice T “perforated” by holes of varying sizes

technical reasons we now define the model in a bit more generality. In particular,
the assumption (1.10) (which involved equalities) is replaced by the corresponding
inequalities. To enhance the readability, we made the current section independent of
Sect. 1.3.1 (so, inevitably, there is considerable overlap with that earlier section).

Recall that we consider the triangular lattice T = (V , E). We impose impurities
(also called holes from now on) onto V in the following way. Let π be a parameter in
[0, 1], and ρ a distribution on [0,+∞) that describes the radii of the holes. For each
vertex v ∈ V , independently of the other vertices, we draw a radius rv distributed
according to ρ, and we put a hole centered at v with a probability π (typically � 1):
in this case, we remove from the lattice all the vertices in the hole Hv := Brv (v),
i.e. within a distance rv (for the norm ‖.‖∞) from v (see Fig. 6). If there is no hole
centered at v, we set Hv := ∅.

For technical reasons, we also need to allow π to depend on v, i.e. we consider
inhomogeneous π = (πv)v∈V . Let Iv be the indicator that there is a hole centered at
v (so that Iv = 1 with probability πv). We always assume that the random variables
(Iv)v∈V and (rv)v∈V are independent.

We obtain in this way a random subgraph of T, and we are interested in its connect-
edness. In particular, we want to study independent site percolation with parameter
p ∈ [0, 1] on this subgraph, i.e. on the complement of the holes. Note that a totally
equivalent way of seeing it is by first considering an independent site percolation con-
figuration on T, and then partially “destroy” it with holes (we think of the vertices in
the holes as simply being vacant): are the large-scale connectivity properties of the
percolation configuration significantly affected by the holes? We obtain a probability
measure on configurations of holes and percolation configurations on the complement
of the holes, that we denote by P

π,ρ

p . Sometimes, we forget about the dependence on π

and ρ, when they are clear from the context, and we just write Pp. For events regarding
only the configuration of holes, we use the notation P

π,ρ
.

Remark 3.1 For future use, observe that the FKG inequality holds for the P
π,ρ

p process
with independent holes. Indeed, if we denote by Xv (v ∈ V ) the indicator of the event
that v is occupied in the underlying percolation process, and by Yv the indicator of the
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event that v is occupied in the model with holes, then for each v ∈ V , Yv is increasing
in the X -values, and decreasing in the I - and r -values.Moreover, the random variables
(Xv)v∈V , (Iv)v∈V and (rv)v∈V are independent, so the collection (Yv)v∈V is positively
associated (this can be seen by following the proof of the Harris inequality).

Of course, the macroscopic behavior of the P
π,ρ

p process depends on the particular
choice of π and ρ, and we focus on the following setting where they depend on a
parameter m → ∞. We assume that ρ(m) is in some sense “heavy-tailed”, and that a
uniform power-law upper bound on π

(m)
v holds. More precisely:

Assumption 1 For some constants c1, c2, c3 ∈ (0,+∞), and some exponents α < 2
and β > 0, we have for all sufficiently large m:

ρ(m)
([r ,+∞)

) ≤ c1r
α−2e−c2r/m for all r ≥ 1, and π

(m)
v ≤ c3m

−β for all v ∈ V . (3.1)

In this particular setting where π and ρ are parametrized by m, we write

P
(m)

p := P
π(m),ρ(m)

p . (3.2)

We will be mostly interested in values of p in near-critical windows around pc of

the form {p : L(p) ≥ κm}, for fixed κ > 0. As we explain in Sect. 6.4, the P
(m)

p
processes arise naturally in the study of forest fires, at times close to the critical time
tc. In this case, the truncation parameter m (the typical radius of the largest holes)
plays the role of a characteristic scale for the holes created by fires up to some time
slightly before tc.

Aswementioned in Sect. 1.4, theP
(m)

p process behaves asymptotically (asm → ∞)
in very different ways according to the values of α < 2 and β > 0. For applications
to forest fires, the relevant values turn out to belong to Domain I of Fig. 4. We thus
focus on this domain, i.e. we assume the following in the remainder of the paper.

Assumption 2 The exponents α and β satisfy

α ∈
(
3

4
, 2

)
and β > α. (3.3)

As we will see, the most interesting behavior arises precisely in this domain. We
prove that for any such α and β, the holes do not have a significant effect on the
connectedness of the lattice, in the following sense. As m → ∞, for values p ∈
(pc, 1) satisfying L(p) � m, percolation outside the holes stays “near-critical”: it
is comparable to critical percolation up to scales of order m, and to supercritical
percolation on larger scales (see Sects. 4 and 5 for precise statements).

3.2 Crossing holes

Recall that from now on (and until the end of Sect. 5), we consider a sequence of

measures P
(m)

p = P
π(m),ρ(m)

p , where we assume that ρ(m) and (π
(m)
v )v∈V satisfy (3.1)
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Fig. 7 Example of a hole Hv crossing the (gray) annulus An1,2n1 (z)

for some given c1, c2, c3 ∈ (0,+∞), and (α, β) as in (3.3), i.e. in Domain I. All the
asymptotic results stated below for m → ∞ are uniform in such ρ(m) and (π

(m)
v )v∈V ,

although we will not repeat it every time, for the sake of conciseness. In all upcoming
proofs for themodelwith impurities, we useC1,C2, . . . to denote “constants” ofwhich
the precise value does not matter. They are allowed to depend on c1, c2, c3, α, and β,
but not on other quantities (such as, e.g., m, n1, n2, and z in Lemma 3.2 below).

The following lemma turns out to be particularly handy, and we make repeated use
of it in our proofs. For an annulus A = An1,n2(z) (z ∈ C, 1 ≤ n1 < n2), we introduce
the event that it is “crossed” by a hole, i.e.

H(A) := {∃v ∈ V : Hv ∩ ∂Bn1(z) �= ∅ and Hv ∩ ∂Bn2(z) �= ∅}. (3.4)

Note that in this definition, we do not require the vertex v to be in A: the crossing hole
is allowed to be centered outside of A. Occasionally, we will use the straightforward
generalization of (3.4) when instead of Bn1(z) and Bn2(z), we have rectangles R and
R′ with R ⊆ R′.

Lemma 3.2 There exist C, C ′ (depending on c1, c2, c3, α, β) such that the following
holds. For all m ≥ 1, for all annuli A = An1,n2(z) with z ∈ V and 1 ≤ n1 ≤ n2

2 ,

P
(m)(H(A)

) ≤ C

mβ−α
e−C ′n1/m . (3.5)
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Proof of Lemma 3.2 Since obviously H(A) ⊆ H(An1,2n1(z)), we may assume wlog
that n2 = 2n1. We consider all possible locations for the center v of a crossing hole.
For that, we introduce the concentric annuli A2i n1,2i+1n1(z) (i ≥ 1), as well as the ball
B2n1(z) (see Fig. 7). We note that if v ∈ A2i n1,2i+1n1(z) for i ≥ 1, then necessarily
rv ≥ 1

2 · 2i n1 = 2i−1n1, and the same holds true when v ∈ B2n1(z), with i = 0.
Hence,

P
(m)(H(A)

) ≤∑
v∈V

P
(m)(

Hv ∩ ∂Bn1(z) �= ∅ and Hv ∩ ∂B2n1(z) �= ∅)
≤ (c3m

−β) ·
∑
i≥0

(∣∣B2i+1n1(z)
∣∣ · ρ(m)

([2i−1n1,+∞)
))

≤ (c3m
−β) ·

∑
i≥0

(
C1(2

i+1n1)
2 · c1(2i−1n1)

α−2e−c22i−1n1/m
)

(3.6)

[using the assumption (3.1) for π(m), and then for ρ(m)].
We now distinguish the two cases n1 ≤ m and n1 > m. We first assume n1 ≤ m,

and we let I := ⌊ log2 ( mn1 )⌋ ≥ 0 (so that 2I n1 ≤ m ≤ 2I+1n1). We subdivide the
sum in (3.6) into two sums, over i ≤ I + 1 and i ≥ I + 2. On the one hand,

I+1∑
i=0

(
(2i+1n1)

2 · (2i−1n1)
α−2e−c22i−1n1/m

)

≤ C2n
α
1 ·

I+1∑
i=0

(2i )α ≤ C3(2
I n1)

α ≤ C3m
α (3.7)

(we used that α > 0). On the other hand,

∑
i≥I+2

(
(2i+1n1)

2 · (2i−1n1)
α−2e−c22i−1n1/m

)
≤ C4m

α ·
∑
i≥0

(2i )αe−c22i ≤ C5m
α. (3.8)

We can now obtain the desired upper bound by combining (3.6), (3.7) and (3.8).
In the case n1 > m, we write

∑
i≥0

(
(2i+1n1)

2 · (2i−1n1)
α−2e−c22i−1n1/m

)
≤ C6n

α
1 e

−c2n1/(4m) ·
∑
i≥0

(2i )αe−c2(2i−1−2−2)n1/m

≤ C6m
α
(n1
m

)α

e−c2n1/(4m) ·
∑
i≥0

(2i )αe−c22i−2

≤ C7m
αe−c2n1/(8m), (3.9)

which completes the proof. ��
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For an annulus A = An1,n2(z) with z ∈ V and 1 ≤ n1 ≤ n2
2 , we define a big hole

in A as a hole Hv , v ∈ V , that crosses one of the sub-annuli A2h ,2h+1(z) ⊆ A, with
h a non-negative integer. Lemma 3.2 provides immediately an upper bound on the
probability that such a hole exists: there exists C such that for all m ≥ 1,

P
(m)
(⋃

h≥0

H
(
A2h ,2h+1

)) ≤ C
logm

mβ−α
. (3.10)

For an annulus A = An1,n2(z), we introduce the following sub-event of H(A):

H(A) := {∃v ∈ V : Hv ∩ ∂Bn1(z) �= ∅, Hv ∩ ∂Bn2(z) �= ∅, Hv ∩ ∂Bn1
2
(z) = ∅,

and Hv ∩ ∂B2n2(z) = ∅}
(i.e. A is crossed by a hole Hv which crosses neither A n1

2 ,n2
(z) nor An1,2n2(z), so that

An1,n2(z) is approximately “maximal”). For technical reasons, we also consider

H(A) := {∃v ∈ V : Hv ∩ ∂Bn1(z) �= ∅, Hv ∩ ∂Bn2(z) �= ∅, Hv � Bn1(z),

and Hv ∩ ∂B2n2(z) = ∅}
(note that H(A) ⊇ H(A) ⊇ H(A)).

Lemma 3.3 There exist C, C ′ (depending on c1, c2, c3, α, β) such that the following
holds. For all m ≥ 1, for all annuli A = An1,n2(z) with z ∈ V and 1 ≤ n1 ≤ n2

2 ,

P
(m)(H(A)

) ≤ Cm−βn1n
α−1
2 e−C ′n2/m . (3.11)

Proof of Lemma 3.3 This follows from a similar computation as for Lemma 3.2. If

H(An1,n2(z)) occurs, then the properties in its definition are satisfied by Hv for some
v ∈ V . Necessarily, ‖v − z‖ ∈ ( n2−n1

2 , 2n2+n1
2

]
, and for such a v, rv must satisfy the

inequalities

max
(‖v − z‖ − n1, n2 − ‖v − z‖) ≤ rv ≤ min

(‖v − z‖ + n1, 2n2 − ‖v − z‖).
We deduce

P
(m)(H(An1,n2(z))

) ≤
n2+n1

2∑
r= n2−n1

2

∑
v s.t. ‖v−z‖=r

P
(m)(

Hv �= ∅, rv ∈ [n2 − r , r + n1]
)

+
2n2+n1

2∑
r= n2+n1

2

∑
v s.t. ‖v−z‖=r

P
(m)(

Hv �= ∅, rv ∈ [r − n1, r + n1]
)
.
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Note that in both sums, rv takes only values ≥ n2−n1
2 , and that in each term, rv ranges

over an interval of length at most 2n1. Hence, also noting that the number of vertices
v with ‖v − z‖ = r is at most C1r ,

P
(m)(H(An1,n2(z))

) ≤ (c3m
−β) · 2 · C1

2n2 + n1
2

·
∑

r≥ n2−n1
2

ρ(m)
([r , r + 2n1]

)

≤ C2m
−βn2(2n1 + 1)ρ(m)

([n2
4

,+∞
))

(since n2−n1
2 ≥ n2

4 ). We finally obtain

P
(m)(H(An1,n2(z))

) ≤ C3m
−βn2n1(n2)

α−2e−C ′n2/m, (3.12)

which gives (3.11). ��
Remark 3.4 Note that in the previous proof, the center v of a hole with the desired

properties must satisfy ‖v−z‖ > n2−n1
2 ≥ n1

2 . This shows that the eventH(An1,n2(z))
only depends on the holes centered in A n1

2 ,∞(z).

For n1 ≥ 1 and z ∈ V , we also define

H(An1,∗(z)) :=
⋃
i≥1

H(An1,2i n1(z)). (3.13)

4 Four-arm stability for percolation with impurities

Recall that we are considering probability measures P
(m)

p satisfying Assumption 1
and Assumption 2. We would like to derive stability properties for percolation with
impurities, i.e to show that under certain hypotheses, the holes do not affect too much
the connectivity properties of the percolation configuration. As usual when studying
near-critical percolation and related processes, it is crucial to obtain first a good control
on the probability of four-arm events, which we do in this section, before deriving
further stability results in Sect. 5.

4.1 Notation and result

Recall the notation introduced in Sect. 2.1, in particular the paragraph containing

(2.1). We will prove that P
(m)

p

(
A4(n1, n2)

)
stays of order at most Cπ4(n1, n2), for

some constant C = C(c1, c2, c3, α, β), uniformly for n1 ≤ n2
32 ≤ n2 ≤ m, and p

in the near-critical window {p′ : L(p′) ≥ n2}. In other words, our stability result
for four arms, as well as our other stability results obtained later, are stated for scales
up to m ∧ L(p): the system remains near-critical on scales which are at the same
time below L(p) (which is not surprising), and below m, which can also be seen as
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a “characteristic length” (this will become more clear later, from the way m arises in
our applications).

We actually prove a stronger result, Theorem4.1 below. Before stating it, we need to
introduce somenotation. The objects thatwe consider dependboth on the configuration
ω ∈ � and on the collection of holes. However, to keep our notation short, we will
only emphasize the dependence on ω.

For ω ∈ � and U ⊆ V , we denote by (ω(U )) := (ω(U )(v))v∈V the configuration
obtained from ω by removing the holes centered in U , i.e.

ω(U )(v) := ω(v)1v /∈⋃u∈U Hu

(recall that Hu can be empty, in the case where there is no hole centered on u). For an
annulus A := An1,n2(z), let

W4(A) := {∃U ⊆ V : ω(U ) satisfies A4(A)
}
. (4.1)

In other words,W4(A) is the event that the configuration ω together with a subcollec-
tion of the holes satisfy A4(A).

Theorem 4.1 Let K ≥ 1. There exists C = C(c1, c2, c3, α, β, K ) ∈ (0,+∞) such
that, for all m large enough, the following holds. For all p ∈ (0, 1), and all 1 ≤ n1 <

n2 ≤ K (m ∧ L(p)),

P
(m)

p

(
W4(An1,n2)

) ≤ C · π4(n1, n2). (4.2)

Note that the reverse inequality (with a different C) follows immediately from the
definition (4.1) and the classical stability result (2.9).

Remark 4.2 Stability results for arm events go back to the celebrated work by Kesten
[26] (where they played a crucial role to establish certain scaling relations). More
recently, Garban, Pete and Schramm built further on these ideas [18] (where it was
one of the many ingredients in their construction of the scaling limits of near-critical
and dynamical percolation), and modified the arguments so as to incorporate more
flexibility, see Lemma 8.4 in that paper (we follow some of their notation). Both of
these works were in the context of single-site updates (impurities), and we expand the
techniques further, into the situation of “heavy-tailed” impurities, where new subtle
complications arise, and a more delicate analysis is required.

4.2 Proof of Theorem 4.1

Proof First, we observe that the result holds for n2 ≤ 1000n1, since in this case,
π4(n1, n2) ≥ C1 for some universal constantC1 (this follows easily from (2.3)). Also,
it is enough to prove the result for all n1 and n2 of the form n1 = 2i and n2 = 2 j , with
2 j ≤ 2K (m ∧ L(p)). We prove it by induction over j and ( j − i). From our previous
observation, it holds for j − i ≤ 6.
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Now, let i ≥ 1 and j ≥ i + 7 (with 2 j ≤ 2K (m ∧ L(p))), and assume that the
desired inequality (4.2) holds true for all smaller values of j , and also for the same
j but all larger values of i . Here, we assume that (4.2) is valid for some appropriate
constant C : we explain later how to choose it. LetD be the event thatA4(A2i+3,2 j−3)c

holds without the holes.

4.2.1 Case˛ > 1

We first consider α ∈ (1, 2), since the combinatorics in the proof turns out to be
somewhat simpler in this case. Moreover, as we explain in Sect. 6.4, our applications
to forest fire processes involve only values of α in this interval. In Sect. 4.2.2, we treat
the general case α ∈ ( 34 , 2).

We introduce the following two events [recall the definition of a big hole above
(3.10)].

• E1 := {there is no big hole in A2i ,2 j }.
• E2 := {there is at least one big hole in A2i ,2 j }.

We start by writing

P
(m)

p

(
W4(A2i ,2 j ) ∩D

) ≤ P
(m)

p

(
W4(A2i ,2 j ) ∩D ∩ E1

)+ P
(m)

p

(
W4(A2i ,2 j ) ∩ E2

)
=: (Term 1) + (Term 2). (4.3)

Wenowhandle these two terms separately, showing that each of them is a o(π4(2i , 2 j ))

as m → ∞.
Term 1 : Suppose that W4(A2i ,2 j ) and D occur. Take ω and U as in the definition

of W4(A2i ,2 j ), and let ω′ = ω(U ). Hence,

• ω′ satisfies A4(A2i ,2 j ),
• while ω does not satisfy A4(A2i+3,2 j−3) (since ω ∈ D).

We first “add” the holes with centers in (A′)c, where A′ := A2i+2,2 j−2 . More precisely,

we consider the configuration ω(U∩(A′)c). From the event E1 that there is no big hole
in A2i ,2 j , A4(A2i+3,2 j−3) is still not satisfied at this stage. Indeed, none of the holes
centered in (A′)c can intersect A2i+3,2 j−3 so they have no influence on the occurrence
(or not) of A4(A2i+3,2 j−3).

We then add one by one the holes of ω′ that are centered in the annulus A′, until
A4(A2i ,2 j ) is satisfied. Let ω̂ denote the corresponding configuration, and let Hv be
the last added hole (v ∈ A′), which is thus “pivotal”. Let l ∈ {i+2, . . . , j−3} be such
that v ∈ A2l ,2l+1 . From the event E1, Hv does not intersect B2l−1 and ∂ inB2l+2 . The
configuration ω̂ satisfiesA4(Arv,2l−1(v)), which does not involve the regions B2l−1 and
(B2l+2)c. In these two regions, ω̂ satisfies, respectively,A4(A2i ,2l−1) andA4(A2l+2,2 j ).
We thus obtain
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(Term 1) ≤
j−3∑

l=i+2

∑
v∈A2l ,2l+1

l∑
h=1

P
(m)

p

(
Hv �= ∅, rv ∈ [2h, 2h+1)

)

·P(m)

p

(
W(1)

4

) · P
(m)

p

(
W(2)

4

) · P
(m)

p

(
W(3)

4

)
, (4.4)

with the folowing events:

• W(1)
4 := {∃U (1) ⊆ A2l−2,2l+3 : ω(U (1)) satisfies A4(A2h+1,2l−1(v))

}
,

• W(2)
4 := {∃U (2) ⊆ B2l−2 : ω(U (2)) satisfies A4(A2i ,2l−3)

}
,

• W(3)
4 := {∃U (3) ⊆ A2l+3,∞ : ω(U (3)) satisfies A4(A2l+4,2 j )

}
.

So, informally speaking, W(1)
4 is the event that W4(A2h+1,2l−1(v)) occurs “with only

the holes centered in A2l−2,2l+3”, and analogously forW(2)
4 andW(3)

4 (in the remainder
of the paper, we will frequently use such informal terminology, with similar meaning).
Note that these three events are independent (see Fig. 8 for an illustration). We also
note that, if n1 ≥ n2, we consider A4(An1,n2(z)) to be automatically satisfied, and
π4(n1, n2) to be equal to 1.

It then follows from the induction hypothesis that

(Term 1) ≤
j−3∑

l=i+2

∑
v∈A2l ,2l+1

l∑
h=1

c3m
−βρ(m)

([2h,+∞)
)
C3π4(2

h+1, 2l−1)

π4(2
i , 2l−3)π4(2

l+4, 2 j )

≤ C1m
−β

j−3∑
l=i+2

∣∣B2l+1

∣∣ l∑
h=1

c1(2
h)α−2π4(2

h+1, 2l−1)π4(2
i , 2 j ),

≤ C2m
−βπ4(2

i , 2 j )

j−3∑
l=i+2

22l
l∑

h=1

(2h)α−2π4(2
h+1, 2l−1),

using the assumption (3.1) for π(m) and ρ(m), and the properties (2.5) and (2.6) for
π4. Lemma 2.5 implies that for any υ > 0 fixed,

j−3∑
l=i+2

22l
l∑

h=1

(2h)α−2π4(2
h+1, 2l−1) ≤ C3

j−3∑
l=i+2

22l
l∑

h=1

(2h)α−2
(
2h+1

2l−1

) 5
4−υ

≤ C4

j−3∑
l=i+2

(2l)
3
4+υ

l∑
h=1

(2h)α−
3
4−υ. (4.5)

By assumption (3.3), α > 3
4 (actually, in this subsection we even assume α > 1,

but we do not use it at this point), so we can pick υ > 0 sufficiently small so that
α − 3

4 − υ > 0. We deduce

j−3∑
l=i+2

22l
l∑

h=1

(2h)α−2π4(2
h+1, 2l−1) ≤ C5

j−3∑
l=i+2

(2l)
3
4+υ(2l)α−

3
4−υ

≤ C6(2
j )α ≤ C6(2Km)α. (4.6)
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Fig. 8 The three shaded regions (in grey) are the annuli A2h+1,2l−1 (v), A2i ,2l−3 and A2l+4,2 j , where we

look for four arms with alternating types (in the events W(1)
4 , W(2)

4 and W(3)
4 , respectively). The annuli

A2l−3,2l−2 , A2l−2,2l−1 , A2l+2,2l+3 and A2l+3,2l+4 are “safety areas”: we know from E1 that none of them
is crossed by a hole

We thus obtain

(Term 1) ≤ C7m
α−βπ4(2

i , 2 j ) = o(π4(2
i , 2 j )) (4.7)

as m → ∞, which is the desired upper bound for Term 1.
Term 2 : Assume that the event W4(A2i ,2 j ) ∩ E2 occurs. There exists h ∈ {i, . . . ,

j − 1} for which A2h ,2h+1 is crossed by a big hole, and we let h̄ be the smallest such
h. For h ∈ {i, . . . , j − 1},

P
(m)

p

(
W4(A2i ,2 j ) ∩ E2 ∩ {h̄ = h}) ≤ P

(m)

p

(
W(1)

4 ∩ Ã(oo)(A2h ,2 j ) ∩H(A2h ,∗)
)
,

(4.8)
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where Ã(oo)(A2h ,2 j ) denotes the event that the monochromatic two-arm event

A(oo)(A2h ,2 j ) occurs without the holes, and W(1)
4 the event that W4(A2i ,2h−2) occurs

with only the holes centered in B2h−1 . Recall also the definition of H(A.,∗) in (3.13).

Note that we use the eventH, and not simply the eventH, in order to take into account
the case h = i . Indeed, the big hole in this case may cross further annuli inside, and
even cover the origin, but it is not allowed to cover the whole of B2i (since otherwise,
no occupied arm in A2i ,2 j could exist).

It follows from Remark 3.4 that H(A2h ,∗) only depends on the holes centered in
A2h−1,∞, so that the three events in the right-hand side of (4.8) are independent. Hence,

P
(m)

p

(
W4(A2i ,2 j ) ∩ E2 ∩ {h̄ = h})

≤ P
(m)

p

(
W(1)

4

)
Pp
(
A(oo)(A2h ,2 j )

)
P

(m)(H(A2h ,∗)
)
. (4.9)

We first claim that for some (universal) υ > 0,

Pp
(
A(oo)(A2h ,2 j )

)
P

(m)(H(A2h ,∗)
) ≤ C ′mα−β

(
2h

2 j

)υ

π4(2
h, 2 j ). (4.10)

Indeed, using the assumption α > 1, we obtain from Lemma 3.3 that

P
(m)(H(An1,∗(z))

) ≤∑
k≥1

P
(m)(H(An1,2kn1(z))

) ≤ C ′′m−βn1m
α−1. (4.11)

On the other hand, (2.9) implies (since 2 j ≤ 2K L(p))

Pp
(
A(oo)(A2h ,2 j )

) ≤ C1π(oo)(2
h, 2 j ). (4.12)

It follows from the inequality (2.8) between themonochromatic and the polychromatic
two-arm events, and Lemma 2.5, that: for some υ ′ > 0 small enough,

Pp
(
A(oo)(A2h ,2 j )

) ≤ C2

(
2h

2 j

) 1
4+υ ′

. (4.13)

Hence, by combining (4.11), (4.13), and then m−1 ≤ 2K (2 j )−1,

Pp
(
A(oo)(A2h ,2 j )

)
P

(m)(H(A2h ,∗)
) ≤ C3m

−β2hmα−1
(
2h

2 j

) 1
4+υ ′

≤ 2KC3m
α−β

(
2h

2 j

) 5
4+υ ′

≤ C4m
α−β

(
2h

2 j

) υ′
2

π4(2
h, 2 j )
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(using Lemma 2.5 for the last inequality, with ε = υ ′
2 ), which establishes (4.10).

By combining (4.9) and (4.10), and applying the induction hypothesis for

P
(m)

p

(
W(1)

4

)
, we deduce [using also the properties (2.5) and (2.6) for π4]

P
(m)

p

(
W4(A2i ,2 j ) ∩ E2 ∩ {h̄ = h}) ≤ Cπ4(2

i , 2h−2) · C ′mα−β

(
2h

2 j

)υ

π4(2
h, 2 j )

≤ C5m
α−β

(
2h

2 j

)υ

π4(2
i , 2 j ).

We then sum over the possible values of h̄:

(Term 2) =
j−1∑
h=i

P
(m)

p

(
W4(A2i ,2 j ) ∩ E2 ∩ {h̄ = h}) ≤ C6m

α−βπ4(2
i , 2 j ). (4.14)

By combining (4.3), (4.7), and (4.14), and using that β > α, we obtain (in the case
α ∈ (1, 2))

P
(m)

p

(
W4(A2i ,2 j ) ∩D

) = o(π4(2
i , 2 j )) as m → ∞. (4.15)

In Sect. 4.2.3, we will show that this implies (4.2).

4.2.2 General case˛ > 3
4

We now prove (4.15) for a general α ∈ ( 34 , 2). We need to introduce the following
three events, for a well-chosen M = M(α, β).

• E1 := {there is no big hole in A2i ,2 j }.
• E2 := {there are between 1 and M big holes in A2i ,2 j }.
• E3 := {there are at least M + 1 big holes in A2i ,2 j }.

We write

P
(m)

p

(
W4(A2i ,2 j ) ∩D

) ≤ P
(m)

p

(
W4(A2i ,2 j ) ∩D ∩ E1

)+ P
(m)

p

(
W4(A2i ,2 j ) ∩ E2

)
+ P

(m)

p

(
E3
)

=: (Term 1) + (Term 2) + (Term 3). (4.16)

Similarly to the case α ∈ (1, 2), we need to show that each term is a o(π4(2i , 2 j )) as
m → ∞.

Term 1 : It can be handled in exactly the same way as before (as the reader can
check, for that term we did not use the fact that α > 1), and we obtain again (4.7).

Term 3 : As we now explain, this term can be handled easily by choosing a suffi-
ciently large value of M . For that, we derive an upper bound on the probability that
there exists a large number of big holes, i.e. of v1, . . . , vM+1 ∈ V distinct such that
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each Hvi (1 ≤ i ≤ M + 1) is a big hole: we claim that there exists M = M(α, β) for
which

P
(m)(

there are at least M + 1 big holes in A2i ,2 j

) = o(π4(m)) as m → ∞.

(4.17)

Indeed, since the events {Hv is a big hole in A2i ,2 j }, v ∈ V , are independent, we have

P
(m)(∃v1, . . . , vM+1 ∈ V distinct s.t. all (Hvi )1≤i≤M+1 are big holes

)
≤
(
P

(m)(∃v ∈ V s.t. Hv is a big hole
))M+1

≤ (C1)
M+1 (logm)M+1

m(β−α)(M+1)
(4.18)

(where we used (3.10) for the last inequality). For any υ > 0, π4(m) ≥ C2m− 5
4−υ

for some C2 = C2(υ) > 0 (from (2.7)). Hence, the right-hand side of (4.18) is a
o(π4(m)) for all M large enough (so that (β − α)(M + 1) > 5

4 ), which gives (4.17).
From now on, we assume M to be chosen in that way, so that (Term 3) = o(π4(m)),
and in particular

(Term 3) = o(π4(2
i , 2 j )) as m → ∞. (4.19)

Term 2 : This term requires more care. Let us assume that the corresponding event
holds, so that the number b of big holes in A2i ,2 j satisfies 1 ≤ b ≤ M . We list
which sub-annuli are crossed by such big holes: there are integers 1 ≤ n ≤ M ,
i ≤ h1 < h2 < · · · < hn < j and i < k1 < k2 < · · · < kn ≤ j , with hl < kl
(1 ≤ l ≤ n), such that the following subevent of E2 holds, which we denote by
Ẽ2 = Ẽ2(n, h1, . . . , hn, k1, . . . , kn).

• For all 1 ≤ l ≤ n, H(A2hl ,2kl ) holds (unless l = n and kn = j , in which case we

require H(A2hn ,∗) instead),
• and no other sub-annuli are crossed by big holes: for all i ≤ h ≤ j − 1 with
[h, h + 1] �

⋃
1≤l≤n[hl , kl ],H(A2h ,2h+1) does not occur.

Note that it may be the case that n < b.
We now group the big holes as follows.We say that two successive intervals [hl , kl ]

and [hl+1, kl+1] “overlap” if hl+1 ≤ kl . Consider a block of overlapping intervals
[hl , kl ], . . . , [hl , kl ] (1 ≤ l ≤ l ≤ n), i.e. such that any two successive intervals
overlap. Later, we will “label” such a block simply by �hl , kl�. For simplicity, let us
first assume that we are not in the case l = n and kn = j . By “independence”, and
then using Lemma 3.3, we have

P
(m)
( l⋂

l=l

H(A2hl ,2kl )

)
≤

l∏
l=l

P
(m)(H(A2hl ,2kl )

)
(4.20)
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≤
l∏

l=l

(
Cm−β(2hl )(2kl )α−1)

≤ (Cm−β
)l−l+12hl (2kl )α−1

l−1∏
l=l

(
(2kl )α−1(2hl+1)

)
. (4.21)

For each term in the product, since hl+1 ≤ kl , we have

(2kl )α−1(2hl+1) ≤ (2kl )α ≤ C1m
α, (4.22)

using also 2kl ≤ 2 j ≤ 2Km (this is where we have to be careful that α might be < 1,
and use the “overlapping” assumption). On the other hand,

(2kl )α−1 = (2kl )α(2kl )−1 ≤ C1m
α(2kl )−1. (4.23)

We deduce from (4.21), (4.22), and (4.23), that

P
(m)
( l⋂

l=l

H(A2hl ,2kl )

)
≤ (C2m

α−β
)l−l+12hl (2kl )−1. (4.24)

This implies that for some υ > 0 small enough, using (4.13) [recall the definition
of Ã(oo) from the line below (4.8)],

P
(m)

p

(
Ã(oo)(A2hl ,2kl

) ∩
l⋂

l=l

H(A2hl ,2kl )

)

≤ Pp
(
A(oo)(A2hl ,2kl

)
)(
C2m

α−β
)l−l+12hl (2kl )−1 (4.25)

≤ C3

(
2hl

2kl

) 1
4+υ(

C2m
α−β
)l−l+12hl (2kl )−1

= C3

(
2hl

2kl

) 5
4+υ(

C2m
α−β
)l−l+1

≤ (C4m
α−β
)l−l+1

π4(2
hl , 2kl ) (4.26)

(where the last inequality follows from Lemma 2.5).
In the case l = n and kn = j , the same reasonings apply, except that in the

product (4.20), P
(m)(H(A

2hl ,2kl
)
)
has to be replaced by P

(m)(H(A
2hl ,∗)

)
. It follows

from Lemma 3.3 that

P
(m)(H(A

2hl ,∗)
) ≤ C ′

1m
−β(2hl )(logm) ·max

(
(2kl )α−1,mα−1)

≤ C ′
2m

−β(2hl )(logm)mα(2kl )−1
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(the extra logm is here for the case α = 1), and the rest of the calculations is identical
to those that led to (4.26), now with an additional logm factor.

We now group the intervals [hl , kl ] (1 ≤ l ≤ n) into maximal blocks of overlap-
ping intervals �h̃l , k̃l�, where i ≤ h̃1 < k̃1 < h̃2 < · · · < k̃q ≤ j , and q (≤ n ≤ M)
is the number of such blocks. We denote by nl the number of overlapping inter-
vals that the lth block contains, so that n1 + . . . + nq = n. For h < k, we denote
W̃4(A2h ,2k ) := {W4(A2h ,2k ) occurs with only the holes centered in A2h−1,2k+1}. For
notational convenience, we set, for h ≥ k, W̃4(A2h ,2k ) := � and π4(2h, 2k) := 1.

Observe that, on the eventW4(A2i ,2 j )∩ Ẽ2, for each block �h̃l , k̃l� the event in the
left-hand side of (4.25) holds (with hl and kl replaced by h̃l and k̃l , respectively), and
that (if l ≤ q − 1) for the annulus between this block and the next one (i.e. the block
�h̃l+1, k̃l+1�), the event W̃4(A2k̃l+2,2h̃l+1−2) holds. Such considerations, together with
appropriate use of independence (and application of (4.26)) gives

P
(m)

p

(
W4(A2i ,2 j ) ∩ Ẽ2

)
≤ P

(m)

p

(
W̃4(A2i ,2h̃1−2)

)( q−1∏
l=1

P
(m)

p

(
W̃4(A2k̃l+2,2h̃l+1−2)

))
P

(m)

p

(
W̃4(A2k̃q+2,2 j )

)

·
( q∏

l=1

(
C4m

α−β(logm)
)nlπ4(2

h̃l , 2k̃l )

)
.

Then, by applying q + 1 times the induction hypothesis, we obtain

P
(m)

p

(
W4(A2i ,2 j ) ∩ Ẽ2

)
≤ (Cπ4(2

i , 2h̃1−2))

( q−1∏
l=1

Cπ4(2
k̃l+2, 2h̃l+1−2)

)
(Cπ4(2

k̃q+2, 2 j ))

·
( q∏

l=1

π4(2
h̃l , 2k̃l )

)(
C4m

α−β(logm)
)n1+...+nq .

This yields, using (2.5) and (2.6) (for π4) repeatedly,

P
(m)

p

(
W4(A2i ,2 j ) ∩ Ẽ2

) ≤ Cq+1(C5)
2qπ4(2

i , 2 j )
(
C4m

α−β(logm)
)n

.

Hence,

(Term 2) = P
(m)

p

(
W4(A2i ,2 j ) ∩ E2

)
≤

∑
1≤n≤M

∑
i≤h1<···<hn< j
i<k1<···<kn≤ j
hl<kl (1≤l≤n)

P
(m)

p

(
W4(A2i ,2 j ) ∩ Ẽ2(n, h1, . . . , hn, k1, . . . , kn)

)

≤ M(C6 logm)2MCM+1(C4m
α−β(logm)

)
π4(2

i , 2 j )
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(in the last inequality, we used the fact that mα−β(logm) → 0 as m → ∞, since
β > α), so

(Term 2) = o(π4(2
i , 2 j )) as m → ∞. (4.27)

By combining (4.16), (4.7), (4.27), and (4.19), we obtain again (4.15), now for the
general case α ∈ ( 34 , 2).
4.2.3 End of the proof of Theorem 4.1

We are now in a position to conclude. We can write

P
(m)

p

(
W4(A2i ,2 j )

) ≤ P
(m)

p

(
Dc)+ P

(m)

p

(
W4(A2i ,2 j ) ∩D

)
. (4.28)

We also have P
(m)

p

(
Dc
) = Pp

(
A4(A2i+3,2 j−3)

) ≤ Ĉπ4(2i , 2 j ) [using (2.5), (2.9), and

2 j ≤ 2K L(p) for the inequality]. Note that Ĉ depends only on K . Combining this
with (4.15), we get that

P
(m)

p

(
W4(A2i ,2 j )

) ≤ Ĉπ4(2
i , 2 j ) + o(π4(2

i , 2 j )) as m → ∞. (4.29)

This implies that if we choose C > Ĉ , the inequality in (4.2) holds for all m large
enough (depending on c1, c2, c3, α, β, and K ), uniformly in i and j satisfying the
requirements in the statement of the theorem. This completes the proof of Theorem
4.1. ��

4.2.4 Remark on Domain II

Note that, strictly speaking, by monotonicity Domain II is covered by Domain I
(indeed, for every (α, β) in Domain II, we can find (α′, β) in Domain I with α′ > α).
Still, it might be interesting to see “what happens to our computations” in the case of
Domain II.

Themain difference appears just below (4.5):α < 3
4 so for anyυ > 0,α− 3

4−υ < 0.

Hence,
∑l

h=1(2
h)α− 3

4−υ ≤ C ′ < ∞, and (4.6) becomes

j−3∑
l=i+2

22l
l∑

h=1

(2h)α−2π4(2
h+1, 2l−1) ≤ C5

j−3∑
l=i+2

(2l)
3
4+υC ′ ≤ C6(2

j )
3
4+υ. (4.30)

This implies the following analog of (4.7):

(Term 1) ≤ C7m
3
4+υ−βπ4(2

i , 2 j ), (4.31)

which is a o(π4(2i , 2 j )) as m → ∞, if we choose υ small enough so that β > 3
4 + υ.
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This computation shows that the phenomenology in Domain II is different from
Domain I, in the sense that the contribution of pivotal holes is mostly produced by
microscopic holes. As the reader can check, exactly the same calculation would appear
in the “further stability results” below: for one-arm events (see the reasonings after
(5.9)), and for crossing probabilities (see below (5.21)). In both (5.13) and (5.21), the

term mα−β would become m
3
4+υ−β , as in (4.31).

4.3 General comments on the stability of arm events

In this section, we use the notation α j := ασ for the critical arm exponent in the
case when σ = (ovo . . .) ∈ S j is alternating ( j ≥ 1). The four-arm stability result,
Theorem 4.1, comes from a subtle balance between opposite effects of the holes on the
occupied and vacant arms. At its core, the proof relies on the inequality α(oo) > α4−1:
in the computations below (4.12) (for the caseα > 1), and below (4.24) (for the general
case). This inequality itself comes from α(oo) > α2 (from (2.8)), and the numerical
values α2 = 1

4 and α4 = 5
4 (see the paragraph below (2.7)). But there does not seem

to be any conceptual reason why the four-arm event should be stable.
Also, note that the a-priori bounds available for other lattices, e.g. the square lattice

Z
2, do not seem to be accurate enough to make our proof of four-arm stability work

there. Maybe a more detailed geometric analysis could still provide a proof for those
lattices, but this is not clear at themoment (and beyond themain purpose of this paper).

Further stability results will be derived in Sect. 5, in particular for one occupied
arm (i.e.A1 = A(o)), see Proposition 5.1. In order to illustrate that arm stability is not
obvious at all, we now point out that it does not hold for all types of arm events. To
make things more concrete, let us assume (in this section only) that ρ(m)

([r ,+∞)
) =

c1rα−2e−c2r/m (for r ≥ 1) and π
(m)
v = c3m−β (for all v ∈ V ), for some α and β as in

(3.3).
First, it is easy to see that the one-arm event for σ = (v) (one vacant arm) is not

stable if β − α < α1 (= 5
48 ): indeed, we have that for some υ > 0 small enough,

P
(m)

1/2

(
A(v)(An1,m(z))

) ≥ P
(m)(H(An1,m(z))

) � mα−β


 m−α1+υ 
 P1/2
(
A(v)(An1,m(z))

)

as m → ∞, if n1 is fixed (or n1 grows at most like mυ ′
, for some sufficiently small

υ ′ > 0), using (2.7). In fact, this argument shows that for every σ = (v . . . v) ∈ S j ,
the event Aσ is not stable.

Now, we will point out that even sequences containing occupied arms are not nec-
essarily stable. Indeed, let us consider the j-arm event with sequence σ = (ov . . . v) ∈
S j (with one occupied arm, and j − 1 vacant arms). A similar computation as for
Lemma 3.3 yields

P
(m)(H[1/4]

(An1,m)
) � m−βn1m

α−1 as m → ∞, (4.32)
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where (for an annulus A)H[1/4]
(A) denotes the event thatH(A) is realized by a hole

that furthermore stays in the quarter-plane (0,+∞)2. Using the notation A[3/4]
(o) for

the one-arm event in the complementary three-quarter plane R
2 \ (0,+∞)2, we can

write

P
(m)

1/2

(
Aσ (An1,m)

) ≥ P
(m)

1/2

(
A[3/4]

(o) (An1,m) ∩H[1/4]
(An1/2,m)

)
= P1/2

(
A[3/4]

(o) (An1,m)
)
P

(m)(H[1/4]
(An1/2,m)

)
. (4.33)

The arm exponent α[3/4]
1 corresponding toA[3/4]

(o) can be obtained from the half-plane

one-arm exponent α[1/2]
1 = 1

3 , as α
[3/4]
1 = 2

3 ·α[1/2]
1 = 2

9 (by “conformal invariance”).
Hence, combined with (4.32) and (4.33), we obtain that for any υ > 0,

P
(m)

1/2

(
Aσ (An1,m)

) ≥ C

(
n1
m

) 2
9+υ

m−βn1m
α−1 = Cmα−β

(
n1
m

) 11
9 +υ

. (4.34)

For all j ≥ 4, α j > 11
9 , so for β − α small enough, we can find υ > 0 so that

P
(m)

1/2

(
Aσ (An1,m)

)
 (
n1
m

)α j−υ


 π j (n1,m)

as m → ∞ [using (2.7)], where again n1 is fixed or grows as a small power of m.
Hence, the j-arm event with sequence σ is not stable as soon as j ≥ 4. Note that a
similar construction can be made for sequences σ containing more than one occupied
arm, as long as there are enough vacant arms.

Let us also mention that we expect the six-arm event with sequence (ovvovv) to
be of particular importance. This event is a classical a-priori estimate for near-critical
percolation, which plays in particular a central role in [27]. It should be relevant for
extending our results in Sect. 7 to forest fires with recovery (see the discussion in
Sect. 8). This event turns out to be stable as well, but proving it requires more careful
combinatorics than for Theorem 4.1, and we plan to write it out in detail in a separate
paper.

5 Further stability results

In this section, we still suppose that the probability measures P
(m)

p (see (3.2)) satisfy
Assumptions 1 and 2. Recall that α, β, c1, c2 and c3 are parameters appearing in the
definition of these measures. In our setting of percolation with holes, we prove several
results which extend classical properties of usual Bernoulli percolation. We first use
the four-arm stability result Theorem 4.1 to prove the stability of one-arm events
(Sect. 5.1), and of crossing events in rectangles (Sect. 5.2). The stability of crossing
probabilities is then used in Sect. 5.3 to establish an exponential decay property for
these probabilities, similar to (2.4). Finally, in Sect. 5.4 we combine the one-arm
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stability result and the exponential decay property to obtain estimates for the volume
of the largest cluster in a box, analogous to (2.14).

5.1 One-arm event

In this section, we prove stability for the existence of one occupied arm.

Proposition 5.1 Let K ≥ 1. We have

P
(m)

p

(
A1(An1,n2)

) = Pp
(
A1(An1,n2)

) · (1+ o(1)) as m → ∞, (5.1)

uniformly in p ∈ (0, 1), and 1 ≤ n1 ≤ n2
32 ≤ n2 ≤ K (m∧L(p)) (i.e. the o(1) depends

on c1, c2, c3, α, β and K , but not on p, n1 and n2 satisfying the conditions stated).

Proof of Proposition 5.1 We first assume that n1 ≥ mβ/3. Let η ∈ (0, 1
8 ). We consider

the annuli A := An1,n2 , A
′ := A(1−η)n1,(1+η)n2 , and A′′ := A(1−2η)n1,(1+2η)n2 . We

prove that

P
(m)

p

(
A1(A)

) ≥ Pp
(
A1(A

′′)
) · (1+ o(1)) as m → ∞, (5.2)

which is enough to establish Proposition 5.1. Indeed, it follows from standard argu-
ments for ordinary Bernoulli percolation (from the fact that the critical exponent for
three arms in a half plane is equal to 2, so in particular strictly larger than 1, see for
example Theorem 24 in [33]) that the ratio of Pp

(
A1(A′′)

)
and Pp

(
A1(A)

)
can be

made arbitrarily close to 1 by choosing η > 0 small enough, uniformly in p ∈ (0, 1)
and mβ/3 ≤ n1 ≤ n2

32 ≤ n2 ≤ K L(p), for m large enough (note that this is where we
use the condition n1 ≥ mβ/3, to ensure that n1 → ∞ and avoid potential combinatorial
obstructions, which may arise for small values of n1).

Because of boundary effects, we first “add” (in a similar sense as in Sect. 4.2.1) the
holes with centers in A′ (i.e. at a sufficient distance from the boundary of A′′), and
then the remaining holes, with centers in (A′)c. For that, we introduce the intermediate
families π

′(m)
v := π

(m)
v 1v∈A′ and π

′′(m)
v := π

(m)
v 1v∈(A′)c (so that π(m) = π ′(m) +

π ′′(m)). If we denote by Ã1(A′′) the event that A1(A′′) holds without the holes, we
have A1(A′′) ⊆ Ã1(A′′) so

P
π ′(m),ρ(m)

p

(
A1(A

′′)
) = P

π ′(m),ρ(m)

p

(
Ã1(A

′′)
)− P

π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
)

= Pp
(
A1(A

′′)
)− P

π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
)
. (5.3)

We claim that

P
π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
) = Pp

(
A1(A

′′)
) · o(1), (5.4)

which we now prove.
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Fig. 9 If Hv is a “pivotal” hole, with center v ∈ A2i ,2i+1 and radius rv ∈ [2 j , 2 j+1) ( j ≤ i − 4), we

consider the three events W4(A2 j+1,2i−2 (v)), Ã1(A(1−2η)n1,2i−1 ) and Ã1(A2i+2,(1+2η)n2
)

We follow a similar procedure as for Theorem 4.1. By adding the holes with centers
in A′ one by one, until the one-arm event fails, we see that there must exist a “pivotal”
hole Hv , with v ∈ A′. Let i ≥ 0 be such that v ∈ A2i ,2i+1 . Clearly, either rv ≥ 2i−3,
or 2 j ≤ rv < 2 j+1 for some j ≤ i − 4. In the latter case, the eventW4(A2 j+1,2i−2(v))

occurs (see Fig. 9). We deduce, with I := �log2(n2)�,

P
π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
)

≤ c3m
−β
∑
i≤I

∣∣B2i+1

∣∣ · [ρ(m)
([2i−3,+∞)

) · P
π ′(m),ρ(m)

p

(
Ã1(A

′′)
)

+
i−4∑
j=0

[
ρ(m)

([2 j ,+∞)
) · P

π ′(m),ρ(m)

p

(
W4(A2 j+1,2i−2(v))

)

· P
π ′(m),ρ(m)

p

(
A(1)) · P

π ′(m),ρ(m)

p

(
A(2))]], (5.5)

whereA(1) := Ã1(A(1−2η)n1,2i−1) andA(2) := Ã1(A2i+2,(1+2η)n2) (note that the three
events above W4(A2 j+1,2i−2(v)), A(1) and A(2) are independent, since they involve
disjoint regions of the plane, and onlyW4(A2 j+1,2i−2(v)) involves the holes).We know
from Theorem 4.1 that

P
π ′(m),ρ(m)

p

(
W4(A2 j+1,2i−2(v))

) ≤ C1π4(2
j+1, 2i−2) ≤ C2π4(2

j , 2i ) (5.6)

(the second inequality follows from (2.5)). We also have P
π ′(m),ρ(m)

p

(
Ã1(A′′)

) =
Pp
(
A1(A′′)

)
, and

P
π ′(m),ρ(m)

p

(
A(1)) · P

π ′(m),ρ(m)

p

(
A(2))
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= Pp
(
A1(A(1−2η)n1,2i−1)

) · Pp
(
A1(A2i+2,(1+2η)n2)

)
≤ C3Pp

(
A1(A

′′)
)
. (5.7)

Hence, by combining (5.5), (5.6) and (5.7), and using (3.1), we obtain

P
π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
)

≤ C4m
−β
∑
i≤I

22i ·
[
(2i )α−2 +

i−4∑
j=0

[
(2 j )α−2 · π4(2

j , 2i )
]]

· Pp
(
A1(A

′′)
)
. (5.8)

Lemma 2.5 implies that for any υ > 0 fixed,

i−4∑
j=0

[
(2 j )α−2 · π4(2

j , 2i )
]
≤ C5

i−4∑
j=0

(2 j )α−2
(
2 j

2i

) 5
4−υ

= C5(2
i )−

5
4+υ

i−4∑
j=0

(2 j )α−2+ 5
4−υ. (5.9)

By Assumption 2, we have α− 2 > − 5
4 [see (3.3)], so we can choose υ small enough

so that α − 2+ 5
4 − υ > 0, and we deduce

i−4∑
j=0

[
(2 j )α−2 · π4(2

j , 2i )
]
≤ C6(2

i )−
5
4+υ(2i )α−2+ 5

4−υ = C6(2
i )α−2. (5.10)

It then follows from (5.8) and (5.10) that

P
π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
) ≤ C4Pp

(
A1(A

′′)
) · m−β

∑
i≤I

22i · (C6 + 1)(2i )α−2.

(5.11)

Since

∑
i≤I

22i · (2i )α−2 =
∑
i≤I

(2i )α ≤ C7(n2)
α ≤ C7K

αmα (5.12)

(where we used α > 0), we finally obtain

P
π ′(m),ρ(m)

p

(
Ã1(A

′′) \A1(A
′′)
) ≤ C8Pp

(
A1(A

′′)
) · mα−β, (5.13)

which (since β > α) establishes (5.4).
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By using monotonicity, and then combining (5.3) and (5.4), we obtain

P
π ′(m),ρ(m)

p

(
A1(A)

) ≥ P
π ′(m),ρ(m)

p

(
A1(A

′′)
) = Pp

(
A1(A

′′)
) · (1+ o(1)). (5.14)

We then add the holes with centers in (A′)c, and use Lemma 3.2. We can write

P
π(m),ρ(m)

p

(
A1(A)

) = P
π(m),ρ(m)

p

( ˜̃A1(A)
)− P

π(m),ρ(m)

p

( ˜̃A1(A) \A1(A)
)

= P
π ′(m),ρ(m)

p

(
A1(A)

)− P
π(m),ρ(m)

p

( ˜̃A1(A) \A1(A)
)
, (5.15)

where we denote by ˜̃A1(A) the event thatA1(A) holds without the holes in (A′)c. Let
H := H(A(1−η)n1,n1) ∪H(An2,(1+η)n2). We have

P
π(m),ρ(m)

p

( ˜̃A1(A) \A1(A)
) ≤ P

π ′′(m),ρ(m)(
H
) · P

π ′(m),ρ(m)

p

(
A1(A)

)
≤ 2C

mβ−α
· P

π ′(m),ρ(m)

p

(
A1(A)

)
(5.16)

(using Lemma 3.2). By combining (5.15) and (5.16), we obtain

P
π(m),ρ(m)

p

(
A1(A)

) = P
π ′(m),ρ(m)

p

(
A1(A)

) · (1+ o(1)). (5.17)

The desired result (5.2) then follows immediately from (5.14) and (5.17).
In the case when n1 < mβ/3, we proceed in a similar way, but we handle separately

the holes with centers close to ∂ inBn1 . For that, we start by adding the holes centered
in B3mβ/3 : with probability 1 − O(m−β/3), there are no such holes [using (3.1)]. If
n2 < 2mβ/3, we can conclude immediately by using Lemma 3.2 that with probability
1 − O(m−β/3) − O(mα−β), no hole intersects An1,n2 . Otherwise, the remainder of
the proof is the same as in the case n1 ≥ mβ/3. ��

In the proof above, we distinguished the two cases n1 ≥ mβ/3 and n1 < mβ/3. We
want to mention that our choice of the exponent β

3 is quite arbitrary, and any value in

the interval (0, β
2 ) would work, as the reader can check.

5.2 Box crossing probabilities

In this section, we establish stability for certain box crossing events.

Proposition 5.2 Let K ≥ 1. We have

P
(m)

p

(
CH ([0, 2n] × [0, n])) = Pp

(
CH ([0, 2n] × [0, n]))+ o(1) as m → ∞,

(5.18)

uniformly in p ∈ (0, 1), and 1 ≤ n ≤ K (m ∧ L(p)) (i.e. the o(1) depends on c1, c2,
c3, α, β and K , but not on p and n).
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Fig. 10 In order to take care of the boundary effects, we add the holes in three successive steps. We denote
by VI , VI I and VI I I the corresponding subsets of vertices

Proof of Proposition 5.2 First, note that we can assume n ≥ mβ/3: otherwise, it follows
from (3.1) and Lemma 3.2 that with probability 1− O(m−β/3) − O(mα−β), no hole
intersects [0, 2n] × [0, n].

We are interested in horizontal crossings of the rectangle R := [0, 2n] × [0, n].
Let η ∈ (0, 1

8 ), and consider the auxiliary rectangles R′ := [−2ηn, (2 + 2η)n] ×
[2ηn, (1− 2η)n] and R′′ := [−2ηn, (2+ 2η)n]× [0, n] (see Fig. 10). In order to take
care of boundary effects, we add successively the holes centered in the following three
regions, forming a partition of V :

• VI :=
(
(−3ηn, (2+ 3η)n) × (ηn, (1− η)n)

)c ∩ V ,
• VI I :=

(([−ηn, (2+ η)n] × [ηn, (1− η)n]) ∩ V
) \ VI ,

• and VI I I :=
((

([−3ηn,−ηn] ∪ [(2+ η)n, (2+ 3η)n]) × [ηn, (1− η)n]) ∩ V
) \

(VI ∪ VI I ).

We thus introduce π ′(m) and π ′′(m), defined by

π ′(m)
v := π(m)

v 1v∈VI and π ′′(m)
v := π(m)

v 1v∈VI∪VI I (v ∈ V ).

First, it follows from a similar computation as in the proof of Lemma 3.2 that

P
(m)

p

(∃v ∈ VI : Hv ∩ R′ �= ∅) = O(mα−β) as m → ∞,
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uniformly in n and p with the required properties (for a fixed η > 0). Hence,

P
π ′(m),ρ(m)

p

(
CH (R′)

) = Pp
(
CH (R′)

)+ O(mα−β). (5.19)

By monotonicity, we have

P
π ′(m),ρ(m)

p

(
CH (R′′)

) ≥ P
π ′(m),ρ(m)

p

(
CH (R′)

)
. (5.20)

We now add the holes with centers in the “middle” of R′′, i.e. at a distance at least ηn
from the boundary of R′′. This is the region that we denote by VI I , and we claim that

P
π ′′(m),ρ(m)

p

(
CH (R′′)

) = P
π ′(m),ρ(m)

p

(
CH (R′′)

)+ O(mα−β). (5.21)

Indeed, this follows from a similar reasoning as for Proposition 5.1: by adding the
holes with centers in VI I one by one, until the crossing event fails, we see that there
must be a “pivotal” hole Hv (v ∈ VI I ) from which four arms originate to the four
sides of R′′. For J := �log2(ηn)�, we obtain, by distinguishing whether rv ≥ 2J−1,
or 2 j ≤ rv < 2 j+1 for some j ≤ J − 2,

P
π ′(m),ρ(m)

p

(
CH (R′′)

)− P
π ′′(m),ρ(m)

p

(
CH (R′′)

)
≤ c3m

−β
∑

v∈VI I

[
ρ(m)

([2J−1,+∞)
)

+
J−2∑
j=0

ρ(m)
([2 j ,+∞)

) · P
π ′′(m),ρ(m)

p

(
W4(A2 j+1,2J (v))

)]

(similarly to (5.5)). Using P
π ′′(m),ρ(m)

p

(
W4(A2 j+1,2J (v))

) ≤ C1π4(2 j , 2J ) (from The-
orem 4.1 and (2.5)) and (3.1), we obtain

P
π ′(m),ρ(m)

p

(
CH (R′′)

)− P
π ′′(m),ρ(m)

p

(
CH (R′′)

)
≤ c3m

−β
∣∣VI I

∣∣ · [c1(2J−1)α−2 +
J−2∑
j=0

c1(2
j )α−2 · C1π4(2

j , 2J )

]

≤ C2m
−βn2 · nα−2

(by a summation argument similar to (5.9), (5.10)), which establishes the claim (5.21)
(since n ≤ Km).

Using again monotonicity,

P
π ′′(m),ρ(m)

p

(
CH (R)

) ≥ P
π ′′(m),ρ(m)

p

(
CH (R′′)

)
. (5.22)
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Finally, we add the holes with centers in VI I I : a similar computation as for (5.19)
yields

P
π(m),ρ(m)

p

(
CH (R)

) = P
π ′′(m),ρ(m)

p

(
CH (R)

)+ O(mα−β). (5.23)

Combining (5.19), (5.20), (5.21), (5.22) and (5.23), we obtain

P
(m)

p

(
CH (R)

) ≥ Pp
(
CH (R′)

)+ o(1). (5.24)

This allows us to conclude, since we can make Pp
(
CH (R′)

)
as close as we want to

Pp
(
CH (R)

)
by choosing η > 0 small enough, uniformly in p ∈ (0, 1) and mβ/3 ≤

n ≤ K L(p), form large enough [using similar standard arguments as thosementioned
below (5.2), involving three-arm events in half planes]. ��

5.3 Exponential decay property

We now establish a (stretched) exponential convergence to 1 for the probability under

P
(m)

p of crossing a rectangle in the supercritical regime p > pc, using the stability
result, Proposition 5.2, for these probabilities. Obviously, we can only hope for such
a property on scales above L(p) (so that the supercritical behavior emerges in the
underlying Bernoulli percolation process). However, note that we also need the rect-
angles crossed to be of size at least m. Indeed, on scales below m, the probability to
observe a crossing hole (which would block occupied crossings) is only polynomially
small in m, so not decaying fast enough.

Proposition 5.3 Let K ≥ 1 and γ ∈ (0, 1). There exist λ1, λ2 > 0 (depending on c1,
c2, c3, α, β, K and γ ) such that for all m sufficiently large, we have: for all n ≥ 1,
and all p > pc with L(p) ≤ Km,

P
(m)

p

(
CH ([0, 2n] × [0, n])) ≥ 1− λ1e

−λ2(n/m)γ . (5.25)

Proof of Proposition 5.3 In the proof, we adapt a standard block argument for the anal-
ogous result in Bernoulli percolation. Adaptations are needed to control the effect of
large holes, disturbing the spatial independence (this is also the reason why we do
not obtain (5.25) for γ = 1). We describe in detail which modifications are made,
up to a point from which the proposition can be obtained from fairly straightforward
computations.

For somegiven p andm as in the statement, let us denote f (n) := P
(m)

p

(
C∗V ([0, 2n]×

[0, n])) (n ≥ 1). We fix η = η(γ ) ∈ (0, 1
4

]
small enough so that

log 2

log 2+ log(1+ η)
≥ γ. (5.26)

Let us consider, for some n ≥ 1, the construction depicted in Fig. 11: the two 5n by
n rectangles R+

n and R−
n , and the “fattened” open rectangles R

+
n and R

−
n , with side
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Fig. 11 The block argument on which the proof of Proposition 5.3 relies. We use “safety strips” of width
ηn around the rectangles R+

n and R−
n

lengths (5+ 2η)n and (1+ 2η)n. We also denote by R̃n the rectangle obtained as the
convex hull of R+

n and R−
n , which has side lengths 5n and 2(1+ η)n.

We now derive an upper bound on f (2(1 + η)n) in terms of f (n)2. Here, extra
care is needed (compared with Bernoulli percolation), due to the potential existence
of holes overlapping both the upper and the lower rectangles R+

n and R−
n (and thus

helping vacant crossings in both). For that, we use the “safety strips” around R+
n and

R−
n . Recall the definition (3.4) of H(.), and the notational remark a few lines below

it. The same computation as for Lemma 3.2 yields that for some C , C ′ (depending on
c1, c2, c3, α, β, and also on η),

P
(m)(H(R

+
n \ R+

n )
) ≤ C

mβ−α
e−C ′n/m, (5.27)

and similarly for P
(m)(H(R

−
n \ R−

n )
)
. Let C̃∗V (R+

n ) (resp. C̃∗V (R−
n )) denote the event

that C∗V (R+
n ) (resp. C∗V (R−

n )) occurs without the holes centered in (R
+
n )c (resp. (R

−
n )c).

Clearly, C̃∗V (R+
n ) and C̃∗V (R−

n ) are independent, and contained in C∗V (R+
n ) and C∗V (R−

n )

respectively. Hence, also using (5.27) and β > α, we obtain

P
(m)

p

(
C∗V (R̃n)

) ≤ P
(m)(H(R

+
n \ R+

n )
)+ P

(m)(H(R
−
n \ R−

n )
)

+ P
(m)

p

(
C̃∗V (R+

n )
)
P

(m)

p

(
C̃∗V (R−

n )
)

≤ 2Ce−C ′n/m + P
(m)

p

(
C∗V (R+

n )
)
P

(m)

p

(
C∗V (R−

n )
)
. (5.28)

We then observe that if C∗V (R+
n ) occurs, then at least one of four specified “horizontal”

2n by n rectangles (see Fig. 11) has a vertical vacant crossing, or at least one of the
three n by n squares located in the “middle” of R+

n has a horizontal vacant crossing.
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We deduce

P
(m)

p

(
C∗V (R+

n )
) ≤ 4P

(m)

p

(
C∗V ([0, 2n] × [0, n]))+ 3P

(m)

p

(
C∗H ([0, n]2)) ≤ 7 f (n),

(5.29)

and similarly for P
(m)

p

(
C∗V (R−

n )
)
. Combined with (5.28), this implies (note that

4(1+ η)n ≤ 5n, from our assumption η ≤ 1
4 )

f (2(1+ η)n) ≤ P
(m)

p

(
C∗V (R̃n)

) ≤ 2Ce−C ′n/m + C ′′ f (n)2, (5.30)

where C ′′ = 72.
Note that the derivation above is not completely valid, since, strictly speaking, the

crossing events are not translation invariant (the rectangles considered do not “fit” the
lattice T). However, this issue can easily be solved by considering the maximum over
all translated rectangles z + [0, 2n] × [0, n], z ∈ C, in the definition of f (n), and
adapting the subsequent arguments accordingly.

We now use (5.30) iteratively, starting from n0 = K0m, where K0 is chosen suffi-
ciently large so that

f (K0m) ≤ 1

4C ′′ (5.31)

for m large enough, uniformly in p as in the statement (i.e. for all m ≥ m0 =
m0(c1, c2, c3, α, β, K ), and all p > pc with L(p) ≤ Km). Such a K0 exists, from
(2.4) and Proposition 5.2. We can also assume that K0 is large enough so that

2C2−C ′ηK0/ log 2 ≤ 1

4C ′′ and
C ′

2 log 2
K0 ≥ 1 (5.32)

(recall that η is fixed, and depends only on the choice of γ ). Let λ := 2(1+η) ∈ (2, 5
2

]
.

We claim that

for all k ≥ 0, f (λkn0) ≤ 1

2C ′′ 2
−2k . (5.33)

This can be proved by induction (note that the case k = 0 corresponds to (5.31)), and
we omit the details.

Hence, with λ2 = log 2
K γ
0
,

f (λkn0) ≤ 1

2C ′′ 2
−2k ≤ e−(λk )γ log 2 = e−λ2(λ

kn0/m)γ , (5.34)

since 2k = λk log 2/ log λ ≥ λkγ , from (5.26). We can then write, as for (5.29),

P
(m)

p

(
C∗V ([0, 5λkn0] × [0, λkn0])

) ≤ 7 f (λkn0) ≤ 7e−λ2(λ
kn0/m)γ . (5.35)
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From this, (5.25) follows easily for a general n ≥ n0, while the case n < n0 is an
immediate consequence of n0 = K0m. This completes the proof of Proposition 5.3. ��
Corollary 5.4 Let K ≥ 1.

(i) There exist λ, λ,m0 > 0 (depending on c1, c2, c3, α, β and K) such that: for all
m ≥ m0, all p > pc with K−1m ≤ L(p) ≤ Km, and all n ≥ K−1m,

λθ(p) ≤ P
(m)

p

(
0 ↔ ∂ inBn

) ≤ λθ(p). (5.36)

(ii) Moreover, for all ε > 0, there exist κ0 and m0 (depending on c1, c2, c3, α, β, K
and ε) such that: for all m ≥ m0, all p > pc with K−1m ≤ L(p) ≤ Km, and
all n ≥ κ0m,

(1− ε)θ(p) ≤ P
(m)

p

(
0 ↔ ∂ inBn

) ≤ (1+ ε)θ(p). (5.37)

Proof of Corollary 5.4 As for Proposition 5.3, the proof is a suitable adaptation of that
for a similar result in Bernoulli percolation.

(i) Using a sequence of overlapping rectangles as in Fig. 12 (first with n0 = n, and
then with n0 = K−1m), we deduce from Proposition 5.3 and the FKG inequality
(for the process with holes, see Remark 3.1), combined with Proposition 5.2 and
(2.3), that for all m sufficiently large,

P
(m)

p

(
0 ↔ ∂ inBn

) � P
(m)

p (0 ↔ ∞) � P
(m)

p

(
0 ↔ ∂ inBK−1m

)
(5.38)

uniformly in n and p with the required properties. Using Proposition 5.1, we
have

P
(m)

p

(
0 ↔ ∂ inBK−1m

) = Pp
(
0 ↔ ∂ inBK−1m

) · (1+ o(1)) (5.39)

as m → ∞. Finally, (i) now follows from the standard result for Bernoulli
percolation that Pp

(
0 ↔ ∂ inBK−1m

) � θ(p) (which can easily be obtained from
(2.4) and (2.3)).

(ii) This follows from similar reasonings, noting that P
(m)

p

(
0 ↔ ∂ inBκ0m

)
and

Pp
(
0 ↔ ∂ inBκ0m

)
can be made arbitrarily close to, respectively, P

(m)

p (0 ↔ ∞)

and θ(p) (in ratio), by choosing κ0 ≥ K large enough.

��

5.4 Largest cluster in a box

We now prove an analog of (2.14) in our setting, for boxes with side length 
 m.
This result, Proposition 5.5 below, is of key importance for our analysis of forest
fire processes (FFWoR) in Sect. 7. Its proof follows similar ideas as for the analogous
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Fig. 12 We use a sequence of overlapping, “horizontal” and “vertical” rectangles, with side lengths 2i+1n0
and 2i n0 (i ≥ 0), for some well-chosen n0 ≥ 1

result for Bernoulli percolation in [11], with extra care needed to handle the disturbing
effect of large holes. We emphasize that, to do this, the four-arm stability in Sect. 4 is
crucial, although this is not immediately visible in the proof of Proposition 5.5: it is
used indirectly, via other stability results treated earlier in Sect. 5.

Recall the definition of a net in Definition 2.1.

Proposition 5.5 Let K ≥ 1, and (pm)m≥1 in (pc, 1) satisfying K−1m ≤ L(pm) ≤
Km. If (nm)m≥1 is a sequence of integers such that nm 
 m(logm)2 as m → ∞,

then for all ε > 0: with high P
(m)

pm -probability as m → ∞, there exists a net N in

Bnm with mesh n̄m := (nmm)1/2, and the cluster CN of this net (in Bnm ) has a volume
satisfying

|CN |
|Bnm |θ(pm)

∈ (1− ε, 1+ ε). (5.40)

Remark 5.6 Though we will not use this fact, note that CN then has to be the largest
cluster in Bnm , with high probability (similarly to Remark 2.4). We also remark that
the assumption nm 
 m(logm)2 is not optimal, but it is enough for our purpose.
Indeed, we will typically (in Sect. 7) apply Proposition 5.5 to cases where nm/m is at
least a small power of m.
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Proof of Proposition 5.5 For similar reasons as for Lemma 2.2 (now using Proposition
5.3, e.g. with γ = 1

2 , instead of (2.4)), a netN as stated in the proposition exists with
high probability:

P
(m)

pm (N exists) ≥ 1− C1

(
nm
n̄m

)2
e−C2

(
n̄m
Km

)1/2

= 1− C1

(nm
m

)
e
− C2

K1/2

(
nm
m

)1/4
−→
m→∞ 1. (5.41)

On the event that N exists, the volume of its cluster CN satisfies

Ym ≤ |CN | ≤ Ym + ηm, (5.42)

with

Ym :=
∑

x∈Bnm−4n̄m

1x↔∂ inB4n̄m (x) and ηm :=
∑

x∈Bnm \Bnm−4n̄m

1x↔∂ inB4n̄m (x). (5.43)

We now use a second-moment argument for Ym . We have, denoting by E
(m)

pm the

expectation with respect to P
(m)

pm ,

(|Bnm | − C3n̄mnm
)
P

(m)

pm

(
0 ↔ ∂ inB4n̄m

) ≤ E
(m)

pm

[
Ym
] ≤ |Bnm |P(m)

pm

(
0 ↔ ∂ inB4n̄m

)
.

(5.44)

Since 4n̄m 
 m, we can apply (ii) of Corollary 5.4: for m large enough,

(
1− ε

4

)
θ(pm) ≤ P

(m)

pm

(
0 ↔ ∂ inB4n̄m

) ≤ (1+ ε

4

)
θ(pm), (5.45)

and thus

(
1− ε

2

)
|Bnm |θ(pm) ≤ E

(m)

pm

[
Ym
] ≤ (1+ ε

4

)
|Bnm |θ(pm). (5.46)

We now estimate Var(Ym), and for that we denote Ex
m := {x ↔ ∂ inB4n̄m (x)} (x ∈ V ).

Note that, contrary to the Bernoulli percolation case, even if x and y are far apart,
the events Ex

m and Ey
m are not independent. This is due to the possible existence of

large holes coming close to both x and y. To control the effect of this, we introduce
the auxiliary events Ẽ x

m := {x ↔ ∂ inB4n̄m (x) occurs without the holes centered in
(B8n̄m (x))c}. We have

P
(m)

pm

(
1Ẽ x

m
�= 1Ex

m

) ≤ P
(m)

pm

(
H
(
A4n̄m ,8n̄m (x)

)) · P
(m)

pm

( ˜̃Ex
m

)
, (5.47)
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where ˜̃Ex
m is the event that x ↔ ∂ inB4n̄m (x) occurs without the holes (and thus is

independent of H(A4n̄m ,8n̄m (x))). We obtain from Lemma 3.2 that

P
(m)

pm

(
1Ẽ x

m
�= 1Ex

m

) ≤ C

mβ−α
e−C ′4n̄m/m · Ppm

(
0 ↔ ∂ inB4n̄m

)
≤ C4e

−C5(nm/m)1/2θ(pm), (5.48)

using also that

Ppm

(
0 ↔ ∂ inB4n̄m

) ≤ C ′′θ(pm) (5.49)

(this follows easily from (2.4) and (2.3)). Moreover, for x, y ∈ V with ‖x − y‖∞ >

16n̄m , we have that Ẽ x
m and Ẽ y

m are independent, so Cov
(
1Ẽ x

m
,1Ẽ y

m

) = 0. We deduce,
for such x , y,

Cov
(
1Ex

m
,1Ey

m

) = Cov
(
1Ex

m
,1Ey

m

)− Cov
(
1Ẽ x

m
,1Ẽ y

m

)
= Cov

(
1Ex

m
− 1Ẽ x

m
,1Ey

m

)+ Cov
(
1Ẽ x

m
,1Ey

m
− 1Ẽ y

m

)
≤
[
P

(m)

pm

(
1Ẽ x

m
�= 1Ex

m

) · P
(m)

pm

(
Ey
m
)]1/2

+
[
P

(m)

pm

(
Ẽ x
m

) · P
(m)

pm

(
1Ẽ y

m
�= 1Ey

m

)]1/2
(applying the Cauchy-Schwarz inequality twice). Hence, (5.48) and (5.49) imply (still
for x , y as mentioned above)

Cov
(
1Ex

m
,1Ey

m

) ≤ C6e
−C7(nm/m)1/2θ(pm). (5.50)

We now write

Var(Ym) =
∑

x,y∈Bnm−4n̄m

Cov
(
1Ex

m
,1Ey

m

)

≤
∑

x∈Bnm−4n̄m
y : ‖x−y‖∞≤16n̄m

Cov
(
1Ex

m
,1Ey

m

)+ |Bnm |2 · C6e
−C7(nm/m)1/2θ(pm).

(5.51)

For any x ∈ Bnm−4n̄m ,

∑
y : ‖x−y‖∞≤16n̄m

Cov
(
1Ex

m
,1Ey

m

)

≤
∑

y : ‖x−y‖∞≤16n̄m

P
(m)

pm

(
Ex
m ∩ Ey

m
)

≤
∑

y : ‖x−y‖∞≤16n̄m

Ppm

({x ↔ ∂ inB4n̄m (x)} ∩ {y ↔ ∂ inB4n̄m (y)})
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≤ C8|B16n̄m |Ppm

(
0 ↔ ∂ inB4n̄m

)2
≤ C9(n̄m)2θ(pm)2 (5.52)

where the third inequality follows from a standard summation argument (over y ∈
A2i ,2i+1(x), 0 ≤ i ≤ �log2(16n̄m)�), and the fourth inequality uses (5.49). By com-
bining (5.51) and (5.52), we obtain

Var(Ym) ≤ C9|Bnm | · (n̄m)2θ(pm)2 + |Bnm |2 · C6e
−C7(nm/m)1/2θ(pm)

≤ C10(nm)3mθ(pm)2 + C11(nm)4m−1θ(pm)2.

For the last inequality, we used that θ(pm) ≥ m−υ for some υ > 0 (from the assump-
tion L(pm) ≤ Km, (2.10) and (2.12)), so e−C7(nm/m)1/2 ≤ m−1θ(pm) for m large
enough (since nm/m 
 (logm)2). Hence,

Var(Ym) � (nm)4θ(pm)2 � (E(m)

pm

[
Ym
])2

[using (5.46)], so

Ym
|Bnm |θ(pm)

∈
(
1− 3ε

4
, 1+ 3ε

4

)
w.h.p. as m → ∞. (5.53)

Finally,

E
(m)

pm

[
ηm
] ≤ C12nmn̄mP

(m)

pm

(
0 ↔ ∂ inB4n̄m

)� |Bnm |θ(pm) (5.54)

as m → ∞ [using (5.45)], so we obtain from Markov’s inequality that

ηm

|Bnm |θ(pm)
≤ ε

4
w.h.p. as m → ∞. (5.55)

This allows us to conclude, by combining (5.42), (5.53) and (5.55). ��
Remark 5.7 In Sect. 7, we also need a version of Proposition 5.5 in annuli A 1

2 nm ,nm
(instead of balls Bnm ). It is easy to see that the same proof applies in this setting, so
that an analogous result holds true, with |Bnm | replaced by

∣∣A 1
2 nm ,nm

∣∣.

6 Application: forest fires

We now turn to the forest fire processes, with or without recovery, that were already
mentioned in the Introduction.After setting notation inSect. 6.1,we explain inSect. 6.2
how to couple these processes with a process where “cluster-distributed” holes are
independently “removed” at the ignition times. This coupling provides in particular
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a lower bound for the forest fire processes at a time tc − ε slightly before tc, and we
estimate quantitatively this lower bound in Sect. 6.4. More precisely, we explain how
it fits into the framework of percolation with holes, studied in Sections 3 to 5, for some
π and ρ that we compute. Before that, we need to introduce the exceptional scales
for the forest fire processes, which we do in Sect. 6.3. Even if this section seems to
pertain only to usual near-critical Bernoulli percolation, it contains some computations
required for Sect. 6.4, and it is central to Sect. 7.

6.1 Definition of the processes

We now give further notation for the various processes under consideration. Let G be
a finite subgraph of the full lattice T, with set of vertices VG .

The first process that we consider is well-known, and it has a simple dynamics: we
call it the pure birth (or pure growth) process. Initially, each vertex in VG is vacant
(state 0). Vacant vertices become occupied (state 1), independently of each other, at
rate 1, and then remain occupied forever. Let Xt (v) denote the state of vertex v ∈ VG
at time t . Clearly, at each given time t , the random variables Xt (v), v ∈ VG , are
i.i.d., equal to 0 or 1 with respective probabilities e−t and 1 − e−t . We can thus see
(Xt (v))v∈VG as a percolation configuration with parameter 1 − e−t . We denote by
Ct (v) the occupied cluster of v at time t .

We also consider forest fires without recovery, still abbreviated as FFWoR. Again,
each vertex is initially vacant (state 0), and it becomes occupied (state 1) at rate 1.
However, there is now an additional mechanism: vertices are ignited (hit by lightning)
at rate ζ , the parameter of this model. If an occupied vertex is ignited, then its entire
occupied cluster is burnt immediately: all vertices in the cluster become vacant, and
remain vacant forever; we call these vertices burnt (state −1). The configuration at
time t is denoted by (σt (v))v∈VG .

Occasionally, we mention other processes, in particular forest fires with recovery.
This process corresponds to the classical Drossel-Schwabl model [16], and we use the
notation σ̄ for it. The difference with the previous model is that now, burnt vertices
behave the same as “ordinary” vacant vertices: they become occupied at rate 1 (so this
process has just two states: 0 and 1).

Remark 6.1 The processes above were defined for finite subgraphs of T. Obviously,
the X process can be defined for the full lattice T as well. This is not clear at all for the
σ and σ̄ processes, but it can be/has been done, by using clever arguments by Dürre
[17] (this stands in contrast with parameter-N volume-frozen percolation, which can
be represented as a finite-range interacting particle system, so that the general theory
of such systems can be applied). However, in this paper we restrict to finite graphs, for
which existence is clear. Also, we focus on the σ process. Several of the results that
we prove for σ can be proved (in a very similar way) for σ̄ as well. Unfortunately, we
cannot (yet) prove analogs for σ̄ of our main results in Sect. 7: see the comments in
Sect. 8.
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6.2 Coupling with independently removed clusters

The description of the processes (Xt ) and (σt ) shows immediately (by using the
obvious coupling) that (with the natural order−1 < 0 < 1), the former dominates the
latter. It is important for our purposes to also have at our disposal a domination relation
in the other direction: for each t ≥ 0, σt dominates an auxiliary process obtained from
Xt by removing, at each “ignition event” (τ, v), with τ < t , an “independent copy”
of Cτ (v) := Cτ (v) ∪ (∂outCτ (v)

)
. This additional process, that we denote by Y , will

provide a connection with the general theory of percolation with impurities from
Sects. 3–5 (this connection is established more explicitly in Sect. 6.4, and we then
apply it to obtain our main results for σ in Sect. 7).

More formally, for each v ∈ VG , let Tv be the (random) set of ignition times at
v, and for t ≥ 0, T t

v := {τ ∈ Tv : τ < t}. For v ∈ VG and t ≥ 0, we denote by
μv,t the distribution of the occupied cluster Ct (v) of v in the configuration Xt . We
then introduce the marked Poisson point process obtained from the Poisson process
of ignitions, by assigning, for each v ∈ VG and each τ ∈ Tv , a random “mark” Cv,τ

drawn independently, according to the distributionμv,τ . Finally, we define Yt obtained
from Xt by “removing” the subsets Cv,τ = Cv,τ ∪

(
∂outCv,τ

)
(v ∈ VG , τ ∈ Tv , τ < t),

i.e.

Yt (v) := Xt (v)1
v /∈⋃

v′∈V ,τ∈T t
v′
Cv′,τ

(v ∈ VG).

As said above, we claim that σ dominates, in some sense, Y . Some nuance is needed
here, because σ has states−1, 0 and 1, while Y has only states 0 and 1.More precisely,
our claim is the following.

Lemma 6.2 For all t ≥ 0, (1σt (v)=1)v∈VG stochastically dominates (Yt (v))v∈VG .

So, informally speaking, the σ configuration at time t , with state −1 “read” as 0,
stochastically dominates the Y configuration.

Proof of Lemma 6.2 Let t > 0, and fix all the ignitions before time t , denoted by
(s1, v1), . . . , (sn, vn) (0 < s1 < · · · < sn < t , and v1, . . . , vn ∈ VG ). Note that it is
sufficient to prove the desired stochastic domination with fixed ignitions (and random
births), which we do now.

LetP denote the randomprocess of births up to time t .We can visualize this process
P in the usual way: to each vertex v, we assign a half-line (corresponding to [0,∞)),
and for each of these half-lines, we consider a Poisson point process with intensity
1. The X process corresponding to P is then, clearly, described as follows: for each
s ∈ (0, t),

Xs(v) = 1 {P has a point before time s
on the half-line assigned to v}

(v ∈ VG).

The proof is based on a coupling argument, and to do that, it is convenient (due to
the notion of “independent copy” in the definition of the Y process) to introduce n+1
independent copies of P , denoted by (P(i))1≤i≤n+1, that we use to build a realization
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Fig. 13 We construct the coupling in an iterative way: (1) the modified configuration P̃(2) is obtained from

P(2) by erasing all births before time s1 on ∂outCP(1)
s1 (v1), and all births on CP(1)

s1 (v1), (2) the modified

configuration P̃(3) is obtained from P(3) by erasing all births before time s2 on ∂outCP̃(2)
s2 (v2), all births

before time s1 on ∂outCP(1)
s1 (v1), and all births on CP(1)

s1 (v1) ∪ CP̃(2)
s2 (v2), (3) we keep proceeding in the

same way, producing a sequence of configurations P̃(i) ⊆ P(i), i = 4, . . . , n + 1

of the σ process. The X process corresponding toP(i) (1 ≤ i ≤ n+1) is then denoted
by XP(i)

(and similarly for clusters), so for example, XP(i)

s (v) is the indicator function
of {P(i) has a point before time s on the half-line assigned to v}.

Here is, somewhat informally described, the construction (illustrated on Fig. 13).
Up to time s1, we let the forest fire without recovery (FFWoR) process run, “driven” by
P(1). Then, as we should, we “burn” the cluster at time s1, i.e. all vertices of CP

(1)

s1 (v1)

become vacant, and remain so forever. What information does this cluster give us
about the states of the other vertices at time s1 in the FFWoR process? Of course,
the vertices on the outer boundary of this cluster are vacant at time s1, but this is all

information we have: all the vertices outside CP(1)
s1 (v1) = CP(1)

s1 (v1)∪
(
∂outCP(1)

s1 (v1)
)

are still distributed as in XP(1)
.

Hence, (the law of) the future evolution of the FFWoR process does not change
if, as we will do, we replace the P(1) configurations on the entire timelines of these
vertices by P(2) configurations. The same holds for the half-lines above time s1 of
the vertices in ∂outCP(1)

s1 (v1). Finally, since the vertices of CP(1)

s1 (v1) burn at time s1
and remain vacant forever, we may (without changing the distribution of the FFWoR
process after time s1) remove all the points from the entire timelines of these vertices.
We denote the resulting point configuration by P̃(2). Note that, considered as sets of
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points, we clearly have that P̃(2) ⊆ P(2). It is also clear from the above observations
and definitions that, at each time s ∈ [s1, s2), the FFWoR process at time s (with state

−1 “read” as 0) has the same distribution as X P̃(2)

s .

Now, at time s2, the occupied cluster of v2, i.e. CP̃
(2)

s2 (v2), is burnt (note that it

is contained in CP(2)

s2 (v2)). Using the same arguments as for the first burning event,
i.e. (s1, v1), we replace the point configurations of the entire timelines of the vertices

outside CP(1)
s1 (v1) ∪ CP̃(2)

s2 (v2) by those of P(3). For the timelines of the vertices in

∂outCP̃(2)

s2 (v2) \ CP(1)

s1 (v1), we replace the point configurations after time s2 by those

of P(3). For the timelines of the vertices in ∂outCP(1)

s1 (v1) \ CP̃(2)
s2 (v2), we replace the

configurations after time s1 by those ofP(3). Finally, the points on the entire timelines

of the vertices in CP(1)

s1 (v1) are removed, and we do this also for CP̃(2)

s2 (v2). We denote

the resulting point configuration by P̃(3), which is clearly a subset of P(3).
Again, one can check that, for each time s ∈ [s2, s3), the FFWoR process (with−1

read as 0) has the same distribution as X P̃(3)

s . At time s3, we burn CP̃
(3)

s3 (v3) (which is

contained in CP(3)

s3 (v3)), and so on. Iterating this procedure, we obtain

P(1), P̃(2) ⊆ P(2), . . . , P̃(n+1) ⊆ P(n+1),

and conclude that the FFWoR process at time t (with the state −1 read as 0) has the

same distribution as X P̃(n+1)

t . Moreover, it follows from the procedure that, outside of

CP(1)
s1 (v1) ∪ CP̃(2)

s2 (v2) ∪ . . . ∪ CP̃(n)

sn (vn), (6.1)

X P̃(n+1)

t is equal to XP(n+1)

t .

Finally, since the set of vertices in (6.1) is contained in the union of the setsCP(i)
si (vi ),

1 ≤ i ≤ n, and these n sets are (clearly) independent of each other and of XP(n+1)

t ,
the result follows. ��
Remark 6.3 Note that Lemma 6.2 still holds (with practically the same proof) in the
case when the ignition and birth rates are vertex- and time-dependent, and also when
the boundary of a burnt cluster stays vacant forever. Moreover, it is valid for forest fires
with recovery as well, i.e. for the σ̄ process, up to minor modifications: for instance,
to produce P̃(2) from P(2), remove only the points below time s1 (instead of all the
points) from the timelines of the vertices in CP(1)

s1 (v1) (since these vertices burn at time
s1, but they are allowed to recover at a later time).

For a subset of vertices � ⊆ VG , we can consider the FFWoR process on �, i.e.
obtained when restricting the “geographic universe” to the graph (�, E(�)), where
E(�) := {e = {x, y} ∈ E : x, y ∈ �}. Note that this process on � does not
necessarily coincide with the restriction to � of the FFWoR process on the whole of
VG . For all t ≥ 0, we denote by σ�

t = (σ�
t (v))v∈� the configuration at time t of the
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FFWoR process on �. We will actually make use of the following “uniform” version
of Lemma 6.2.

Remark 6.4 Let Vi (1 ≤ i ≤ I ) be subsets of VG , and let W := ⋂
1≤i≤I Vi . Then,

with Yt as before (“living” on the entire graph G), it follows from the same cou-
pling argument as forLemma6.2 that

(
1
min1≤i≤I σ

Vi
t (v)=1

)
v∈W stochastically dominates

(Yt (v))v∈W .

6.3 Exceptional scales

In this section, we explicitly define certain length scales (as functions of the parameter
ζ ), and call them “exceptional”. In Sect. 7, we will prove that the FFWoR process on
boxes with these length scales indeed exhibit an exceptional behavior, in the sense of
Sect. 1.2 in the Introduction.

Let p(t) := 1−e−t be the percolation parameter at time t , and tc := − log(1− pc)
be the unique value of t for which p(t) = pc. For the sake of convenience, we write,
with a slight abuse of notation, θ(t) = θ(p(t)) and L(t) = L(p(t)).

We make repeated use of the correspondence, for t > tc, between “times” and
“scales”, via t ↔ L(t). Recall that we consider a regularized version of L , as explained
in Sect. 2.2, which is in particular (seen as a function of time t) a bijection from (tc,∞)

to (0,∞). We define the transformation ψζ : t ∈ (tc,∞)  → t̂ = t̂(t, ζ ) ∈ (tc,∞)

satisfying

L(t)2θ(t̂)
∣∣t̂ − tc

∣∣ = ζ−1 (6.2)

(similar to (7.1) in [9]). Note that it is well-defined since θ(.)
∣∣. − tc

∣∣ is continuous
and strictly increasing on [tc,∞), from 0 to∞. Moreover, L is strictly decreasing on
(tc,∞) so ψζ is strictly increasing, and ψζ (t) → ∞ as t → ∞ since L(t) → 0.

It follows immediately from (6.2), combined with (2.10) and (2.11), that

L(t)2 � ζ−1L(t̂)2
π4(L(t̂))

π1(L(t̂))
. (6.3)

Lemma 6.5 For t ∈ (tc,∞), let ϕ(t) := L(t)2θ(t)
∣∣t − tc

∣∣. We have
ϕ(t)−→

t↘tc
∞ and ϕ(t) −→

t→∞ 0. (6.4)

Proof of Lemma 6.5 Since L(t) tends to 0 exponentially fast as t → ∞, the same is
true for ϕ(t), which gives the second limit.

For the first limit, we use successively (2.10) and (2.11) to obtain: as t ↘ tc,

L(t)2θ(t)
∣∣t − tc

∣∣ � L(t)2π1(L(t))
∣∣t − tc

∣∣ � π1(L(t))

π4(L(t))
. (6.5)
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We then deduce from the Harris inequality and the observation that L(t) → ∞ as
t → tc (see the paragraph below (2.2)) that

π1(L(t))

π4(L(t))
≥ π1(L(t))−1−→

t↘tc
∞. (6.6)

We get the desired result by combining (6.5) and (6.6). ��
Since ϕ is continuous on (tc,∞), Lemma 6.5 implies that for all ζ > 0, there exists

t ∈ (tc,∞) such that

L(t)2θ(t)
∣∣t − tc

∣∣ = ζ−1. (6.7)

This leads us to introduce the “fixed point” t∞ of ψζ . Since there may be several of
them (ϕ is not necessarily monotone), we adopt the following definition.

Definition 6.6 For ζ > 0, we introduce

t∞ = t∞(ζ ) := sup{t > tc : ψζ (t) = t} > tc, (6.8)

and we let m∞(ζ ) := L(t∞(ζ )).

It follows from the fact that ϕ(t) → 0 as t → ∞ that: t∞ < ∞, and for all t ≥ t∞,
t̂ ≥ t . Note also that t∞(ζ ) → tc as ζ ↘ 0.

Since ψζ (t) → tc as t ↘ tc, ψζ is a bijection from (tc,∞) onto itself. We define
the exceptional times tk = tk(ζ ) (k ≥ 0) by induction as follows. We take

t0 := 2tc, and for all k ≥ 0, tk+1(ζ ) := ψ−1
ζ

(
tk(ζ )

)
(6.9)

(the choice of t0 is completely arbitrary, and any fixed value > tc would work). In the
following, we always assume that ζ is small enough so that t∞(ζ ) < t0, which implies
that tk(ζ ) > t∞(ζ ) for all k ≥ 0, and that for a fixed value ζ , (tk(ζ ))k≥0 is strictly
decreasing.

We also consider the corresponding exceptional scales mk(ζ ) := L(tk(ζ )) (k ≥ 0),
which satisfy (from (6.3))

m2
k+1 � ζ−1m2

k
π4(mk)

π1(mk)
. (6.10)

For future use, note that m0(ζ ) = L(t0) = L(2tc) is a constant, and (from (6.10))
m1(ζ ) � 1√

ζ
.

By combining (2.10) and (2.11) with the fact that πi (n) = n−αi+o(1) (as n → ∞)
for i = 1, 4, with α1 = 5

48 and α4 = 5
4 (see (2.7) and the paragraph below), we can

obtain L(t) = |t − tc|− 4
3+o(1) as t → tc, and θ(t) = (t − tc)

5
36+o(1) as t ↘ tc. Hence,

t∞ = tc + ζ δ∞+o(1) and tk = tc + ζ δk+o(1) as ζ ↘ 0, with

δk = 36

55
·
(
1−

(41
96

)k) −→
k→∞

36

55
= δ∞. (6.11)
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The corresponding exponents for mk and m∞ then follow readily:

mk(ζ ) = ζ− 4
3 δk+o(1) and m∞(ζ ) = ζ− 4

3 δ∞+o(1) as ζ ↘ 0 (6.12)

(in particular, for all k ≥ 0, mk+1(ζ ) 
 mk(ζ )).
The following lemma ensures that L(t̂) � L(t) for t “much larger” than t∞ (more

precisely, for t such that |t − tc| 
 |t∞ − tc|).
Lemma 6.7 There exist universal constants C, β > 0 such that: for all ζ ≤ 1 and
t ≥ t∞(ζ ),

L(t̂)

L(t)
≤ C

(
L(t)

L(t∞)

)β

. (6.13)

Proof of Lemma 6.7 We can assume wlog that t ≤ 10tc. First, we have
L(t)2θ(t̂)

∣∣t̂ − tc
∣∣ = ζ−1 = L(t∞)2θ(t∞)

∣∣t∞ − tc
∣∣ (from (6.2) and (6.8)), so

L(t)2

L(t∞)2
= θ(t∞)

θ(t̂)
·
∣∣t∞ − tc

∣∣∣∣t̂ − tc
∣∣ . (6.14)

On the one hand,

θ(t∞)

θ(t̂)
≥ C1

π1(L(t∞))

π1(L(t̂))
≥ C2π1(L(t̂), L(t∞)) ≥ C3

(
L(t̂)

L(t∞)

)1/2
(6.15)

[using successively (2.10), (2.6) and (2.12)]. On the other hand,

∣∣t∞ − tc
∣∣∣∣t̂ − tc
∣∣ ≥ C ′

1
L(t̂)2π4(L(t̂))

L(t∞)2π4(L(t∞))
≥ C ′

2
L(t̂)2

L(t∞)2
· π4(L(t̂), L(t∞))−1

≥ C ′
3
L(t̂)2

L(t∞)2
·
(

L(t̂)

L(t∞)

)−1

(6.16)

[using (2.11), (2.6) and (2.13)]. The desired result then follows (with β = 1
3 ) by

combining (6.14), (6.15) and (6.16). ��

6.4 Comparison to percolation with holes

In this section, we consider the particular case of the forest fire processes on finite
subsets of T, with homogeneous birth and ignition rates, respectively equal to 1 and
ζ .

The main difficulty in analyzing the behavior of these processes as t approaches
tc is to get a good grip on how fast large connected components appear, and then
“disappear” due to the fires. For that, in Sect. 7, we first consider the forest fire process
where we stop ignition at time tc − ε (for some ε = ε(ζ ) ↘ 0), in boxes with side
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length n = n(ζ ) 
 L(tc − ε). At all later times t ≥ tc − ε, a lower bound for this
process is provided by the percolation process with holes (with parameter p = p(t)),
for some well-chosen ρ(m) and π

(m)
v ≡ π(m) (v ∈ V ) that we compute now. Here

the parameter is m = m(ζ ) = L(tc − ε(ζ )). Later, in Sect. 7, this is applied to the
original FFWoR process. Let us also mention that in all our applications, we have
m(ζ ) � mk(ζ ) for some k ≥ 2.

For a subset C ⊆ V , let rad(C) := inf{n ≥ 0 : C ⊆ Bn} be the radius of C
(seen from 0). Similarly to Sect. 6.2, we consider a marked Poisson point process:
for all v ∈ V and τ ∈ T tc−ε

v , we assign a mark Cv,τ with distribution μv,τ , i.e. the
distribution of the cluster of v at time τ . We denote by π(m) the probability for a
vertex v ∈ V to be ignited at least once during the interval [0, tc − ε], and by ρ(m) the
distribution, conditionally on v being ignited in [0, tc − ε], of max

τ∈T tc−ε
v

rad(Cv,τ )

(these quantities clearly do not depend on v).

Lemma 6.8 Let k ≥ 2, and assume that m(ζ ) � mk(ζ ) as ζ ↘ 0. For any υ > 0, let

α := 3

4
· 1

δ∞
+ υ and β := 3

4
· 1

δk
− υ. (6.17)

Then there exist constants c1, c2, c3 ∈ (0,+∞) such that for all m sufficiently large,
the conditional distribution ρ(m) and the probability π(m) satisfy (3.1):

ρ(m)
([r ,+∞)

) ≤ c1r
α−2e−c2r/m (r ≥ 1) and π(m) ≤ c3m

−β. (6.18)

Remark 6.9 Note that α = 55
48 + υ ∈ ( 34 , 2). Moreover, since δk < δ∞ (the sequence

(δi )i≥1 being strictly increasing), we also have β > α as soon as υ is chosen small
enough (depending only on k).

Proof of Lemma 6.8 First, note that since mk(ζ ) = ζ− 4
3 δk+o(1) as ζ ↘ 0, we have:

ζ ≤ m
− 3

4 · 1
δk
+υ

for all ζ small enough. (6.19)

Hence, the probability for v ∈ V to be ignited at least once in [0, tc − ε] satisfies

π(m)
v = 1− e−ζ(tc−ε) � ζ ≤ c3m

−β (6.20)

for some c3 > 0.
We now estimate the distribution of radii ρ. We write, for a time s ≥ 0 and r ≥ 1,

ρ̄s(r) := P
(
rad(Cs(0)) ≥ r

)
(where Cs(0) denotes the occupied cluster of 0 at time s). In the remainder of the
proof, we forget about dependences on m in the notations. We start by considering S
uniformly distributed in [0, tc − ε], and computing

ρ̃([r ,+∞)) := P
(
rad(CS(0)) ≥ r

)
(r ≥ 1),
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by distinguishing the two cases r ≥ m and r < m. Let J := ⌊ log2 ( tc2ε )⌋ ≥ 0, so that
1
2 tc ≤ tc − 2J ε < 3

4 tc. For later use, note also that: for all s < tc and r ≥ L(s),

ρ̄s(r) ≤ C1π1(L(s))e−C2r/L(s) (6.21)

for some universal constants C1,C2 > 0 (this follows from (2.4) and (2.9)).
Case r ≥ m : we have

ρ̃([r ,+∞)) =
J−1∑
j=0

P
(
S ∈ (tc − 2 j+1ε, tc − 2 jε], rad(CS(0)) ≥ r

)
+ P
(
S ∈ [0, tc − 2J ε], rad(CS(0)) ≥ r

)
≤

J−1∑
j=0

2 jε

tc − ε
· ρ̄tc−2 j ε(r) +

tc − 2J ε

tc − ε
· ρ̄tc−2J ε(r)

≤ C3

J∑
j=0

(2 jε)π1(L(tc − 2 jε))e−C2r/L(tc−2 j ε),

where we used (6.21) for the last inequality (using that r ≥ m = L(tc − ε) ≥
L(tc − 2 jε)). We have, for some universal constants γ1, γ

′
1, γ2,C4,C5,C6 > 0,

C4(2
j )−γ1 ≤ L(tc − 2 jε)

m
= L(tc − 2 jε)

L(tc − ε)
≤ C5(2

j )−γ ′
1 (6.22)

[using (2.11), (2.6) and (2.13)], and

π1(L(tc − 2 jε))

π1(m)
≤ C6(2

j )γ2 (6.23)

[combining (6.22) with (2.6) and (2.12)]. Hence, since εm2π4(m) � 1 [from (2.11)],

ρ̃([r ,+∞)) ≤ C7ε

J∑
j=0

(2 j )(2 j )γ2π1(m)e−C8r(2 j )
γ ′1/m

≤ C9
π1(m)

m2π4(m)
e−C8r/m ·

( J∑
j=0

(2 j )1+γ2e−C8r((2 j )
γ ′1−1)/m

)
.

Since
∑J

j=0(2
j )1+γ2e−C8r((2 j )

γ ′1−1)/m ≤ ∑∞
j=0(2

j )1+γ2e−C8((2 j )
γ ′1−1) < ∞ (using

r ≥ m), we obtain: for some γ3 > 0,

ρ̃([r ,+∞)) ≤ C10
π1(m)

m2π4(m)
e−C8r/m ≤ C11

π1(r)

r2π4(r)

(
r

m

)γ3

e−C8r/m (6.24)
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[using (2.6), (2.12) and (2.13)], so

ρ̃([r ,+∞)) ≤ C12
π1(r)

r2π4(r)
e−C8r/2m . (6.25)

Case r < m : let i ≥ 0 be such that L(tc − 2i+1ε) ≤ r < L(tc − 2iε), and assume
first that i ≤ J − 2. We have

ρ̃([r ,+∞)) = P
(
S ∈ (tc − 2i+1ε, tc − ε], rad(CS(0)) ≥ r

)
+

J−1∑
j=i+1

P
(
S ∈ (tc − 2 j+1ε, tc − 2 jε], rad(CS(0)) ≥ r

)
+ P
(
S ∈ [0, tc − 2J ε], rad(CS(0)) ≥ r

)
≤ 2i+1ε

tc − ε
· π1(r) +

J−1∑
j=i+1

2 jε

tc − ε
· ρ̄tc−2 j ε(r) +

tc − 2J ε

tc − ε
· ρ̄tc−2J ε(r)

≤ C ′
1

π1(r)

r2π4(r)
+ C ′

2

J∑
j=i+1

(2 jε)π1(L(tc − 2 jε))e−C2r/L(tc−2 j ε).

Now, by a similar computation as before,

J∑
j=i+1

(2 jε)π1(L(tc − 2 jε))e−C2r/L(tc−2 j ε)

≤ C ′
3(2

iε)π1(L(tc − 2iε)) ≤ C ′
4

π1(r)

r2π4(r)
(6.26)

(using L(tc − 2i+1ε) ≤ r < L(tc − 2iε), as well as (2.11)). Hence,

ρ̃([r ,+∞)) ≤ C ′
5

π1(r)

r2π4(r)
. (6.27)

Finally, if i ≥ J − 1, then r ≤ L
( 7
8 tc
)
and the same conclusion holds (after possibly

increasing C ′
5, if needed).

Hence, combining both cases (6.25) and (6.27), we find that there exist constants
C̄1, C̄2, C̄3 such that: for all r ≥ 1,

ρ̃([r ,+∞)) ≤ C̄1
π1(r)

r2π4(r)
e−C̄2r/m ≤ C̄3r

− 5
48−2+ 5

4+υe−C̄2r/m = C̄3r
α−2e−C̄2r/m,

(6.28)

with α = 55
48 + υ = 3

4 · 1
δ∞ + υ, as desired.

Now, for a vertex v which gets ignited at least once before time tc−ε (and possibly
several times), we consider all the clusters of v generated during the interval [0, tc−ε],
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and denote by r̃v the maximum of their radii. We have

P
(
v is ignited in [0, tc − ε], r̃v ≥ r

) ≤ ∞∑
k=1

1

k!
(
ζ(tc − ε)

)k · kρ̃([r ,+∞))

≤ ζ · tcρ̃([r ,+∞)) ·
∞∑
k=0

1

k!
(
ζ tc
)k

≤ ζ · 2tcρ̃([r ,+∞)),

which allows us to conclude [using (6.20) and (6.28)]. ��

7 Existence of exceptional scales for forest fires without recovery

We now combine the results from previous sections in order to establish properties
of the forest fire without recovery (FFWoR) process, run in finite boxes with side
length M = M(ζ ). After setting notations in Sect. 7.1, we consider the two cases
M(ζ ) � mk(ζ ) (Sect. 7.2), and mk(ζ ) � M(ζ ) � mk+1(ζ ) (Sect. 7.3), for an
arbitrary k ≥ 1. Using the results fromSects. 4, 5 and 6, we prove the claim (mentioned
in the Introduction) that, as ζ ↘ 0, the “impact” of fires vanishes in the latter case,
but does not vanish in the former case. In fact, our results, Theorems 7.1 and 7.2, are
somewhat stronger and more general than this claim suggests: they not only hold for
boxes, but also (and, in some sense, “uniformly”) for domainswhose boundary is a loop
in an annulus between two boxes of comparable size. This is not just generalization
for its own sake: it is needed to make the proof, which has an iterative flavor, work.

7.1 Notations

Recall that we focus on the FFWoR process, on subsets of T = (V , E), with birth rate
≡ 1 and ignition rate ≡ ζ (in Sect. 8, we discuss how the proofs might be adapted in
the case of forest fire processes with recovery). For a given finite VG ⊆ V , we denote
by σt = (σt (v))v∈VG the configuration at time t ≥ 0 of the forest fire process on VG .
We also use the notation σ�

t for the process “living” on a subset � ⊆ VG (see the
discussion above Remark 6.4). Finally, for 0 ≤ s ≤ t , we will also need to consider the
forest fire process on � where ignitions occur only until time s (i.e. nothing happens
at the later ignition times τ > s), and we write σ�

s,t for the configuration at time t of
this process.

For a circuit γ , we denote by D(γ ) the set of vertices in its interior. For all k ≥ 1,
we write εk(ζ ) := tk(ζ ) − tc: for future reference, note that

ζεk−1(ζ )
(
mk(ζ )

)2
θ
(
tc + εk−1(ζ )

) = 1 (7.1)

(from (6.2), since tk−1(ζ ) = ψζ

(
tk(ζ )

)
and L(tk(ζ )) = mk(ζ )). In this section, we

often drop the dependence on ζ for notational convenience, writing simply mk , tk , εk ,
and so on.
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We use later that: for any fixed η �= 0,

L(tc + ηε) � L(tc + ε) (7.2)

as ε → 0 [from (2.11), (2.6), and (2.13)]. In particular, it follows from the definition
of mk that

L(tc + ηεk) � L(tc + εk) = L(tk) = mk as ζ ↘ 0, (7.3)

uniformly in k (i.e. the constants in this asymptotic equivalence only depend on η).
The first key step of the proof strategy in Sect. 7.2 can be informally described as

follows. If we consider the process in a box with side length M = M(ζ ) 
 1√
ζ
, we

introduce ε = ε(ζ ) (↘ 0 as ζ ↘ 0) such that for the underlying percolation process
(i.e. without any ignitions at all), we have: at time tc+ε, with high probability, the box
BM contains a net N whose cluster CN has a volume of order 1

εζ
. We then consider

the forest fire process with ignitions ignored after time tc−ε, for which a lower bound
is provided by the results of Sects. 5.4, 6.2 and 6.4, so that for this process as well,
at time tc + ε, there exists a net N ′ with |CN ′ | � 1

εζ
. Hence, there is a reasonable

probability that no vertex of CN is ignited during (tc − ε, tc + ε), but some vertex of
CN ′ is ignited during (tc + ε, tc + 2ε). Moreover, we have sufficient control on the
size of the island containing 0 after this burning, which allows us to repeat this step
iteratively.

Section 7.3 uses similar ideas, but the situation is somewhat more complicated.
In particular, it requires the use of time intervals of the form (tc − ηε, tc + ηε) and
(tc + ηε, tc + λε), for some suitable η, λ > 0.

We want to stress that the proofs of Theorems 7.1 and 7.2 also yield some infor-
mation about the size of the final cluster of the origin. This cluster has typically a
diameter of order 1 or 1√

ζ
in the first case (M(ζ ) � mk(ζ )), and a diameter 
 1 but

� 1√
ζ
in the second case (mk(ζ ) � M(ζ ) � mk+1(ζ )).

7.2 CaseM(�) � mk(�)

For ζ ≤ 1 and 0 ≤ t < t ≤ ∞, we introduce the event �ζ,t,t (n1, n2) := {for all
circuits γ in the annulus An1,n2 , in the forest fire process with ignition rate ζ in the
domain D(γ ), 0 burns during the time interval [t, t]} (0 ≤ n1 < n2). The goal of
this section is to establish the following result for forest fires in domains with “size”
comparable to some exceptional scale mk (k ≥ 1).

Theorem 7.1 Let tc < t < t < ∞. For all k ≥ 1 and all 0 < C1 < C2,

lim inf
ζ↘0

P
(
�ζ,t,t (C1mk(ζ ),C2mk(ζ ))

)
> 0. (7.4)

Proof of Theorem 7.1 The constructions thatwe use turn out to be quite convoluted, due
to dependences between successive scales, that need to be taken care of. We first give
a proof for the case k = 2, after which we point out how to handle a general k ≥ 3. We
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Fig. 14 This figure depicts the events used to prove Theorem 7.1 (in the case k = 2). The dotted circuit is
(tc + 2ε1)-vacant, while the circuit and the path in solid lines are occupied in the configuration

minγ σ
D(γ )
tc−ε1,tc+ε1

define the following six events (some of them depicted on Fig. 14), for a well-chosen
constantC3 to be determined at the end of the proof (see (7.25)). The superscript “(2)”
in the notation of these events refers to the fact that we are considering the case k = 2.
For simplicity, we assume that C1 ≥ 1 (trivial adaptations of the argument are needed
if C1 < 1).

(i) NET(2) = NET(2)
C2m2

(C1m2) is the event that the configuration(
minγ σ

D(γ )
tc−ε1,tc+ε1

(v)
)
v∈BC1m2

, where the minimum is taken over all circuits γ

in the annulus AC1m2,C2m2 ,

– has a net N ′ with mesh (C1m2 · m1)
1/2,

– and
∣∣CN ′ ∩ AC1

2 m2,C1m2

∣∣ ≥ 1
2 · ∣∣AC1

2 m2,C1m2

∣∣θ(tc + ε1).

Using the comparison to percolation with holes provided by Lemmas 6.2 and 6.8,
it follows from Proposition 5.5 (and Remark 5.7), with m = m1, nm = C1m2,
and pm = p(tc + ε1), that

P
(
NET(2))−→

ζ↘0
1. (7.5)
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Indeed, note that L(pm) = L(tc + ε1) = m1, and also that, by (6.11) and (6.12),
nm = C1(m1)

δ2/δ1+o(1), where δ2/δ1 > 1. Finally, we want to emphasize that
our application of Lemma 6.2 above (and later in this section, though it will not
be mentioned explicitly) involves a more general version of this lemma, pointed
out in Remarks 6.3 and 6.4.

(ii) NETB(2) = NETB(2)(ε1;C2m2) (where B stands for “Bernoulli”) is the event
that the largest (tc + ε1)-occupied cluster (i.e. for the underlying percolation
process) CB in BC2m2 has a volume |CB | ≤ 2 · ∣∣BC2m2

∣∣θ(tc + ε1), and con-
tains a net N B with mesh (C2m2 · m1)

1/2. Note that the cluster CB in this
definition automatically contains the net N ′ in the definition of NET(2). Since
L(tc + ε1) = m1 � C2m2, the standard volume estimates (2.14) for ordinary
Bernoulli percolation (see also Remark 2.4) give

P
(
NETB(2))−→

ζ↘0
1. (7.6)

(iii) OCP(2) = OCP(2)(2m1,C3m1;m2) (where the name stands for “Occupied Cir-
cuit and Path”) is the event that the configuration(
minγ σ

D(γ )
tc−ε1,tc+ε1

(v)
)
v∈BC1m2

, where the minimum is taken over all γ in

AC1m2,C2m2 (as in the definition of NET(2)),

– has an occupied circuit in A2m1,C3m1 ,
– which is connected by an occupied path to ∂Bm2 .

Note that the occupied path in this definition has to intersect the net N ′ in the
definition of NET(2): indeed, N ′ has a mesh � (m1m2)

1/2, which is 
 m1 and
� m2. We claim the following:

for all δ > 0, we have that for all C3 large enough, lim inf
ζ↘0

P
(
OCP(2)) ≥ 1− δ.

(7.7)

Indeed, this follows from Proposition 5.2 combined with (2.3), and
Proposition 5.3 (together with the construction of Fig. 12), using again
L(tc + ε1) = m1, and the lower bound produced by Lemmas 6.2 and 6.8.

(iv) VC(2) = VC(2)(2ε1;m1, 2m1) := {
there exists a (tc + 2ε1)-vacant circuit in

Am1,2m1

}
(where the name stands for “Vacant Circuit”). We claim that

P
(
VC(2)) ≥ C > 0, (7.8)

for some “universal” constantC , which does not depend onC1,C2 orC3. Indeed,
this is an immediate consequence of (2.3), and the fact that L(tc + 2ε1) � m1
(from (7.3)).

(v) I(2) = I(2)
(
(ε1, 2ε1); C1

2 m2,C1m2
) := {

some vertex in CN ′ ∩ AC1
2 m2,C1m2

is

ignited during the time interval (tc+ε1, tc+2ε1)
}
, whereN ′ is as in the definition
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of NET(2) (the name stands for “Ignition”). Note that

P
(
I(2) | NET(2)) ≥ 1− e

−ζ ·ε1· 12
∣∣A C1

2 m2,C1m2

∣∣θ(tc+ε1) ≥ C ′ > 0, (7.9)

for some constant C ′ = C ′(C1) which depends only on C1, using (7.1).
(vi) NI(2) = NI(2)((−ε1, ε1);C2m2) := {

no vertex of CB gets ignited in the time
interval (tc−ε1, tc+ε1)

}
, where CB is from the definition of NETB(2) (the name

stands for “No Ignition”). We have

P
(
NI(2) | NETB(2)) ≥ e−ζ ·2ε1·2

∣∣BC2m2

∣∣θ(tc+ε1) ≥ C ′′ > 0, (7.10)

for some constant C ′′ = C ′′(C2) depending only on C2 [using again (7.1)].

Now, note that if all the six events (i)-(vi) above hold, then, no matter where γ is
located exactly, the forest fire process in D(γ ) has the property that CN ′ burns in the
time interval (tc + ε1, tc + 2ε1), and leaves 0 in an “island”, whose boundary is some
circuit in Am1,C3m1 . Hence,

�ζ,t,t (C1m2,C2m2)

⊇ NET(2)
C2m2

(C1m2) ∩ NETB(2)(ε1;C2m2)

∩ OCP(2)(2m1,C3m1;m2) ∩ VC(2)(2ε1;m1, 2m1)

∩ NI(2)((−ε1, ε1);C2m2) ∩ I(2)
(
(ε1, 2ε1); C1

2
m2,C1m2

)
∩ �ζ,t,t (m1,C3m1).

(7.11)

In order to avoid “interferences” with events at level m1 (i.e. a certain dependence
between the two successive scales), we will later write

NI(2)((−ε1, ε1);C2m2)

= NI(2)((−ε1, ε1);C3m1,C2m2) ∩ NI(2)((−ε1, ε1);C3m1), (7.12)

where the first event in the right-hand side involves only vertices in the annulus
AC3m1,C2m2 . For future use, note that the second event satisfies

P
(
NI(2)((−ε1, ε1);C3m1)

)−→
ζ↘0

1. (7.13)

We now investigate the event �ζ,t,t (m1,C3m1), for which we again need to define
several events, with similar names as before, but now with superscript “(1)” (some of
them are illustrated in Fig. 15).

(i)’ VC(1) = VC(1)
(
2ε1; 1

2m1,m1
) := {

there exists a (tc + 2ε1)-vacant circuit in
A 1

2m1,m1

}
. For the same reasons as for (7.8), we have

P
(
VC(1)) ≥ C̃ > 0, (7.14)
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Fig. 15 This figure depicts the events used to prove Theorem 7.1 at scalem1. The dotted circuit is (tc+2ε1)-
vacant, while the solid path starting from 0 is t-occupied

where C̃ is a universal constant, which does not depend on C1, C2 or C3.
(ii)’ NI(1) = NI(1)(2ε1;m1) :=

{
no vertex of Bm1 is ignited before time tc + 2ε1

}
.

Since m1 � 1√
ζ
as ζ ↘ 0 (see below (6.10)), and ε1 → 0, we have

P
(
NI(1)

) ≥ C̃ ′ > 0, (7.15)

for some universal constant C̃ ′, which does not depend on C1, C2 or C3.

(iii)’ NI
(1) = NI

(1)
((2ε1, t − tc);C3m1) :=

{
no vertex of BC3m1 is ignited in the time

interval (tc + 2ε1, t)
}
. Note that, using again m1 � 1√

ζ
,

P
(
NI

(1)) ≥ e−ζC2
3m

2
1·t ≥ e−λC2

3 ·t (7.16)

for some universal constant λ > 0 (this lower bound becomes very small when
C3 is large, but it is not a problem since we will later “factorize it out”).

These first three events together, i.e. VC(1)∩NI(1)∩NI(1), ensure that the configuration
in B 1

2m1
“looks like” ordinary Bernoulli percolation at time t .We define further events.

(iv)’ NETB(1) = NETB(1)
(
t−tc; 1

2m1
) := {there exists a t-occupied cluster in B 1

2m1

with volume ≥ 1
2 · ∣∣B 1

2m1

∣∣θ(t), and containing a net N (1) with mesh � √
m1
}
.

Again, it follows from the volume estimates (2.14), combined with the fact that
m1 � 1√

ζ
→ ∞ as ζ ↘ 0, that
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P
(
NETB(1))−→

ζ↘0
1. (7.17)

(v)’ OP(1) = OP(1)
(
t − tc; 1

2m1
) := {there is a t-occupied path from 0 to ∂B 1

2m1

}
.

Clearly,

P
(
OP(1)) ≥ θ(t). (7.18)

(vi)’ I(1) = I(1)
(
(t − tc, t − tc); 1

2m1
) := {

some vertex in the cluster of N (1) gets
ignited in the time interval (t, t)

}
(whereN (1) is from the definition ofNETB(1)).

Note that (for some universal constants λ′, λ′′ > 0)

P
(
I(1) | NETB(1)) ≥ 1− e−ζ ·λ′m2

1·θ(t)·(t−t) ≥ 1− e−λ′′·θ(t)·(t−t) > 0, (7.19)

which does not depend on C1, C2 or C3 (we used again m1 � 1√
ζ
).

If these events (i)’-(vi)’ hold, then, in the forest fire process in D(γ ′), 0 burns in
the time interval [t, t] (no matter where γ ′ precisely is). We deduce that

�ζ,t,t (m1,C3m1)

⊇ VC(1)
(
2ε1; 1

2
m1,m1

)
∩ NI(1)(2ε1;m1) ∩ NI

(1)
((2ε1, t − tc);C3m1)

∩ NETB(1)
(
t − tc; 1

2
m1

)
∩ OP(1)

(
t − tc; 1

2
m1

)
∩ I(1)

(
(t − tc, t − tc); 1

2
m1

)
. (7.20)

Note that NI(1) “interferes” with some of the events at scale m2: with NET(2),
which does not matter in the computation below, since P

(
NET(2)

) → 1 as ζ ↘ 0
(from (7.5)), but also with OCP(2). We take care of this issue by writing

OCP(2) ∩ NI(1) = OCP
(2) ∩ NI(1), (7.21)

for a modified event OCP
(2)

defined exactly as OCP(2), but with respect to the forest
fire processwhere no ignitions occur in the sub-region Bm1 . Note that fromLemma6.2,

(7.7) holds for this event OCP
(2)

as well.
We now combine the two inclusions (7.11) and (7.20), and to take care of depen-

dences between scales, we modify some of the events as explained (see (7.12) and
(7.21)). By using that the probabilities of several events tend to 1 as ζ ↘ 0, we obtain

lim inf
ζ↘0

P
(
�ζ,t,t (C1m2,C2m2)

)
≥ lim inf

ζ↘0
P

[
OCP

(2)
(2m1,C3m1;m2) ∩ VC(2)(2ε1;m1, 2m1)
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∩ NI(2)((−ε1, ε1);C3m1,C2m2) ∩ I(2)
(
(ε1, 2ε1); C1

2
m2,C1m2

)
∩ VC(1)

(
2ε1; 1

2
m1,m1

)
∩ NI(1)(2ε1;m1)

∩ NI
(1)

((2ε1, t − tc);C3m1)

∩ OP(1)
(
t − tc; 1

2
m1

)
∩ I(1)

(
(t − tc, t − tc); 1

2
m1

)]
. (7.22)

Now, we use that although the I andNI events are, strictly speaking, not independent of
each other (nor on the other events), their conditional probabilities, given other events,
are bounded from below by some positive constants depending only on (at most) C1,
C2 and C3. This gives, by applying (7.10), (7.9), (7.15), (7.16), and (7.19) to (7.22),
that for some C̄ = C̄(C1,C2,C3) > 0,

lim inf
ζ↘0

P
(
�ζ,t,t (C1m2,C2m2)

)
≥ C̄(C1,C2,C3) · lim inf

ζ↘0
P

[
OCP

(2)
(2m1,C3m1;m2) ∩ VC(2)(2ε1;m1, 2m1)

∩ VC(1)
(
2ε1; 1

2
m1,m1

)
∩ OP(1)

(
t − tc; 1

2
m1

)]
. (7.23)

Finally, we note that the events VC(2), VC(1), and OP(1) are independent of each other,
and that their probabilities do not depend on C3. Hence,

lim inf
ζ↘0

P

[
VC(2)(2ε1;m1, 2m1) ∩ VC(1)

(
2ε1; 1

2
m1,m1

)
∩ OP(1)

(
t − tc; 1

2
m1

)]
≥ C̄ ′ > 0, (7.24)

for some constant C̄ ′ that does not depend onC3. From (7.7) (and the remark following

the definition of OCP
(2)

, below (7.21)), we can take C3 large enough so that

lim inf
ζ↘0

P
(
OCP

(2)
(2m1,C3m1;m2)

) ≥ 1− C̄ ′

2
. (7.25)

By combining (7.24) and (7.25) with (7.23), we get

lim inf
ζ↘0

P
(
�ζ,t,t (C1m2,C2m2)

) ≥ C̄(C1,C2,C3) · C̄
′

2
. (7.26)

This completes the proof of Theorem 7.1 in the case k = 2.
We now give an outline of the proof for a general k. For k ≥ 3, we define analogous

events NET(k), NETB(k), OCP(k), VC(k), I(k) and NI(k). For the same reasons as in
the case k = 2, the corresponding claims (7.5), (7.6), (7.7), (7.8), (7.9) and (7.10) are
also satisfied by these events. Again by the same arguments as for k = 2, an inclusion
similar to (7.11) holds:
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�ζ,t,t (C1mk,C2mk)

⊇ NET(k)
C2mk

(C1mk) ∩ NETB(k)(εk−1;C2mk) ∩ OCP(k)(2mk−1,C3mk−1;mk)

∩ VC(k)(2εk−1;mk−1, 2mk−1) ∩ NI(k)((−εk−1, εk−1);C2mk)

∩ I(k)
(
(εk−1, 2εk−1); C1

2
mk,C1mk

)
∩ �ζ,t,t (mk−1,C3mk−1). (7.27)

We then iterate this, using (7.20) for the case k = 1 as before. We also rewrite the
events NI( j) (2 ≤ j ≤ k) similarly as in (7.12), to avoid dependences. Using that the
events NET( j) and NETB( j) have probabilities tending to 1, as ζ ↘ 0, yields

lim inf
ζ↘0

P
(
�ζ,t,t (C1mk,C2mk)

)

≥ lim inf
ζ↘0

P

[ k⋂
j=1

(
“I( j) and (rewritten) NI( j) events”

)

∩
k⋂
j=2

(
“OCP( j) event”

) ∩ k⋂
j=1

(
“VC( j) event”

) ∩ OP(1)
(
t − tc; 1

2
m1

)]
.

(7.28)

We now slightly modify the OCP( j) events, i.e. we replace them by OCP
( j)

events as
in (7.21). This allows us, as before (see the explanation just after (7.22)), to “split out”
the product of (the lower bounds for) the I( j) and NI( j) events. This product is again
bounded from below by C̄ , for some C̄ = C̄(C1,C2,C3) > 0, so we get, similarly to
(7.23):

lim inf
ζ↘0

P
(
�ζ,t,t (C1mk,C2mk)

) ≥ C̄(C1,C2,C3) · lim inf
ζ↘0

P

[ k⋂
j=2

(
“OCP

( j)
event”

)

∩
k⋂
j=1

(
“VC( j) event”

) ∩ OP(1)
(
t − tc; 1

2
m1

)]
. (7.29)

Since the VC( j) events and the event OP(1)
(
t − tc; 1

2m1
)
are independent, and have

probabilities independent of C3, we can write

lim inf
ζ↘0

P

[ k⋂
j=1

(
“VC( j) event”

) ∩ OP(1)
(
t − tc; 1

2
m1

)]
≥ C̄ ′ > 0, (7.30)

for some constant C̄ ′ independent of C3. Finally, we take C3 so large that

lim inf
ζ↘0

P

[ k⋂
j=2

(
“OCP

( j)
event”

)] ≥ 1− C̄ ′

2
. (7.31)
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We thus obtain from (7.29), (7.30), and (7.31) that

lim inf
ζ↘0

P
(
�ζ,t,t (C1mk,C2mk)

) ≥ C̄(C1,C2,C3) · C̄
′

2
, (7.32)

which completes the proof of Theorem 7.1. ��

7.3 Casemk(�) � M(�) � mk+1(�)

For ζ ≤ 1 and 0 < T < ∞, we introduce the event �̃ζ,T (n1, n2) := {there exists a
circuit γ in the annulus An1,n2 such that in the forest fire process with ignition rate ζ

in the domain D(γ ), 0 burns before time T } (0 ≤ n1 < n2). We now prove the result
below, for the process in domains with “size” far away from the exceptional scales
(more precisely, between two successive exceptional scales, but far away from both,
asymptotically).

Theorem 7.2 Let k ≥ 0, δ > 0, 0 < C1 < C2, and T > 0. There exists C =
C(k, δ,C1,C2, T ) ≥ 1 such that: for every function M(ζ ) satisfying

Cmk(ζ ) ≤ C1M(ζ ) < C2M(ζ ) ≤ C−1mk+1(ζ ) (7.33)

for all sufficiently small ζ , we have

lim sup
ζ↘0

P
(
�̃ζ,T (C1M(ζ ),C2M(ζ ))

) ≤ δ. (7.34)

In this section, we adopt the following notation. For a given M ≥ 1, we define
tc + ε̃ to be the “typical” time of the first macroscopic burning in BM/2, and M̃ to be
the characteristic length at this time. More precisely, with the notations from Sect. 6.3
(seeing L as a bijection on (tc,∞)),

tc + ε̃ := ψζ (L
−1(M)) and M̃ := L(tc + ε̃). (7.35)

Similarly to (6.10), we deduce from (6.3) that

M2 � ζ−1M̃2π4(M̃)

π1(M̃)
. (7.36)

Proof of Theorem 7.2 Weproceed by induction over k.Wefirst consider the case k = 0.
Recall that m0 = L(t0) = L(2tc) is a constant, and m1 = L(t1) � 1√

ζ
(see the

sentence below (6.10)). Let δ, C1, C2, and T be given as in the statement. Let M(ζ )

satisfying

C ≤ C1M(ζ ) < C2M(ζ ) ≤ C−1 1√
ζ

(7.37)
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for some C > 0 and all sufficiently small ζ . We have, clearly,

�̃ζ,T (C1M(ζ ),C2M(ζ )) ⊆ {some v ∈ BC−1 1√
ζ

is ignited before time T
}
, (7.38)

which has a probability at most C0
(
C−1 1√

ζ

)2 · ζ · T = C0
T
C2 (for some universal

constant C0). This can be made ≤ δ by taking C large enough, which establishes the
case k = 0 (we can choose C(0, δ,C1,C2, T ) = max(1,

√
C0T δ−1)).

Now, we assume that the result holds for a certain k ≥ 0, and we show that it also
holds for k+1. So let δ,C1,C2, and T be given, and letC = C(k+1, δ,C1,C2, T ) ≥ 1
be a constant that we will fix later. We consider M(ζ ) such that, for all sufficiently
small ζ ,

Cmk+1(ζ ) ≤ C1M(ζ ) < C2M(ζ ) ≤ C−1mk+2(ζ ). (7.39)

To simplify notation, we just write M instead of M(ζ ). We now examine the event
�̃ζ,T (C1M,C2M). We take a small η > 0 (depending on δ, C1, C2, and T , but not
on ζ ), whose precise value will be specified later, and we define the following events
(similar to, but a bit different from the events in the proof of Theorem 7.1).

(i) NET := {the configuration (minγ σ
D(γ )

tc−ηε̃,tc+ηε̃
(v)
)
v∈BC1M has a netN withmesh

� (MM̃)1/2, and
∣∣CN ∩ AC1

2 M,C1M

∣∣ ≥ 1
2 · ∣∣AC1

2 M,C1M

∣∣θ(tc + ηε̃)
}
(where the

minimum is over circuits γ in AC1M,C2M ). Using again the comparison to per-
colation with holes (Lemmas 6.2 and 6.8), we observe that, from Proposition 5.5
(and Remark 5.7),

for all η > 0, P
(
NET

)−→
ζ↘0

1. (7.40)

Indeed, we know from (7.2) and Lemma 6.7 [combined with (7.39)] that

L(tc + ηε̃) � L(tc + ε̃) = M̃ � M1−υ, (7.41)

for some υ > 0.
(ii) NETB := {

the largest (tc + ηε̃)-occupied cluster in BC2M has a volume ≤
2 · ∣∣BC2M

∣∣θ(tc + ηε̃), and contains a net N B with mesh � (MM̃)1/2
}
. Observe

that CN in the definition of NET is contained in the cluster of N B . It follows
immediately from (2.14) (and (7.41)) that

for all η > 0, P
(
NETB

)−→
ζ↘0

1. (7.42)

(iii) NI := {no vertex of CB is ignited during the interval (tc − ηε̃, tc + ηε̃)
}
, where

CB is the cluster of the netN B in the definition of NETB. It follows from (7.35)
that for η ∈ (0, 1),

ζ · 2ηε̃ · M2θ(tc + ηε̃) ≤ 2η · ζ ε̃M2θ(tc + ε̃) ≤ C ′
0η
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for some C ′
0 > 0. Hence, η > 0 can be chosen so small that: for all sufficiently

small ζ ,

P
(
NI
) ≥ 1− δ

10
. (7.43)

We now fix such an η.
(iv) OCP := {

in the configuration
(
minγ σ

D(γ )

tc−ηε̃,tc+ηε̃
(v)
)
v∈BC1M , the cluster CN

contains a circuit in AM̃,K M̃

}
, for some K > 1. We claim that we can choose K

large enough so that: for all sufficiently small ζ ,

P
(
OCP

) ≥ 1− δ

10
. (7.44)

Indeed, this follows from similar reasons as (7.7), since L(tc+ηε̃) � M̃ (M̃ and
M playing the roles of m1 and m2, respectively). We now fix K such that the
above is satisfied.

(v) I := {
there exists a vertex in CN which gets ignited in the time interval (tc +

ηε̃, tc + λε̃)
}
, for some λ > η. We observe that for λ → ∞ (η being fixed),

ζ · (λ − η)ε̃ · M2θ(tc + ηε̃) � λ

[using (7.35)]. This implies that λ can be taken so large that

P
(
I
) ≥ 1− δ

10
, (7.45)

and we fix such a λ.
(vi) VC := {

there exists a (tc + λε̃)-vacant circuit in A M̃
K ′ ,M̃

}
, for some K ′ > 1.

Since L(tc + λε̃) � L(tc + ε̃) = M̃ [using (7.2)], (2.3) implies that we can take
K ′ so large that

P
(
VC
) ≥ 1− δ

10
(7.46)

(and we fix such a K ′).

Now, denote by E the intersection of the six events (i)-(vi). If E occurs, then, no
matter which circuit γ in AC1M,C2M we choose, the forest fire process in D(γ ) has
a burning event which leaves 0 in an island, whose boundary is a circuit in A M̃

K ′ ,K M̃
.

Hence, �̃ζ,T (C1M,C2M) ∩ E ⊆ �̃ζ,T
( M̃
K ′ , K M̃

)
, so

P
(
�̃ζ,T (C1M,C2M)

) ≤ P

(
�̃ζ,T

( M̃
K ′ , K M̃

))
+ P
(
Ec). (7.47)
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Using (7.40), (7.42), (7.43), (7.44), (7.45) and (7.46), we obtain

lim sup
ζ↘0

P
(
�̃ζ,T (C1M,C2M)

) ≤ lim sup
ζ↘0

P

(
�̃ζ,T

( M̃
K ′ , K M̃

))
+ 4 · δ

10
. (7.48)

Finally, we explain how to choose the constant C = C(k + 1, δ,C1,C2, T ) men-
tioned in the beginning of the induction step. For that, we use the induction hypothesis.
Note that all the “auxiliary” numbers introduced along the way (η, λ, K and K ′) do
not depend on this constant C . First, we take C ′ = C(k, δ

10 ,
1
K ′ , K , T ) produced by

the induction hypothesis. Then, we can take C so large that, for all sufficiently small
ζ ,

[
M ≤ mk+2

C2C

]
⇒
[
M̃ ≤ mk+1

KC ′

]
and

[
M ≥ Cmk+1

C1

]
⇒
[
M̃ ≥ K ′C ′mk

]
.

(7.49)

Indeed, such a C exists since we have, from (7.36) and (6.10) (for k and k + 1),
combined with (2.6), (2.12), and (2.13):

M̃

mk+1
≤ C̄1

(
M

mk+2

)β1

and
M̃

mk
≥ C̄2

(
M

mk+1

)β2

(7.50)

for some universal constants C̄1, C̄2, β1, β2 > 0. We thus obtain that if M(ζ ) satisfies
(7.39), by combining (7.48) and the induction hypothesis,

lim sup
ζ↘0

P
(
�̃ζ,T (C1M,C2M)

) ≤ δ

10
+ 4 · δ

10
= δ

2
. (7.51)

This completes the proof of Theorem 7.2. ��

8 Discussion: forest fires with recovery

For the applications in Sect. 7, we focused on forest fires without recovery: once a
tree is burnt, the vertex where it is located remains vacant forever. However, we want
to emphasize that several crucial intermediate results do hold for forest fires with
recovery as well, due to the quite general coupling result in Sect. 6.2 (Lemma 6.2).
This raises the hope that the main results in Sect. 7, Theorems 7.1 and 7.2, about
exceptional scales could be extended, at least partially, to forest fires with recovery.

Let us discuss a natural strategy to prove such an extension, and the main difficulty
that needs to be overcome in order to carry it out. To do this, let us return to the
heuristic discussion in Sect. 1.2, a few lines below (1.3). There, we pointed out that
the first exceptional scale is of order 1√

ζ
, where ζ is the ignition rate. This can easily

be extended to forest fires with recovery. However, already in the argument for the
next exceptional scale, an obstacle occurs.
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An important feature in that argument is that, after burning at time τ , the problem
is “reduced” to studying a forest fire process in a domain (“island”) with diameter
of order L(τ ). The difficulty that comes up in the model with recovery is that, at
least theoretically, a significant part of the trees destroyed by the burning at time τ

(and earlier burnings) may recover, and connect the above-mentioned “island” with
other islands, thus producing a much bigger connected region, which would make the
arguments invalid.

In the literature, there is a result, about a process called “self-destructive perco-
lation”, which suggests, at least “morally”, that such a substantial recovery does not
happen. A variant of this result was conjectured by van den Berg and Brouwer [6] in
2004 (see also [7]). Kiss, Manolescu and Sidoravicius [27] established the following
result around ten years later (it is the main result, Theorem 4, in [27]).

Consider site percolation on the square lattice Z
2. For n ≥ 1, let Rn be the box

[−2n, 2n] × [0, n], and Sn be the bigger box [−3n, 3n] × [0, n]. First, we consider
(ordinary) site percolation with parameter pc = psitec (Z2): this is the initial configu-
ration ω. Now, let χ ⊆ Sn be the set of vertices connected in Sn to both the left and
right sides of Sn (i.e. the union of the connected components of horizontal crossings
in Sn). We denote by ω̃ the configuration obtained from ω by setting

• ω̃v = 0 if v ∈ χ = χ ∪ ∂outχ ,
• and ω̃v = 1 otherwise, i.e. if v ∈ Sn \ χ .

In other words, if a horizontal crossing of Sn occurs, we destroy (i.e we make vacant)
its entire occupied cluster in Sn . We also keep vacant all the vertices along the outer
boundary of the clusters of such crossings, and we set occupied all the other vertices in
Sn . Lastly, each vertex vacant at this stage is “enhanced”, i.e. it becomes, independently
of the other ones, occupiedwith probability δ > 0: this produces the final configuration
ω̃σ := ω̃ ∨ σ , where σ is independent of ω and has distribution Pδ . We have:

Theorem 8.1 (Theorem 4 of [27]) There exist constants δ, λ,C > 0 such that: for all
n ≥ 1,

P
(
ω ∈ CH (Sn) and ω̃σ ∈ CV (Rn)

) ≤ Cn−λ. (8.1)

An exact analog holds on the triangular latticeT (starting insteadwith the parameter
pc = psitec (T)). To extend the results of Sect. 7 to forest fires with recovery, what we
would need is a suitable analog of Theorem 8.1 where, roughly speaking, the initial
configuration is replaced by a typical configuration at or near tc of the forest fire
process with recovery. Such a result does not simply follow by using the kind of
domination arguments introduced in Sect. 6.2, and used in Sect. 7 (e.g. for (7.5) and
(7.7)): the potential recoveries cause a delicate problem. This forms (part of) the work
of a subsequent paper.
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